. Accute3d,

, Dense multiview stereo evaluation dataset

F. Blender,

. Kinovis,

, Middleburry multi-view stereo evaluation dataset. vision. middlebury.edu/mview

, Middleburry multi-view stereo evaluation dataset

T. Dataset,

, Performance capture from multi-view video, Image and Geometry Processing, p.3, 2010.

R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua et al., SLIC Superpixels. Tech. rep., EPFL, 2010.

E. Aganj, J. Pons, F. Ségonne, and R. Keriven, Spatio-temporal shape from silhouette using four-dimensional delaunay meshing, IEEE 11th International Conference on Computer Vision, 2007.

S. Agarwal, N. Snavely, I. Simon, S. M. Seitz, and R. Szeliski, Building rome in a day, IEEE 12th International Conference on Computer Vision, ICCV, pp.72-79, 2009.

E. De-aguiar, C. Stoll, C. Theobalt, N. Ahmed, H. P. Seidel et al., Performance capture from sparse multi-view video, ACM SIG-GRAPH, 2008.

A. , M. Cohen-or, D. Levin, and D. , As-rigid-as-possible shape interpolation, Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, 2000.

H. Bay, T. Tuytelaars, and L. J. Gool, SURF: speeded up robust features, 2006.

F. Bogo, A. Kanazawa, C. Lassner, P. Gehler, J. Romero et al., Keep it SMPL: Automatic estimation of 3D human pose and shape from a single image, ECCV 2016, 2016.

F. Bogo, J. Romero, M. Loper, and M. J. Black, FAUST: Dataset and evaluation for 3D mesh registration, Computer Vision and Pattern Recognition (CVPR), 2014.

Y. Boykov, O. Veksler, and R. Zabih, Fast approximate energy minimization via graph cuts, IEEE Trans. Pattern Anal. Mach. Intell, vol.23, issue.11, pp.1222-1239, 2001.

M. Z. Brown, D. Burschka, and G. D. Hager, Advances in computational stereo, IEEE Trans. Pattern Anal. Mach. Intell, 2003.

A. Buades, B. Coll, and J. Morel, A non-local algorithm for image denoising, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005, pp.60-65, 2005.

C. Cagniart, E. Boyer, and S. Ilic, Probabilistic Deformable Surface Tracking From Multiple Videos, ECCV 2010 -11th European Conference on Computer Vision, 2010.
URL : https://hal.archives-ouvertes.fr/inria-00568912

N. D. Campbell, G. Vogiatzis, C. Hernández, and R. Cipolla, Using multiple hypotheses to improve depth-maps for multi-view stereo, 2008.

J. Chen, D. Bautembach, and S. Izadi, Scalable real-time volumetric surface reconstruction, ACM Trans. Graph, 2013.

G. K. Cheung, S. Baker, and T. Kanade, Visual hull alignment and refinement across time: A 3d reconstruction algorithm combining shape-from-silhouette with stereo, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2003), pp.16-22, 2003.

C. B. Choy, D. Xu, J. Gwak, K. Chen, and S. Savarese, 3d-r2n2: A unified approach for single and multi-view 3d object reconstruction, 2016.

A. Collet, M. Chuang, P. Sweeney, D. Gillett, D. Evseev et al., High-quality streamable free-viewpoint video, ACM Trans. Graph, 2015.

R. T. Collins, A space-sweep approach to true multi-image matching, 1996.

D. Cremers and K. Kolev, Multiview stereo and silhouette consistency via convex functionals over convex domains, IEEE Trans. Pattern Anal. Mach. Intell, 2011.

B. Curless and M. Levoy, A volumetric method for building complex models from range images, 1996.

A. Delaunoy, E. Prados, P. Gargallo, J. Pons, and P. F. Sturm, Minimizing the multi-view stereo reprojection error for triangular surface meshes, Proceedings of the British Machine Vision Conference, 2008.
URL : https://hal.archives-ouvertes.fr/inria-00308944

M. Dou, P. L. Davidson, S. R. Fanello, S. Khamis, A. Kowdle et al., Motion2fusion: real-time volumetric performance capture, ACM Trans. Graph, 2017.

M. Dou, S. Khamis, Y. Degtyarev, P. Davidson, S. R. Fanello et al., Fusion4d: Real-time performance capture of challenging scenes, ACM Trans. Graph, 2016.

M. Douze, J. S. Franco, and B. Raffin, QuickCSG: Arbitrary and Faster Boolean Combinations of N Solids, Research report, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01121419

J. D. Durou, V. Charvillat, M. Daramy, and P. Gurdjos, Résolution du shape-from-shading par apprentissage, ORASIS -Congrès des jeunes chercheurs en vision par ordinateur, 2011.

C. H. Esteban and F. Schmitt, Silhouette and stereo fusion for 3d object modeling, Computer Vision and Image Understanding, 2004.
URL : https://hal.archives-ouvertes.fr/pastel-00000862

O. D. Faugeras and R. Keriven, Complete dense stereovision using level set methods, ECCV'98, 1998.

J. Flynn, I. Neulander, J. Philbin, and N. Snavely, Deepstereo: Learning to predict new views from the world's imagery, 2016.

J. Franco and E. Boyer, Efficient polyhedral modeling from silhouettes, IEEE Trans. Pattern Anal. Mach. Intell, 2009.
URL : https://hal.archives-ouvertes.fr/inria-00349103

P. Fua, From multiple stereo views to multiple 3-d surfaces, International Journal of Computer Vision, 1997.

P. Fua and Y. G. Leclerc, Object-centered surface reconstruction: Combining multi-image stereo and shading, International Journal of Computer Vision, 1995.

Y. Furukawa and J. Ponce, Accurate, dense, and robust multi-view stereopsis, 2007.

J. Gall, C. Stoll, E. D. Aguiar, C. Theobalt, B. Rosenhahn et al., Motion capture using joint skeleton tracking and surface estimation, 2009.

S. Galliani, K. Lasinger, and K. Schindler, Massively parallel multiview stereopsis by surface normal diffusion, 2015 IEEE International Conference on Computer Vision, pp.873-881, 2015.

S. Galliani and K. Schindler, Just look at the image: Viewpoint-specific surface normal prediction for improved multi-view reconstruction, 2016.

A. Geiger, P. Lenz, and R. Urtasun, Are we ready for autonomous driving? the kitti vision benchmark suite, Conference on Computer Vision and Pattern Recognition (CVPR), 2012.

A. Gilbert, M. Volino, J. Collomosse, and A. Hilton, Volumetric performance capture from minimal camera viewpoints, Computer Vision -ECCV 2018 -15th European Conference, 2018.

B. Goldlücke and M. A. Magnor, Space-time isosurface evolution for temporally coherent 3d reconstruction, 2004.

J. Y. Guillemaut, J. Kilner, and A. Hilton, Robust graph-cut scene segmentation and reconstruction for free-viewpoint video of complex dynamic scenes, 2009.

K. Guo, F. Xu, Y. Wang, Y. Liu, and Q. Dai, Robust non-rigid motion tracking and surface reconstruction using l 0 regularization, IEEE Trans. Vis. Comput. Graph, vol.24, issue.5, pp.1770-1783, 2018.

M. Habermann, W. Xu, M. Zollhöfer, G. Pons-moll, and C. Theobalt, Reticam: Real-time human performance capture from monocular video, 2018.

W. Hartmann, S. Galliani, M. Havlena, L. Van-gool, and K. Schindler, Learned multi-patch similarity, 2017.

P. Hedman, J. Philip, T. Price, J. M. Frahm, G. Drettakis et al., Deep blending for free-viewpoint image-based rendering, ACM Transactions on Graphics (SIGGRAPH Asia Conference Proceedings), vol.37, issue.6, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01886237

H. Hirschmüller and D. Scharstein, Evaluation of stereo matching costs on images with radiometric differences, IEEE Trans. Pattern Anal. Mach. Intell, 2009.

B. K. Horn, Understanding image intensities, Artif. Intell, 1977.

X. Hu and P. Mordohai, A quantitative evaluation of confidence measures for stereo vision, IEEE Trans. Pattern Anal. Mach. Intell, 2012.

Y. Hu, Q. Zhou, X. Gao, A. Jacobson, D. Zorin et al., Tetrahedral meshing in the wild, ACM Trans. Graph, vol.37, issue.4, p.14, 2018.

P. Huang, K. Matzen, J. Kopf, N. Ahuja, and J. Huang, Deepmvs: Learning multi-view stereopsis, 2018 IEEE Conference on Computer Vision and Pattern Recognition, pp.2821-2830, 2018.

Q. Huang, H. Wang, and V. Koltun, Single-view reconstruction via joint analysis of image and shape collections, ACM Trans. Graph, 2015.

Z. Huang, T. Li, W. Chen, Y. Zhao, J. Xing et al., Deep volumetric video from very sparse multiview performance capture, Computer Vision, 2018.

, European Conference, 2018.

M. Innmann, M. Zollhöfer, M. Nießner, C. Theobalt, and M. Stamminger, Volumedeform: Real-time volumetric non-rigid reconstruction, 2016.

S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. A. Newcombe et al., Kinectfusion: real-time 3d reconstruction and interaction using a moving depth camera, Proceedings of the 24th

, Annual ACM Symposium on User Interface Software and Technology, 2011.

R. R. Jensen, A. L. Dahl, G. Vogiatzis, E. Tola, and H. Aanaes, Large scale multi-view stereopsis evaluation, 2014.

M. Ji, J. Gall, H. Zheng, Y. Liu, and L. Fang, Surfacenet: An end-toend 3d neural network for multiview stereopsis, 2017.

A. Kar, C. Häne, and J. Malik, Learning a multi-view stereo machine, 2017.

A. Kendall, H. Martirosyan, S. Dasgupta, P. Henry, R. Kennedy et al., End-to-end learning of geometry and context for deep stereo regression, 2017.

M. Khanian, A. S. Boroujerdi, and M. Breuß, Photometric stereo for strong specular highlights, Computational Visual Media, 2018.

R. Klette, N. Krüger, T. Vaudrey, K. Pauwels, M. M. Hulle et al., Performance of correspondence algorithms in vision-based driver assistance using an online image sequence database, IEEE Trans. Vehicular Technology, 2011.

A. Knapitsch, J. Park, Q. Zhou, and V. Koltun, Tanks and temples: benchmarking large-scale scene reconstruction, ACM Trans. Graph, 2017.

V. Kolmogorov and R. Zabih, Multi-camera scene reconstruction via graph cuts, Computer Vision -ECCV 2002, 7th European Conference on Computer Vision, pp.82-96, 2002.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, Imagenet classification with deep convolutional neural networks. In: Conference on Neural Information Processing Systems (NIPS), 2012.

K. N. Kutulakos and S. M. Seitz, A theory of shape by space carving, 2000.

P. Labatut, J. Pons, and R. Keriven, Efficient multi-view reconstruction of large-scale scenes using interest points, delaunay triangulation and graph cuts, 2007.

E. S. Larsen, P. Mordohai, M. Pollefeys, and H. Fuchs, Temporally consistent reconstruction from multiple video streams using enhanced belief propagation, IEEE 11th International Conference on Computer Vision, 2007.

V. Leroy, J. S. Franco, and E. Boyer, Multi-View Dynamic Shape Refinement Using Local Temporal Integration, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01567758

V. Leroy, J. Franco, and E. Boyer, Shape reconstruction using volume sweeping and learned photoconsistency, Computer Vision -ECCV, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01849286

Y. Liao, S. Donné, and A. Geiger, Deep marching cubes: Learning explicit surface representations, 2018 IEEE Conference on Computer Vision and Pattern Recognition, pp.2916-2925, 2018.

Y. Liu, Q. Dai, and W. Xu, A point-cloud-based multiview stereo algorithm for free-viewpoint video, IEEE Trans. Vis. Comput. Graph, 2010.

W. E. Lorensen and H. E. Cline, Marching cubes: A high resolution 3d surface construction algorithm, Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques, SIG-GRAPH 1987, 1987.

D. G. Lowe, Object recognition from local scale-invariant features, 1999.

D. G. Lowe, Distinctive image features from scale-invariant keypoints, IJCV, 2004.

W. Luo, A. G. Schwing, and R. Urtasun, Efficient deep learning for stereo matching, 2016.

D. Marr and T. Poggio, A theory of human stereo vision, M.I.T. A.I. Lab. Memo, vol.451, 1977.

D. Marr and T. Poggio, A computational theory of human stereo vision, Proceedings of the Royal Society of London, 1979.

R. Martin-brualla, R. Pandey, S. Yang, P. Pidlypenskyi, J. Taylor et al., Lookingood: Enhancing performance capture with real-time neural re-rendering, 2018.

P. Merrell, A. Akbarzadeh, L. Wang, J. Michael-frahm, and R. Y. Nistr, Real-time visibility-based fusion of depth maps, 2007.

K. Mikolajczyk and C. Schmid, A performance evaluation of local descriptors, 2003.
URL : https://hal.archives-ouvertes.fr/inria-00548529

A. Mustafa, H. Kim, J. Guillemaut, and A. Hilton, Temporally coherent 4d reconstruction of complex dynamic scenes, 2016.

P. J. Narayanan, P. Rander, and T. Kanade, Constructing virtual worlds using dense stereo, 1998.

J. Neumann and Y. Aloimonos, Spatio-temporal stereo using multiresolution subdivision surfaces, International Journal of Computer Vision, 2002.

R. A. Newcombe, D. Fox, and S. M. Seitz, Dynamicfusion: Reconstruction and tracking of non-rigid scenes in real-time, 2015.

M. R. Oswald and D. Cremers, A convex relaxation approach to space time multi-view 3d reconstruction, ICCV Workshop on Dynamic Shape Capture and Analysis, 2013.

M. R. Oswald, J. Stühmer, and D. Cremers, Generalized connectivity constraints for spatio-temporal 3d reconstruction, European Conference on Computer Vision (ECCV), pp.32-46, 2014.

M. R. Oswald and D. Cremers, Surface normal integration for convex space-time multi-view reconstruction, British Machine Vision Conference, BMVC 2014, 2014.

B. Petit, T. Dupeux, B. Bossavit, J. Legaux, B. Raffin et al., A 3d data intensive teleimmersive grid, Proceedings of the 18th International Conference on Multimedia 2010, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00514549

B. Petit, J. Lesage, C. Ménier, J. Allard, J. Franco et al., Multicamera real-time 3d modeling for telepresence and remote collaboration, Int. J. Digital Multimedia Broadcasting, 2010.
URL : https://hal.archives-ouvertes.fr/inria-00436467

D. Pfeiffer, S. Gehrig, and N. Schneider, Exploiting the power of stereo confidences, 2013 IEEE Conference on Computer Vision and Pattern Recognition, 2013.

J. P. Pons, R. Keriven, and O. Faugeras, Multi-view stereo reconstruction and scene flow estimation with a global image-based matching score, 2007.

T. Pribanic, S. Mrvos, and J. Salvi, Efficient multiple phase shift patterns for dense 3d acquisition in structured light scanning, Image Vision Comput, 2010.

A. Saxena, J. Schulte, and A. Y. Ng, Depth estimation using monocular and stereo cues, IJCAI 2007, International Joint Conference on Artificial Intelligence, 2007.

D. Scharstein and R. Szeliski, A taxonomy and evaluation of dense two-frame stereo correspondence algorithms, International Journal of Computer Vision, issue.1-3, 2002.

K. Schlüns, Photometric stereo for non-lambertian surfaces using color information, Computer Analysis of Images and Patterns, 5th International Conference, CAIP'93, 1993.

T. Schöps, J. L. Schönberger, S. Galliani, T. Sattler, K. Schindler et al., A multi-view stereo benchmark with highresolution images and multi-camera videos, 2017.

T. Schöps, J. L. Schönberger, S. Galliani, T. Sattler, K. Schindler et al., A multi-view stereo benchmark with highresolution images and multi-camera videos, CVPR 2017, 2017.

S. M. Seitz, B. Curless, J. Diebel, D. Scharstein, and R. Szeliski, A comparison and evaluation of multi-view stereo reconstruction algorithms, 2006.

S. M. Seitz and C. R. Dyer, Photorealistic scene reconstruction by voxel coloring, Conference on Computer Vision and Pattern Recognition, 1997.

B. Shi, Z. Wu, Z. Mo, D. Duan, S. Yeung et al., A benchmark dataset and evaluation for non-lambertian and uncalibrated photometric stereo, 2016 IEEE Conference on Computer Vision and Pattern Recognition, 2016.

S. N. Sinha, P. Mordohai, and M. Pollefeys, Multi-view stereo via graph cuts on the dual of an adaptive tetrahedral mesh, IEEE 11th International Conference on Computer Vision, pp.1-8, 2007.

I. Sipiran and B. Bustos, A robust 3d interest points detector based on harris operator, Eurographics Workshop on 3D Object Retrieval, p.Proceedings, 2010.

J. Starck and A. Hilton, Surface capture for performance-based animation, IEEE Comput. Graph. Appl, 2007.

C. Strecha, W. Von-hansen, L. V. Gool, P. Fua, and U. Thoennessen, On benchmarking camera calibration and multi-view stereo for high resolution imagery, 2008.

J. Sun, M. Ovsjanikov, and L. J. Guibas, A concise and provably informative multi-scale signature based on heat diffusion, Comput. Graph. Forum, 2009.

A. Tewari, M. Zollhöfer, P. Garrido, F. Bernard, H. Kim et al., Self-supervised multi-level face model learning for monocular reconstruction at over 250 hz, 2018.

J. Thiery, J. Tierny, and T. Boubekeur, Cager: from 3d performance capture to cage-based representation, International Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 2012, p.16, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02411892

E. Tola, V. Lepetit, and P. Fua, A fast local descriptor for dense matching, 2008.

E. Tola, V. Lepetit, and P. Fua, DAISY: an efficient dense descriptor applied to wide-baseline stereo, IEEE Trans. Pattern Anal. Mach. Intell, 2010.

E. Tola, C. Strecha, and P. Fua, Efficient large-scale multi-view stereo for ultra high-resolution image sets, Mach. Vis. Appl, 2012.

G. M. Treece, R. W. Prager, and A. H. Gee, Regularised marching tetrahedra: improved iso-surface extraction, Computers & Graphics, vol.23, issue.4, pp.583-598, 1999.

T. Tung, S. Nobuhara, and T. Matsuyama, Complete multi-view reconstruction of dynamic scenes from probabilistic fusion of narrow and wide baseline stereo, 2009.

A. O. Ulusoy, A. Geiger, and M. J. Black, Towards probabilistic volumetric reconstruction using ray potentials, p.3, 2015.

B. Ummenhofer, H. Zhou, J. Uhrig, N. Mayer, E. Ilg et al., Demon: Depth and motion network for learning monocular stereo, 2017.

R. J. Valkenburg and A. M. Mcivor, Accurate 3d measurement using a structured light system, Image Vision Comput, 1998.

S. Vedula, S. Baker, P. Rander, R. T. Collins, and T. Kanade, Threedimensional scene flow, 1999.

S. Vedula, S. Baker, S. M. Seitz, and T. Kanade, Shape and motion carving in 6d, Conference on Computer Vision and Pattern Recognition (CVPR 2000), pp.13-15, 2000.

D. Vlasic, I. Baran, W. Matusik, and J. Popovic, Articulated mesh animation from multi-view silhouettes, ACM Trans. Graph, 2008.

D. Vlasic, P. Peers, I. Baran, P. E. Debevec, J. Popovic et al., Dynamic shape capture using multiview photometric stereo, ACM Trans. Graph, 2009.

G. Vogiatzis, P. H. Torr, and R. Cipolla, Multi-view stereo via volumetric graph-cuts, 2005.

G. Vogiatzis, C. H. Esteban, P. H. Torr, and R. Cipolla, Multiview stereo via volumetric graph-cuts and occlusion robust photoconsistency, IEEE Trans. Pattern Anal. Mach. Intell, 2007.

J. Vollmer, R. Mencl, and H. Müller, Improved laplacian smoothing of noisy surface meshes, Comput. Graph. Forum, vol.18, issue.3, pp.131-138, 1999.

H. Vu, R. Keriven, P. Labatut, and J. Pons, Towards high-resolution large-scale multi-view stereo, 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp.20-25, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00834903

J. ?bontar and Y. Lecun, Stereo matching by training a convolutional neural network to compare image patches, J. Mach. Learn. Res, 2016.

L. Wang, F. Hétroy-wheeler, and E. Boyer, On volumetric shape reconstruction from implicit forms, Computer Vision -ECCV 2016 -14th European Conference, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01349059

M. Waschbüsch, S. Würmlin, D. Cotting, F. Sadlo, and M. H. Gross, Scalable 3d video of dynamic scenes, The Visual Computer, vol.21, issue.8-10, pp.629-638, 2005.

C. Wu, J. Frahm, and M. Pollefeys, Repetition-based dense single-view reconstruction, 2011.

W. Xu, A. Chatterjee, M. Zollhöfer, H. Rhodin, D. Mehta et al., Monoperfcap: Human performance capture from monocular video, ACM Trans. Graph, vol.37, issue.2, p.15, 2018.

Y. Yao, Z. Luo, S. Li, T. Fang, and L. Quan, Mvsnet: Depth inference for unstructured multi-view stereo, 2018.

C. Zach, T. Pock, and H. Bischof, A globally optimal algorithm for robust tv-l 1 range image integration, IEEE 11th International Conference on Computer Vision, 2007.

S. Zagoruyko and N. Komodakis, Learning to compare image patches via convolutional neural networks, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01246261

A. Zaharescu, E. Boyer, and R. Horaud, Keypoints and local descriptors of scalar functions on 2d manifolds, International Journal of Computer Vision, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00699620

G. Zeng, S. Paris, and L. Quan, Robust carving for non-lambertian objects, 17th International Conference on Pattern Recognition, ICPR, 2004.
URL : https://hal.archives-ouvertes.fr/inria-00510170

M. Zeng, J. Zheng, X. Cheng, and X. Liu, Templateless quasi-rigid shape modeling with implicit loop-closure, 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp.145-152, 2013.