D. , T ) is called symmetric if T ? T *

D. , T ) is called self-adjoint if T = T *

, A symmetric operator is essentially self-adjoint if its closure is self-adjoint

, In the above definition, we used the relation A ? B between two operators A and B. It means that Dom(A) ? Dom(B)

, T ) is essentially self-adjoint operator, it has unique self-adjoint extension

, We often use the following theorem to produce a self-adjoint operator from a continuous and coercive sesquilinear

V. and ·. , be a Hilbert space such that V is continuously embedded and dense in H. Let Q be a sesquilinear form define on V

. V--elliptic-(or-coercive, There exists a constant ? >

. Then,

. Furthermore, L is bijective from Dom(S) onto H and Dom(S) is dense in V and in H

, Definition A.7 (Resolvent and spectrum set). Let (Dom(T ), T ) be a self-adjoint operator on H. The resolvent set of T is define by ?(T ) = {z ? C : (T ? zI) is a bijective from Dom(T ) onto H}

, and the complement of the resolvent set in C is called the spectrum of the operator, Sp(T ) = C \ ?(T )

, And if ? ? ?(T ), the operator (T ? ?) ?1 is called a resolvent of T

, T ) is a self-adjoint operator, its spectrum is classified into discrete spectrum and essential spectrum: Definition A.8. Let (Dom(T ), T ) be a self

, The discrete spectrum of T , denoted by Sp dis , containing elements which are isolated finite multiplicity values in Sp(T )

, The essential spectrum of T , denoted by Sp ess (T ), is the complement of discrete spectrum of T Sp ess (T ) = Sp(T ) \ Sp dis (T )

, The operator T will have a purely discrete spectrum if it has a compact resolvent

V. I. , Mathematical methods of classical mechanics, Graduate Texts in Mathematics, vol.60, 1989.

J. Avron, I. Herbst, and B. Simon, Schrödinger operators with magnetic fields. I. General interactions, Duke Math. J, vol.45, issue.4, pp.847-883, 1978.

S. Bates and A. Weinstein, Lectures on the geometry of quantization, Berkeley Center for Pure and Applied Mathematics, vol.8, 1997.

F. A. Berezin and M. A. Shubin, The Schrödinger equation, Mathematics and its Applications (Soviet Series), vol.66, 1983.

V. Bonnaillie-noël, F. Hérau, and N. Raymond, Magnetic WKB constructions. Arch. Ration. Mech. Anal, vol.221, issue.2, pp.817-891, 2016.

V. Bonnaillie-noël, F. Hérau, and N. Raymond, Semiclassical tunneling and magnetic flux effects on the circle, J. Spectr. Theory, vol.7, issue.3, pp.771-796, 2017.

M. Braun, Particle motions in a magnetic field, Journal of Differential Equations, vol.8, issue.2, pp.294-332, 1970.

A. G. Brusentsev, Self-adjointness of elliptic differential operators in L 2 (G) and correcting potentials, Tr. Mosk. Mat. Obs, vol.65, pp.35-68, 2004.

C. Castilho, The Motion of a Charged Particle on a Riemannian Surface under a Non-Zero Magnetic Field, Journal of Differential Equations, vol.171, issue.1, pp.110-131, 2001.

Y. , C. De-verdière, and F. Truc, Confining quantum particles with a purely magnetic field, Ann. Inst. Fourier (Grenoble), vol.60, issue.7, pp.2333-2356, 2010.

M. A. De-gosson, The principles of Newtonian and quantum mechanics, Pte. Ltd, 2017.

M. Dimassi and J. Sjöstrand, Spectral asymptotics in the semi-classical limit, London Mathematical Society Lecture Note Series, vol.268, 1999.

A. Dragt, Trapped Orbits in a Magnetic Dipole Field, Reviews of Geophysics, vol.3, 1965.

A. Egeland, W. Burke, and . Carl, Størmer: Auroral Pioneer. Astrophysics and Space Science Library, 2012.

S. Ellingson, A. Walz, R. Browder, and . Electromagnetics, BETA). Number v. 1 in Open Textbook Library, vol.1, 2018.

K. Feng and M. Qin, Hamiltonian Mechanics and Symplectic Geometry, pp.165-186, 2010.

S. Fournais and B. Helffer, Spectral methods in surface superconductivity, Nonlinear Differential Equations and their Applications, vol.77, 2010.

D. Griffiths, Introduction to Quantum Mechanics. Pearson international edition, 2005.

Y. Bonthonneau, T. Nguyen-duc, N. Raymond, S. V?, and . Ngo, Magnetic WKB constructions in two dimensions, 2019.

Y. , G. Bonthonneau, and N. Raymond, WKB constructions in bidimensional magnetic wells, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01633638

B. C. Hall, Quantum theory for mathematicians, Graduate Texts in Mathematics, vol.267, 2013.

E. Hebey, Nonlinear analysis on manifolds: Sobolev spaces and inequalities, 1999.

B. Helffer, Semi-classical analysis for the Schrödinger operator and applications, Lecture Notes in Mathematics, vol.1336, 1988.

B. Helffer, Introduction to semi-classical methods for the Schrödinger operator with magnetic field, Aspects théoriques et appliqués de quelques EDP issues de la géométrie ou de la physique, vol.17, pp.49-117, 2009.

B. Helffer, Spectral theory and its applications, Cambridge Studies in Advanced Mathematics, vol.139, 2013.

B. Helffer, Y. Kordyukov, N. Raymond, S. V?, and . Ngo, Magnetic wells in dimension three, Anal. PDE, vol.9, issue.7, pp.1575-1608, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01149246

B. Helffer and Y. A. Kordyukov, Spectral gaps for periodic Schrödinger operators with hypersurface magnetic wells: analysis near the bottom, J. Funct. Anal, vol.257, issue.10, pp.3043-3081, 2009.

B. Helffer and Y. A. Kordyukov, Semiclassical spectral asymptotics for a twodimensional magnetic Schrödinger operator: the case of discrete wells, Spectral theory and geometric analysis, vol.535, pp.55-78, 2011.

B. Helffer and Y. A. Kordyukov, Semiclassical spectral asymptotics for a twodimensional magnetic Schrödinger operator II: The case of degenerate wells, Comm. Partial Differential Equations, vol.37, issue.6, pp.1057-1095, 2012.

B. Helffer and Y. A. Kordyukov, Semiclassical spectral asymptotics for a magnetic Schrödinger operator with non-vanishing magnetic field, Geometric methods in physics, pp.259-278, 2014.

B. Helffer and Y. A. Kordyukov, Accurate semiclassical spectral asymptotics for a two-dimensional magnetic Schrödinger operator, Ann. Henri Poincaré, vol.16, issue.7, pp.1651-1688, 2015.

B. Helffer and A. Mohamed, Semiclassical analysis for the ground state energy of a Schrödinger operator with magnetic wells, J. Funct. Anal, vol.138, issue.1, pp.40-81, 1996.

B. Helffer and A. Morame, Magnetic bottles in connection with superconductivity, J. Funct. Anal, vol.185, issue.2, pp.604-680, 2001.

B. Helffer and A. Morame, Magnetic bottles for the Neumann problem: the case of dimension 3, Spectral and inverse spectral theory, vol.112, pp.71-84, 2000.

B. Helffer and A. Morame, Magnetic bottles for the Neumann problem: curvature effects in the case of dimension 3 (general case), Ann. Sci.École Norm. Sup, vol.37, issue.4, pp.105-170, 2004.

H. Hofer and E. Zehnder, Symplectic Invariants and Hamiltonian Dynamics. Modern Birkhäuser Classics, 2011.

L. Hörmander, The analysis of linear partial differential operators. I. Classics in Mathematics, 2003.

J. Jost, Riemannian Geometry and Geometric Analysis, 2011.

J. M. Lee, Introduction to smooth manifolds, Graduate Texts in Mathematics, vol.218, 2013.

E. H. Lieb and M. Loss, Graduate Studies in Mathematics, vol.14, 2001.

R. G. Littlejohn, A guiding center Hamiltonian: A new approach, Journal of Mathematical Physics, vol.20, p.1979

G. Martins, The Hamiltonian dynamics of planar magnetic confinement. Nonlinearity, vol.30, pp.4523-4533, 2017.

R. Montgomery, Hearing the zero locus of a magnetic field, Comm. Math. Phys, vol.168, issue.3, pp.651-675, 1995.

G. Nenciu and I. Nenciu, On confining potentials and essential self-adjointness for Schrödinger operators on bounded domains in R n, Ann. Henri Poincaré, vol.10, issue.2, pp.377-394, 2009.

G. Nenciu and I. Nenciu, On essential self-adjointness for magnetic Schrödinger and Pauli operators on the unit disc in R 2, Lett. Math. Phys, vol.98, issue.2, pp.207-223, 2011.

T. Nguyen-duc, N. Raymond, and S. V?-ngo, Boundary effects on the magnetic Hamiltonian dynamics in two dimensions, Enseign. Math, vol.64, issue.3-4, pp.353-369, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01797997

N. Raymond, Sharp asymptotics for the Neumann Laplacian with variable magnetic field: case of dimension 2, Ann. Henri Poincaré, vol.10, issue.1, pp.95-122, 2009.

N. Raymond, Breaking a magnetic zero locus: asymptotic analysis, Math. Models Methods Appl. Sci, vol.24, issue.14, pp.2785-2817, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00790439

N. Raymond, Bound states of the magnetic Schrödinger operator, EMS Tracts in Mathematics, vol.27, 2017.

N. Raymond, Elements of spectral theory, Lecture, 2017.
URL : https://hal.archives-ouvertes.fr/cel-01587623

N. Raymond, S. , and V. Ngo, Geometry and spectrum in 2D magnetic wells, Ann. Inst. Fourier (Grenoble), vol.65, issue.1, pp.137-169, 2015.
URL : https://hal.archives-ouvertes.fr/hal-00836344

M. Reed and B. Simon, Methods of modern mathematical physics. II. Fourier analysis, self-adjointness, 1975.

M. Reed and B. Simon, Methods of modern mathematical physics, IV. Analysis of operators, 1978.

M. Reed and B. Simon, Methods of modern mathematical physics, 1979.

R. Schuster and K. O. Thielheim, A generalisation of the Stormer problem, Journal of Physics A: Mathematical and General, vol.20, issue.16, pp.5511-5516, 1987.

I. Shigekawa, Eigenvalue problems for the Schrödinger operator with the magnetic field on a compact Riemannian manifold, J. Funct. Anal, vol.75, issue.1, pp.92-127, 1987.

M. Shubin, Essential self-adjointness for semi-bounded magnetic Schrödinger operators on non-compact manifolds, J. Funct. Anal, vol.186, issue.1, pp.92-116, 2001.

D. Strauch, Classical Mechanics: An Introduction, 2009.

G. Szeg?-;-providence and R. I. , Orthogonal polynomials, Colloquium Publications, 1975.

J. Taylor, Classical Mechanics. University Science Books, 2005.

M. E. Taylor, Partial differential equations I. Basic theory, Applied Mathematical Sciences, vol.115, 2011.

F. Truc, Trajectoires bornées d'une particule soumiseà un champ magnétique symétrique linéaire, Annales de l'I.H.P. Physique théorique, vol.64, issue.2, pp.127-154, 1996.

L. Tu, An Introduction to Manifolds, 2010.

M. Zworski, Semiclassical Analysis. Graduate studies in mathematics, 2012.