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Abstract

The french national radioactive waste management agency (FR Andra) suggested a new way to design
a tunnel lining, especially, beneficial in the case of very deep tunnels. To avoid very thick tunnel
segments, they propose to integrate a layer of granular material on the extrados of the thinner lining.
This approach takes the advantages of the compressible capacity of the crushable particles and the
load transfer in the granular material. A tunnel segment with such design is called a Mono-block
Compressible Arch-segment VMC (Andra’s & CMC’s pending patent) and is an innovative new type
of tunnel linings.

This PhD dissertation is dedicated to the creation of a numerical model capable of reproducing the
mechanical behaviour of this compressible granular layer using 3D Discrete Element Method (DEM).
The granular packing is made of the brittle hollow coarse-size cylindrical particles, called shells. Each
shell is a 2 cm long tube with a diameter of 2 cm. Its small thickness makes the cylindrical shell mainly
made of void surrounded by a thin layer of clay. In the model, a breakable cluster (shell) is generated
using sphero-polyhedral elongated clumps. These clumps, called sectors, are glued together using two
adhesive contact force laws. If the combination of the normal and tangential contact forces exceeds a
suitable failure criterion, a de-clustering of the shell (breakage) occurs. The DEM tool Rockable devel-
oped for this research can operate on such crushable particles. The mechanical properties of the shell
model, composed of 12 to 24 sectors, are adjusted in the case of a uniaxial (vertical) radial compres-
sion of shells. The preceding grain-scale experiments on the true shells made of baked clay serve as a
reference. We determine the true range of the failure tensile load and its statistical Weibull distribu-
tion. The user-specified parameters is then successfully validated in the case of radial compression of a
horizontally constrained shell.

Firstly, the macroscopic study of shell assemblies focuses on the experimental characterisation of
the samples with a control of the initial state variables like a number density and a spatial arrangement
of shells (shells orientations). 3D reconstruction from X-ray tomographies of the original coated shells
samples extracted from the extrados of a tunnel segment help us to characterise the anisotropy of the
shells orientation. This is a piece of valuable information to the generation the numerical samples
of shells with relevant initial features. Secondly, a series of DEM oedometric tests on 〈1 000 : 2 000〉
shells is simulated. A parametric study successfully leads to the understanding of each internal state
variable role. A well-chosen set of initial variables with properly adapted DEM parameters give the
relevant predictive simulations for a final comparison with the experimental oedometer tests. Thanks
to a discrete insight into the micromechanics, the evolutions of the breakage level, the orientation
anisotropy and the local stresses exerted on the shells (and/or the fragments) are quantified during the
compression. Shell breakage results in a high compressibility of the material. Therefore, the mechanical
response is seen as a consequence of the breakage evolution. Finally, an analytical model is suggested
in order to predict the stress-void ratio relationship knowing the initial state of the sample and the
tensile strength of the constituents: the shells.

Keywords: Crushable granular material, Tunnel lining, Sphero-polyhedral clumps, Bonded Parti-
cles, Analytical prediction model, Oedometeric compression.



Résumé

L’Agence nationale pour la gestion des déchets radioactifs (l’Andra) en France propose un nou-
veau type de voussoirs de tunnel pour les ouvrages très profonds. Pour éviter des segments de tunnel
trop épais, ils proposent d’intégrer une couche de matériau granulaire sur l’extrados d’un voussoir
moins épais. Cette approche prétend utiliser la grande compressilibité de la couche granulaire consti-
tuée de particules broyables et les transfert de charge interne au matériau granulaire pour réduire
l’épaisseur du voussoir tout en gardant des performances mécaniques importantes. Un segment de
tunnel avec une telle conception est appelé un VMC monobloc compressible (brevet en instance de
l’Andra & CMC). Il s’agit d’un nouveau type de revêtement de tunnel particulièrement innovant.

Cette thèse est consacrée à la création d’un modèle numérique capable de reproduire le comporte-
ment mécanique d’une couche granulaire très compressible à l’aide de la méthode aux éléments discrets
(DEM) en 3D. Le milieu granulaire est constitué de particules d’argile cylindriques creuses appelées
textitcoques. Chaque coque est un tube de 2 cm de long avec un diamètre de 2 cm. La faible épaisseur
de la coque cylindrique la rend essentiellement constituée de vide entourée d’une fine couche d’argile.
Dans le modèle, un cluster sécable (la coque) est généré à l’aide de clumps sphéro-polyédriques allon-
gées . Ces clumps, appelés secteurs, sont associés entre eux en utilisant deux lois de contact adhésives. Si
la combinaison des forces de contact normales et tangentielles satisfait un critère de charge spécifique,
la coque se casse au niveau de l’interface entre les deux secteurs. L’outil DEM Rockable mis au point
pour cette recherche peut fonctionner sur ces particules fragiles. Les propriétés mécaniques des coques,
composé de 12 à 24 secteurs, sont ajustées à l’aide d’essais de compression radiale uniaxiale (verticale).
Les expériences à l’échelle du grain sur les coques en argile cuite ont servi de référence. Nous avons
déterminé la plage réelle de rupture et sa distribution statistique (Weibull). Les paramètres numériques
et mécaniques ainsi obtenus ont été validés avec succès dans le cas de la compression radiale d’une
coque contrainte latéralement.

Dans un premier temps, l’étude des assemblages de coques porte sur la caractérisation expérimen-
tale des échantillons avec un controle sur les variables d’état initiales telles que la densité et l’orienta-
tions des coques. La reconstruction 3D à partir de tomographies à rayons X d’échantillons de coques
carottés dans l’extrados d’un voussoir nous a permis de caractériser l’anisotropie de l’orientation des
particules. Il s’agit là d’une information précieuse pour la génération d’échantillons numériques ayant
les caractéristiques initiales pertinentes. Deuxièmement, des simulations DEM de compressions œdo-
métriques sur des échantillons de 2 000 coques sont réalisées. Une étude paramétrique permet de mettre
en évidence le rôle des variables d’état initiales. Un ensemble bien choisi de variables initiales et des
paramètres DEM correctement adaptés permettent d’obtenir des simulations prédictives pertinentes
pour une comparaison avec les expériences de laboratoire. Une analyse micro-mécanique de l’effet de
la proportion des grains cassés sur les contraintes locales exercées sur les coques (et les fragments)
est effectuée. Il est observé que la rupture des coques entraîné une compressibilité élevée du maté-
riau. Par conséquent, la réponse mécanique en déformation est considérée comme une conséquence
directe de l’évolution de la rupture des particules. Pour finir, un modèle analytique de prédiction de
la relation contrainte-déformation est proposé dans le cas de la compression œdométrique. Ce modèle
prédictif tient compte des variables internes du milieu granulaire comme la résistance mécanique en
compression des coques.

Keywords : Matériaux granulaire compressible, Voussoirs, Sphèro-polyhèdre, Compression œdo-
métrique, Modèle de prédiction analytique, Particules collées.
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Dear Reader,
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fast mind warm-up.
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We wish you a pleasant lecture!
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Presented hereinafter, PhD dissertation originates from an innovative technological concept for the
deep tunnel lining, but essentially it is dedicated to the granular matter. The connotation to the en-
gineering application is explained in the section 1.1. Herein, we have introduced the French National
Agency of Radioactive Waste Management (Andra) and briefly commented on their main objectives.
However, a more elaborated explanation was dedicated to the concept and the construction of Com-
pressible Arch Segments (VMC). A granular material, that is object of our work, is then introduced
together with a brief description of previous findings concerning the material. Further, we summarised
the benefits which brings the combination of the compressible layer and a classic concrete segment.
Finally, we presented the missing components of Andra’s background research, that actually motivate
our work.

Section 1.2 is a brief description of the thesis further structure in view of the following review of
the manuscript. A short abstract of each chapter is given side to side with some keywords. The section
has been designed for the convince of the reader.

List of symbols and abbreviations

Symbol /
Abbreviation

Explanation

VMC Compressible monobloc arch-segment ( Voussoir Monobloc Compressible)
Shell Tube-shaped grain
σH Maximal horizontal stress (MPa)
σh Minimal horizontal stress (MPa)
σV Maximal vertical stress (MPa)
ν Poisson’s ratio
E Young’s modulus

5



1.1 Motivation – Nuclear waste
management

Agence nationale pour la gestion des déchets
radioactifs is a national french agency being in
charge of the study on the possibility of dis-
posal for radioactive wastes in deep clay-stone
formation (Andra, 2005). Preparation of such
a facility, called Cigéo1, must be preceded by
decades of study and preparation involving: data
acquisition, repository design, evolution of be-
haviour of the repository and long-term safety
analyses. To this end, the Underground Re-
search Laboratory (URL) has been constructed in
Northeastern France and is territorially shared be-
tween two departments: Meuse and Haute-Marne
(MHM). Thus, the repository is buried 420 m and
550 m deep in Callovo-Oxfordian (COx) clayey
layer, resting in between limestone formations
(Figure 1.1).

420 - 550 m

~ 6.0 m
~ 4.8 m

σH

σV

σH

σV
COx clay-stone

limestone

Figure 1.1 : Sketch of GVA2 UL drift presenting loca-
tion of deep tunnel of Meuse and Haute-Marne Under-
ground Research Laboratory (MHM URL).

The research work of Andra has been divided
into two phases. First one focused on the char-

acterisation of COx clay-stone properties (Andra,
2005; Delay et al., 2014) Among many experimen-
tal observations, we draw special attention to-
ward a couple of aspects. A high-stress level at
the level of URL has been measured by Wileveau
et al. (2007). In-situ tests allowed to determine an
anisotropy in the stress state with:

maximal vertical stress σV = 12.7 MPa,

maximal horizontal stress σH = 16.0 MPa,

minimal horizontal stress σh = 12.4 MPa,

Thus, an anisotropy of host rock convergence is in-
evitable but can be reduced if the tunnel is aligned
with the direction of σH (Armand et al., 2013;
Guayacán-Carrillo, 2016). This gives a sense of
segment bearing capacity needed to resist the con-
vergence of the host rock.

Second, an ongoing research program is
mainly dedicated to technological improvements,
and our work, presented hereinafter, originates
from this part.

Figure 1.2 : Compressible arch-segment (VMC) is an
element of tunnel lining constructed as an union of
classic concrete segment and coated granular layer –
according to joined US Patent (pending) of Andra and
CMC.

Andra faced the challenge of modern under-
ground constructions and came up with an inno-
vative way to design the arch-segments (Andra
& CMC2 pending US patent). Voussoir Monobloc
Compressible (VMC ), which translates to mono-
block compressible arch-segment, is a pre-casted

1 Centre industriel de stockage géologique
2 Constructions Mécaniques Consultants – a consulting company.
3 The concept is explained in the video of Andra available online (Andra, 2016).
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element of tunnel lining (Andra, 2016; Zghondi
et al., 2018)3. Figure 1.2 shows the construction of
VMC. 13 cm thick granular layer (with coating) is
integrated onto the concrete tunnel linings, such
that its compressible behaviour and load trans-
fer capability are activated close to the tunnel’s
extrados. As is seen, the granular layer is com-
posed of tube-shaped grains, that are manufac-
tured from excavated COx clay-stone by means of
the mechanical and thermic treatments. Hence,
the grains are classified as ceramic material and
one can expect their brittle response to any me-
chanical loading.

Following (Guayacán-Carrillo, 2016), the elas-
tic properties of COx clay-stone are characterised
by Young’s modulus E = 4 GPa and Poisson’s
ratio ν = 0.29. Due to the treatment, the elastic
properties of the material can be modified4, but
one can already understand that the material is
not capable to experience high deformation itself.
Thus, high compressibility of layer must originate
from the high intra-grain porosity, i.e., the internal
void (Figure 1.3). Thanks to this peculiar "porous"
geometry of grain, we refer to each grain as shell.

Figure 1.3 : A shell is a tube-shaped particles with large
internal void manufactured from COx clay-stone by
mens of the mechanical and thermic treatments.

This type of particles can be recognised as
Raschig-rings5 used in the field of chemical engi-
neering for distillation and other processes thanks
to its large surface. In this context, there exist so-
lutions of other type6 in the nuclear waste man-
agement which involve the Raschig-rings, for ex-
ample, Pyrex glass rings tested by Jacobson et al.
(1998). Despite the different application, there
were studies taking into count the strength of

Raschig particles, for example, Salem and Ak-
bari Sene (2012) showed the variability of strength
for zeolite-based Rashig-rings using the statisti-
cal distribution of Weibull (1951). Similarly, VMC
emphasises mainly the mechanical behaviour of
shells

Let us discuss the motives and benefits of
VMC solutions. A priori, we ought to mention
that in MHM URL the gallery with the lining
of VMC has been already constructed and ongo-
ing in-situ monitoring supports all the conceptual
claims (Bosgiraud et al., 2017). Onwards, we will
refer to different scales as follows: the tunnel as
the mega scale, an assembly of shells as the macro
scale, and single shell as the micro scale.

A
xi
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Elastic behaviour

End of  
densification

Irreversible plateau

Axial strain (%)
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10
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0
10 20 300 40 50 60 70

Figure 1.4 : Typical mechanical response of compress-
ible layer (coated shells) obtained from uniaxial com-
pression.

Figure 1.4 shows a typical compressible re-
sponse of layer obtained from the macro scale ex-
periment (Elandalousi et al., 2018; Ly and Robi-
net, 2017; Ly, 2018). The compressible layer is an
agglomerate – shells have been mixed with the
cement mortar to enhance its performance dur-
ing the segment installation. The strength of ce-
mented links, in between the shells, are relatively
weak comparing to the stresses applied on the

4 For example, the typical values of E for brick are higher 10− 50 GPa
5 There exist a variety of shapes and materials choices in the application for chemical engineering.
6 Methods directly involved in the prevention of molecular diffusion.
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compressible layer (σh, σV). It is interesting that
the behaviour of industrially created layer bears
significant resemblance to some natural geologi-
cal formation like highly porous limestone with
weak cemented bonds (Papazoglou, 2018).

Figure 1.5 : Photo of sample before (right) and after
(left) uniaxial compression. Test performed by Euro-
Géomat-Consulting EGC (Orléans) on sample with di-
ameter of 30 cm and height of 13.5 cm (Ly, 2018).

One can distinguish three phases in the me-
chanical response: elastic behaviour, highly com-
pressible plastic zone and final rapid densifica-
tion. The plastic plateau rules the high compress-
ibility of the layer. Looking at the sample after
uniaxial compression (Figure 1.5), one can under-
stand that the high compressibility is activated
throughout shells breakage which releases a high
amount of the internal voids (discussed in more
details in chapter 6). Furthermore, in the con-
cept of brittle fracture, adequate to shell break-
age, a change in the free energy is required for
crack propagation. A basic and most common
thermodynamic framework proposed by Griffith
(1921) was based on the conversion of the po-
tential energy (caused by the load) into surface
energy needed to break apart the atomic bonds.
Essentially, this phenomenon leads to the reduc-
tion of the stresses experienced by the compress-
ible layer such that plateau is observed in the Fig-
ure 1.4.

Then, the compressible layer between concrete
lining and surrounding rock spreads stresses by
means of load transfer mechanisms as shown in
the Figure 1.6 (Chevalier et al., 2012). When the
stress applied by the rock becomes locally very
high, the granular material adapts by the break-
age combined with the large contact force rear-

rangements. The forces distributed on the extra-
dos of the concrete segment are reduced as long
as the granular layer preserves the compressible
properties. This has been confirmed experimen-
tally (Bosgiraud et al., 2017; Zghondi et al., 2018).
A retrievability requirement of the waste (over
100 – 150 years) leads to an extra design con-
straint. For instance, the irreversible behaviour
of the compressible material should permit to cap
the transferred stresses, due to COx convergence,
to the concrete part of the lining. The challenge
lies in providing the compressible material will
effectively stay in the "irreversible plateau" zone
during the requested life time of the structure (An-
dra, 2005).

F

VMC

Compressible
layer

Reinforced 
concrete

Figure 1.6 : Heterogenous distribution of forces char-
acteristic for the granular materials is expected in the
compressible layer.

Summary

The advantages of compressible layer:

The compressible layer is characterised by
good chemical properties – it is chemically
inert and has non-caloric load.

The cement coating of shells allows to adjust
the initial elastic behaviour needed to install
the lining segments.

The granular skeleton of the layer transfers
the load and reduces the stresses applied on
the concrete part.
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The advantages of VMC:

The excavated host rock COx is recycled
while manufacturing the shells.

The compressible layer is also equivalent to
classic mortar backfill of pre-casted tunnel
lining. With VMC one gains the control over
the backfill, such that the homogenous thick-
ness and density are obtained and (radially)
uniform mechanical response is guaranteed.

The technological process limits the usage of
the concrete. Firstly, thanks to the reduced
load applied on the concrete the thickness
of pre-casted concrete can be reduced. Sec-
ondly, the lack of injected backfill mortar
contributes to this reduction too.

The compressible behaviour of layer encour-
ages the log-time time safety of the concrete,
and thereby, the structure.

The remaining challenges that define our study:

the understanding of the mechanical be-
haviour,

the investigation of the breakage phenom-
ena,

the generation of the numerical model able
to predict long-term behaviour,

the optimisation of the parameters of the
granular material.

1.2 Guide for The Reader

Chapter 2

Keywords: Literature review, Grain crushing, DEM,
Fragment replacement, Particle bonding, Breakage Cri-
terion, Shape discretisation, Complex shapes.

This chapter is a bibliographic review intro-
ducing the research domains to which we aspired
to contribute. Studying the literature, one can eas-
ily understand the importance of grain breakage

on the behaviour and the properties of the gran-
ular materials. Thus, at first, the state of art is
dedicated to a discrete numerical modelling with
grain crushing. We placed a strong emphasis on
Discrete Element Method (DEM). Although we
have acknowledged some combined methods, we
mainly focused on the DEM as an independent
modelling method. The chapter elaborates on two
modelling approaches: a Fragment Replacement
Method and a Bonded Particles Method. Sec-
ondly, we looked into the existing alternatives to
the spherical shapes. The more complex ways to
form a grain, including features like a concavity
or an angularity, are also considered.

Chapter 3

Keywords: Grain scale, Experimental tests, True ten-
sile force, Force scattering, DEM tool Rockable, Clus-
ter model, Cohesive links, Sphero-polyhedron, Model
verification.

This part is dedicated to a grain-scale study
of tube-shaped grains (shells). The work contains
both experimental and numerical study that re-
sulted in a generation of a reliable model of grain
breakage. We described the experimental cam-
paigns of two simple tests conducted on a sin-
gle shell: (i) a uniaxial radial compression and (ii)
a biaxial radial compression with the horizontal
strain contains. Moreover, the numerical reflex-
ions of those tests were performed thanks to the
Discrete Element Method (DEM). Therefore, we
partially dedicate our attention to the basic con-
cepts of the method. The DEM software Rockable

is introduced including its advantages and its lim-
itations. Herein, we contemplate the influence of
the numerical parameters and explain some of the
final choices.
In Appendix A.1 one can find all the cluster
shapes used in the modelings compared together
in a transparent way. Appendix A.2 is dedicated
to the additional finite element modelling of the
shell in the context of the strength determination.
The knowledge of internal stress state supports
the choice of the numerical parameters in DEM.

9



Chapter 4

Keywords: Experimental estimation, X-ray CT, Grain
orientation, Numerical deposit, Rigid boundary effect,
Preferential orientation.

This part is the introduction of the macro scale
both experimentally and numerically. Experimen-
tal characterisation of the true material has been
performed in the first place. One can find here
the measurements of a density range, an estima-
tion of the shell-shell friction angle or the mortar
strength assessment. The sample acquired from
true VMC segment has been scanned using the X-
ray computer tomography (CT). We discussed a
solution to detect grains in the 3D image adapted
to the tubes. Therefore, a statistical distribution
of the shell orientation could be compared with
the numerical samples. The protocol to deposit
an assembly under the gradational downfall has
been enhanced with the additional schemes such
that either a random or a preferential orienta-
tion could be obtained. The DEM models were
constructed using a rigid boundary, the effect of
the constraints has been evaluated thanks to the
anisotropy of shells orientation. Appendix B is
dedicated to a more detail description of the initial
state of the sample. A table contains a set of the
parameters that describes the assembly of shells
like the density, void ratio and coordination num-
ber.

Chapter 5

Keywords: Macro scale, DEM modelling, Oedome-
ter tests, Parametric study, Final model, Experimental
comparison, Unloading-Reloading cycles.

This chapter continues the numerical study of
the shell assembly. The mechanical response to
a medium-pressure oedometric compression has
been obtained thanks to discrete modelling. The
extensive parametric study was conducted in or-
der to understand the parameters roles and to
classify their importance. The study shows how
the force parameters, the initial state and the shell
thickness affect the mechanics. The answer is
clearly manifested by the changes in the com-
pression curves. The final comparison between

the macroscopic experiments7 and the final repre-
sentative modelling have been done including the
primary investigations of both micro- and macro-
mechanics as well as their co-dependance.
Appendix C includes a tabular summary of all
the significant user-specified parameters for all the
discussed modelings.

Chapter 6

Keywords: Analysis, Breakage level, Sieve analysis,
Grain size distributions, Orientation anisotropy, Lo-
cal stress, Void reduction, High porosity, Analytical
model.

Firstly, a detailed analysis of the shell breakage
is shown addressing the consequences of breakage
on the response to the oedometric load. A distinc-
tion between a primary and the secondary crush-
ing is made, because of the internal porosity of
those peculiar grains. Thus we discussed the evo-
lution of primary breakage and the modifications
of grain size distributions. Furthermore, the statis-
tical analysis concerns both the growth of the ori-
entation anisotropy and the local stress exerted on
a shell or a fragment. An interesting modification
of the consolidation curve can be found if the ac-
cessibility of the internal voids of the tube-shaped
shells is acknowledged. The chapter finishes with
the construction of analytical constitutive models
predicting the classic and the modified consolida-
tion curves with respect to either the axial strain
or stress.

Chapter 7

Keywords: Summary, Conclusions, Perspectives.
The objectives of this brief chapter is a compre-

hensive closure of our study. Classically, we sum-
marise the work and conclude the most important
findings of the study. Finally, some prospects to
continue and/or complete this research work are
proposed.

For reader comfort, a prior to each chapter we
also recall the actual table of content, introduce
the sections in a proem and pre-define the sym-
bols and abbreviations used afterward.

7 External data.
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Introduction

Section 2 is a literature overview of the matters we found most important to build our study. Initially,
we desire to introduce grain crushing as a factor of great importance to overall understanding granular
material behaviour, but we also wish to point out the attention given to breakage in the research studies
dedicated to the industrial applications, mainly in civil engineering.

Section 2.1 briefly shows the compressible behaviour is influenced by grains crushing. The uniaxial
"oedometric" compression is a fundamental test investigating the compressibility of material. The
experimental study performed on, probably the most standard granular material, sand but also some
examples of the artificial porous materials are mentioned.

This experimental observations must have led to enhancement of numerical methods that initially
did not take into account grins breakage. The overview is dedicated mainly to discrete element mod-
elling method such as Discrete Element Method or Contact Dynamics – section 2.2. However, in sections
2.2.1 and 2.2.2, we acknowledged an existence of method combinations which mix the discrete and the
continuum approaches. Section 2.2.3 elaborate on the DEM modelling including particle breakage. Two
categories were distinguished: a Fragment Replacement Method and a Bonded Particle Method. We
discussed the basic concepts as well as the pros and cons of both. Further, we went into details by
looking at the failure criteria and the shape discretisation used by various researchers. This section
references the studies made on circular/spherical shapes.

Section 2.3 is dedicated to a treatment of the complex shapes and higher degree of contact complex-
ity. It is divided into two parts:

• Section 2.3.1 presents rigid clumps of disc/spheres with semi-complex and highly complex shapes.
The breakage was not acknowledged in the mentioned studies but the influence of grain non-
convexity was discussed.

• Section 2.3.2 elaborates on the angular shapes – polygons (2D) and polyhedra (3D). A considerable
attention was paid to the shpere-cylinders which are simple examples of shapes used in our work
presented afterwards.
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List of symbols and abbreviations

Symbol /
Abbreviation

Explanation

Section 2.1
σ′v Vertical effective stress (MPa)
e Void ratio
p Mean pressure (Pa)
pa Reference pressure (MPa)
S1D Slope of line (Hardin, 1987)
Section 2.2
BPM Bonded Particle Method
BVP Boundary Volume Problem
CD Contact Dynamics
DEM Discrete Element Method
NHL Numerical Homogenisation Law
FDEM Combined Finite-Discrete Element Method
FEM Finite Element Method
FEM×DEM Double scale approach: FEM at large scale and DEM at the small scale
FRM Fragment Replacement Method
SBFEM Scaled Boundary Finite Element Method
XFEM Extended Finite Element Method
α Power (parameter in power law)
σcrit Failure tensile stress at mass canter of disc (Pa)
σf M Critical tensile stress for the largest grain (Pa)
σpb Strength of parallel bond (MPa)
σcrit 1 mm Critical tensile stress for grain with R = 1 mm (Pa)
σmax Maximum principal stress (Pa)
σmin Minimum principal stress (Pa)
σt Maximum tensile inter-disc stress (Pa)
σ1,2,3 Average principle stresses in 3D (Pa)
b Power in the hardening law – material constant
bn Normal contact force limit of simple point bond (N)
bs Shear contact force limit of simple point bond (N)
D Diameter of disc (m)
DM Size of the biggest particle (m)
Fmax, P1 Maximum principal contact force (N)
Fmin Minimum principal contact force (N)
Fcrit Critical force causing tensile failure (N)
F?

crit Critical shear force (N)
fW Variability parameter
fD Parameter acknowledging contacts isotropy
fCN Parameter acknowledging curvature of the loading path
k, K Pre-factor of power law concerning force and stress, respectively
Kpb Stiffness of parallel bond (GPa/mm)
L Thickness of disc (m)
Continued on next page...
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Symbol /
Abbreviation

Explanation

N Normal force force (N)
m Weibull modulus
R Radius of disc (m)
Rmin, Rmax Minimum, maximum radii of sphere sub-particle (m)
R Radius of disc (m)
S Shear force (N)
W0 The critical energy density (J/m3)
Wmax

i The critical energy causing de-clustering (J)
q The octahedral shear stress (Pa)
qcrit Critical octahedral shear stress (Pa)
q0 Scaled octahedral shear stress (Pa)
Vi Volume of cluster (m3)
Section 2.3.1
α Concavity parameter for clump
∆R Difference between prescribe an inscribe circle radius (m)
φ′, φ Vector’s radial inclination in neighbour and contact frames, respectively

θ′, θ
Vector’s inclination with respect to vertical axis in neighbour and contact frames,
respectively

~l Branch vector (m)
~n′,~n Normal unit vector of neighbour and contact frames, respectively
R1 Radius of circle prescribe on the complex shape (m)
R2 Radius of circle inscribe in the complex shape (m)
~t′,~t Tangential unit vector of neighbour and contact frames, respectively
Section 2.3.2
BCM Bonded Cell Model
λ Irregularity parameter
Cs Tensile cohesion of bond (Pa)
Ct Shear strength of bond (Pa)
d0 Typical cell size (m)
l Distance between the centroids of two cells (m)
lmin Minimum limit of distance between two cell’s centroids (m)
r Radial coordinate of vertex in the half-plane ring (m)
rmin, rmax Minimum, maximum radii of half-plane ring (m)
If a symbol or an abbreviations is not distinguished in the current section, please search in the previous sections.
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Granular material

"A granular material is composed of discrete solids
which are in contact most of the time." It is one of
the most basic definition given by Duran (2000).
The author has also pointed out that "the granular
materials occupy a prominent place in our culture. The
worldwide annual production of grains and aggregates
of various kinds is gigantic, reaching approximately
ten billion metric tons. [...] The construction indus-
try (housing, hydraulic concrete needs, public works
projects, and so on) consumes aggregates at the rate of
seven tons per capita per year". No wonder, so many
research projects were, are and will be dedicated
to understanding of the mechanical behaviour of
such materials.

A number of studies shown that grain frag-
mentation plays an important role in various in-
dustrial processes like grinding – clinker grind-
ing in cement industry (Esnault and Roux, 2013)
or wheat grinding (Blanc et al., 2017) – powder
compaction (Nguyen et al., 2015) or civil engineer-
ing works and structures – pile installation and
cyclic solicitation (Colliat-Dangus, 1986; Doreau-
Malioche, 2018; Yang et al., 2010), railway ballast
degradation (Zhang et al., 2017), dams mainte-
nance (Alonso et al., 2005), and so forth.

By now, the microscopic properties and macro-
scopic behaviour are well known to be interde-
pendent. Grain breakage leads to the significant
changes of density volume, strength, hydraulic
conductivity, etc. On one side, the appearance and
amount of grains breakage within granular pack-
ing has a grain scale origins, like particle shape
and particle strength. On the other side, there ex-
ist significant connection to the macroscopic char-
acteristic: initial grain size distribution, initial
void ratio, effective stress, stress path, presence of
water (Hardin, 1985; Fukumoto, 1992; Lade et al.,
1996).

2.1 Contribution of grain crushing
to the compressible behaviour

"For the type of deformation that primarily produces
volume change, such as one-dimensional strain or
isotropic compression, particle breakage adds to the re-

duction in volume" (Hardin, 1985). This is ade-
quately illustrated by Figure 2.1 coming from the
work of Bauer et al. (2017). As is seen, on the ex-
ample of classic consolidation curve for isotopic
compression (semi logarithmic e : p space), the
strain range, i.e. void ratio, for crushable material
is significantly enlarged with respect to the assem-
bly of non-crushable particles.

e

p (MPa)

Grain crushing

Inflexion 
point

No crushing

e0

Figure 2.1 : Influence of grains breakage on the com-
pressible behaviour of granular material. Typical com-
pression curves.

As discussed in section 1.1, the compressible
behaviour of VMC is of the highest priority. It was
suggested that the plastic plateau observed in the
Figure 1.4 is a consequence of particles crushing.
Also, many research studies support this claim.

Early on, Hardin (1987) connects the shape
of compression curve in case of 1-D compression
with the phases of significant and minor insignifi-
cant breakage. Figure 2.2a recalls the stress-strain
relationship in a modified space 1/e : (σ′v/pa)p,
using inverse of void ratio e and normalised effec-
tive stress σ′v/pa risen to power p. This approach
linearised the compression curve when the break-
age was insignificant (ab segment). Particle crush-
ing was suggested to be significant along curve
bend bcd with decreasing slope

S1Dmax > S1D > S1Dmin. (2.1)

The trend got linearised once again (de segment)
approaching a linear asymptote when the mate-
rial was being crushed to silt size. As seen in Fig-
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a b

Figure 2.2 : Scheme of oedometric compression explaining influence / importance of grain breakage on the
compressible behaviour: a – Hardin (1987) and b – Bolton and McDowell (1997).

ure 2.2b, Bolton and McDowell (1997) confirmed
that correlation within framework of clastic me-
chanics based on the concept of fractal fragmen-
tation (Turcotte, 1986). The onset of breakage is
related to the point of curvature and is referred to
as the yielding point (C). The yield stress is char-
acteristic for each material and depends on den-
sity, particle strength, and so forth. Furthermore,
it is followed by isotropic hardening (HI) that is
related to the evolution of the particle sizes and
the modification of the contact network.

a b

Figure 2.3 : Highly porous artificial material used in
an oedometer test: a – Guida et al. (2018) and b–
Di Emidio et al. (2009).

The majority of studies confirming this yield-
ing phenomenon has been conducted on the clas-
sical cohesion-less geo-materials, such as sand.
Yet nowadays, more often the artificial and highly
porous grains are chosen as an object of study.
For example, Casini et al. (2013); Guida et al.
(2018) studied the compressible behaviour of
light-expanded clay aggregate (Figure 2.3a), while
Di Emidio et al. (2009) performed uniaxial com-
pression on the assembly of "sea-shell" pasta

(Figure 2.3b). Those study not only presented
equivalent evolution of macroscopic behaviour,
but also clearly showed that the breakage is, even
more, a key factor ruling the compressible re-
sponse.

Summarising, the characterisation of grain
crushing is a fundamental step to understand the
mechanics of granular materials. Therefore, if
the study aims to build representative numerical
model of compressible granular layer, taking into
account particle crushing is absolutely necessary.
To this end, in the following section we will focus
on different approaches to model breakage.

2.2 Strategies for modelling crush-
ing with DEM

2.2.1 Double scale approach

As already discussed, there exists a wide indus-
trial need to predict the behaviour of granular ma-
terials, including the granular soils. The progress
of technology and computer science constantly
enables a development of new numerical meth-
ods and an enhancement of already existing once.
Since the behaviour of granular matter is highly
connected to phenomena of breakage of the con-
stituents, the numerical models must accommo-
date it in their algorithms.

Within the domain of geomechanics and civil
engineering, Finite Element Method (FEM) is clas-
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sically used for engineering structures (e.g., tun-
nels and foundations) and continuum media (like
clays), whereas Discrete Element Method (DEM)
is widely applied for granular materials such as
sand. DEM has been initiated by Cundall and
Strack (1979). It has received considerably wide
attention across the disciplines. It is simply due to
its theoretical simplicity and clear physical mean-
ing.

Figure 2.4 : The scheme of double scale approach
FEM×DEM (Desrues et al., 2019).

Quite recently researchers tried to combine
those two into double scale approach FEM×DEM.
This method is working both for the engineering
modelling, like the deformation of rock forma-
tion around the tunnel (Desrues et al., 2019), and
the macro-scale modelling such as a biaxial test
(Nguyen et al., 2014). Figure 2.4 presents a gen-
eral scheme of this double-scale coupling method
as presented by Desrues et al. (2019). At the
larger scale, the resolution of boundary volume
problem (BVP) of a finite continuum is accom-
plished through finite element modelling. A nu-
merical homogenisation law (NHL) is simulated
with DEM and serves as an extremely rich consti-
tutive law, i.e., expresses the stress as a function
of the displacement gradient, at each Gauss point
of mesh. Therefore, DEM computations are per-
formed for each integration point so that the main
effects of granular materials are adequately cap-
tured. Within this method, the particle breakage
can be included in the discrete modelling. Since,
DEM is a self-sufficient modelling method, vari-
ous approaches to reflect particle crushing has al-
ready been developed.

2.2.2 Combined and enriched approaches

There exist combinations of those two methods
(FEM and DEM) also in the inverse configuration.
Such methods are limited to solve the macroscopic
system of grain. For example, Ma et al. (2016)
used the combined finite-discrete element method
(FDEM) in which the fragmentation, contact de-
tection, interaction between separate bodies are
treated with DEM, while the internal stress state
and deformation for each grain are found from
FEM (Figure 2.5). Similar system was employed
by Luo et al. (2017), yet using a Scaled Bound-
ary Finite Element Method. This method han-
dles the breakage within the SBFEM framework
instead of DEM. Another study (Druckrey and
Alshibli, 2016) has been using an extended finite
element method (XFEM) which is less mesh de-
pendent in predicting crack path. In general, the
combination of two methods has higher computa-
tion cost due to detail finite computations of each
grain. Also a hybrid computational framework
was presented by Zhu and Zhao (2019) combining
the peridynamics and Contact Dynamics (CD) en-
gine. The peridynamics, a continuum-based mesh
free method, is used to analyse breakage, while
the non-smooth intergranular contacts are man-
aged by the CD method.

Figure 2.5 : Grain meshing in the combined approach
FDEM used by Ma et al. (2016).

2.2.3 Purely discrete modelling

Let us focus on modelling of particle breakage
within the discrete element modelling itself1. The
existing numerical strategies capable of modelling
particle breakage can be simply categorised in two
groups (Figure 2.6):

1We refer to the studies using DEM and CD (contact dynamics).
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Bonded Particle Method (BPM) in which the
particle is generated as a cluster of smaller
particles connected together by means of
bonds (force-law).

Fragment Replacement Method (FRM) oper-
ates on undivided particles that are replaced
by smaller ones when the breakage occurs –
that is when a given limit criterion is satis-
fied.

Figure 2.6 : Two main approaches in modelling grain
breakage: Bonded Particles Method and Fragment Re-
placement Method (Zhou et al., 2019).

Further, this literature review delves into more
detail concepts of discrete element modelling. Es-
sentially, a basic knowledge of discrete element
method is required from the reader. If at a given
point one is missing the concept of contact recog-
nition or basic force laws, we recommend to famil-
iarise oneself with a brief section 3.1 in Chapter 3.

2.2.3.1 Fragment Replacement Method (FRM)

When dealing with FRM two challenges arise.
Both the particle breakage criterion and the frag-
ment replacement mode need to be properly se-
lected. The first one aims to capture the load
level and the configuration that trigger the re-
placement, and therefore, it is related to the parti-
cle strength and the loading type. The second one
targets the realistic evolution of grain size distri-
bution throughout the adjustment of the size and
the number of the replacement particles, packed
in the initial surface (2D) or volume (3D).

Åström and Herrmann (1998) investigated
the fragmentation of elastic discs with a two-
dimensional model. The authors distinguished
the following requirements of the fracture mode:

(i) a low number of fragments per breakage event
(to preserve the possibility of breakage), (ii) a re-
placement resulting in the decrease of the local
pressure and (iii) a realistic fragment replacement
mode. Note that discs were always replaced by
smaller discs featuring the fractal fragmentation.
Two different approaches were suggested, both re-
specting the mass conservation. In first, they sim-
ply replaced a disc in two equal-size fragments,
while in second approach 12 fragments of three
different sizes were packed within the area of
master-grain and the missing mass was balanced
by adding discs in neighbouring voids. Also, two
various breakage criteria have been probed, essen-
tially showing that limiting threshold of pressure
leads to an unstable process. Presumably, due to
lack of some phenomena such as size hardening.
Thus, it was suggested to apply the threshold of
the maximum compressible force.

Figure 2.7 : Breakage criterion used by Tsoungui et al.
(1999). The set of forces is converted to biaxial com-
pression (top) and an equivalent stress state which can
be decomposed into an isotropic and the deviatoric
part (bottom).

Tsoungui et al. (1999) proposed to calculate the
principal stresses for each disc (2D) taking into
account the true state of particle contacts. In-
stead of working with the set of contact forces,
the grain was compressed in the form of a cross
by Fmax and Fmin, analogously to biaxial loading,
as shown in the Figure 2.7. Tsoungui et al. (1999)
specified that stress state at the centre of a disk is
a function of both forces, because the occurrence
of σmin, equivalent to appearance of Fmin, reduces
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Author Shape

Tsoungui et al. (1999)

Lobo-Guerrero and Vallejo (2005)

Ben-Nun and Einav (2010)

McDowell and De Bono (2013)

de Bono and Mcdowell (2016a)

Table 2.1 : FRM – The shapes of clusters proposed by various researchers.
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the deviatoric state. McDowell and Bolton (1998);
Nakata et al. (2001b) also stated that the average
number of contacts per particle should be taken
into account since its large amount leads to more
isotropic stress state inside the grain. Then, this
approach indirectly included the strength harden-
ing due to the coordination number. If the tensile
stresses σt, seen as a function of Fmax and Fmin, ex-
ceeded the critical stress σcrit, the particleAs com-
monly known, the ultimate streng was replaced
by set of smaller constituents shown in Table 2.1.
As is seen, each disc was replaced into 12 sub-
particles in 4 different sizes. Following Åström
and Herrmann (1998), more discs were placed in
the "pockets" of the assembly to preserve the orig-
inal mass of grain. A minimum size was imposed
on the fragments in order to reduce the computa-
tion time and to prevent material inaccuracies.

As commonly known, the ultimate force is par-
ticle size dependent and a power law

Fcrit = k(R/Ru)
α (2.2)

was used to reflect particles hardening due to size
(Vallet and Charmet, 1995; McDowell and Amon,
2000; Nakata et al., 2001a), where R is the particle
radius, normalised by unit radius Ru. Note that
those parameters include the variability (α) and
the material nature (k). Furthermore, it was as-
sumed that the stress limit can be found from uni-
axial compression of the disc (Fmin = 0 N). In fact,
this approach was used by many researchers both
in the experimental determination of true tensile
strength and in the modelling for adjustment of
tensile failure (Mellor and Hawkes, 1971; McDow-
ell and Bolton, 1998; McDowell and Harireche,
2002; Cheng et al., 2003; Bolton et al., 2008; Laufer,
2015; Cantor García, 2017). Following the frame-
work build for Brazilian compression, Tsoungui
et al. (1999) obtained critical stress:

σcrit =
2
π

Fcrit

D
=

K
π
(R/Ru)

α−1. (2.3)

Finally, the model has provided realistic grain size
distributions, but a state of reduced breakage was
reached, most probably due to the comminution

limit.
Lobo-Guerrero and Vallejo (2005) performed

DEM simulation of 2D granular material using
PFC2D code2. The breakage is considered only for
discs with 3 or fewer contacts. Constituents com-
pressed by a larger set of forces are considered to
be in a fairly hydrostatic stress state, and thereby,
have a high probability of survival. This approach
imitates the influence of the contact number.

Figure 2.8 : The set of three (or less) contact forces
Pi is always converted to simple uniaxial compression
(Brazilian compression). Grains with a larger num-
ber of neighbours are considered unbreakable (Lobo-
Guerrero and Vallejo, 2005).

Although in some cases it might mismatch the
true breakage, it surely acknowledges the contact
network and minimises the discrepancy result-
ing from a complete absence of hardening effect.
When the disc can break, the load is simplified
and grain is always treated as diametrically com-
pressed, despite the number and the arrangement
of the contact forces Pi. Thus, the tensile stress
at the centre of grain is found using the classical
theoretical approach, where the tensile stress

σt =
2
π

P1

LD
, (2.4)

with L = 1 m and D being dimensions of disc
(Figure 2.8). To include the hardening effect due
to grain size, the ultimate tensile stress is a func-
tion of grain radius R:

σcrit = σ0(R/R0)
−1, (2.5)

where σ0 is the critical stress of 1 mm grain, and
R0 is a reference grain size, here taken as 1 mm.

Table 2.1 shows the replacement packing with
2 Itasca Consulting Group Inc.
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8 circular particles in 3 different sizes. This mode
actually violated the mass conservation due to
3 % of mass loss. Although the simulations of
the sheared assembly were reported to develop a
fractal distribution, the authors did not probe the
method in other cases and those simplifications
should be treated with a dose of caution.

More comprehensive studies have emerged
quite recently considering many possible factors
that may trigger the fragment replacement.

Figure 2.9 : Three modes of fracture: I – the tensile
opening, II – in-plane shear and III – out of plane shear.

While working in two-dimensions, Ben-Nun
and Einav (2010) focused on a couple of frac-
ture modes: I and II (Figure 2.9). What con-
cerns the breakage criterion in mode I, the concept
used by Tsoungui et al. (1999) has been re-defined
(Figure 2.7). Note that authors operated on forces,
whereas the studies presented hereinbefore used
stresses. Then, the failure criterion for the biaxial
compression of grain took a form:

2S− N ≤ Fcrit, (2.6)

where S is a shear force, N is a normal force and
both were determined from the major and minor
principal forces (Fmax, Fmin in Figure 2.7). The crit-
ical force was set to:

Fcrit = Dσf M fW . (2.7)

The scaling of critical force is based on the ref-
erence tensile stress σf M for the biggest particle
size DM. Then, the force is adjusted using true
dimension of particle D and the parameter in-
cluding the variability of strength fW . The vari-
ability of strength is represented by widely ac-
cepted for granular materials statistical distribu-
tion of Weibull (1951) also used by McDowell

and Amon (2000); McDowell (2001); Laufer (2015);
Cantor García (2017).

Figure 2.10 : The set of forces was replaced with three
equal forces Fn isotropically arranged. Such configura-
tion triggers the shear splitting (Sukumaran et al., 2006;
Ben-Nun and Einav, 2010).

Figure 2.10 shows the treatment of the mode
II fracture. As is illustrated, the random arrange-
ment of contact network has been replaced with
an equal distributed configuration of three con-
tact forces. The disc was then compressed by force
triplets with an identical magnitude set to the true
average of normal contact forces Fn. The criti-
cal force Fcrit has been slightly adjusted to shear
throughout its multiplication by two additional
factors:

F?
crit = Fcrit fD fCN . (2.8)

First one ( fD) stands for the influence of the num-
ber of contacts on the isotropic state, while the lat-
ter include the curvature of the loading path. The
mode II breakage occurred only if

F?
crit ≤ Fn. (2.9)

It is interesting to notice that, in contrast to pre-
viously described methods, this mode II fracture
criterion can develop a failure under the isotropic
loading.

Looking at the replacement criterion, three
different patterns were probed as shown in the
Table 2.1. Authors have proposed a two-step
method to fulfil two conditions: mass conserva-
tion and decrease of the local pressure. Initially,
sub-particles are described by sizes such that no
overlap of discs occurs within the circumference
of the original grain. No contact force acted be-
tween the particles but there existed a mass loss
(Table 2.1). In following time steps the spheres
have been incrementally enlarged until the mass
loss was balanced to zero. Thus, to support this
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strategy two different timescales were considered:
local and global. Finally, extensive analysis has
shown that the fractal grain size distribution tends
asymptotically to an ultimate power-law distribu-
tion. The influence of the discretisation scheme
was detected only due to change of the power-law
coefficient. Finally, the choice of fracture mode
and the initial state has been found non-influential
for the fractal dimension.

Another approach is a foundation of PFC3D

software3. This tool has been used, for example,
by McDowell and De Bono (2013); de Bono and
Mcdowell (2016b, 2018). The breakage criterion
considers the octahedral shear stress q calculated
using the average principle stresses:

q = 1/3[(σ1 − σ2)
2 + (σ2 − σ3)

2] + (σ1 − σ3)
2]1/2.
(2.10)

The octahedral shear stress also provided a con-
venient way of taking into account multiple con-
tacts and their distribution. For example, de Bono
and Mcdowell (2016a) showed the change of q for
different set of contact forces with q = 0 for an
isotopic state. The authors deduced that for di-
ametrical compression q is related to the tensile
strength σt = Fmax/D2 through a pre-factor 0.9.
Essentially, this tensile failure determines the fail-
ure for sphere subjected to multiple contacts such
that

qcrit = 0.9Fmax/D2. (2.11)

Owing to the reduction of size D, the strength
hardening takes a general form as:

q0 ∝ Db, (2.12)

where b is a material constant. To this end, Mc-
Dowell and De Bono (2013) employed the Weibull
distribution. More precisely, the authors used its
width by employing Weibull modulus m:

q0 ∝ D−3/m. (2.13)

Variation of m showed independence of results
from m, but simultaneously the importance of av-
erage particle strength was highlighted. Two alter-
native hardening methods were tested: (i) a scal-

ing based on Griffith’s law4

q0 ∝ D−1/2, (2.14)

and (ii) the surface-initiated flaws

q0 ∝ D−2/m. (2.15)

The importance of implementing adequate hard-
ening law has been marked both on the com-
pression curve and in the grain size distribution.
Study of de Bono and Mcdowell (2016a) not only
showed the further investigation of breakage cri-
terion used by McDowell and De Bono (2013) but
also juxtaposed the octahedral stress method with
others. The realistic compression curve and grain
size distribution were obtained for two of tested
breakage criterions: octahedral stress and major-
contact-force stress. In contrast, following the
mean pressure p or the major principal stress σ1

were not recommended.

Classically, a self-similar replacement was in-
troduced using a set of 2, 3 or 4 identical smaller
spheres (McDowell and De Bono, 2013). Ensur-
ing the mass conservation the overlaps in the
replacement configuration were approved, caus-
ing the contact forces between sub-particles. Ta-
ble 2.1 shows the discretisation schemes as the
two-dimensional projections, but one must re-
member that the modelling operated on the 3D
objects. The authors commented that the normal
compression lines and the grading curves did not
exhibit many differences. In other words, the size
of the spheres was of secondary importance.

Those examples illustrated the variety, the
progress and the enhancements of available ap-
proaches. However, in other research works one
can find with different methods with their adjust-
ments and argumentation behind choices mode
(Esnault and Roux, 2013; Ciantia et al., 2015;
Tapias et al., 2015). An important matter, not yet
commented, concerns the particle shape. The con-
cavity and the angularity are known to be impor-
tant features of granular material. We briefly men-
tion the example of CD modelling of Cantor and
Estrada (2015), who presented modellings of not

3 A commercial software of Itasca Consulting Group Inc.
4With an additional assumption that the size of fractures inside the grains is always proportional to the grain size D.

22



only discs but also the polygons as presented in
the Figure 2.11. The matter of shape will be ad-
dressed further, in section 2.3.

Figure 2.11 : Polygonal shapes used by Cantor and
Estrada (2015), where the largest force lead to splitting
of grain along the direction of Fmax.

Fragment replacement method (FRM) has a
reputation for simple and easy to implement nu-
merically. It also offers better computational ef-
ficiency. On the other side, it requires a reli-
able framework, especially considering breakage
criterion. Granular materials with high intrinsic
complexity require many assumptions occasion-
ally leading to some oversimplifications or purely
arbitrary choices.

2.2.3.2 Bonded Particle Method (BPM)

Figure 2.12 : "(left) Profile of sand particle. (middle)
Circular DEM element superimposed over a sand particle.
(right) Assemblage of DEM particles joined together in a
semi-rigid configuration, called a cluster, which more closely
resembles the geometry of an actual particle." (Jensen et al.,
2001)

In discrete modelling, a technique of particles
bonding has proven itself very comprehensive,
since it can be used to model intra- and inter-
granular cohesion. Thus, not only breakage of
grains can be achieved but it works also for other
geo-materials, like the cemented sands (de Bono

and McDowell, 2014)5, the rocks (Potyondy and
Cundall, 2004) or the composites (Bažant et al.,
1990).

By nature, the constituents of granular materi-
als present a variety of random, complex shapes.
Let us assume that Figure 2.12 (left) represents a
sand grain in two-dimensions. FRM operating on
the circular shapes significantly oversimplifies the
true shape as is visible in the Figure 2.12 (mid-
dle). Thanks to the symmetric geometry, the discs
or spheres are the most simple and easy to han-
dle shapes. For example, two spheres in contact
can have only one contact point, which simplifies
the analysis of contact forces. Then, by combining
a number of discs one can still benefit from the
simplicity provided by the spherical sub-particles.
Simultaneously, the complex geometry of the real
particle can be easily reflected as demonstrated in
the Figure 2.12 (right).

A discrete element modelling scheme to com-
bine a set of sub-particles with each other such
that they form a larger grain can be called clus-
tering (recall Figure 2.6). By default, these sub-
particles are rigid and unbreakable elements. To
constitute a cluster, the sub-particles are joined to-
gether throughout bonds that might either break
under loading or stay intact. Once the cluster re-
mains intact, the movement of its constituents has
to be consistent with each other, both in trans-
lation and rotation, to imitate the motion of a
rigid body. However, bodies within the cluster
can behave in two ways. Truly rigid behaviour
does not allow any relative movement between
sub-particles. Such a structure can be called a
clump. Then, the term cluster will refer only to a
semi-rigid structure, that follows the same global
motion but the inter-cluster contacts can be ei-
ther deepened or opened. Whereas the clump
is widely appreciated in the modelling of com-
plex shapes that cannot break, modelling break-
age requires the semi-rigid clusters. Despite the
number of sub-particles constructing the clump, it
can have either three degrees of freedom in 2D
or six in 3D. Therefore, some steps of the nu-
merical algorithm can be omitted in the case of
the clump: the contact detection, the computation

5This study combines the modelling methods. FRM used for breakage while BPM is used for inter-particle bonding.
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of the relative displacement between sub-particles
and the computation of intra-clump forces. Then,
the computation gains on time efficiency with re-
spect to semi-rigid clusters. In the latter case, the
internal forces, necessary to split the packing, can
develop. Hence, it is compulsory for each sub-
particle to maintain its degrees of freedom inde-
pendently from others and full computations need
to be conducted. A fundamental assumption of
DEM is the proportionality of the contact forces to
the relative movement of two bodies6. One must
understand that the rupture of bond requires a re-
alistic force limitation. To this end, similarly as
in FRM, the breakage criterion is specified. Recall
that in FRM the breakage recognition was based
on the critical load (stress or force) applied on
the grain. Whereas FRM models the failure of
grain, BPM represents the failure of the material
(atomic) bonds. Hence, the failure criterion must
be related to the material strength at more dis-
crete intra-grain scale. Usually, some numerical
parameters emerge from the concept, which are
not the straightforward experimental measure-
ments/estimation, as σt was for FRM. The replace-
ment model is not needed in BPM, but the choice
of sub-particles size/sizes and number have to be
made prior to the simulations. This discretisa-
tion degree is of great importance since it actually
determines the limit of the numerical comminu-
tion. The optimum size needs to be selected con-
sciously. Too large size pares the validity of the
model, but applying a tiny size makes the com-
putation highly time-consuming and is not stor-
age friendly. Furthermore, constructing a cluster
with only one size of sub-particles introduces an
unrealistic intra-porosity, thus one might consider
employing more sizes or even a well graded sub-
particles size distribution to build a grain. Regard-
ing those consequences, the procedure to build
one grain needs optimisation.

First of all, the contact laws need to be mod-
ified to include a possibility of the tensile fail-
ure and an enhancement to classic repulsive DEM
contact need to be implemented. For example, to
acknowledge also the tensile forces in the grain,

the model of Thornton and Yin (1991) consid-
ered an appearance of the auto-adhesive forces be-
tween the discs. Authors based the bond rapture
on the energy criterion verified in the contacts be-
tween the sub-particles. Breakage occurs when the
total energy of the bond reached the critical value.
The bond was not seen as an infinitesimal point,
such that its total energy was computed over a
contact area. The theoretical framework behind
the concept is too wide to present it herein, but
we wish to highlight that the failure criteria were
defined such that breakage can appear either due
to peel or slide mechanism (Thornton and Yin,
1991). This approach was used in the 2D simula-
tion of Thornton et al. (1996), in which the authors
considered only one particle at the time. Thus it
was possible to use a large (1 000) number of discs
bonded together into one cluster (Table 2.2).

Jensen et al. (2001) based the rapture criterion
on the plastic work dissipating the energy during
frictional sliding. Using an energy density is ap-
pealing because the critical energy density7 W0 is
a size-independent, material constant. With W0

being an user-specified input the critical energy

Wmax
i = W0Vi (2.16)

causing de-bonding can be computed for any clus-
ter with volume Vi. A contribution to the total
plastic work of cluster i appeared at each contact
point of the cluster. For both the intra-cluster and
the inter-cluster interactions, the plastic work was
computed from the tangential contact force and
an increment of relative displacement. Then, their
sum Wi broke the cluster if

Wi ≥Wmax
i . (2.17)

Although the criterion was limited to the sliding
work, it was sufficient for the investigations of the
effects of particle damage on structure-media in-
terfaces. This highlights that the model can be
simplified or restricted to a specific research need.
Jensen et al. (2001) have conducted simulations of
ring shear test using various shape and sizes of
clusters as shown in the Table 2.2. Only several

6Referring to an overlap between them.
7 W0 = 107J/m3 was found by Jensen et al. (2001).
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Author Shape

Thornton et al. (1996)

Jensen et al. (2001)

McDowell and Harireche (2002)

Cheng et al. (2003)

Cil and Alshibli (2012)

Laufer (2015)

Ueda et al. (2013)

Table 2.2 : BPM – The shapes of clusters proposed by various researchers.
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Figure 2.13 : The concept of parallel bonds is employed in the commercial code PFC3D (Laufer, 2015).

sub-particles were used to construct the cluster.
However, different cluster geometries introduced
an interesting variability of the shape including
stronger non-convexity and non-symmetry. In the
macro scale, an assembly of 500 clusters was sim-
ulated.

Many DEM studies were conducted using the
commercial code PFC3D developed by Itasca Con-
sulting Group Inc. The constitutive representa-
tion in the intra-cluster contact includes a stiffness
model, a bonding model and a slip model. In the
literature, two clustering concept was reported:

• a simple contact bond, used by McDowell
and Harireche (2002); Cheng et al. (2003);
Bolton et al. (2008),

• a "parallel bond" – the option selected by
Wang and Yan (2011); Cil and Alshibli
(2012); Laufer (2015).

Figure 2.13 demonstrates the later one, for
which the sub-particles interact throughout two
types of contacts simultaneously, which explains
the term "parallel". First one is a frictional
cohesion-less contact ruled by the Hertz-Mindlin
model as shown in the Figure 2.13 (a). Hertzian

force law is an elastic non-linear relationship ex-
pressing the magnitude of the compression as a
function of the overlap between sub-particles u.
Thanks to Mindlin model the code approximates
the tangential contact forces using the actual com-
pression in the normal direction of contact. One
must understand, that the tensile contact forces
are not active. Typically, the sliding occurs accord-
ing to Coulomb’s law of friction.

"Bond" (bonded contact) refers to the second
type of contact representing the material cemen-
tation. In Figure 2.13 (b), the parallel bond is
presented as a finite-sized circular cross-section
of a beam, and therefore, the problem is dedi-
cated to solving the beam with a user-specified
bearing capacity. This approach needs specifying
two additional contact parameters: the stiffness
Kpb and the strength σpb of this beam-bond. Such
bond can be submitted not only to the normal and
the tangential forces but also to the bending and
the torsional moments. As explained by Laufer
(2015), "The load-deformation-relationships for tension
and compression, bending, shear and torsion are linear.
The load-bearing capacity is calculated as the elastic
bearing capacity of a cylindrical beam." Essentially, a
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sum vector of all the forces carried by the bond
and the frictional contact provides the resultant
contact force and the moment.

The simple contact bond is a more direct ap-
proach, yet the method is equivalent to the parallel
bond. Using classic force laws (linear or Herzian
elasticity), the force network is established with
Coulomb’s law ruling the sliding point in the tan-
gential contact direction. Additionally, the con-
tact bond with infinitesimal size represents the
material internal cohesion. Two forces are user-
specified limits working separately in the normal
bn and tangential bs directions. The breakage
of bond occurs when one of these limits is ex-
ceeded in either tension or shear. In contrast to
the parallel bond, the point of glue cannot sus-
tain any bending or torsion, but it also includes
tension. Therefore, unrealistic rolling can be pre-
vented only if the sub-particle has more than one
bond.

The majority of the mentioned studies con-
cerned the modelling of the sand particles with
fairly spherical clusters. Let us consider the level
of shape discretisation selected by those authors
(Table 2.2):

• McDowell and Harireche (2002) used a
hexagonal close packing to represent a sand
particle, and essentially two different sizes
were compressed vertically. The grains in
the size 0.5 mm were represented by 135
spheres and the clusters of 1 mm were
build from 1 477 sub-particles. The point
bonds between the sub-particles have uni-
form strength bn = bs = 0.72 N. Although
those discrete values seem very low, the mi-
croscopic stress for the tensile failure fol-
lowed the Weibull distribution in the ap-
proximate range 〈20 MPa : 250 MPa〉8. Note
that the macroscopic behaviour of the as-
sembly was not investigated, thus the high
degree of discretisation could have been in-
troduced.

• Cheng et al. (2003) presented 20 different
clusters with a typical size 1 mm. The num-
ber of sub-particles was varied between 36

and 50. Consequently, the number of bonds
per cluster was found between 88 and 177,
respectively. The material strength parame-
ters, set to bn = bs = 4 N, led to the tensile
stress in the range 〈40 MPa : 160 MPa〉8. In-
terestingly, the numerical parameters bn, bs

were ∼ 5.56 times larger than for McDow-
ell and Harireche (2002), but the ranges of
tensile stresses coincided. Perhaps the dif-
ference in bn, bs originates from the size of
sub-particles. Despite the fact that contact is
treated as the point bond, physically larger
spheres correspond to a higher amount of
atomic bonds. Thus, the discretisation de-
gree influences the numerical strength param-
eters. Note that this is a hypothetical remark
based on a comparison between only two re-
search studies.
Finally, the authors were able to perform the
macro-scale simulations on the assembly of
398 clusters.

• Wang and Yan (2011) also worked on the
clusters with a diameter of 1 mm. One grain
was an assemblage of uniform spheres with
radius 0.2 mm, which gives 〈60 : 70〉 ele-
mentary balls per cluster. The typical spec-
imen was composed of 1 000 grains, that is
2.5 more that Cheng et al. (2003). This study
operated on parallel bonds, but there exists
a lack of knowledge about their strength.

• Cil and Alshibli (2012) used the clusters in a
tight dimension range 〈0.6 mm : 0.8 mm〉.
The sub-spheres size varied such that the
minimum radius Rmin was either 0.035 mm
or 0.045 mm and the maximum radius was
found from the ratio Rmax/Rmin = 1.2. The
concept of parallel bands was employed
with the strength σpb = 475 MPa and the
normal stiffness Kpb = 70 GPa/mm. The
macro-scale simulation of uniaxial compres-
sion was conducted on the assembly of 239
clusters.

• In the discrete modelling of Laufer (2015)
three cluster sizes were considered with

8 Our estimation of the range form the results of McDowell and Harireche (2002) or Cheng et al. (2003).
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some details given as follows in the Ta-
ble 2.3. If the parallel bond strength was
σpb = 465 MPa, the tensile stresses ranged
from 10 MPa to 25 MPa. A further variation
of σpb resulted in the proportional modifica-
tion of tensile stress range. The authors used
highly stiff bonds with Kpb = 475 GPa/mm.
The number of particles used in the simu-
lation of the odometer test was restricted to
only 128.

Size (mm) No. sub-particles No. bonds
2 48 84
3 155 341
4 365 881

Table 2.3 : Discretisation of sand grains proposed by
Laufer (2015) with various sizes of elementary spheres
such that Rmin = 0.2 mm and Rmax/Rmin = 1.5.

A final remark concerns the variability of par-
ticle strength. For example, Laufer (2015) showed
in case of vertical compression, that even if all the
bonds were identically strong there existed a vari-
ability of cluster strength σt. The anisotropic con-
tact network inside the cluster exhibited a vari-
ation of σt when the grain was simply rotated.
However, the experimental-like Weibullian statis-
tical distribution of σt was achieved, if either some
percentage of bonds were degraded or a normal
distribution of contact strength was applied in the
bonds.

To conclude, let us predict the number of el-
ementary spheres needed to generate one shell.
Keeping the same detail level as McDowell and
Harireche (2002), we estimated that ∼ 660 000
sub-particles per shell would be necessary for our
study. For the macroscopic scale modellings the
discretisation level was reduced, but still, the size
of the assembly was quite restricted. In such a
case, our estimation decreased to the range 〈2 600 :
31 300〉 spheres per shell. Note that the shell has
around 550 times larger volume than a typical
sand grain. To balance the number of sub-particles
in computation, we would be able to use 1 shell
following Cheng et al. (2003), 3 shells following
Wang and Yan (2011) or 9 shells following Laufer
(2015). On one side, those are very rough esti-
mations and perhaps the assumptions could be

less strict for larger grains. On the other side, the
backed clay does not have a highly porous struc-
ture itself, thus keeping a high detail level seems
true. Nevertheless, it exposes a need for enhance-
ments in this matter.

2.3 Representation of more com-
plex shapes

In this section we will present the exiting solu-
tions to handle the grains with more complex
shapes in the conditions with and without break-
age. Initially, taking into consideration the com-
plex shapes led to the development of the con-
ceptual background with higher theoretical com-
plexity. Nevertheless, more complex tools are not
any less appropriate for the simple forms. Some
of those modelling enhancements can resolve the
problem of numerous sub-particles and constitute
a perspective and a starting point for future devel-
opments.

Figure 2.14 : Grain of true railway ballast (top) and
its DEM representations using 5 500, 800, 400 and 100
spheres – top to bottom, respectively (Ferellec and Mc-
Dowell, 2008).
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2.3.1 Clump of spheres

Originally, Cundall and Strack (1979) worked on
two colliding circular bodies. Despite the fact
that the angularity and the concavity of the con-
stituents influence the mechanical behaviour of as-
sembly, simplification of shape to disc in 2D or
sphere in 3D has been often accepted, both exper-
imentally (Calvetti et al., 1997) and numerically
(McDowell and De Bono, 2013). Even if this might
be sufficient for the "full" grains, one can easily
understand that a highly porous material such as
the tube-shaped shells (introduced in section 1.1)
requires an accurate shape representation.

Clustering can introduce a low level of geo-
metrical imperfection. In BPM, the representa-
tion of a perfect sphere still leads to a "surface
roughness". This is a slight step towards the true
shape, especially compared with a perfect sphere
used in FRM. Generating shapes based on a sim-
ple symmetrical contour, like the sphere, is easier
to implement. For example, Laufer (2015) isotopi-
cally compressed the assembly of elementary balls
into cubic packing to remove afterwards the sub-
particles that are not fully enclosed inside a per-
fectly spherical domain. Then, the clusters were
sphere alike. Similar cases seem to be true for
many other studies as shown in the Table 2.2.
Ueda et al. (2013) increased the complexity of a
cluster form, but still operated on the basic shapes:
an ellipse and a hexagon. Jensen et al. (2001) was
able to distinguish the differences between less
and more convex shapes, but the authors used rel-
atively simple shapes made of only several sub-
particles. Thus, it would be easy to place the
grains manually. The limitation of semi-rigid clus-
ter originates from equal or tending to zero initial
overlaps. The rigid-clusters are complementary in
this matter because the realistic internal forces are
irrelevant to the user. More advanced shape op-
timisation procedures have been proposed in the
literature, e.g., Ferellec and McDowell (2008); Mat-
sushima et al. (2003). Thanks to the many ran-
dom, highly realistic forms can be created, such
as a railway ballast presented in the Figure 2.14.
As is seen, the level of accuracy directly depends
on the number and the size of the sub-spheres.

Figure 2.15 : 3D clump with complex shape presented
in x, y and z view (Matsushima et al., 2003).

A smaller number of constituents can repro-
duce complex shapes most satisfactory if ad-
equately placed. As mentioned, those algo-
rithms allow the unphysical overlaps between the
spheres, clearly visible in the Figure 2.15. Thus,
losing the benefit of knowing the inter-cluster
force chains brings the breakage model back the
fragment replacement method, like in de Bono
and Mcdowell (2016a).

a b

Figure 2.16 : a – 2D clump as a rigid assemblage of
three spheres used by Szarf et al. (2011). b – Different
geometries of contact are possible. Both the tangent
contacts and the interlocking contacts can be distin-
guished.

Still, the discrete modelling using unbreakable
clumps, with a various shape complexity, led to
a better understanding of mechanical behaviour.
For example, Szarf et al. (2011)9 performed 2D
simulations on the clumps composed of 3 over-
lapping discs as shown in the Figure 2.16a. Such
a structure allows to easily control concavity of
the shape with a straightforward parameter α =

∆R/R1, where R1, R2 are the radii of prescribing
9This study work contributed also to CEGEO et al. (2012).
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and inscribe circles and ∆R is their difference. The
higher is α the less convex is the shape. The au-
thors investigated the influence of grains geome-
try on the mechanical behaviour of assembly un-
der biaxial compression. Comparing non-convex
grains with simple discs, higher internal friction
angle and larger volumetric strains were reached.
Naturally, the concavity can increase the level of
contact complexity. Figure 2.16b shows that a
simple single disc-to-disc contact (i) can appear,
but most often one must deal with multiple con-
tacts between two clumps (ii-iv). Multiple con-
tacts are more possible to appear for higher con-
cavity when the interlocking of particles must be
stronger.

Work of Azéma et al. (2013b) considered
an equivalent clump, yet in three dimensions
(Figure 2.17a). The additional third dimension en-
larged the amount of possible complex contacts as
seen in the Figure 2.17b. Authors distinguished
two coordination numbers: the average number
of neighbours and the average number of interac-
tions. Stronger non-convexity increased the num-
ber of interactions, although the number of neigh-
bouring clumps was of the same order (the in-
terlocking effect). This time the influence of con-
cavity was investigated also in case of sheared as-
semblies but due to the macroscopic triaxial com-
paction. The observations stayed in a good agree-
ment with the work of Szarf et al. (2011).

a b

Figure 2.17 : a – 3D geometry of clump used in the
modellings of triaxial compression on the non-convex
granular materials. b – Possible type of contact ap-
pearing between two neighbouring clumps, starting
from simple single contact evolving to complex mul-
tiple contacts (Azéma et al., 2013b).

The assembly of 3D clumps subjected to uni-
axial compression has been simulated, for exam-
ple, by de Bono and Mcdowell (2016a). Their

simple clump was composed of only 2 spheres
as shown in the Figure 2.18a. For this case, we
have obtained α ≈ 0.42 which indicates a signifi-
cant degree of concavity according to the literature
(Szarf et al., 2011; Azéma et al., 2013b). Work of
de Bono and Mcdowell (2016a) did not elaborate
in details on the degree of concavity or its varia-
tion mainly because the authors stated that in the
uniaxial compression the particle shape played a
secondary role in the mechanical behaviour. Fig-
ure 2.18b shows that the interlocking is significant
only to the initial state such that the initial pack-
ing fraction is higher. Still, the isotopic hardening
was actually ruled by the particle size hardening
law, and after the yielding point (the onset of frac-
tal breakage) the curves merged as shown in the
Figure 2.18b. Though a benefit of concavity was
observed. The more realistic value of the lateral
earth pressure at rest was found for the interlock-
ing clumps.

a b

Figure 2.18 : Study of de Bono and Mcdowell (2016a):
a – a cross-section presenting the geometry of clump
made of 2 spheres and b – the compression curve for
two convex and concave shapes resulting from DE sim-
ulations with grain breakage modelled by FRM.

Also, Ueda et al. (2013) stated:
"Despite the difference in crushing type due to particle
shape, all samples converged under grain crushing to a
critical state characterised by a unique void ratio, grain
size distribution and aspect ratio, with a similar distri-
bution of a number of contact points."
Ueda et al. (2013) tested various shapes: spher-
ical, elongated and angular (Table 2.2). It was
shown that the shape influences the initial pack-
ing, and therefore, the mechanical behaviour in
over-consolidated state, but an equivalent critical
state was reached. Interesting observations were
done at the microscale: the round-shaped par-
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ticles presented mainly cleavage destruction, the
elongated particles tended to develop a bending
fracture and an edge abrasion was frequently ob-
served for the angular particles.

Finally, we would like to emphasise again that
the complex geometry must lead to the higher
complexity of the contact network analysis. Thus,
more sophisticated frameworks are needed. To
this end, we refer once more to the work of Azéma
et al. (2013b) who transparently separated the con-
cept of neighbours from the contact points. Fig-
ure 2.19 shows two clumps in contact. A branch
vector ~l joins the mass centres of two clumps
that follows the normal direction ~n′ in orthogo-
nal inter-centre frame (~n′,~t′), i.e, the neighbours
frame. The interactions force ~f is described in
the contact frame (~n,~t). As is seen in Figure 2.19,
those two orthogonal system are not aligned, and
therefore, their spatial orientation in 3D coordi-
nate system will be described by different pairs of
angles (θ, φ) and (θ′, φ′). This concept enables the
authors with a comprehensive and detailed anal-
ysis of the fabric and the force anisotropy.

Figure 2.19 : According to Azéma et al. (2013b) the
local geometry is described by two frames: a contact
frame (~n,~t) and the neighbours frame (~n′,~t′) in which
a branch vector ~l is defined. The contact frame is re-
lated to 3D global coordinate system throughout two
angles (θ, φ).

2.3.2 Polygonal and polygonal-like shapes

The irregularity and the angularity of particle
shape are expected to influence to the mechani-
cal behaviour and finally to the critical state. The
irregularity modifies the extreme void ratios emax

and emin. Well-rounded particles give sharper
yielding transition than angular particles because
the small strain zone exhibits higher stiffness.
Furthermore, the angular assemblies also present
higher compressibility in the uniaxial compres-
sion, e.g., Cho and Dodds (2006).

a b

c

Figure 2.20 : Examples of polygonal shapes used by:
a – Szarf et al. (2011), b – Azéma et al. (2009) and c –
Azéma et al. (2013a).

Numerically, the polygonal shapes are an al-
ternative to the discs and the spheres for a few
decades. Classically, the development started in
two-dimensional space (Issa and Nelson, 1992;
Szarf et al., 2011), but with a time the simula-
tions were extended to 3D as presented in the Fig-
ure 2.20. Most often in the literature the poly-
gons or the polyhedra were convex. Still, Szarf
et al. (2011) showed that the non-convexity and
the angularity do have a similar impact on the me-
chanical response to the biaxial compression. Au-
thors of Azéma et al. (2009)10 very often in their
research operated on the 3D polygonal shapes
(Figures 2.20b and 2.20c). Those were important
enhancements in the modelling allowing a direct
comparison with the packings composed of the
circular particles. Thus, not only the investiga-
tions of the origins and consequences were pos-
sible, but also the analysis framework was devel-
oped for issues such as the anisotropy of contact
networks, the force transmission, ect.

Figure 2.21 : The geometry of contact for polygonal
shapes used by Azéma et al. (2009) is equivalent to the
one presented by the clumps, shown in the Figure 2.19
(Azéma et al., 2013b).

10 (Azéma et al., 2012; Azéma et al., 2013a)
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One must understand, that for the polygonal
shapes the recognition and the geometry of con-
tacts are even more complex than for the clumps
of spheres. The miss-alignment of the contact
and the neighbourhood frames already showed
in Figure 2.19, is totally valid and applicable in
the case of polygonal shapes as presented in the
Figure 2.21. Yet the force transmission is more
complicated than for two spheres. Figure 2.16a
clearly showed that despite the multi-contacts, the
points of interaction lies between the mass centres
of two sub-particles, which simplifies the contact
frame. Furthermore, the contact is considered a
one point transmitting the force. In contrast, most
probably it will not be the case for the polygons
or the polyhedra. Sketch 2.22 presented by Can-
tor García (2017) exposes the variety of contact
types. The shape of a polyhedron is described by
the points, the edges and the faces. Those ele-
ments can interact in random combinations such
that finite-size contacts are created. The author re-
placed the continues (edge-to-edge, face-to-edge)
or the surface (face-to-face) contacts with multiple
point contacts: two or three, respectively (white
bullets). This simplification brings the approach
to the case of the clump configuration.

Figure 2.22 : Possible types of contact once two poly-
hedra collide (Cantor García, 2017). Read: sommet as
vertex, arête as edge, face as surface and colinéaires as
collinear.

One can object to the reliability of those mod-
els for the study of one-dimensional compression
since they did not include grain breakage. Nowa-
days, this gap is being filled and the models of

non-spherical crushable particles have also been
constructed. Those solutions can be included in
the group of bonded particles methods but within
different numerical frameworks. For example,
Bonded Cell Model (Nguyen et al., 2015; Can-
tor García, 2017) was applied within the contact
dynamics (CD) simulations, whereas Nader et al.
(2017) used a classic DEM approach. Note that
both two- and three-dimensional angular shapes
were used in the combined methods mentioned in
section 2.2.2.

Let us consider the BCM in which a cell is
the sub-particle connected to other sub-particles
by edge-to-edge contact such that the grain is per-
fectly filled with matter. The lack of intra-cluster
pores can be either a benefit or a drawback. Surely
one can avoid introducing the unrealistic intra-
granular porosity. However, the full structure is
a disadvantage while dealing with more porous
granular materials.

a b

Figure 2.23 : Bonded cell model (BCM): a – 2D exam-
ple of Nguyen et al. (2015) with λ = 0.8, and b – 3D
shape of Cantor García (2017) with λ = 0.5.

In BCM one must decide upon the number of
the cell a priori. The discretisation of the particle
into cells is based on Voronoi tessellation. A num-
ber of rigid cells are distributed randomly over the
surface or the volume of grain, such that the dis-
tance l between their canters fulfils the following
requirement:

l ≥ lmin = λd0, (2.18)

where d0 is the typical size of the cell. Addition-
ally, this method allowed the user to specify a de-
sired degree of irregularity throughout the param-
eter λ. Cantor García (2017) provides more details
on the algorithm used to fulfil the requirements
of a centroidal Voronoi tessellation. Since ran-
domly distributed points do not necessarily char-
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acterise the centroids of the sub-particle, an itera-
tive method adjusts the positions with λ being a
tolerance of the convergence criterion. If λ = 0, a
highly irregular shape is created. Then, the vari-
ety of post-breakage shapes is admirable. We can
observe semi-disordered structure in Figure 2.23a
and quite regular mesh in Figure 2.23b.

As the name of the method implies, there ex-
ist the inter-cell bonds with a user-specified co-
hesion. Only edge-to-edge in 2D or face-to-face
in 3D contacts (converted to points as shown in
the Figure 2.22) were consider within the grain.
Between two cells the limits of normal and tan-
gential contact forces appeared, such that those
thresholds were calculated from the contact length
(or the surface) and two material parameters: an
internal tensile cohesion Cs and a shear strength
Ct. When either of the two threshold forces was
reached for each of the three points, the bonds
broke and a flag of contact was switched to fric-
tional type.

a b

Figure 2.24 : a – Examples of breakable polyhedra gen-
erated by Nader et al. (2017). b – The scheme explain-
ing how the authors created random polyhedra.

Figure 2.24a shows more angular and elon-
gated shapes generated by Nader et al. (2017). The
authors used a different technique to construct
the grains. First, the global shape was generated
distributing the vertices of grain in the vertical
half-planes, i.e, half of the vertical cross-section
(Figure 2.24b). A number of half-planes were pre-
defined by the user, then each half-plane was con-
sidered separately. The vertices (red cross) were
distributed with random radial distance r within
an imposed half ring contour (rmin < r < rmax).
The discretisation of shape is a simple meshing
of the polyhedron into the elementary tetrahe-
dra, which are then joined together using a Mohr-

Coulomb law allowing the normal and tangential
cohesion.

Nader et al. (2017) performed oedometric com-
pression on 855 grains such that each was sub-
divided into 8-12 tetrahedra (Figure 2.25a). Typ-
ical size of polyhedra was 4cm, thus in the ulti-
mate grain size distribution only the coarse frac-
tions can be reached.
Cantor García (2017) presented two modellings on
the assembly of:

• 1 000 grains made of 10 bonded cells

• 2 500 grains made of 30 bonded cells
(Figure 2.25b)

Comparing to the grains generated as an assem-
blage of bonded spheres (section 2.2.3), the num-
ber of sub-particles per cluster was reduced at
least by a factor of 2. Reducing the number of
sub-particles is computationally-efficient, but this
gained efficiency is usually used to include more
grains in the modelling. A sufficiently large num-
ber of particles is essential to the reliability of re-
sults. Especially, when using the rigid boundary
conditions (Figure 2.25) which are well known to
lead to an undesired boundary effect.

a b

Figure 2.25 : Assemblies of angular breakable polyhe-
dra before 1D compression: a – by Nader et al. (2017)
and b – by Cantor García (2017).

An interesting alternative to creating a particle
is a concept called sphero-polyhedron, presented
hereinafter. The easiest possible 3D shape made
with this technique is a sphere-cylinder (Abreu
et al., 2003; Langston et al., 2004). For the sake
of simplicity, we are going to use it in the expla-
nation, even if sphere-cylinder does not suit the
shape of classic granular geomaterials.
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Figure 2.26 : A 3D sphere-cylinder used in simulations
of Abreu et al. (2003).

In 3D sphere-cylinder resemblances a longitu-
dinal pill as shown in Figure 2.26. Its structure can
be presented as the clump made of sub-elements
with two different geometries: a sphere and a
cylinder. In a two-dimensional sketch from Fig-
ure 2.27 (a) shows that at each end of cylinder two
spheres with the same radius are placed. Due to
this sub-division one can distinguish three types
of contacts:

• cylinder-to-cylinder – Figure 2.27 (b),

• cylinder-to-sphere – Figure 2.27 (c),

• sphere-to-sphere – Figure 2.27 (c).

The advantage of this rounded geometry is
that an analytical method can be used to detect
the contacts. The simplification of complex shape
to basic symmetric shapes helps to determine the
overlaps. Sphere-sphere overlap is a straightfor-
ward calculation based on the location of two
mass centres. Considering the cylinder, its full
axis is the reference instead of the mass centre. For
cylinder-sphere overlap, simply the smallest dis-
tance between the mass centre and the axis needs
to be determined. Similarly, the overlap between
two cylinders is approached as shown in the Fig-
ure 2.27 (b). One can understand, that since cylin-

ders are not perfectly symmetric the orientation of
the axis must be constantly updated.

Interestingly, the technique can be extended to
more complex 3D shapes. Let us focus on a sim-
ple polyhedron shown in Figure 2.22. The idea
consists in replacing the edges of the polyhedron
with the cylinders (Figure 2.27 (b)), that are rigidly
connected to the spheres, that is to the 3D cor-
ners. Then, a vertex-to-vertex contact becomes
the sphere-to-sphere interaction, the cylinder-to-
cylinder is equivalent to edge-to-edge contact, ect.
Finally, the concept also requires that the faces
gain a thickness equal to the radius of the spheres
and cylinders. Onwards, such a structure is called
a sphero-polyhedron.

Figure 2.27 : (a) – a 2D representation of sphere-
cylinder, (b) – a cylinder-to-cylinder overlap, and (c)
– other types of contacts (Langston et al., 2004).
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Introduction

The objective of the work is to create micro-scale model capable of reflecting the mechanical behaviour
of a shell by means of Discrete Element Method (DEM). Therefore, section 3.1 briefly presents the
classic concept of DEM. It will give the reader a sense of the principles such as the definitions of the
contacts (overlap) and show some basic force laws (linear elasticity, Coulomb’s friction). The choice of
numerical algorithms and related to them parameters will be commented herein.

The model was required to realistically reproduce shell breakage, otherwise highly compressible
behaviour cannot be obtained numerically. To this end, we have decided upon the modelling approach
using clustering of particles (the bonded particle method). Section 3.2 explains how the model of shell
with a complex tube geometry is generated. It discusses the cohesive interactions for which standard
force laws have been modified such that parameters correlated with a grain strength were included.
Also, details of a failure criterion can be found in this section.

Any numerical model requires some input parameters. Therefore, a tensile strength of the shell
has been studied in the experimental campaign using uniaxial radial compression on a single grain.
Section 3.3.1 will present the results of the experiments on two shells sizes d18 and d20. Both the raw
data and the statistical analysis compared with Weibull’s distribution are included. Finally, an insight
into the strength scattering will be discussed.

The experimental response needs to be reproduced numerically by the proposed model. Sec-
tion 3.3.2 presents how, aiming for a reference response, the numerical parameters can be adjusted,
or in other words, how the model calibration was conducted. The influence of the contact stiffness
and the tensile strength parameter are explained. Next, the sector size is varied throughout different
shape discretisation number of axial and radial directions such that a final choice was established. The
changes were connected with the modification of numerical parameters. Finally, the influence of the
shell shear strength is estimated numerically.

Acknowledging the simplicity of uniaxial radial compression loading condition, we will present an-
other verification of the model in section 3.4. It is both numerical and experimental attempt to increase
the complexity of loading conditions. A biaxial radial compression – vertical load and a constrained
horizontally is perhaps only slightly more advanced but it is experimentally straightforward method
that enhanced our level of confidence.

Finally, the most important numerical and experimental observations will be wrapped up into a
brief summary in section 3.5.
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List of symbols

Symbol Explanation
Section 3.1
∆T Time step (s)
∆ ft Increment of tangential force (N)
∆δt Increment of relative tangential displacement (N)
δn Overlap in contact (m)
µ Coulomb’s friction coefficient
~ωi Angular velocity (rad/s)
ai, aj Radii of shapers i and j (m)
~fc Vector force acting in the contact c (N)
~fi Vector of total force acting on the grain i (N)
fn Length of normal force vector (N)
ft Length of tangential force vector (N)
~g Gravity vector (m/s2)
Ii Moment of inertia (kg m2)
kn Normal contact stiffness in the frictional contact (N/m)
kt Tangential contact stiffness in the frictional contact (N/m)
mi Mass of particle i (kg)
mij Reduced mass (kg)
~n Unit vector in normal direction of interaction
~ri,~rj Position vector of body i and j (m)
~t Unit vector in tangential direction of contact
Tc Critical time (s)
~Γi Total torque (N m/rad)
Section 3.2
ϕ Yield function
f I Length of normal force vector for the cohesive (N)
f ?I Normal yield threshold in pure tension (N)
f I I Length of tangential force vector for the cohesive (N)
f ?I I Tangential yield threshold in pure share (N)
Imn Breakable interface between sectors m and n
k I Normal contact stiffness in the cohesive contact – link (N/m)
k I I Tangential contact stiffness in the cohesive contact – link (N/m)
N? Total number of sectors
N?

axial Number of sectors in the axial direction of tubes
N?

circ Number of sectors in the ring cross-section (circumferentially)
q Shape parameter of the yield surface
Section 3.3
URC Uniaxial Radial Compression of single shell
∆d Uniaxial reduction of shell diameter (mm)
σI Tensile stress causing mode I fracture (MPa)
σt Critical stress for non-symmetric grains (MPa)
d Diameter of ring in the shell cross-section – typical grain size (mm)
Continued on next page...
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Symbol Explanation
d0 Initial diameter of ring in the shell cross-section (mm)
F Diametrical load applied to the shell (N)
FI Ultimate applied force in the uniaxial radial compression (N)
K(r) Stress concentration factor
h Height of shell in the axial direction of tube (mm)
r Retaliative radius of the ring
rin Internal radius of the ring
rout External radius of the ring
t Thickness of ring in the shell cross-section (mm)
Section 3.3.1
α Power describing the law of force scattering
d18, d20 Fabricated sizes of shells distinguished by a target diameter d ∼ 18 mm and d∼ 20 mm
E0 Microscopic void ratio analysing only shell
k Pre-factor of power law of force scattering
m Weibull’s modulus / shape parameter of Weibull distribution
MP1, MP2 Population of shells with various manufacturing protocols
P0 Microscopic porosity analysing only shell
Pf Probability of failure
Ps Probability of survival
Vi

v Volume of internal void of tube (mm3)
Vi

s Volume of the solid of tube per shell (mm3)
Vi

tot Total shell volume measured within the external contour of the tube (mm3)
x0 Scale parameter of Weibull distribution
Section 3.3.2
FI Diametrically applied load in the numerical uniaxial radial compression
FI true Mean experimental value of vertical compression
Section 3.4
BRC Biaxial Radial Compression constrained horizontally
FV Vertical force compressing a shell in BRC modelling
FV true Experimental vertical force compressing a shell in BRC
If a symbol or an abbreviations is not distinguished in the current section, please search in the previous sections.
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3.1 Main principles of DEM

δnai

aj

t

rj

ri n

Figure 3.1 : Definition of contact throughout a normal
overlap δn. 2D projection.

By nature, the majority of granular materials
are inhomogeneous microstructures consisting of
non-spherical particles. Discrete Element Method
(DEM) is a particle-scale numerical method com-
monly used to reflect the behaviour of granular
materials (Cundall and Strack, 1979; Radjaï and
Dubois, 2011). In many discrete element model-
ings, the complex constituents are idealised to cir-
cular shapes: discs (2D) or spheres (3D), e.g., Lud-
ing (1997); de Bono and Mcdowell (2018). Let us
assume that our constituents are spherical, rigid
and frictional objects, for the sake of simplicity.
In classic DEM, a contact cij between spheres i
and j is recognised as the overlap δ of two bod-
ies (Figure 3.1).

The contact can be characterised using two
unit vectors ~n and ~t which mark its normal and
tangential directions, respectively. Then, the over-
lap in the normal direction δn is determined from
geometrical relationship:

δn = (~ri −~rj) ·~n− (ai + aj), (3.1)

where: ai, aj are the radii of spheres ~ri and ~rj are
the position vectors of particles and 0.1cm

~n = ~nij =
(~ri −~rj)

|~ri −~rj|
.

If δn < 0 the contact force ~fc can be determined

using various force laws. ~fc can be decomposed
into normal and tangential parts: ~fc = fn~n + ft~t.
The normal component can be ruled by a linear
elastic law (Figure 3.2a):

fn = −kn δn, (3.2)

where kn is the normal stiffness of the interaction.
On the contrary, when δn > 0, the particles are
separated and no force is acting in the interaction
point, fn = 0 (Figure 3.2a). Above force law repre-
sents contact as a liner spring model in which the
interaction is a harmonic oscillator (mass+spring).
Then, the contact duration between two colliding
bodies i and j is typically:

Tc = π

√
mij

kn
, (3.3)

where mij is a reduced mass1. The numerical sta-
bility requires the integration time to be smaller
than the interaction duration. The division of the
critical time tc into N∆T steps provides a secure
time increment ∆T (equation 3.4), if N is suffi-
ciently large. For example, N∆T = 40 was used
by Luding (1997).

∆T =
Tc

N∆T
(3.4)

As is seen in the Figure 3.2b, the tangential
force ft partially follows similar linear relation-
ship:

ft = −kt δt, (3.5)

where kt is a tangential stiffness. Yet ft is limited
between ±µ fn. Figure 3.2c demonstrates the coef-
ficient of friction µ using the Coulomb yield crite-
rion. In practice, within the numerical scheme the
tangential force ft results from an accumulation of
the increments:

f (t)t = f (t−1)
t + ∆ ft, where ∆ ft = −kt∆δt (3.6)

with ∆δt being the increment of relative tangen-
tial displacement in the interaction within a time
increment δt. (t − 1) and (t) stand for previous
and current time step, respectively. The tangen-
tial force ft falls down to zero if the contact is lost

1 mij = mimj/(mi + mj)
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Figure 3.2 : Force laws for the cohesion-less frictional contacts: a –in the normal direction, b – in the tangential
direction, and c – Coulomb’s yielding criterion.

(δn > 0).

The constituents most often interact with more
than one neighbouring particle. Then, the resul-
tant load ~fi, is a sum of all the interaction forces
acting on the sphere i. The resultant torque ~Γi
obeys the same logic but implies the calculation
of an arm vector from the position of the parti-
cle to the contact point (the middle of the gap).
Essentially, ~fi and ~Γi are used to solve Newton’s
equations of motion for the translation (equation
3.7) and for the rotation (equation 3.8):

mi
d2

dt2~ri = ~fi + mi~g (3.7)

Ii
d
dt

~ωi = ~Γi , (3.8)

with the gravity ~g, the moment of inertia Ii, the
angular velocity ~ωi and the total torque ~Γi. Then,
the problem is reduced to the integration of differ-
ential equations (3.7) and (3.8).

In this work, the numerical study has been
conducted with a parallelised tool named Rock-
able, developed by Richefeu (2016). Among many
possible schemes to integrate Newton’s equation
of motion, the velocity Verlet algorithm has been
implemented in Rockable (Allen and Tildesley,
1989).

In DEM, energy dissipation is always a matter
of concern (Atman et al., 2009). The energy dis-
sipation can be managed through various mech-

anisms. A Coulomb friction is one of the possible
mechanisms. Additionally, we used two other dis-
sipation models: (i) the viscous damping that acts
in addition to normal elastic forces (Luding et al.,
1994), and (ii) the numerical damping that affects
the resultant forces of the rigid bodies, like in Cun-
dall and Strack (1979). Both damping strategies
are, in the context of quasi-static loadings, only
used to increase dissipation efficiency. Particle
breakage releases a lot of energy, which must be
dampened for the sake of numerical stability.

3.2 Description of a breakage
model adapted to hollow grains
with DEM

For our application, Rockable has two main
specificities:

it operates on sphero-polyhedral shapes,

and it manages breakable interfaces.

Therefore, it is most sufficient to model the com-
plex shapes and to reflect the breakage. Herein,
the concepts of both sphero-polyhedral shapes and
breakable interfaces are explained.

Numerical representation of shape

As discussed in section 2.2, two main technic to
model the breakage are possible. Between them,
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the cluster model (Bonded Particles Method) has
been selected for this work. If the shell is con-
sidered as a semi-rigid cluster, the shape and size
of the constituents need to be adapted. As com-
mented in the section 2.2.3, the spheres as con-
stituents would require its tiny size, e.g. d0 =

0.2 mm or less, and still would lead to an unre-
alistic for ceramics intra-porosity. Furthermore,
the small diameter of spheres results in an ex-
tremely large number of sub-particles which usu-
ally harms the computational efficiency. But in
case of the big grains like shells2, the simulations
of the large assembly would be impossible to per-
form if keeping the sub-particles size at 0.2 mm.
Therefore, we have considered a polygonal-like
shape enabling us to use a large size without in-
troducing the material porosity.

(a) (b)

Figure 3.3 : A tube-shaped shell modelled as a cluster
of 12 rigid sphero-polyhedra elements called sectors. The
sector is itself composed of sub-elements (spheres 1©,
tubes 4© and thick planes 3©) with no relative move-
ment.

Ignoring the geometrical imperfection, the
most adequate simplification of shell shape is a
tube (recall Figure 1.3). Let N? be a number
of identical constituents per cluster. Then, sub-
division of the tube can be distinguished by its
radial and axial direction, denoted as N?

circ and
N?

axial , such that N? = N?
circN?

axial . Figure 3.3
presents an example of numerical shell using
N?

axial = 1 and N?
circ = 12. The manner of break-

age is adequate to the experimental breakage in
uniaxial radial compression of the shell. This non-
spherical 3D constituents are onwards called sec-
tors. As presents the inset of Figure 3.3, the sec-
tor is a clump (a rigid cluster) composed of sub-
elements of 3 types, with no relative movement:
1© spheres as corners,
2© tubes as edges,

3© thick planes as faces.
Although, the overall sector shape reminds poly-
hedron, it has a rounded contour due to the sub-
elements. Hence, its name sphero-polyhedron.

Types of collisions

(a) (b)
Figure 3.4 : Two adjacent sectors are glued with 4 co-
hesive links (black lines) only throughout the sphere-
sphere contacts.

One must notice that the construction of the sec-
tor as a rigid clump of sub-elements has con-
sequence in contact recognition, equivalently to
sphere-cylinder discussed in section 2.3.2 (recall
Figure 2.27). Naturally, it is possible to have
the simplest type of interaction when two cor-
ner spheres collide, as was shown in the Fig-
ure 3.4. This type was imposed within the cluster
but rarely appeared within the model of assembly
between two shells. Since, different sub-elements
of clumps can come into contact with each other,
there exist more complex types of interaction like
sphere-tube, sphere-face and so forth. Those types
were observed in the packing, and therefore more
details will be given once the assembly is dis-
cussed. At this point, only nomenclature has to
be clarified, and onwards there is a strict distinc-
tion:

Link – an interaction within the cluster,
for which the tensile cohesion and the
shear resistance act to prevent the separation
(Figure 3.4).

Contact – a non-linked point of force trans-
mission between two sectors interact-
ing throughout sub-elements (sphere-tube,
sphere-face and so forth). Due to sector
structure they can occur in an extremely

2 Around 500 times larger than a sand grain.
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small distance. The force laws given in sec-
tion 3.1.

Neighbours – two clusters having one or
more contacts between each other.

Modelling breakage – the links

To model the breakage, the clusters behave non-
rigidly3, such that a relative movement between
sectors can occur. Within the cluster, the sec-
tors are bonded only through the adjacent spheres
(Figure 3.4) – only four sphere-to-sphere links are
active. These links act elastically in the two direc-
tions related to the opening of the common plane
(joined faces) as in fracture modes I and II (recall
Figure 2.9). The elastic relations are formally writ-
ten in a tensorial form:

(
f I

f I I

)
= −

(
k I 0
0 k I I

)
·
(

δI

δI I

)
(3.9)

In a pure mode-I loading (tensile loading), the
elastic force normal to the plane cannot exceed a
tensile threshold force f ?I (Figure 3.5a). For a pure
mode-II loading (shear loading), a tangential elas-
tic force withstands, if it is in the range of ± f ?I I
(Figure 3.5b).

f ?I and f ?I are the yield forces reflecting the ma-
terial strength and are required only in case of co-
hesive links. When modes I and II are activated

at once, a cohesive interaction holds as long as a
yield function ϕ remains negative:

ϕ =
f I

− f ?I
+

( | f I I |
f ?I I

)q

− 1, (3.10)

where q is a numerical parameter that controls the
shape of the function, as suggested by Delenne
(2002). The yield function ϕ in the f I : f I I plane is
shown in the Figure 3.5c for a given value of q. In
this model, the mechanical behaviour of a cluster
is elastic and brittle, but the mechanical parame-
ters (the stiffnesses and the threshold forces) and
the fracture pattern are related to the initial slicing
of the cluster (Figure 3.3).

Due to specificity of Rockable, if the cohesive
link between the sector m and sector n is imposed,
a breakable interface Imn is created. All the follow-
ing links between those sectors are assigned to the
same interface Imn, e.g., 4 links belongs to 1 inter-
face in the case shown in the Figure 3.4. As soon
as ϕ ≥ 0 for one of the bonds belonging to the
interface Imn, the rest of bonded interactions are
broken simultaneously. This compels the rupture
to be brittle whatever the link mechanical param-
eters are.

We recall the reader that shell-to-shell contacts
are ruled by the normal and the tangential laws
described in section 3.1 if the cemented joints are
not included in the model.

3 One must remain cautious and do not be mistaken by rigid sectors (clumps) that are constructing the cluster.
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Figure 3.5 : Force laws for cohesive interactions: a – in the normal direction (mode-I), b – in the tangential
direction (mode-II), and c – failure criterion as defined in the equation (3.10).
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3.3 Calibration of the model on a
single crushable shell

FI

FI

d0
d

Δdt

Figure 3.6 : An Uniaxial Radial Compression of the
shell. This scheme is also valid for the Brazilian test.
Dash lines show the contour of initial ring with di-
ameter d0. Remaining notation: ∆d – a reduction of
diameter, and FI – the ultimate force causing a tensile
failure.

The Brazilian test is a simple testing method
that allows indirect measurement of tensile
strength. It simply consists in a diametrical com-
pression of a thin cylindrical specimen (along the
axial direction) till its failure. The rupture force
FI can be then related to the tensile strength. The
Brazilian test has received considerable attention
not only experimentally, but also theoretically. For
example, Hondros (1959) has provided a complex,
yet useful, formula for the determination of an in-
ternal stress state. It has also enabled a calculation
of the tensile stresses at failure, hereinafter, de-
noted as σI , because it provokes mode I fracture.
Knowing that in the Brazilian test the tensile stress
arises at the centre of the disc, i.e., the cross-section
of the cylinder, the tensile stress is simplified to:

σI = 2FI/(πd0h), (3.11)

where FI is the critical load applied on the speci-
men with a diameter d0 and a length h in the axial
direction (similarly to Figure 3.6).

To avoid the biaxial stress filed in the Brazilian
test, the equivalent test on the annuli (or the ring)
specimens was developed early on (called the ring

test) but did not receive the appeal as wide as the
Brazilian test. In the ring, the tensile stress at fail-
ure can be assumed as:

σI = 2FIK(r)/(πd0h). (3.12)

One can notice that this relationship is obtained
by a multiplication of the formula (3.11) by, K(r),
a the stress concentration factor4. In such a case,
the failure occurs at the point of maximum tensile
stress is located as shown in the Figure 3.7. Fol-
lowing Hobbs (1964), Hudson (1969) confirmed
that K(r) is a function of the internal void size.
If the ring is described by the external rout and
the internal rin radii, then the size of intrinsic void
can be expressed as a relative radius r = rin/rout

(Figure 3.8).

FI

FI

σI

Figure 3.7 : A diametrically compressed shell fails in
tension at the point of maximum tensile stress σI for
the mode I fracture (the opening of crack), that is in
the axis of loading at the inner edge of ring – black
point.

By nature, each particle has irregular shape,
which disagrees with the requirements in both the
Brazilian and the ring tests. But, at a given time, a
similar concept started to be applied for less sym-
metrical grains. Nowadays, it is commonly used
in discrete modelling, for example, as a method to
calibrate the model of single breakable grain: Mc-
Dowell and Harireche (2002); Cheng et al. (2003);
Laufer (2015); Cantor García (2017). To highlight
the specific character of granular materials, it was

4In other words, for a full cylindrical shape the stress concentration factor becomes K(0) = 1.
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often called the vertical compression instead. Many
researchers used the vertical compression to esti-
mate the tensile stress in the grain σt = F/dD−1

in D-dimensional analysis. As presented in the
section 2.2, in the numerical modelling many of
breakage criteria have been built upon this rela-
tionship. Since, the ring is a perfectly symmetric,
the vertical compression is not an adequate term.
To address those studies, we will refer to it mainly
as uniaxial radial compression (URC).

3.3.1 Identification of parameters based on
the experimental campaign – uniaxial
radial compression tests

t

rout

z

h

Y

X
Z

rin
d

Figure 3.8 : A notation of shell dimensions was based
on the assumption that its axial direction (z) is the lead-
ing one. Then, h is the height of the shell following the
axial direction, t is a tube thickness and a ring (cross-
section) has the external diameter d. With the last two,
one can easily compute an internal rin and an external
rout radius.

A number of uniaxial radial compression tests
have been performed on two different shell sizes:
d18 and d20. In fact, the notation of those sizes
characterises the manufacturing diameter, which
is slightly bigger than our measurements of diam-
eter d given in Table 3.1.

Two other dimensions (h and t) were distin-
guished to fully describe the shell geometry as
demonstrated in the Figure 3.8 and given by the
Table 3.1. The enhancement of shell fabrication
has been an ongoing work, and therefore, we
tested two various populations of shells (MP1 and
MP2). The average measurements did not vary
significantly, but the population MP1 presented

stronger geometrical imperfections like the axial
buckling or the flattening of the cross-section (an
oval-like deformation). However, the shells of the
population MP2 were visibly closer to the ideal
tube.

V iv

V is

V itot

Figure 3.9 : 2D view of the shell – a scheme showing
the division between the solid Vi

s and the void Vi
v used

to calculate the shell void ratio E0 or the shell porosity
P0.

In Table 3.1 also two dimensionless descrip-
tors of shells are given: the mean relative radius
r and the void ratio E0 at the shell scale, not for
the continuant material. The geometrical intrin-
sic exclusion, i.e., the internal void, has a volume
Vi

v (Figure 3.9). Moreover, Vi
v summed up with a

volume of the solid Vi
s gives, what we call, a total

shell volume Vi
tot. Then, E0 = Vi

v/Vi
s is a void ratio

within the contour of a single shell. If one prefers,
a shell-porosity P0 = Vi

v/Vi
tot can be given instead

such that P0 = 0.479 for d20 and P0 = 0.502 for
d18 (based on the average dimensions). The vol-
umes of the void and the solid are of the same
order. Bigger shells consist of slightly more ma-
terial, which is to be found of greater importance
on the macro-scale.

a b

Figure 3.10 : a – The final experimental settings for
uniaxial radial compression of a shell and b – a zoom
on the shell.

Figure 3.10a shows a sample installed on
the press, to be diametrically compressed
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Shell size Population No. of samples h (mm) d (mm) t (mm) r E0

d18 MP1 33 17.4±1.3 16.5±0.4 2.4± 0.1 0.709 1.011
MP2 18 17.1±0.2 16.4±0.3 2.4± 0.1 0.707 1.000

d20 MP1 50 18.4±1.5 18.2±0.4 2.8± 0.1 0.692 0.920

Table 3.1 : A geometrical description of compressed shells. h, d and t are the shell dimensions as shown in the
Figure 3.8 and there are two-dimensional shell characteristics: r – a mean relative radius, and E0 = Vi

v/Vi
s – a

void ratio of one shell (Figure 3.9).

(Figure 3.10b). Although a constant press veloc-
ity was imposed (0.02 mm/min), its vertical dis-
placement was registered during each test. Fi-
nally, those measurements were assumed to be the
diametrical reduction ∆d (Figure 3.6). Besides dis-
placement, the force was also recorded up to its
final value FI

5.

Two experimental observations require some
comments before discussing the results. Firstly,
the breakage was of highly dynamic nature in
each test. Although one can expect an instant
failure characteristic of brittle material, the ring
geometry seems to intensify the "explosive" re-
sponse. Secondly, we must discuss the nature of
the breakage. Figure 3.11a shows how the major-
ity of shells broke, namely into 4 parts. The shells
split not only in the vertical direction of loading
(as expected from Figure 3.7), but also in the per-
pendicular direction – horizontally (Figure 3.11b).
A similar manner of breakage was observed by
Mellor and Hawkes (1971) who showed that the
manner of breakage changes with the value of the
relative radius. For its low values, only the axial
splitting appears, and therefore, it was suggested
to treat the vertical cracks as primary breakage
and the horizontal ones as secondary breakage.

Plausibly the "explosive" response favours the ap-
pearance of the secondary cracks. The ring is less
stiff than a full disc, thus it is more vulnerable to
high dynamics of breakage. Yet it is not possible to
distinguish the force when the primary crack ini-
tiates experimentally, and the force of the ultimate
failure is measured instead. On the other side, the
secondary cracks should also initiate in tension.
The boundary conditions impose the requirement
of uniform contact along the length of the speci-
men called the height of the shell (Figure 3.10b).
To this end, each shell was wired out to ensure
two contact surfaces to be as parallel as possible
(Figure 3.11c).

Figures 3.12a and 3.12b show the mechani-
cal responses (force-displacement curves) of shells
d18 and d20, respectively. The diversity of the
mechanical response is obvious. The variability
of ultimate load results both from the geometri-
cal variability of the tubes and from the material
heterogeneity. Some internal flaws such as tiny
minerals or air bubbles trapped in the crude clay
were introduced when the shell mass was formed.
In Figures 3.12a and 3.12b, each shell has a non-
linear force characteristics. Initially, there appear
discrepancy from the linear elasticity, typically as-

5 The limit of the sensor was 2 500± 1 N

a b c

Figure 3.11 : a – The shell usually breaks into 4 fragments as a result of URC (yellow lines in b show the
localisation of the cracks). b and c – show a shell before the test.
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Figure 3.12 : Diametrical load vs. vertical displacement curves resulting from radial compression test performed
on two sizes: a – d18 (combining MP1 and MP2) and b – d20 (see Figure 3.6).

sumed in the modelling and the theoretical ap-
proaches. Two types of deviation from the lin-
ear response can be observed. First one is an ini-
tial curvature in the zone of low forces (∼ 0.2FI).
In the literature, similar behaviours have been re-
ported in cases of different materials like sand
Cheng et al. (2003) or the clinker particles (Vallet
and Charmet, 1995). According to the latter au-
thors, the initial curvature as a result of the con-
tact area flattening. For example, the irreversible
changes of the contact zone might arise from the
crushing of local asperities. Despite the surface
treatments, we did not meet the challenge of ex-
tracting the perfectly parallel surfaces. Even if the
non-linear phase has not been avoided, it is be-
lieved to be reduced. Once the contact has been
adjusted by applying sufficient load, the curve en-
tered the linear/elastic part. Also in some cases,
the intermediate drop of force occurred in the
curve. This temporary loss of energy corresponds
to the work required for the crack initiation. Soon
after, the continuous increase of the force was re-
newed and continued up to the final failure. We
were not able to spot the onset of the crack in the
majority of tests.

The Weibull distribution is reported to be ad-
equate for statistical analysis of particles strength
(Weibull, 1951; McDowell and Amon, 2000; Cheng

et al., 2003; Laufer, 2015). If Pf represents the cu-
mulative possibility of failure, then the possibil-
ity of survival Ps is equal to (1− Pf ). Using the
Weibull cumulative distribution function (cdf ), one
can obtain:

Ps =
1

e(
x

x0
)m , (3.13)

where m is a Weibull’s modulus and x0 is the scale
parameter. Note that Weibull’s modulus is a shape
parameter controlling the "inclination" of the cu-
mulative distribution curve. The higher is m, the
thinner is the range of variation of results. In other
words, m controls the width of Weibull distribu-
tion. The value of x0 is the characteristic stress at
which 1/e ∼ 37 % of samples survive. Equation
(3.13) combines an exponential law with a power
law. The use of logarithmic space linearises the
trend:

ln ◦ ln
1
Ps

= m ln x− (m ln x0). (3.14)

The linearised trend is convenient while determin-
ing the scale and shape parameters of the function
(3.13). Then, m is the slope of the line and x0 is re-
lated to the y-intercept.

Figures 3.13 and 3.13b confirm that the prob-
ability of shells failure is Weibullian both for size
d18 (3.13a) and d20 (3.13b). The insets of plots
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Figure 3.13 : Probability of shell survival Ps while being diametrically compressed by the critical force FI for
two shell sizes: a – d18 (combining MP1 and MP2) and b – d20. The points show the experimental data and
the curve is a trend function according to equation (3.13) with parameters found from fitting equation (3.14) in a
logarithmic space as shown in the insets.

present the linearised trend in the logarithmic
scale, as explained hereinbefore. Whereas for
smaller shells the function (3.14) fits full range ad-
equately, it was less sufficient for size d20 (solid
curves). To verify the tendency, the force range
has been divided into two sub-domains: 〈120 N :
150 N〉 (dotted line) and 〈150 N : 280 N〉 (dashed
lines). This division helped us to obtain more
precise fits, with no accurate physical justifica-
tion. Fitting in the second subdomain provided
a comparable result as the global fit (m and x0

of the same order). In the literature, it is rare
to find Weibull’s modulus higher than 10, espe-
cially for brittle materials, which is the case of the
lower subdomain (m = 17.8). Perhaps there ex-
ist some intrinsic defects, a change in the miner-
alogical composition of clay-stone or the manu-
facturing process inconsistency leading to this lo-
cally narrow distribution. Similar deviations can
be observed, for example, in the study of McDow-
ell and Amon (2000), but usually, they are disre-
garded since the Weibull distribution was proven
to be successful by many. Moreover, the multiple
fits are not practical in terms of implementing the
strength variability in the future DEM model act-
ing in favour of using only the global fit. Compar-

ing the shell sizes, the global fits have similar vari-
ability defined by comparable m (Figures 3.13a
and 3.13b). The scale parameter x0 must vary as
the force is size dependent variable.

Figure 3.14 presents a direct comparison of the
two sizes plotting the ultimate force with respect
to the final reduction of diameter. For both sizes,
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Figure 3.14 : Force causing ultimate breakage FI vs.
the corresponding displacement ∆d for two shell sizes.
Loading condition: uniaxial radial compression.
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data are spread randomly rather than form a clear
tendency. Although the two sets overlap slightly,
the results confirm fairly well the size dependency
of force. Thus, in Figure 3.15 the same data has
been converted to the measures unrestricted by
the dimensions.
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Figure 3.15 : Tensile stress as a function of the ver-
tical strain. σI is calculated using equation (3.12). A
dimensionless deformation equals ∆d/d0 according to
small strain formula. Loading conditions as shown in
Figure 3.6.

Despite the fact that the true tensile is un-
known, we currently rely on the theoretical back-
ground and tensile stresses have been calculated
using equation (3.12) with the simplified formula
for stress concentration factor K proposed by
Hobbs (1964): K = 6 + 38 r 2. Even if the "pre-
dicted" stresses mismatch reality, one can treat it
as an estimation and benefit from the simplicity
of the formula. Any other more complex formula,
e.g, (Chianese and Erdlac, 1988; De-Lin, 1990; Mel-
lor and Hawkes, 1971), confirms that K is a func-
tion of the ring thickness t (most often replaced
by the relative radius r). Yet we were not able to
validate any of them due to lack of knowledge of
material properties. The horizontal axis in Fig-
ure 3.15 refers to a vertical strain according to the
small strain concept. As is seen, the sets merged
more than in Figure 3.14, but still, there exist par-
tial division. Note that ∆d includes the non-linear
plastic adjustment phase, which enlarges the final
strain randomly.

Above results showed that, on the average
point of view, the force depends on the shell
size. The scattering of the particle strength is
a commonly acknowledged phenomenon (Val-
let and Charmet, 1995; McDowell, 2001; Laufer,
2015). Herein, we attempt to describe this effect
by means of the power law:

FI = kdα. (3.15)

One must remember that it is possible because
the relative radii of sizes d18 and d20 are of the
same order. The scheme to fit power law is equiv-
alent to fitting Weibull distribution. The linearisa-
tion of trend is expected in a double logarithmic
space. Figure 3.16a shows that in fact, we do not
deal with a line but a "linear band", which thick-
ness depends on the deviation of results. There-
fore, coefficient k changes but the power α remains
constant. Note that α stays in a good agreement
with the empirical Bond’s law with α = 2.5 or
α = 1.5 found by Vallet and Charmet (1995). Fig-
ure 3.16b presents the same plot in the standard
FI ↔ d0 space. The solid line shows the trend
that matches the average strength, such that a pre-
diction divided by the average experimental force
gives 0.97 (d20) and 1.01 (d18). The dashed lines
present the limits obtained by varying the value
of k as shown in the Figure 3.16b. Although the
range of size was not that wide, the results prove
that the scattering of force can be determined with
the approach already applied for brittle materials.

3.3.2 Adjustment of the numerical param-
eters using DEM

The experimental shell breakage under the uni-
axial radial compression URC has been success-
fully characterised. Now, the physical response
needs to be adequately reproduced numerically
by means of discrete models. To this end, here-
inafter, the cluster model approach will be tested.
As was explained in the section 3.2, there exists a
number of numerical parameters that need to be
adjusted. Experimental campaign not only gives
us a reference response that is aimed, but also
helps to bridge the numerical parameter with the
numerical response.
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Figure 3.16 : Insight into the scattering of the force FI with respect to the initial shell diameter d0: a – linearisation
of result applying double logarithmic space and b – The scaling of force can be described with function (3.15).
The average trend presented by solid line. The variability of force is enclosed between two limits (dashed lines)
are characterised by different k in equation (3.15) but keeping the power α.

First calibration for shells d18

a b

Figure 3.17 : Cluster shape d18-S6 with dimensions
nearly equal to the average experimental measure-
ments (d = h = 17 mm and t = 2.4 mm): a – N?

circ = 24
and b – N?

axial = 1.

From now on, the cluster can have only the tube
shape which is a numerically equivalent to the
real intact shell. Onwards, once the tube-shaped
cluster breaks, the resultant pieces are called the
fragments, the parts or, occasionally, even the sub-
clusters. Note that fragment does not have any
specific geometry assigned to it and ultimately, it
is made of a single sector. First of all, the choice of
shape discretisation needed to be made. We have
made the primary calibration on the shell size d18
using 24 sectors with a discretisation shape de-
noted as S66. As shown in the Figures 3.17a and

3.17b this model does not include the axial slit-
ting, which is irrelevant to the breakage manner
in the URC (recall Figure 3.11a).

Figure 3.18 : Numerical cluster before the URC test.
Only circumferential division with 24 sectors – cluster
shape d18-S6. Rigid walls used as the boundary.

Figure 3.18 shows the cluster placed between two
rigid plates. The bottom plate was motionless,
whereas the top one was moving downward with
a constant velocity 10 mm/s (we recall that the
experimental velocity was 5.5 · 10−4 mm/s). The
force FI was measured for the top plate, and ∆d
was an actual reduction of vertical diameter.

Table 3.2 presents the parameters used in the
modelling. They concern the breakage criterion
and force laws described in sections 3.1 and 3.2.

6All the cluster shapes are described in Appendix A.1 (see Table A.1).
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Note that this is the final set of parameters es-
tablished from a small parametric study, but their
adjustment will be explained in more details later
on.

Links Frictional contacts
k I 1.1 107 N/m kn 1.1 107 N/m
k I I 1.1 107 N/m kt 1.1 107 N/m
f ?I 85 N µshell 0.36
f ?I I 250 N µwall 0.36
q 2

Table 3.2 : Parameters used in the simulation of URC
on cluster shape d18-S6. The parameters are explained
in sections 3.1 and 3.2.

Figure 3.20 shows comparison between the
non-linear experiments and perfectly elastic mod-
elling (red curve). As explained in the sec-
tion 3.3.1, the experimental non-linearity origi-
nates from contact adjustment. Our model is
not able to represent this effect, but we include
it indirectly by aiming the average experimental
displacement ∆d. For the loading configuration
shown in Figure 3.18, only the normal interaction
forces act between the plates and the cluster. They
are determined thanks to linear elastic force law,
thus FI ↔ ∆d relationship must be linear. The ul-
timate breakage into 4 pieces (Figure 3.11a) was
reproduced numerically but in two steps. The
tube firstly broke in the axis of the load (first force
peak in the Figure 3.20). This vertical breakage
occurred for higher load7 FI = 123.6 N which
is consistent with the mean experimental value
FI true = 122.5 N. Experimentally, the failure hap-
pens so rapidly that it is impossible to reliably dis-
tinguish what mechanisms are occurring. A DEM
insight also suggested that horizontal breakage
has a secondary character – the second force peak
in the Figure 3.20. As commonly accepted, the
occurrence of breakage requires some amount of
energy, and therefore, the drop of force must have
appeared with the primary breakage. Then the
system was re-stabilised and the force mounted
up again, yet the half-ring fragments behaved less
rigid. The link (local) stiffness k I rules the slope of
the FI ↔ ∆d line but it also depends on purely nu-
merical or geometrical model characteristics such

as number and size of sectors. In contrast, the
true shell stiffness depends on the material and
also on the geometry of the tube. Breakage modi-
fies the shell geometry from full ring to half-rings,
and perhaps, the loss of adhesive material bonds
leads to a less stable support and makes the frag-
ments behaviour less rigid. Recording experimen-
tally the large growth of ∆d, after primary break-
age, is not feasible due to high dynamics of re-
sponse. Therefore, we are not able to fully state
if it is a realistic result or the model requires an
adjustment of k I to the new geometry. Note that
in terms of energy release the numerical break-
age is also highly dynamic and both damping ap-
proaches had to be used simultaneously (viscous
and Cundall damping) to "secure" the DEM com-
putations.
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Figure 3.20 : URC test was strained controlled (veloc-
ity of plate 10 mm/s). Set of green lines represent the
experimental force: displacement curves and the red
line shows the numerical reflection of mechanical be-
haviour. Insets present the localisation of primary and
secondary cracks.

Looking at the type of forces within the cluster
and half-ring fragments, in Figure 3.19 the com-
pressive and the tensile interaction forces are dis-
tinguished. They are marked by red and green
lines, respectively. Figure 3.19a confirms that
there exist tensile force (causing opening of links)
at the point of primary failure as predicts the the-
ory (Figure 3.7). Note that the force distribution

7In the current section, FI refers to DEM result.
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a b

Figure 3.19 : The compressive (red) and tensile (green) contact forces causing a – the primary and b – the
secondary cracks in URC tests.

is displayed just before breakage such that all the
intra-clusters breakable interfaces still hold (black
dots). But for the configuration Figure 3.19b, just
before horizontal breakage, the corresponding in-
terfaces have been disrupted, which in fact is the
failure of 4 links (per interface). Furthermore, it
is clear that the secondary breakage is also trig-
gered by the tensile force. At the scale of bonded
interactions, both tensile interaction forces ( f I =

−84.91 N for the vertical cracks and f I = −84.95 N
for the horizontal cracks) almost met the tensile
yielding limit − f ?I = −85 N. Considering the fail-
ure criterion (3.10), the tensile force contributed to
the failure in 99.9 %. Failure in tension was con-
firmed by simple 2D modelling by means of Finite
Element Method (see Appendix A.2). If both fail-
ures occur in tension, then taking into account the
ultimate experimental force is acceptable. On the
contrary, in the analysis of modelings, we focused
only on the primary breakage.

To summarise, it is possible to correctly model
the uniaxial radial compression with fairly large
polygonal constituents. This part provided a suc-
cessfully calibrated model capable of reflecting
not only the mechanical response but also the
breakage manner. Whereas the numerical be-
haviour is consistent with the experiments, the
distribution of the internal forces agrees with the

theoretical predictions. Still, we refer to this part
of the work as "primary calibration", because it
provides only one of the possible choices for the
cluster model. At this point, the reader is miss-
ing the understanding of the parameter roles in
the behaviour and the degree of model complexity
caused by the discretisation into polyhedral bod-
ies. Furthermore, strength variability requires im-
plementation into the DEM model. Hereinafter,
we will address those concerns.

Contact and link stiffnesses

As mentioned, hereinbefore, the link stiffnesses
rules the slope of force-displacement curve, nu-
merically. Here, we show to what extent the dis-
crete stiffness influences the linear elastic response
of the cluster to URC load. In Figure 3.19 one
can distinguish both the cohesive sector-to-sector
(black dots) and the frictional sector-to-plate (red
dots) interactions. Thus, we deal with the inter-
sectors k I , k I I) and inter-clusters (kn, kt) contact
stiffnesses, so-called link and contact stiffnesses,
respectively. We have probed three different val-
ues varying them by a factor of 10 in nine differ-
ent combinations of stiffnesses in order to char-
acterise their numerical influence (Table 3.3). For
the sake of simplicity, the ratio between the nor-
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mal and tangential stiffnesses was fixed to one
(k I/k I I = kn/kt = 1).

No. kn (N/m) k I (N/m) ∆d (m)
1 106 106 0.002064
2 107 106 0.002070
3 108 106 0.002066
4 106 107 0.000189
5 107 107 0.000191
6 108 107 0.000191
7 106 108 0.000019
8 107 108 0.000019
9 108 108 0.000018

Table 3.3 : The values of a normal contact stiffness
between two sectors kI and between the sector and
the wall kn (Figure 3.18), with kI I = kI and kI/kI I =
kn/kt = 1
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an identical line type is meant for the same kn. Combi-
nation from Table 3.3.

In Figure 3.21 the mechanical responses are shown
by taking into account all the combinations (No. 1
– No. 9) form Table 3.3. In the plot, k I is colour-
coded whilst kn is distinguished by the same type
of line. As is seen, the influence of the inter-cluster
stiffness kn is negligible. In contrary, the contact
stiffness k I limits the maximum value of displace-
ment ∆d. Table 3.3 exposes that the increase of k I

by a factor of 10 resulted in an increase of ∆d by
the same factor. Thanks to this, the stiffness k I can
be adjusted so that the numerical value (for pri-
mary breakage) stands in the agreement with the
mean experimental value.

Tensile strength – yield tensile threshold f ?I
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Figure 3.22 : Linear relationship between global force
at failure FI applied on the shell during URC and the
yield normal force f ?I in the link (with f ?I I = 450 N).

The yield threshold of the normal link force
f ?I has been modified, while keeping the tangen-
tial force threshold f ?I I at its high value8. Fig-
ure 3.22 shows that there exist a linear relation-
ship between the tensile limit and the critical load.
The increase of FI is proportional to f ?I such that
ratio FI/ f ?I = 1.414 for the shell size d18. Note
that for shells d20, FI/ f ?I was found at 1.660. The
strength scattering due to the size of internal hole
has been mentioned in the literature. For ex-
ample, Hudson (1969) implied a relationship be-
tween FI and r, governed by a power law, with
a small variation above r > 0.2. Both sizes d20
and d18 have a relative radius r higher than 0.2
(r = 0.699, and r = 0.718, respectively). Since d20
has a bit lower relative radius (the ring is slightly
more thick), observations of Hudson (1969) may
justify the slight increase of the slope.

8 f ?I I = 450 N maintains the contribution of shearing forces negligible.

52



N?
circ N?

axial mi (kg) k I (N/m) f ?I (N) FI (N) ∆d (m)
24 1 1.469 10−4 1.1 107 85.0 123.4 1.74 10−4

16 1 2.228 10−4 7.5 106 85.0 122.2 1.67 10−4

12 1 2.966 10−4 5.5 106 85.0 121.3 1.69 10−4

12 2 2.966 10−4 5.5 106 42.5 122.2 1.70 10−4

8 1 4.344 10−4 4.2 106 85.0 121.9 1.67 10−4

Experimental data - - - 122.5 1.65 10−4

Table 3.4 : A summary of numerical parameters (mass of the sector mi, normal contact stiffness kI , normal yield
force f ?I ) resulting in the mechanical state at failure: FI and ∆d.
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Figure 3.23 : Probability of survival as Weibullian func-
tion for various yielding tensile strength of the shell
(equation 3.13). Points show data and the curve is a
theoretical trend with the Weibull modulus m and the
scale parameter x0. Inset: linearisation of trend in the
logarithmic space (equation 3.14 in section 3.3.1).

Using this linear relationship, any experimen-
tally measured FI can be converted to the numer-
ical input f ?I . Furthermore, one can classify its
variability using Weibull distribution. Figure 3.23
demonstrates it on the shell size d18. The original
force distribution shown in Figure 3.13a (in sec-
tion 3.3.1) had the scale parameter x0 = 130.5 N
and the Weibull modulus m = 7.2. Due to the
proportionality, m remains the same for f ?I . The
scale parameter found from the fit (x0 = 92.4 N) is
equal to the estimation made from the linear rela-
tionship, shown in the Figure 3.22, and the exper-
imental scale parameter (130.5/1.414 = 92.3 N).
For size d20, Weibullian distribution of f ?I is char-
acterised by parameters m = 6.7 and x0 = 107.7 N.

Summarising, f ?I governs the ultimate applied
load FI in a straightforward, linear manner. One
can benefit from the fact that f ?I can be easily es-
timated using a simple experiment. Furthermore,
relying on the validity of Weibull distribution for
particle strength in granular material, even with
small amount of tests the variability might be
characterised and introduced in the model.

Number of sectors

a b c

Figure 3.24 : The clusters composed of N?
circ: a –

16 (d18-S3), b –12 (d18-S1)and c – 8 (d18-S7) sectors.
N?

axial = 1 (see Appendix A.1).

The computation time in case of URC on a sin-
gle shell is not a problematic issue, but it gains
on the importance while thinking of the big pic-
ture – an assembly of 2 000 shells or even bigger
FEM×DEM model. Therefore, an attempt to re-
duce the number of sectors per cluster has been
considered. Figures 3.24a, 3.24b and 3.24c present
the cluster shapes with circumferential division
lower than 24 sectors, but keeping the experimen-
tal dimensions. The URC has been simulated for
each of this cluster structure, and a quite similar
mechanical response was obtained. The mechani-
cal curves are not presented graphically, but they
are compared in Table 3.4 providing the values of
FI and ∆d. It is a fair method as all the curves
presented a linear response.
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Figure 3.25 : DEM URC. The link normal stiffness
kI dependency from the circumferential discretisation
number, and thus, the size of sectors.

One must notice that the stiffness of the links has
been modified between the modelings as shown
in the Figures 3.25. The bigger is the sector, the
lower is k I . If N?

circ = 24 is a reference, k I can be es-
timated from the relationship k I ≈ (k(24)

I N?
circ)/24.

It was sufficient to keep the tensile limit of normal
interaction force f ?I constant for all those simula-
tions.

a b

Figure 3.26 : Cluster shape d18-S2 with dimensions
nearly equal to the average experimental measure-
ments (d = h = 17 mm and t = 2.4 mm): a – N?

circ = 12
and b – N?

axial = 2.

Less attention was paid to the axial division, but
even the brief analysis provided us some useful
observations. Axially the shell was split into two
rows of sectors as shown in the Figures 3.26b.
As shown in Table 3.4, the true response to URC
was reproduced for the same contact stiffness k I

as used in case of a shell with 12 radial sectors

but no axial split (N?
axial = 1 in d18-S1). The man-

ner of breakage has remained identical, but it was
necessary to lower f ?I . Because the number of co-
hesive links to break was doubled, the threshold
f ?I needs to be multiplied by N?

axial (Table 3.4). In
other words, f ?I stands in an inverse proportion to
the number of breaking links. Using less sectors
per cluster increases their size and, consequently,
the mass of a sector mi (given in Table 3.4). The
critical time can be estimated from relation Tc =

π
√

mi/(Nlinkk I), where Nlink is number of links
between two sectors. The bigger the sector mass,
the bigger is Tc, and consequently the time step 9.
Then, ∆T can be potentially but reasonably en-
larged to speed up the computations time. In the
case of large assemblies, the reduction of sectors
number brings more benefits. Despite some nu-
merical tricks, the computations of forces, the in-
tegration of many equations or the updates of the
neighbourhood list can be highly time-consuming
procedures. Fewer sectors mean fewer forces to
compute and fewer elements to verify and update
the neighbourhood list. Thus, using less sector
makes the calculation less time-consuming.

Concerning this part of the study, one must
remember the following conclusion. Whereas the
circumferential discretisation modifies k I , the ax-
ial discretisation modifies the interaction force
threshold f ?I for URC.

Imposing loading and the shear contribution
to the failure

Pure shear force is extremely difficult to extract
experimentally, thus, a numerical attempt to esti-
mate the level of tangential yield force f ?I I has been
considered. Up to this moment, the sectors were
connected such that the bonded interaction ap-
peared in the point of tensile failure (Figure 3.27a).
Then, the tangential interaction force f I I acting in
the broken interaction was negligible (e.g., f I I ∼
1/100 N for d18-S6). To activate more tangential
forces in the failing link, the cluster was rotated
as presented in the Figure 3.27b. Drawing special
attention to the plate-sector contact, one can see
that the cluster cannot break where the maximum
tensile force appears. Moreover, the radial failure

9 Recall that the time step ∆T is proportional to Tc throughout the inverse of time steps number N∆T .
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N?
circ N?

axial α (◦) F∞
I (N) a b f I/(− f ?I )

24 1 82.5 130.3 -0.073 1.080 0.904
12 1 75.0 177.3 -0.115 1.448 0.848
8 1 67.5 268.0 -0.203 2.118 0.767

Table 3.5 : Shear force contributions in uniaxial radial compression for different radial division of clusters N?
axial

(Figure 3.27b). Rotated configuration has failure plains inclined at α. F∞
I is applied diametrical load for very

high tangential yield force f ?I I . a and b are fit parameters of function drawn in Figure 3.28. An example of level
of tensile force contribution f I/(− f ?I ) for f ?I I = 50 N in the failure (see equation 3.10.

planes are inclined at an angle α with respect to
the horizontal axis. In Table 3.5 one can observe
how α changes with number of sectors (N?

circ), and
therefore, with the size of sector. The radial dis-
tance from the vertical axis is also of great impor-
tance.

a b

Figure 3.27 : A type and the geometry of shell-plate
contact have been modified from a –sphere-face to b –
face-face contact.

Change of f ?I I influenced the results of uni-
axial radial compression on rotated configuration
(Figure 3.27b) for each N?

circ, as is presented in the
Figure 3.28. In fact, the normalised values were
used in the plot such that:

load at failure FI as a proportion of experi-
mental average force FI true demonstrates the
degree of "deviation" from the experiment,

and thresholds ratio f ?I I/ f ?I shows the bal-
ance between the shear and tensile material
strengths.

The load FI causing breakage increases non-
linearly as a function of f ?I I . When the tangential
threshold is very high ( f ?I I = ∞), the FI tends to
its limit, notated as F∞

I . In this study, we assume
that F∞

I was met for f ?I I = 400 N. The relation-
ship from the Figure 3.28 was described by func-
tion f (x) = a/x + b, where a is a shape parame-
ter (N?

circ-dependent), and b is essentially the value
F∞

I /FI true. One can see that the fit was more suf-
ficient for a higher number of sectors, while for
N?

circ = 8 slight discrepancy can be stated. The

parameters from fitting are given in the Table 3.5.
It is clear that if f ?I I/ f ?I < 1, the tangential force
rules the breakage because the shearing strength
is lower than the tensile one. The trend mounts
up rapidly showing high sensitivity to the change
of the yield shear threshold in this regime. When
f ?I I/ f ?I becomes larger than 1, the shear strength
is higher than the tensile one, and the shell will
crush mainly due to the tensile stress. Therefore,
a plateau of FI/FI true must appear in Figure 3.28
once the test becomes as insensitive to shear as
possible, which occurs faster in the case of the
more inclined slope, i.e. when the failure plane
radially closer to the true failure point.
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Figure 3.28 : Importance of tangential yield threshold
f ?I I in uniaxial radial compression of the shell. Tests
made on the configurations shown in the Figure 3.27b.
Dots present data, while the line stands for a fitted
function.

Looking at the interaction force it was con-
firmed that the rupture of links also involved
more shearing between the sectors than before,
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and thus, higher tangential forces were activated
(e.g., f I I = 14.7 N for d18-S6). Let us assume that
an acceptable strength balance is f ?I I/ f ?I = 0.59, i.e.
f ?I I = 50 N. Table 3.5 shows that the breakage was
always governed mainly by the tensile force, but
the failure was not in pure tension any longer. The
lower the inclination (α), the lower is the contribu-
tion of tensile force f I/(− f ?I ). That is due to the
internal stress state in the ring. The tensile stresses
fade with radial distance as confirmed by simple
FEM modelling in Appendix A.2. Therefore, if the
failure plane is located in higher radial distance
from the loading axis (as it is for bigger sectors),
the tensile force must decrease until the transition
to the attractive force happens (for α ≈ 50◦). For
larger sectors, due to the tensile force distribution,
a higher critical load FI is required to trigger ad-
equate tensile force f I , and thereby, an adequate
proportion f I/(− f ?I ).

To conclude, the radial division into 8 sec-
tors is too rough of an estimation, which already
may significantly mismatch the experimental re-
sults for this very basic calibration. An increase
in the number of sectors leads to a more reli-
able outcome. N?

circ = 24 appears to be most ap-
propriate discretisation, among the tested ones,
for which shearing is of secondary importance
from f ?I I = 50 N. However, including the previous
study of axial splitting the final recommendation
is N?

circ = 12. For a large assembly, we would re-
duce the radial division in favour of axial one, if
necessary.

3.4 Verification of the model on a
single crushable grain

The uniaxial radial compression has been of mul-
tiple uses, both to find the true strength (includ-
ing its variability) and to adjust the numerical pa-
rameters. Despite our best efforts to include in
the calibration as many aspects as possible, the
uniaxial radial compression is characterised by
the simplest boundary conditions. Such a sim-
ple loading is not really expected to occur within
packing, thus we attempt a brief verification of

the model by slight increase in the complexity of
loading conditions. As shown in the Figure 3.29,
the boundary conditions have been modified such
that the horizontal radius remains constant in the
process of vertical compression by a pair of forces
FV . Hence, we provoke a biaxial compression of
the shell10, even if the horizontal force is not an
imposed load but a consequence of strain con-
strains.

FV

d0
d

Δd

Figure 3.29 : 2D view of biaxial radial compression
(BRC) on a single shell. Dash lines show the contour of
the initial ring with an initial diameter d0 reduced of
∆d while being compressed diametrically by a vertical
force FV .

One must remember that this small modification
still provides a simple plain stress loading path.
On one side, the boundary conditions remain
quite simple and bear some significant similari-
ties to the ring test. On the other side, doubling
the number of supporting contacts reduced the
deviatoric load and makes the loading condition
more realistic, though not as complex as expected
within an assembly. Hereinafter we will refer to
the test as Biaxial Radial Compression (BRC).

Experimental test of biaxial radial compres-
sion

Additionally, 15 BRC experiments were per-
formed for the boundary conditions presented in
Figure 3.29. Despite the change of the bound-
ary conditions, the preparation and the test pro-
tocol were as in the experimental campaign of

10 It is actually an oedometric compression of a single shell. To avoid confusion with the macroscale, at which the oedometer
test is simulated on an assembly, the name the term "oedometer" has not been employed.
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URC, thus one can find the description in sec-
tion 3.3.1. The experimental setup prior to the
compression is shown in Figure 3.30a. A small
metal piece was constructed to prevent horizon-
tal deformation. One can see that its span could
be adjusted to the variability of shell dimensions
given in the Table 3.6. Note that the average mea-
surements were consistent with previously tested
shells (Table 3.1).

Size No. h (mm) d (mm) t (mm)
d18 15 17.0 ± 0.3 16.4 ± 0.4 2.3± 0.1

Table 3.6 : The geometrical description of shells tested
in BRC. h, d and t are shell dimensions given Table 3.6
(recall also Figure 3.8).

a b

Figure 3.30 : BRC with blocked horizontal deformation
of the shell: a – a final experimental settings, and b –
the breakage manner at an advance load stage.

Figure 3.30b shows the localisation of breakage
after the test. As is seen, the damage was more
extensive and more complex crack patterns have
developed. One can see that the lateral walls
provided additional support for the shell, such
that the damage was located mainly in the up-
per part of the ring cross-section. Although we
still deal with brittle fracture, the lateral wall also
prevented the explosive behaviour observed in
URC experiments. Most often the cracks caused
the radial slicing as shown in the Figures 3.31a
and 3.31b, but some local crumbing or/and ax-
ial crushing were also observed, as shown in the
Figures 3.30b and 3.31b. The primary breakage
was consistent with breakage in URC. In other
words, the first splitting appeared in the verti-
cal axis (maximum load) with its initiation at the
point of maximum tensile stress. A similar ex-
perimental observation was made by Salami et al.
(2017) who investigated the effect of coordination
number while compressing discs. Furthermore,

the authors also observed the cracks located in the
upper part of the disc for conditions equivalent to
our BRC.

Figure 3.32 shows the evolution of the top ver-
tical force FV as a function of the press displace-
ment. Similarly to mechanical response to URC
(Figure 3.12), each line has two phases: a non-
linear adjustment of the contact zone followed by
a linear behaviour. The intermediate drops appear
when new cracks occur. Due to the support of the
lateral walls, one can observe an arching effect,
and therefore, the force was transmitted even after
multiple breakages. More contacts per shell led to
an increase of shell resistance, such that the aver-
age force measured gives FV true = 671.7± 123.0 N,
which is ∼ 5.5 times higher than in URC.

Validity of model

Links Contacts
k I 0.55 107 N/m kn 0.55 107 N/m
k I I 0.55 107 N/m kt 0.55 107 N/m
f ?I 85 N µshell 0.36
f ?I I 100 N µwall 0.00 or 0.15
q 2

Table 3.7 : The parameters used in the simulations of
BRC with the horizontal constraints. The mechanical
response is shown in the Figure 3.32. The parameters
are explained in sections 3.1 and 3.2.

Also the numerical loading procedure has not
been modified so we refer to its description given
in section 3.3.2. The cluster of 12 sectors (only cir-
cumferential divisions) has been tested (inset of
Figure 3.32) with the set of parameters given in
Table 3.7.

Figure 3.32 compares the numerical behaviour
with the experimental response. Two modelings
presented slightly different mechanical responses
showing that the cluster-wall friction µwall gains
the importance of more complex loading condi-
tions (with respect to the modelling of URC). The
frictionless configuration has lower ultimate force
FV = 538.2 N because at a given point the slid-
ing of cluster-wall contact occurred and the frag-
ments rotated ending the test without any sec-
ondary breakage. To prevent sliding, the friction
was activated. Consequently, the top force rose up
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a b

Figure 3.31 : The breakage manner in the biaxial radial compression: a – splitting in only only radial planes and
b – a mix of purely radial cracks and some local crumbing.

to FV = 705.3 N, and the BRC modelling finished
with crushing into multiple parts.
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Figure 3.32 : The vertical force (applied on the top
of the shell) FV vs. corresponding displacement ∆d
curves. Loading condition: biaxial radial compression
with no horizontal deformation as shown in the Fig-
ure 3.29. Green curves show the experimental tests,
while red and black lines present the DEM modelling
for friction and frictionless interactions between cluster
and the plates.

This outcome proved us that the selection of
the numerical parameters was a successful pro-
cess. The average strength of the shell is compara-
ble to the numerical result FV/FV true = 1.05. Due
to the perfect elasticity, the model mismatches the
experimental displacement ∆d. In other words,
the model did not capture the imperfections of
lineic contacts in the experiments. Yet it is re-
markable to see that the inclination of numerical
lines corresponds to the linear part of experimen-
tal curves.

3.5 Summary

This section has been dedicated to the micro-scale
study of tube-shaped shells both experimentally
and numerically. In order to model complex ge-
ometry and to reflect the shell breakage, a suitable
model using an efficient number of constituents
was generated. A cluster model used in this
study subdivides a tube-shaped shell into a num-
ber of sphero-polyhedral rigid sectors (present-
ing the sub-grains as clumps) connected together
through the cohesive sphere-to-sphere links. Each
link is an interaction point for which the stan-
dard force laws have been designed such that two
parameters correlated with a shell strength were
included. The numerical parameters controlling
shell strength ( f ?I , f ?I I) were extracted from the ex-
perimental campaign of uniaxial radial compres-
sions. Bellow, we summarise the most important
observations:

The ultimate diametrical force FI presents
a strong variability due to the geometrical
and material heterogeneities. The cumula-
tive distribution function of FI at the point of
shell failure is Weibullian for both sizes: d18
and d20. Those distributions can be easily
converted to Weibullian cd f of the numeri-
cal yield threshold of the normal interaction
force f ?I and can be implemented in DEM
simulations.

The force FI depends on the shell size. The
scattering of average force follows the power
law. If one wishes to take into account the
deviation from the mean value, a determina-
tion of the limiting power laws is possible.

Adding horizontal constrains to the verti-
cal compression leads to biaxial loading of
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the shell. With respect to the uniaxial radial
compression, the resistance of shell was en-
hanced and the top vertical force FV was 5.5
times higher than FI . The horizontal support
levelled down the deviatoric loading such
that we have observed hardening due to the
increase of the coordination number.

Afterwards, the work has been continued with
DEM simulations:

Small parametric study allowed the adjust-
ment of the numerical parameters. The nor-
mal contact stiffness k I controls the slope of
linear elastic response with small or large
deformations. The ultimate force FI is mod-
elled by a local parameter f ?I causing a ten-
sile opening of links. Both parameters de-
pend on the scheme of shape discretisation,
which is an important part of the numer-
ical model. Whereas the radial discretisa-
tion number implies the modification of k I ,
the change of the axial discretisation num-
ber requires a modification of the link force
threshold f ?I . The rotation of the sector al-
lowed us to estimate the importance of yield
tangential force f ?I I and its minimum level
required in the uniaxial radial compression.

Different number of sectors per cluster has

been considered. The importance of axial
subdivision was found of secondary impor-
tance in the case of shell diametrical com-
pression. Focusing on the circumferential
division, N?

circ = 24 provided the most ac-
curate results, but for the sake of calcula-
tion efficiency, the final discretisation with
N?

circ = 12 has been chosen as an adequate
optimal choice to be probed using a large
assembly.

In both uniaxial and biaxial radial com-
pressions, the vertical splitting was a pri-
mary breakage, and other cracks horizontal
or/and inclined were found to make the sec-
ond appearance.

We successfully calibrated our cluster model
such that a linear elastic response of model
correctly reflects the experiments.

Verification of parameters was performed on
the example of biaxial radial compression
constrained horizontally. The experimen-
tal average critical force and the slope of
linear elastic part stand in good agreement
with DEM model. Thus, the force thresh-
olds ( f ?I , f ?I I) and the stiffnesses (k I , k I I) were
considered as well adjusted.
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Preparation of an assembly of the tube-shape
grains
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Introduction

Both experimentally and numerically, to study the mechanical behaviour of the granular material, first
of all, a sample needs to be assembled from the constituent particles. Not only the experimental
mechanical behaviour is affected by an initial sample state, but also the numerical simulations in quasi-
static loading conditions are sensitive to it. All the more reason why one should reflect the "natural"
structure of sample numerically. To this end, the method to compare both assemblies needs to be
selected a priori.

Each granular material creates a characteristic material structure, called also fabric. Many studies
follow the definition of Brewer (1964) who described the fabric of granular matter simply as a spatial ar-
rangement of the solid particles and the associated voids. Then, it is referring to a specific combination
of variables such as density, grains and contact orientations, number of contacts and others. In such
a framework, also scalar quantities like void ratio or coordination number provide some information
about the material structure. Therefore, in this study, among many possible internal variables we took
advantage of those that can be estimated from reality. The numerical and experimental samples were
compared using: a number density n and a coordination number Z.

Furthermore, fabric depends on the material itself – characteristics of grains such as shape and
angularity – and the preparation technique, e.g., gravity deposit or isotropic compression (Radjaï and
Dubois, 2011). Thus, a preparation protocol was carefully chosen, hereinafter.

Oda (1972) suggested that "the concept of fabric of granular mass should include at least two main sub-
concepts, e.i, (1) orientation of individual particles, and (2) position of the particle and its mutual relationship
to each particles." In the domain of discrete element modelling, the fabric is characterised by the second
subconcept and refers to contact orientation throughout fabric tensor (Radjai et al., 2012). This study
employed the first subconcept and used the distribution of grain orientation as a reference to numerical
sample structure.

Section 4.1 concerns the experimental measurement and estimation of internal variables. This sec-
tion includes our experimental measurement of the density and coordination number performed at the
fabrication plant where the VMC segments are pre-casted. Moreover, the estimation of surface friction
angle and mortar strength were done providing some of the input parameters required in the future
DEM modelling.

Section 4.2 presents a definition of shell orientation and the statistical analysis of real samples
acquired using X-ray imaging techniques. The analysis tool, called 3DShellFinder, was developed for
this study to efficiently detect the shells on the 3D image obtained from the X-ray scanning. As will be
discussed, this is an alternative algorithm to overcome the issues arose during the classical watershed
segmentation for this particular material.

Section 4.3 is dedicated to the numerical assemblies of shells. Thus, in section 4.3.1 the numerical
preparation protocol was described. Also, a small parametric study was carried out to determine the
influence of inter-granular friction on the state of prepared samples. This led to the preparation of more
samples as presented in the section 4.3.2. Thereafter, the samples were compared with the experimental
ones. Thanks to DEM, an influence of rigid boundary was studied, and as a result, the samples with
the preferential orientations of shells were generated.
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List of symbols

Symbol Explanation
Section 4.1
cd f Cumulative density function
α Angle describing a geometry of pyramid-like system of 3 shells (◦)
φ Angle of friction considering between shell extrados (◦)
µsur f Experimental estimation of friction coefficient for surface-surface contact
µshell Numerical inter-cluster (two clusters) and intra-cluster (two sectors) friction coefficient
ρm Mass density (kg/m3)
D Diameter of cylindrical sample (m)
d Diameter of ring in the shell cross-section (mm)
d18, d20 Fabricated sizes of shells distinguished by a target diameter d ∼ 18 mm and d∼ 20 mm
H Height of cylindrical sample (m)
F1, F2 Loading gravitational forces (N)
FS Shear force of cemented joints between shells (N)
FT Tensile force of cemented joints between shells (N)
L Loading arm (m)
L Large sample size
M Mass of sample (kg)
m Weibull’s modulus
mmortar Mass of cement coating per sample (kg)
mshell Mass of one shell (kg)
N Number of shells / clusters
Nn Number of neighbours
n Number density (m−3)
PS Probability of survival
S Small sample size
V Volume of sample (m3)
x0 Scale parameter of Weibull distribution
Z• Coordination number of • type (specified at in the text)
Section 4.2
pd f Probability density function
(xyz)sec Local coordinate system for sector
xyz Local coordinate system for shell
XYZ Global coordinate system for sample
ZOI Zone of interest
α Angle describing inclination with respect to vertical axias (◦)
a2 Anisotropy coefficient
dtarget Number of target zones
DR Reduced diameter of cylindrical sample (m)
E(~x, q̂) Error function
e Void ratio
HR Reduced height of cylindrical sample (m)
~o Unit vector directing shell orientation
N?

axial Discretisation number in axial direction of shell
Continued on next page...
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Symbol Explanation
N?

circ Discretisation number circumferentially, that is in the ring cross-section of shell
nseed Number of seeds
~Pi Position of search point (voxel)
R1, R2 Radii of circles determining the zoned of interest (voxel)
q̂shell Set of quaternions defining shell orientation
~xshell Position of shell (voxel)
Section 4.3
µshell Numerical inter-cluster (two clusters) and intra-cluster (two sectors) friction coefficient
µwall Numerical friction coefficient between two cluster (shell) and wall
Ek Kinetic energy (J)
e Classic / overall void ratio
e? Modified / inter-cluster void ratio
Flimit Limit of loading force (N)
f ?I Normal yield threshold in pure tension (N)
f ?I I Tangential yield threshold in pure share (N)
Mmax Impose rotational moment (kg m2)
nr Relative number density
~o0 Initial orientation of shell
~opre f Preferential orientation of shell
~v0 Randomly oriented velocity vector (m/s)
Zn Average number of neighbours
If a symbol or an abbreviations is not distinguished in the current section, please search in the previous sections.
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4.1 Characterisation of sample using experimental measurements

2L
d

F2
α

F1

a b

Figure 4.1 : Measurement of surface angle of friction φ for the shells made of backed clay. a – Scheme of set up
at the starting point (equilibrium state for F1 = F2). Geometry described by size d (diameter of shells) and angle
α. Both forces F1 and F2 act on arm with length L. Significant increase of F2 will lead to sliding in the contact
point between top and bottom shells. b – Experimental settings at the beginning of test (equilibrium state).

No. F1 (N) F2 (N) φ (◦) µsur f

1 9.8 11.2 16.81 0.30
2 9.8 11.0 14.83 0.26
3 19.6 22.0 15.08 0.27
4 19.6 22.4 17.66 0.32
5 29.4 32.9 14.28 0.25
6 29.4 32.9 14.14 0.25
7 39.2 43.8 14.18 0.25
8 39.2 42.8 10.92 0.19
9 49.0 55.3 15.56 0.28

10 9.8 11.0 15.41 0.28
11 19.6 21.6 12.39 0.22
12 29.4 34.2 19.90 0.36
13 39.2 42.7 10.63 0.19
14 49.0 54.7 14.07 0.25
15 39.2 43.0 11.54 0.20
16 29.4 31.9 10.02 0.18
17 29.4 31.9 10.03 0.18
18 19.6 20.9 8.09 0.14

Table 4.1 : Determination of surface angle of friction
φ and corresponding friction coefficient µsur f for shells
baked from clay in size d18. F1 and F2 are the loading
forces applied according to loading conditions shown
in the Figure 4.1a.

Shell-shell friction

Rockable requires to input a friction coefficient
µshell prior to each simulation, and therefore, an
experimental attempt to quantify µsur f has been
performed as follows. Figure 4.1a presents the
concept that has been already introduced in case
of wooden rods (Calvetti et al., 1997). Three shells
were assembled in a pyramid formation as shown
in Figure 4.1a. The bottom layer is fixed to the
ground and the top shell is attached to the loading
bar such that the two layers do not constrain each
other. Then, the contact points between the shells
are capable of mobilising friction. Technically, the
shells have been fixed by means of three wooden
rods passing through the internal wholes of shells
(Figure 4.1b). The rods have been attached either
to a wooden base (for the bottom shells) or to the
aluminium loading part (for the top shell) using
the screws placed at both ends of each rod. Two
forces F1 and F2 are applied at the end of load-
ing bar of length 2L (Figure 4.1a). The test starts
from the equilibrium state, that is, when F1 = F2.
Then, F2 is increased in order to mobilise friction.
Once the sliding appears, knowing the values of
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forces and the geometry of system (d and α), the
surface angle of friction φ can be extracted from
relationship:

sin 2φ =
F2 − F1

F2 + F1

2L
d

cos α. (4.1)

Figure 4.1b shows the experimental setup with the
geometry described by d ≈ 17 mm and α ≈ 36°.
The loading part has been constructed such that
the force arm is always equal to L = 900 mm. The
gravitational loading, i.e., two masses hanged at
both ends of loading bar, allowed us to determine
the gravity forces F1 and F2 shown in Table 4.1.
A priori, the equilibrium state was obtained for
various initial values of force F1. Using equation
(4.1) the surface angle of friction was calculated,
and Table 4.1 holds the detailed results of all tests.
The average surface angle of friction was found at
φ = 13.6°± 3.0° and corresponding friction coeffi-
cient µsur f = 0.24± 0.06. Note that the surface of
shells is relatively smooth (as for geo-materials),
but the ring base of shell or angular fragments (re-
sulting from breakage) are characterised by higher
roughness. This must influence the angle of fric-
tion, yet it will not be studied hereinafter.

Packing density

Determination of density is a basic and straight-
forward measurement, yet it provides essential
information about the material. As commonly
known, the granular material might form either
a loose or a dense assembly affecting the mechan-
ical behaviour. Therefore, knowledge of density

range is of great importance in the evaluation of
stress-strain curves. Secondly, the density can be
a reference parameter for the numerical samples.
This study takes advantage of two types of den-
sities indicated by equations (4.2) and (4.3). Mass
density ρm measures weight of material M per unit
volume V (kg/m3), while a number density n is
simply number of shells N packed in a volume
unit (m−3). The mass density measurement in-
cludes the coating in its value. On the contrary,
the coating is ignored in the calculation of num-
ber density. Still, we profit from n while prepar-
ing numerical samples, because the comparison of
n instead of ρm provides more reliable and robust
results.

ρm =
M
V

(4.2)

n =
N
V

(4.3)

The measurements have been done at the
prefabrication plant Stradal in Maxilly-sur-
Saone, where the compressible mono-block arch-
segments (VMC) are pre-casted so that the results
were as reliable as possible. In Figure 4.2 one can
observe the coating process. First large portion
of the shell in size d18 has been extracted from
the stock (Figure 4.2a), and the cement mortar
containing fine aggregate (sand) was prepared us-
ing standard concrete mixer (Figure 4.2b). Then,
the shells and the mortar were combined and
mixed further until the coating was accurately
distributed among shells (Figure 4.2c).

a b c

Figure 4.2 : a and b – Photos showing the coating process done at Stradal plant. c – Material used in density
measurements – shell in the size d18 with the coating of cement mortar (see Table 4.3).
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Size D (m) H (m) V (m3)
L 0.16 0.32 0.00643
S 0.11 0.22 0.00209

Table 4.2 : Cylindrical sample with height H and di-
ameter D have a volume V. Used volumes allowed us
to distinguish two sample sizes: large (L) and small (S).

For the measurements two sizes of cylindrical
mould were used with H/D ratio equal to 2 and
the volume V, characterised in Table 4.2. Further-
more, we have been working both on a granular
material (assembly of shells) and on a composite
mixture, i.e., shells with cement coating. Firstly,
the material was poured into the moulds from a
small dropping hight. Those samples were con-
sidered as loose ones, whereas the preparation of
dense samples was continued. The mould was
shaken using a small vibration table, available at
Stradal, and the sample was completed with the
material. Table 4.3 presents the average measure-
ments for eight types of samples being the combi-
nations of used material, sample size and prepara-
tion protocol. Note that in the case of coated sam-
ple the weight was measured in one of three cases:
fresh samples, 24 h after or 28 days after prepa-
ration. Although the number of measurements
(Table 4.3) is limited some important tendencies
can be distinguished. First of all, we have verified
those measurements with data provided by An-
dra. Influence of sample size on mass density for
volumes larger than 5.0 l has been previously de-
termined. Since size L (with V = 6.4 l) fits in that
range, we confirmed that average ρm = 575 kg/m3

(shells only) remains in accordance with the pre-
vious measurements. Secondly, Andra has ob-
served an increasing trend, that is, higher den-
sity for larger volume till a threshold density of
∼ 590 kg/m. In contrast, we have measured
higher density in case of size S (Table 4.3). Yet,
the small sample must be highly affected by the
rigid boundary, and this size was not included in
the reference measurements. In case of granular
matter, the change of ρm need to be reflected by
the change in the number density, as the shells
within the sample are of the same size and have
a similar mass mshell . Then, naturally, the dense
samples need to have a higher number of shells.
When the shells are coated, this relationship van-

ishes. The mass density rises about 40 % – re-
specting the sample type, yet the number density
is only slightly different. It is interesting to ob-
serve that although the coating creates adhesive
links between shells the packing number is hardly
influenced. Therefore, in the DEM simulation, the
same numerical arrangement can be used for the
simulation with and without coating. The mea-
surements made on the loose samples will be a
reference in the assessment of the numerical sam-
ples. Vibrating the samples (with Stradal’s vibra-
tion table), we have tested the top limit of density.
Nevertheless, it is believed that the shells typically
form dense packing due to their geometry.

Finally, an attempt to assess the mortar content
in the sample was made. After the measurement,
two coated samples (size L) have been cleaned and
left to dry. Each sample has been weighed twice
such that the mass difference provides us the mass
of mortar mmortar. Table 4.4 shows the mass quan-
tity (∼1 g) of coating that is attributable to each
shell. Note that the average mass of shell has been
found at 3.77 ± 0.09 g for shell size d18. Assuming
that a typical density of cement mortar is about
2 000 kg/m3, the measured shell density (density
of backed clay) was found at the level. Conse-
quently, the mass proportion of mortar and shell
is equivalent to volume proportion, such that 23 %
of solid volume should refer to the coating.

Type mmortar (kg) mmortar/N (kg/shell)
Dense 1.2373 0.00114
Loose 1.1132 0.00118

Table 4.4 : An estimation of the mass of mortar in the
samples performed on the samples of size L (Table 4.2).

Shell connectivity

Coordination number Z is a commonly used di-
mensionless variable describing the average num-
ber of contacts (neighbours) per particle. For ma-
terials in which the grains breakage is most likely
to appear, Z is of great importance because it mod-
ifies the potential for a particle to crush. A low
number of contacts leads to high deviatoric forces
acting on the particles, whereas the particles with
many contacts are believed to be more isotropi-
cally loaded, and therefore, less prone to break.
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Material Size Type ρm (kg/m3) Ncon f ig n (m−3) Ncon f ig

Shells
L

Loose 575.0 ± 0.0 1 151 384 ± 1 319 2
Dense 610.1 ± 0.0 1 166 538 ± 1 868 2

S
Loose 580.8 ± 9.3 2 155 129 ± 3 952 6
Dense 649.6 ± 18.5 5 171 806 ± 4 894 5

Coated shells
L

Loose 806.1 ± 58.9 5 148 223 ± 1 092 3
Dense 846.7 ± 41.5 2 168 636 ± 0 1

S
Loose 779.6 ± 5.6 2 155 448 ± 1 353 2
Dense 915.1 ± 0.0 1 - -

Table 4.3 : Mean mass ρ and number n densities for the samples prepared in the prefabrication plant Stradal. Size
of samples is presented in the Table 4.2. To obtained dense packings, the samples were subjected to vibration.

As shells breakage rules the behaviour of our as-
sembly, we found it beneficial to estimate the coor-
dination number collated, afterwards, with a nu-
merical model. To this end, one of the large coated
sampled has been disassembled shell by shell,
keeping only one requirement: the contact must
be capable of transferring the force between two
shells. Whether the shells actually touch or a mor-
tar bridge appears was disregarded for two rea-
sons. Firstly, the verification is a strongly person-
dependent process. Secondly, such a distinction
does not exist in the model either. Experimentally,
each contact point was registered with a specifi-
cation of its appearance, either at the shaft, i.e.,
external convex surface, or at the base of the shell.
Thus, we could not only calculate the coordina-
tion number of all the neighbours Zn but also es-
tablish the contribution of base and shaft contacts
throughout Zbase and Zsha f t, respectively. Equation
(4.4) presents a simple formula to calculate coordi-
nation number using existing neighbours Nn and
a total number of shells N.

Z =
2Nn

N
(4.4)

One more remark needs to be made concerning
the volume range of the measurement. Instead of
full volume, only top (T) and bottom (B) layers
were included. The layers had a height of around
9 cm and 5 cm, that is, ∼ 43 % of total sample
volume was analysed. The results are shown in
Table 4.5. As is seen, the sample was assembled
into a uniform structure, such that the results from
the top and the bottom parts are consistent with
each other. One can observe that fewer contacts

appear at the bases of the shell, such that the shaft
contacts are more than doubled. Note that, for a
full cylinder with d = h, the ratio of the shaft to
bases surfaces (Asha f t/Abase) equals 2. On an aver-
age point a view, there exist 6.7 contacts per shell.
Naturally, it is hard to state the validity of this
measure, yet one can compare it with typical val-
ues of Z known from Discrete Element simulation
(DEM) on 3D grains. For example, an arrange-
ment of spheres exhibits Z = 6 in the case with-
out friction and between Z ∈ 〈3 : 4〉 for frictional
spheres. For 3D grains with complex shapes, i.e.,
non-spherical shapes, Z can reach 12 when there
is not any friction. As a consequence, Z = 6.7 for
our frictional coated shells seems like a reasonable
value.

Layer T+B T B
N 406 261 145
Zn 6.71 6.78 6.58
Zsha f t 4.69 4.71 4.65
Zbase 2.03 2.08 1.93

Table 4.5 : Coordination number Z calculated for N
shells taking into account: all the types of contact Zn,
only the side surface contact Zsha f t and only ehe con-
tacts with the ring bases Zbase. T and B denote top and
bottom part of sample, respectively.

Mortar joints

Within sample with coating, the mortar joints are
created between the shells such that the strength
of each contact is enhanced. The cement mortar
can either complement the shell-shell contact or
form a bridge between shells (the shells are not ac-
tually touching). Due to the arrangement of shells
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a b c d

Figure 4.3 : Most basic types of contacts observed while disassembling the sample S after 24 h of drying: a –
shaft to shaft with parallel alignment, b – shaft to shaft with angular (90°) alignment, c – base to base contact,
and d – shaft-base connection.

we distinguished four basic type of contact shown
in the Figures 4.3a to 4.3d. As is seen, the mutual
alignment will create different types of contacts
with various amount of mortar, and therefore, var-
ious strength of links. The pairs of shells, seen
in the Figure 4.3, have been extracted from the
small sample (S) after 24 h from the preparation.
The cement coating has congealed enough to cre-
ate the stable links between shells, but still weak
enough to disassemble the sample into the smaller
clumps. Once the cement bonds are fully devel-
oped (after more than 28 days) we have tested
the joint’s resistance. This will serve a future
DEM model of shells with inter-granular cohesion
(model of the coated sample). It is worth recall-
ing that the mortar joint will be represented by
a bonded contact (see section 3.3.1). This type of

contact requires two parameters related to the ten-
sile FT (Figures 4.4a) and shear FS (Figures 4.5a)
strengths of the joint. To this end, simple tests
were performed in order to estimate the average
strength and variation. For the simplicity of the
experimental setup, the types of contact were lim-
ited to most basic geometry. The experimental
setup allowed us to test the shaft to shaft con-
tacts (Figures 4.3a and 4.3b) in traction, but a
shaft-base contact (Figures 4.3d) was included in
the shear test. In both cases one of the shell has
been fixed (Figures 4.4b and 4.5b), while the other
was attached to a loading mass. Once the mortar
joint failed the mass was registered, and a gravita-
tional force (FS or FT) was calculated. Figures 4.4b
presents the experimental settings used in traction
test including the KERN hanging balance with

FT

FT

coating

a b

Figure 4.4 : Experimental determination of tensile strength of mortar joints. a – Scheme of loading conditions,
and b – the experimental setup testing shaft-shaft contacts (Figures 4.3a).
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FS

FS

a b

Figure 4.5 : An experimental attempt to extract the shear strength of mortar joints. a – Scheme of loading
conditions, and b – the experimental setup presented in the case of base-shaft joint (Figures 4.3c).

limit of 15 kg and accuracy of ±20 g. The small
experimental campaign was followed by statistical
analysis. Since cement mortar is classified in the
family of the brittle materials, we successfully ver-
ified the distributions as Weibullian (Figures 4.6).
The probability of survival PS in tension has been
presented in Figures 4.6a using 30 traction tests.

Linear relationship was found in the logarithmic
space (inset of Figures 4.6a) allowing us to deter-
mine the Weibull modulus m = 2.8. Recall that
low parameter m characterise a wide distribution,
such that, one can observe that the ratio between
maximum and minimum force reaches ∼ 4 in this
case.
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Figure 4.6 : The probability of the cement links survival. Weibull distribution PS = 1− cd f = e−(x/x0)
m

was
found with scale x0 and shape m parameters for: a – tension and b – shear strengths. Red points shows data
from experiments and solid curve is an adjusted fit function PS. Inset: Linear relationship in ln-ln space simplifies
the determination of parameters x0 and m.
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An attempt to shear a single shell only has
previously shown that it is difficult to secure the
loading condition for shearing setup. The fix did
not provide the desired loading conditions. Thus,
cautiously, only 9 trial tests (red points) were per-
formed in the shear condition (Figure 4.5b). This
amount cannot provide reliable statistical distri-
bution, yet it serves well the estimation. Fig-
ure 4.6a shows the statistical analysis of FS. A
wide distribution (m = 2.9) has been found for
shear, almost identical to tensile strength. Sur-
prisingly also the scale x0 parameter, e.i, the force
value for PS = 1/e, are comparable. In other
words, the values of forces FT and FS are en-
closed in the same range, although one could ex-
pect higher shear strength. We acknowledged this
result, yet the shear campaign was not carried on.

Finally, we report that there was a test in which
failure of the shell instead of the cement joint oc-
curred at FT ≈ 100 N. That result is consistent
with the shell tensile strength determined in sec-
tion 3.3.1. It shows that the maximum strength
of joint cannot be determined from this test, and
a fortiori, in the DEM model the shells strength
should not be constrained by this exact distribu-
tion. Summarising, those tests actually indicate
the bottom limit of mortar strength.

4.2 X-ray Computer Tomography
(CT)

Figure 4.7a shows a large specimen acquired from
the mono-block tunnel segment (VMC). The com-
pressible layer was composed of cement-coated
shells d18 and it had thickness of around 15 cm
(Figure 4.8). This measure includes protection, i.e.,
∼2 cm layer of cement paste, that covers the shells
assembly at the extrados of the segment. The pro-
tection, located on the sides of the specimen, indi-
cated that 80 cm is the depth of a segment, such
that 40 cm is a random bowstring of tunnel ring.
Firstly, the large piece has been portioned into
smaller parts (Figure 4.7b). Then, a cylinder with
a diameter close to 12 cm was cut out using a core
drilling machine shown in Figure 4.7c. Finally, the
protection layer was removed, such that the height
of the sample was reduced about 2 cm. Note that

for further analysis the samples remain "upside
down" with respect to their position in the tun-
nel segment. To avoid any confusion, the termi-
nology is established as follows. The uneven sur-
face of the sample was an inner interface between
the compressible layer and the concrete part, but,
hereinafter, it is referred to as the top (of the sam-
ple).

~ 80 cm

~ 15 cm

~ 40 cm

~ 2 cm

a

b c

Figure 4.7 : The treatment of compressible layer ex-
tracted from the mono-block tunnel segment (VMC –
see Figure 4.8). Thanks to this protocol the cylindri-
cal samples of shells d18, in their "natural" arrange-
ment, with the original cement coating were obtained
(Figure 4.9a).

VMC

Compressible
layer

top  
of sample

~ 80 cm

~ 40 cm

~ 15 cm

Figure 4.8 : Sketch of VMC segment relates the di-
mension of extracted part to the compressible layer
and shows the "upside down" orientation of sample
(Figure 4.9a) with respect to in-situ location.
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Thus, the flat surface, this is the base/bottom of the
sample, in arch-segment was located at the exte-
rior of the tunnel.

Figure 4.9a presents one of the extracted sam-
ples. The drilling is a complex and invasive
method, especially in case of the brittle shells. Un-
intended sample damage has been reported on the
top due to lack of constraints on the free surface.
In Figure 4.9a one can observe the remaining frag-
ments of broken shells. Also, the intact shells have
been detached from the top surface because of
the cement bond failure, and thereby the surface
gaps were created. Furthermore, while making a
core, the water needed to be constantly poured,
and therefore, the cement-coating was partially
washed out in the boundary zone. Finally, only
some of the preparation attempts finished success-
fully, and the geometry of just two samples have
been approved for X-ray tomography.

a b

Figure 4.9 : Cylindrical sample ST-SC-1 (Table 4.6)
composed of cemented shells and acquired from a tun-
nel segment: a – photo, and b – volume reconstruction
from X-ray radiographies.

The radiographs have been acquired using RX-
Solutions scanner administrated by Laboratoire
3SR. One can find its detailed description given
by Doreau-Malioche (2018) or Papazoglou (2018).
An "indirect" flat-panel Varian PaxScan R© 2520V
detector and Hamamatsu Corporation L8121-03
source are embedded in this device allowing to
apply following image acquisition settings. A
voltage equal to 135 kV and a current of 500 µA
were selected. To capture the structure pattern
and whole volume of sample, the spot size1 was
set to "large"2 and the spatial resolution (voxel
size) was kept at 100 µm. Consequently, the size

of the image was 1400×1400×1400 voxels. The
vertical 2D projections of the sample have been
acquired at 1440 different angular positions by
averaging 6 scans, captured with frame rate 5.
Then, the Filtered Backprojection (FBP) analytical
method, incorporated in X-Act software, allowed
to reconstruct the X-ray attenuation field in 3D as
presented in the Figure 4.9b.

Figure 4.10 : 2D horizontal slice located in the top part
of sample ST-SC-1 (Figure 4.9). 16-bit image obtained
from X-ray CT.

Figure 4.10 presents a typical horizontal slice
subtracted from the reconstructed volume
(Figure 4.9b). X-ray CT provided us insight into
the interior of sample exposing the non-uniform
distribution of cement coating. Firstly, it can be
observed that the internal void geometry was
modified by the mortar on different levels: from
shells fully filled with mortar, throughout par-
tially penetrated ones, to shells with a thin layer
of coating. All this cases can be distinguished in
Figure 4.10. Secondly, it seems that inter-granular
free space is relatively less occupied by cement
mortar. As expected, the coating forms the shell-
to-shell bridges that are clearly outlined for var-
ious shapes and amount of mortar. Often, the
shells do not touch each other in the contact point.
In the image, one can intuitively distinguish dif-
ferent shells, as well as separate the shells from

1The spot is a starting point of the X-ray beam.
2The largest available distance between the X-ray source and the specimen allowed to capture full sample.
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the coating. From the technical aspect, it is not
a straightforward task. Once the X-ray beam
crossed the matter of sample, its attenuation is
recored by a detector, measuring the final intensity
of an X-ray beam. In the image, the attenuation of
beam is represented by a greyscale. Since, we op-
erated on 16-bit images, the grey level can range
from 0 to 216 = 65536. Various types of material
might absorb the beam differently, and therefore,
one can clearly see that the sand particles out-
stand within the solid matrix (Figure 4.10). A
specific grey level is assigned to each voxel in the
3D image, thus, the various phases can be extract
from the distribution of grey level. Figure 4.11
shows the histogram of grey level recorded for
both samples. Those results take into account the
entire volume of sample. Two peaks are clearly
marked in both cases. First one, for a low grey
level, characterises the voids (air). Second peak
at higher grey level corresponds to the bulk. Two
vertical doted lines indicate a manually deter-
mined thresholds for sample TS-SC-2. Note that
those values varied slightly for the sample TS-SC-
1, but for the sake of transparency only TS-SC-2
was marked in Figure 4.11.
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Figure 4.11 : Histogram of the grey level calculated
for 16-bit images. For each sample results take into
account whole volume of the sample.

Thanks to first threshold, appearing between two
peaks, we distinguished two phases: voids and
solid. But, the analysis of solid matrix is more

complex. The coating is composed of a cement
paste and a fine aggregate. The aggregate can be
easily recognised because the sand particles ab-
sorbed X-ray more intensively than the rest of ma-
terial. To this end, Figure 4.11 demonstrates an-
other threshold, at the end of second peak down-
fall (found at 50 300), above which we defined the
sand particles. Owing to the fact that the cement
paste causes similar X-ray attenuation as backed
clay, it is impossible to extract full volume of coat-
ing simply by using another threshold. This leads
to major difficulties with the classic image analy-
sis. Note that also specific tube-shaped geometry
increase the degree of analysis complexity. As ex-
plained by Guida et al. (2018), the intra-porosity
causes major difficulties in watershed segmenta-
tion employed in labelling the constituent parti-
cles. One final remark is that each horizontal slice
is charactered by its own histogram of grey level.
In other word, the two thresholds of grey level are
not homogenous within the 3D image. Whereas,
void phase threshold is quite robust, the aggre-
gate phase limit varies significantly between top
and bottom of the sample. Therefore, the image
analysis has begun using threshold that includes
the coating in the solid phase.

Sample H D HR DR e
(cm) (cm) (cm) (cm)

TS-SC-1 12.15 12.86 10.55 12.60 1.283
TS-SC-2 11.55 12.86 9.55 11.70 1.013

Table 4.6 : Sample dimensions extracted from X-ray
CT: H – height and D - diameter. Due to damage dur-
ing preparation for calculation of void ratio e the size
of cylinder has been reduced: HR and DR.

Table 4.6 presents precise sizes (diameter D and
height H0) of samples measured from the images.
Due to the boundary damage and the axial tilt
(evident for sample ST-SC-2), the measurement of
void ratio e was conducted to reduced volume: HR

and DR. Thanks to that approach, the overestima-
tion of void volume has been avoided. To measure
e, first of all the image have been converted to bi-
nary one using the solid-void threshold. Within
3D image array, one can easily calculate the num-
ber of voxels assigned to void (grey level = 1) and
solid (grey level = 0). Then, the ratio of those num-
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bers provided us the value of e as presented in the
Table 4.6.

The characterisation of shells

Identification of shells and determination of
their angular position are most challenging tasks
yet provide most valuable informations. To
this end, a special image analysis tool, called
3DShellFinder, has been developed aiming this
peculiar material. This C++ tool operates on a
compressed 3D binary image. Three different sets
of input parameters need to be established con-
cerning:

the shell size and its discretisation,

the zone of interest (ZOI),

and the seeding of search.

For the first set of parameters, let us begin with the
assumptions regarding the single shell. Firstly, the
geometry is represented by an ideal tube (black
dashed line in Figure 4.12a), and therefore, the
height h and two radii (inner rin and the outer rout)
must be defined in voxel units. In order to ensure
a correct detection of the shells and to account
for their actual size variabilities, the dimensions
were chosen with some offsets from the contour
of the “most-representative” shell-size as shown

in Figure 4.12a. Nevertheless, this still leads to
some limitations. 3DShellFinder cannot detect
the shells with strong geometrical imperfections,
e.g., egg-shaped cross-section. Also detection of
shells located at the sample border, that have been
partially cut during mechanical treatment, is less
feasible but somehow doable as we will see. Sec-
ondly, the search is of a discrete nature. In other
words, instead of full shape only number of points
are provided for the search as presented in the
Figure 4.12b. As a consequence, two more dimen-
sionless numbers need to be specified such that
N?

circ points are evenly distributed in the radial
plane and N?

axis points are located along the ax-
ial direction z. These points are referred to as the
search points ~Pi, i ∈ [0, N?

circ × N?
axis]. Whereas N?

circ
and N?

axis were selected arbitrarily, the shape pa-
rameters were adjusted respecting to actual geom-
etry of shells. The average shell dimensions mea-
sured during the experimental campaign were se-
lected as the most-representative one, and they
were decreased and converted to voxel unit us-
ing the spatial resolution of 100 µm. Afterwards,
many primary detections were made to find the
optimal choice (in terms of correct detection and
acceptable search duration) given in the Table 4.7.

For the second set of parameters, we move to
the scale of sample size where a cylindrical do-

z

rout
rin h

a

z

b

Figure 4.12 : Scheme of tube shape discretisation in 3DShellFinder tool. a – First step consists in adapting the
dimensions of two layer internal grid: the height h and two radii (for inner rin and outer rout layers). b – Then,
search points are distributed on the grid such that N?

circ points are evenly distributed in the radial plane and N?
axis

points are located along the axial direction z – as presented on above sketch for N?
circ = 8 and N?

axis = 4.
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main needs to be specified; it corresponds to the
drilled carrot. Technically, it is achieved by defin-
ing two horizontal circles with radii R1,2 and po-
sition (X1,2, Y1,2, Z1,2). They correspond to bottom
and top bases of cylindrical sample. This results in
higher efficiency of computation as only actively
occupied part of image is taken into account, but
more importantly it improves the finding of sawn
shells by ignoring the search points that could be
placed on the outside during the search proce-
dure.

Name TS-SC-1 TS-SC-2
h (voxels) 120 120
rin (voxels) 70 68
rout (voxels) 80 78
N?

circ 18 18
N?

axis 30 30

Table 4.7 : The shape parameters specified as an input
in 3DShellFinder: the height h, the inner rin and the
outer rout radii. Parameters responsible for discreti-
sation of hollow cylinder into nodes: N?

circ and N?
axis.

They distribute the points evenly in the radial plane
and along the axial direction, respectively.

Figure 4.13 : A 2D illustration showing the error spans
over the space (colour curves). The search points
are placed on the corresponding shell (with identical
colours). The shell on the right, masked in white, has
already been found. The error depends only on the
x-coordinate (the horizontal axis); for the sake of sim-
plicity the y position is known. For each curve, the
error varies between 0 (bottom line) and 1 (top line).

Before addressing the third set of parameters,
let’s look at the procedure in more detail. The
algorithm to find a shell is based on the minimisa-
tion of an error function parametrised by the posi-
tion (vector ~xshell) and the orientation (quaternion
q̂shell) of the search points ~Pi. By using voxels as
length unit, this error function can be written as
follows:

E(~xshell , q̂shell) = 1− 1
NZOI

∑
i∈ZOI

I
(
~Pi(~xshell , q̂shell)

)
,

(4.5)
where I is the scanned 3D-image that has been
binarised so that each voxel is 0 for the “voids” or
1 for the “solid phase”, and NZOI is the number of
search points that stand within the ZOI.

If this minimisation is performed with ran-
dom position and orientation as starting guess,
the chance of finding all the shells would be re-
ally low. So, the procedure involves several re-
quirements: (1) a shell that has been found can no
longer be found again, (2) error wells that tend
to trap the minimised solution must be distin-
guished from really deep wells with near-zero er-
rors, and (3) the position and orientation of cut
shells at the boundary of the drilled carrot should
be found as far as possible.

Figure 4.13 illustrates how these requirements
are dealt with on a simplified 2D case with ring
shaped shells, the error function of four shells as
a function of their x-position (the y-position be-
ing set to the correct value). The right most shell
has already been found, and a “patch” with zero-
values was then placed at its position so that no
deep well can exists anymore (see top curve com-
pared with the other curves). This is how the first
requirement is satisfied. In the same figure, the
deep wells can clearly be distinguished, but for
the minimisation procedure can be trapped inside
the smaller wells. To reach the deep wells, cubic
target zones having nearly the size of a shell are
placed on the ZOI, and each of these zones con-
tains a number of seed positions that will serve as
initial guess for several minimisations. To be con-
sidered as found, the admissible error must then
be extremely small – typically less than 1 %. This
multiple-seed solution is technically achieved by
defining the size of the target zones dtarget and the
number of seeds per target zone n3

seed.
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a

b

Figure 4.14 : Map of errors from 0 (green) to 1 (light
red). The zone of interest (ZOI) is a vertical band in the
middle of the image. a – Error function with a constant
number of search points, b – error function as defined
in equation (4.5).

The fulfilment of the third requirement is ensured
by the error function itself, equation (4.5), because
it accounts for the number of search points that
stand inside the ZOI rather than a constant num-
ber. That way, the the depth of the wells for the cut
shells are very deep with nearly zero error, even
if the shell is located outside the ZOI. Figure 4.14
illustrates the cases where the error function ac-
counts or not the ZOI.

We now focus on the settings related to the
minimisation seedings that involves two param-

eters: the size of the target zones dtarget and the
number of seeds per target zone n3

seed. Assuming
that each target zone seeks a single shell location,
the parameter dtarget was set at 180 voxels corre-
sponding to the typical shell size. Because the vol-
umes of the two samples were different, and con-
sequently of the volumes of the ZOI, 273 targets
were established for sample TS-SC-1 and 221 for
sample TS-SC-2. Using the average number den-
sity (for large volume samples) equal to 148 223,
we have estimated the shell number as 234 and
222, respectively. As is seen, for TS-SC-1 the num-
ber of targets is overestimated, whereas for TS-SC-
2 the two values are comparable.

The higher the number of trials n3
seed, the

higher is the number of successfully detected
shells – as presented in the Table 4.8 – although
the computation becomes more time consuming.
The best choice for n3

seed is therefore a matter of
compromise between the duration of the search
and the number of shells effectively identified. A
saturation of the number of identified shells is ob-
served, which suggests that not many additional
shells will be detected for higher values of n3

seed.

n3
seed Identified shells

27 47
343 136

1 000 165
3 584 209

25 947 229

Table 4.8 : Influence of the number of trials n3
seed on the

number of detected shells by 3DShellFinder.

In summary, the search procedure loops over the
target zones. For each trial within a target zone,
different positions and orientations of shell are
tested where each search point is assigned to a
voxel position. It is recalled that in a binarised
image, only two possible grey levels exist for each
voxel, with the following convention: 1 for solid
phase and 0 for voids. If the all search points are
perfectly aligned with the image of shell, the value
of grey level at each voxel must be 1, resulting to
an zero error. The Powell’s method is employed
to find the position and orientation that give the
minimum value of the error function, but a shell
is considered as successfully detected only if the
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a b

Figure 4.15 : 229 and 199 shells were detected from X-ray scans of coated shells extracted from tunnel segment for
sample TS-SC-1 (a) and TS-SC-2 (b), respectively. Green points present the search points of successfully localised
shells. The binary image is represented by the slices, where red zone stands for the solid phase. Whereas red box
marks the border of full size image, the zone of interest is shown by blue vertical lines. 3DShellFinder tool.

lowest error found is below 1 %.
For such constrains, 229 shells were identified

for sample TS-SC-1 as presented in Figure 4.15a.
Detected positions and orientations stay in a good
agreement with the image. Nevertheless, only in
84% of targets the shell was detected. Considering
the average number of shells, 98 % of them were
identified in the image, but there are shells that
have not been identified. The majority of missing
shells are located at the boundary. This is partially
caused by the fact that some shells were highly
chipped or badly cut during the carrot extraction
by sawing. Yet, there can be found shells with full
geometry that have not been detected in the im-
age. Similar result were obtained for sample TS-
SC-2, for which 199 shells have been identified.
That provides around 90 % of successfully identi-
fied shells as shown in the Figure 4.15b.

Shells orientation

In a fixed coordinate system, an orientation of
particle is defined as inclination of its character-
istic axis with respect to the reference axes. First
and foremost, one need to specify the maximum
or/and minimum axis of each grain within the
granular matter. For example, Wiebicke et al.

(2015) based their method on the moment of in-
ertia tensor using its eigenvectors as characteristic
axes of sand particle.

In this study, a different approach was chosen.
Taking advantage of peculiar and consistent shell
geometry, the characteristic axis z is determined
in advance. In Figure 4.16a the concept of shell
orientation is explained in case of the intact tube-
shaped shell. Each shell is described by a local
coordinate system xyz related to a global coor-
dinate system XYZ throughout a rotation arisen
during preparation. The local orthogonal system
is constructed such that a longitudinal direction of
sector, i.e., direction of dimension h, follows axis
z, whereas the plane xy includes the ring cross-
section of tube. Axis z is of great importance,
since the inclination of load with respect to this
axis activates different mode of fracture – mecha-
nism of failure (section 3.3.1). To profit therefrom,
it has been chosen as the shell characteristic axis.
Note that, this concept is valid both experimen-
tally and numerically, and therefore, the method
will be to quote afterwards. Whereas experimen-
tally it works only for the intact shells, in the nu-
merical model it is more comprehensive. As a con-
sequence of numerical discretisation, each sector
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Figure 4.16 : a – A local axis z of intact shell is formed as tube is presented in XYZ space by an unit vector ~o. In
a similar fashion, ~o describe direction of orientation for a sector in local coordinate system. b – Within a global
coordinate system, any possible orientation vector ~o can be inscribed inside a sphere with an unit radius. Angle
between the vector~o and vertical axis Y, denoted as α, is a measure of shell or sector orientation.

has another coordinate system denoted as (xyz)sec.
Yet, zsec must have identical direction as axis z (see
section 4.3.1). Since, the axis zsec for each sector in
not influenced by the breakage, this concept can
be applied despite the fragments size.

As is seen in Figure 4.16a, an unit vector ~o de-
scribes the direction of axis z. Full 3D analysis
should take into account inclination of orientation
vector ~o with respect to all of the reference axes.
In practice, for the sake of simplicity, the num-
ber of reference axes is reduced like in study of
Doreau-Malioche (2018). Likewise, we took the
advantage of the axial symmetry in the cylindri-
cal sample. Also, the fact that this work aims one-
dimension compression in the axial direction sup-
ports the choice to limit the analysis to only one
axis. Therefore, herein, the orientation is defined
as an angle α between vector ~o and vertical axis Y
as shown in Figure 4.16b. In XYZ space, a point
crated from the components oX , oY and oZ belongs
to the surface of sphere with radii equal to |~o|=1
(Figure 4.16b). All the orientation vectors~o point-
ing to the same parallel of sphere are characterised
by the identical value of α (Figure 4.16b), and con-
sequently, its values range in 〈0 : π〉, with α = 0
for vertical orientation. Within an isotropic three-
dimensional fabric, a high prevalence of horizon-

tally oriented grains occurs naturally. An implicit
analysis can be applied using the cosine function
to level this geometrical tendency. Since, cos α is
an even function such that~o and -~o are equivalent,
the |cos α| ranges from 0 to 1.

For a perfectly isotropic structures, the pdf(x)
is uniform. Any deviation from the uniform dis-
tribution exposes the heterogeneity of the vari-
able x. Therefrom, the statistical analysis needs
to be complemented with an assessment of the
anisotropy. A number of studies concerning gran-
ular media have already used Legendre polynomi-
als to probe the anisotropy of fabric. This method
has been successfully applied both in case of par-
ticle orientation (Doreau-Malioche, 2018) and the
contact anisotropy (Khalili, 2016).

The series of Legendre polynomials (orthogo-
nal polynomials) can play the role of the "coordi-
nate system" for some functions such that those
functions can be defined as linear combinations
of the polynomials. Herein, we attempted to con-
struct a fit function combining only even orders
Legendre expansion P2n(x) into a sum:

pd f (x) =
∞

∑
n=0

a2nP2n(x), (4.6)
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where the coefficients a2n are related to the mo-
ments of the function such that they characterised
its shape. Limiting the sum of polynomials to the
the 4th order reflects the trend of pdf(x) accurately
as mentioned by Radjaï and Dubois (2011). By
keeping the low order, the amount of parameters
to adjust is reduced without any deterioration of
the result. Then, the general formula form equa-
tion (4.6) can be rewritten as:

pd f (x) = 1 + a2(3x2 − 1) + a4(35x4 − 30x2 + 3),
(4.7)

with x = | cos α|. Then, the value of coefficients a2

quantifies the deviation from the isotopic state:

a2 =
15
4

(
〈x2〉 − 1

3

)
, (4.8)

where 〈x2〉 is a second moment of function (4.7).
The isotopic state is given by 〈x2〉 = 1/3, and
therefore, a2 = 0. Thus, the lower the anisotropy
coefficient |a2|, the more homogenous is the dis-
tribution.

We highlight that in following case pdf(x) has
strictly limited number of set due to low number
of data points. To account for all data points into
the fit, it is possible to operate on the cumulative
density function cdf(x) which resolves this limi-
tation. Keeping the framework of the Legendre
polynomials cdf(x) is transformed to the following
relationship (cd f (x) =

∫
pd f (x)):

cd f (x)=x[1 + a2(x2 − 1)+a4(7x4 − 10x2 + 3)]+c.
(4.9)

Figure 4.17 presents the statistics of the ori-
entation of shells found in the samples extracted
from tunnel segment (Figure 4.15). For the sake of
reliability, 428 shells, identified in separate sam-
ples, were combined in a common data set. Prob-
ability density function pdf(x) shows a heteroge-
nous arrangement with high dominance of hori-
zontal shells (cos α = 0). As the shell orientation
tends to be vertical (cos α = 1), the distribution
seems to become more homogeneous. The solid
line presents the function (4.7) for the parame-
ters a2 and a4 obtained by fitting the cdf(x) (equa-
tion 4.7). Although Legendre polynomials are re-

ported to work well in case of sand samples as-
sembled by dry pluviation, they suit the cemented
shells distribution only partially. The distribution
obey the trend for cos α > 0.3, whereas the peak
results in change of distribution shape.
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Figure 4.17 : Probability density function pdf(x) of
shells orientation in the sample cut out of a compress-
ible layer around a tunnel segment (VMC). Orientation
of shells with respect to vertical axis are described by
cosines of angle α such that cos α is 0 when shell is hor-
izontally oriented and for vertical shells cos α is equal
to 1.

This might be the concrete arch-segment af-
fecting the compressible layer like a rigid bound-
ary ( 4.7). Nevertheless, it provides as an es-
timation of anisotropy degree, e.g., comparing
with the sand assemblies exhibiting high level of
anisotropy for a2 ≈ 0.3. Finally, this results de-
scribe the reference state to be targeted in the
preparation of DEM samples.

4.3 Numerical preparation of a
sample

4.3.1 Procedure using DEM

To build a numerical sample, we have simply im-
itated the preparation procedure from reality by
DEM. The procedure consisted of two steps:

1st – gravitational deposit of shells,

2nd – numerical relaxation.
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a b c

Figure 4.18 : Sample 11×22: a – 333 random orientated
shells suspended in space on a cylindrical grid without
any interactions, b – beginning of gravitational down-
fall with off-grid shaking and c – sample under equi-
librium.

Firstly, a number of shells was distributed on
the grid such that there was not any interaction
between them. The assembly suspended in the air
was surrounded by an airtight set of rigid walls
in order to prevent the shells from floating in the
space (Figure 4.18a). In case of a sample prepared
for oedometer test, a cylindrical mould and a flat
plate were used, but for cubic samples 6 separate
flat walls were the boundaries (see section 6.3).
Then, a movement of shells was imposed by two
different factors: a gravitational acceleration and
an initial velocity (Figure 4.18b). The gravity pro-
vided movement downwards, while the shells dis-
place off the grid due to randomly oriented ve-
locity vectors ~v0. The direction of velocity vec-
tors varied for each shell, but all of them had the
same magnitude. For the samples that have not
been "shaken", it was possible to observe a local
zone of highly heterogenous fabric, especially in
case of high inter-granular friction. To create flat
sample surface, the top plate was allowed to fall

down with velocity adjusted automatically. More
precisely, its was controlled at each time step such
that the force measured on the wall did not ex-
ceed the imposed limit Flimit. Once all clusters
embed on the bottom of the mould, the sam-
ple rested until the equilibrium state was reached
(Figure 4.18c). At this stage Cundall damping was
employed as an additional method of energy dis-
sipation. Until the sample became well balanced,
a high value of force thresholds f ?I and f ?I I pre-
vented the breakage of shells.

Aiming realistic results, the measurements
performed at Stradal company (section 4.1) were
a benchmark. Then, to verify the numerical pro-
tocol the size of sample was identical as the phys-
ical one – diameter D equal to 11 cm and height
H0 of 22 cm. For this size, 333 bonded clusters
suspended in the air were shaken by means of ve-
locities vectors with the magnitude of 1 m/s. The
value of Flimit was set to 5 N that resulted with an
axial stress equal to 520 Pa.
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Figure 4.19 : Evolution of kinetic energy Ek for the
process of sample preparation. A downwards move-
ment of top plate is presented by red line. The vertical
dashed line shows the transition between two stage of
preparation (gravity fall and relaxation).

Figure 4.19 shows the evolution of kinetic energy
in the course of the deposit (black line). Initially,
the sample gains the kinetic energy Ek, when
shells are falling. The gravitational downfall is
demonstrated also by fast decrease of plate ver-
tical position (red line). Then, as the sample set-
tles on the bottom, the assembly looses the kinetic
energy gradually but non-linearly. The decrease is
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rapid at the start and slows down while approach-
ing the plateau. Even though the plate remains
motionless, one can observe strong fluctuations of
kinetic energy. Those oscillations vanished after
the activation of Cundall damping (time of 1s),
and as a consequence, the equilibrium state was
stabilised more efficiently.

First challenge encountered in numerical mod-
elling is the preparation of representative sample.
There exists a number of internal variables allow-
ing to judge the quality of numerical samples as
recounted in Radjaï and Dubois (2011). One can
select many of them to assess the numerical het-
erogeneity/anisotropy of sample. Yet, currently,
not many among them can be quantified experi-
mentally in a fast and straightforward manner in
order to be compared with DEM. Herein, a pri-
ority was given to the number density n (equa-
tion 4.3) having those advantages. Its true values
were easily measured and it can be compared di-
rectly with the DEM outcome. Then, the average
number of contact and the statistics of orientations
were verified.

Numerically, the fabric is influenced by fric-
tion. To establish how it affects the shell arrange-
ment a parametric study has been carried out. A
number of deposits were simulated varying the
inter-granular friction coefficient µshell every 0.25
in the range between 0 and 1 and using friction-
less walls (µwall = 0). For each value of µshell five
different deposits were done following foregoing
protocol. Table 4.9 holds data describing the sam-
ples at the end of deposit. It is clearly demon-
strated that the number density n and coordina-
tion number Zn can be controlled by µshell . The
higher the friction, the looser the sample and the
less contacts appearing. The decrease of density is

exhibited also by the increase of two void ratios e
and e?. In both cases void ratios are the propor-
tion of voids volume Vv to solid volume Vs, but the
way to calculate Vv is different. Whereas, e takes
into account a total volume of voids, i.e., inter- and
intra-granular, the modified version e? is the inter-
granular void ratio disregarding the internal void
of the shell.
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Figure 4.20 : Trend (solid red line) between number
density n and inter-granular friction coefficient µshell
for sample size 11×22 cm. The points are the mean
values with corresponding standard deviation show-
ing the variability of five different simulations for each
value of µshell used. The experimental range (both the
mean and the standard deviation) are shown by black
dotted and dashed lines. nr = (n − nmin)/(nmax −
nmin) is a relative number density.

Figure 4.20 shows the obtained trend that de-
scribes n as a function of inter-granular friction co-
efficient for a sample of size 11×22. Applying fric-
tion µshell ' 0.08, the number density n levelled
the experimental one (n ≈ 155 129± 3 952 m−3).
Note that the most dense samples, with nmax of

µshell n (m−3) e? e Zn
0.00 165 121 ± 1 155 0.570 ± 0.011 2.403 ± 0.024 7.03 ± 0.16
0.08 156 489 ± 2 944 0.657 ± 0.031 2.591 ± 0.068 6.12 ± 0.07
0.25 148 788 ± 2 814 0.742 ± 0.033 2.777 ± 0.071 5.27 ± 0.06
0.50 142 679 ± 828 0.816 ± 0.023 2.938 ± 0.023 4.64 ± 0.07
0.75 138 479 ± 2 006 0.872 ± 0.027 3.058 ± 0.059 4.43 ± 0.10
1.00 138 193 ± 1 246 0.875 ± 0.017 3.066 ± 0.036 4.35 ± 0.06

Table 4.9 : Initial state of samples described by: a diameter of sample D, a height of sample H0, a number density
n, an total void ratio e and an inter-granular void ratio e?.

80



a
b

c d

Figure 4.21 : Sample C_35×12_d_01_A composed of: a –1 947 shells (100 %), b – 1 006 shells building the inside
core without the full boundary zone (52 % of shells), c – 1 272 shells after extracting horizontal boundary layer
(66 % of shells), and d – 1 525 shell after extracting radial boundary layer (79 % of shells).
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around 165 121, were obtained for totally friction-
less simulations (Table 4.9). Ignoring higher value
of inter-granular friction coefficient, it is assumed
that for µshell = 1 a minimum density nmin is
reached. Then, the relative number density can
be determined as nr = (n − nmin)/(nmax − nmin)

for any intermediate n. For µshell = 0.08, the sam-
ple has quite dense packing with nr ≈ 0.68. The
average coordination number found at Zn = 6.12
in numerical samples is an adequate result to the
experimentally determined Z = 6.71. Ignoring
the value estimated experimentally (section 4.1),
µshell = 0.08 was used for further sample prepa-
rations. Nevertheless, we would like to stress
out that it is an empirical value employed in the
preparation protocol. Once we proceeded to the
simulations of mechanical behaviour under uniax-
ial compression, the experimental estimation had
been used (Table C.1 in Appendix C).

4.3.2 Numerical samples

Onwards, the cylindrical samples are denoted as:
C_(D× H)_(aimed density)_i_(options).
This manner describes a cylindrical sample (C)
with a diameter D and height approximate to H0

(both in cm). The friction coefficient was applied

during deposit such that l – loose, d – relatively
dense or D – dense sample was obtained. Repe-
tition of deposits with the same input parameters
resulted in different shell arrangement for config-
urations i. Any other changes – options – are un-
derlined by additional notation employing capital
letters such as shape of shell (A to F) or preferen-
tial orientation of shells (H, V). All the samples,
discussed hereinafter, has been presented in de-
tails in Appendix B.

With established preparation procedure, a con-
secutive step was to assemble larger samples.
New sample named C_35×12_d_01_A (see Ta-
ble B.1), was generated (Figure 4.21a). As a con-
sequence of depositing 1 926 bonded clusters, the
height of assembly H0 was stabilised at 12.2 cm.
Higher number density was obtained in case of
this larger volume using the same µshell = 0.08.
This indicates that the change of geometry, and
therefore the boundary zone, has modified the
relationship from Figure 4.20 (see section 5.1.2).
Nevertheless, one can expect that the relative den-
sity nr will remain of the same order, that is of
around 0.68. Then, the sample is still distin-
guished as a dense packing with n equals 164 139
(m−3) and two void ratios: e? = 0.579 (inter-

0

0.5

1

1.5

2

2.5

3

3.5

0 0.2 0.4 0.6 0.8 1

pd
f

| cosα |
a

0

0.5

1

1.5

2

2.5

3

3.5

0 0.2 0.4 0.6 0.8 1

pd
f

| cosα |

a2 = -0.1012, a4 = 0.0044

b

Figure 4.22 : Distribution of sectors orientation for the initial state of sample C_35×12_d_01_A. Pdf calculated us-
ing sample: a – of all the shells (see Figure 4.21a), and b – without layer at the boundary (see Figure 4.21b). Note
that α measures inclination with respect to vertical axis such that | cos α| = 0 for horizontal shell and | cos α| = 1
for vertical shell. Solid line presents Legendre polynomial fit with low anisotropy coefficient a2 (equation 4.7).
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granular) and e = 2.423 (overall). Averagely, each
shells has ∼ 6.2 contacts with neighbouring shells.
Such structured arrangement has been analysed
for shells orientation using approach described in
section 4.1.

Figure 4.22a shows the statistics of orienta-
tion to be compared with experimental results
(Figure 4.17). Pdf has an overall trend shaped sim-
ilarly to real samples but with one significant ex-
ception. The distribution in Figure 4.22a clearly
shows that the horizontally orientated shells are
dominant within whole assembly. Then, for
| cos α| ∈ 〈0.1 : 0.9〉 (the range of intermedi-
ate orientations) the orientations seem to be more
isotropically distributed. In contrast with experi-
mental observations, a superior presence of ver-
tically oriented shells is observed – lower peak
marked at | cos α| = 1. The background of this
heterogeneity was investigated numerically aim-
ing the rigid boundaries effect as a cause. To this
end, the statical analysis was repeated for the core
of sample, i.e., shells that do not remain in the
neighbourhood of the walls (Figure 4.21b). The
boundary zone is created throughout a geomet-
rical criterion. Using an offset from wall equal to
shell diameter d the boundary zone is determined,

such that all the shells with at least one sector lo-
cated inside the layer belong at the boundary. In
this way a data set was limited to 52 % of shells
which corresponds to 1 006 shells (or 12 072 sec-
tors). Figure 4.22b confirms that the anisotropy
exhibited by the two peaks for vertical and hor-
izontal directions in the Figure 4.22a were trig-
gered by the rigid boundary. This also shows that
the walls have a short-length influence on the shell
orientations. In the core of the sample there is
no preferable orientation. Also the heterogeneity
coefficient a2 = −0.101 extracted from Legendre
polynomials proved the low anisotropy level with
slight tendency towards horizontal positions (neg-
ative value).

Another type of statistical representation is
seen in the Figure 4.23a, which collates cumula-
tive density function (cdf ) for both experimental
and numerical samples. Therefore, one can di-
rectly notice already discussed differences. Blue
dots recall the real fabric, indicating the boundary
effect in tunnel segment. Red point shows almost
isotopic core of sample, while red continuous line
presents the fit of equation (4.9). Black dots stand
for numerical sample showing heterogenous fab-
ric of full sample. The accumulations of hori-
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Figure 4.23 : Statistical analysis of shell orientation for large sample C_35×12_d_01_A. Numerical sample anal-
ysed for different ranges as shown in the Figures 4.21. a – comparison of numerical and experimental results.
Legendre polynomials were adjusted to reflects the cdf and provide anisotropy level with a2 (equation 4.9). b –
The study of boundary effect and its origin.
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zontal and vertical shells are exhibited by locally
steep increases of cdf. This complex shape of nu-
merical distribution cannot be properly reflected
with the Legendre polynomials due to the steep
extremes. Yet, it has been studied further and Fig-
ure 4.23b investigates the influence of shells local-
isation within the boundary zone on their orien-
tations. To this end, the shells at the boundaries
have been divided into two groups composed of
the shells next to the:

1st – horizontal plates at the top
and bottom ( ),

2nd – vertical circular wall ( ).

Then, either first or second group was ex-
tracted from the assembly providing 1 272 and
1 525 shells for the statistical analysis, respec-
tively. Note that the "corner" shells belong to
both groups. In total, 48 % from 1 926 shells
within the assembly are located at the boundary.
36 % is located in the neighbourhood of horizontal
plates (Figure 4.21c), but only 21 % belong to ra-
dial boundary layer as seen in the Figure 4.21d.
This is a reasonable division as it is influenced
by the D/H0 = 2.87. Figure 4.23b shows once
more the statistics of orientation for entire sample
(Figure 4.21a) by the black points. Red colour is
reserved for the samples with limited number of
shells. It is proven that the anisotropy of shell ori-
entations is imposed by the flat horizontal plates
for the sample size 35×12. The radial wall did not
contribute to boundary effect, most possibly, due
to the curvature of wall. This results will diverge
with significant change of D/H0 for different sam-
ple sizes.

Method to impose the orientations

Up to now, for each sample the arrangement of the
shells was an outcome of gravitational fall with
no control over the grain orientation. Despite the
homogenous core of the sample, the preferential
orientations were detected within fabric. Thus,
it is interesting to investigate the behaviour of
highly heterogeneous arrangements. To this end,
the preparation protocol of numerical assemblies
was enhanced. Figure 4.24a presents the concept
of redirecting the orientation of shell during the
deposit to preferred direction. In XYZ coordinate
system, an unit vector ~o0 is an exemplary orien-
tation vector randomly assigned to shell at the
beginning of the deposit. To impose selected di-
rection marked by vector ~opre f an additional rota-
tional moment Mmax acts on each shell. Note that
the frequent collisions between the shells might
counteract the movement towards the preferential
orientation. The higher the rotational moment, the
faster the extorted shell rotation in time. There-
fore, the magnitude of Mmax must have been ad-
justed not only because of the time of downfall
but also due to the occurring collisions. Then, it
is clear that the final distribution is still not fully
controlled.

Varying the angular moment Mmax

(Table 4.10), 5 new samples were assembled aim-
ing either strongly vertical (V) or strongly hori-
zontal (H) orientation of shells (Figure 4.25). For
all those samples, the preparation process started
from the same initial configuration suspended in
air. The sample size has been reduced to 25×13
cm such that assembly was composed of 1 047
shells. The reason for this size limitation is dis-

Sample Mmax (kg m2) n (m−3) e? e Zn
C_25×13_d_01_AV 0.0001 160 452 0.651 2.502 6.07
C_25×13_d_02_AV 0.0002 161 602 0.604 2.477 6.01
C_25×13_d_03_AV 0.0005 156 488 0.656 2.590 5.40
C_25×13_d_01_AH 0.0001 161 324 0.606 2.483 6.21
C_25×13_d_02_AH 0.0005 159 707 0.623 2.518 6.19

Table 4.10 : Description of samples with imposed orientation characterised by number density n, standard e
as well as modified e? void rations and coordination number Zn. The higher was Mmax, the stronger was the
anisotropy of shells orientation towards preferential orientation. The preferential orientation can be V for vertical
or H for horizontal.
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Figure 4.24 : a – The concept of redirecting the initial ~o0 orientation of shell. An angular moment Mmax rotates
the shells towards the desired direction ~opre f . b – Distribution of shell directions within preferentially oriented
assemblies: vertically (V) or horizontally (H). Different rotational moment were applied with order of magnitude
10−4 (Table 4.10). The isotropic state with randomly oriented shells C_25×13_d_02_A , obtained for zero angular
moment, is presented in red.

cussed thereafter. More detailed description of
the samples can be found in Table B.1 (see Ap-
pendix B), yet their state is briefly summarised in
Table 4.10. As suggested, with increase of Mmax

the assembly tends to be looser. The coordination
number varied slightly with density but always
remained close to the experimental observation
(Z = 6.71). Figure 4.25 clearly shows that in the
horizontal (XZ) plane the distribution of shell ori-
entations is not axially symmetric, which contra-
dicts the assumptions of the statistical framework
proposed hereinbefore (see Figures 4.16). Recall
that the mechanical response of the shell is mate-
rial oriented due to the shell geometry. Then, the
vertical and horizontal orientation with respect
to Y can balance the consequences of such XZ
anisotropy in the sample under oedometric com-
pression. Thus, the statistical analysis has been
carried out focusing on the inclination with re-
spect to vertical axis α despite the inconsistency
in the XZ distribution. The anisotropic fabric
is statistically characterised by cumulative den-
sity functions shown in the Figure 4.24b. They
are compared with randomly oriented sample
C_25×13_d_02_A for which angular moment was

not imposed (Mmax = 0). Note that presented cdf
was calculated ignoring shells located within the
layers at horizontal boundaries such that one can
directly observe strong deviation from the almost
isotropic state (red points).

4.4 Summary

This section discussed the experimental and nu-
merical preparation of the samples. First, the
shells with and without coating were the sub-
ject of different experimental measurements. They
were (i) the reference parameters targeted in nu-
merical assemblies and (ii) supplementary numer-
ical parameters or estimation of parameters for the
DEM model.

First measurements done at the prefabri-
cation plant Stradal allowed to determined
"natural" density, its maximum limit and co-
ordination number.

Sample extracted from tunnel segment were
scanned using X-ray CT. A special image
analysis tool was created to detect shell in-
cluding their spatial orientation. Afterwards
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Figure 4.25 : View of samples in size 25×13 with preferential orientation (Figure 4.24b). The samples with hor-
izontal shell anisotropy: a – C_25×13_d_01_AH, and b – C_25×13_d_03_AH. The samples with vertical shell
anisotropy: c – C_25×13_d_023_AV, and d – C_25×13_d_03_AV. The sample states were described in Table 4.10.
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the statistical analysis provided insight into
the anisotropy of fabric using framework of
Legendre polynomials.

The level of cemented joints strength was
estimated for pairs of shells extracted from
coated sample (prepared at Stradal). The dis-
tribution of minimum strength was verified
as Weibullian. Those results will be useful
in the adjustment of numerical parameters
in the DEM model.

The surface angle of friction was found at
low level. This estimation provides us an-
other input parameter required by DEM
model.

Then, various numerical samples were pre-
pared to reflect true samples fabric as accurately
as possible:

The numerical protocol was established in-
cluding two phases: gravity deposit and nu-
merical relaxation.

Parametric study were performed allowing
to characterise an influence of inter-granular

friction on the number density of assembly.
The study were performed on sample size
matching the experimental measurements.
Thanks to this study, the inter-granular fric-
tion coefficient µshell was selected to generate
a representative numerical sample.

The larger samples were assembled aiming
the 1D compression. A comparison with the
real samples was done taking into account:
the number density, the coordination num-
ber and the statistics of shells orientation.

The boundary effect was probed, such that
we have found almost isotropic core of the
sample. The horizontal rigid plates caused
the orientation anisotropy at the boundary.

Finally, the preparation protocol was
slightly modified in order to build strongly
anisotropic assemblies with preferential ori-
entations of shells. The cumulative density
function showed that it has been success-
fully used to modify the fabric of numerical
samples.
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Introduction

Chapter 4 finished with the preparation of representative assemblies, ready to be submitted to a uniaxial
loading, but estimations of few parameters have been provided in the process. Probably the most
fruitful experimental contribution can be found in chapter 3 (section 3.3.1) showing the assessment of
tensile strength and its variability.

At that point, there remained nothing else to do but to probe those parameters in the simulation of
oedometer test. In section 5.1.1, the first attempt has been shown and discussed. We have juxtaposed the
primary numerical response versus the experimental result, and there was still room for improvement.
Prior to the comprehensive analysis, model calibration was required to secure the results.

Firstly, section 5.1.2 presents the sample size independence addressing mechanical behaviour. The
analysis acknowledged the boundary effect exhibited by the shells orientations. "Size independence"
has been reported also experimentally (tests on the different initial height of samples), but numerically
one can gain from possible size reduction by limiting the computational costs.

The understanding of numerical macroscopic curves are, in fact, the understanding of parameter
roles and the assessment of their importance. Thus, the parametric study continues in this direction. By
many, breakage has been reported of great importance to compressible behaviour (Coop and Altuhafi,
2011; McDowell et al., 1996). Section 5.1.3 focuses on the numerical parameters involved in the classic
plastic law in the contact without the cohesion (µ), the link elasticity (k I , k I I) and its breakage criterion
( f ?I , f ?I I and q). Such that one can understand the influence of the external contact forces applied on
shells, transmitted to links, and eventually lead to breakage, respectively.

Section 5.1.4 comments the influence of the initial state of samples. By initial state, we refer to the
density of packing, expressed by the number of shell per unit volume (n), and the statistical distribution
of shell orientations with a specific degree of anisotropy. The experimentally determined density was
either increased or decreased. Similarly, the shell orientations were directed towards either horizontally
or vertically oriented anisotropy.

This study needs to rise to the challenge of the complex shape. On one hand, we already deal
with the tube-shaped shell. On the other hand, the model bears the burden of highly sophisticated
discretisation – complex structure/shape of the sector. The ability to break is crucial, and therefore, the
size of the sector needs to be small enough for the sake of representative breakage, but large enough to
reduce the computation time. To this end, in section 5.1.5, firstly we test the influence of the number
of sectors used to discretise a shell. Note that we only varied the number of sectors per shell. Then,
section 5.1.5 presents the variations around the thickness of shell t. This closes this partial parametric
study.

The understanding of parameter roles helped us establish their final set. Once more, the best
numerical curve was compared with the experiment in section 5.1.6. The simulations of unloading and
reloading (UR) cycles were followed by a comprehensive analysis of interactions evolution. Finally, we
reproduced numerically the experimental difference in the compression curves between shell size: d18
and d20. This part served the purpose of reliable reproduction of the samples numerically.
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List of symbols and abbreviations

Symbol /
Abbreviation

Explanation

Sections from 5.1.1 to 5.1.5
cd f Cumulative Density Function
pd f Probability Density Function
α Inclination of sample strong axis with respect to vertical axis (◦)
εa Axial strain of a cylindrical sample (%)
κ Dimensionless stiffness parameter
µshell Friction coefficient of a shell-shell contact
µwall Friction coefficient between the shell and rigid boundary
σ0 A typical macroscopic stress (MPa)
σa Axial stress in case of a cylindrical sample (MPa)
ν Poisson ratio
a Typical size of particle (m)
b Primary breakage level
D Diameter of a cylindrical sample (m)

d18, d20
Fabricated sizes of shells distinguished by a target diameter d ∼ 18 mm and
d∼ 20 mm

E Young modulus (GPa)
Eoedo Oedometer modulus (MPa)
e Total void ratio
e0 Initial void ratio
FI The ultimate force in the uniaxial radial compression (N)
f ?I Normal yield threshold in pure tension (N)
f ?I I Tangential yield threshold in pure share (N)
H Height of a cylindrical sample (m)
H0 Initial height of a cylindrical sample (m)
I Inertial number
Iij Breakable interface
∑ Iij Current number of breakable interfaces in the cluster
(∑ Iij)0 Initial number of breakable interfaces in the cluster
Kc Kinetic energy per cluster (J)
k I Normal contact stiffness in the cohesive contact – link (N/m)
k I I Tangential contact stiffness in the cohesive contact – link (N/m)
kn Normal contact stiffness in the contact (N/m)
kt Tangential contact stiffness in the contact (N/m)
m Weibull’s modulus / shape parameter of Weibull distribution
n Number density (m−3)
N Total number
Ncon f ig Number of deposits in specific sample size
N? Number of sectors per cluster
N?

circ Number of sectors in axial the direction per cluster – along height of shell h
N?

axial Number of sectors in the radial plane (ring) per cluster
Nbroken Number of broken broken cluster (at least one link broken)
Continued on next page...
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Symbol /
Abbreviation

Explanation

Nµ Number of non-cohesive contacts in the sample
t Shell thickness (mm)
q Shape parameter of the yield surface
Vs Volume of solid phase in the assembly (m3)
Vtot Total volume of sample (m3)
Vv Volume of voids and pores in a sample (m3)
vload Velocity of the loading plate (m/s)
x0 Scale parameter of Weibull distribution
Zn Coordination number of neighbours
Section 5.1.6
UR Unloading–Reloading cycle
f 0
n , f 0

t Normal and tangential components of contact force before unloading (N)
f unload
n Normal component of contact force after unloading (N)

f unload−el
t Tangential component of contact force after elastic unloading, without sliding (N)

f unload−pl
t Tangential component of contact force after plastic unloading, sliding (N)

Moed+, Moed− Oedometric modulus during reloading and unloading, respectively (MPa)

M′oed, M′′oed
Oedometric modulus at the beginning and at the end of the uniaxial
compression, respectively (MPa)

Nµ−max Number of sliding contacts per sample
Zc Coordination number of contact pints
Zn Coordination number of neighbours
If a symbol or an abbreviations is not distinguished in the current section, please search in the previous sections.
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5.1 Oedometer tests on the
cohesion-less shells

D

H0H

σa

D

Figure 5.1 : Oedometer test is a one-dimensional com-
pression providing the plain strain conditions in the
remaining directions. Classically, the cylindrical sam-
ple loaded by an axial stress σa experiences a reduction
of the initial height H0 to a current value H.

Soil compressibility refers to its capability to de-
crease its volume while being subjected to a com-
pression loading. In the laboratory conditions,
the soil compressibility is observed with a one-
dimensional compression test, commonly known
as an oedometer compression test. Figure 5.1
gives a sketch of the oedometer test on a cylindri-
cal sample submitted to an axial loading σa

1. This
test provides an axial symmetry by using a sam-
ple formed as a cylinder. Therefore, one can dis-
tinguish an axial direction following the height of
the sample H and the radial directions in the cir-
cular cross-section with a diameter D. The bound-
ary conditions prevent any radial deformation (D
= constant) and as a consequence the volumetric
changes are ruled by the axial strain εa. In case of
highly compressible soils, for which large strains
are expected, the true strain is defined as sug-
gested by Hencky (1928) but with a soil mechanics
convention, i.e., εa > 0 for compression:

εa = −
∫ H

H0

δh
h

= ln
(

H0

H

)
, (5.1)

where H0 > H.
The compressibility of soil derives from grain

rearrangements and thus from the filling of free
space, i.e., voids. In soils mechanics, it is common

to quantify voids with a parameter called the void
ratio e. Considering the total volume Vtot and the
volume of solid phase Vs, the classical definition
of e is the ratio of void (Vv) and solid volumes:

e =
Vv

Vs
=

(Vtot −Vs)

Vs
. (5.2)

In the case of crushable shells, a decrease of e orig-
inates not only from the rearrangements of con-
stituents but also from the shell breakage. Despite
the fact that the overlaps between two clusters ex-
ist in DEM, the concept does not apply to the ex-
periments. Thus, the overlaps are always ignored
in the calculations of the void ratio.

5.1.1 DEM–Experiment comparison: a first
attempt

Experimental oedometer tests
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Figure 5.2 : The experimental oedometer tests. The
mechanical responses of samples made of shells d18
and d20. The quasi-vertical lines correspond to the
unload-reload cycles. With the courtesy of Euro-
Géomat-Consulting EGC (Ly, 2018).

An experimental campaign was performed by
Euro-Géomat-Consulting EGC in Orléans. The oe-
dometer tests were performed on the samples
composed of the shells in the sizes d18 and d20,

1 On the contrary to the sample preparation, friction between the walls and the sample is present in further DEM modelling
as it is in the reality.
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separately. The cylindrical samples had the fol-
lowing characteristics: a diameter D = 35 cm and
an initial height H0 ≈ 13 cm. The tests were
conducted with a stress-control of σa. During the
loading, the piston displacement was measured to
obtain the evolution of the axial strain εa. The typ-
ical mechanical responses (σa ↔ εa) for sizes d18
and d20 are shown in the Figure 5.2.

On one hand, the observed mechanical re-
sponses have some classical features, the oedome-
ter modulus Eoedo increases with the increase of
σa, even if Eoedo is almost constant for εa < 40%.
On the other hand, the final true strain can be
very large, reaching around 100 %. Note that, ac-
cording to the natural strain formula, 100 % cor-
responds to a hight reduction close to 2/3rd of H0

(H0/H ' 3). This is one of the main character-
istics of this granular material: its capability to
undergo a huge volume change. The two tests
shown in Figure 5.2 are performed on two differ-
ent samples: one is made of d18 shells and the sec-
ond one is made of d20 shells. It is then observed
that for the same stress level, the sample made of
shells d18 shows a larger vertical strain, just like
its strength was weaker than for the other sample.
This observation can be explained by the fact that
the shells d18 break for FI = 121 N, whereas the
shells d20 break for FI = 167 N, as shown in the
Chapter 3 section 3.3.1. At the scale of the gain,
the grains break with the increase of the loading.
As an example, Figures 5.3a and 5.3b are the snap-
shots of broken shells for a small strain and for
a large strain, respectively. Our objective is now
to see whether this experimental mechanical be-
haviour can be reproduced by means of DEM.

a b

Figure 5.3 : A snapshot of broken shells in the top part
of the oedometer cell for: a – σa ' 0.4 MPa and b –
σa ' 6.8 MPa.

A first attempt of DEM modelling of an oe-
dometer compression

A sample was generated with the dimensions re-
specting the experimental ones, i.e., D = 35.0 cm
and H0 = 12.2 cm, as mentioned in the section
4.3.1. Figure 5.4a shows an assembly of shells
prior to the test, represented by 1 926 numeri-
cal clusters (breakable shells). Each shell is com-
posed of 12 sectors that are rigid clumps of 26 sub-
elements, which give 23 112 sectors and 600 912
sub-elements in this sample. Figure 5.4b presents
the sample state after the oedometric compres-
sion, when all the shells were crushed due to a
high stress level as σa reached 18.2 MPa – simula-
tion Oedo_first (Appendix C).

As seen in the section 3.1, the particles inter-
act with each other through the contact points. At
each contact point, a normal elastic compressive
force and an incremental tangential force (with
a Coulomb threshold) are computed, Cundall and
Strack (1979); Radjaï and Dubois (2011). Both con-
tact laws need stiffnesses here denoted kn and kt.
The normal stiffness kn was estimated using the
dimensionless stiffness parameter κ suggested by
Roux & Chevoir, e.g. in Radjaï and Dubois (2011).
Assuming an elastic normal contact law,

κ = kn/(aσ0), (5.3)

where a is the typical size of the particles2 and σ0

is the typical stress applied on the granular matter.
For Hertzian contact laws, κ can be express with
the young modulus E and the Poisson coefficient
ν of the matter:

κ =

[
E

(1− ν2)σ0

]2/3

. (5.4)

For COx, E = 4 GPa and ν = 0.29. With σ0 =

1 MPa, it can be shown that κ ' 267. Thus, as-
suming the elastic contact law (in the normal di-
rection), one can obtain kn = 5.2 106 N/m, which
is observed to be of the same order as the value
obtained for k I . Whereas it is commonly admit-
ted that kt = kn is a good approximation, for sake
of simplicity, we arbitrarily used uniform stiffness
coefficients: kn = kt = k I = k I I . The other parame-

2 a = 0.02 m for the shells
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a b

Figure 5.4 : Cylindrical sample (C_35×13_d_01_A) with a diameter 35.0 cm and a height 12.2 cm composed of
1 924 shells of size d18. Each cluster consists of 12 sectors such that the total number of particles equals to 23
112. a – The sample before the oedometric compression and b – the sample at the end of test for εa = 60 % and
σa = 18.2 MPa.

ters were estimated using either the experimental
tests ( f ?I and µshell) or the numerical simulations
like f ?I I (section 3.3.2). This simulation was per-
formed with a primary estimation of parameters
shown in Table 5.13.

Links Elastic contacts
k I 5.5 106 N/m kn 5.5 106 N/m
k I I 5.5 106 N/m kt 5.5 106 N/m
f ?I 85 N µshell 0.36
f ?I I 50 N µwall 0.15
q 2

Table 5.1 : The parameters used in the primary mod-
elling – Oedo_first (see Figure 5.6). Whereas, I and
n represent normal direction of the links and the con-
tacts, respectively, II and t indicate tangential direction
(more details in sections 3.3.1 and 3.2).

Two types of friction coefficients are distin-
guished: when two shells interact µshell and when
the shell is in contact with rigid boundary µwall .
The friction coefficient µshell was estimated experi-
mentally as shown in the section 4.1, yet the range
of friction was measured for the "smooth" surface,
i.e. curved extrados. The values of µwall was cho-

sen arbitrarily yet respecting the numerical sensi-
tivity and a sense of physics.

Whereas experimentally, the tests were stress-
controlled, the majority of DEM simulations
were strain-controlled. However, using either
strain- or stress-control the equivalent mechan-
ical behaviours were obtained under the quasi-
static conditions. The strain-controlled test was
achieved by imposing a constant velocity for the
upper plate vload, e.g., in our modelling vload =

0.05 m/s. This velocity was chosen such that the
quasi-static conditions can be assumed. One way
to verify it is to compute the inertial number I:

I =
vload

H0

√
m

σad
, (5.5)

where d is the outer diameter of the shell consid-
ered as the typical size kept constant. σa starts
from 0 and reaches large value at the end of the
compression test. Thus, I quickly decreased from
0.937 10−3 and was reduced to 0.440 10−4 by the
end of test. Note that a quasi-static critical state
regime corresponds to I ≤ 10−3 as reported by
Cruz et al. (2005). In this case the analysis of the

3 More details can be found in Appendix C (Tables C.1 and C.2)
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inertial number gives a very generic sense of the
kinematics but, additionally, in Figure 5.5 an evo-
lution of the average kinetic energy Kc (computed
over all the shells) along the simulation shows
a decreasing trend. Kc clearly declines initially,
when the breakage has not yet occurred, and fi-
nally, when most of the shells were already bro-
ken. In between the onset of breakage and the
landmark at which around half of the shells have
been broken, the energy oscillated randomly yet
in a constant range. In other words, the break-
age is highly dynamic and constantly adds to
Kc. Though, the average kinetic energy always re-
mains of small order, especially in the final phase
when Kc tended towards 10−6.
Many other numerical parameters can be dis-
cussed: damp coefficient, time step, period of up-
date of the neighbourhood list, etc. It is here pro-
posed not to present all the work that led us to
their optimums. Nevertheless, the reader must
know that these parameters were chosen carefully
to obtain optimal computation time and numeri-
cal stability for the simulations.
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K
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Figure 5.5 : An evolution of the kinetic energy per clus-
ter with respect to the axial strain during the oedomet-
ric compression.

Figure 5.6 presents the mechanical response to
an oedometric loading of both experimental and
numerical samples. Even if the mechanical be-
haviour obtained numerically shows the same fea-

tures as the experiment, there remain noticeable
differences between the experiment and the mod-
elling. The main one is the capability of the model
to reach as large εa as the experimental one. This
can be easily explained by the observation of the
shells at the end of the compression test (Figure
5.3b). Whereas experimentally, shells are trans-
formed into powder, numerically, shells can only
break into 12 segments that can not fill the space
as efficiently as the powder (Figure 5.4b). Unable
to produce as small particles as the experimental
ones, the numerical model limits the macroscopic
strain range.
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Figure 5.6 : The mechanical responses to one-
dimensional compression. A comparison between the
experimental results (black lines) and a numerical sim-
ulation (red line). The experimental tests were carried
out on two sizes of the shells (section 3.3.1), while the
modelling was performed for sample shown in the Fig-
ure 5.4 (d18).

Considering the stress evolution, another dis-
crepancy between model and experiment should
be pointed out. One must notice a slight initially
peak followed by a softening due to which the
curves converge (inset of Figure 5.6). This can
be the result of the initial numerical density com-
bined with the idealised geometry and the lack of
plastic deformations in the model. The curves di-
verged once more in the phase of isotropic harden-
ing when the compression curves evolve linearly
in semi-logarithmic scale.The numerical curve ex-
hibits softer "hardening", i.e., the stresses arise
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slower, with many fluctuations. It can be seen
as a consequence of breakage, that was accompa-
nied by the intense release of energy, but it still
remains an open issue to be investigated, here-
inafter. Despite the limitation, the same charac-
ter of the stress-strain curve was obtained both
numerically and experimentally. The macroscopic
behaviour is ruled by grain breakage that enables
high densification of the sample. More elaborated
explanation can be also found in Chapter 6 in sec-
tion 6.1 dedicated to the influence of shells break-
age.

To sum up, a primary DEM simulation of oe-
dometric compression was performed on sample
of real size, with the same number of shells as ex-
perimentally.

Previously, the validation of a single shell
model has been proceeded for its uniaxial
radial compression (section 3.3.2). Enlarg-
ing the number of shells in the simulation
of odometer test not only employs new nu-
merical parameters such as a friction coef-
ficient, but also some of already tested pa-
rameters might be of a greater importance
within an assembly. For example, the con-
tribution of the tangential contact force was
minor in the validation, whereas more com-
plex loading conditions can activate higher
shearing within cluster. Then, the tangen-
tial force threshold f ?I I and shape parame-
ter q might gain the importance and signifi-
cantly influence the mechanical response of
sample.

Using a large sample composed of approx-
imately 2 000 shells respects experimental
condition and provided a sufficient num-
ber of particles in the modelling, but a high
number of sectors made the computations
highly time consuming.

Many ideas can be considered to enhance the nu-
merical modelling such that it fits better the ex-
periments. One of them is to investigate the influ-
ences of micro-mechanical parameters that were
not directly assessed experimentally (e.g., f ?I I , and

many others). This is the topic of the following
section.

5.1.2 Sample size dependency
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Figure 5.7 : The experimental macroscopic response
does not depend on the initial height of the sam-
ple. The experimental campaign of the oedometer tests
made on the shells d18 with the cement coating. Data
from Euro-Géomat-Consulting EGC (Ly, 2018).

The fact that the mechanical response of assem-
blies of shells does not depend on the initial high
H0 of the sample is an important result observed
experimentally (Ly and Robinet, 2017; Ly, 2018).
This can be observed in the Figure 5.7. Hence, a
similar study was carried out by means of DEM.
There are a few reasons for this. First, this impor-
tant experimental feature that ensure that the me-
chanical test are not size dependent must be nu-
merically reproduced. Secondly, it is an interest-
ing alternative to reduce the computation time4.
The reduction of sample size corresponds to a de-
crease of the shell number, and therefore, it leads
to a reduction of the computation time. The goal
was also to (i) identify the smallest sizes usable in
a simulation, and (ii) to probe the boundary effects
on the macroscopic response.

Herein, DEM simulations of oedometric tests
were performed for samples with different sizes,
varying either the diameter or the height of the
sample. Six different sizes of the sample (referred

4 1 month on 8 cores for ∼2 000 shells
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Sample H0 (cm) Ncon f ig N NN? n (1/m3) e0 Zn

C_35×12_d_01_A 12.20 6 1 926 23 112 163 582 ± 751 2.435 ± 0.160 6.25 ± 0.05
C_35×10_d_01_A 10.09 6 1 579 18 948 162 266 ± 469 2.463 ± 0.010 6.18 ± 0.05
C_35×7_d_01_A 7.34 6 1 105 13 260 157 885 ± 954 2.559 ± 0.022 5.99 ± 0.04
C_35×5_d_01_A 5.10 10 790 9 480 161 061 ± 212 2.488 ± 0.005 5.89 ± 0.09
C_25×13_d_01_A 13.08 7 1 047 12 564 162 499 ± 1 088 2.458 ± 0.023 6.18 ± 0.03
C_25×13_d_01_A 13.45 20 203 2 436 155 669 ± 1 846 2.610 ± 0.043 5.86 ± 0.15

Table 5.2 : The initial state of samples described for different size of sample D × H0: a number density n, an
initial standard (total) void ratio e0 (as defined in equation 5.2) and a coordination number of neighbours Zn.
Note that NN? indicates a total number of sectors in the sample.

to as their sizes: diameter D× initial height H0)
were tested. The number of clusters ranged from
203 to 1 926. In the table 5.2, the sample char-
acteristics are presented by three chosen internal
variables averaged over a number of samples in a
given size: a number density n, an initial standard
void ratio e0 and a coordination number Zn

5.

One can observe that although all the samples
were prepared with the same protocol, their den-
sity depends on their sizes. Note that in this study
the decrease of density is connected to the de-
crease of coordination number. The smaller the
size, the loser is the packing. This observation can
be related to a very common rigid boundary ef-
fect. This phenomenon was already studied for
the biggest sample size 35 × 12. On the other side,
the stronger influence of boundaries for the re-
duced sizes is expected, as a natural consequence
of isotropic sample core getting relatively smaller
with respect to the boundary zone. The distinc-
tion between boundary zone and the sample core
was given in section 4.3.2. For all the sample size,
the distribution of shell orientations has provided
a better insight into the influence of boundaries
on the parameters in Table 5.2. Figure 5.8 shows
the statistical analysis following the procedure al-
ready introduced in the section 4.3.1. One must
keep in mind that if the distribution of orienta-
tions is isotropic, then the cdf is a linear function
of | cos α| with a slope of 1. For all the samples,
one can observe in Figures 5.8a and 5.8b a dom-
inancy of horizontal shells (quick increase of the
cdf from 0 to 0.15 for | cos α| = 0). A similar but
less pronounced effect can be noticed for vertical
shells (vertical increase of the cdf from 0.9 to 1 for
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Figure 5.8 : The statistical analysis of the shells ori-
entations separated for samples with various: a – the
initial height H0 or b – the diameter D. For vertical
shell | cos α| = 1 and for horizontal shell | cos α| = 0.

5 The coordination number is computed from all grains, including the rattlers
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| cos α| = 1). The linear increase in between these
two limit indicates the isotropy of the sample core.
When samples is not high enough (H0 < 7 cm),
the shells are mainly anisotropically oriented with
respect to the vertical axis (Figures 5.8a). In Fig-
ure 5.8b, one can observe the statistics of shells
orientation when the sample diameter is reduced.
Similarly, when the sample became significantly
thin, the anisotropy of shell orientation increased,
and it was more probable to have horizontal or
vertical shells. The boundaries affect mainly the
zones located close to the horizontal plates (sec-
tion 4.3.1), and therefore, the reduction of H0 had
a stronger impact.

In Figure 5.8b one can observe that only size
11×13 diverge in the region of vertical shells (for
| cos α| > 0.6). Similarly, the reduction of the
height by half does not affect the distribution sig-
nificantly. Firstly, the horizontal anisotropy was
deepened as seen in the distribution of sample
with H0 ≈ 7 cm. Then, Figure 5.8a exposes
that smallest size 35×5 experienced the strongest
boundary effect. Due to the large area of plate and
the small height, the zone at the boundaries out-
balanced the isotropic core consisting of only 16%
of shells in the assembly (35×5).

Figure 5.9 shows the stress-strain relationship
for different sample sizes submitted to the oe-
dometeric compression. Even if the range of ax-
ial strain varies slightly, no tendency concerning
the size of the sample is observed. The differences
in mechanical response are mainly related to the
initial arrangement of the shells. The mechani-
cal behaviours follow common tendency, but the
smaller the number of shells the more fluctuations
from the trend can be observed. In other words,
the higher the number of shells, the smoother the
compression curve. It is evident in case of sam-
ple of size 35×5 represented by the green solid
line in Figure 5.9a. Few local peaks can be dis-
tinguished on the curve showing high oscillations
during stress growth. Indeed, the high probability
to have a "chain" of vertical shells6 influences the
mechanical behaviour since these shells can sup-
port high loading, and therefore, the stress rises
rapidly.
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Figure 5.9 : The influence of the sample size on the me-
chanical response to the oedometric compression. The
sizes were created varying either a – the initial height
H0 or b – the diameter D.

It is remarkable to observe that we have suc-
ceeded in reproducing the experimental size inde-
pendency on the mechanical response regarding
the initial sample hight. Furthermore, the DEM
simulations supplemented the experiments, and
we have also stated the lack of influence while re-
ducing the diameter. On the other hand, there
exists a minimum number of shells required to
conduct a reliable compression test. This num-
ber must depend on the rigid boundary effect. In

6 One vertical shell must be in the contact with the horizontal wall
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this work, a specific range of sample sizes, i.e. al-
ways smaller than experimental, has been tested
employing rigid boundaries. The smooth evolu-
tion of compression curve and the avoidance of
boundary effect as much as possible were two pri-
mary goals, referencing the state for experimental
size (35×12). Then, from above analysis followed
a conclusion that at least 1 000 clusters need to be
used in the simulations. Sacrificing a bit the qual-
ity of curve ∼800 shells are also sufficient, but,
herein, lower amount of shells is not being ad-
vised. Note that introducing of periodic bound-
aries most possibly will enable to reduce the num-
ber of shells as well.

In the next section, the work moves to the para-
metric studies. To this end, size 25×13 has been
chosen as an optimal, providing a good compro-
mise between a representative behaviour and the
computation time7. Ultimately, the sample size
can be slightly reduced to cut the computation
time.

5.1.3 Influence of the parameters control-
ling the force laws

As presented in section 3.2, a number of parame-
ters are employed in the force laws: force thresh-
olds, stiffnesses, shape parameter and friction co-
efficient. Herein, an influence of those param-
eters on the mechanical behaviour is presented.
This parametric study serves the calibration of the
model, as well as provides the indications to better
understanding of mechanisms involved in the re-
sponse of material. All the simulations discussed
in this section were conducted on sample of size
25 × 13 changing only one parameter at the time.
Shell breakage is classified of the utmost impor-
tance, and therefore, greater attention was paid
to the constants assigned to the bonded contacts
throughout the failure criterion, recalled:

f I

f ?I
+

(
f I I

f ?I I

)q

= 1. (5.6)

The shear strength of shell

The force threshold in the pure shear f ?I I is one of
the parameters describing the strength of material

and, consequently, the strength of shells. Since
the value of the shear force threshold could not
be found using the experimental observations, it
was adjusted numerically for a single shell com-
pressed uniaxially in its radial direction. To ver-
ify this adjustment, the parametric study has be-
gun by varying the shear force threshold f ?I I while
the limit for the tensile force was kept constant, at
f ?I = 85 N. The results are presented in the con-
text of tensile force threshold versus shear force
threshold ratio f ?I / f ?I I , hereinafter shortly referred
to as thresholds ratio. The reference simulation
(Oedo_ f ?I I-50), performed for f ?I I = 50 N, is pre-
sented by black solid line in Figure 5.10. The me-
chanical responses of samples with bigger thresh-
old ratio are shown with red and blue lines and
correspond to higher values of f ?I I (Oedo_ f ?I I-250
and Oedo_ f ?I I-85).
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Figure 5.10 : Influence of shell shear strength on the
mechanical behaviour for sample of size 25 × 13. The
tensile yield limit f ?I was kept constant at 85 N.

One should notice that when f ?I / f ?I I is smaller
than 1, the mechanical behaviour is barely mod-
ified. The main difference in the mechani-
cal behaviour occurs after the inclination point.
Whereas the oedometer modulus Eoedo does not
seem to depend on the threshold ratio for εa rang-
ing from 0 % to 35 %, Eoedo increases significantly
for f ?I / f ?I I = 1.7 for εa > 35 %. Similar tendency

7 1 week on 8 cores for ∼1 000 shells
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was observed in case of a uniaxial radial compres-
sion of shell (section 3.3.1), where f ?I / f ?I I > 1.17
(smaller f ?I I) was reported to lower the force at
rupture. As the shear strength is low for a high
value of threshold ratio, the loading leads to pre-
mature shell breakage if the tangential force acts
in the failing bond. Analogous conditions might
occur during oedometric compression within the
assembly. Focusing on the shell orientations, one
might expect that horizontally oriented shells will
fail due to the high contribution of normal force f I

in the link, while the failure of vertical shells will
be ruled by tangential forces f I I (equation 5.6). If
this assumption is correct, too low threshold f ?I I
would: (i) increase the contribution of shearing in
the failure for horizontal shells and (ii) decrease
the strength for the vertical shells as it directly de-
pends on f ?I I . In both cases, increasing f ?I I prevents
the premature breakage. A delay of shells break-
age, for ratio lower than 1, results in lower com-
pressibility of the structure at a given time. Then,
the strain range increases and the local softening,
clearly visible on the black curve between 10 %
and 25 % of deformation, is smoothed. In other
words, we obtained better, tighter packed assem-
bly.

The study showed that threshold ratio smaller
than 1 is not suitable for larger scale simulations.
For the sake of representative results, the thresh-
olds ratio equal to 0.34 was established as an ad-
equate value for future simulations. This choice
was supported by the rough results of vertical (ax-
ial) compression of single shell.

The shape of yield surface

The contribution of shear in failure is not only
determined by the limit of the force f ?I I but also
by power q. The Figure 5.11 shows the manner
how shape parameter q changes the yield surface
in f I : f I I space. If q equals 1, a linear rela-
tionship will be observed alike the classical linear
Mohr-Coulomb criterion. When q tends to ∞, the
yield surface/line resembles more criterions such
as von Mises. It is important to notice that q does
not play a role in the plastic flow rule. In Table C.1
detail information about used parameters can be
found for tests: Oedo_q-2, Oedo_q-3 and Oedo_q-

5 (see also Appendix C).
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Figure 5.11 : The yield surface for various shape pa-
rameter q. Graphically, the failure criterion (equation
5.6) is symmetric with respect to f I axis.
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Figure 5.12 : Oedometer test. Influence of the shape of
yield surface (Figure 5.11)/the parameter q (equation
5.6) on the mechanical response. Sample size 25×13
with an identical initial state.

Although the modification of surface is signif-
icant, the trend on the stress-strain curve remains
unaffected as shown in the Figure 5.12. Then, a
parabolic shape with q = 2 has been used in most
of the simulations presented afterwards, but in the
final result q = 5 is suggested.
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The tensile strength of shell
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Figure 5.13 : The statistical distribution of tensile
strength. The solid line presents the applied function,
whereas the points present the pdf of Weibull distribu-
tion calculated form data used in the modelling (equa-
tion 5.7).

Experimentally, it was observed that the strength
varies from one shell to another due to the ma-
terial inhomogeneities. The variation of tensile
strength can be described by Weibull distribution
with shape parameter m = 7.2 (section 3.3.1).
Hence, Weibull statistic distribution was applied
to rule the tensile threshold of normal force f ?I
within the oedometer sample. The scale pa-
rameter x0 was experimentally found equal to
92.4 N. An average force needed to break shell
corresponds to FI = 92.4 1.41 ' 130.3 N. Fig-
ure 5.13 explores the influence of shape and
scale parameters, using simulations denoted as
Oedo_ f ?I -x0_Wm-m, for various x0 and m (see Ap-
pendix C, Table C.1). Probability density func-
tions of Weibull distribution (equation 5.7) for dif-
ferent couples of parameters are drawn with solid
lines in the Figure 5.13.

pd f =
m
x0

(
x
x0

)m−1

e−(x/x0)
m

(5.7)

The lower the shape parameter m (Weibull’s mod-
ulus), the wider is the distribution. Since the scale

parameter x0 corresponds to the force threshold
allowing 1/e ≈ 37% of shells to survive, the in-
crease of x0, i.e., the tensile strength of shells,
in this case, should result in the rise of sample
strength. The dot points in Figure 5.13 verify
that the force limit was correctly distributed in the
links for each simulation.

Figure 5.14 shows the mechanical behaviour
for different distributions and compares them
with the simulation Oedo_ f ?I -85 for which all the
links were characterised uniformly by the aver-
age strength (brown curve). Although the Weibull
distribution properly simulates the natural differ-
ences of shells strength (black curve), Figure 5.14
presents a slight difference in the stress-strain re-
lationship between assemblies composed of vari-
ously and uniformly strong shells. The two curves
diverge only in the final phase of the test in
which the sample with Weibull distribution be-
haves stiffer, that means, the axial stress increases
faster. Most possibly the sample becomes stiffer
as there is a lower possibility that breakage occurs
due to a high strength of link and the arrangement
of parts with respect to the load. Then, breakage
is a secondary factor.
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Figure 5.14 : The influence of tensile strength variabil-
ity on macroscopic response to uniaxial compression,
using Weibull distributions from Figure 5.13.

Figure 5.14 confirms that the scale parameter
x0 is ruling the strength of sample as with higher
x0 the shells get stronger. The curves sharing the
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same scale parameter follow the same trend as
long as breakage remains crucial to the mechan-
ical response (εa < 40 %). Still, it is remarkable
to observe that the range of strength is insignifi-
cant in those simulations. These results indicate
that the arrangement of shells already introduced
diversity in the loading condition of shells such
that the material inhomogeneities played a sec-
ondary role in the evolution breakage within the
assembly. Hence, the study of tensile strength
was carried on varying the average strength of
shells, yet without applying any distribution. Si-
multaneously, the shear force was increased, such
that the thresholds ratio was kept constant, at
0.34. The mechanical responses presented in Fig-
ure 5.15 are consistent with the previous results
(Figure 5.14). As expected, it can be observed that
the sample bearing capacity rises as the shells are
stronger. Figure 5.15 also demonstrates that the
post-inflexion behaviour is stiffer for weaker as-
semblies. Finally, more resistant sample accesses
lower strain limit. However, among modelling ap-
plying Weibull distribution, there are acceptation
from this observation, possibly explained by the
arrangement and size of parts.
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Figure 5.15 : The influence of shell tensile strength on
the mechanical response. f ?I is constant between shells.

Summarising, the implementation of the vari-
ability of strength neither prevented the soften-
ing of stress during intensive breakage nor in-

creased the strength of the sample. Yet higher ten-
sile strength got the numerical behaviour closer to
experimental results. For this reason f ?I was in-
creased temporally up to 150 N and ultimately up
to 190 N.

The variability of shell stiffness
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Figure 5.16 : A mechanical behaviour for the vari-
ous stiffnesses of shell structure. Weibull distribution
(equation 5.7 in section 3.3.1), with shape m and scale
x0 parameters, was employed to introduce the variabil-
ity of kI = kI I .

Normal and tangential stiffnesses are commonly
used in the calculation of the contact forces. In this
work, the value of tangential stiffness was always
equal to the normal one, both in the links k I = k I I

and in the contacts kn = kt. Herein, only the
first type of contacts is analysed. Experimentally,
it is observed that the elastic properties of shells
differs from a grain to another, since it emerges
from both geometrical and material aspects, bur-
den with the imperfections and heterogeneities.
This has been observed throughout various incli-
nations of force F to displacement δ curve in the
experimental campaign (section 3.3.1). Since the
stiffness rules the increase of contact forces, to re-
flect the shell stiffness (the slope of F ↔ δ relation-
ship) the link stiffnesses needed to be adjusted in
the DEM model. For the same reasons, those stiff-
nesses need probing within assembly. In order
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to include the variability of shell stiffnesses, we
relied on the Weibull distribution (equation 5.7).
Using the slope of experimental curves, a rough
estimation of k I has been done using the uniax-
ial radial compressions of shells in size d18. Cu-
mulative density function allowed finding Weibull
modulus and the scale parameter: m = 6.15 and
x0 = 7.2 106 N/m. These values were used in
the modelling Oedo_k I-7e6_Wm-6. For simulation
denoted as Oedo_k I-4e4_Wm-6, another Weibull
distribution of contact stiffnesses was applied. In
this case, the scale parameter was lowered down
to x0 = 4.0 106 N/m. Detail parameters of mod-
elling can be found in Table C.1 (Appendix C). In
Figure 5.16, the mechanical behaviours are com-
pared with response of assembly of identically
stiff shells. Although the constituent shells can ex-
perience higher deformation before the breakage,
the macroscopic strain range has been reduced
just slightly. No change in the character of me-
chanical response has been reported in the phase
of intensive shell crushing, that is when the pa-
rameter is used most actively. That result remains
consistent with the observation from single-shell
uniaxial radial compression. If the stiffnesses in
the links remain of the same order of magnitude,
the results vary negligibly. Onwards, most often

the primary choice of stiffness k I = 5.5 106 N/m
was kept in the modelling.

The inter-granular and boundary friction

Once a shell is broken, the type of contact between
the parts becomes the classical frictional contact,
like the interactions between two shells (clusters).
Since in the tangential direction the force is lim-
ited by the Coulomb’s friction, the friction coeffi-
cient µ is an input parameter. Two contacts can
be distinguished: wall-shell (at the boundary) and
shell-shell (inter-granular). Initially, the parame-
ters were set to µwall = 0.15 and µshell = 0.36
(modelling Oedo_µ0 in Table C.1). Then, each
one was increased separately for the simulations
Oedo_µ̂shell and Oedo_µ̂wall .

As shown in the Figure 5.17a, the inter-
granular friction affects the mechanical relation-
ship more than the "boundary" friction between
the wall and the shells. Higher µshell leads to a
higher stress level experienced by the sample dur-
ing full test. Initially, the difference stands out less
but it increases as the loading rises.

Figure 5.17b provides an insight into the evo-
lution of cohesion-less contacts Nµ as a portion of
all the contacts N. Note that Nµ cumulates both
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Figure 5.17 : a – The mechanical behaviour of one-dimensional compression for different values of inter-granular
friction coefficient µshell and the friction between the shell and the rigid wall µwall . b – The evolution of number
of contacts Nµ normalised by the number of all the interactions N (the links and the contacts).

103



the shell-shell and the shell-wall contacts. Initially,
only ∼ 11% of all the interactions were recog-
nised as frictional, but this ratio must increase
non-linearly as a consequence of (i) breakage and
(ii) densification (an increase of the coordination
number). Since higher tangential forces can act in
the contact points, the shell breakage occurs faster,
i.e., for the lower value of axial strain. This was
manifested only for the simulation with a higher
inter-granular friction, most possibly, due to the
fact that µwall affects fewer shells. It is observed in
Figure 5.17b that, initially, the curves follow the
same trend suggesting that the breakage progress
evenly. The higher the difference in the number of
frictional interactions, the more the macroscopic
response deviate from each other as shown in the
Figure 5.17a.

Numerical parameter influence: a synthesis

Current part of parametric study has concerned
only selected numerical parameters related to the
failure criterion and the force laws. Although the
stress-strain relationship still diverge from the ex-
perimental behaviour, that was the first step to
accurate understanding of macroscopic response.
The simulations have contributed to our under-
standing of parameter roles and to the assessment
of their importance. One must remember that ma-
terial strength parameters f ?I and f ?I I rule the be-
haviour most efficiently, and the variations of the
remaining constants were often of negligible influ-
ence. For a given initial geometry (the density, the
coordination number, the shell orientations, etc.)
the shear strength ( f ?I I) modifies the compressive
behaviour only to small extent, whereas the tensile
strength ( f ?I ) always remains influential. This is an
important observation because f ?I is a unique pa-
rameter that can be measured easily. It is interest-
ing to observe that lack of f ?I variability resulted
in almost identical mechanical behaviour. Finally,
these modelling provides many data for compre-
hensive analysis of macroscopic response (section
6.1).

5.1.4 The influence of the initial state

The initial state of an assembly can be charac-
terised by several internal parameters. Two main

parameters can be distinguished: the packing
fraction and the coordination number. For exam-
ple, Roux and Chevoir (2005); Emam et al. (2006);
Combe and Roux (2017) have shown that these
two parameters can be independently controlled
during the DEM sample preparation, which is not
possible experimentally. It has been reported that
two samples of similar packing fraction can have
very different mechanical behaviour, if their con-
tact connectivity is very different.

Here, the initial state is obtained after a grav-
itational deposit and a relaxation phase to reach
the equilibrium state. The samples can be char-
acterised by the number density n which is the
counterpart of the packing fraction. In this work,
the coordination number was not controlled due
to the sample preparation process (a deposit un-
der gravity without an energy injection). Then this
parameter was not specifically controlled. But, un-
like classic DEM studies on the spherical particles,
our shells are material oriented and their strength
strongly depends on the loading direction. Thus,
another important internal parameter is the shell
orientation anisotropy, i.e., the anisotropy of sta-
tistical distribution of shells orientations.

The numerical recipes to control the arrange-
ment of shells during the sample preparation are
described in sections 4.3.1 and 4.3.2. It is worth
remembering that those ways allow us to control
the arrangement of shells indirectly by means of
the input parameters, like initial oriented velocity.
Then, the sample state is not imposed but rather
tends to a preferable one.

Those preparation methods helped us com-
pose samples such that the influence of both num-
ber density (Oedo_l, Oedo_d and Oedo_D) and
shell orientations (Oedo_h, Oedo_H, Oedo_v and
Oedo_V) were studied.

Initial density n

There exist two additional motivations to study
the influence of the density n. Firstly, it has been
observed that the larger is the size of the sam-
ple the denser it is, although the procedure was
identical. Therefore, the numerical samples were
denser than the experimental ones. Secondly,
the experimental measurements showed that the
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coated samples are less dense. Since the cement is
modelled as a bond in one of the interaction points,
and its volume is ignored, ultimately, the sample
needs to be loose. Still, in the first order simula-
tion without cement bonds were performed.

Sample µshell n (m−3) e0 Zn

C_25×13_l_01_A 0.90 140 388 3.002 4.244
C_25×13_d_02_A 0.08 161 084 2.488 6.177
C_25×13_D_01_A 0.00 171 450 2.277 7.088

Table 5.3 : The initial state of samples used in the char-
acterisation of density influence. (See Appendix B).

Table 5.3 describes the initial state of 3 sam-
ples studied here after8. Using the inter-granular
friction coefficient µshell = 0, the highest density
can be obtained. In the case of sample dimen-
sions 25×13, the density was found at 171 450
shells per meter cube. Although this value would
vary slightly between configurations, it indicates
a level of maximum density (numerically). Note
that the densest sample generated in size 11×22
had n = 166 913 m−3. Due to the boundary ef-
fects, the limit is size dependent as suggested by
the results in sections 4.3.1 and 5.1.2.
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Figure 5.18 : Oedometer test. The influence of the ini-
tial density on the compression curves. The number
density n is equivalent to the packing fraction, such
that higher n stands for denser samples.

The average number of contacts decreases linearly
with n (with trend: Zn = 9.2 10−5n − 8.75). By
definition, as the density increases, the void ratio
e must decrease as the following relationship indi-
cates: e = N/(nVs)− 1. The number of shells N
has been kept identical, and automatically, neither
the volume of solid Vs varied between the simula-
tion. Therefore, the difference in e0, between 2.277
and 3.002, originates from the volume of inter-
granular voids. This explains why the range of
axial strain was reduced for denser samples, i.e.,
the smaller initial volume of inter-granular voids
(Figure 5.18). The mechanical response for the
looser sample evolved with a smooth uprise of
stress. More precisely, the initial peak and the
local stress softening (at ∼5% and ∼15% of εa),
characteristic for denser samples, did not appear
for the loose packing. The behaviour of sample
C_25×13_l_01_A (Oedo_l) resembles more the ex-
perimental curve, but the stress capacity of sample
is lower.

Effect of shell orientations

The samples studied this far presented the het-
erogeneity in shells orientations due to the rigid
boundaries. But within the samples core the shells
are rather isotropic oriented just as in the ref-
erence sample C_25×13_d_02_A (used in mod-
elling Oedo_r). Herein, we extend the study of
orientation heterogeneity with modelling assum-
ing strong (Oedo_h, Oedo_v) and highly strong
anisotropy (Oedo_H, Oedo_V) also within the
core of the sample. Those simulations make use
of samples that have been already characterised in
section 4.3.1 by the statistical distribution of shells
orientations (Figure 4.24b). The initial state pa-
rameters were summed up in Table 4.10. The in-
fluence of shells orientations is shown in the Fig-
ure 5.19 for the oedometer test. The mechanical
responses demonstrate that the axial strain expe-
rienced by the sample depends not only on the
initial density but also on the orientations of shells
or fragments of shells (see also Figure 6.11 in sec-
tion 6.3). For any given stress, the assembly with a
vertical preferential orientation can be compressed
less, i.e., exhibit a lower strain, than the assembly

8 More details about the initial state and the numerical parameters can be found in Appendices B and C, respectively.
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of horizontally orientated shells. Furthermore, the
breakage of vertical shells results in higher fluctu-
ations from the stress-strain trend (Oedo_V in Fig-
ure 5.19). The shear resistance of links f ?I I is the
most requested component for axial loading of a
shell. f ?I I is higher than f ?I , and therefore, more
energy can be accumulated during the compres-
sion and later released during shell crushing. The
release of energy corresponds to the drop of stress
on the mechanical curves. Also, there is no vari-
ability introduced9 in the shear limit f ?I I such that
for the perfectly axially compressed shell the links
break at once. It is interesting to observe that the
initial peak disappears for the looser sample but
only for the arrangement of horizontal shells.
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Figure 5.19 : Change of mechanical response due to
strong anisotropy in the orientation of shells. The pref-
erential orientation can be either v, V – vertical, or h, H
– horizontal. Notation includes small and capital let-
ters which refer to lower and higher anisotropy level,
respectively.

Summary

The study of initial state has shown that the
change of sample density results in significant

changes in mechanical behaviour. To reflect ex-
periments, a sample with a lower number den-
sity needs to be used. Also, the orientation of
shells in the model plays an important role. Ex-
treme anisotropy of orientations affects the stiff-
ness and strength of the sample because the man-
ner of breakage may vary within assembly due to
loading conditions of constituent shells.

5.1.5 The predefined slicing of shells

As already discussed, the discretisation of shells
into the sectors causes some limitations of the
model and its maximal compressible capability.
As presented in section 3.3.2, we have charac-
terised the discretisation of shell by two values:
N?

axial and N?
circ. They stand for a number of sec-

tors into which the shell was divided in its axial
and radial directions, respectively. Whereas the
circumferential slicing of shell into the sectors is
suitable and sufficient for the uniaxial radial ver-
tical compression on the single shell, it raises the
concerns about the breakage manner in the con-
text of the assembly. Within this section, we inves-
tigate those matters.

The circumferential and axial slicing of shell

Different values of N?
axial (1 or 2) and N?

circ
(12 or 16) were used to generate the model of
shell d18. Because the external dimensions of
shells remained unchanged, the initial state of
sample did not vary significantly10. The exact
values of the void ratios and the coordination
number can be found in Appendix B for the
samples: C_35×12_d_01_A, C_35×12_d_07_B,
C_11×13_d_01_A and C_11×13_d_21_F.

Increasing the circumferential number of sec-
tors N?

circ does not lead to any improvement of me-
chanical behaviour as shown in the Figure 5.20a.
The isotropic hardening stands out less for the
smaller sectors (Oedo_N?

circ-16), whereas the strain
range has not been affected. On the contrary,
doubling the number of sectors in the axial direc-
tion (Figure 5.20b) has increased the final strain

9 e.g., Weibullian variability
10 The sample cannot be exactly the same. Due to an increase of the sector number, the arrangement of the contacts between

two shells will change. Thus, slight modifications in the shells position are need to reach equilibrium state.
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Figure 5.20 : In the uniaxial compression, three shell shapes were used: d18-S1, d18-S2 and d18-S3 (Appendix
A.1). We tested the influence of shell shape discretisation in: a – the ring cross-section for Oedo_N?

circ-16 (red) and
Oedo_N?

circ-12 (black) and b – the axial direction. Modelling Oedo_N?
axial-1(black curve) made for basic shape

with 12 sectors, and 24 sectors per cluster were used in Oedo_N?
axial-2 (red).

εa about 6.5 %. In fact, the reduction of the sector
length, i.e., the largest size of the sector, affected
mainly the response after the inflexion point, such
that the sample remained strongly compressible
longer – Eoedo low also for εa ∈ 〈35 % : 55 %〉.
The model gained the breakage capacity, and the
higher amount of links to break allowed to re-
duce the axial stress longer. The usage of the
shorter sectors (d18-S2 in Oedo_N?

axial-2) indis-
putably extended the applicability of the simu-
lations because it partially neutralised the model
limitation ruled by the largest particle size. At
the start, Oedo_N?

axial-2 presented more rigid be-
haviour, which contradicts the experimental be-
haviour more than the sample composed of longer
sectors d18-S1 (Oedo_N?

axial-1). This suggests that
the model might actually mismatch the breakage
during its onset.

Variations of the shell thickness

Modelling Oedo_t-3.6 and Oedo_t-4.8 were per-
formed using two modified shell geometries with
an increased thickness t of the shell, up to 3.6 mm
(d18-S4) and 4.8 mm (d18-S5), respectively. The
reference simulation Oedo_t-2.4 employed the

true geometry, that is t = 2.4 mm (d18-S1). Look-
ing at the ring cross-section, radially the cluster
has not been sub-divided, and therefore, the thick-
ness of cluster was related to the thickness of the
sector. As the volume of the shell enlarges, the
shell strength must increase too. Thus, the yield
threshold f ?I was adjusted respecting the tensile
strength of the material, namely, the tensile stress
at the breakage σI . 2D FEM modelling has been
performed with regard to this matter (see Ap-
pendix A.2). Then, the threshold ratio f ?I / f ?I I was
kept at 0.34 for all the simulations. More details
concerning the parameters used in those simula-
tions are given in the Appendix C. The initial state
of samples varies slightly. Rather an obvious con-
sequence of the relative radius reduction, i.e., the
reduction of the internal void, is a decrease of the
overall void ratio e. However, the modified void
ratio e? increased. In other words, for the more
complete shells, the packing was looser, plausibly
because the "interlocking" effect was reduced. The
exact values are presented in the Appendix B.

Figure 5.21 shows how the mechanical re-
sponse was influenced by these changes. These re-
sults highlight that the amount of internal voids is
crucial to the compressibility of the material. For
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the thicker shells, a larger volume of solid matter
limits the accessible strain range.

0

10

20

30

40

50

60

70
0.001 0.01 0.1 1 10

b=1.00

b=0.97

b=0.86

Inflexion point b≈0.55

b≈0.50

b≈0.20

ε a
(%

)

σa (MPa)

f ⋆
I = 85 N, t = 2.4 mm

f ⋆
I = 105 N, t = 3.6 mm

f ⋆
I = 115 N, t = 4.8 mm

Figure 5.21 : The mechanical responses for three dif-
ferent shell thicknesses t: 2.4 (black), 3.5 (blue) and
4.8 mm (red). Note that with an increase of the
thickness, the DEM strength parameter f ?I also rises.
The semi-transparent dots show the inflexion points,
whereas the solid dots indicate the validity points (sec-
tor size to be reconsidered).

This study assumes that the strongly com-
pressible phase appears up to an inflexion point
marked as a semi-transparent circular zone in the
Figure 5.21. The following remark is of great sig-
nificance. In this study, we refer to the inflexion
point of the material with a high internal poros-
ity compressed in the σa range limited to 15 MPa.
But taking into account a higher stress range, an-
other inflexion point might be considered, espe-
cially, if the model would allow further evolution
of the grain size distributions (e.g., using a much
smaller sector size). The second inflexion point
would be characteristic for the material composed
of less compressible fragments. However, in our
model, the precursors of the secondary inflexion
points (the full dots) are also the points at which
the model starts to lose its representative quality.
If the shell would not have the internal void (a rel-
ative radius r = 0), in our range of σa the inflexion
point would not be visible. Therefore, a strongly
compressible phase (with a low oedometric mod-
ulus Eoed) exhibited by the material was reduced

for the smaller voids. Hence, in the Figure 5.21,
the inflexion point hardly stands out on the com-
pression curve for Oedo_t-4.8 (red curve), but the
inflections of two other curves are clearly visible
(εa ' 13 % for Oedo_t-3.6 and εa ' 22 % for
Oedo_t-2.4). Obviously, if a coarse division into
the sectors might be questioned in the cases of
t = 2.4 mm and t = 3.6 mm, for the larger sec-
tors t = 4.8 mm, the modelling seems to lose its
validity even faster. Thus, in the case of the larger
t, one may consider splitting also the sector thick-
ness. However, the change of the mechanical be-
haviour, shown in the Figure 5.21, originates not
only from the model limitations. Also, in reality,
the reduction of the internal porosity must lead to
a degradation of the compressible capacities. An
analysis of breakage can support this claim, but
firstly, a degree of breakage has to be quantified.

Taking the advantage of our DE model, the
breakage level can be easily established as a ra-
tio of the shells that already broke Nbroken versus
an initial total number of the shells N, onwards
denoted as b:

b =
Nbroken

N
. (5.8)

Due to the characteristics of Rockable, all the
links between the sectors i and j are assigned to
a common interface Iij, and therefore, the model
of intact shell – cluster – contains a number of the
interfaces (∑ Iij)0 (recall section 3.2). It directly
depends on the chosen shell shape, that is a total
number of sectors (N? = N?

axial N
?
circ) constructing

the intact shell:

(∑ Iij)0 = N?
axial(2N?

circ − 1). (5.9)

As the compression progresses, the cluster keeps
separating into the smaller parts, called sub-
clusters, until an ultimate breakage state is
reached, i.e., none of the links remains within the
cluster (∑ Iij = 0). Thus, Nbroken is simply a num-
ber of the clusters with fewer interfaces than ini-
tially:

∑ Iij < (∑ Iij)0. (5.10)

In the Figure 5.21, two values of b are marked
for each compression curve. One stands for the
inflexion point, where the strong compressibility
has come to its end (the semi-transparent dots).
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Whereas b was slightly modified between the
shells with the thicknesses 2.4 mm (b ≈ 0.55) and
3.6 mm (b ≈ 0.50), for t = 4.8 mm the breakage
level is more than twice times lower (b ≈ 0.20).
Furthermore, the validity of the model should be
seen as the validity of the breakage manner. It is
assumed that for the intact shell, the circumferen-
tial slicing is true while breaking into the coarse
fragments, as was shown in the section 3.2 both
for the uniaxial and the biaxial radial compres-
sions of a single shell. Then, the validity of break-
age manner is lost when b = 1. At that point,
the importance of breakage was being redirected
from the cluster to the sectors (clumps) which can-
not break. For Oedo_t-2.4, the shell strength was
set such that b = 1 occurred within the range
σa ∈ 〈0 : 15〉 MPa. For Oedo_t-3.6 the point was
found just at the end range (σa ≈ 15 MPa), but in
the case of the shells with t = 4.8 mm b = 1 was
not experienced because it would be reached at
σa ≈ 28 MPa. Thus, for the sake of transparency,
we indicated the validity points at the same stress
level for all the modelling, that is σa = 4.6 MPa fol-
lowing Oedo_t-2.4. The breakage level at the va-
lidity point is lower for thicker shells. That is also
explained by the higher shell (tensile) strength.

Summary

A study of the sector shape has been done to
probe the limitation of our model. There is no ben-
efit coming from the increase of the sectors num-
ber circumferentially, as long as the axial dimen-
sion is not of comparable order. Although the re-
duction of the height enlarged strain range, there
remains a significant gap between the modelling
and the experiment. In other words, doubling the
number of sectors only partially reduced the limi-
tation of the model. One must remember that the
additional sectors make the computations more
time-consuming.

Ultimately, a compromise needs to be done if
the scale of the simulation is to be enlarged. Thus,
the initial choice to discretise the shell into 12 sec-
tors using only circumferential division has been
kept hereinafter.

5.1.6 Final benchmark between DEM and
experiments

Prior to this parametric study, three objectives
have been established. First two – the understand-
ing of the contributions of the parameter and the
assessment of their importance – have been ful-
filled. Addressing the parametric study, one must
remember that:

The tensile strength of the shell, ruled by
the parameter f ?I , controls the macroscopic
stress-level.

The initial density n, linked to the average
number of the neighbours Zn, serves the ad-
justment of the strain range and can smooth
the evolution of the trend (for the loose sam-
ple).

The sector size has been compromised in
favour of computation time. Finally, a
coarse circumferential slicing without the
axial splitting has been chosen to generate
the cluster for further proceeding – shell d18-
S1.

At this point, only one objective but of the
highest importance remains – the calibration of
the model. The current section shows a final
comparison between the experiment and the DEM
modelling and provides a primary analysis of the
mechanical behaviour. Further, this section aims
to:

present a calibrated model and elaborate on
the adjusted set of parameters, highlighting
f ?I and n, even if they mismatch the experi-
mental measurements,

show the numerical behaviour of the un-
loading and re-loading (UR) cycles,

explain the response focusing on the loading
and the UR cycles separately,

reproduce numerically a difference in the
compression curves between two shell size
(d18 and d20).
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Figure 5.22 : Experiment versus DEM. Comparison of mechanical responses to oedometeric compressions. Nu-
merical modelling – Oedo_Adjusted_Cyc.

Loading phase

First, we suggest to analyse only the loading parts
of the mechanical behaviour. Figure 5.22 presents
the numerical compression curve (red line) that
resembles the experimental mechanical behaviour
(black line) most accurately. There are three fore-
ground remarks concerning the input of this sim-
ulation and the corresponding consequences.

Firstly, the modelling was performed on a
loose sample (n = 140 388 m−3) not respecting the
(higher) experimental density (n = 155 129 m−3).
As a consequence, a continuous smooth increase
of the axial stress was observed, without the ini-
tial peak occurring in the case of the denser sam-
ple (Figure 5.6). Yet the sample remained slightly

stiffer at a low-stress level (σa < 0.3 MPa). What
concerns the DEM model, the contact and/or link
stiffnesses can be partially responsible for such a
result.

Secondly, the force law parameters needed
some adjustments in order to properly capture the
isotropic hardening. The normal force threshold
f ?I was assigned to the links respecting Weibull’s
distribution with a scale parameter (x0=190 N)
set about two times higher than it has been
determined experimentally (Figure 3.23 in sec-
tion 3.3.1).

Finally, the large sector size reduces the ulti-
mate strain and rules the discrepancy point, at
which the numerical and the experimental curves
diverge from each other (σa = 2 MPa).
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Figure 5.23 : The mechanical behaviour of 1D compression with the series of the UR cycles. A comparison
between: a – the experiment and b – the numerical modelling (Oedo_Adjusted_Cyc) made for the shell size d18.
For a selected numerical UR cycle, three sample states were selected for a detail analysis (Figures 5.26a to 5.26c).

Unloading-reloading cycles

Cycle εa σa Moed− Moed+
(%) (MPa) (MPa) (MPa)

1st 35.79 0.89 124 72
2nd 71.11 3.91 256 167
3rd 79.73 5.88 257 184
4th 88.70 9.81 293 215
5th 95.49 14.29 311 –

Table 5.4 : The characterisation of UR cycles using the
experimental compression curves. The shells size was
d18. The oedeomteric moduli of non-linear response
are calculated as shown in the Figure 5.23a, separately
for the unloading Moed− and the loading Moed+.

A comprehensive DEM modelling should fully re-
produce the experiment, including the unload-
ing steps. Figures 5.22 and Figures 5.23a show
that, experimentally, a classic over-consolidated
behaviour was observed characterised by a much
stiffer hysteresis-like stress path. From each
unloading-reloading cycle (UR), two elastic mod-
ulus are measured: a secant oedometer moduli
Moed− for the unloading and a secant oedometer
modulus for the reloading Moed+

11. The inset of

Figure 5.23a illustrates these two elastic moduli
and their values in the cases of all the successive
UR curves are given in the Tables 5.4 (experimen-
tal) and 5.5 (numerical).

Cycle εa σa b Moed− Moed+
(%) (MPa) (%) (MPa) (MPa)

1st 13.96 0.42 30.8 46 21
2nd 22.94 0.54 51.8 64 23
3rd 36.96 0.71 78.7 150 38
(3rd)′ 36.96 0.71 78.7 117 131
4th 59.88 5.03 98.5 344 142
5th 71.02 16.00 100 399 –

Table 5.5 : Description of numerical UR cycles for ini-
tially loose sample (Figure 5.23b). The starting points
(the unloading) are characterised by the axial strain εa,
the axial stress σa and the breakage ratio b. For each cy-
cle, oeodometric modulus was calculated twice: for the
unloading Moed− and the reloading Moed+. The (3rd)′

cycle has been performed as a parallel to (3rd) cycle but
with a high friction coefficient µ = µwall = µshell = 100.

Following the experimental protocol, the UR
cycles have been repeated several times during the
1D compression. Numerically, the sample was un-
loaded at five different stress states as described in

11 Moed = ∆σa/∆εa
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the Table 5.5. The unloading points were selected
aiming various degrees of breakage.

The inset of Figure 5.23a presents a typi-
cal experimental behaviour focusing on the se-
lected unloading–reloading hysteresis. Despite
the lower stiffness, the numerical modelling
(Figure 5.23b) correctly reflects the character of
over-consolidated soil. In both cases, the initial
rapid drop of the stress suppresses gradually and
non-linearly during the unloading. Further, one
can observe a fast augmentation of the loading
up to the consolidation stress, above which the
inclination of the stress-strain curve returns to
the starting point. Two main observations can
be pointed out concerning the oedometric mod-
uli of the UR curves. Those remarks are valid
for both the experiment and the DEM modelling.
But although the experimental and numerical re-
sponses are similar, the numerical sample has pre-
sented much softer behaviour (Moed are respec-
tively lower), due to the numerical parameters.
Firstly, Moed− was higher than Moed+ with one
numerical acceptation12 (Tables 5.4 and 5.5). In
other words, the samples behaved stiffer during
the unloading than during the reloading. Sec-
ondly, the UR behaviour was becoming stiffer as
the stress level was rising. This observation can
be explained by the change of the sample struc-
ture. As a consequence of shell-crushing, the frag-
ments became stiffer due to their geometry. Also,
the grain size distribution became less uniform,
thus the fragments were packed in denser assem-
bly. For all these reasons, the assembly became
less compressible.

Herein, we supplement the analysis of the me-
chanical curves with some observations at the
grain scale. Figure 5.24 presents the evolution
of the average number of contacts Z. Although
two colliding clusters constitute only one neigh-
bour for each other, they can interact throughout
multiple contacts. Therefore, we acknowledged
two variables: the average number of neighbours
in contact Zn and the average number of contact
points Zc. In both cases, the coordination num-
ber maintained an upward tendency with respect
to the growth of the breakage level b. Naturally,

more fluctuations were observed in the case of
the contacts, whereas the evolution of contacts
was more steady. An opening of contact is not
equivalent to the loss of neighbour. Furthermore,
two phases can be distinguished in Figure 5.24
with either a slow (b ≤ 0.95) or a rapid evolution
(b > 0.95).
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Figure 5.24 : Numerical oedometer test. The evolu-
tion of the coordination number for both neighbours
Zn and the contacts Zc. The compression curve has
been shown in the Figures 5.22 and 5.23b. Note that
breakage level b rises with increase of stress level in
non-linear manner.

An intensive shell breakage releases the access to
a large amount of the inner voids trapped in the
shells (a passive free space). Consequently, the
parts can rearrange freely, and not only the con-
tact network but also the neighbours’ network can
be significantly modified. The breakage also re-
duces the typical size of the parts, which is usually
thought to lower the number of possible contacts.
However, the release of the inner surface can bal-
ance this tendency in the case of the tube-shaped
geometry. Those phenomena can explain the slow
growth of both Z when the primary breakage is
intense (b ≤ 0.95). Once the majority of the shells
were broken (b > 0.95), the small volume of the
free space within the sample did not allow any
significant rearrangements, and the coordination
numbers began to mount rapidly due to strong

12 The cycle (3rd)′ is to be discussed soon afterward.

112



0

20000

40000

60000

80000

0.001 1

N
µ

σa (MPa)

µ = 0.4
µ = 100

a

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

N
µ
−

m
a
x
/N

µ

b

ft > 0.99 ∗ µfn

b

Figure 5.25 : a – Loss and gain of the contacts. An evolution with respect to macroscopic loading σa. Nµ is a
number of contacts. The UR cycles are specified in the Table 5.5. b – The percentage of the sliding contacts
presented with respect to the breakage level. Nµ−max is a number of sliding contacts (according to the criterion
ft > 0.99µ fn).

densification. Figure 5.24 exposes that breakage
did not occur during the UR cycles (b is constant).
Thus, one can observe the vertical drops during
each cycle. For the unloading, the contact opened
intensively, and therefore, Zc decreased signifi-
cantly. With the opening of the last contact, also
the neighbour was lost, but this led to a relatively
smaller drop of Zn.

Figure 5.25a presents a non-linear evolution of
the number of contacts Nµ (excluding the cohe-
sive links) during the uniaxial compression. The
loss of contacts during each unloading is clearly
demonstrated by the decreases of Nµ. The re-
loading resulted in the creation of new contacts
once more. The processes presented a hysteresis-
like trend each time which indicated the irre-
versible changes in the contact network. Initially,
the evolution of Nµ was slow, such that only
18.2 % of the total growth was reached at the point
of the 3rd unloading (b = 0.787). At the begin-
ning of the 4th cycle corresponding to b = 0.985,
Nµ reached 58.8 % of its final value. This proves
that mainly the densification contributed to the
creation of new contacts. Figure 5.25b quanti-
fies how many of those contacts approached the
sliding, i.e., satisfied the criterion ft > 0.99 µ fn.

The ratio of sliding interactions Nµ−max with re-
spect to the total number of contacts Nµ evolved
as a function of the breakage. Due to the sam-
ple preparation, the sliding was present in only
23 % of the contacts. A rapid jump of about
40 %, once the loading began, might have been
caused by the modification of the equilibrium of
the forces. On the overall point of view, the con-
tribution of the sliding interactions decreased non-
linearly from 0.6 to 0.37 – slowly at the beginning
and more rapidly above b ≈ 0.9. Since the contacts
with the large normal forces are less capable of
sliding, the contribution of Nµ−max decreases for
the high-pressure. When the breakage began to
stop, the sample densified significantly, and there-
fore, the contact openings were less likely to ap-
pear due to the compaction of the sample. As is
seen in the Figure 5.25b, the trend demonstrates
a high peak each time the UR was performed (for
b = constant). This plastic response has been fur-
ther investigated as shown in the Figures 5.26a to
5.26c. The analysis was dedicated to the status of
the contact (elastic or sliding) and its modification
during the UR cycle, as shown on the example
of the 3rd UR (Table 5.5). Three different states
(5.26a to 5.26c) have been already marked on the
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Figure 5.26 : Uniaxial compression. The status of the contacts: a – before the unloading, b – after the unloading
and c – after the reloading in the case of the third UR cycle (see Figure 5.23). The simulation were made imposing
a low angle of friction. The proportion of the contacts with a mobilised friction is given by Nµ−max/Nµ.

compression curve – the inset of Figure 5.23b. It
is worth recalling that Coulomb’s model of friction
has been incorporated in the force laws, and there-
fore, the mobilised friction cannot exceed the fric-
tion coefficient set at µ = µwall = µshell = 0.4 (mod-
elling Oedo_Adjusted_Cyc see Table C.1). The
normal contact force has been normalised by the
average normal force acting between two parts
〈 fn〉. What concerns Figure 5.26:
Figure 5.26a – Before the unloading, the contacts
were spread between the critical state and the elas-

tic domain rather evenly. At this point, the sliding
occurs in 54 % of all the contacts.
Figure 5.26b – Within the unloaded assembly,
there still exist numerous elastic contacts, yet their
contribution decreases in favour of the sliding
contacts. The ratio Nµ−max/Nµ rose up to 77.8 %.
On the plot, the sliding points are visibly concen-
trated in the neighbourhood of the horizontal line
f (x) = µ = 0.4.
Figure 5.26c – Due to the reloading, Nµ−max/Nµ

decreased to 61.7 %, but it remained slightly
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Figure 5.27 : a – The comparison of the mechanical responses to the UR for a low and high friction µ. b and c
– The evolutions of contacts during the elastic unloading and reloading, respectively. The results for modelling
with low angle of friction at the equivalent states were shown in the Figure 5.26b and 5.26c. d – A sketch ex-
plaining the influence of the friction coefficient (µ2 > µ1) on the micro-scale behaviour. The initial contact ( f 0

n , f 0
t )

can experience two various responses – either a plastic (red) or an elastic (black) unloading.

115



higher than the initial (unloading) value. Al-
though the network has been modified, the con-
tact balance between the elastic and sliding states
has been restored to the starting point fairly close
(Figure 5.26a). Those results clearly demonstrate
that the sample responds to UR with some irre-
versible changes. Thus, the final step was a nu-
merical repetition of the UR cycle with a high
(unphysical) friction. Figure 5.27b shows that the
(3rd)′ UR cycle has begun at the same compression
state as the 3rd cycle (Table 5.5). The friction coeffi-
cients have been risen up to µ=µwall =µshell =100,
such that the angle of friction φ = 89.4°. This
approach serves two objectives: (i) a comparison
of the mechanical behaviours and (ii) the observa-
tion of an enforced elastic response. Figure 5.27a
shows the change in the stress-strain relationships
focusing only on the 3rd UR range. Initially, the
same rapid stress drop was observed, but the
curves diverged before the end of the unloading
(in the non-linear phase). In Figure 5.25a (black
curve) we observed that the number of contacts
initially decreased with the same manner both for
µ = 0.4 and µ = 100. At a given point, the num-
ber of contacts stabilised for the higher friction,
such that the contact opening finished sooner. The
shape of the elastic unloading curve (black curve),
with a higher curvature, resemblances the exper-
imental behaviour more accurately (the inset of
Figure 5.23a). Moedo− decreased towards more
realistic value (Tables 5.5 and 5.4). Therefore, a
higher elastic strain was recovered using a large
angle of friction (about 26% more comparing to
µ = 0.4). On the contrary, the reloading phase
exhibited too stiff behaviour. Moedo+ was so high
that the consolidation stress was under-estimated.
However, this proves that the response can be
adjusted by a modification of the friction coeffi-
cient, which is believed to be highly inhomoge-
neous in the different parts of the shells (or the
fragments) because of the strong variations of sur-
face roughness. The black points in 5.26a indicate
the stress-strain states for which the analysis of a
mobilised friction is shown in the Figures 5.27b
and 5.27c. As is seen, they correspond to states
5.26b and 5.26c of 3rd UR (Figure 5.26). The dotted

lines recall the previous low sliding limit µ = 0.4.
Since the starting point is identical as for the low
friction, the initial status of the contact network
shown in the Figure 5.26a is valid also in this
case. Note that µ = 0.4 is now a part of the
elastic domain, i.e., none of the contacts reached
the sliding limit (Nµ−max/Nµ = 0). Figure 5.27b
presents the state of affairs after the elastic un-
loading. The majority of the contacts remained
within the elastic domain of the Coulomb’s cone.
In some rare cases, Coulomb’s criterion has been
satisfied, yet the amount of the sliding contacts
was lower than 1o/oo. In Figure 5.27b, the distribu-
tion of the points presents a decreasing tendency
as the normal component of the force rises. In
other words, the high friction is triggered mainly
in the less compressed contacts. Although many
of the tangential forces were high, the low fric-
tion coefficient µ = 0.4 still stands out as a clear
landmark, which is a display of the loading his-
tory13. Figure 5.27c confirms the elastic reload-
ing of the sample. The spreading of data points
has been hardly influenced by the increase of the
macroscopic load. Those results combined with
the observation from Figures 5.26a to 5.26c sug-
gest that mainly the normal component of the con-
tact force decreases during the unloading. Fig-
ure 5.27d explains this concept. The black and red
lines present the projection of Coulomb’s failure
surface for a high and a low friction coefficient
(µ2 > µ1) in 2D fn ↔ ft space. Initially, the point
( f 0

n , f 0
t ) lies within the elastic domain (before the

unloading). Since the normal contact force is cal-
culated using the actual contact geometry (based
on the overlaps), fn decreases with the unloading
towards a possible separation ( fn = 0). Thus, the
point migrates from f 0

n towards f unload
n . Due to the

fact that the tangential force is calculated as an
increment, the shear component remains almost
constant. In the case of low friction (red line), the
point drifts to the plastic domain as shown in the
Figure 5.27d. At this point, thanks to Coulomb’s
model of friction, the interaction gets assigned to
the critical state line (or a failure surface in 3D)
such that ft = µ1 fn. If the unloading is carried
on, this procedure is constantly repeated (a step

13 Recall that before the UR cycle µ was set to 0.4
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path in Figure 5.27d) till the interaction reaches a
final state ( f unload

n , f unload−pl
t ). In other words, the

elastic contacts reach the sliding (red point) only
due to the decrease of fn. For the high friction,
the interaction remains within the elastic domain
(black point), although ft maintains its value con-
stant f unload−el

t ≈ f 0
t .

The assemblies of shells d18 and d20
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Figure 5.28 : The influence of a shell size. The mechan-
ical behaviours were obtained using DEM simulations,
but the experimental results for the assemblies consist-
ing of the identical sizes were presented in Figure 5.6.

Figure 5.28 compares the mechanical be-
haviours for two dense packings of a differ-
ent shell size: d18 and d20. Note that Fig-
ure 5.2 presented the equivalent experimental
curves. The numerical parameters has been ad-
justed such that the true micro-mechanical as-
pects, e.g., a shell strength, were captured rep-
resentatively (see Table C.1 for the modelling
Oedo_d18 and Oedo_d20). The experimental and
numerical compression curves diverge (similarly
as in the Figure 5.6). Since those discrepancies
have been discussed hereinbefore, we addressed
only the tendency resulting from the shell size.
For a normally consolidated state, the oedometric
modulus was calculated twice: at the beginning
M′oed and in the final phase of the uniaxial com-
pression M′′oed (Figure 5.23a). The results are given
in the Table 5.6. Initially, the sample composed of

the bigger shells d20 exhibited a higher stiffness,
i.e., M′oed was higher. In this phase, the breakage is
a crucial mechanism ruling mechanical behaviour.
Thus, the stronger shells, crushing for the higher
stress level, behave less compressible. M′oed was
26.9 % bigger than the one found for the size d18.
A similar observation concerns the discrete mod-
elling with the difference of 41.2 %.

Shell size M′oed (MPa) M′′oed (MPa)
Experiments

d18 2.6 78.2
d20 3.3 70.6

DEM
d18 1.2 118.0
d20 1.7 100.2

Table 5.6 : The evolution of compressibility depending
on the shell size for 1D axial compression of a dense
sample. The initial M′oed and the final M′′oed moduli
were marked in the Figure 5.23a.

Once the primary breakage of shells was highly
advanced (b > 0.95), the breakage of the parts
could progress but it required a fairly high stress
level. Therefore, mainly the reduction of the inter-
cluster void ratio was present within the assem-
bly. The higher is εa, the lower is the discrepancy
between the mechanical responses (Figure 5.28).
Numerically, the difference (d18 vs. d20) of the
moduli M′′oed decreases to 17.8 %, and experi-
mentally to 10.8 %. Although all the shells were
crushed in both cases, the differences between the
arrangements and the size distributions should
naturally occur. Thus, M′′oed were still not fully
equal for σa = 15 MPa. For a respectively higher
stress level, those moduli should finally even out
each other. That is to happen when the mechan-
ical response will depend only on the stiffness
of the backed clay, and the deformation will ap-
proach the physical strain limit (the breakage of
the fragment does not appear any longer).

5.2 Summary

The current section discussed the mechanical re-
sponse to a medium-pressure oedometric com-
pression. The parametric study allowed us to ad-
just reliably the numerical parameters, test the in-
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fluence of the initial state of a sample and discover
the model limitations due to the geometry of the
sectors:

The computation time has been reduced by
the use of smaller sample size, and thereby,
the total number of sectors in the sample.

Among all the force law parameters, two
yield thresholds f ?I and f ?I I controlling the
shell strength occurred to be of the great-
est importance to the mechanical behaviour.
The average strength of shells controls the
sample strength, whereas the variability of
strength plays a secondary role.

Denser samples presented initial stress peak
unless a stress-controlled loading was ap-
plied. Despite the strain-control, in the
loose samples, this initial local peak has not
been observed, presumably, due to shell re-
arrangements.

The vertically oriented shells caused high os-
cillation in the mechanical response (more
precisely, in the stress evolution). On the
contrary, horizontal shells seemed to arrange
into a rather loose assembly, which presents
a smooth mechanical response.

Generating the model with more sectors in
the axial direction of the shell increased the
strain range enhancing the model validity

but making the computations more time-
consuming. The increase of the circumfer-
ential number of sectors did not bring any
other benefit, however, we believe that it is
more fruitful when combining both the more
detail axial and more detail circumferential
discretisation at the same time.

A significant change in the shell geometry
need to be accompanied by a generation of
adequate sector size.

The model correctly reflects the experimen-
tal shells size dependency. It is supported
by the analysis of the oedometric moduli for
the shells d18 and d20.

We successfully managed to reproduce the
macro-mechanical response to 1D compres-
sion, but the model mismatch the experi-
mental estimations of the micro-mechanical
parameters and the true initial density.

The final modelling included the unloading
and reloading cycles. UR cycle correctly re-
produced the character (the shape and the
tendencies) of the response, but the values
of the friction coefficient during UR should
vary between the normally consolidated and
over-consolidated states to fit the real UR
oedometric moduli. A deeper DE analysis
showed that the contact openings during the
unloading lead to an increase of sliding con-
tacts in the model.
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Introduction

Grains breakage is known to be of great importance for understanding the mechanics of granular ma-
terials for a long time.
" [...] in order to understand the physics of the strength and stress-strain behaviour of soils and to devise mathe-
matical models that adequately represent such behaviour, it is important to define the degree to which the particles
of an element of soil are crushed or broken."
Following this statement, Hardin (1985) discussed quantifying the breakage of particles with a relative
breakage Br – a parameter calculated using the grain size distribution. Since then, the concept of rela-
tive breakage has been modified and applied in other studies as summarised by Einav (2007a). In the
case of one-dimensional compression, grains breakage contributes to the reduction of volume, espe-
cially in highly porous materials. Bolton and McDowell (1997) presented the volumetric changes as a
consequence of grain breakage in aggregates of uniform brittle grains. More recent studies, e.g., the nu-
merical investigation made by Laufer (2015), also demonstrated that the landmarks on the stress–stain
relationship correspond to a certain amount of breakage. Therefore, the lack of breakage representation
in the model leads to the deviation of mechanical response from the reality (Karatza, 2017). Section 6.1
relates to those aspects. Firstly, the mechanical behaviour is commented in the context of breakage
evolution. Secondly, the growth of breakage in one-dimensional compression is presented as a function
of shell strength including the effect of anisotropy caused by the orientation of shells.

Section 6.2 investigates the evolution breakage in detail using grain size distribution (GDS). The
numerical GDS framework has been adapted in order to be compared with the experimental result.
The importance of micro-mechanics for the macroscopic evolution of breakage has been determined.
Finally, more detailed analysis of GDS supplements the experimental observations.

The evolution of fabric anisotropy using only shell and parts orientations has been presented in
section 6.3. The major difficulty of fabric analysis using the contact network has been discussed taking
into account the model characteristic. As a consequence, the alternative analysis of micro-stress applied
to the fragments instead of contact forces has been performed.

Section 6.4 focuses on high compressibility of breakable shells. The attention has been dedicated
to the evolution of the consolidation curves, i.e., the void ratio as a function of axial stress (in semi-
logarithmic scale). The reduction of voids was also shown with respect to the axial deformations.
Then, the geometric exclusions accounted for the necessity of defining a modified void ratio e?. Within
this new framework, the modified consolidation curves presented non-classic evolution with a tem-
porary increase of void volume. Therefore, the large volume of internal "pores" explained the highly
compressible response.

Those results have actually led to an attempt of predicting the inter-granular void ratio in section 6.5.
This section has been organised in two parts 6.5.1 and 6.5.2 dedicating the prediction model separately
to strain and stress (respectively). Whereas the predictions based on the strain evolution are rather
discarded, many researchers attempted to build a constitutive model, acknowledging the breakage of
constituent particles, to foresee the classic consolidation curve (Bauer, 1996; Einav, 2007b; Hu et al.,
2011). In section 6.5.2, we have attempted to relate to the constitutive model proposed by Bauer (1996)
and show its applicability range in the case of shells.
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List of symbols and abbreviations

Symbol /
Abbreviation

Explanation

Section 6.1
εa Axial strain (MPa)
σa Axial stress (MPa)
Br Relative breakage (used in the literature)
b Primary breakage level
f ?I Normal yield threshold in pure tension for link (N)
f ?I I Tangential yield threshold in pure share for link (N)
Section 6.2
cd f Cumulative Density Function
GDS Grain Size Dsistribution
pd f Probability Density Function
∑ Iij Number of breakable interfaces in the tube-cluster/sub-cluster
d Diameter of ring in the shell cross-section – typical grain size (mm)
FI Critical diametrical load causing the tensile breakage (N)
h Heigh of shell in the axial direction of tube (mm)
〈md18〉 True average mass of shell in the size d18
Section 6.3
α Inclination of sectors with respect to global vertical axis Y (◦)
β Inclination of sectors with respect to global horizontal axis X (◦)
∆β Rotation of grain orientation towards the horizontal axis (◦)
εx, εy, εz Macroscopic strain in X, Y, Z axis (%)
γxy, γxz Macroscopic shear strain in XYZ coordinate system (◦)
σi Stress tensor of the cluster (or the sub-cluster) i (MPa)
ǎ Power in the law used for the low local stresses
â Pre-factor of variable in the exponential law used for the high local stresses
a2 Anisotropy parameter for the assembly (Legendre’s polynomials)
(a2)0 Initial anisotropy parameter
~fn Contact/link force (N)
~l Branch vector (m)
ln Normal scalar component of branch vector (m)
lt Tangential scalar component of branch vector (m)
~n Unit vector in normal direction of interaction
p Mean pressure of the cluster (or the sub-cluster) (MPa)
~r Position of a contact and/or link (m)
~t Unit vector in tangential direction of interaction
Vi Volume of the constituent i: a shell or a fragment (m3)
Section 6.4
µ Inter-cluster friction coefficient
e Void ratio (standard definition)
e? Inter-shell void ratio (modified definition)
Vs Volume of solid phase in the assembly (m3)
Continued on next page...
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Symbol /
Abbreviation

Explanation

Vtot Total volume of sample (m3)
Vv Volume of voids and pores in a sample (m3)
V? Volume of all the intrinsic voids in intact tube-shells (m3)
Section 6.5.1
b Primary breakage level
E0 Microscopic void ratio analysing only shell
e Void ratio (standard definition)
e0 Initial void ratio
e? Inter-shell void ratio (modified definition)
N Initial total number of shells
Nbroken Current number of broken shells
Vi

s Volume of the solid of tube per shell (mm3)
Vi

v Volume of internal void of tube (mm3)
(Vtot)0 Initial total volume of sample (m3)
Section 6.5.2
←↩ Super-script of variable referring to behaviour before the inflexion point
↪→ Super-script of variable referring to behaviour after the inflexion point
∆e Maximum reduction of void ratio in oedometr test
σb Axial macroscopic stress when any b is reached (MPa)
σ50 Axial macroscopic stress at the inflexion point (MPa)
σpeak Axial macroscopic stress for the peak of e? ↔ σa curve (MPa)
σre f Reference axial stress – scale parameter for b-evolution (MPa)
ă Linear slope (for the σ↔ FI relationship)
e0 Initial void ratio
e f in Final void ratio
hs Soil hardness
m Shape parameter (primary breakage evolution)
n Shape parameter (compression curve)
If a symbol or an abbreviations is not distinguished in the current section, please search in the previous sections.
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6.1 Study of mechanical behaviour
as a consequence of grain
breakage

Among all performed simulations, the analysis of
breakage focuses mainly on two uniaxial compres-
sions performed on:

initially loose sample with parameters ad-
justed such that the macroscopic behaviour
reflects properly the experiment. Yet the
microscopic strength of shells found in
the experimental campaign was ignored –
Oedo_Adjusted,

sample with number density determined ex-
perimentally. Although the strength thresh-
olds applied in the modelling respect the
true values, the mechanical behaviour di-
verges from experiment one – Oedo_True.

Contributory observations will be presented using
other simulations, yet, their analysis is of supple-
ment character.

Figures 6.1a and 6.1b present the non-linear
evolution of breakage level b (red curves) as a
function of axial strain εa for loose and dense sam-
ple, respectively. Figures 6.1c and 6.1d show the
same growth of breakage degree, yet, with respect
to the axial stress σa using a semi-logarithmic
space. The black lines recall the compression
curves.

Naturally, the value of ultimate accessible
strain is affected by (i) the density of initial ar-
rangement and (ii) shell breakage. Therefore, the
evolution of breakage with respect to axial strain
is of great interest. The analysis was based on
breakage parameter b, which is a function of only
intact shells breakage. In other words, the sec-
ondary breakage of smaller particles, that are not
tube-shaped any longer, has been ignored. Note
that the breakage level has been already intro-
duced in section 5.1.6 by the equation (5.8). The
evolution diverges from dense to loose packing,
yet it rises with a similar trend – a rapid increase
(phases I© and II©) followed by slower non-linear
transition towards threshold b = 1 (phase III©).
For axial stress equal to 15 MPa, the axial strain

are about 6.7 % lower in case of the dense sample
(Figures 6.1b). Almost half of the strain differ-
ence arises in the initial phase I© corresponding
to the onset of breakage with 0 ≤ b ≤ 0.05.
Note that phase I© in Figure 6.1b corresponds to
phase 1© in Figure 6.1d. As is seen, the initial
stress peak, in dense packing, appears during this
initial phase. Low inter-granular space limits the
re-arrangements of shells, and therefore, the stress
mounts up rapidly. The significant breakage be-
gins when an adequate amount of energy is accu-
mulated in the sample. Due to higher initial stiff-
ness, the energy triggering the shell breakage is
accumulated faster in dense configuration – for al-
most five times lower strain. As breakage releases
the energy accumulated in shell, the sudden and
dynamic breakage causes stress softening, when
entering phase II©. Although experimental sam-
ples are classified as dense, the stress peak has
not been observed in mechanical behaviour. Plau-
sibly, there exist some plastic deformations known
to dissipate the energy as well. The shells might
experience some local damage in the contact zone
like crumbling. Yet, the model is incapable of
representing this type of local, surface damage or
the contact adjustment. It also does not take the
plastic flow into account. A similar observation
has been already pointed out for the mechanical
response to single shell compression.

In zone II©, the progress of breakage is uni-
form and quite proportional to increase of axial
strain. A straight line with slope, equal to 0.022,
has been found to successfully describe the trend
both in adjusted and in true samples. Averaging
the tendency (over many simulations), 1 % of ax-
ial deformation corresponds to increase of break-
age ratio of 2 % despite different initial densities.
This suggests that the macroscopic strain in this
phase is quasi-fully ruled by the breakage. The
strain growth is affected equally due to the fact
that the amount of released void volume (locked
within the intact shell) is of the same order.
Phase III© starts when the breakage rate begin to
decrease gradually. ∼ 25 % of shells in the case of
loose sample and only 10% for the denser sam-
ple were still to break. The transition progress
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Figure 6.1 : Influence of broken shells ratio b on the mechanical behaviour for the loose (a and c – Weibull distri-
bution such that f ?I = 190 N for cd f ( f ?I ) = 0.37) and dense (b and d – f ?I = 85 N) samples.
a and b – Three phases were distinguished for the axial strain as a reference: I© – the lack or the onset of break-
age, II© – a linear growth, and III© – a non-linear inhibition of breakage.
c and d – Four breakage zones were considered for σa as a reference: 1© – b ≤ 0.05, 2© – 0.05 < b ≤ 0.5, 3© –
0.5 < b ≤ 0.95 and 4© – 0.95 < b ≤ 1.

faster in a dense configuration. Yet, this difference
might originate from higher average shell strength
and wide Weibull distribution imposed in the ad-
justed modelling (Figure 6.1a). Essentially, the
plot proves that breakage controls the large strain
in the oedometric compression and significantly
influences the compressibility of this material. In-
tense breakage with almost linear trend results

in low but constant stiffness of the sample while
loading (see the analysis of Moedo in section 5.1.6).
Yet, when it slows down non-linearly, also the me-
chanical behaviour of samples gradually tends to-
wards the stiff response. The macro-mechanical
behaviour of crushable granular matter has been
reported as a consequence of breakage over the
decades. Bolton and McDowell (1997) have com-
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mented on the shape of compression curve using
clastic mechanics base on fractal fragmentation
(Turcotte, 1986). More recent DEM study, made
by Laufer (2015), provides similar numerical ob-
servations. Bolton et al. (2008) showed the DEM
simulations of sand aggregates with and without
particles crushing, thereby highlighting the neces-
sity of modelling breakage once more. Nowadays,
also the experimental work supplements the nu-
merical study, e.g., Guida et al. (2018). All those
examples referred to uniaxial compression, and
each of them has presented similar behaviour us-
ing compression curve in a semi-logarithmic scale
as we presented, hereinbefore, in Figures 6.1c and
6.1d. To demonstrate the influence of axial stress
on the evolution of breakage four different break-
age phases has been marked in the Figures 6.1c
and 6.1d. They have been established using three
characteristic values of b: 0.05, 0.50 and 0.95 (pre-
sented by vertical dotted lines). Note that those
values are approximation among many numerical
simulations.
1© – The onset of breakage caused by the failure

of the weakest shells within the assembly. Since
the tensile strength is the lowest of material resis-
tances, the shells are expected to fail in tension.
It is referred to as clastic yielding after Bolton and
McDowell (1997). It has been detected due to a
visible decrease of hardening rate and it has been
determined at the average b ≈ 0.05. The sam-
ple densified mainly due to the reduction of the
inter-granular void volume. Thus, the mechanical
behaviour in this regime is strongly influenced by
the initial state of assembly.
2© – The material presents an inherent variation

of tensile strength (recall Figures 3.13 and 5.14).
Thus, this phase begins when the macroscopic
loading σa creates a microscopic load leading to
the breakage of many shells. Therefore, the pa-
rameter b mounted up rapidly with an exponen-
tial manner. Then, many internal voids initially
blocked in the shells, became accessible. As a con-
sequence, the inter-granular free space was con-
stantly enlarged and its highly compressible be-
haviour of material was triggered in this regime.
A clastic hardening is clearly visible in case of the
loose sample, whereas for dense packing the hard-

ening rate was lower, such that rather a plateau
was formed. This term is equivalent to plastic
hardening, yet underlines that fact that the irre-
versible behaviour is a result of grains crushing.
The constant and monotonous increase of stress is
a result of both higher shell strength (guaranteed
by survival probability) and increase of coordina-
tion number of the packing Figure 5.24).
3© – A transition between phase 2© and 3© can

be referred to as an inflexion point. We have esti-
mated it for b ≈ 0.5 alike in the study of Laufer
(2015). Experimentally, for example, Guida et al.
(2018) have found it at 0.4 for LECA with highly
porous grains. The inflexion point in some cases
might be successfully determined within the small
range of b, depending on the strength variabil-
ity and the shell arrangement within the assem-
bly. Once the inflexion stress is reached, the trend
of breakage curve b ↔ σa is modified (the con-
vex part of the curve) and the breakage develops
less rapidly. Due to the increase of the coordi-
nation number, the particles should be more iso-
topically load, and therefore, less prone to break.
Those changes are reflected by the mechanical re-
sponse that also starts to change. The clastic hard-
ening evolves non-linearly increasing the harden-
ing rate. This indicates that the frictional interac-
tions become more and more significant.
4© – Last phase starts, approximately, when b is

equal to 0.95. The breakage of shells is of sec-
ondary importance to mechanical behaviour as
the end comminution is approached. The small
amount of voids does not affect the current sam-
ple density. The sample presents high stiffness
as it is composed mainly of small resistant parts
(sub-clusters) and "rigid" unattached sectors. Due
to sector size and ultimate size distribution, the
model will tend asymptotically to its limit.
Focusing on the first aspect, the comparison
curves from Figures 6.1c and 6.1d indicates that
stress level for which the specific amount of
breakage b is reached depends on the strength
of constituent shells. This observation has been
tested further using initially loose assembly for
different normal force threshold f ?I without its
variation. Simultaneously, the equivalent mod-
elling was performed on dense samples (see Fig-
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ure 5.15). Among those simulations, Figure 6.2
presents the growth of breakage ratio for selected
modelling made on initially:

loose samples (l) – Oedo_l_ f ?I -85,
Oedo_l_ f ?I -150 and Oedo_l_ f ?I -225

dense sample (d) – Oedo_ f ?I -40.

Detailed numerical parameters are enclosed in Ta-
ble C.1 (Appendix C).

As is seen, despite the peculiar shell shape,
the breakage phenomena ruling mechanical be-
haviour is rather a standard response presented
by many granular materials used in geotechnics.
The differences in compressive behaviour orig-
inate from the material properties – the shell
strength and the ability of the assembly to com-
presses.

0

0.2

0.4

0.6

0.8

1

0.001 0.01 0.1 1 10

1

2

3

4

b

σa (MPa)

f ⋆
I = 40 N (d)

f ⋆
I = 85 N (l)

f ⋆
I = 150 N (l)

f ⋆
I = 255 N (l)

Figure 6.2 : The evolution of primary breakage is in-
fluenced by the tensile strength of the shell, which is
controlled by the limit of normal force f ?I . She shear
strength of shells was established by the proportion:
f ?I / f ?I I = 0.34. Introduced notation: (l) – loose and (d)
– dense configuration.

In Figure 6.2, one can observe that the break-
age grew with similar rate up to b = 0.95 in all
the cases. There exists a standard evolution with
the trend shape separated into two parts: (i) con-
cave – an increase of breakage rate before the in-
flexion point b ≈ 0.5, and (ii) convex – slowing

down of breakage rate after the inflexion point.
The curves are just horizontally shifted towards
higher stresses when the strength of shells in-
creases. Therefore, the onset of breakage, the in-
flexion point and the comminution limit are the
functions of shell strength. Also, a constitutive
model of Bauer (1996) has employed the soil hard-
ness hs (stress at the inflexion point), and ac-
companying Gudehus (1996) has stated that it is
proportional to the strength of constituent parti-
cles. Then, in phase 4© there is a visible growth-
inhibiting, such that the suppression of break-
age is slower for "stronger" samples. However,
the semi-logarithmic representation distorts the
proportion. Practically, composing the layer of
stronger shells makes it more suitable for very
high loads since its compressibility is active for a
wider loading range. Although Figure 6.2 only in-
dicates the following observation, the evolution of
breakage with respect to stress (b ↔ σa) has been
found independent of initial density. Similarly, in
the continuum breakage mechanics (CBM) model
presented by Einav (2007b) the growth of Br ↔ σ

is material strength dependent.

As is presented in section 4.3.2, the initial den-
sity is not sufficient to describe the initial state.
Hence, the analysis has been carried on by tak-
ing into account more anisotropic arrangements1

(Figure 6.3). Following observations were based
on the simulations Oedo_r, Oedo_v, Oedo_V,
Oedo_h and Oedo_H with mechanical behaviour
presented in Figure 5.19. Although the shells were
equally strong, their orientations have affected the
breakage mechanics of assembly. Firstly, horizon-
tal shells failed at lower macroscopic stress level
than vertically oriented ones as shown in Fig-
ure 6.3a. This tendency might originate from the
fact that the tangential strength of bonded interac-
tions f ?I I is much higher than normal force thresh-
old f ?I . In other words, the shell is more resistant
to shear or compression (for axial loading) than
tension (for radial loading). Furthermore, the di-
rection of microscopic loading will cause differ-
ent mode of fracture. Considering assembly un-
der oedometric compression, one can expect that
major loading acts axially for the vertically ori-

1 We refer to the anisotropy of sector orientations.
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Figure 6.3 : The orientation anisotropy changes the evolution of breakage b: a – Horizontal preferential orien-
tation result in higher breakage rate (C_25×13_d_01_AH, C_25×13_d_02_AH) indicating failure due to tensile
stress, whereas in the vertically oriented samples (C_25×13_d_02_AV, C_25×13_d_03_AV) the breakage grows
slower because shells are stronger in the axial. More homogeneous samples (with isotopic core) C_25×13_d_02_A
used in Oedo_r are found in between. b – Evolution of breakage with respect too strain shows the influence of
density and exposes the step evolution for highly vertical oriented assembly C_25×13_d_03_AV (see Figures 4.24
and 5.19).

ented shells, while horizontal shells will be loaded
mainly radially. Then, the higher strength of ver-
tical oriented shell assemblies is a natural con-
sequence. Secondly, the kinematics of breakage
has been modified with respect to more isotopic
assembly C_25×13_d_02_A (Figure 6.3a). The
breakage rate is respectively higher in case of hor-
izontally oriented shells, and for the assembly
of vertical shells, the ratio b rises slower – the
breakage curve mounts up less steep. Within ran-
domly oriented samples (C_25×13_d_02_A), the
majority of shells were oriented horizontally (re-
call Figure 4.22a). Then, the evolution of b sug-
gests that horizontal shells break first because the
breakage evolves initially with the similar trend as
for C_25×13_d_01_AH and C_25×13_d_02_AH
(phases 1© and 2©). Afterwards, the break-
age curve tends towards the behaviour of ver-
tically oriented samples (C_25×13_d_02_AV and
C_25×13_d_03_AV). That is due to the significant
presence of vertically inclined shells. Finally, Fig-

ure 6.3a shows that strong vertical anisotropy –
C_25×13_d_03_AV – leads to large oscillations of
axial stress (for 0 ≤ b ≤ 0.7). For the sake of clar-
ity, b was shown also as a function of axial strain
in Figure 6.3b. Due to the creation and sudden
rupture of strong force chains formed within the
sample, the breakage ratio mounts up following a
step trend. Once, the brake becomes secondary to
mechanical behaviour, the breakage curve devel-
ops continuously and the oscillations of stresses
disappear. Similar behaviour has been reported
in section 5.1.2 for sample with very low hight
(35× 5) as was shown in the Figure 5.8a. The va-
riety of responses in Figure 6.2b is connected with
different initial densities n (Table 4.10).

As mentioned, the breakage level b quantifies
the primary (first) breakage of shells, which leads
to release the access to the internal voids of tubes,
but b ignores the progressive breakage of the frag-
ments. This gap needs to be filled by a supple-
mentary analysis.
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6.2 Progressive breakage via grain
size distributions (GDS)

Grain size distribution (GSD) and its evolution
along the compression test provide a detailed in-
sight into the secondary breakage throughout the
fragment sizes. Sieve analysis is commonly used
to characterise the size distribution of granular
materials. If the grains pass through a sieve, here-
inafter with a square grid, the average grain diam-
eter corresponds to the grid size and is associated
to the smallest cross-section of grains. Then, GSD
is build upon the mass of a set of grains smaller
than a given diameter. Whereas this approach to
GSD is widely accepted to describe the size of the
grains for granular geo-materials like sand, it is
more questionable in the study of the GDS of bro-
ken shells. The mass of intact shell can be equal
even to double mass the broken piece, although
both are in the same sieve size as illustrated in Ta-
ble 6.1 for sieve size 17.0 mm (last row). For the
sake of experimental simplicity, the GSD based on
the grain weights was kept. Herein, the objectives
are (i) to compare the GSDs of experimental and
numerical samples all along the uniaxial compres-
sion test (respecting the axial stresses) and (ii) to
supplement the experimental results (e.g., know-
ing the number of broken shells), whatever the in-
congruity of the classical GSD analysis on broken
shells with very concave shapes is.

The experimental campaign, dedicated to shell
breakage in uniaxial compression, was performed
at Laboratory Navier (Paris-Est). We have joined
team CERMES to characterise shell breakage at
the early stage of the uniaxial test (for at low-
stress level), yet, the loading system is capable
of applying the load up to 7 MPa, and there-
fore, more data were provided for our compar-
ison. The samples (without coating) were pre-
pared using the shell size d18 with the following
protocol. First, an assembly with a mass equal
to 5.15kg ± 0.05kg has been measured. Then, it
was poured in a mould with a diameter of 30 cm,
such that the height of the sample was approxi-
mately 13.5 cm. Using an average mass of shell
(〈md18〉 = 0.0035 kg), a number density n was es-

timated at 154 151± 1 497. To verify this number,
n was found at 152 684. Although the estimation
was burden with rather high error, both the esti-
mation and the real value are in agreement with
previous measurements 151 384± 1 319 (Table 4.3
in section 4.1). At this point, the top surface of
the specimen was uneven, and therefore, it was re-
fined using a light wooden piece, later replaced by
a heavier metal platen (the influence of its weight
has been balanced in the measurements).
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Figure 6.4 : The experimental mechanical responses to
uniaxial compression. Each test was finished at a dif-
ferent stress level (the dots on the σa-axis). The experi-
ments were conducted in Laboratory Navier on sample
30×13.5 (in cm) composed of shells d18.

The uniaxial compression was performed with
stress-control, increasing force by 0.05 kN
(0.7 kPa) per second. Figure 6.4 presents at which
point of uniaxial compression each test was fin-
ished (the dots on the σa-axis). The onset of break-
age was captured at σa = 0.14 MPa and later for
σa = 0.42 MPa. Once the sample has been dis-
assembled (Figure 6.5a), the sieve analysis, com-
monly used procedure to assess the particles gra-
dation in granular material, was performed. The
material passed through a series of sieves of pro-
gressively smaller mesh size 2: 16, 12.5, 5 and
1 mm (Figure 6.5b). The weight of material
stopped by each sieve was calculated as a propor-
tion to the whole sample mass, such that the grad-

2 With the square mesh.
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a b

Figure 6.5 : The oedometer test finished at σa = 0.42 MPa (Figure 6.4): a – A view of the top surface after the test
(in contact with the loading plate), and b – The fragments divided into the sieve sizes (Figure 6.6).

ing curves for all the tests were drawn. The evo-
lution of GSD shown in the Figures 6.6a and 6.6b
(point-lines) is compared it with numerical data
from modelling: Oedo_True and Oedo_Adjusted,
respectively (Figure 6.1).

Part ∑ Iij Sieve size (mm)

0 4.2

1 8.2

2 11.7

3 14.4

4 16.3

5− 11 17.0

Table 6.1 : The numerical sieve sizes for shell with
t = 2.4 mm and N? = N?

circ = 12 (cluster shape d18-S1).
The sieve sizes are ruled by the number of linked sec-
tors within the part. ∑ Iij – is a number of the interfaces
to be broken per shell/fragment (see equation 5.9).

Although we reduced measurements to only five
sieve sizes, actually, the fractions include a range
of possible sizes as is seen in the Figure 6.5b.
Thus, the experimental GSD curves can be pre-

sented as continuous lines, or in our case the
point-lines with points being the actual measure-
ments and lines showing rough, linear interpola-
tions (Figure 6.6). Construction of numerical GSD
requires a basic simplification due to the discreti-
sation of shape into sectors. Therefore, to estab-
lish the numerical sieve sizes the longitudinal size
h of sectors was ignored (as if the parts passed
the sieve vertically) in favour of the radial cross-
section. As shown in Table 6.1, the sieve sizes
are ruled by a number of linked sectors within the
part. Then, it is a precise measurement in size
(instead of the fraction) and can be successfully
considered either as passing through or staying
at sieve. Due to this discrete character, the zones
within which an experimental measurement could
be located were predicted (dashed areas in Fig-
ure 6.6). First of all, Figure 6.6 clearly demon-
strates the model limitation throughout the appli-
cable range of sieve sizes. As already discussed
thereinbefore, it is due to sector size (Table 6.1).
Whereas numerically only coarse-grained assem-
bly can be obtained (larger or equal 4.2 mm), in
the experiments also fine fraction (<1 mm) was
observed (Figure 6.5b). Numerically, the focus of
this section was limited to only two simulations
performed with different sets of micro-mechanical
parameters. Figure 6.6a shows that the results
remain in a good agreement with experiments
when the shell strength respect the reality, that
is f ?I = 85 N (or FI ≈ 120 N). On the con-
trary, although the macro-mechanical behaviour
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Figure 6.6 : Experimental grain size distributions for different stress states (Figure 6.4) were compared with
the numerical data from: a – Oedo_Adjusted and b – Oedo_True (Figure 6.1). Experimental sieve curves are
presented by the point-lines with points being the actual measurements. Whereas experimentally the GSD
curves(Figure 6.5b) can be assumed as continuous lines, in the DEM model the grading curves have a discrete
character. Therefore, the continuous prediction zone were created using those desecrate data.

for Oedo_Adjusted has been adapted, Figure 6.6b
exposes that the micro-mechanics does not reflect
the true breakage evolution. DEM sieve zones
mismatch the experimental results completely. At
the shell scale, the breakage appears too late (for
higher axial stress), since the Weibull distribution
with pd f ( f ?I = 190) = 1/e has been applied.
Thus, the shells are twice as strong as in reality.

To show the numerical evolution of GSD the
zones were replotted respecting their discrete

manner (with points) in Figures 6.7a and 6.7b.
Note that, this time, the points were connected
with dashed lines, just for the sake of trans-
parency. 14 different breakage levels were selected
between the beginning (b = 0.00) of uniaxial com-
pressions and its end, when σa ≈ 17 MPa and
b = 1.00. Above all, it is remarkable to observe
that, despite the model limitation, the GDS curves
evolve experimentally and numerically in a sim-
ilar manner. Initially, the sample is uniformly-
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Figure 6.8 : The potential fragmentation to appear for each size concern the uniaxial compression with the micro-
properties respecting the reality (Oedo_True – see Appendix C). The mass quantity remaining on the sieve is a
function of: a – the primary breakage level b and b – the macroscopic stress σa. The sieve size description was
presented in the Table 6.1. Note that ∑ Iij + 1 = N?, where N? is the number of sectors per cluster.

graded with a size of d = 17 mm. This size-
homogeneity was gradually lost. Up to the in-
flexion point b ≈ 0.5, a presence of diverse sizes
has arisen, but the assemblies were still rather
poorly-graded. The breakage of shell led mainly
to fragmentation into larger parts. In contrast,
Laufer (2015) stated that in sand aggregates the
small particles were first to break. A possible, ex-
planation for this discrepancy is the initial state
(uniform GDS). As the breakage kept progress-
ing up to b = 0.95, the disintegration of frag-
ments progresses more extensively, such that the
GSD tended to well-graded distribution. Inten-
sive comminution into the finest (numerical) sizes
has been observed at the end of test for high
axial stress, but the GDS did not become uni-
form again. Figures 6.8 and 6.9 presents the
potential breakage in the sample for Oedo_True
and Oedo_Adjusted simulations, respectively. In
both figures, the amount of parts remaining to be
broken were presented separately for each sieve
size (Table 6.1) both as a function of the primary
breakage b (Figures 6.8a and 6.9a) and of the mi-
croscopic loading (Figures 6.8b and 6.9b). Note
that the sieve sizes were described with number of
interfaces to be broken ∑ Iij, which is one less than

the number of sectors. Therefore, 0 stands for a
single sector (red line) which is the minimum limit
size. Part with 11 interfaces specifies the intact
shell (with 12 sectors like d18-S1). The represen-
tation in Figures 6.8a and 6.9a highlights the cas-
cade type of progressive fragmentation. The vio-
let line references to the primary breakage (1− b).
Thus, there exists a linear relationship in Fig-
ures 6.8a and 6.9a. When the breakage grows, the
curves decline. The bigger is the part, the sooner
corresponding curve begins to decrease and the
sooner it reaches 0 % (no more parts existing in
the sieve size). Furthermore, the curves do not
interlace each other. This confirms that in first or-
der the shells broke into bigger pieces, and then,
those fragments were disintegrated into smaller
ones. This process keeps repeating, and the size is
reduced gradually toward a sector. This manner
of gradual disintegration, we called the cascade
breakage. When the primary breakage stops (b
reaches 1 for the first time), the GSD still contains
most of the sieve sizes. Then, the comminution
progresses due to an increase of σa, but b remains
constant, such that one can observe final vertical
drops in the plots. Figures 6.8b and 6.9b provides
better insight at the end of test. The represen-
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Figure 6.9 : The potential fragmentation to appear for each size as a function of: a – the primary breakage level
b and b – the macroscopic stress σa. The shells are stronger than actual once, but the macro-mechanical response
to the uniaxial compression stays in a good agreement with experiments (Oedo_Adjusted – see Appendix C).
The sieve size description was presented in the Table 6.1. Note that ∑ Iij + 1 = N?, where N? is the number of
sectors per cluster.

tation with respect to macroscopic load has also
supplemented the pieces of information about the
breakage rates for each size. The change in the
inclination of the potential fragmentation curve
is equivalent to the change in the breakage rate.
The steeper is the curve the higher is the breakage
rate. Then, one can observe that each sieve size
vanishes with a similar tendency. An initially flat
curve has been gradually inclining till the maxi-
mum slope was reached. In other words, the on-
set of fragmentation into each size rose slowly at
first, but afterwards, the breakage rate increased
up to the maximum. The size evolutions of big-
ger parts were more rapid and more dynamic
(higher inclinations). For each curve, there exists a
point when the breakage starts to inhibit – initially
slowly and then rapidly as the line approaches
0 % (non-linear final phase). It is interesting to ob-
serve that for all the sizes this inhibition point can
be characterised at ∼50 % of potential breakage,
which corresponds to the inflexion point of com-
pression curves (Figures 6.1). Figures 6.8b and
6.9b give insight into the stress level needed for
each part size to break during the uniaxial com-
pression. The breakage of bigger parts requires

lower stresses than fragmentation of smaller parts.
Firstly, due to the increase of coordination num-
ber, and secondly, due to the more simple shape
of parts (less curved). In both cases, the disinte-
gration of parts with more than 3 sectors requires
a close range of stresses to each other (the curves
interlace partially). While σa causing the breakage
of parts containing 3 or 2 sectors had a disperse
loading range (distant lines). Note that during
the drop of initial stress peak (in dense assembly)
the breakage was very extensive, and in fact, al-
most all the sieve sizes in Figures 6.8b experienced
breakage. The comparison between Oedo_True
and Oedo_Adjusted once more exposes the im-
portance of shell strength. At the end of uniax-
ial compressions 25.3 % (Figures 6.8b) and 50.6 %
(Figures 6.9b) of parts were still composed of mul-
tiple sectors. Whereas the weak sample has only
3 remaining sizes the, strong assembly was less
uniform and contained still 5 various sieve sizes.
In both cases, the distribution was not purely
uniform. According to fractal breakage concept
(Bolton and McDowell, 1997; Turcotte, 1986), the
ultimate GSD tends to a self-similar distribution,
a power law with a given exponent being the frac-
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tal number. Therefore, the ultimate distribution
cannot be uniform, but in the form of Pareto dis-
tribution. Numerically, GSD can get closer to uni-
form than experimental curves, but it is possi-
ble only due to the large size of unbreakable sec-
tors. Nevertheless, the loading of 17 MPa does
not lead to totally crushed state (assembly of sep-
arate sectors). A rough prediction indicates that
σa ≈ 210 MPa would be needed to obtained com-
pletely crushed sample. Nevertheless, the density
limit before is reached before, when some non-
physical overlaps appear for σa ≈ 70 MPa.

6.3 The micro-mechanics and the
orientation anisotropy during
the progressive breakage

Figure 6.10 presents growth of the orientation
anisotropy (using the sector "long" axis) during
the numerical oedometer tests: Oedo_True and
Oedo_Adjusted (Figure 6.1). In section 4.3.2,
one can find explanation how the anisotropy was
quantified with parameter a2 using the statistical
distribution of orientations. In Figure 6.10, a2 is
also presented in a reduced form 〈cos2α〉 − 1

3 (see
equation 4.8), which is an actual difference from
the isotopic state 〈cos2α〉 = 1

3 . The higher is the
absolute value of the parameter a2 (or its reduced
form), the stronger is the anisotropy. Recall that
orientation of shell, fragment or sector was con-
sider as cosα, where α is measured with respect to
global vertical axis Y.

A typical distribution of shell orientations
prior to the uniaxial compression was shown in
the section 4.3.2. Summarising, although the rigid
boundary led to local anisotropy (Figure 4.22a), in
the core of sample the shells are rather isotrop-
ically oriented (Figure 4.22b). Thus, herein, the
study of fragments orientation was limited to the
internal core of samples, such that the analysis has
started from almost isotopic state. Previously, the
characterisation of boundary layer has been base
on geometrical criterion – the mass centre of at
least one sector within cluster must be in distance
lower than 2 cm from the boundary. Yet, at the end
of 1D compression, this criterion is too rigorous as
it significantly restricts the number of parts (data)

authorised for the analysis. Thus, the boundary
layer has been redefined. Onwards, it includes
two row of fragments: (i) all the fragments re-
maining in contact with rigid boundary and (ii)
the neighbouring with them fragments. For the
initial state of assembly, both definition of bound-
ary provide comparable results.

Figure 6.10 shows the growth of anisotropy as
the breakage progress. The arrangement evolved
similarly for Oedo_True and Oedo_Adjusted, thus
we present the statistical analysis only in case
of Oedo_True. As is seen in Figure 6.10 (right
top plot), probability density function confirms
almost isotopic distribution of orientations with
a2 = −0.059 (or 〈cos2α〉 − 1

3 = −0.016) of the
initial state. Up to b ≈ 0.8 anisotropy was con-
stantly deepened with sectors rotating towards
horizontal orientation (negative value). At this
point, the anisotropy coefficient was increased
around 5 times. Then, the anisotropy developed
non-linearly during the final inhibition of primary
breakage. The higher is the breakage level b, the
steeper gets the trend. At the end of uniaxial
compression (σa = 17 MPa) the anisotropy coef-
ficient was almost 8.7 times bigger then its ini-
tial value for Oedo_True (and a2/(a2)0 ≈ 9.2 for
Oedo_Adjusted). The core of the sample has be-
come strongly anisotropic, and most of fragments
and sectors tend to rest horizontally as presented
by the statistical distribution in Figure 6.10 (right
bottom plot). The pdf is shaped such that the
Legendre polynomials expansion (solid line) ade-
quately reflects the numerical distribution (boxes).
Finally, the manner of anisotropy growth indicates
a link with the strain evolution. Charalampidou
et al. (2009) has shown that the grains rotations
depends mainly on the principal strain directions
using 2D analogous material with rectangular par-
ticles. The authors have proven that, on the av-
erage point of view, the rotation ∆β of granular
material follows the prediction offered by the con-
tinuum mechanics (for homogeneous strain):

∆β = −γ

2
+

εx − εy

2
sin 2β +

γ

2
cos 2β, (6.1)

where εx, εy are the vertical and horizontal strains
respectively, while γ = γxy is the shear strain. An-
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4 (〈x2〉 − 1

3 ). Therefore 〈x2〉 − 1
3 is a difference from the

isotopic state. Statistical analysis did not include boundary layer.

gle β was measured with respect to the horizontal
axis, whereas in this study we measured the incli-
nation with respect to the vertical axis, such that
α + β = 90◦. Note that in a 3D case, one must
include also the strain corresponding to the addi-
tional direction εy and γxz. However, for the uni-
axial compression the boundary conditions signif-
icantly simplify the equation to:

∆β =
εa

3
sin 2β. (6.2)

Since the axial strain εa grows linearly3, the pre-
factor εa/3 evolves linearly. Hence, one can expect
a linear evolution also in the case of the orien-
tation anisotropy with respect to the strain. The
tendency of shells to rotate towards horizontal

orientation during uniaxial compression has been
confirmed through statistical analysis on sam-
ples with preferential orientation. Figures 6.11a
to 6.11d present the final distribution of orien-
tations after uniaxial compression shown in Fig-
ure 5.19. For those samples, the shell orienta-
tions have been already presented in Figure 4.24b
(section 4.3.2), yet the probability density func-
tions were recalled in the insets of Figures 6.11.
An attempt to characterise the anisotropy of dis-
tribution using fourth order extension of Legen-
dre polynomials (solid line) was successful only
in some cases. Although, Figure 6.11a and 6.11b
clearly demonstrate the strongly anisotropic ar-
rangements, their distributions with extremely
high peak do not obey the shape of Legen-

3 Recall that a constant velocity of the loading plate was imposed.
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Figure 6.11 : Statistical analysis of orientations (without boundary layer) resulting from the 1D compression. The
final state: σa ≈ 16 MPa and b = 1.0. Initially, the majority of shells are oriented: a and b – horizontally, c and d
– vertically (see Figures 4.24b and 4.25). Boxes present results of statistical analysis, and solid curve shows the
fit of 4th order Legendre’s polynomial extension: p(x) = 1 + a2(3x2 − 1) + a4(35x4 − 30x2 + 3), where parameter
a2 quantifies the anisotropy of distribution. Inset: statistical analysis of initial shell orientations.

dre function. As is seen, the sectors always
tend to rotate towards the horizontal position.
Whereas for the samples C_25×13_d_01_AH and
C_25×13_d_02_AH the anisotropy has been inten-
sified, for vertical assemblies C_25×13_d_02_AV
and C_25×13_d_03_AV the vertical orientation
become partially balanced by horizontal rotations.
Figure 6.11c shows the anisotropy coefficient de-
creased with respect to its initial value, a2/(a2)0 =

0.13 for C_25×13_d_02_AV, but the initial orienta-
tion remained dominant.
Oda (1972) has pointed out that the grains orien-
tations should be supplemented with the mutual
orientation of particles while describing the gran-
ular structure. In a basic DEM study with per-
fectly circular shapes in 2D or spheres in 3D, the
concept of grain orientation does not appear. Then
the contact network is referred to as a fabric. By
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nature, an anisotropic structure characterises the
contact network (Khalili, 2016), which rules mate-
rial properties like the shear strength. Usually, the
attention is paid to the contact normal direction
~n. The branch vector, joining centres of two neigh-
bouring particles, is a descriptor of the local ge-
ometry. Azéma et al. (2012) associated the branch
vector ~l with its normal and tangential compo-
nents ~l = ln~n + lt~t. For 3D spheres, the position
of contact lies in the direction of branch vectors
(lt = 0), yet it is not the case for polygonal shapes
(Azéma et al., 2012; Cantor García, 2017).

Multiple contacts

i 

j 

f1

f2

f3

i j 

The interactions

l2

l1

i j 

The branch vectors

Figure 6.12 : 2D presentation of a contact with multi-
ple interaction points. The sub-cluster is a part linking
several sectors. Each sector (in 3D) is build from the
spheres – the blue circles, the tubes as the edges – the
red shapes, and the outer plans – not shown in 2D. This
example of the contact between sub-clusters i and j in-
volves 3 sectors and interacts in n = 3 contact points
throughout the forces ~fn (~f1, ~f2 and ~f3). Two brach vec-
tors ~l1 and ~l2 are associated to the contact.

Due to the specifications of DEM tool Rockable,
the analysis of contact network is more complex.
First of all, a number of interactions n can be as-
sociated with one contact as is presented in the
Figure 6.12. In other words, more than one force
~fn act in the contact. Secondly, the contact may
involve multiple sectors, such that there might ap-
pear more that one branch vector ~l in the contact
(Figure 6.12). Consequently, analysis of the con-
tact network and transmitted within forces was

omitted in favour of the analysis of local stress. A
mean pressure can be defined at the level of shell,
a part or a sector i:

p = tr(σi), (6.3)

where σi is a stress tensor of sub-cluster i calcu-
lated using the forces in the n contact points at the
positions ~rn with respect to origin of global coor-
dinate system XYZ:

σi =
1
Vi

n

∑
0
(~fn ⊗~rn). (6.4)

Figure 6.13 shows the sample with prism geom-
etry (square base 19 cm × 19 cm), prepared fol-
lowing procedure from section 4.3.1. Sample
P_19×17_d_01_A contained 1 000 shells d18-S1. It
had the total void ratio equal to 2.458 and the
inter-granular void ratio of 0.595. The number
density n was found at 162 468. As is seen, the ini-
tial state is described by similar values as cylindri-
cal samples. The differences concerned a lower co-
ordination number of neighbours Zn = 3.6 (or the
contacts Zc = 5.5) and slightly higher anisotropy
of shell orientations distribution (with an isotropic
core).

Figure 6.13 : A sample with a geometry of true prism
– P_19×17_d_01_A (see Appendix B). The base is a
square with a side size of 19 cm. The sample contained
1 000 shells d18-S1.
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Figure 6.15 : Despite the numerical relaxation in the
stress-controlled simulation, allowing to dissipate the
kinetic energy in time, the equilibrium of local forces
was not always verified. Thus, an analysis of the mean
pressure of shells needed to be limited. The Neq is
a number of the constituents both under loading and
well equilibrated, whereas N is a total amount of parts
(including the rattlers and poorly balanced forces).

The oedometer test was simulated with the stress
control (Oedo_contol-σa) on a gravity-free pack-
ing (see Table C.2). The strength parameters were
used, like in Oedo_True (see Table C.1), such that
the true micro-mechanics were respected. Despite
the differences, the compression curves were con-
sistent with each other. Similarly, the primary
breakage grew with a similar trend (Figure 6.14).

σa has been increased step by step, and be-
tween each loading increment, the packing has
been left to get stabilised for 0.5s (that gives 2.5
million time steps). Although globally the kine-
matic energy indicated steady state, locally, not
all the shells were found well balanced. The force
equilibrium was approved, if the ratio of the resul-
tant force norm with respect to the norm of min-
imum force was lower then 0.001. The amount of
poorly equilibrated shells is significantly larger for
modelling with the strain control, and therefore,
a less rigorous criterion would be needed. We
recognised the dynamic nature of brittle break-
age and the lack of the numerical relaxation phase
as the causes. Figure 6.15 shows the percent-
age of shells/fragments authorised for the anal-
ysis. Note that the rattlers (floating shells) were
excluded in these measures.

The colour points marked in Figure 6.14 shows
the loading step for which the statistical analy-
sis of local stresses were presented in Figures 6.16
and 6.17. The selected curves are divided into two
sets, Figures 6.16a and 6.17a correspond to the
stress states mainly up to the inflexion point, and
the Figures 6.16b and 6.17b are dedicated to load-
ing steps afterwards for b > 0.8. To compare the
carves, the mean local pressure was normalised by
the macroscopic load. Radjai et al. (1996) analysed
the distribution of forces in 2D granular materi-
als dividing the range into two domains: low and
high forces. Although we analysed the mean pres-
sure, similar remarks can be pointed out in case
of 3D shells. Figure 6.16 shows that low-pressure
distribution followed the power law, which gets
linearised in the logarithmic scale. A line with
slope ǎ clearly suits all the cases shown in the Fig-
ure 6.16a. It is clear that the peak shifted closer to
p/σa = 1 when the inhibition of breakage begins
(Figure 6.16b) and the lower sub-domain got re-
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duced. Then, the fit is less reliable because most
often only a couple of points was found in the do-
main of low stress. Figures 6.17a and 6.17b show
pdf in the half-logarithmic space focusing on the
distribution in the domain of high pressure. It is

more visible that the distribution always exhibits
the majority of the small stresses within the sam-
ple, such that the peak of pdf was always concen-
trated around p/σa = 1, but its probability rises
with b. Also, the width of distribution, i.e., the
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|â
|

b
b

Figure 6.18 : An absolute value of parameter of exponential law |â| indicates the width of tail Figures 6.17.
The evolution of â during uniaxial compression with respect to: a – the macroscopic stress and b – the primary
breakage.

length of tail, evolved with respect to the macro-
scopic stress. Following Radjai et al. (1996), an ex-
ponential relationship can be determined for high
pressure domain, that in the Figures 6.17 shapes
a line with a declining slope â. The lower is its
absolute value |â|, the wider is the distribution.

Figure 6.18a presents the evolution of |â| with
respect to the macroscopic load. The tendency can
be reliably described by a power law, indicating
that, for a high-pressure test, the width should
reach a minimum limit. One can observe that,
on the average point of view, the tail was always
shortening. Note that it was necessary to limit the
range p/σa ∈ 〈1 : 10〉, in order to obtain a robust
fit. It is harder to distinguish this evolution in the
Figures 6.17a and 6.17b because a strong devia-
tion from the average trend occurs at the end of
each tail. To construct pdf, a constant number of
statistical set was used, and therefore, the amount
of data was very low in the final sets. This led to
the flat end of the tail, which we classify as the de-
viation from trend. On the other side, those devi-
ations give a sense of the maximum value of p/σa,
which seemingly evolved due to the change of
GSD, such that for more uniform grading curves
the maximum p/σa is lower. Figure 6.18b shows
|â| as a function of primary breakage. Once the

breakage has started, the tail was shortening grad-
ually and quite proportional to b. When the pri-
mary breakage slowed down (b > 0.95), the width
of pd f became visibly narrow and a sharp increase
of |â| take place. Recalling Figure 6.7a, mainly
the evolutions of smaller fractions are present at
those levels of b, such that the GDS tends to more
uniform.

6.4 Analysis of compressibility
through void ratios

The compressible response of the shell assembly
originates from a large amount of intra-cluster
space, i.e., the internal voids of shells. Never-
theless, only the breakage is able to activate the
highly compressible properties of samples with
the brittle shells. To this end, an adequate stress
level needs to be reached in order to trigger shell
breakage. The strength and size of the internal
void need to be combined in an optimal way such
that the layer is durable and works efficiently over
time. The compression curve (σa ↔ εa) can be
presented in another manner replacing εa with the
void ratio e, i.e., a dimensionless parameter quan-
tifying the proportion of voids volume Vv to vol-

139



a b c

Figure 6.19 : Division into the voids (grey) and the solid (red) for 2D example. a – Overall void ratio e with most
simple classification between void and solid that is air and backed clay. Modified void ratio e? (the inter-granular
void ratio) takes into account the accessibility to the internal voids: b – all shells are intact (d = 0) and c –
breakage occurs (d 6= 0).

ume of solid Vs. A classical void–solid division
into the air (grey) and the matter (red) is presented
in Figure 6.19a. Herein, e is referred to as stan-
dard, total or overall void ratio. Considering the
volume of the sample Vtot and the volume of the
solid phase Vs (sum of the volume of sectors), the
classical definition of void ratio is:

e = Vv/Vs = (Vtot −Vs)/Vs. (6.5)

Now, the intra-cluster and the inter-cluster voids
can be distinguished from the total volume of free
space Vv. The peculiar geometry of a cluster dis-
ables access to the space Vi

v trapped inside it while
it remains intact (Figure 6.19b, see also Figure 3.9
in section 3.3.1). Once the cluster is broken the
trapped space is released as shown in the figure
Figure 6.19c. Thus, we considered another defini-
tion for the void ratio, where Vaccessible are all the
available space in the sample and Vinaccessible is the

0

0.5

1

1.5

2

2.5

3

0 10 20 30 40 50 60 70 80

1 2 3 4

e,
e⋆

εa (%)

Test Oedo Adjusted on C 25×13 l 01 A

e⋆

e

a

0

0.5

1

1.5

2

2.5

3

0 10 20 30 40 50 60 70 80

2 3 4

e,
e⋆

εa (%)

Test Oedo True on C 25×13 d 01 A

e⋆

e

b

Figure 6.20 : The compression curves with respect to axial strain for the samples with a – adjusted and b – true
densities and micro-mechanics. Evolution of void ratio e (black) and inter-granular void ratio e? (red) during
uniaxial compression.
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space that cannot be filled by matter also because
of geometric exclusions (inside intact clusters). In
that way, the void ratio is accounted for:

e? =
Vaccessible

Vinaccessible
=

Vtot − (Vs + V?)

Vs + V?
, (6.6)

where

V? = (1− b)
N

∑
i=0

Vi
v (6.7)

is the volume of the hollow part of intact clusters.

In this work, e? is called either modified
or inter-granular void ratio. In Table B.1
(Appendix B) the results for each prepared sam-
ple are given. The values of both e and e? depend
on the deposit protocol, and more precisely, on the
friction coefficient µ controlling the inter-granular
void volume (density). Averaging over the same
range of densities (µ = 0.8), the volume of in-
ternal voids is 3.04 times larger than the volume
of inter-granular voids (with a deviation of ±0.1).
Changing friction coefficient (during the deposit),
this relation varied such that for dense packing
it gave 3.45 and for loose state 2.55. For the ba-
sic shape d18, the intra-voids had always much
higher volume. Naturally, thickening of the shells
ring (increasing t) reduced this proportion. Tubes
with wall 50% thicker (t = 3.6 mm) had a ratio of

1.5, whereas doubling the thickness (t = 4.8 mm)
results in less internal voids than inter-granular
ones – volume ratio found at 0.74.

In Figures 6.20 and 6.21, the evolution of both
standard (e) and non-standard (e?) void ratios are
presented for true and adjusted set of parameters.
First, the compression curves are plotted as a func-
tion of strain (Figures 6.20a and 6.20b). Although
the strains are imposed by the constant plate dis-
placement, the standard void ratio e decreases
non-linearly. It is simply due to the logarithm def-
inition of strain (equation 5.1). Red lines present
non-standard void ratio e? which, in all cases, rises
up to e in a non-monotonous manner. This follows
from the fact that the progressive cluster break-
age enables access to internal voids along with the
test. Once all the clusters are crushed, V? = 0 and
thus, equations (6.5) and (6.6) become identical.

Figures 6.21a and 6.21b show the same evolu-
tion with respect to the macroscopic stress level.
In the plots the breakage phases are marked as
they were recognised in Figures 6.1c and 6.1d,
respectively. By definition, the evolution of e?

should rely on the breakage level b, and the break-
age rate influences the dynamics of e?. This is
valid for phases 1©, 2© and 3©, while in zone 4©
void ratio decreases despite the growth of b. The
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Figure 6.21 : Consolidation curves for the samples with a – adjusted and b – true densities and micro-mechanics.
Evolution of void ratio e (black) and inter-granular void ratio e? (red) during uniaxial compression.
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evolution of e? always presents a peak at b ≈ 0.95
indicating this characteristic point as the limit of
highly compressible regime. The black and the
red curves must converge when all the shells are
broken (b = 1), yet the breakage becomes insignif-
icant and one can only observe only densifica-
tion of the samples. In Figures 6.20a and 6.20b
those phases were marked as well, although in
Figures 6.1a and 6.1b different division has been
established (phases I© – III©). This is to empha-
sise that the characteristic points (b = 0.5 and
b = 0.95) play important role in the trend with
respect to strain, although they have been found
in the breakage to stress evolution. Evolution of
e? shows something different from the consolida-
tion curves classically produced for fine soils in
the field of geotechnical engineering. For exam-
ple, Laufer (2015) distinguish overall and inter-
granular void ratio for sand aggregates, but the
shapes of the curves remain similar. Despite simi-
lar features, the seeming consolidation slope (that
increases with the stress level) relates mainly to
different mechanisms related to the collapse of
constituent particles. A constitutive macroscopic
model dedicated to this mechanism should not be
based on e directly but rather on a modified ver-
sion of this variable, as we suggested by introduc-
ing e?. Finally, the plots connect the breakage and
its influence on the stress level evolution with the
strength of constituent particles, while the initial
density remains of great importance for the strain
range.

6.5 Prediction of breakage

6.5.1 Analytical model with respect to
strain

Hereinafter, it is tested if the e? ↔ εa plot may
be predicted including the cluster breakage level
b = Nbroken/N as a linear proportion to the ax-
ial strain. The linear trend followed from the
first order estimation: b = 0.022εa has been al-
ready shown in Figures 6.1a and 6.1b. Consider-
ing equation (6.6) as a fraction, one can divide all
the components of both its denominator and its
numerator by volume of Vs. This proves that e? is

a function of total void ratio e:

e? =
e−V?/Vs

1 + V?/Vs
. (6.8)

Then, the volume of inaccessible internal voids V?

and the volume of solid Vs can be easily defined
as:

V? = ∑(N − Nbroken)Vi
v (6.9)

and
Vs = ∑ NVi

s . (6.10)

where N is a total number of shell, Nbroken counts
the broken shells and Vi

v, Vi
s are void, solid volume

of a single cluster i. Then, their ratio gives:

V?

Vs
= (1− Nbroken

N
)

Vi
v

Vi
s
= (1− b)E0, (6.11)

with the cluster void ratio E0 = R2
int/(R2

ext − R2
int).

Then, the microscopic void ratio is equal to E0 =

1.062 for shells d18 and E0 = 0.955 for d20 (see also
Figure 3.9). Those convert to micro-scale porosity
P0 = 51.5 % and P0 = 48.8 %, respectively. A sub-
station of equation (6.11) into the equations (6.8)
results in a general formula:

e?(b) =
e− (1− b)E0

1 + (1− b)E0
. (6.12)

Now, both the standard void ratio and breakage
evolution need to be analytically described as a
function of macroscopic variable. This section was
essentially dedicated to the axial strain, and there-
fore, at this point we focus on determination of
e(εa). Note that we have already described b(εa)

as a linear relationship limited to 1. The logarith-
mic strain definition, from equation (5.1), is used
in the derivation of e(εa), and for a uniaxial com-
pression may be also re-written as:

εa = ln
(Vtot)0

Vtot
= ln

(Vv)0 + Vs

Vv + Vs
. (6.13)

The relation remains uninfluenced, once all the
component are divided by Vs. Hence,

εa = ln
e0 + 1
e + 1

or

exp(εa) =
e0 + 1
e + 1

(6.14)
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A simple transformation led us to the final form:

e(εa) =
1 + e0

exp(εa)
− 1. (6.15)

Note that the relation between e and εa needs
to include the initial void ratio e0 of the sample.

Figure 6.22 shows e/e0 as a function of εa su-
perimposed on the result of a simulation. The
predictions are presented by the solid lines and
the simulations with different shell thickness (re-
call Figure 5.21) are shown by dotted lines. Be-
cause the relation between e and εa is purely ge-
ometric, the e-curves fit perfectly. The evolution
of predicted e? follow quite well the simulated
ones showing that the geometric model is actually
monitored by the evolution of b with respect to εa.
It is interesting to observe that, in the context of
crushable particles that are able to “release” voids,
e can be seen as an upper limit for e?(b = 1), while
the natural definition of void ratio when some
voids are enclosed within the particles should be
e?(b = 0). The model is incapable of reproduc-
ing the decrease of e? for b ∈ 〈0.95 : 1.0〉. Yet, the
slope of linear relationship allows us to control the
point at which two curves will join: either at peak
(Figure 6.22) or for b = 1.0.
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Figure 6.22 : Numerical evolution of normalised void
ratios e/e0 and e?/e0 (dashed lines) with respect to ax-
ial strain. Compression curves (solid lines) according
to equation (6.12), b = 0.024εa(red) a prediction for
shells with larger holes with b = 0.065εa (black), and
b = 0.04εa (blue).

One example of the interest of equation (6.12)
was illustrated by attempting to predict the oedo-
metric compression behaviour as a function of the
hole radius of the shells in order to optimise them.
Assuming a faster increase of b for smaller hole
radii, the tendencies are shown in the Figure 6.22
(black and blue curves). Obviously, the reliability
of these predictions is questionable because the
model still needs to include a proper evolution
law for the damage-like parameter b as a func-
tion of the pressure for instance. Taking into ac-
count the simple nature of the model and a small
number of parameters, the results are satisfactory
despite the discrepancies exposed by Figure 6.22.

6.5.2 Analytical models with respect to
stress

Herein, a framework to predict evolution of e? as
a function of macroscopic stress was build, and
therefore, a general formula from equation (6.12)
has been chosen as the starting point. Now, the
challenge of constructing a model predicting mod-
ified void ratio e? includes two tasks:

verifying the constitutive model of standard
void ratio e(σa),

and describing breakage as a function of
stress b(σa).

Many researchers attempted to build a consti-
tutive model, acknowledging the breakage of con-
stituent particles, to foresee the classic consolida-
tion curve (Bauer, 1996; Einav, 2007b; Hu et al.,
2011). Herein, the results are related to an isotopic
compression law proposed by Bauer (1996) (equa-
tion 6.16) that has already been used to applied
to a classical geo-materials by Laufer (2015) and
Oquendo et al. (2009). Bauer (1996) presented the
void ratio a function of mean pressure 3p, here-
inafter replaced by the axial stress σa:

e = e0 exp [−(σa/hs)
n]. (6.16)

The above relationship is ruled by three con-
stants:

An initial void ratio e0 indicating the starting
point of the curve, onwards, being an input.
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A so-called soil hardness hs is a mean pres-
sure representing the inflexion point on
the compression curve (e ↔ σa) in semi-
logarithmic scale for isotropic compression.
It can be obtained also from the high-
pressure oedometer test. For granular ma-
terials, it is suggested to depend on the
strength of constituent particles.

A shape parameter n related to the inclina-
tion of the compression curve.
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Figure 6.23 : Numerical compression curve e ↔ σa
(black line) follows the isotropic compression law (red
line – see equation 6.16) up to the inflexion point (←↩).
Afterwards (↪→), the trend change due to hardening of
material (blue line – see equation 6.17).

In Figure 6.23, a typical numerical consolida-
tion curve is compared with Bauer’s law (red line).
Among various attempts, the parameters hs and n
were obtained from the fit of equation (6.16) on the
limited range of stress – from 0 to σ50. By struc-
ture, the equation (6.16) tends to e = 0, which
is not a physical measure. Therefore, the consti-
tutive model and DEM simulation have to finally
diverge. Yet, the point of the discrepancy between
the curves is also a consequence of model limita-
tions, and more importantly, the isotopic harden-
ing of granular packing (both in experimentally
and numerically). Note that, onwards, the set of
parameters will be distinguished for ranges before
and after the inflexion point, thus, ←↩ and ↪→, re-
spectively, will mark the range in the superscript

of parameters. In Figure 6.23, the red bullet shows
the location of h←↩s found at 0.94 MPa, which is
very low comparing to the values found in the lit-
erature for classical geo-materials. Bauer, himself,
has suggested values between 10 and 300 MPa,
and the lowest value found by Laufer (2015) is
∼7 MPa. The numerical inflexion point (middle
vertical line) is found at lower stress, such that
σ50/h←↩s = 0.47. In Figure 6.23, once the inflex-
ion point on the compression curve was reached,
the trend is presented by another function:

e = exp [−(σa/hs)
n] + e f in. (6.17)

Equation (6.17) bears significant resemblance

with the isotopic compression law, since it is an
exponential function based on the soil hardness
and the macroscopic shape parameter. At this
point, it is simply assumed that the inflexion point
is a consequence of the high level of material dam-
age (breakage). The significant changes in grain
size distribution lead to the change of response
towards the one presented by less porous packing
like sand. The experimental results of Papazoglou
(2018) also indicated such a tendency. If at the in-
flexion point the sample would be disassembled
and the packing with resultant GSD would be re-
deposited, the "new" initial void ratio should di-
minish equivalently to the lost of internal voids of
broken shells. Then, one deal with a new pack-
ing with lower initial void ratio and stronger con-
stituents, thus the parameters hs and n need to
be re-adjusted. This concepts led to modification
of equation (6.16), such that the equation (6.17)
ignores the "new" initial void ratio as it is irrele-
vant to consolidation curve. Yet, in order to avoid
the limit e → 0 for σa → ∞, the estimated final
value of void ratio e f in was imposed. As is seen,
the fit presented with blue line joins the numerical
curve in the phase of "clastic" hardening. The soil
hardness has been increased more than 3 times
confirming the increase of constituents strength.
The shape parameter decreases adequately to re-
flect the lower inclination of the curve. The denser
is a sample initially, the less compressible it be-
comes. In other words, the lower e↪→0 , the smaller
n↪→ should be found. In this framework at σpeak,
when entering phase 4©, a recalibration of fit pa-
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Figure 6.24 : a – Linear relationship exists between the stress σb at any breakage level b and the tensile strength
of shells FI . Using many simulations of uniaxial compression, the fit provides slope ăb. b – This slope ă increases
non-linearly as a function of b. Thus, the breakage can be found as a function of axial stress b(σa).

rameters should take place once more, yet herein,
it was avoided by limiting e to e f in. Following the
statement of Gudehus (1996), hs is related to the
strength of shells. In this work, analysis of me-
chanical behaviour showed that the reflection of
the curve is assigned to specific breakage level b.
Combining those two observations, the axial stress
at different breakage levels σb as a function of av-
erage tensile strength FI was reconsidered.

Figure 6.24a presents linear relationship be-
tween the tensile strength and the macroscopic ax-
ial strain once b = 0.5 (σ50 – black line) and for
b ≈ 0.94 when the peak of e? was reached (σpeak
– red line). Different slopes ă have been found
for those cases indicating an increase of slope for
higher breakage level. Note that dots stand for
data from various numerical simulations. The
analysis of many breakage levels led us to the de-
termination of trend function as presented in Fig-
ure 6.24b. Due to this rotational function, one can
predict the linear slope ă, and thereby, the corre-
sponding stress level at any b. Also, it is possible
to determine the soil hardness hs by assigning it
to a specific breakage level.

Let us discuss the inclination parameters: n←↩

in equation (6.16) and n↪→ in equation (6.17). Void

ratio e can be considered as a dimensional equiv-
alent of the axial strain εa. Then, Figures 6.1c and
6.1d indicate that n depends on the initial states of
the packing.
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Figure 6.25 : Macroscopic shape parameter n in equa-
tions (6.16) and (6.17) control the inclination of curves
predicting e ↔ σa trend (Figure 6.23). An attempt to
simplify the shape as the linear function of the initial
and final state has been accepted to test the constitutive
model.
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Initial void ratio e0 is the most simple scalar de-
scriptor of initial state and is already employed as
the input in function (6.16). Yet, in case of relation-
ship (6.17) the importance of e0 was redirected to
e f in, and therefore, we have attempted to combine
them both and base the model on their difference
∆e = e0 − e f in. The higher ∆e, the more loose is
the packing.
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Figure 6.26 : Presenting breakage as a function of ax-
ial stress b(σa) required a division of trend into two
sub-domains: before (red) and after the inflexion point
(blue). In the fit function b(σa) = 1− exp[−(σa/σre f )

m],
σre f rules the stress for b ≈ 0.63 and m rules inclination
of curve.

Figure 6.26 recalls the evolution of break-
age from Figure 6.1c in case of the initially
loose assembly and adapted parameters strength
(Oedo_Adjusted). Essentially, the evolution of b
follows the trend described by relation:

b(σa) = 1− exp[−(σa/σre f )
m, (6.18)

with scale σre f and shape m parameters. Indeed,
this function provides very accurate fits, yet the
complex trend of b(σa) needed to be separated
into two domains as for e(σa): below (←↩ red line)
and above (↪→ blue line) the numerical inflexion
point. The modification of trend (its parameters)
proves that the change of the response also ap-
pears at the grain scale. The inclination of trend
declines as suggests the decrease of m, confirm-
ing already discussed inhibition of breakage rate

(section 6.1). It is interesting to observe that the
scale parameter σre f marked by for both distri-
butions stays in good agreement with each other
σ←↩re f ≈ 1.102σ↪→

re f (average trend), and moreover,
with the stress at the inflexion point σ50. The red
an blue rhomb points mark the location of σre f pa-
rameters both in Figure 6.26 and in Figure 6.24b.
Then, using the relationship presented in Fig-
ure 6.24b also σre f parameters can be predicted.

Figure 6.2 suggested that the evolution of
breakage b is connected mainly to the strength
of shells but is independent of the initial state of
the sample. Figure 6.27 also confirms that ob-
servation, since different initial states were taken
into account. The points show parameter obtained
from fitting and the horizontal lines mark their av-
erage values. Furthermore, a constant inclination
parameters m←↩ and m↪→ (Figure 6.27) suggest the
independence from the tensile strength FI . The
inclination parameter also represents the width
of σa range causing primary breakage. The con-
stant character is more visible in case of m↪→ with
fewer oscillations 0.869 ± 0.061, whereas m←↩ =

2.501± 0.404 presents large fluctuations from the
mean.
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To summarise, the analytical model predicting
the inter-granular void ratio follows the relation-
ship:

e?(e, b) =
e(σa)− (1− b(σa) )E0

1 + (1− b(σa) )E0
. (6.19)

A constitutive model of Bauer (1996) was used
to describe e(σa) up to inflexion point (equation
6.16), afterwards its modified version was intro-
duced (equation 6.17). Both constitutive relation-
ships have two parameters: the shape parameter
and the soil hardness. First one was assumed
to be a function of dimensional strain range ∆e
(Figure 6.25), while the second one was the axial
stress for a specific b found as a liner function of
the critical shell force (FI) causing a tensile break-
age (Figure 6.24). Similar scheme was used for
b(σa), according to equation (6.18), with a con-
stant shape parameter and the reference stress as-
signed to the value of b (Figure 6.24). Hereinafter,
we will probe this scheme. Firstly, the predic-
tion model has been tested referencing the simula-
tion Oedo_True as presented in the Figure 6.28a.
The model was constructed using multiple sim-
ulations, therefore, Figure 6.28a validates the at-
tempt to optimise the parameter with respect to
the initial state and the average shell strength.

As is seen, the analytical model has provided an
equivalent behaviour, yet a few discrepancies can
be pointed out. Firstly, the initial modified void
ratio e?0 is overestimated. Secondly, after e-curve
and e?-curve join the prediction and the modelling
start to diverge, i.e., once the breakage inhibition
was reached. On one side, the need to recali-
brate the prediction parameters for the assembly
of sectors without breakage has been highlighted
once more. On the other hand, introducing an-
other set of parameters to be adjusted would lead
to higher complexity. The evolution of prediction
up to peak stress for both e (recall that e is also a
prediction) and e?-curves stay in good agreement
with modelling. The observations of the model
are consistent with the assumptions and simpli-
fications made a priori, and the model seemed to
be well established. Thus, Figure 6.28b compares
model with experimental data. Note that the ex-
perimental void ratio is unknown, but we provide
the reader with an estimation. 2 031 shells were
assessed from the mass of sample divided by the
mean mass of a shell 〈mshell〉 = 0.0035 kg. Us-
ing the initial dimensions of sample H0 = 0.135 m
and D = 0.350 m, e0 was found at 2.417. From the
final displacement of loading plate once can cal-
culate e f in = 0.316 and ∆e = 2.101. Note that the
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shell in size d18 is characterised by the micro-void
ratio of E0 = 1.06193. The true micro-mechanics
were introduced throughout FI = 121 N. Table 6.2
summaries the parameters used by the model. In
case of e prediction, parameters hs and n are com-
pared with their experimental equivalents found
from fitting the isotopic compression law (equa-
tion 6.16) and relationship (6.17). As is seen, the
experimental soil hardnesses are approximately 3
times larger. The inclination parameter also shows
some discrepancy. Although the experimental fit
up to inflexion point was reliable, the fit above the
inflexion point should be approached cautiously.
Although the behaviour was reported to be less
inclined (Figure 5.22), n↪→ falsely suggests higher
inclination. The shells break into a smaller frac-
tion in experiments such that the function (6.17)
is less suitable for the experimental compression
curve.

Parameter Prediction Estimation
σ←↩re f 0.335 –
m←↩ 2.488 –
σ↪→

re f 0.306 –
m↪→ 0.863 –
h←↩s 0.502 1.590
n←↩ 1.786 1.333
h↪→s 1.563 4.418
n↪→ 0.938 1.556

Table 6.2 : The parameters used in the analytical model
to predict the experimental e? (Figure 6.28b). σre f and
m correspond to the breakage (Figure 6.26), and hs and
n come from the isotopic compression law (equation
6.16 and Figure 6.23).

Focusing on the Figure 6.28b, one can see
the prediction and experiment mismatch as much
as the DEM modelling mismatch the experiment.
Recalling section 5.1.6 which discussed the need
to adjust micro-mechanical to obtained proper
macro-mechanical behaviour, these discrepancies
were foreseen. As expected from e0, the model
predicts the behaviour of dense packing. There-
fore, the inclination parameter n for red curve
is larger than the experimental one – grey line
(Table 6.2). Inputting the true tensile force ex-
plained the divergence of stress at inflexion point
and e?-peak. It is interesting to observe that void

ratio at the inflexion point was found most ade-
quately.

Problem with e?-peak comes from the numeri-
cal implantation. Two trends for e intersect in an-
other point (different σa) than two trends for b in-
tersect. Change of trend at inflexion point leads
to the jump or in void ratio e-curve or in break-
age b-curve. Figure 6.28b shows results where
the inflexion point was adjusted such that e-curve
transform smoothly. Yet, there can appear jump
in predicted b-curve. To avoid it, b was kept con-
stant (plateau) for a while such that b can only rise
and never declines. But when b is constant e de-
crease so the model give decrease of e?. Perhaps,
a point of changing b-trends should adjust sepa-
rately from e, then e? will experience a plateau as
well, and e?-curve will evolve without decrease.

Summarising, the analytical prediction model
was based on data from modelling, and there-
fore, it predicts properly the DEM simulations for
various configurations. Yet, the discrepancy be-
tween DEM simulations and the experiment led
the constitutive model to mismatch the experi-
ment. At the start of this study, a simplifica-
tion of the DEM model was established and re-
sulted in this discrepancy. However, the possi-
ble future enhancements of the DEM simulations,
such that the experiments are properly reflected,
might be followed by the recalibration of con-
stants in the constitutive model. Then, the predic-
tion will reflect the experiment more adequately.
Up to that moment, it is suggested to respect the
true micro-mechanics of packing. It caused the
under-estimation of sample macroscopic load σa,
which is a safer approach than adapt the parame-
ters such that for σa > σ50 the models significantly
over-estimate the sample strength.

6.6 Summary

Hereinbefore, the micro-mechanical response
within the assemblies was analysed during uniax-
ial compression taking into account different as-
pects:

The macroscopic mechanical behaviour is a
consequence of shells breakage with respect
to both axial stress and the axial strain. Nat-
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urally, the evolution as a function of axial de-
formation is dependent on the initial state.
With respect to stress breakage is ruled by
the strength of constituent particles, yet the
anisotropy of shell orientations is a signifi-
cant contributor.

There exists a characteristic thresholds of
breakage level b that correspond to charac-
teristic points on the compression curve: the
onset of comminution, the inflexion point
and the inhibition of breakage. Due to
the variability of modelling, this thresholds
were included in a range of breakage degree
such as the inflexion point can be established
as b ∈ 〈0.4 : 0.6〉. The proposed average
values found in the DEM modelling are ori-
entational landmarks rather than rigorously
constrains.

Grain size distributions were shown for dif-
ferent shell strength. The comparison with
experimental GSD has proven that adjusting
the strength lead to under the appearance
of breakage. Despite the limitation of the
model, a similar evolution of GSDs has been
obtained numerically as experimentally.

Analysis of each fragment size evolution
has shown the cascade type of breakage
evolution within an assembly. Therefore,
each fraction evolves for a different range of
macroscopic stress but the evolution curves
have a similar character.

The statistical analysis of local stress has
shown. The majority of shells are sub-
jected to stress in the order of the macro-
scopic loading σa. The width of distri-
butions evolves non-monotonously as the
grading, coordination number and orienta-
tion of shells change.

The analysis of orientation shells along uni-
axial compressions showed the tendency to
increase the horizontally oriented anisotropy
of sectors, despite the initial preferential ori-
entation.

The definition of void ratio e has been re-
defined in the framework of accessible and
inaccessible space – e?. The increase of e? as
the primary breakage b progress explained
that the highly compressible response of the
material is activated only throughout the
breakage, that is, throughout the access to
the internal voids.

Finally, the construction of two constitutive
models was attempted aiming mainly prediction
e? showing the potential of the assembly to com-
press.

Prediction of strain was based on mainly
mathematical transformations of the basic
equations defining void ratio and natural
strain. Still, this very basic constitutive
model included the evolution of breakage
and of classic void ratio as a function of
strain, the initial state (e0) and the geometri-
cal extrusions (E0). Although the axial strain
might be considered as an incorrect refer-
ence variable, the model provides a rough
estimation of compressive behaviour.

Prediction referencing the macroscopic
stress was a greater challenge since the
mathematical relations are not sufficient any
more. The phenomenological framework
needs to be adjusted for a proper constitu-
tive model, such as attempted in this chap-
ter. The isotopic compression law proposed
by Bauer (1996) has been used as a start-
ing point and modified when the prediction
and the modelling diverge (with parameters
hs and n). The trend function for break-
age curve evolving as a function of stress
also has been found (with parameters σre f
and m). The model assumed the reference
stresses (hs and σre f ) depend on the tensile
strength of the material, whereas the inclina-
tion parameter n depends on the initial state
(excluding vertical anisotropy) and m is con-
stant. The constitutive model mismatch the
experimental e in the same level that DEM
simulations disagree with the experiment.
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Closure of the study

7.1 Summary & Conclusions

Summarising, this PhD dissertation was dedicated
to a comprehensive micro- and macroscopic inves-
tigations of unique granular material. The study
had mainly a numerical character, although the se-
ries of the experimental measurements were per-
formed to support the reliability of our model. We
began at the grain scale to generate the model,
continued throughout a sample deposition and
finished with modelling of large assemblies.

Granular material

We studied a granular material composed of the
grains shaped as the coarse-size tubes (shells) with
two important characteristics. Firstly, those parti-
cles were manufactured for a specific industrial
application with a necessity of being formed from
an excavated COx clay-stone. The fabrication was
conducted by means of the mechanical and ther-
mic treatments, thus, we dealt with the brittle
grain crushing. Secondly, the tube geometry was
characterised by a high internal porosity such that
the volume of the tube and a cylindrical internal
void were almost equal (E0 ∼ 1).

DEM tool

The numerical modelings have been performed
using Discrete Element Method implemented in
the software Rockable (Richefeu, 2016) devel-
opped for this study. This software perfectly suits
our needs, since it is capable to model any com-
plex shapes with so-called sphero-polyhedra and
to reflect a brittle fracture thanks to the concept
of the breakable interfaces. To generate a shell, a
number of sphero-polyhedral elongated clumps,
called sectors, were clustered together throughout

cohesive links. This approach requires two user-
specified parameters representing the material co-
hesion resistant to a pure tension ( f ?I ) and a pure
shear ( f ?I I).

A model of breakable shell

In order to adjust the tensile failure, an experi-
mental campaign of diametrical compressions on
shells has been carried on. The critical load pre-
sented a strong variability due to the geometrical
and material heterogeneities. Its cumulative dis-
tribution function was Weibullian and was easily
converted to the distribution of the tensile yield-
ing threshold ( f ?I ), further used in the DEM simu-
lations. The cohesive link stiffness controlled the
slope of the linear elastic force-displacement re-
lationship, while the critical force was ruled by
the tensile threshold of the links f ?I , causing their
opening. Both parameters depend on the shape
discretisation, which is an important choice to
be made a priori. For the sake of calculation ef-
ficiency, the final discretisation considered only
with the circumferential division into only 12 sec-
tors, since this cluster model was then probed as a
constituent in the large assembly. The verification
of the cluster was successfully performed on the
biaxial compression of a shell with the minor load
being a consequence of the horizontal strain con-
straints. Thanks to the experimental results, the
force law parameters for the cohesive links were
successfully validated.

Sample Preparation

The sample preparation was an intermediate but
crucial step to the following study of mechani-
cal behaviour. The numerical protocol included
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two phases: a gravity deposit (a reflexion of the
real procedure) and a numerical relaxation (a re-
lease of the kinematic energy in time). As a re-
sult, shells belonging to the core of the assembly
were randomly orientated, however at the bound-
ary, a deviation from fairly isotopic distribution
towards a preferential orientation (mainly hori-
zontal) was observed. The initial density can be
controlled by the inter-cluster friction coefficient,
such that for a frictionless deposit the maximum
(numerical) density was obtained. Throughout
an adjustment of friction coefficient, the samples
were prepared with a number density compara-
ble to the experimental measurements. The ac-
tual orientation of shells was investigated thanks
to an X-ray CT and 3D image analysis. A new tool
3DShellFinder was developed, and then, probed
in the case of the true samples extracted from the
original tunnel segment. The horizontal (tangent
to the tunnel extrados) orientation was dominant
in the in-situ configurations, although the bound-
ary effect was expected to be negligible. The Leg-
endre’s polynomials expansion was found to be
a suitable method to characterise the distribution
of shell orientations and quantify its anisotropy,
only if the local extreme of the distribution (steep
peak) did not exist. Those study inspired us to
enhance the preparation protocol such that also
the samples with a strong preferential anisotropy
were prepared.

Oedometer compression

The numerical investigations were limited to the
uniaxial compression, know also as oedometer
test. A parametric study allowed us to under-
stand the importance of many numerical parame-
ters, test the influence of the initial state and dis-
cover the model limitations due to the geometry
of the sectors.

To obtain an agreeable mechanical curve, an
adjustment of the parameters was necessary also
at the macro scale. Among all the force law pa-
rameters, the normal yield thresholds f ?I (reflect-
ing the tensile strength of shells) one more proved
itself to be of the greatest significance. For the
1D compression, if the constituents are stronger,

the sample, likewise, is more resistant. Surpris-
ingly, the heterogenity of strength played a sec-
ondary role and the use of Weibullian-like vari-
ability did not bring any obvious benefit. What
concerns the tangential yield thresholds, it must
exceed f ?I , since the shear strength of baked clay
is higher than the tensile strength, by a natural re-
lationship.

Internal state variables turned out to be highly
influential. A standard effect of initial density has
been observed, such that denser samples behaved
stronger and even a local softening was observed.
The investigation of the preferential orientations
brought some interesting observations. The verti-
cally oriented shells caused high oscillation in the
mechanical response (more precisely, in the stress
evolution). On the contrary, the horizontal shells
seemed to arrange into a rather loose assembly,
which presents a smooth mechanical response.

The model reproduced the stress↔strain curve
from true 1D compression1, but the input parame-
ters mismatched the experimental estimations and
the initial loose state of DEM sample was lower
than the true density. Also, the model was inca-
pable of reaching the true ultimate grain size dis-
tribution, which was caused by the initial choice
of the sector size. The final modelling involved
the unloading and reloading cycles. In the mod-
elling the response of the sample less rigid, if the
friction coefficient is kept constant during all the
test. An increase of the friction in UR cycles led
to elastic unloading at the contacts, and thus the
mechanical response became more similar to the
experimental one.

Analysis of compressible assembly

A more detail analysis not only provided some ad-
ditional information, like the local mean pressures
but also emphasised the role of grain breakage. In
the case of shell assembly, the primary breakage
had a major contribution to the high compressibil-
ity of material. Note that it was easy to quantify,
and then, its evolution was related to the charac-
teristics of the mechanical response. A classical
consolidation curve has been obtained, if the in-
ternal voids were included in the void ratio calcu-

1 The large scale oedometer tests were conducted both by Laboratory Navier and by Euro-Géomat-Consulting (EGC).
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lations (a total void ratio e). Looking at the inter-
clusters void ratio e? (the internal voids are seen
as solid), its value rose as long as a large num-
ber of voids was being constantly released dur-
ing continuous shells crushing. Once the primary
breakage slowed down, the inter-cluster void ratio
presented a decrease. The peak in the evolution
indicated the loss of the compressible capacity of
the sample.

Finally, an analytical prediction model has
been constructed to foresee both the total and
the inter-granular void ratios. A simple model
with respect to the strain has provided rough
but acceptable estimations. The more complex
model was required with respect to the macro-
scopic stress. We attempted to characterise the
classical constitutive behaviour (e ↔ σa) with al-
ready existing model (Bauer, 1996), yet it was
only partially suitable for this case. Thus, we
proposed to divide the compression curve into
two sub-domains (high and standard compress-
ibility). In both sub-domains, two types of pa-
rameters were required. The shape parameter has
been presented as a function of void ratio (corre-
lated to density), whereas the soil hardness is well
known to be a function of the particle strength. To
predict the inter-granular void ratio e?, also, the
evolution of primary breakage had to be charac-
terised as a function of the macroscopic loading.
To this end, an exponential-power law has been
used with scale parameter depending on the ten-
sile strength of shell, but with the shape parameter
insensitive to the initial state (density). Since the
DEM simulations has been a foundation for model
the experimental behaviour can be reflected prop-
erly until the validity point of the model.

7.2 Perspectives

Final goal – FEM×DEM model

This work is a first step on the way to the final
model applicable to a tunnel lining made of com-
pressible arch-segments (VMC). A double scale
model combining FEM at the structure scale (the
tunnel) and DEM at the material scale (the assem-
bly of shells), FEM×DEM (Desrues et al., 2019) is
an appealing tool for this case. The DEM model

of a compressible layer can be integrated into such
a solution. To this end, the DEM part has to be
fully developed and explored. The compressible
layer is a highly complex material which model re-
quires (i) the use of the complex shapes, (ii) a reli-
able model of the breakage (the material cohesion)
and (iii) a representation of the cement joints (the
inter-granular cohesion). This work has partially
addressed these complex topics, but some impor-
tant enhancements and developments still need to
be done.

The coating

The first and, at this point, less demanding task
is to include in the model the cement bonds. A
similar scheme as for the inter-sector links can be
used, yet adding rolling resistance. This study al-
ready provided the estimation of cement bridge
strengths, however, the model adjustment most
probably will be required. If the inter-cluster
bonds will be infinitesimal, i.e., ignoring the vol-
ume of coating, perhaps the limitation of the
model, due to large sector size, will be dimin-
ished. In other words, considering the infinitesi-
mal bonds will improve the validity of the model.

Also, the analytical prediction model could be
enhanced and rebuild within the framework of ce-
mented shells. This approach would require the
understanding of the mechanical response with
the coating and knowledge of the influence of
bond strength, which is proven to affect the stress
level in the literature. Still, the cement joints are
an addition to the skeleton of shells, and thus, the
basic analytical model for shells only constitutes a
good reference and a starting point for this devel-
opment.

The shape of shell

Hereinbefore, only tube thickness was analysed.
Other variations of shell geometry may lead to an
optimisation of the shape in the context of com-
pressibility and strength. Unfortunately, the true
force scattering and the change of the shell stiff-
ness was not tested experimentally. This part of
the study was supported with FEM modelings of
a 2D ring. On one side, it could be an interesting
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way to continue the study in this direction and fill
this experimental gap. On the other side, the fab-
rication process is conducted by an external com-
pany as a massive production, the change of shape
needs some technical adjustment that may not be
economically friendly just for the supplementary
research.

Other loading conditions

The background experimental campaign included
also a series of standard triaxial tests, and data for
the assembly with and without coating wait to be
compared with a numerical model. We have per-
formed a primary modelling of a triaxial test on a
cubic sample with rigid walls. However, the rigid
boundary conditions highly influence the freedom
of deformation and of shear band formation. This
is one of the motives for further improvements of
the DEM tool, discussed as follows.

Boundary conditions – the technical en-
hancement of model

An appealing candidate to be implemented in the
numerical scheme is a concept of the periodic

boundary conditions. Above all, the FEM×DEM
specifically requires its numerical implementa-
tion. As discussed, it will upgrade the reliability
of more advanced deformation patterns. Periodic
boundary conditions will also erase the effect of
rigid boundary, and thus, it may lead to a further
reduction of the number of shells – a lower com-
putational time.

Experimental improvements

The experimental characterisation of material both
for a single shell and a coated shell assembly has
developed some difficulties. For example, an at-
tempt to extract a shear force has not been satis-
factory. As it was discussed, the analysis of the
3D image cannot be limited to classic image anal-
ysis tools. Perhaps starting with less complex case
and supporting the results with X-ray tomogra-
phy of the non-cemented assembly would help to
develop/enhance more capable tools.
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A Uniaxial radial compression
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A.1 Shape of cluster

Shape t (mm) d (mm) h (mm) N?
radial N?

axial Front view Side view

d18-S1 2.4 17.0 17.0 12 1

d18-S2 2.4 17.0 17.0 12 2

d18-S3 2.4 17.0 17.0 16 1

d18-S4 3.6 17.0 17.0 12 1

d18-S5 4.8 17.0 17.0 12 1

d18-S6 2.4 17.0 17.0 24 1

d18-S7 2.4 17.0 17.0 8 1

d20-S1 2.8 18.6 18.5 12 1

Table A.1 : The characteristics of the cluster shape.
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A.2 Adjustment of tensile strength – FEM modelling

a b

Figure A.1 : 2D FEM. A model in a plain stress condition: a – the irregular mesh with 2 500 elements b – the
boundary conditions. The force FI = 120 N acts in the vertical diameter. In the points marked by the bullet,
neither a vertical nor a horizontal displacement is allowed. In the points marked by the triangle, only a vertical
displacement is admitted. Tool: RDM.

Finite Element Method (FEM) is a numeri-
cal technique used to analyse various phenomena
both in the engineering field and science. Since it
can provide a full stress field, we have decided to
perform 2D FEM modelling of the diametrically
loaded shell. To this end, an open source finite
element code called RDM was used (Institut Uni-
versitaire de Technologie du Mans, 2018).

FEM subdivides the domain into a finite num-
ber of smaller and simpler parts, called elements.
Figure A.1a presents the mesh used to discre-
tise the ring with diameters dout = 17.0 mm and
din = 12.2 mm (as for cluster d18-S1) into 2 500 ele-
ments. Then, a point load is applied in the vertical
axis FI = 120 N. In Figure A.1b the boundary con-
ditions are presented assuming a plain stress state
in the remaining dimension. The bottom of the
ring is fixed such that no displacement can appear
(red bullet). The point of loading can move only
vertically (red triangle). Two elasticity parameters
were used E = 5 GPa and ν = 0.3 that are of the
same order as the one found in the literature for
COx clay-stone.

Figure A.2 presents the stress distribution
within the shell cross-section. Because we deal

with an orthogonal coordinate system, we show
the horizontal stress σxx (Figure A.2a) and vertical
ones σyy (Figure A.2b). This is sufficient to verify
the tensile stresses (leading to mode I feature) in
vertical and horizontal plane, respectively. The lo-
calisation of tensile stress stands in a good agree-
ment with DEM modelling and theoretical solu-
tions. The maximum tensile stress σI = 16.93 MPa
is higher than analytical estimation with the aver-
age equal to 9.44± 1.47 MPa (Figure 3.15). Addi-
tionally, Figure A.2a distinguishes where the fail-
ure appears in DEM simulations of uniaxial radial
compression, when the configuration of shells is
rotated (the failure plane is inclined with respect
to the vertical axis, Figure 3.27b).

Furthermore, this simple FEM modelling can
supplement the DEM modelling. For example, it
was employed in the scheme to determine f ?I , ten-
sile strength of material, when modifying the shell
thickness. DEM operates on the contact forces,
which values depend on the amount of material
per shell. Then, more material per cluster must
lead to higher forces. Thus, f ?I must be increased,
but without experimental measurements it is not
possible to calibrate our DEM model. In con-
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Nradial : 
24 sectors 
12 sectors 
  8 sectors

a

b

Figure A.2 : The results of 2D FEM modelling of shell. The internal stress distribution in the uniaxial radial
compression loaded by the external force FI = 120 N: a – the horizontal stress σxx and b – the vertical stress σyy.

157



trast, the tensile stress causing breakage is treated
as a material constant. Even if the geometry of
shell changes, σI should be constant. Figure A.3
presents the scheme to determine f ?I taking ad-
vantage of FEM model:

step 1: In the case of shells d18, f ?I was ad-
justed in DEM such that the cluster resists
the load lower then the experimental aver-
age force FI .

step 2: Applying the load FI , FEM model
provides an equivalent tensile stress σI .

step 3: A ring with new thicknesss is mod-
elled with FEM. The process of trial and er-
ror leads to a determination of load F′I trig-
gering the same σI .

step 4: Keeping F′I , the limit of tensile cohe-
sion can be found in DEM modelling.

7

DEM

σI

7fI
★

step 1

FI'

FI'

FI

FI

FEM

step 4

step 2

step 3

FI'

FI'

FI

FI

find FI'

find fI
★

find σI

σI

Figure A.3 : The numerical scheme to determine the
tensile strength, if the geometry of the ring cross-
section was modified. DEM and FEM supplement each
other. Thanks to experimental campaign the tensile
yield threshold f ?I has been adjusted (step 1). FEM
modelling provided us with an equivalent tensile stress
σI (step 2). Once the geometry was modified, thanks
to FEM, the updated critical load F′I was selected to
match the same critical σI (step 3). Keeping F′I , the
new f ?I could have been found (step 4).

This scheme has been used for shells with
smaller internal void in the cases of shapes d18-
S4 and d18-S5 used in chapter 5 in section 5.1.5 to
study an affect of the high internal porosity. Ta-
ble A.2 sums up the results of the yield paramter

determination as described above. One can see
that the increase of f ?I is not linearly proportional
to FI . The FI/ f ?I ratio depends on thickness, in-
dicating the importance of the relative radius (the
void size) in the scattering of force.

Shape d18-S1 d18-S4 d18-S5

t (mm) 2.4 3.6 4.8
r 0.718 0.576 0.435
FI (N) 121.3 286.0 517.7
f ?I (N) 85 105 115
FI/ f ?I 1.4 2.7 4.5

Table A.2 : The results of normal yield threshold f ?I
adjustment of DEM parameters for the shells with
smaller void see also Table A.1. The relative radius:
r = rout/rin.
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B Initial state of samples
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Sample N Cluster shape H0 (m) n (m−3) e? e Zc Zn NNHB/N NNRB/N NNB/N
Sample D=35 cm and H0 ≈ 12 cm

Various configuration
C_35×12_d_01_A 1926 d18-S1 0.1220 164 139 0.579 2.423 9.62 6.23 0.66 0.79 0.52
C_35×12_d_02_A 1926 d18-S1 0.1225 163 468 0.585 2.437 9.76 6.17 0.67 0.79 0.53
C_35×12_d_03_A 1926 d18-S1 0.1223 163 674 0.583 2.433 9.83 6.28 0.67 0.79 0.53
C_35×12_d_04_A 1926 d18-S1 0.1231 162 566 0.594 2.456 9.79 6.30 0.68 0.79 0.54
C_35×12_d_05_A 1926 d18-S1 0.1216 164 640 0.574 2.413 9.79 6.28 0.67 0.80 0.53
C_35×12_d_06_A 1926 d18-S1 0.1228 163 004 0.590 2.447 9.96 6.22 0.67 0.79 0.53

Different shell geometry
C_35×12_d_07_B 1926 d18-S2 0.1231 162 573 0.594 2.450 9.46 6.24 0.67 0.79 0.53
C_35×12_d_08_C 1926 d18-S5 0.1252 159 940 0.620 1.082 10.74 6.37 0.71 0.79 0.56
C_35×12_d_09_D 1926 d18-S4 0.1241 161 250 0.607 1.516 10.20 6.36 0.68 0.79 0.54

Sample D=35 cm and H0 ≈ 5 cm
C_35×5_d_01_A 1579 d18-S1 0.0510 160 965 0.610 2.490 9.51 5.78 0.21 0.79 0.16
C_35×5_d_02_A 1579 d18-S1 0.0510 161 004 0.610 2.490 10.12 5.91 0.22 0.80 0.16
C_35×5_d_03_A 1579 d18-S1 0.0510 161 004 0.610 2.490 9.99 5.88 0.22 0.79 0.16
C_35×5_d_04_A 1579 d18-S1 0.0510 160 940 0.610 2.491 9.86 5.97 0.22 0.79 0.17
C_35×5_d_05_A 1579 d18-S1 0.0510 161 003 0.610 2.490 10.39 5.86 0.22 0.80 0.17
C_35×5_d_06_A 1579 d18-S1 0.0508 161 660 0.603 2.475 9.16 5.96 0.19 0.79 0.15
C_35×5_d_07_A 1579 d18-S1 0.0510 161 016 0.610 2.489 9.03 5.73 0.21 0.79 0.15
C_35×5_d_08_A 1579 d18-S1 0.0510 161 006 0.610 2.490 9.77 5.97 0.22 0.79 0.17
C_35×5_d_09_A 1579 d18-S1 0.0510 161 006 0.610 2.490 9.83 5.83 0.22 0.79 0.17
C_35×5_d_10_A 1579 d18-S1 0.0510 161 008 0.610 2.490 9.56 6.01 0.21 0.80 0.17

Sample D=35 cm and H0 ≈ 7 cm
C_35×7_d_01_A 1105 d18-S1 0.0734 156 479 0.656 2.591 9.59 5.95 0.43 0.80 0.34
C_35×7_d_02_A 1105 d18-S1 0.0725 158 344 0.637 2.548 9.70 6.00 0.42 0.79 0.33
C_35×7_d_03_A 1105 d18-S1 0.0728 157 774 0.643 2.561 9.81 6.06 0.42 0.79 0.33
C_35×7_d_04_A 1105 d18-S1 0.0731 157 097 0.650 2.576 9.69 5.97 0.43 0.80 0.33
C_35×7_d_05_A 1105 d18-S1 0.0724 158 683 0.633 2.541 9.98 5.97 0.43 0.79 0.34
C_35×7_d_06_A 1105 d18-S1 0.0723 158 930 0.631 2.535 9.83 5.99 0.42 0.80 0.33

Sample D=35 cm and H0 ≈ 10 cm
C_35×10_d_01_A 1579 d18-S1 0.1009 162 717 0.593 2.453 9.63 6.16 0.60 0.79 0.47
C_35×10_d_02_A 1579 d18-S1 0.1012 162 105 0.599 2.466 9.43 6.24 0.61 0.80 0.49
Continued on next page...
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Sample N Cluster shape H0 (m) n (m−3) e? e Zc Zn NNHB/N NNRB/N NNB/N
C_35×10_d_03_A 1579 d18-S1 0.1014 161 877 0.601 2.471 9.70 6.18 0.60 0.80 0.47
C_35×10_d_04_A 1579 d18-S1 0.1016 161 609 0.604 2.477 9.75 6.20 0.60 0.79 0.47
C_35×10_d_05_A 1579 d18-S1 0.1009 162 680 0.593 2.454 9.68 6.10 0.60 0.80 0.47
C_35×10_d_06_A 1579 d18-S1 0.1009 162 608 0.594 2.455 9.45 6.23 0.61 0.79 0.48

Sample D=25 cm and H0 ≈ 13 cm
Various configuration

C_25×13_d_01_A 1047 d18-S1 0.1308 163 068 0.589 2.445 9.68 6.15 0.70 0.72 0.50
C_25×13_d_02_A 1047 d18-S1 0.1324 161 084 0.609 2.488 9.97 6.17 0.70 0.72 0.50
C_25×13_d_03_A 1047 d18-S1 0.1304 163 567 0.584 2.435 9.92 6.20 0.69 0.72 0.49
C_25×13_d_04_A 1047 d18-S1 0.1318 161 833 0.601 2.472 9.57 6.15 0.70 0.72 0.50
C_25×13_d_05_A 1047 d18-S1 0.1323 161 264 0.607 2.484 9.56 6.22 0.69 0.72 0.49
C_25×13_d_06_A 1047 d18-S1 0.1309 162 980 0.590 2.447 9.62 6.23 0.70 0.72 0.50
C_25×13_d_07_A 1047 d18-S1 0.1303 163 699 0.583 2.432 9.67 6.19 0.69 0.72 0.49

Different shell geometry
C_25×13_d_01_E 804 d20-S1 0.1325 123 582 0.610 2.296 9.85 6.10 0.67 0.69 0.47

Preferential orientation
C_25×13_d_01_AV 1047 d18-S1 0.1329 160 452 0.615 2.502 10.08 6.07 0.74 0.71 0.53
C_25×13_d_02_AV 1047 d18-S1 0.1320 161 602 0.604 2.477 10.76 6.01 0.74 0.72 0.53
C_25×13_d_03_AV 1047 d18-S1 0.1363 156 488 0.656 2.590 9.21 5.40 0.80 0.70 0.56
C_25×13_d_01_AH 1047 d18-S1 0.1322 161 324 0.606 2.483 9.36 6.21 0.66 0.72 0.47
C_25×13_d_02_AH 1047 d18-S1 0.1336 159 707 0.623 2.518 9.15 6.19 0.66 0.72 0.47

Various density
C_25×13_l_01_A 1047 d18-S1 0.1519 140 388 0.846 3.002 5.53 4.24 0.74 0.71 0.53
C_25×13_D_01_A 1047 d18-S1 0.1244 171 450 0.512 2.277 11.70 7.08 0.67 0.72 0.48
C_25×13_exp_01_A 1047 d18-S1 0.1384 154 076 0.510 2.647 6.19 4.54 0.72 0.71 0.51

Sample D=11 cm and H0 ≈ 13 cm
C_11×13_d_01_A 203 d18-S1 0.1345 158 800 0.632 2.538 9.56 5.99 0.69 0.41 0.28
C_11×13_d_02_A 203 d18-S1 0.1364 156 606 0.655 2.588 9.15 5.86 0.72 0.41 0.30
C_11×13_d_03_A 203 d18-S1 0.1363 156 722 0.654 2.585 9.05 5.94 0.73 0.41 0.29
C_11×13_d_04_A 203 d18-S1 0.1348 158 502 0.635 2.545 9.20 5.61 0.72 0.42 0.30
C_11×13_d_05_A 203 d18-S1 0.1368 156 128 0.660 2.599 9.30 5.82 0.72 0.40 0.29
C_11×13_d_06_A 203 d18-S1 0.1388 153 933 0.684 2.650 9.09 5.99 0.73 0.40 0.30
C_11×13_d_07_A 203 d18-S1 0.1377 155 163 0.670 2.621 9.59 5.87 0.72 0.42 0.30
Continued on next page...
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Sample N Cluster shape H0 (m) n (m−3) e? e Zc Zn NNHB/N NNRB/N NNB/N
C_11×13_d_08_A 203 d18-S1 0.1354 157 790 0.642 2.561 9.85 6.05 0.70 0.41 0.28
C_11×13_d_09_A 203 d18-S1 0.1354 157 786 0.642 2.561 9.80 5.76 0.70 0.41 0.29
C_11×13_d_10_A 203 d18-S1 0.1363 156 727 0.654 2.585 9.47 5.75 0.73 0.42 0.32
C_11×13_d_11_A 203 d18-S1 0.1386 154 175 0.681 2.644 9.61 5.83 0.72 0.41 0.29
C_11×13_d_12_A 203 d18-S1 0.1363 156 701 0.654 2.585 9.34 5.81 0.71 0.41 0.28
C_11×13_d_13_A 203 d18-S1 0.1393 153 385 0.690 2.663 9.45 5.78 0.72 0.41 0.31
C_11×13_d_14_A 203 d18-S1 0.1374 155 458 0.667 2.614 9.41 5.70 0.73 0.41 0.31
C_11×13_d_15_A 203 d18-S1 0.1389 153 748 0.686 2.654 8.92 5.57 0.73 0.41 0.32
C_11×13_d_16_A 203 d18-S1 0.1373 155 556 0.666 2.612 9.39 6.15 0.71 0.42 0.30
C_11×13_d_17_A 203 d18-S1 0.1389 153 799 0.685 2.653 9.13 6.05 0.70 0.42 0.30
C_11×13_d_18_A 203 d18-S1 0.1407 151 872 0.706 2.699 9.54 5.90 0.75 0.41 0.31
C_11×13_d_19_A 203 d18-S1 0.1370 155 897 0.662 2.604 8.93 5.78 0.73 0.41 0.30
C_11×13_d_20_A 203 d18-S1 0.1382 154 622 0.676 2.634 9.69 6.01 0.73 0.42 0.32
C_11×13_d_21_F 203 d18-S2 0.1375 155 380 - 2.645 9.34 5.85

Prism Sample LX = LZ = 19 cm and LY = H0 = 17 cm
P_19×17_d_01_A 203 d18-S1 0.1705 162 468 0.595 2.458 5.51 3.58

Table B.1 : The state of sample after the deposit. Each sample is described by a following set of internal variables and descriptors: the number of shells N,
a height of sample H0, a number density n, an inter-cluster (modified) void ratio e?, a total void ratio e, the coordination numbers of the neighbours and
the contacts Zn and Zc, respectively, the percentage of shells located at boundary zone next to: the horizontal boundaries NNHB/N, the radial boundaries
NNRB/N and any boundary NNB/N.
A Sample name is established as follows: Geometry_Size_Aimed-Density_Configuration_Additional-Specification with options as follows:
(a) Geometry: C – cylinder or P – prism,
(b) Size: D× H0 for C or Lx × Lz with Ly = Lx for P,
(c) Aimed density: l – relatively loose, d – relatively dense and D – dense,
(d) Additional specification: A to F – a shape of cluster (as presented in the Table A.1 in Appendix A.1) or a preferential shell orientation: H – horizontal
or V – vertical.

162



C Simulation of uniaxial compression (oe-
dometer tests)
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Links Contacts
Modeling Initial state f ?I (N) f ?I I (N) f ?I / f ?I I k I (N/m) k I/k I I q kn (N/m) kn/kt µshells µwall

Section 5.1.1 A primary comparison with the experiments
Oedo_first C_35×12_d_01_A 85 50 1.70 5.5 106 1.00 2 5.5 106 1.00 0.36 0.15
Section 5.1.1 Size dependency
Oedo_H12 C_35×12_d_01_A 85 50 1.70 5.5 106 1.00 2 5.5 106 1.00 0.36 0.15
(Oedo_first )
Oedo_H10 C_35×10_d_01_A 85 50 1.70 5.5 106 1.00 2 5.5 106 1.00 0.36 0.15
Oedo_H7 C_35×7_d_01_A 85 50 1.70 5.5 106 1.00 2 5.5 106 1.00 0.36 0.15
Oedo_H5 C_35×5_d_01_A 85 50 1.70 5.5 106 1.00 2 5.5 106 1.00 0.36 0.15
Oedo_D25 C_25×13_d_01_A 85 50 1.70 5.5 106 1.00 2 5.5 106 1.00 0.36 0.15
Oedo_D11 C_11×13_d_01_A 85 50 1.70 5.5 106 1.00 2 5.5 106 1.00 0.36 0.15
Section 5.1.3 Influence of the parameters controlling the force laws

(i) On the shear strength of shells
Oedo_ f ?I I-50 C_25×13_d_01_A 85 50 1.70 5.5 106 1.00 2 5.5 106 1.00 0.36 0.15
(Oedo_D25)
Oedo_ f ?I I-250 C_25×13_d_01_A 85 250 0.34 5.5 106 1.00 2 5.5 106 1.00 0.36 0.15
Oedo_ f ?I I-85 C_25×13_d_01_A 85 85 1.00 5.5 106 1.00 2 5.5 106 1.00 0.36 0.15

(ii) On the shape of yield line
Oedo_q-2 C_25×13_d_02_A 85 250 0.34 5.5 106 1.00 2 1.0 107 1.00 0.30 0.15
Oedo_q-3 C_25×13_d_02_A 85 250 0.34 5.5 106 1.00 3 1.0 107 1.00 0.30 0.15
Oedo_q-5 C_25×13_d_02_A 85 250 0.34 5.5 106 1.00 5 1.0 107 1.00 0.30 0.15

(iii) On the tensile strength of shells
Oedo_ f ?I -92_Wm-7 C_25×13_d_01_A m=7.2,x0= 92 250 – 3.0 106 1.00 2 1.0 107 1.00 0.36 0.45
Oedo_ f ?I -150_Wm-4 C_25×13_d_01_A m=4.0,x0=150 250 0.60 3.0 106 1.00 2 1.0 107 1.00 0.36 0.15
Oedo_ f ?I -130_Wm-5 C_25×13_d_01_A m=5.0,x0=130 250 0.52 3.0 106 1.00 2 1.0 107 1.00 0.36 0.15
Oedo_ f ?I -110_Wm-6 C_25×13_d_01_A m=6.0,x0=110 250 0.44 3.0 106 1.00 2 1.0 107 1.00 0.36 0.15
Oedo_ f ?I -92_Wm-4 C_25×13_d_01_A m=4.0,x0= 92 250 0.37 3.0 106 1.00 2 1.0 107 1.00 0.36 0.15
Oedo_ f ?I -150_Wm-7 C_25×13_d_01_A m=7.2,x0=150 250 0.60 3.0 106 1.00 2 1.0 107 1.00 0.36 0.15
Oedo_ f ?I -40 C_25×13_d_02_A 40 118 0.34 5.5 106 1.00 2 1.0 107 1.00 0.30 0.15
Oedo_ f ?I -225 C_25×13_d_02_A 255 750 0.34 5.5 106 1.00 2 1.0 107 1.00 0.30 0.15
Oedo_ f ?I -85 C_25×13_d_02_A 85 250 0.34 5.5 106 1.00 2 1.0 107 1.00 0.30 0.15

(iv) On the contacts stiffnesses k I , k I I in bonded contacts
Continued on next page...
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Links Contacts
Modeling Initial state f ?I (N) f ?I I (N) f ?I / f ?I I k I (N/m) k I/k I I q kn (N/m) kn/kt µshells µwall

Oedo_kI-3e6 C_25×13_d_01_A m=4.0,x0=150 250 0.60 3.0 106 1.00 2 1.0 107 1.00 0.36 0.15
Oedo_kI-7e6_Wm-6 C_25×13_d_01_A m=4.0,x0=150 250 0.60 m=6.15,x0=7.2 106 1.00 2 1.0 107 1.00 0.36 0.15
Oedo_kI-4e6_Wm-6 C_25×13_d_01_A m=4.0,x0=150 250 0.60 m=6.15,x0=4.0 106 1.00 2 1.0 107 1.00 0.36 0.15

(v)On the inter-granular friction
Oedo_µ0 C_25×13_d_01_A m=7.2,x0= 92 250 – 3.0 106 1.00 2 1.0 107 1.00 0.36 0.45
Oedo_µ̂shell C_25×13_d_01_A m=7.2,x0= 92 250 – 3.0 106 1.00 2 1.0 107 1.00 0.60 0.15
Oedo_µ̂wall C_25×13_d_01_A m=7.2,x0= 92 250 – 3.0 106 1.00 2 1.0 107 1.00 0.36 0.15
Section 5.1.4 An influence of initial state of an assembly

(i) On the number density n
Oedo_d C_25×13_d_02_A m=4.0,x0=150 250 0.60 m=6.15 x0=4 106 1.00 2 1.0 107 1.00 0.36 0.15
Oedo_l C_25×13_l_01_A m=4.0,x0=150 250 0.60 m=6.15 x0=4 106 1.00 2 1.0 107 1.00 0.30 0.15
Oedo_D C_25×13_D_01_A m=4.0,x0=150 250 0.60 m=6.15 x0=4 106 1.00 2 1.0 107 1.00 0.30 0.15

(ii) On the anisotropy of shells orientations
Oedo_r C_25×13_d_02_A 85 250 0.34 5.5 106 1.00 2 1.0 107 1.00 0.30 0.15
Oedo_h C_25×13_d_01_AH 85 250 0.34 5.5 106 1.00 2 1.0 107 1.00 0.30 0.15
Oedo_H C_25×13_d_02_AH 85 250 0.34 5.5 106 1.00 2 1.0 107 1.00 0.30 0.15
Oedo_v C_25×13_d_01_AV 85 250 0.34 5.5 106 1.00 2 1.0 107 1.00 0.30 0.15
Oedo_V C_25×13_d_03_AV 85 250 0.34 5.5 106 1.00 2 1.0 107 1.00 0.30 0.15
Section 5.1.5 Geometry of elementary particles – sectors

(i) On the number of sectors per shell
Oedo_N?

circ-12 C_35×12_d_01_A 85 50 1.70 5.5 106 1.00 2 5.5 106 1.00 0.36 0.15
(Oedo_first)
Oedo_N?

circ-16 C_35×12_d_07_B 85 50 1.70 5.5 106 1.00 2 5.5 106 1.00 0.36 0.15
Oedo_N?

axial-1 C_11×13_d_01_A 85 50 1.70 5.5 106 1.00 2 5.5 106 1.00 0.36 0.15
Oedo_N?

axial-2 C_11×13_d_21_F 85 50 1.70 2.8 106 1.00 2 5.5 106 1.00 0.36 0.15
(ii) On the thickness of shell t

Oedo_t-2.4 C_35×12_d_01_A 85 250 0.34 5.5 106 1.00 2 1.0 107 1.00 0.30 0.15
Oedo_t-4.8 C_35×12_d_08_C 115 338 0.34 5.5 106 1.00 2 1.0 107 1.00 0.30 0.15
Oedo_t-3.6 C_35×12_d_09_D 105 309 0.34 5.5 106 1.00 2 1.0 107 1.00 0.30 0.15
Section 5.1.6 Comparison with experiments
Oedo_Adjusted_Cyc C_35×12_d_01_A m=5.0,x0=190 f( f ?I ) 0.34 5.5 106 1.00 5 1.0 107 1.00 0.40 0.40
Oedo_True_Cyc C_25×13_exp_01_A m=5.0,x0=190 f( f ?I ) 0.34 5.5 106 1.00 5 1.0 107 1.00 0.40 0.40
Continued on next page...
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Links Contacts
Modeling Initial state f ?I (N) f ?I I (N) f ?I / f ?I I k I (N/m) k I/k I I q kn (N/m) kn/kt µshells µwall

Oedo_d18 C_25×13_d_02_A 85 250 0.34 5.5 106 1.00 2 1.0 107 1.00 0.30 0.15
Oedo_d20 C_25×13_d_01_E 100 295 0.34 4.0 106 1.00 2 1.0 107 1.00 0.30 0.15
Section 6.1 Study of mechanical behaviour as a consequence of grain breakage
Oedo_Adjusted C_25×13_l_01_A m=5.0 x0=190 f( f ?I ) 0.34 5.5 106 1.00 5 1.0 107 1.00 0.40 0.40
Oedo_True C_25×13_d_02_A 85 250 0.34 5.5 106 1.00 2 1.0 107 1.00 0.30 0.15
Oedo_l_ f ?I -85 C_25×13_l_01_A 85 250 0.34 m=6.15 x0=4 106 1.00 2 1.0 107 1.00 0.30 0.15
Oedo_l_ f ?I -150 C_25×13_l_01_A 150 250 0.60 m=6.15 x0=4 106 1.00 2 1.0 107 1.00 0.30 0.15
Oedo_l_ f ?I -225 C_25×13_l_01_A 255 750 0.34 m=6.15 x0=4 106 1.00 2 1.0 107 1.00 0.30 0.15
Section 6.3 Micro-mechanics and anisotropy of fragments orientation during progressive breakage
Oedo_control-εa C_25×13_d_02_A 85 250 0.34 5.5 106 1.00 2 1.0 107 1.00 0.30 0.15
Oedo_control-σa P_19×17_d_01_A 85 250 0.34 5.5 106 1.00 2 5.5 106 1.00 0.36 0.15

Table C.1 : The numerical input parameters used in the DEM simulations.
The force laws for cohesive links as explained in the Figure 3.5 in section 3.2, and for the contacts as in the Figure 3.2 in section 3.1.
An additional notation:
Wm – Weibull’s modulus,
x0 – Weibull’s scale parameter
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Name Initial state e2
n β δt (s) tVerlet (δt) DVerlet (m) dVerlet (m) ~g

Section 5.1.1 A primary comparison with the experiments
Oedo_first C_35×12_d_01_A 1.00 0.7 2 10−7 1 000 0.010 0.001 yes
Section 5.1.1 Size dependency
Oedo_H12 C_35×12_d_01_A 1.00 0.7 2 10−7 1 000 0.010 0.001 yes
(Oedo_first)
Oedo_H10 C_35×10_d_01_A 1.00 0.7 2 10−7 1 000 0.010 0.001 yes
Oedo_H7 C_35×7_d_01_A 1.00 0.7 2 10−7 1 000 0.010 0.001 yes
Oedo_H5 C_35×5_d_01_A 1.00 0.7 2 10−7 1 000 0.010 0.001 yes
Oedo_D25 C_25×13_d_01_A 1.00 0.7 2 10−7 1 000 0.010 0.001 yes
Oedo_D11 C_11×13_d_01_A 1.00 0.7 2 10−7 500 0.010 0.001 yes
Section 5.1.3 Influence of the parameters controlling the force laws

(i) On the shear strength of shells
Oedo_ f ?I I-50 C_25×13_d_01_A 1.00 0.7 2 10−7 1 000 0.010 0.001 yes
(Oedo_D25)
Oedo_ f ?I I-250 C_25×13_d_01_A 1.00 0.7 2 10−7 1 000 0.010 0.001 yes
Oedo_ f ?I I-85 C_25×13_d_01_A 1.00 0.7 2 10−7 1 000 0.010 0.001 yes

(ii) On the shape of yield line
Oedo_q-2 C_25×13_d_02_A 0.02 0.7 2 10−7 1 000 0.010 0.001 yes
Oedo_q-3 C_25×13_d_02_A 0.02 0.7 2 10−7 1 000 0.010 0.001 yes
Oedo_q-5 C_25×13_d_02_A 0.02 0.7 2 10−7 1 000 0.010 0.001 yes

(iii) On the tensile strength of shells
Oedo_ f ?I -92_Wm-7 C_25×13_d_01_A 0.02 0.7 2 10−7 1 000 0.010 0.001 yes
Oedo_ f ?I -150_Wm-4 C_25×13_d_01_A 0.02 0.7 2 10−7 1 000 0.010 0.001 yes
Oedo_ f ?I -130_Wm-5 C_25×13_d_01_A 0.02 0.7 2 10−7 1 000 0.010 0.001 yes
Oedo_ f ?I -110_Wm-6 C_25×13_d_01_A 0.02 0.7 2 10−7 1 000 0.010 0.001 yes
Oedo_ f ?I -92_Wm-4 C_25×13_d_01_A 0.02 0.7 2 10−7 1 000 0.010 0.001 yes
Oedo_ f ?I -150_Wm-7 C_25×13_d_01_A 0.02 0.7 2 10−7 1 000 0.010 0.001 yes
Oedo_ f ?I -40 C_25×13_d_02_A 0.02 0.7 2 10−7 1 000 0.010 0.001 yes
Oedo_ f ?I -225 C_25×13_d_02_A 0.02 0.7 2 10−7 1 000 0.010 0.001 yes
Oedo_ f ?I -85 C_25×13_d_02_A 0.02 0.7 2 10−7 1 000 0.010 0.001 yes

(iv) On the contacts stiffnesses k I , k I I in bonded contacts
Oedo_kI-3e6 C_25×13_d_01_A 0.02 0.7 2 10−7 1 000 0.010 0.001 yes
Oedo_kI-7e6_Wm-7 C_25×13_d_01_A 0.02 0.7 2 10−7 1 000 0.010 0.001 yes
Oedo_kI-4e6_Wm-6 C_25×13_d_01_A 0.02 0.7 2 10−7 1 000 0.010 0.001 yes

(v)On the inter-granular friction
Oedo_µ0 C_25×13_d_01_A 0.02 0.7 2 10−7 1 000 0.010 0.001 yes
Oedo_µ̂shell C_25×13_d_01_A 0.02 0.7 2 10−7 1 000 0.010 0.001 yes
Oedo_µ̂wall C_25×13_d_01_A 0.02 0.7 2 10−7 1 000 0.010 0.001 yes
Section 5.1.4 An influence of initial state of an assembly

(i) On the number density n
Oedo_d C_25×13_d_02_A 0.02 0.7 2 10−7 1 000 0.010 0.001 yes
Oedo_l C_25×13_l_01_A 0.02 0.7 2 10−7 1 000 0.010 0.001 yes
Oedo_D C_25×13_D_01_A 0.02 0.7 2 10−7 1 000 0.010 0.001 yes

(ii) On the anisotropy of shells orientations
Oedo_r C_25×13_d_02_A 0.02 0.7 2 10−7 1 000 0.010 0.001 yes
Continued on next page...
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Name Initial state e2
n β δt (s) tVerlet (δt) DVerlet (m) dVerlet (m) ~g

Oedo_h C_25×13_d_01_AH 0.02 0.7 2 10−7 500 0.010 0.001 yes
Oedo_H C_25×13_d_02_AH 0.02 0.7 2 10−7 500 0.010 0.001 yes
Oedo_v C_25×13_d_01_AV 0.02 0.7 2 10−7 500 0.010 0.001 yes
Oedo_V C_25×13_d_03_AV 0.02 0.7 2 10−7 500 0.010 0.001 yes
Section 5.1.5 Geometry of elementary particles – sectors

(i) On the number of sectors per shell
Oedo_N?

circ-12 C_35×12_d_01_A 1.00 0.7 2 10−7 1 000 0.010 0.001 yes
(Oedo_first)
Oedo_N?

circ-16 C_35×12_d_07_B 1.00 0.7 2 10−7 1 000 0.010 0.001 yes
Oedo_N?

axial-1 C_11×13_d_01_A 1.00 0.7 2 10−7 500 0.010 0.001 yes
Oedo_N?

axial-2 C_11×13_d_21_F 1.00 0.7 2 10−7 500 0.010 0.001 yes
(ii) On the thickness of shell t

Oedo_t-2.4 C_35×12_d_01_A 1.00 0.7 2 10−7 1 000 0.010 0.001 yes
Oedo_t-4.8 C_35×12_d_08_C 0.02 0.7 2 10−7 1 000 0.010 0.001 yes
Oedo_t-3.6 C_35×12_d_09_D 0.02 0.7 2 10−7 1 000 0.010 0.001 yes
Section 5.1.6 Comparison with experiments
Oedo_Adjusted_Cyc C_35×12_d_01_A 0.02 0.7 2 10−7 1 000 0.010 0.001 yes
Oedo_True_Cyc C_25×13_exp_01_A 0.02 0.7 2 10−7 1 000 0.010 0.001 no
Oedo_d18 C_25×13_d_02_A 0.02 0.7 2 10−7 1 000 0.010 0.001 yes
Oedo_d20 C_25×13_d_01_E 0.02 0.7 2 10−7 500 0.010 0.001 yes
Section 6.1 Study of mechanical behaviour as a consequence of grain breakage
Oedo_Adjusted C_25×13_l_01_A 0.02 0.7 2 10−7 1 000 0.010 0.001 yes
Oedo_True C_25×13_d_02_A 0.02 0.7 2 10−7 1 000 0.010 0.001 yes
Oedo_l_ f ?I -85 C_25×13_l_01_A 0.02 0.7 2 10−7 1 000 0.010 0.001 yes
Oedo_l_ f ?I -150 C_25×13_l_01_A 0.02 0.7 2 10−7 1 000 0.010 0.001 yes
Oedo_l_ f ?I -225 C_25×13_l_01_A 0.02 0.7 2 10−7 1 000 0.010 0.001 yes
Section 6.3 Micro-mechanics and anisotropy of fragments orientation during progressive breakage
Oedo_control-εa C_25×13_d_02_A 0.02 0.7 2 10−7 1 000 0.010 0.001 yes
Oedo_control-σa P_19×17_d_01_A 4 10−9 0.0 2 10−7 1 000 0.010 0.001 no

Table C.2 : The numerical parameters (vol. 2) used in the DEM simulations. Two damping parameters for viscous
damping e2

n and Cundall damping β, a times step δt, neighbourhood list parameters according Verlet algorithm
(tVerlet, DVerlet, dVerlet) and the gravity vector ~g.
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