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avec vigueur la méthode scientifique pour finalement devenir développeuse CFD sur Poitiers.
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dans cette ambiance : les louveteaux de la meute (Nathan et Gregouze), les deux supernanas
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pense également à mes parents et mes grands-parents qui sont heureux d’accueillir un docteur
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Modélisation numérique et calcul haute performance de transport de
sédiments

Résumé — La dynamique des écoulements sédimentaires est un sujet qui concerne
de nombreuses applications en géophysiques, qui vont des questions d’ensablement des
estuaires à la compréhension des bassins sédimentaires. Le sujet de cette thèse porte
sur la modélisation numérique à haute résolution de ces écoulements et l’implémentation
des algorithmes associés sur accélérateurs. Les écoulements sédimentaires font intervenir
plusieurs phases qui interagissent, donnant lieu à plusieurs types d’instabilités comme les
instabilités de Rayleigh-Taylor et de double diffusivité. Les difficultés pour la simulation
numérique de ces écoulements tiennent à la complexité des interactions fluides/sédiments
qui font intervenir des échelles physiques différentes. En effet, ces interactions sont difficiles
à traiter du fait de la grande variabilité des paramètres de diffusion dans les deux phases
et les méthodes classiques présentent certaines limites pour traiter les cas où le rapport
des diffusivités, donné par le nombre de Schmidt, est trop élevé. Cette thèse étend les
récents résultats obtenus sur la résolution directe de la dynamique du transport d’un scalaire
passif à haut Schmidt sur architecture hybride CPU-GPU et valide cette approche sur
les instabilités qui interviennent dans des écoulements sédimentaires. Ce travail revisite
tout d’abord les méthodes numériques adaptées aux écoulements à haut Schmidt afin de
pouvoir appliquer des stratégies d’implémentations efficaces sur accélérateurs et propose
une implémentation de référence open source nommée HySoP. L’implémentation proposée
permet, entre autres, de simuler des écoulements régis par les équations de Navier-Stokes
incompressibles entièrement sur accélérateur ou coprocesseur grâce au standard OpenCL
et tend vers des performances optimales indépendamment du matériel utilisé. La méthode
numérique et son implémentation sont tout d’abord validées sur plusieurs cas tests classiques
avant d’être appliquées à la dynamique des écoulements sédimentaires qui font intervenir
un couplage bidirectionnel entre les scalaires transportés et les équations de Navier-Stokes.
Nous montrons que l’utilisation conjointe de méthodes numériques adaptées et de leur
implémentation sur accélérateur permet de décrire précisément, à coût très raisonnable, le
transport sédimentaire pour des nombres de Schmidt difficilement accessibles par d’autres
méthodes.

Mots clés : Transport sédimentaire, couplage bidirectionnel, méthodes particulaires,
double diffusivité, HPC, GPU, HySoP

Laboratoire Jean Kuntzmann
Bâtiment IMAG - Université Grenoble Alpes

700 Avenue Centrale
Campus de Saint Martin d’Hères

38401 Domaine Universitaire de Saint-Martin-d’Hères
France





Numerical modelling and High Performance Computing for sediment flows

Abstract — The dynamic of sediment flows is a subject that covers many applications
in geophysics, ranging from estuary silting issues to the comprehension of sedimentary
basins. This PhD thesis deals with high resolution numerical modeling of sediment flows
and implementation of the corresponding algorithms on hybrid calculators. Sedimentary
flows involve multiple interacting phases, giving rise to several types of instabilities such
as Rayleigh-Taylor instabilities and double diffusivity. The difficulties for the numerical
simulation of these flows arise from the complex fluid/sediment interactions involving
different physical scales. Indeed, these interactions are difficult to treat because of the great
variability of the diffusion parameters in the two phases. When the ratio of the diffusivities,
given by the Schmidt number, is too high, conventional methods show some limitations.
This thesis extends the recent results obtained on the direct resolution of the transport of a
passive scalar at high Schmidt number on hybrid CPU-GPU architectures and validates this
approach on instabilities that occur in sediment flows. This work first reviews the numerical
methods which are adapted to high Schmidt flows in order to apply effective accelerator
implementation strategies and proposes an open source reference implementation named
HySoP. The proposed implementation makes it possible, among other things, to simulate
flows governed by the incompressible Navier-Stokes equations entirely on accelerator or
coprocessor thanks to the OpenCL standard and tends towards optimal performances inde-
pendently of the hardware. The numerical method and its implementation are first validated
on several classical test cases and then applied to the dynamics of sediment flows which
involve a two-way coupling between the transported scalars and the Navier-Stokes equations.
We show that the joint use of adapted numerical methods and their implementation on
accelerator makes it possible to describe accurately, at a very reasonable cost, sediment
transport for Schmidt numbers difficult to reach with other methods.

Keywords: Sediment transport, dual-way coupling, particle methods, double diffu-
sivity, HPC, GPU, HySoP

Laboratoire Jean Kuntzmann
Bâtiment IMAG - Université Grenoble Alpes

700 Avenue Centrale
Campus de Saint Martin d’Hères
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Introduction

Continental erosion is controlled by climate and tectonics and can be enhanced by human
activities such as large-scale agriculture, deforestation, and sand extraction. Erosion produces
sediments that are mostly evacuated by rivers. Downstream, the supply of sediment carries
organic matter and nutrients to the ocean, which are fundamental for marine ecosystems and
for oil and gas reservoirs [Mouyen et al. 2018]. Estimation of the global sediment discharge in
the ocean remains unknown and its measurement still represents a difficult challenge in earth
sciences. While it has been estimated that the largest river sediment discharges probably reach
one billion of metric tons per year [Milliman et al. 2013], the processes by which this sediment
settles out from buoyant river plumes are still poorly understood. A better understanding of
the dominant sediment settling mechanisms will help to determine the location of sediment
deposits on the sea floor. This represents important information for predicting the location
of certain hydrocarbon reservoirs [Meiburg et al. 2010].

During the seventies, a simple laboratory experiment showed that when a layer of fluid,
made denser by the presence of suspended material, was put above colder, distilled water, a
fingering phenomenon similar to thermohaline convection occurred, result of double-diffusive
instabilities [Houk et al. 1973]. In the nature, this event has been observed when a muddy
river enters a stratified lake or ocean [Schmitt et al. 1978], as shown on figure 1. The density
stratification of lakes and oceans can be due to thermal or compositional density gradients
such as salinity gradients.

Figure 1 – Le Havre, Seine estuary, France - February 23rd, 2019. Picture adapted
from Sentinel Hub. It is licensed under CC BY 2.0 and contains modified Sentinel data.
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2 Introduction

The density of the seawater is greater than the density of fresh water. When a river plume
loaded with fine sediments enters the sea, the river often continues to flow above the seawater
(hypopycnal flow) and sediment fingering can occur [Mulder et al. 2003]. Hypopycnal flows
supposes that the sediment concentration remains dilute (less than 40kg/m3), else the density
of the river is more than the density of sea, in which case the river continues to flow near the
bottom of the sea floor (hyperpycnal flow). For dilute suspensions of particles, Stokes law
predicts the settling velocity of small particles in fluid [Ferguson et al. 2004].

In the passed years, most oceanographic sedimentation models relied on Stokes settling as
the main mechanism of sediment transfer out of river plumes. Aware that double-diffusive
instabilities could greatly increase the effective settling velocity of fine sediments, [Burns
et al. 2012] performed a numerical investigation to the explore the effect of double-diffusive
mechanisms on sediment settling. Through extensive three-dimensional simulations, it was
determined that when sediment-laden water flows over clearer and denser water, both double-
diffusive and Rayleigh-Taylor instabilities may arise [Burns et al. 2015]. In their analysis
both of those convective instabilities led to downward sediment fluxes that could be orders of
magnitude above the ones that would normally be obtained with gravitational settling alone.
They however faced a major problem when trying to apply their model to fine sediments
such as clay and fine silts. The very low diffusivity of small particles [Segre et al. 2001] with
respect to the momentum diffusivity (the kinematic viscosity of the carrier fluid), prevented
them to perform the corresponding numerical simulations. This fluid-to-particle diffusivity
ratio is often reduced to a dimensionless Schmidt number, and high Schmidt number flows
are known to be very computationally demanding [Lagaert et al. 2012]. This work aims to
achieve high Schmidt number sediment-laden flow simulations by using adapted numerical
methods in a high performance computing context.

In the field of fluid mechanics, the evolution of numerical simulations greatly contributes to
improve the understanding of such complex physical phenomena. A numerical simulation
makes it possible to obtain a solution to a mathematical model that is generally not possible
to solve analytically. These models consist of equations modeling a phenomenon to study.
One of the objective of numerical simulations is to allow the validation of the physical and
mathematical models used for the study of a phenomenon, compared to the theory and to
possible experimental data. Since the thirties, the use of calculators has continued to grow
with the rapid development of computing machines. In recent years, advances in computing
enabled a large enhancement of numerical simulations related to computational fluid dynamics
(CFD). These simulations allow to predict the physical behavior of complex flow configura-
tions, possibly coupled with other physical models. The large increase in computing power
over the last decades allows the computation of numerical simulations of increasing accuracy
and complexity while maintaining comparable computation times. Numerical simulations are
based on one or more numerical methods and a computer code that implements these meth-
ods on computing machines. The choice of the numerical methods depends essentially the
problem to be solved. The numerical efficiency of a code is measured, among other things, by
the calculation time required to obtain the solution according to the desired precision. Thus,
the implementation of a method requires special attention in order to make the best use of
available computing resources. The development of an efficient code in a context of high
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performance computing is a real challenge on nowadays massively parallel machines. There-
fore, numerical methods must not only be adapted to the characteristics of the problems to
be solved, but also to the architectures of the machines on which they will be implemented.
In particular, the eventual presence of multiple compute nodes and/or accelerators such as
GPUs or other coprocessors must be taken into account from the resolution algorithm to the
development of the numerical method.

In this work we limit ourselves to the study of non-cohesive particle-laden hypopycnal flows
above salt water. The physics of this type of problem is characterized by the presence of several
phenomena at different physical scales that is due to the large difference in the diffusivities
of the transported components [Batchelor 1959]. In this thesis, we consider the problem of
active scalar transport at high Schmidt number as an application framework. The transported
scalars, representing particles concentration and salinity, will be coupled to the carrier fluid
bidirectionally. The approach considered here is that of a resolution by an hybrid particle-grid
method [Lagaert et al. 2014]. Remeshed particle methods makes it possible to naturally solve
conservation equations without imposing a Courant-Friedrichs-Lewy stability constraint, but
a less restrictive stability condition allowing the use of larger time steps [Cottet 2016]. The use
of this method leads, through the presence of an underlying grid, to algorithms and regular
data structures particularly adapted to heavily vectorized hardware such as GPUs[Rossinelli
et al. 2008][Rossinelli et al. 2010][Etancelin et al. 2014].

Numerically speaking, the starting point of this work is the HySoP library, a Python-based
solver based on hybrid MPI-OpenCL programming that targets heterogeneous compute plat-
forms, originally developed in the context of passive scalar transport in high Schmidt number
flows [Etancelin 2014]. In particular, we strive to follow the original library mantra, that is the
development of non-architecture-specific, performance-portable and easily reusable numerical
code. This helps to support the rapid evolution of hardware, favours code reusability and
problem expressiveness. A particular attention will be paid to code generation techniques
and runtime optimization for GPU-enabled numerical routines. By pursuing the OpenCL port-
ing efforts of the original developer, we will be able to solve custom user-specified numerical
problems such as incompressible Navier-Stokes fully on accelerator. The resulting solver will
be generic and modular enough to be able to run high performance GPU accelerated numerical
simulation of particle-laden sediment flows.

The sequence of the four chapters of this manuscript is the following. In a first chapter, the
mathematical models required for the modeling of sediment flows are introduced. The second
chapter is dedicated to the different numerical methods required to simulate high Schmidt
number flows. The existing numerical methods are adapted to fit GPU-computing by using
operator splitting techniques. Chapter three is dedicated to the numerical code and the high
performance implementation of the method, giving technical details on the development of
performance-portable multi-architecture numerical routines. In particular, we will see how
code generation techniques simplify the use of accelerators from a user point of view. The
fourth chapter is dedicated to the simulation of particle-laden clear water above salt-water
with the resulting solver. Finally, we will conclude this manuscript giving rise to a critique
of the work carried out as well as a statement of the perspectives revealed by this study.
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Introduction

The context of this work is in applied mathematics, at the intersection of a physical problem,
numerical methods and a high performance numerical code. From observations of natural or
artificial sedimentation phenomena, empirical physical models are elaborated and put into
equations in the form of mathematical models. For numerical simulations, mathematical
models are discretized according to one or more numerical methods leading to the expression
of algorithms that are implemented in numerical codes. A given model generally depends
on several parameters, and can be mapped to a given physical situation by specifying these
parameters as well as the initial and boundary conditions of the model. The execution of
these codes on computers makes it possible to validate both the numerical methods and the
models with respect to the physical phenomena.

Once a mathematical model and associated numerical method are considered valid for a
certain range of simulation parameters, the numerical code can be used to explore parameter
configurations that are not easily observable or measurable. As it will be the case for our
sediment-related problem, the required computational power can be largely dependent on
those parameters. When a given computational problem requires more than trillion operations
per second (1012 OP/s) in order to finish in acceptable time, it becomes a necessity to distribute
the computations on multiple compute nodes containing multiple CPU ressources. When those
nodes also contain accelerators, such as GPUs, it quickly becomes a necessity to adapt the
numerical codes to harness their additional compute power. In order to support a wide
diversity of hardware efficiently, associated technologies must be taken into account from the
design stage of the numerical methods, especially in the perspective of the exascale.

This chapter is dedicated to the presentation of the mathematical background of fluid me-
chanics in the context of sediment flows and high performance computing. The first section
is dedicated to the construction of the model that describes the motion of an incompressible
viscous fluid. Some classical resolution methods will be given and a particular attention will
be paid to high Schmidt number flows. The second part present some physical models asso-
ciated to sedimentary processes and lead to the physical model of interest in this work. The
last part is focused on high performance computing and introduces distributed computing
and coprocessors.
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1.1 Computational fluid dynamics

The goal of computational fluid mechanics is to analyze and understand behaviors of fluids
in motion, possibly in the presence of obstacles or structures with which they interact. The
major part of fluid mechanics problems arise from engineering problems encountered in the
aviation industry and more generally in the fields of transport, energy, civil engineering and
environmental sciences. As an example, CFD1 can be used in sedimentology to study sediment
dynamics in an estuary system.

Mathematical modeling of these problems leads to systems of equations too complex to be
solved formally. For most problems, the existence of solutions to these systems is still an open
problem. Numerical modeling of these problems makes it possible to approach a solution
by the use of numerical methods. The Navier-Stokes-Fourier equations provide a general
description of the behavior of a viscous fluid based on physical principles of conservation of
mass, momentum, and energy.

1.1.1 Derivation of the Navier-Stokes-Fourier equations

The Navier-Stokes equations, named after Claude-Louis Navier and George Gabriel Stokes,
are a set of nonlinear partial differential equations that describe the motion of a viscous fluid.
This set of equations is a generalization of the equation devised by Leonhard Euler in the 18th
century to describe the flow of an incompressible and frictionless fluid [Euler 1757]. In 1821,
the French engineer Claude-Louis Navier introduced friction for the more complex problem of
viscous fluids [Navier 1821]. Throughout the middle of the 19th century, British physicist and
mathematician Sir George Gabriel Stokes improved on this work, though complete solutions
were obtained only for the case of simple two-dimensional flows [Stokes 1851][Stokes 1880].

Way later, in 1934, Jean Leray proved the existence of weak solutions to the Navier-Stokes
equations, satisfying the equations in mean value, not pointwise [Leray 1934]. One had to
wait until the 1960s to obtain results about existence of regular solutions to the Navier-Stokes
equations in two dimensions thanks to the work of [Ladyzhenskaya 1969]. To this day, the
complex vortices and turbulence that occur in three-dimensional fluid flows as velocities in-
crease have proven intractable to any but approximate numerical analysis methods. The
existence and uniqueness of classical solutions of the three-dimensional Navier-Stokes equa-
tions is still an open mathematical problem and thus constitues an active research area in
mathematics.

The balance of equations arise from applying Isaac Newton’s second law to fluid motion,
together with the assumption that the stress in the fluid is the sum of a diffusing viscous term
proportional to the gradient of velocity and a pressure term. Supplementing the Navier-Stokes
equations with the conservation of energy leads to the Navier-Stokes-Fourier equations. This
section is dedicated to give the idea behind those famous centuries old equations.

1Computational Fluid Dynamics



8
Chapter 1. High performance computing

for sediment flows

Integral form of the Navier-Stokes equations

Mass conservation principle: There is no creation, nor annihilation of mass. Put in other
words it means that the rate of mass accumulation within a control volume Ω is equal to the
rate of mass flow that goes into the control volume minus the rate of mass flow that leaves
the control volume:

d
dt

[∫
Ω
ρ dv

]
+
∮
∂Ω
ρu · n ds = 0 (1.1)

where ρ is the density of the fluid, u the velocity of the fluid, Ω the fluid control volume, ∂Ω
the boundaries of the control volume and n the normal to the boundary at integration point
pointing outwards Ω.

Momentum conservation principle: This equation is given by Isaac Newton’s second law
applied on the control volume. As Ω is an open system, we need to take into account the
momentum flux due to the particles entering and leaving the control volume:

d
dt

[∫
Ω
ρu dv

]
+
∮
∂Ω

(ρu⊗ u)n ds =
∫

Ω
F dv (1.2)

where F represents the forces acting on the fluid in Ω and u⊗u = uuT is the outer product
of the velocity vector with itself. This equation means that the accumulation of momentum
within the control volume is due to the rate of momentum flow going into the control volume
minus the rate of momentum flow leaving the control volume supplemented by forces acting
the fluid.

The forces applied on the fluid can be expressed as the sum of two forces: F = ∇ · σ + Fext
where the divergence of the tensor is defined as the vector of the divergence of all its lines.
Here Fext represents all the external forces acting on the fluid and σ is the Cauchy stress
tensor that completely define the state of stress at any point inside the control volume in a
deformed state. The Cauchy stress tensor can further be decomposed into σ = τ−PId where
τ is the viscous stress tensor, Id is the identity tensor in dimension d and P = (1/d) Tr(τ)
the hydrostatic pressure field. The viscous stress tensor accounts for the stress that can be
attributed to the strain rate at a given point (the rate at which it is deforming) whereas the
pressure field accounts for the local mean compression due to normal stresses.

The decomposition of F as volumetric forces and surface forces becomes straightforward when
using the divergence theorem (A.2c):∫

Ω
F dv =

∫
Ω

(∇ · σ + Fext) dv =
∮
∂Ω
σn ds +

∫
Ω
Fext dv (1.3)

The constitutive equation of a given fluid gives the expression of the viscous stress tensor τ
with respect to other physical quantities. Most commonly encountered fluids, such as water,
are Newtonian. In this case, the viscous stress is linear with respect to the strain rate. More
complex fluids are known as non-Newtonian and can display a wide range of behaviors like
paint or honey. Once τ is specified, the deduction of the total stress tensor σ follows.
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Energy conservation principle: The first law of thermodynamics states the change in the
internal energy of a closed system is equal to the amount of heat Q supplied to the system,
minus the amount of work W done by the system on its surroundings. Let q be the conductive
heat flux vector accounting for thermal conduction on the boundaries of the control volume.
We also consider an additional volumetric heat source Q that may arrise from radiation or
chemical reactions. Because Ω is an open system, we need to take into account the energy
flux due to the particles entering and leaving the control volume:

d
dt

[∫
Ω
ρe dv

]
+
∮
∂Ω
ρe (u · n) ds =

∮
∂Ω

(
σn

)
· u ds +

∫
Ω
Fext · u dv−

∮
∂Ω
q · n ds +

∫
Ω
Q dv

(1.4)
where k is the thermal conductivity of the fluid, T the absolute temperature of the fluid,
e = U + 1

2 ‖u‖
2 the total energy defined as the sum of the internal energy U and the kinetic

energy.

For compressible flows the relation between density, pressure and temperature is given by a
special equation called equation of state. The most commonly used one is the ideal gas
relation P = ρRT , R being the gas constant. This additional equation closes the set of
equations.

Differential form of the Navier-Stokes equations

As equations (1.1), (1.2) and (1.4) remain valid for a control volume Ω as small as we want,
we can apply the divergence theorem (A.2) to get equivalent local equations. This relies on
the continuum hypothesis, stating that a fluid can be regarded as a continuum rather than a
collection of individual molecules. Flows where molecular effects are of significance are known
as rarefied flows. Most liquids can be considered as a continua, as can gases under ordinary
circumstances.

Conservation of mass:
∂ρ

∂t
+∇ · (ρu) = 0 (1.5)

Conservation of momentum:

∂ρu

∂t
+∇ · (ρu⊗ u) = ∇ · σ + Fext (1.6)

Conservation of energy:

∂ρe

∂t
+∇ · (ρu) = ∇ ·

(
σu

)
+ Fext · u−∇ · q +Q (1.7)

The principle of conservation of angular momentum implies that the total stress tensor is
symmetric, which means that σ defines a self-adjoint linear operator. The local equation for
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energy (1.7) is obtained by using this additional equality:∮
∂Ω

(
σn

)
· u ds =

∮
∂Ω
n ·
(
σu

)
ds =

∫
Ω
∇ ·

(
σu

)
dv (1.8)

Equations (1.6) and (1.7) can be simplified using equation (1.5), yielding the following non-
conservative local forms of momentum and energy equations:

ρ

[
∂u

∂t
+ (u · ∇)u

]
= ∇ · τ −∇P + Fext (1.9a)

ρ

[
∂e

∂t
+ (u · ∇) e

]
= ∇ ·

(
τu
)
−∇ · (Pu) + Fext · u−∇ · q +Q (1.9b)

In addition, taking the dot product of equation (1.9a) with the velocity u and subtracting it
to equation (1.9b) together with equations (A.1a) and (A.1c) gives the equation relating to
the internal energy U = e− 1

2(u · u):

ρ

[
∂U

∂t
+ (u · ∇)U

]
= τ : ∇u− P (∇ · u)−∇ · q +Q (1.10)

In this equation, the : operator denotes the double dot product between two tensors. This
new equation allows us to define a new equation based on the enthalpy h which is related to
the internal energy through h = U + P/ρ:

ρ

[
∂h

∂t
+ (u · ∇)h

]
= τ : ∇u+

[
∂P

∂t
+ (u · ∇)P

]
−∇ · q +Q (1.11)

This equation is easier to obtain by going back to the conservative formulation of equation
(1.10) using equation (1.5) and by using usual divergence formulas (A.1).

Finally we can relate enthalpy h to the temperature of the fluid T using the following differ-
ential equation:

dh = CpdT + 1
ρ

(1− αT )dP (1.12)

where Cp denotes the heat capacity at constant pressure and α the bulk expansion coefficient
also known as the cubic thermal expansion coefficient. We also consider that the heat transfer
by conduction is governed by Fourier’s law q = −k∇T , giving the following equation for the
temperature:

ρCp

[
∂T

∂t
+ (u · ∇)T

]
= τ : ∇u+ αT

[
∂P

∂t
+ (u · ∇)P

]
+∇ · (k∇T ) +Q (1.13)

For an ideal gas the variation of enthalpy dh is independent of the variation of pressure dP
and thus αT = 1. Liquids generally have higher expansivities than solids because their bulk
expansion coefficient greatly vary with temperature. For example water has an anomalous
thermal expansion coefficient as it is densest at 3.983 ◦C where it reaches ρ = 999.973 kg/m3.
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Summary of unknowns in a d-dimensional space:

Physical quantity Variable Number of scalar unknowns
Fluid velocity u d

Fluid pressure P 1
Fluid density ρ 1

Thermal conductivity k 1
Thermal expansion α 1

Absolute temperature T 1
Conductive heat flux q d

Total stress tensor τ d(d+ 1)/2
Total d(d+ 5)/2 + 5

Summary of equations in a d-dimensional space:

Physical equation Expression Number of scalar equations
Conservation of mass (1.5) 1

Conservation of momentum (1.6) d

Conservation of energy (1.13) 1
Equation of state for density ρ(P, T ) 1

Eq. of state for thermal conductivity k(P, T ) 1
Eq. of state for thermal expansion α(P, T ) 1

Fourier’s law q = −k∇T d

Constitutive equation τ(u, P, T, ...) d(d+ 1)/2
Total d(d+ 5)/2 + 5

Full Navier-Stokes-Fourier system of equations:

The Navier-Stokes-Fourier system describes the motion of a compressible, viscous and heat
conducting fluid, and can be expressed as the following:

∂ρ

∂t
+∇ · (ρu) = 0

ρ

[
∂u

∂t
+ (u · ∇)u

]
= ∇ · τ −∇P + Fext

ρCp

[
∂T

∂t
+ (u · ∇)T

]
= τ : ∇u+ αT

[
∂P

∂t
+ (u · ∇)P

]
+∇ · (k∇T ) +Q

(1.14a)

(1.14b)

(1.14c)

The Navier-Stokes equations are a simplification of this model for a Newtonian isothermal
fluid. When temperature is not involved, the energy equation (1.14c) is not required anymore.
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1.1.2 Vorticity formulation

The vorticity is a field that describes the local spinning motion of a continuum near some
point, as would be seen by an observer located at that point and traveling along with the flow.
Mathematically, the vorticity ω is a pseudovector field defined as the curl of the velocity:

ω = ∇× u (1.15)

Some phenomena are more readily explained in terms of vorticity, rather than the basic
concepts of pressure and velocity. It is possible to rewrite the momentum equation (1.14b) in
terms of vorticity with the help of equation (1.15):

∂ω

∂t
+ (u · ∇)ω = (ω · ∇)u− ω(∇ · u) + 1

ρ2 (∇ρ×∇P ) +∇×
(
∇ · τ + Fext

ρ

)
(1.16)

Note that if the density ρ is constant, the baroclinic term that contains the pressure vanishes.

1.1.3 Newtonian fluids

A fluid is considered to be Newtonian only if the tensors that describe the viscous stress and
the strain rate are related by a constant fourth order viscosity tensor µ that does not depend
on the stress state and velocity of the flow:

τ(u, T ) = µ(T ) : ∇u (1.17)

If the fluid is also isotropic, this viscosity tensor reduces to two scalar coefficients, the molecu-
lar viscosity coefficient µ(T ) and the bulk viscosity coefficient λ(T ). Those constants describe
the fluid’s resistance to shear deformation and compression, respectively:

τ(u, T ) = µ
(
∇u+∇uT

)
+ λ(∇ · u)Id (1.18)

Stokes made the hypothesis that λ = −(2/3)µ which is frequently used but which has still not
been definitely confirmed to the present day [Stokes 1880][Hak 1995]. This is not a problem
because, as we will see later, the bulk viscosity λ can be neglected when the fluid can be
regarded as incompressible.

For an isotropic Newtonian fluid, the divergence of the viscous stress tensor becomes:

∇ · τ = ∇ ·
[
µ
(
∇u+∇uT

)
+ λ(∇ · u)Id

]
(1.19)

The divergence of the strain rate can be rearranged as:

2(∇ · γ̇) = ∇ ·
(
∇u+∇uT

)
= ∆u+∇(∇ · u) (1.20)

Expanding equation (1.19) using (1.20) and divergence formulas gives:

∇ · τ = µ∆u+ (µ+ λ)∇(∇ · u) +
(
∇u+∇uT

)
∇µ+ (∇ · u)∇λ (1.21)
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1.1.4 Compressible Navier-Stokes equations

Under the Stoke’s hypothesis and considering an isotropic Newtonian fluid at constant temper-
ature T0 and constant molecular viscosity µ we finally obtain the compressible Navier-Stokes
equations from equations (1.5), (1.6) and (1.21):

∂ρ

∂t
+∇ · (ρu) = 0

ρ

[
∂u

∂t
+ (u · ∇)u

]
= µ

[
∆u+ 1

3∇(∇ · u)
]
−∇P + Fext

(1.22a)

(1.22b)

As stated before this set of equation is valid for non-rarefied flows where the representative
physical length scale of the system is much larger than the mean free path of the molecules.
As a side note we will only consider isotropic Newtonian fluids throughout the manuscript.

By dividing by the density, equations (1.22a) and (1.22b) can be rewritten as the following:

1
ρ

[
∂ρ

∂t
+ (u · ∇) ρ

]
+∇ · u = 0

∂u

∂t
+ (u · ∇)u = ν

[
∆u+ 1

3∇(∇ · u)
]
− ∇P

ρ
+ fext

(1.23a)

(1.23b)

where ν = µ/ρ is the cinematic viscosity and fext = Fext/ρ represents the external mass
forces acting on the fluid.

1.1.5 Incompressible flows

An incompressible flow refers to a flow in which the material density is constant within a
infinitesimal control volume that moves with the flow velocity. From the continuity equation
(1.23a), an equivalent statement that implies incompressibility is that the divergence of the
flow velocity is zero:

∂ρ

∂t
+ (u · ∇) ρ = −ρ(∇ · u) = 0 (1.24)

Under the incompressibility hypothesis the viscous stress tensor reduces to τ =
µ
(
∇u+∇uT

)
for an isotropic Newtonian fluid, removing the need to provide the bulk

viscosity λ. This allows us to define the incompressible Navier-Stokes equations with variable
density and viscosity:

∇ · u = 0

ρ

[
∂u

∂t
+ (u · ∇)u

]
= µ∆u+

(
∇u +∇uT

)
∇µ−∇P + Fext

(1.25a)

(1.25b)

Note that this hypothesis also simplifies the energy conservation equation (1.14c):

ρCp

[
∂T

∂t
+ (u · ∇)T

]
= 2µ(γ̇ : ∇u) + αT

[
∂P

∂t
+ (u · ∇)P

]
+∇ · (k∇T ) +Q (1.26)
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In addition, if the density and the viscosity are assumed constant, is follows that the flow is
incompressible and we can obtain the following set of equations:

∇ · u = 0
∂u

∂t
+ (u · ∇)u = ν∆u− ∇P

ρ
+ fext

(1.27a)

(1.27b)

that can also be expressed in terms of vorticity:

ω = ∇× u
∂ω

∂t
+ (u · ∇)ω = (ω · ∇)u+ ν∆ω +∇× fext

(1.28a)

(1.28b)

It is important to note that an incompressible flow does not imply that the fluid itself is
incompressible. Homogeneous fluids with constant density always undergo flow that is incom-
pressible, but the reverse is not true. As an example it is possible to have an incompressible
flow of a compressible fluid in the case of low Mach numbers or in stratified flows.

1.1.6 The Boussinesq approximation

The Boussinesq approximation is a way to solve the incompressible Navier-Stokes equations
with a slightly varying density, without having to solve for the full compressible formula-
tion of the Navier-Stokes-Fourier equations (1.14) applied to an isotropic Newtonian fluid
(1.21). This approximation, introduced by Joseph Boussinesq in 1877, assumes that varia-
tions in density have no effect on the flow field, except that they give rise to buoyancy forces
[Boussinesq 1877]. The Boussinesq approximation is mostly used to simplify the equations for
non-isothermal flows, such as natural convection problems, but can also be used for problems
where the density variations are not due solely to temperature variations inside the fluid.

General framework

Suppose that tiny density variations δρ� ρ0 are created by some physical phenomenon such
that the density can be expressed as ρ = ρ0 + δρ where ρ0 is a constant. Injecting ρ into the
compressible continuity equation (1.23a) gives:

1
ρ

[
∂δρ

∂t
+ (u · ∇) δρ

]
︸ ︷︷ ︸

' 0

+∇ · u = 0 (1.29)

Under the Boussinesq approximation, the continuity equation reduces to the incompressible
form ∇ · u = 0 because the first term is assumed to be small compared to the velocity
gradients.
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Rewriting the momentum equation (1.22b) for an incompressible flow and using the buoyancy
as only external force leads to:

ρ

[
∂u

∂t
+ (u · ∇)u

]
= µ∆u−∇P + ρg (1.30)

Taking into account that the density variations have only an effect on buoyancy forces yields:

ρ0

[
∂u

∂t
+ (u · ∇)u

]
= µ∆u−∇P + ρg (1.31)

Finally equation (1.31) can be rewritten as:

ρ0

[
∂u

∂t
+ (u · ∇)u

]
= µ∆u−∇P + δρg (1.32)

where g = −gez and P = P + ρ0gz is referred to as a pressure shift. A pressure shift can
be done whenever the external force vector field is conservative, meaning that there exists
some scalar field φ such that Fext = −∇φ, by defining the pressure term as P = P + φ.

Special case for temperature dependent density variations

If density variations are only due to temperature variations δT around some base temperature
T0, we can rewrite the buoyancy term δρg as −αρ0(T − T0)g where α is the coefficient of
thermal expansion. In this special case, the momentum equation becomes:

∂u

∂t
+ (u · ∇)u = ν∆u− ∇P

ρ0
− α(T − T0)g (1.33)

Keep in mind that this equation is only valid if the viscosity µ does not depend on temperature,
an hypothesis that is generally assumed, along with constant thermal conductivity k. Under
those additional assumptions and considering the energy conservation equation (1.14c) we get
the following set of equations:

T = T0 + δT

ρ = ρ0 (1− αδT )
P = P − ρ0gz

∇ · u = 0
∂u

∂t
+ (u · ∇)u = ν∆u− ∇P

ρ0
− αδTg

ρCp

[
∂δT

∂t
+ (u · ∇) δT

]
= 2µ (γ̇ : ∇u)︸ ︷︷ ︸

viscous heating

+αT

[
∂P

∂t
+ (u · ∇)P

]
︸ ︷︷ ︸

work of pressure forces

+k∆δT +Q

(1.34a)
(1.34b)
(1.34c)
(1.34d)

(1.34e)

(1.34f)
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Most of the time, the work of pressure forces and the heat generated by viscous friction are
neglected. Those terms however constitute intrinsic components in many physical problems
like buoyancy-induced natural convection [Pons et al. 2007]. When those terms and heat Q
can be neglected we can rewrite equation (1.14c) with the thermal conductivity κt as the
following:

∂δT

∂t
+ (u · ∇) δT = κt∆δT (1.35)

1.1.7 Dimensionless numbers

In this subsection we quickly present some computational fluid dynamics related dimensionless
numbers that will be used throughout the manuscript.

Reynolds number

The Reynolds number is used to predict the transition from laminar to turbulent flow, and
may be used in the scaling of similar but different-sized flow situations. The predictions of
onset of turbulence and the ability to calculate scaling effects can be used to help predict
fluid behaviour on a larger scale.

• Laminar flow occurs at low Reynolds numbers, where viscous forces are dominant, and
is characterized by smooth, constant fluid motion.

• Turbulent flow occurs at high Reynolds numbers and is dominated by inertial forces,
which tend to produce chaotic eddies, vortices and other flow instabilities.

The Reynolds number is defined as:

Re = inertial forces
viscous forces = ρuL

µ
= uL

ν

where ρ is the density of the fluid, u is the velocity of the fluid with respect to the object, L
is a characteristic length, µ the dynamic viscosity of the fluid and ν the kinematic viscosity
of the fluid.

This concept was introduced by George Stokes in 1851 [Stokes 1851], but this number was
named by Arnold Sommerfeld in 1908 [Sommerfeld 1908] after Osborne Reynolds who popu-
larized its use in 1883 [Reynolds 1883].
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Schmidt number

The Schmidt number Sc is a dimensionless number defined as the ratio of kinematic viscosity
(momentum diffusivity) to the mass diffusivity of some transported component:

Sc = viscous diffusion rate
molecular diffusion rate = ν

κ
= µ

ρκ

where κ is the mass diffusivity, ρ is the density of the fluid, µ the dynamic viscosity of the
fluid and ν the kinematic viscosity of the fluid.

A Schmidt number of unity indicates that momentum and mass transfer by diffusion are
comparable, and velocity and concentration boundary layers coincide with each other. Thus
it is used to describe whether momentum or diffusion will dominate mass transfer.

Prandtl and Lewis numbers

The Prandtl number Pr, named after the German physicist Ludwig Prandtl, is the heat
transfer analog of the Schmidt number. It is defined as the ratio of momentum diffusivity to
thermal diffusivity:

Pr = viscous diffusion rate
thermal diffusion rate = ν

κt
= µ

ρκt

The ratio between the thermal diffusivity and the mass diffusivity is defined as the Lewis
number Le = κt

κ
= Sc

Pr
and was named after Warren K. Lewis [Lewis 1922].

Rayleigh number

The Rayleigh number Ra for a fluid is a dimensionless number associated with buoyancy-
driven flow (natural convection) named after Lord Rayleigh [Rayleigh 1916]. This number
can be used to describe flows when the mass density of the fluid is non-uniform. When below
a critical value, there is no flow and heat transfer is purely achieved by conduction, otherwise
heat is transferred by natural convection [Çengel et al. 2001].

When the density difference is caused by temperature difference, it is defined as the following:

Ra = time scale for thermal transport by diffusion
time scale for thermal transport by convection = gL3

νκt
∆ρ ' ρgL3

νκt
α∆T

where α is the thermal expansion coefficient of the fluid, ρ is the density of the fluid, g is the
acceleration due to gravity, L is a characteristic length, ν the kinematic viscosity of the fluid,
κt is the thermal diffusivity of the fluid and ∆ρ and ∆T represent respectively density and
temperature differences.
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Kolmogorov microscales

Kolmogorov microscales are the smallest scales in turbulent flow. At the Kolmogorov scale,
viscosity dominates and the turbulent kinetic energy is dissipated into heat:

• Kolmogorov length scale: ηK =
(
ν3

ε

) 1
4

• Kolmogorov time scale: τK =
(
ν

ε

) 1
2

• Kolmogorov velocity scale: uK = (νε)
1
4

where ν is the kinematic viscosity and ε is the average rate of dissipation of turbulence kinetic
energy per unit mass. The Kolmogorov length scale ν can be obtained as the scale at which
the Reynolds number is equal to 1, Re = uL

ν
= 1, L = ν

U
= µ

ρU
.

1.1.8 Numerical resolution

The simulation of turbulent flows by numerically solving the Navier-Stokes-Fourier equations
(1.14) requires resolving a very wide range of time and length scales, all of which affect the
flow field. Such a time and space resolution can be achieved with Direct Numerical Simulation
(DNS), but is computationally expensive. Its computational cost can prohibit simulation of
practical engineering systems with complex geometry or flow configurations. To circumvent
those limitations, various class of mathematical models have been developed to numerically
solve complex fluid problems.

Direct Numerical Simulation (DNS)

A direct numerical simulation is a simulation in computational fluid dynamics in which the
Navier-Stokes equations are numerically solved without any turbulence model. This means
that the whole range of spatial and temporal scales of the turbulence must be resolved. All
the spatial scales of the turbulence must be resolved on the computational mesh, from the
smallest dissipative scales (Kolmogorov microscales), up to the integral scale L associated
with the motions containing most of the kinetic energy. In 3D we have that the number of
mesh points satisfying this condition is proportional to Re 9

4 = Re2.25 and the number of time
steps is proportional to Re 3

4 implying that the number of floating point operations grows as
Re3. Therefore, the computational cost of a fully resolved DNS is very high, even at low
Reynolds numbers.
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Large Eddy Simulation (LES)

The principal idea behind LES is to reduce the computational cost by ignoring the smallest
length scales, which are the most computationally expensive to resolve, via low-pass filtering
of the Navier-Stokes equations. Such a low-pass filtering, which can be viewed as a time- and
spatial-averaging, effectively removes small-scale information from the numerical solution.
This information is not irrelevant, however, and its effect on the flow field must be modeled,
a task which is an active area of research for problems in which small-scales can play an
important role, such as near-wall flows, reacting flows, and multiphase flows.

Reynolds-averaged Navier-Stokes equations (RANS)

The Reynolds-averaged Navier-Stokes equations are time-averaged equations of motion of
fluid flow. The idea behind the equations is Reynolds decomposition, whereby an instan-
taneous quantity is decomposed into its time-averaged and fluctuating quantities, an idea
first proposed by Osborne Reynolds. The RANS equations are primarily used to describe
turbulent flows. These equations can be used with approximations based on knowledge of the
properties of flow turbulence to give approximate time-averaged solutions to the Navier-Stokes
equations.

1.1.9 Vortex methods

Since their first use in the 1930s [Prager 1928][Rosenhead 1931], vortex methods have gained
attraction in the numerical fluid mechanics community by their ability to model accurately,
robustly and naturally flows where the convective phenomenon is dominant. However, their
widespread use was hampered by their difficulty to take into account adhesion conditions
on the boundaries of immersed solids and to treat effects due to the viscosity of the flow
[Cottet et al. 2000]. This last point is explained by the phenomenon of grid distortion which is
characteristic of lagrangian methods. This distorsion is due to the accumulation or rarefaction
of the particles in areas of strong velocity gradients.

Despite multiple studies until the 1990s in order to remedy these weaknesses, the vortex
method did not achieve to impose themselves in their original context [Chorin 1973][Leonard
1975][Chorin 1978][Leonard 1985]. The emergence of particle remeshing schemes and their use
in hybrid eulerian/lagrangian solvers enabled the vortex methods to circumvent their intrinsic
difficulties while maintaining their original strengths [Anderson et al. 1985][Cottet 1988]. The
remeshing procedure allowed to redistribute the particles on an underlying grid, ensuring a
distortionless procedure with uniform particle distribution, and the use of eulerian methods
on Cartesian grid facilitated the treatment of viscous effects. The gain of competitiveness
obtained with this new semi-lagrangian framework then aroused many efforts, particularly
in terms of algorithmic development and high performance computing, resulting in multicore
distributed parallel solvers [Sbalzarini et al. 2006][Lagaert et al. 2014] and efficient imple-
mentations of high order remeshing kernels on coprocessors and accelerators [Rossinelli et al.
2008][Etancelin et al. 2014]. The remeshed particle method is described in section 2.3.
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1.1.10 Scalar transport in high Schmidt number flows

The prediction of the dynamics of a scalar transported in a turbulent flow constitute an
important challenge in many applications. A scalar field can describe a temperature field,
the concentration of chemical species or even a levelset function that captures the interface
in multiphase flows [Shraiman et al. 2000]. For a passive scalar θ, the transport equation is
an advection-diffusion equation that is coupled with the velocity of the carrier-fluid:

∂θ

∂t
+ (u · ∇) θ = κ∆θ (1.36)

where κ is the molecular scalar diffusivity and u the turbulent velocity of the carrier fluid.

Similarly to the Kolmogorov length scale ηK defined in section 1.1.7, the Batchelor scale
ηB describes the smallest physical length scales that the scalar will develop before being
dominated by molecular diffusion [Batchelor 1959]. The Schmidt number is a dimensionless
parameter defined as the viscosity-to-diffusivity ratio:

Sc = ν

κ
(1.37)

The Batchelor and Kolmogorov scales are related by ηB = ηK/
√
Sc. For a Schmidt number

larger than one, the Batchelor scale is thus smaller than the Kolmogorov scale and scalar
dynamics can occur at scales smaller than the smallest velocity eddies. Direct numerical
simulations of turbulent transport with a pseudo-spectral methods have been conducted by
[Donzis et al. 2010] to study universal scaling laws of passive scalars. For Schmidt numbers
higher than one, they investigated three-dimensional grid discretizations up to N = 2048
in each direction with a Fourier-based spectral solver to determine the effects of the grid
resolution on small-scale scalar statistics. Their main conclusion is that the grid resolution
should effectively be of the order of the Batchelor scale ∆x ' ηK .

Figure 1.1 – Three-dimensional turbulent scalar transport at high Schmidt num-
ber: Slice of the norm of the vorticity (left, coarse grid 2563) and passive scalar (right, fine
grid 30643) obtained by [Lagaert et al. 2014] for a Schmidt number Sc = 128.
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For numerical simulations, the dependency of the Batchelor scale on the Schmidt number
suggests that the prediction of scalar dynamics for high Schmidt numbers is more demanding
in terms of spatial resolution than the prediction of momentum. The two-scale nature of
turbulent scalar transport makes it natural to use different grids [Gotoh et al. 2012], however,
classical advection schemes for the scalar equation impose a CFL condition which requires
adaptation of the time step to the finest scales, thus increasing the computational cost. Par-
ticle methods, that are not constrained by any CFL condition, can overcome this limitation.
This technique has been introduced by [Cottet et al. 2009a] in the context of LES simulations
of homogeneous isotropic turbulence where both the momentum and scalar equations were
solved by particle methods at different resolutions. This method leads to a significative speed
up over more conventional grid-based methods and allows to address challenging Schmidt
numbers [Lagaert et al. 2012]. A distributed hybrid spectral-particle method has also been
proposed in [Lagaert et al. 2014] where three-dimensional simulations up to Sc = 128 were
performed (see figure 1.1). In this case, the grid resolution was 2563 for the flow variables
(u,ω) and 30643 for the scalar θ. The speed-up provided by the spectral-particle method
over a purely spectral method was estimated to be around O

(
102).

1.2 Sediment flows

Dispersion of solid particles in turbulent shear flows is of importance in many natural and
engineering processes. The transport of sediments in oceans and slurries in pipes are typical
examples. At sufficiently high mass loading, the particles have an effect on the turbulence
structure of the carrier fluid and thus modify the transport of physical quantities. To predict
these transport phenomena, the knowledge of the coupling between the particles and the fluid
is required. This section introduces sediment transport processes and aims to give a state of
the art of existing fluid-particles coupling models.

1.2.1 Sediment transport mechanisms

A sediment is a naturally occurring material that originates from the alteration of continen-
tal geological formations. Sedimentary erosion, transport and deposit are driven by many
physical processes, their transport being mainly due to wind, water and gravity. As an ex-
ample, sand can be carried in suspension by rivers, reaching the sea bed where they will
be deposited by sedimentation once the flow becomes sufficiently quiescent. Their geological
origin determining their chemical composition, sediments exhibit a huge variety of physical
and mechanical properties including varying sizes, shapes and densities.

In the literature, many sediment size classifications have been proposed [Schmid 1981] [Mon-
crieff 1989]. Those classifications are important because the granulometry plays a great role
into the transport mechanisms: the same sediment calibers will not be found near or far from
the erosion zone as it can be seen on figure 1.2. As we may expect, the finest sediments will
be transported as suspensions and the coarsest sediments that are heavier will travel the least
distance from the erosion zone. The granulometry is not the only factor that should be taken
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Figure 1.2 – Illustration of the different sediment transport mechanisms: the
upper layer is composed of ions that are transported as dissolved load and light sediments
like clay, silt and sand that are transported as suspended loads. The bed load is composed
of intermediate size sediments like gravel alternating between transport and sedimentation
phases, jumping on the bed (saltation) and pebbles and boulders rolling and sliding on the
sea floor. A typical mean vertical flow velocity profile u(z) is also provided, showing the effect
of the high concentration of sediments in the bed load, acting as a porous media, on the flow
velocity.

in account, the amount of clay and organic matter is also of importance because it determines
whether the sediments exhibit a cohesive behaviour or not. Gravels and coarse to medium
sands are non-cohesive sediments that are constituted of particles that are independent from
each other. In cohesive sediments however, particles are attracted between each other and
form higher density aggregates that will settle [Teisson 1991] having significant effects on the
flow [Edmonds et al. 2010]. Polydisperse flows are sediment-laden flows that contains sedi-
ment of different sizes and shapes. Polydispersity of particles or droplets introduces a wide
range of length and time scales that introduce further modeling challenges.

The ability to transport sediments is constrained by the energy available in the flow. When
water flows over the sediment bed, it generates a shear stress τ that may trigger the sediment
transport if above a critical value. The comparison of the destabilizing force due to shear
‖Fs‖ ∝ τd2 to the stabilizing gravity force acting on a single particle ‖Fg‖ ∝ (ρs−ρf )gd3 gives
a nondimensional number, the Shields number, that can be used to calculate the initiation of
motion of sediments [Shields 1936]. It is defined as the following:

τ∗ = τ

(ρs − ρf )gd

where ρs and ρf are the particle and fluid density. As the transport is facilitated when
particles lay on an inclined bed, the formula can be adapted to depend on the slope angle
[Fredsøe 1992].
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Depending on the value of the Shields number, sediments will move differently. We usually
distinguish four layers of sediment loads as represented on figure 1.2:

• Dissolved load: Dissolved matter is invisible, and is transported in the form of chem-
ical ions, the simplest example being salt (NaCl). Water can disrupt the attractive
forces that hold the sodium and chloride in the salt compound together and dissolve
it. All flows carry some type of dissolved load as water is a universal solvent. The
total dissolved solid load transported in major world rivers has been estimated to 3843
megatons per year [Zhang et al. 2007].

• Suspended load: The suspended load is composed of fine particles that are transported
in suspension in the flow. Those particles are too large to be dissolved, but too light
to lie on the sea bed. However, suspended loads can settle if the flow is quiescent or in
the presence of cohesive particles that will agglomerate and thus settle on the bed.

• Bed load: The bed load is constituted of sediments that are in continuous or intermit-
tent contact with the bed. One can distinguish pebbles and boulders that can only slide
and roll on the bed and coarse sands and gravels that moves by successively jumping
on the bed in the flow direction. This last process is called saltation. The fluid velocity
rapidly decreasing near the sea bed, stratification occurs and the near bed sediment
concentration rises, resulting in non-Newtonian rheologies [Faas 1984].

• Bed: When the sediment concentration exceeds a critical value, the structural density,
a porous network of sediments is formed and a weak saturated soil is formed. Due to
the continuous deposit of sediments, this structure will slowly collapse and compress
on its own weight, increasingly consolidating the soil. The soil then consolidates even
further due to time dependent processes such as thixotropy [Freundlich et al. 1936].

In reality, the transition between these four zone is rather gradual. This highlights the fact
that sediment transport is a vertically continuous varying phenomenon. The Hjulström curve
(fig. 1.3) can be used to determine whether a river flowing at a certain velocity will erode,
transport, or deposit sediments of a certain size.

This simple model, proposed in the early 20th century, determines the state of a particle at a
certain depth by the knowledge of its size and the velocity of the carrier fluid. On this curve
we can already see that for cohesive sediment (clay and silt) the erosion velocity increases
with decreasing grain size, highlighting the fact that the cohesive forces become more and
more important as particles sizes get smaller. On the other hand, the critical velocity for
deposition depends only on the settling velocity which decreases with decreasing particle size.
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Figure 1.3 – Plot of the Hjulström curve in logarithmic scale. At high flow ve-
locity, gravel, pebbles and boulders are transported on the sea bed whereas clay, silt and
sand are already transported as a suspension at smaller velocities. The erosion velocity curve
corresponds to the critical velocity where sediments begins to erode from the bed. Eroded
sediments may then be transported in the carrier fluid at lower velocities until the critical set-
tling velocity is reached, where they will deposit. Figure adapted from the original [Hjulstrom
1935] curve.

1.2.2 Sediments-laden flows classification

Physical models can be split into three classes depending on the volume fraction of particles
in the carrier fluid and the ratio between particle response time and the Kolmogorov time
scale [Elghobashi 1991] as it can be seen on figure 1.4. The particle response time τp charac-
terizes how quickly a particle responds to turbulent fluctuations in the carrier fluid. In this
subsection, φp is the volume fraction of particles in the carrier fluid, S represents the average
distance between the centers of two neighboring particles, d is the diameter of a particle, τk
is the Kolmogorov time scale and τe is the turnover time of large eddy.

When the volume fraction of particles is very small φp ≤ 10−6, the particles effect on tur-
bulence can be neglected. In this first case, the particles behaves as tracers: the particle
dispersion only depends on the carrier fluid, and there is not feedback from particles to the
fluid. This situation is often referred as ”one way coupling”.
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The second regime characterizes dilute suspensions where the volume fraction φp is comprised
between 10−6 and 10−3 In this case, the mass loading is high enough to modify the turbulence
of the carrier fluid and ”two way coupling” becomes necessary as particles modify the fluid
characteristics. Depending on their size, particles can enhance either the production or the
dissipation of turbulence energy:

1. Lowering the particles diameter d diminishes their response time τp and increases the
total surface area of the particles. As a consequence, particles have a tendency to
increase the dissipation rate of the turbulence energy.

2. Increasing the particles diameter d increases their response time τp and diminishes the
total surface area of the particles. This increases the particles Reynolds number Rep and
vortex shedding builds up. As a result, particles increase the production of turbulence
energy in the carrier fluid.

The third regime characterizes dense suspensions where the particle loading is greater than
0.1%. Because of the increased particle loading, we also have to take into account interactions
between particles, hence the term ”four way coupling”. Increasing further the particle loading
leads to collision-dominated flows (fluidized beds) followed by contact-dominated flows (nearly
settled bed). When φp reaches 100%, there is no carrier fluid anymore and the flow becomes
fully granular.
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1.2.3 Numerical models

In this work, we are only interested in suspensions that are dilute enough to be accurately mod-
elled by either one-way or two-way coupling (φp ≤ 10−3), evolving as dissolved or suspended
loads. One-way coupling just consists into adding an additional scalar advection-diffusion
equation to the Navier-Stokes equations (see section 1.1.10). Some modelling difficulties arrise
when considering suspended loads of sediments where two-way coupling becomes mandatory.
Such flow configurations are referred to as sediment-laden flows and are included into the
more general framework of particle-laden flows. In a particle-laden flow, one of the phases is
continuously connected (the carrier phase) and the other phase is made up of small immiscible
particles (the particle phase). This section presents the two main approches commonly used
to mathematically represent particle-laden flows.

Eulerian-eulerian approach

In the EE2 approach the carrier flow and the particles are modelled as a continuum, allowing
the use of the same discretization techniques for both the fluid and the particles. This class
of methods can further be split into two subclasses depending on how the particulate phase
is modelled (deterministically or statistically):

1. Deterministic separated-fluid formulation: When the particles can be considered
as a continuum behaving like the carrier fluid, is is possible to perform a two-way fluid-
fluid coupling through two sets of Navier-Stokes equations modelling each continuum:

φf + φp = 1
Ff�p + Fp�f = 0

∂φkρk
∂t

+∇ · (φkρkuk) = 0
∂φkρkuk

∂t
+∇ · (φkρkuk ⊗ uk) = ∇ · (φkτk) + φkρkg + Fk′�k

(1.38a)
(1.38b)

(1.38c)

(1.38d)

where φk, ρk, uk and τk represent the volume fraction, density, velocity and total
stress tensor of phase k ∈ {f, p}. This two-fluid model is based on the particle-phase
continuum assumption of [Drew et al. 2006]. Note that for the particulate phase, those
quantities are to be determined for a huge number of particles in a small control volume
which imposes d� dx. The fluid-particles interactions are taken into account through
the interphase hydrodynamic force Fk′�k resulting in a two-way coupling of the model.
The total stress tensor of the particles can take into account the pressure gradient due
to the carrier flow and for dense suspensions where φp ≥ 0.1%, complex particle-particle
interactions like collisions and particle viscous stress due to altered flow characteristics
around each particle. If the particles are polydisperse, it is also possible to consider
independently each particle group as an individual phase [Schwarzkopf et al. 2011].

2Eulerian-Eulerian
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2. Deterministic mixed-fluid formulation: This formulation is a simplification of the
separated-fluid formulation where the relative velocities between the fluid and particles
uf −up are small compared to the predicted flow velocity field u = uf . This simplifica-
tion results in a unique set of Navier-Stokes equations for the two phases [Faeth 1987]:

φf + φp = 1
ρ = φfρf + φpρp

∂ρ

∂t
+∇ · (ρu) = 0

∂ρu

∂t
+∇ · (ρu⊗ u) = ∇ · τ + ρg

(1.39a)
(1.39b)

(1.39c)

(1.39d)

3. Statistical kinetic method: Statistical methods also make the assumption that par-
ticles can be seen as a continuum. They can be used to track the evolution of ensemble-
averaged particle properties. In this first statistical method, the particles are described
by a probability density function W (up,xp, t) which represents the probability that a
particle has a certain velocity and position at given time. This framework being more
general, the resulting transport equations are harder to derive but it becomes easier to
handle near-wall boundary conditions. It has been first introduced by [Buyevich 1971],
and since has been continuously improved by many authors including notably [Reeks
1980], [Derevich et al. 1988], [Swailes et al. 1997] and [Hyland et al. 1999]. Moreover,
this framework tends to invalidate the traditional assumption that the particles behaves
as a Newtonian fluid [Elghobashi 1983].

4. Statistical generalized Langevin model: This model is a generalization of the
statistical kinetic model where the probability density function now also depends on
the velocity of the carrier fluid W (uf ,up,xp, t). It was first introduced by [Simonin et
al. 1993] and is built upon the work of [Haworth et al. 1986] on the generalized Langevin
model. However statistical approches are most suited for gases and are not relevant for
sediment-laden flows were all the particles are solid.

Lagrangian-eulerian approach:

The LE3 approach denotes a group of models where the carrier fluid is modelled as a contin-
uum and the particles are described in a lagrangian frame. Within this framework all particles
are tracked individually within the carrier fluid, allowing a better handling of particle-particle
collisions [Subramaniam 2013]. We usually split those methods into the following categories:

1. Fully-resolved DNS: The exact Navier-Stokes equations are solved by imposing no-
slip boundary conditions at each particle surface. In this case, particle collisions are
usually modelled by using either a soft-sphere or hard-sphere collision model [Hoomans
et al. 1996] [Matuttis et al. 2000]. This kind of simulation is very demanding in terms
of compute resources but no additional closure models are required to compute the
solution.

3Lagrangian-Eulerian
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This method has been successfully applied for a limited amount of particles by [Zhang et
al. 2005] and [Uhlmann 2005]. As the domain space step dx should be much smaller than
the particle diameter to capture the surface of each particle d, increasing the number
of particles quickly becomes a problem when considering thousands particles. However,
boundary handling can be simplified by introducing an immersed boundary method to
easily enforce the particle boundary conditions. By using the penalization method of
[Kempe et al. 2012], particle-resolved DNS has been used to perform fluid simulations
of a polydisperse sediment bed made up of thousands of particles, sheared by a viscous
flow [Biegert et al. 2017]. More recently the same technique was used to study the
settling of cohesive sediments [Vowinckel et al. 2019]. Simulations using levelsets and
vortex penalization were performed in [Coquerelle et al. 2008] and [Jedouaa et al. 2019].

2. Point-particle DNS: If the particle size is smaller than the Kolmogorov scale, the
particle can be considered as a point particles, relieving the dx � d condition. The
main difference with the fully-resolved DNS is that this model requires an additional
closure model for interphase momentum transfer. As each particle can be evolved
independently, it is possible to handle millions of particles [Kuerten 2016]. This category
englobes two subcategories depending on the type of computational particles that is
considered:

• PP-DNS with physical particles: each particle represents a physical particle
[Squires et al. 1991] [Sundaram et al. 1997].

• PP-DNS with stochastic particles: each particle represents some particle den-
sity that interacts with the carrier fluid [Boivin et al. 1998].

In point-particle based models statistical treatment of collisions is usually employed
[O’Rourke 1981] [Schmidt et al. 2000].

3. Point-particle LES: It is also possible to take into account the carrier fluid using
Large Eddy Simulation instead of DNS, leading to two new subcategories similar to
the previous ones: point-particle LES with physical particles [Apte et al. 2003] and
point-particle LES with stochastic particles [Sommerfeld 2001] [Okong’o et al. 2004].

From a numerical point of view, the lagrangian-eulerian approach minimizes numerical diffu-
sion in the particulate-phase fields such as volume fraction or mean velocity when compared
to eulerian-eulerian approaches. This comes at the cost of higher computational require-
ments compared to the EE averaged equations due to the particle-based representation of the
multiphase flow, even when considering stochastic point particle based models.
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1.3 Density-driven convection

For the rest of this chapter, we place ourselves into the eulerian-eulerian framework. This sec-
tion describes some sedimentation problems that are buoyancy-driven such as gravity currents
and double-diffusive fingering of salt and particle-laden flows.

1.3.1 Gravity currents

Gravity currents or density currents are a primarily horizontal flows in a gravitational field
that is driven by a density difference [Benjamin 1968]. Gravity currents can be finite volume
like in the event of a dam break, or continuously supplied like for lava flows. Depending
on the parameters, mostly the density difference and the concentration, different approaches
that can account for this kind of two-way coupling are to be considered. An overview of
those approaches can be found in [Sinclair 1997] as well as in [Schwarzkopf et al. 2011]. In his
book, [Simpson 1999] describes and illustrates a whole range of naturally occurring density-
driven flows such as turbidity currents in the ocean, sea breeze fronts propagating inland from
the coast, salt water wedges in river estuaries, and snow avalanches. The density difference
that drives this kind of currents may be cause by the presence of additional chemicals in
some regions of the flow, like in the case of fresh water flowing into salty sea water [Huppert
1982]. Thermal differences can also be the cause of density gradients creating gravity currents
[Bercovici 1994]. Turbidity currents in the ocean are driven by suspended particles increasing
the bulk density of the surrounding fluid [Bonnecaze et al. 1993]. In this specific case, the
density can change through sedimentation and the entrainment of the lighter carrier fluid.
[Britter et al. 1978] provides experimental and analytical data for the case of a heavy fluid
released next to a lighter fluid which show that gravity currents mix trough Kelvin-Helmholtz
billows generated at the moving head of the mixing layer.

The density difference between the two fluids can range from very small to very large. In
many geophysical situations such as sea water and fresh water the density difference is very
small (within 5%). In cases of small density difference, density variations can be neglected in
the inertia term, but retained in buoyancy term. Hence, for dilute suspensions of sediments
that are small enough such that their inertia can be neglected, the most convenient model
uses a single-phase Boussinesq fluid whose density ρ depends only on carrier fluid base
density ρ0 augmented by the local particle concentration C.

The particulate phase is driven by a convection-diffusion equation for its concentration:

∇ · u = 0
P = P − ρ0gz

ρ = ρ0 (1 + C)
∂u

∂t
+ (u · ∇)u = ν∆u− ∇P

ρ0
+ Cg

∂C

∂t
+ (u · ∇)C = κc∆C

(1.40a)
(1.40b)
(1.40c)

(1.40d)

(1.40e)
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This simple model can directly be obtained from the incompressible eulerian-eulerian mixed-
fluid formulation (1.39) in its Boussinesq approximation (1.34) where we used the so called
pressure shift (1.32). This model is particularly adapted for the velocity-vorticity formulation
as the gradient of shifted pressure disappears when taking the curl of the momentum equations
leading to two scalar convection-diffusion equations in 2D. For three-dimensional problems we
get three convection-diffusion-stretch equations for the vorticity and one convection-diffusion
equation for the scalar concentration C:

∇ · u = 0
ρ = ρ0 (1 + αC) with α� 1 and C ∈ [0, 1]

∂ω

∂t
+ (u · ∇)ω = ν∆ω +∇× (Cg)
∂C

∂t
+ (u · ∇)C = κc∆C

(1.41a)
(1.41b)

(1.41c)

(1.41d)

This model has extensively been used by [Necker et al. 1999] to investigate particle-driven
currents and to compare the results to a eulerian-lagrangian numerical model as described in
subsection (1.2.3). Their results indicate that this model is a good candidate in the presence of
low particle Stokes number. [Härtel et al. 2000] than further used direct numerical simulation
of this model to perform a detailed analysis of the flow structure exhibited at the front of this
kind of flows, where Kelvin-Helmholtz instabilities appear.

To illustrate the fact that simpler models than the full Navier-Stokes equations for the carrier
fluid can be used we can take as an example [Bonnecaze et al. 1999]. Using only the shallow-
water equations, they were able to solve for a turbulent current flowing down a uniform
planar slope from a constant-flux point source of particle-laden fluid. This work has later
been extended by [Ross 2000]. Another example of this kind would be [Monaghan et al. 1999]
who used SPH to model gravity currents descending a ramp in a stratified tank.

There can be practical situations of interest where the density difference between the two
fluids forming the gravity current is larger than a few percent. In order to study such flows,
we cannot use the above Boussinesq approximation. We instead need to solve the mixed
formulation involving the full incompressible Navier-Strokes equations with variable density
(1.39) along with convection-diffusion equation for the particles concentration:

∇ · u = 0
P = P − ρ0gz

ρ = ρ0 (1 + αC) with α = O (1) and C ∈ [0, 1]

ρ

[
∂u

∂t
+ (u · ∇)u

]
= µ∆u−∇P + Cρg

∂C

∂t
+ (u · ∇)C = κc∆C

(1.42a)
(1.42b)
(1.42c)

(1.42d)

(1.42e)
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Figure 1.5 – Example of 2D gravity current obtained by [Birman et al. 2007].
A dense fluid is released in a linearly stratified ambient of lesser density. The density contours
show the formation of an advancing front, behind Kelvin-Helmholtz instabilities giving rise
to strong vortices.

By using equations 1.42, detailed numerical simulations of gravity currents released from
a lock and propagating at the bottom have been first studied by [Ungarish et al. 2002] and
extended later by [Birman et al. 2006] and [Birman et al. 2007] in the case of linearly stratified
ambients, using this more complete model as illustrated on figure 1.5. Hoffmann and its
collaborations than extended the numerical investigation to 2D buoyancy-driven flows in the
presence of slopes [Hoffmann et al. 2015]. This model has also been used by Meiburg and
collaborators to take into account complex 3D sea floor topologies like bumps [Nasr-Azadani
et al. 2014][Meiburg et al. 2015].

More recently, DNS and LES simulations of three-dimensional non-Boussinesq gravity cur-
rents using a discontinuous Galerkin finite elements method have been conducted by [Bassi
et al. 2018]. Multiple levels of stratifications have also been investigated by [Khodkar et al.
2018] using this model.

1.3.2 Double diffusive convection

Double diffusive gravity currents constitute a specific set of problems where two fluids, ini-
tially in a lock-exchange configuration, exhibit different densities that depends on some of
their physical properties (concentration, temperature, ...) that diffuses at different rates cre-
ating two different density gradients. In this kind of configuration, the horizontal movement
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Figure 1.6 – Effect of Rayleigh numbers on the evolution of double-diffusive salt
fingers: Numerical simulations results obtained by [Sreenivas et al. 2009a] that show concen-
tration fields of a thermohaline system at different thermal Rayleigh numbers for fixed value
of Rρ = 6. Finger characteristics such as width, evolution pattern are a function of Rayleigh
numbers. Image adapted from Salt fingers by Faria Rehman and licensed under CC BY-SA
4.0.

is initiated by initial density differences between each side of the lock as in classical lock-
exchange configurations that have been presented in subsection (1.3.1). After the lock-gate is
withdrawn, the light fluid flows over the heavy fluid transporting dissolved chemicals, physical
particles or heat by convection down through the interface between the two fluids. This forms
vertical density gradients, generating double diffusive convection oriented perpendicularly to
the flow direction. In practice, double-diffusive processes are interesting enough that they are
often studied independently without the initial horizontal lock-exchange configuration.

In double-diffusive problems, two basic type of convective instabilities may arrise: diffusive
and fingering configurations (see figure 1.6 for the latter case). Such transport processes
have long been ignored because their effects have been thought to be always overwhelmed by
turbulent transport, but in both cases, the double diffusive fluxes can be much larger than
the vertical transport in a single-component fluid because of the coupling between diffusive
and convective processes [Turner 1985]. As an example, double diffusion convection plays an
important role in upwelling of nutrients and vertical transport of heat and salt in oceans.
Thus, finger convection helps to support flora and fauna. It also plays an important role in
controlling the climate.

The form of the resulting vertical motions depends on whether the driving energy comes from
the component having the high or lower diffusivity. When one layer of fluid is placed above
another denser layer having different diffusive properties, two types of instabilities may arise:

https://commons.wikimedia.org/wiki/File:Salt_fingers.png
https://www.researchgate.net/profile/Faria_Rehman2
https://creativecommons.org/licenses/by-sa/4.0
https://creativecommons.org/licenses/by-sa/4.0
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• If the stable stratification is provided by the component with the lower molecular diffu-
sivity, the stratification will be of ”diffusive” type. This can happen when small pockets
of saline water are trapped near the ocean bottom in the trenches where there is a
supply of geothermal heat from hot vents [Kelley et al. 2003].

• On the other hand if the stable stratification is provided by the most diffusive com-
ponent, the stratification will be called to be of ”finger” type. This configuration is
occurring frequently in oceanographic studies as salt fingers [Stern 1969].

Double diffusive convection has been actively studied during the last six decades as its effects
are not limited to oceanography. It is also of importance in the understanding in a number of
other phenomena that have multiple causes for density variations [Huppert et al. 1981] [Chen
et al. 1984]. This includes convection in magma chambers [Huppert et al. 1984] and formation
of basalt fingers [Singh et al. 2011] in geology, solidification of metallic alloys [Beckermann et
al. 1988] in metallurgy, convection of solar winds due to temperature gradients and magnetic
buoyancy [Hughes et al. 1988] and more recently convection in Jupiter due to hydrogen-helium
phase separation [Nettelmann et al. 2015] in astrology. What is interesting in these systems
is the wide variety of length scales and generated structures that are controlled by large
variations in the governing parameters. Salt fingering in oceans operates on a length scale of
centimeters over days while for the basalt columns formation the convective structures scale
up to meters over time scales of decades [Singh et al. 2014].

Thermohaline convection and salt fingers

Historically double diffusive convection has been studied first in oceanography where heat
and salt concentrations exist with different gradients and diffuse at differing rates. The term
thermohaline convection has already been introduced in 1945 to describe this specific
heat-salt system by Deacon and his collaborators when they studied water circulation and
surface boundaries in the oceans [Deacon 1945]. A decade later, Stommel and its collaborators
tried to describe an ”oceanographic curiosity” relative to thermohaline convection that they
named the salt fountain [Stommel 1956]. In 1960 Stern and its collaborators studied those salt
fountains and observed that gravitationally stable stratification of salinity and temperature
can be explained by the fact that the molecular diffusivity of heat κt is much greater than the
diffusivity of salt κs [Stern 1960]. Some years later, experimental data obtained by [Ingham
1965] suggested that the relationship between temperature and salinity was much better
described by a curve of constant density ratio Rρ rather than by a straight line as showed on
figure (1.7). Those early experimental observations were later taken as an evidence of double
diffusive mixing by [Schmid 1981] using the empirical model proposed by [Chen et al. 1977].

Salt fingers appear when a hot and salty water lies over cold and fresh water of higher
density (see figure 1.8). Salt fingers are formed because the temperature T , which is the
fastest diffusing component, contributes to the negative density gradient (∂ρt

∂z < 0, stable
stratification) and slow diffusing salinity S contributes to the positive density gradient (∂ρs

∂z >

0, unstable stratification) with overall density stratification remaining gravitationally stable
(∂ρ∂z < 0).
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Figure 1.7 – Potential temperature versus salinity plot of four hydrographic stations
in the North and the South Atlantic and the North and the South Pacific obtained by [Schmid
1981] based on the experimental work of [Ingham 1965] and the numerical model proposed by
[Chen et al. 1977] to estimate density expansion parameters α and β. Dotted lines represents
linear fit of data whereas solid lines represents optimal least squares fit of constant density
ratio Rρ = α∆T

β∆S . See equations (1.43) for the modelization of thermohaline convection.

Hot saline water

Cold fresh water

x

z

T = T0 +∆T

S = S0 +∆S

ρbottom = ρ0 = ρ(T0; S0)

ρtop = ρ0(1− α∆T + β∆S) < ρ0

T = T0

S = S0

Figure 1.8 – Initial configuration for a thermohaline convection: hot and salty water
lies over cold and fresh water of higher density ρ0. Initial temperature and salinity differences,
denoted ∆T and ∆S modify the bulk density of water ρ0 by a factor 1 − α∆T + β∆S < 1
such that the system is initially gravitationally stable. The density stability ratio Rρ > 1 is
defined as the ratio between the thermal and salt density contributions. The temperature,
diffusing 100 times faster than salt, will reduce density bellow the initial interface making the
system gravitationally unstable before salinity can compensate for the sudden density change.
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On the contrary, diffusive stratification occur when a deep layer of cold fresh water is placed
above a warm salty (and heavier) layer. For example, such situation can occur in the case
of a melting iceberg that inputs cold freshwater from above [Stern 1975]. See [Kelley et al.
2003] for a complete discussion about the diffusive configuration.

The usual model for salt fingering can be found in [Schmitt Jr 1979] and uses a single-phase
Boussinesq fluid whose density ρ depends only on carrier fluid base density ρ0 augmented
by the local salinity S and temperature T analog to the one presented in section (1.1.6) and
equations (1.40):

T = T0 + δT

S = S0 + δS

ρ = ρ0 (1− αδT + βδS)
P = P − ρ0gz

∇ · u = 0
∂u

∂t
+ (u · ∇)u = ν∇2u− ∇P

ρ0
+ (βδS − αδT )g

∂δT

∂t
+ (u · ∇) δT = κt∇2δT

∂δS

∂t
+ (u · ∇) δS = κs∇2δS

(1.43a)
(1.43b)
(1.43c)
(1.43d)
(1.43e)

(1.43f)

(1.43g)

(1.43h)

In this simple model, the work of pressure forces and the heat generated by viscous friction
are neglected, the notation ∇2 has been used instead of ∆ for the Laplacian operator, α
corresponds to usual thermal expansion coefficient and β to the density expansion parameter
taking into account the presence of additional salt in the flow. As stated before, κt represents
the thermal diffusivity, κs is the diffusion coefficient for salt in water and we applied a pressure
shift to get P from constant bulk density ρ0 = ρ(T0, S0).

Within this specific setup we can estimate that around T0 = 20°C, the kinematic viscosity of
water is approximately ν = 1.003×10−6m2/s, the thermal diffusivity of water is κt = 1.430×
10−7m2/s and from [Caldwell 1973] the diffusivity of salt in sea water is κs = 1.286×10−9m2/s

(which seems to agree with [Poisson et al. 1983]). This configuration yields the following
dimensionless numbers comparing the different diffusivities that are involved in the double
diffusive thermohaline convection process:

• Schmidt number: Sc = ν

κs
= 7.799× 102 = O

(
103)

• Prandtl number : Pr = ν

κt
= 7.014× 100 = O (10)

• Lewis number : Le = κt
κs

= Sc

Pr
= 1.112× 102 = O

(
102)

• Diffusivity ratio : τ = Le−1 = κs
κt

= 8.993× 10−3 = O
(
10−2)
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With those numbers, it is easy to see that in heat-salt systems, heat is the faster diffusing
component (about 100 times) and that both heat and salt diffuse slower than velocity through
viscous friction (by a factor 10 and 1000 respectively). The evolution of salt fingers is known
to be influenced by many other non-dimensional parameters such as the thermal Rayleigh
number Rat, the salinity Rayleigh number Ras and the initial density stability ratio Rρ:

• Initial stability ratio: Rρ = α∆T
β∆S ∈ ]1, 10]

• Salinity Rayleigh number: Ras = ρgL3

νκt
β∆S

• Thermal Rayleigh number: Rat = RρRas = ρgL3

νκt
α∆T ∈ [108, 1012]

It can be noted that when Rρ < 1, the density gradient becomes gravitationally unstable. The
initial density stability ratio Rρ, the Schmidt number Sc and diffusivity ratio τ have been
observed to be the most important non-dimensional parameter that controls the fingering
behavior, see [Taylor et al. 1989] [Piacsek et al. 1980] [Traxler et al. 2011]. However, first
decades of research on salt fingers has been done in systems where Rayleigh numbers are high
(108 or higher, see [Kelley 1990]) but it has been recently observed that variation of flux ratios
(the density fluxes anomaly due to the presence of heat and salt) also greatly depend on the
Rayleigh numbers [Sreenivas et al. 2009b]. Smaller Rayleigh numbers than the ones naturally
occurring for heat-salt systems were experimentally investigated by [Krishnamurti et al. 2002]
and numerically by [Singh et al. 2014]. Finally it has been shown by [Huppert et al. 1973]
that the stability criterion for finger formation in a two-layer system is 1� Rρ � Le3/2. Note
that Pe can be much smaller for other configurations like salt-sugar systems where Le ' 3.

While forty years ago it was unclear that salt-fingering even existed outside of the laboratory,
it is now well understood that the vertical flux of sea salt is dominated by double diffusive
convection [Schmitt et al. 1978]. It was also observed that a small amount of horizontal
water movement or turbulence could destroy the fingers [Linden 1971][Konopliv et al. 2018].
However, the fingers usually reformed within a few minutes when the flow became laminar
again.

Double diffusive sediment-laden flows

During the seventies, a simple laboratory experiment showed that a similar fingering phe-
nomenon occurred when a warm fluid, made denser by the presence of suspended material,
was put above colder, distilled water [Houk et al. 1973]. As for thermohaline convection, the
presence of an originally sharp horizontal interface between two such fluid layers, the system
is double-diffusive and vertical sediment fingering motion occurs [Green 1987]. This sediment
fingering can also occur when vertical sediment concentration gradients are associated with
vertical temperature gradients instead of salinity gradients [Maxworthy 1999]. Temperature
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can also be complementary to salinity as observed in hypersaline lakes [Ouillon et al. 2019].
The vertical motion of suspended particles being fundamental to sedimentation, it was then
anticipated that the resulting double-diffusive instabilities could greatly contribute to the
distribution of nearshore sediments when compared to gravitational settling alone in laminar
flows.

In the nature, this event has been observed when a muddy river enters a stratified lake or
ocean [Schmitt et al. 1978]. Such sediment-laden riverine outflows can be classified as either
hypopycnal or hyperpycnal currents. An hyperpycnal current is a flow in which the density of
the river is more than that of the stratified ambiant, so that the river continues to flow near the
bottom of the sea floor [Mulder et al. 2003]. Such flows have been numerically investigated in
[Schulte et al. 2016]. The flows of interest here are hypopycnal currents, where the combined
density fresh water and suspended sediments is less than the density of the ocean. In this
case the river continues to flow along the top of the stratified ambiant and sediment fingering
can occur. As predicted, the resulting downward sediment flux can be orders of magnitude
above the one that would normally be obtained with only gravitational settling [Hoyal et al.
1999][Parsons et al. 2000]. It has been later observed that double-diffusive fingering was not
the only type of instabilities that could arrise. When sediment-laden water flows over clearer
and denser water, the dominant instability mode may instead become Rayleigh-Taylor like,
in which case the instabilities are located at the lower boundary of the particle-laden flow
region [Burns et al. 2012].

The important parameter that drives the instabilities has been identified as being the ratio
of the particle settling velocity to the diffusive spreading velocity of salinity or temperature
layer that initially provides the stable stratification [Burns et al. 2015]. While the particle
settling velocity can be estimated from physical particle properties [Gibbs 1985], the diffusivity
of salinity κs or temperature κt is fully determined by the knowledge of associated Schmidt
number between the considered field and water. The upward layer spreading velocity depends
on this Schmidt number but also the other dimensionless parameters of the system, such as the
stability ratio Rρ and the diffusivity ratio τ between the salinity and sediments (or between
temperature and sediments). In order for sediment fingers to form in hypopycnal flows, the
particles have to diffuse slower than the considered agent (τ > 1).

The numerical models used to explore the nonlinear behavior of convective sedimentation
in hypopycnal flows are similar to the one of the heat-salt system (1.43). Those models
consider dilute monodisperse distributions of fine particles with negligible inertia that can
be considered as a continuum. The particle concentration C contributes positively to the
density and is transported into the carrier fluid with respect to some relative particle settling
velocity Vst that is usually the same everywhere in the flow [Yu et al. 2013]. In the case
of the particle-salt system, equations (1.43c) and (1.43g) are thus replaced by the following
expressions:

ρ = ρ0 (1 + αδS + βδC)
∂δC

∂t
+ [(u− Vstez) · ∇] δC = κc∇2δC

(1.44a)

(1.44b)

The full set of equations relating to this particle-salt system is introduced in chapter 4.
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The particle settling velocity can be determined directly from the grain diameter d for given
values of carrier fluid viscosity ν0 and density ρ0. For dilute suspensions, Stokes law predicts
the settling velocity of small spheres in fluid:

Vst = Rgd2

C1ν0

R = ρc − ρ0
ρ0

(1.45a)

(1.45b)

where ρc is the density of particles, R represent the submerged specific gravity and C1 is a
constant that has a value of 12 for smooth spheres, and that is larger for non-spherical or
rough particles [Raudkivi 1998]. Stokes law holds for particle Reynolds numbers bellow unity,
else the settling of large particles is slowed down by the turbulent drag of the wake behind
each particle:

Vst =
√

4Rgd
3C2

(1.46a)

with C2 = 0.4 for smooth spheres and C2 = 1 for natural grains. The expressions for Stokes
flow and turbulent drag law can be combined into a single expression that works for all sizes
of sediment [Ferguson et al. 2004]. The fall velocity of various sizes of particle estimated with
this law is shown on figure 1.9.

Figure 1.9 – Settling velocity with respect to grain grain size. The blue zone
corresponds to the dilute suspensions considered here. Figure adapted from [Sylvester 2013].

The only considered particles being the ones with negligible inertia (clay and fine silts), the
settling velocity of a single particle will always be determined by Stokes law (1.45). The small
diffusion coefficient κc associated to the particles accounts for Brownian motion or the mixing
that would occur in real polydisperse suspensions. In practice, for grain sizes between 1 and
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20µm, the particle diffusivity is mainly induced by the velocity fluctuation due to the presence
of neighboring particles [Yu et al. 2014]. Depending on the volume fraction of particles φ,
the neighboring particles also have an influence on effective viscosity and settling velocity. A
semi-empirical formulation based on the particle diameter d and particles Stokes velocity Vst
has been proposed by [Segre et al. 2001]:

νc(φ) = ν0(1− φ/0.71)−2

Vc(φ) = Vst(1− φ)5

κc(φ) = K(φ)Vstr

(φ) = 11.4 (1− φ)2(1− φ/0.71)2√
(1 + 4φ+ 4φ2 − 4φ3 + φ4)

(1.47a)
(1.47b)
(1.47c)

(1.47d)

where r = d/2 is the particle radius and νc and Vc are respectively the effective viscosity of
the sediment-laden mixture and the effective settling velocity of the particles.

As shown on figure 1.10, for dilute suspensions under φ = 2%, the resulting values stay really
close to the particle properties obtained at infinite dilution.

Figure 1.10 – Semi-empirical model [Segre et al. 2001] for φ between 0.1 and 10%.

The average yearly sediment concentration of dirty rivers ranges from 10 to 40kg/m3 [Mulder
et al. 1995]. For quartz (ρc ' 2650kg/m3) this corresponds roughly to volume fractions
between 0.4% and 1.5%. When a river outflow is loaded with a large amount of suspended
sediment (more than 40kg/m3) the density of the mixture becomes greater than the one of
seawater and the flow becomes hyperpycnal. The diffusivity of salt in sea water has already
been estimated in the last subsection, leading to κs = 1.286 × 10−9m2/s. If we estimate κc
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from equations (1.47) for a given volume fraction and particle size, we can also compute the
diffusivity ratio τ = κs/κc. This is illustrated on figure 1.11.

Figure 1.11 – Estimation of the diffusivity ratio between salinity and particles.

From figure 1.11 we can estimate that τ ' 25 for a particle diameter of 2µm. This is effectively
the usual values that we can find in the literature [Yu et al. 2014][Burns et al. 2015]. The
dimensionless parameters corresponding to grain sizes of 2µm and volume fractions of roughly
1% are usually the following:

• Dimensionless settling velocity: Vp ' 0.04

• Schmidt number: Sc = ν0
κs
' 700

• Diffusivity ratio: τ = κs
κc
' 25

• Initial stability ratio: Rρ = α∆S
β∆C ' 2

The value Rρ = 2 corresponds to a mass loading of roughly 20kg/m3 of sediments and a
salinity of 3%. The Schmidt number between sediments and water can be computed as
ν0/κc = τSc ' 17500. Because of the high Schmidt numbers involved and associated Batchelor
scales for salinity and particle concentration, numerical simulations with excessively large
values of Sc or τ cannot be performed (see section 1.1.10). With τ = 25, simulations up to
Sc = 70.0 in 2D and Sc = 7.0 in 3D have been performed in [Burns et al. 2015]. Accessing
higher Schmidt numbers is the current challenge to be able to fully understand sediment
fingering naturally occurring near sediment-laden riverine outflows. The Batchelor scale of
fine particles being around ηB = ηK/

√
Sc ' ηK/132, a multilevel approach with a grid

ratio of 132 in each direction could be considered. Even for a two-dimensional flow, this
will require important computational ressources and distributed high performance computing
is here mandatory. This work aims to achieve high Schmidt number sediment-laden flow
simulations by using adapted numerical methods in a high performance computing context.
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1.4 High Performance Computing

High performance computing (HPC) is a field of applied mathematics that consists in using
supercomputers for applications that generally target scientific computing. The goal is to
take full advantage of all the available compute resources to solve a given numerical problem.
When high performance computing is used to solve multiple independent problems on a set
of resources of a computing machine, the problem is said to be embarrassingly parallel. In
this case little to no effort is needed to separate the problem into a number of parallel tasks.
When a set of compute resources is used to solve a single problem, the numerical method
employed has to be distributed on the computational elements in a collaborative manner.
This usually implies communication of intermediate results between the different compute
ressources. The implementation is here less straightforward because the problem has to be
decomposed into parallel tasks. This often requires to rethink the underlying algorithms and
to find a compromise between calculations and communications. As communication between
distant compute ressources is usually a costly operation, it is not uncommon to perform
redundant calculations to be able to reduce the volume of communications.

1.4.1 Hierarchy of a computing machine

A computing machine is made up of different hierarchical level of resources. It is composed of
interconnected compute nodes that generally comprises a hierarchy of memory (multiple lev-
els of caches, RAM, local disks), processors and possibly accelerators (coprocessors or graphics
cards). Including multiple cores on a single chip has become the dominant mechanism for
scaling processor performance. Modern supercomputers are thus hierarchical and the hierar-
chy depth tends to grow [Smith et al. 1990][Fu et al. 2016]. Structural hierarchy (core, socket,
node, rack, system) implies significant differences in communication time [Blaauw et al. 1997].
Memory hierarchy also induces differences in access time: the larger is the size of the level,
the slower is the access and the data movement overhead become the most significant factor
of inefficiency.

A given compute node containing multiple processors usually exhibit one of the following
memory architecture [Lameter 2013]:

• Uniform memory access: UMA is a shared memory architecture used in parallel
computers where all the processors share the physical memory uniformly. In an UMA
architecture, access time to a memory location is independent of which processor makes
the request or which memory chip contains the transferred data.

• Non-uniform memory access: On NUMA architectures, memory access time de-
pends on the memory location relative to the processor. A processor can access its own
local memory faster than non-local memory.

A compute node usually contain one or more sockets (NUMA nodes), that each can contain
one or more physical CPUs (corresponding to the physical sockets on the motherboard). A
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compute cluster contain one or more compute nodes and effectively constitute a distributed
memory architecture. Most usual cluster configurations ranges from one to eight sockets per
compute node, each containing a single physical multi-core CPU.

1.4.2 Evaluation of performance

Performance of supercomputers is usually evaluated in terms of floating point operations
per second (FLOPS or FLOP/s) because most scientific computations require floating-point
calculations. Although the notion of single- and double-precision is architecture specific, we
will here always refer to 32 bits floating point arithmetic (FP32) as single-precision and 64
bits floating point arithmetic (FP64) as double precision. The TOP500 project was started
in 1993 and ranks the 500 most powerful supercomputer systems in the world [Meuer et al.
1993]. Since 1993, performance of the number one ranked position has grown in accordance
with the revised Moore’s law, doubling roughly every 18 months [Moore 1975]. As of June
2019, Summit is the fastest supercomputer with theoretical peak computing performance of
200.8 PFLOPS of double-precision floating point arithmetic. As a comparison, this is over
1.53 × 106 times faster than the Connection Machine CM-5/1024, which was the fastest
system in November 1993 with 131.0 GFLOPS theoretical peak computing performance. This
represents a performance doubling every 15 months. Even tough, for the first time, all top
500 systems deliver a petaflop or more on the High Performance Linpack (HPL) benchmark
[Dongarra et al. 2003], Moore’s law is slowing down as we get closer and closer to physical
limitations of current lithography processes [Waldrop 2016].

Figure 1.12 – Exponential growth of supercomputing power - TOP500 list

HPL is a simple benchmark that factors and solves a large dense system of linear equations
using Gaussian elimination with partial pivoting. Figure 1.12 shows the evolution of su-
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percomputing power as achieved on the HPL benchmark (which is less then the theoretical
peak compute). Currently the combined power of all top 500 supercomputers exceeds the
exaflop, or one quintillion floating point operations per second. Exascale computing refers
to computing systems capable of at least 1 EFLOPS, and the first systems to break the ex-
ascale compute wall are expected in the upcoming years [Geller 2011]. When HPL gained
prominence as a performance metric in the early nineties, vendors logically pursued archi-
tectural designs that would increase HPL performance. As there was a strong correlation
between benched performance and general application performance, this in turn improved
real application performance. While microprocessors have increased in speed at a rate of
60%/year in the last decades, access times to memory have only been improving at a rate of
less than 10%/year [Carvalho 2002]. Because of the exponential growing disparity between
compute and memory performance the HPL metric now gives a skewed picture relative to
application performance where the computation-to-data-access ratios (FLOP/B) are low. The
HPL benchmark is only relevant for high computation-to-data-access ratios as obtained for
dense matrix-matrix multiplications [Dongarra et al. 2013]. Since November 2017, a new
benchmark has been introduced in the TOP500 project to evaluate computational and data
access patterns that more closely match a broad set of scientific applications, leading to an
alternative ranking of the TOP500 supercomputers.

This new benchmark, named High Performance Conjugate Gradients (HPCG), has been
designed to put more stress on memory and interconnect by performing sparse matrix opera-
tions. This benchmark is especially designed for HPC applications that require higher memory
bandwidth and lower memory latencies. It aims to deter hardware vendors from making de-
sign choices that would be detrimental for a wide range of applications, but beneficial for
the HPL benchmark. Such applications are usually memory-bound on current architectures,
and do not benefit at all from additional floating point compute units. On the contrary,
when a given algorithm is limited by computing power instead of memory bandwidth, it
is said to be compute-bound. Because HPCG is memory-bound, this benchmark generally
achieves only a tiny fraction of the peak FLOPS of a given supercomputer. As an example, the
Summit supercomputer only achieves 2.93 PFLOPS on HPCG versus 148.6 PFLOPS on the
HPL benchmark. For a given algorithm, the computation-to-data-access ratio in FLOP/B is
defined as the arithmetic intensity. Particle methods and dense linear algebra (HPL) perform
the order of 10 floating point operations per byte loaded or stored in memory. Those algo-
rithms are typically compute-bound on current architectures. Sparse linear algebra (HPCG)
and stencil computations perform less than 1 FLOP/B and are usually memory-bound. Spec-
tral methods and Fast Fourier Transforms (FFT) have intermediate arithmetic intensities and
may be either memory- or compute-bound for a given architecture [Williams et al. 2009]. An
associated visual performance model is described in section 1.4.7.

Last but not least, the performance can also be evaluated in terms of power efficiency. As
power consumption of supercomputers increases, energy efficiency will move from desirable
to mandatory in order to push beyond the exascale limit [Hemmert 2010]. The GREEN500 is
a third list that classifies supercomputers in terms of achieved floating point operations per
second per watt (FLOPS/W). Here Summit is ranked second with 14.72 GFLOPS/W, for a total
consumption of roughly 10 MW.
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1.4.3 Accelerators and coprocessors

Since 2010, high performance computing system architectures have shifted from the tradi-
tional clusters of homogeneous nodes to clusters of heterogeneous nodes with accelerators
[Kindratenko et al. 2011]. Hardware acceleration consists in the use of computing hardware
specially designed to perform some operations more efficiently than in software running on
general-purpose CPUs. Accelerators include many integrated core architectures (MICs), graph-
ics processing units (GPUs), digital signal processors (DSPs), application-specific instruction-set
processors (ASIPs), field-programmable gate arrays (FPGAs) and other processors or hardware
accelerators. In the realm of high performance computing, the hardware accelerators have to
be reconfigurable and the current tendency is clearly in favour of dedicated GPUs, followed to
a lesser extent by MICs and a slow but increasing adoption of FPGAs [Weber et al. 2010]. The
TOP500 of June 2019 lists 134 supercomputers containing accelerators. Those supercomputers
represent roughly 40% of the total computing power of the 500 machines (in terms of HPL
performance) as exposed on figure 1.13.

Figure 1.13 – Treemap representing TOP500 coprocessor share. Each rectangle rep-
resent a specific accelerator, and None means that no accelerator is present (leftmost part of
the plot in blue). Each subrectangle represent supercomputer of the TOP500 list. The area of
the rectangles is proportional to the benchmarked HPL performance on each supercomputer.

Accelerator architectures tend to be either heavily specialized or very generic and both of these
models present real challenges when it comes to programming. General-purpose processing on
graphics processing units (GPGPU) is the use of a GPU as a coprocessor for general-purpose
computing [Luebke et al. 2006]. The GPU accelerates applications running on the CPU by
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offloading some of the compute-intensive portions of the code while the rest of the application
still runs on the CPU. The share of coprocessors on the 134 supercomputers containing accel-
erators is further described in figure 1.14. Here the advantage is clearly to Nvidia GPUs, as
most of the accelerators present in the TOP500 are last generation Volta GPUs (Volta GV100,
Tesla V100, Tesla P100 and variants). Out of those 134 machines, 62 contain Nvidia Volta
GPU architectures (46.6%), 50 contain NVidia Pascal GPU architectures (37.6%), 12 contain
NVidia Kepler GPU architectures (9%) and 5 contain Intel Xeon Phi MICs (3.8%). The
remaining machines contain either custom accelerators or NVidia Fermi GPUs.

Figure 1.14 – Coprocessor share in the supercomputers containing accelerators
as of June 2019. Data represents the ratio of obtained HPL performance with respect to the
134 machines having accelerator support, not the ratio of accelerator computing capabilities.

GPU accelerators are great for providing high performance in terms of floating point operations
per second (FLOPS), the performance that is typically measured by the HPL benchmark [Nick-
olls et al. 2010]. Server-grade GPUs contain large ECC memory (up to 32GB VRAM) along with
high performance for double-precision arithmetic. Consumer-grade GPUs are more focused
on graphical tasks that generally require only single-precision arithmetic without error con-
trol [Arora 2012]. While the difference in performance between single precision and double
precision arithmetic is generally 2 for server-grade GPUs, and it can be as high as 32 for
consumer-grade GPUs. When their compute capabilities can be fully exploited, GPUs are
advantageous both in terms of price ($/TFLOP) and energy consumption (GFLOPS/W) when
compared to traditional CPUs. This is shown on figures 1.15 and 1.16. Those figures have
been adapted from [Rupp 2013]. The 27648 Nvidia Volta V100 GPUs present on the current
top one supercomputer Summit can deliver up to 215.7 PFLOPS of theoretical peak double-
precision arithmetic for a power consumption of roughly 8.3 MW, ranking the machine to the
second place of the GREEN500 list.
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1.4.4 Parallel programming models

Due to thermal and energy constraints, the trend in processor and accelerator development
has been towards an ever-increasing number of cores with reduced frequency. The exponential
growth in the number of cores is expected to lead to consumer grade CPUs containing hundreds
of cores in the near future [McCool 2008]. Another way to get extend the computing power
of a supercomputer is to simply add more compute nodes. As the number of processors
and compute nodes increase, efficient interprocessor communication and synchronization on a
supercomputer becomes a challenge. In the nineties, two parallel programming open standards
grew to dominate the parallel computing landscape:

• Message Passing Interface: MPI is a specification for a standard library for message
passing that was defined by the MPI Forum, a group of parallel computer vendors,
library writers, and applications specialists. MPI includes point-to-point and collective
internode communications routines through communicator abstractions [Barker 2015].
The third version of the standard (MPI-3) introduced remote memory accesses [Hoefler
et al. 2015]. Because it is a standard, multiple open-source implementations of MPI have
been developed such as MPICH [Walker et al. 1996] and OpenMPI [Gabriel et al. 2004].
Implementations optimized for vendor-specific hardware are also available directly from
hardware vendors.

• Open Multiprocessing: OpenMP is an implementation of multithreading. Once
spawned, threads run concurrently, with the runtime environment allocating threads
to different physical CPU cores. It is an industry-standard API for shared-memory pro-
gramming [Dagum et al. 1998] targeting C, C++ and Fortran and consists in a set of
compiler directives, library routines, and environment variables that influence runtime
behavior. The standard require specific compiler support [Novillo 2006] and as for MPI,
both open-source and vendor-specific implementations exist. As for OpenMP 4.1, the
standard began to introduce accelerator support [Antao et al. 2016].

Those two standards still require an in-depth understanding of computing ressource hierar-
chies. Multicore architectures with OpenMP requires an explicit management of the memory
hierarchy while distributed computing with MPI requires explicit communications between the
different processes that are mapped to the physical compute nodes. As MPI process placement
can play a significant role concerning communication performance [Rashti et al. 2011], tools
such as TopoMatch, have been developed in order optimize the placement of processes on NUMA
compute nodes with respect to interprocess data exchange [Jeannot et al. 2010]. Concern-
ing OpenMP, thread and memory placement can be tweaked by using the numactl utility
[Kleen 2005]. While those two standards still plays an important role in high performance
computing, the learning curve can be steep for some programmers. A survey of programming
languages that try to hide the complexity of multicore architectures is available in [Kim et al.
2009]

An application built with the hybrid model of parallel programming can run on a cluster
using both OpenMP and MPI. In this case OpenMP is used for parallelism within a compute
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node (or within a NUMA node) while MPI is used for internode communication. OpenMP can
be replaced by other multithreading implementations such as POSIX threads [Barney 2009]
and OpenCL. Since 2006, the two industry standards for GPU programming are CUDA [Luebke
2008] and OpenCL [Stone et al. 2010]. While the former has been designed only for Nvidia
GPUs, the latter can drive a wide range of CPUs and accelerators. In this work we will focus
on hybrid MPI-OpenCL programming.

1.4.5 The OpenCL standard

OpenCL is a framework for writing programs that execute across heterogeneous plat-
forms consisting of central processing units (CPUs), graphics processing units (GPUs), field-
programmable gate arrays (FPGAs) and other processors or hardware accelerators [Stone et al.
2010]. Device vendors usually propose their own implementation of the OpenCL standard,
optimized to drive their own devices (AMD, Nvidia, Intel, IBM, ...) but open source imple-
mentations of the standard also exist. The Portable Computing Language (POCL) is a portable
open source implementation of the OpenCL 1.2 standard based on LLVM [Jääskeläinen et al.
2015] on CPU devices. It also proposes an experimental CUDA backend targeting Nvidia GPUs by
directly generating PTX pseudo-assembly from OpenCL [Compute 2010]. Each of those im-
plementations defines what we usually call an OpenCL platform. Each compute node can
expose multiple platforms each supporting specific devices through vendor installable client
drivers [Trevett 2012]. A key feature of OpenCL is portability, via its abstracted memory
and execution model. The ability to directly use hardware-specific features can be provided
through vendor-specific extensions. However, performance is not necessarily portable across
OpenCL platforms and a given OpenCL code has to be tested and tuned accordingly for each
different target device.

The abstract memory model assumes that each OpenCL device can store its associated memory
buffers in device memory banks that may differ from host memory (RAM). OpenCL CPU devices
can store and interact directly with RAM, and device memory buffers can be seen as host ones
through memory mappings. Dedicated GPU devices and other PCIe extension cards usually
provide their own physical embedded memory (VRAM).
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The OpenCL memory model defines the behavior and hierarchy of memory that can be used
by OpenCL applications. It is up to individual vendors to define how the memory model maps
to specific hardware. The host memory is defined as the region of system memory that is
directly and only accessible from the host processor (RAM). The global memory is indirectly
accessible from the host and directly accessible from the device (VRAM for GPUs, RAM for CPUs).
Constant memory can be indirectly written by the host with read-only access on the device.
Local memory is a region of memory that is local to a work-group and private memory is
private to an individual work-item (registers).

A kernel is a function executed on an OpenCL device. The threads are organized hierarchi-
cally into one-, two- or three-dimensional grids each composed of equally shaped, one-, two-
or three-dimensional thread blocks called work-groups. Depending on the work-group size,
each work-group contains a certain amount of individual threads called work-items. Each
kernel is executed asynchronously with specific work-space size and work-group size, defined
by three-dimensional vectors global work size (work-space shape) and local work size
(work-group shape). Multiple kernels can be enqueued in different command queues. The
synchronization between queues and the host CPU is event based. An individual work-item
can load and store data in the global memory. Work-items of the same work-group can col-
laborate by using the shared memory. Work-items cannot directly access to host processor
memory, using CPU data thus requires host-to-device copy prior to the execution of the kernel.

1.4.6 Target OpenCL devices

In this work we will focus on performance obtained on Intel and Nvidia OpenCL platforms
on the four following compute devices:

• Server grade dual socket Intel Xeon E5-2695 v4 CPUs (36 physical cores, 128GB RAM)

• Server grade GPU: Nvidia Tesla V100 (5120 CUDA cores, 32GB VRAM)

• Consumer grade CPU: Intel Core i7-9700K CPU (8 physical cores, 16GB RAM)

• Consumer grade GPU: Nvidia GeForce RTX 2080 Ti (4352 CUDA cores, 11GB VRAM)

Table 1.1 and 1.2 contain theoretical and achieved performance characteristics of the four
considered benchmark configurations.

The speed of the bus interconnect usually constitute the bottleneck for host-device interactions
but host-to-host and device-to-device memory bandwidth are also of importance in the design
of OpenCL based numerical codes. Actual generation of PCIe buses (PCIe3.0 16x) provides
16 GB/s of theoretical bidirectional memory bandwidth (host-to-device and device-to-host)
for dedicated accelerators. This may be slow compared to the device-to-device memory band-
width, also called global memory bandwidth, provided by the two considered GPUs which is
of the order of 1TB/s. When the data can entirely fit in device memory, a given kernel is
either compute or memory bound depending on the device global memory bandwidth and
compute capabilities for the required type of operations (single or double precision floating
point operations, integer operations, ...).
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This can be summed up into the designed arithmetic intensity of a given device which is
given in operations per byte of memory traffic (OP/B). It can be seen in table 1.3 that the
average device will require fifty operations per element loaded from memory in order not to
be memory bound.

Device Type Transistors Platform BDW (GB/s) FP32 (GFLOPS) FP64 (GFLOPS)
i7-9700K CPU 2.9B Intel 18.1.0 41.6 (21.3) 588.0 294.0
E5-2695 v4 CPU 7.2B Intel 18.1.0 76.8 (68.3) 745.85 372.9
RTX 2080Ti GPU 18.6B Cuda 10.1.120 616 11750 (16319) 367 (510)
V100-SXM2 GPU 21.1B Cuda 10.0.141 900 14899 (17671) 7450 (8836)

Table 1.1 – Characteristics and compute capabilities of the considered devices:
BDW corresponds to the maximal theoretical device global memory bandwidth (for CPUs , this
corresponds to maximum memory frequency and all memory channels in use). For CPU devices,
the second value between parenthesis corresponds to the maximal theoretical value enabled
by actual memory configuration. FP32 and FP64 correspond to theoretical single and double
precision peak floating point operations per second at device base clock. For GPU devices,
the second value between parenthesis correspond to same values at maximal boost clock (this
provides a performance boost of +38.9% for the 2080Ti and +18.6% for the V100 under
sufficient cooling). CPU characteristics are estimated from Intel compliance metrics (CTP).

Device # H2D (GB/s) D2H (GB/s) BDW (GB/s) FP32 (GFLOPS) FP64 (GFLOPS)
i7-9700K 1 19.4 8.9 18.1 (85.0%) 514.8 (87.6%) 260.1 (88.5%)
E5-2695 v4 2 13.5 6.1 67.4 (49.4%) 1434.1 (96.1%) 713.1 (95.8%)
RTX 2080Ti 1 8.98 6.1 496.13 (80.5%) 14508.6 (88.9%) 451.4 (88.5%)
V100-SXM2 1 7.08 4.9 807.6 (89.7%) 15676.0 (88.7%) 7854.6 (88.9%)

Table 1.2 – Peak performance metrics obtained for the four device configurations:
H2D corresponds to host-to-device memory bandwidth, D2H to device-to-host memory band-
width, BDW to device global memory bandwidth, FP32 and FP64 to floating point opera-
tions per second. FLOPS (floating point operations per seconds) are taken as the best result
achieved by clpeak [Bhat 2017] for all considered vector types. The results are also given in
percentage of theoretical peak values at actual memory bandwidth and max. boost frequency.

Operations per byte (OP/B) Operations per element (OP/E)
Device FP32 (FLOP/B) FP64 (FLOP/B) FP32 (FLOP/E) FP64 (FLOP/E)
i7-9700K 14.1 (27.6) 7.1 (13.8) 56.5 (110.4) 56.5 (110.4)
E5-2695 v4 9.7 (10.9) 4.9 (5.5) 38.8 (43.7) 38.8 (43.7)
RTX 2080Ti 19.1 (26.5) 0.6 (0.8) 76.3 (106.0) 4.8 (6.6)
V100-SXM2 16.6 (19.6) 8.3 (9.8) 66.2 (78.5) 66.2 (78.5)

Table 1.3 – Designed arithmetic intensity for usual floating point operations:
Arithmetic intensity represent the minimal number of operations to execute per byte loaded
in order to be compute bound. Data corresponds to the worst case scenario where we consider
only one memory transaction of the given type. The numbers between parenthesis reflect more
realistic values for the considered OpenCL platforms (using actual bandwidth and clock).
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Double precision operations on consumer grade GPUs constitute an exception to this rule be-
cause of they target graphical tasks that mostly require single-precision operations. In practice
because of the small number of operations per byte required for most of the numerical kernels
we will develop in this work, the situation is likely to be memory bound. As an example,
explicit finite differences based solvers use stencils operations while implicit finite differences
solvers use sparse algebra. Both of those methods have very low arithmetic intensity. The
performance of memory-bound kernels can quickly drop when the full potential of the memory
controller is not used. How to correctly access memory is architecture dependent but most
of accelerators use vector operations in a SIMD fashion [Duncan 1990]. It usually entails to
access contiguous memory with the good granularity and alignment. Grouping of work-items
into work-groups is not only relevant to computation, but also to global memory accesses.
The device coalesces global memory loads and stores issued by neighboring work-items of a
work-group into as few transactions as possible to minimize required memory bandwidth. For
strided global memory access, the effective bandwidth is poor regardless of architecture and
declines with increasing stride (distance between two accessed elements).

Figure 1.17 – Achieved memory bandwidth vs. memory transaction size
Each result (black cross) corresponds to the median bandwidth obtained for 1024 device-to-
device copies performed with the builtin OpenCL copy kernel on the Tesla V100-SXM2 GPU.

Global memory accesses on cache miss have a latency of hundreds device cycles (of the order
of ' 100ns). In order to achieve the full device bandwidth, this latency needs to be hidden
using the following strategies:

• Perform contiguous memory accesses: adapt the data structures and reformulate asso-
ciated algorithm.

• Perform independent loads and stores from the same work-item: increase problem size
or increase work-item workload by playing on the global work-space size (global size).

• Perform memory transactions from increased number of work-items (local size)

• Use larger word sizes by using vector transactions: use float4 instead of float when
the device is designed to handle 16B per work-item per coalesced memory transaction.



52
Chapter 1. High performance computing

for sediment flows

All those strategies are so that there is enough memory transactions in flight to saturate
the memory bus (the price of latency for small memory transaction is shown on figure 1.17).
Instead of relying only on some compiler automatic vectorization process, the OpenCL stan-
dard provide vector types and vector intrinsics to manually vectorize kernels. Those vector
intrinsics have a great impact on achieved memory bandwidth as shown on figure 1.18 for
single precision floating point vectors.

Figure 1.19 clearly shows that for the Tesla V100 GPU, 16B per work-item per memory trans-
action is optimal. Considering that all types perform equally well at given type size (which
is surprisingly not the case here for 64B transactions) one can deduce from figure 1.18 that
the two CPUs prefer 64B transactions and that the consumer grade GPU is designed for 32B
transactions. Those values do not match the preferred and native vector sizes provided
by the OpenCL platforms and encourages microbenchmarking for the design of any kernel. A
given hard-coded kernel will thus be portable across our four platforms but performance will
not. The solution to this problem is to implement one kernel per vector type, and this can
be done with a simple code generation technique associated to some kernel template. The
best kernel can then be determined at runtime by self-tuning [Dolbeau et al. 2013]. In fact,
kernel auto-tuning can be extended to determine other runtime parameters such as the local
and global grid sizes that have an effect on device occupancy and work-item workload.

Figure 1.18 – Achieved memory bandwidth versus float vector type for all devices
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Figure 1.19 – Achieved memory bandwidth versus transaction granularity:
Median bandwidth achieved for 1 GiB buffers at 1 op/E over 1024 runs per kernel. The
memory transaction ratio is the amount of memory loads compared to the total number of
memory transactions (loads + stores). A different kernel is generated for every data point.

1.4.7 The roofline model

When a kernel may be compute bound we can switch to performance model that also take
into account the compute capabilities of the device. The roofline model is an intuitive vi-
sual performance model used to provide performance estimates of a given compute kernel
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running on a given architectures by showing inherent hardware limitations [Williams et al.
2009]. The most basic roofline model can be visualized by plotting performance as a function
of device peak performance Π and device peak bandwidth β (see table 1.2). For a given
hardware, the best attainable performance is expressed by P = min(Π, β I) where I is the
arithmetic intensity in operations per byte. The resulting plot usually exhibits fractions of
maximum attainable performance P with both axes in logarithmic scale. Within this model,
the performance obtained for a given kernel can be plotted as a single point which coordi-
nates represents the arithmetic intensity I of the considered algorithm (this value is fixed for
a given algorithm and do not depend on kernel optimizations) and the obtained performance
obtained from microbenchmarking (most of the time in operations per second). A kernel is
said to be memory-bound when I ≤ Π/β and compute bound when I ≥ Π/β (see table 1.3).

A reference roofline for single and double precision floating point operations can be obtained
with the mixbench benchmark [Konstantinidis et al. 2017]. It generates kernel of increasing
arithmetic intensity (in FLOP/B) and run them on arrays with fixed number of elements (an
element has a size 4B for float and 8B for double). The joint knowledge of the total number
of elements, the arithmetic intensity and the result of the runtime is required to deduce the
obtained performance in FLOP/s. The following figure shows the performance obtained with
this benchmark on the two GPUs for single and double precision operations:

Figure 1.20 – Roofline of mixbench achieved single-precision performance

Figure 1.21 – Roofline of mixbench achieved double-precision performance
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1.4.8 High performance fluid solvers

All fluid solvers are based on a numerical approximation of the variables and the equations
both in terms of time and space. The common principle is to spatially discretize the field of
computation in various elements: grid, mesh or particles. In any case, the solution is given
on these discrete elements and an increase in the number of elements leads to a better spatial
description of the solution. Timesteps are usually chosen to be the largest possible while
ensuring the stability of the underlying numerical schemes. Most methods allow an estimation
of the approximation errors in terms of spatial and temporal resolutions of the discretization.
In practice, obtaining results on finer resolutions generally allows greater accuracy in the
resolution of the considered problem, which contributes to a better understanding of the
physical mechanisms involved. The consequence is that the computing resources necessary for
a refinement of numerical solutions become important. Hence, flow simulation relies heavily
on high performance computing to accurately simulate complex fluid problems [Tezduyar et
al. 1996].

In the passed years, many high-performance numerical fluid-related solvers have been released
and many other research-oriented closed-source solvers are still in active development:

• Finite element based solvers:

– FEniCS is a C++/Python library to translate finite element variational formulations
into efficient distributed finite element code [Logg et al. 2012]. It is based on
DOLPHIN, an automatic finite element code generator [Logg et al. 2010]. This solver
has been used to simulate turbulent flows on massively parallel architectures and
scales up to 5000 cores [Hoffmann et al. 2015].

– Fluidity is a general purpose, multiphase computational fluid dynamics code ca-
pable of numerically solving the Navier-Stokes equations on arbitrary unstructured
finite element meshes. It is parallelised using MPI and is capable of scaling to many
thousands of cores [Davies et al. 2011].

– Feel++ is another C++ MPI-based finite element (and spectral element) solver based
on domain decomposition [Prud’Homme et al. 2012]. It implements one-, two- and
three-dimensional Galerkin methods and can be applied to fluid mechanics. It
scales up to thousands of cores [Abdelhakim 2018].

• Finite-volume based solvers:

– OpenFOAM is a C++ toolbox for the development of custom numerical solvers tar-
geting continuum mechanics problems and most prominently computational fluid
dynamics [Chen et al. 2014]. Although the solver is MPI-based, multiple parts of the
library have been accelerated by introducing GPU support [Malecha et al. 2011][He
et al. 2015]. This solver has been used to solve the three-dimensional two-phase
eulerian model for sediment transport [Chauchat et al. 2017].

– MRAG is an hybrid CPU-GPU wavelet adaptive solver based on high-order finite vol-
ume scheme and OpenCL. It has been implemented to solve multiphase compressible
flows [Rossinelli et al. 2011].
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– Using an hybrid OpenMP-MPI NUMA-aware solver, [Hejazialhosseini et al. 2012] per-
formed a three-dimensional simulation of shock-bubble interaction discretized on
200 billion computational elements (9728 × 6656 × 3072). Achieved performance
was 30% of the total peak computing power of a cluster containing 47.000 cores.
Using one MPI process per NUMA node and replacing OpenMP by Intel TBB improved
the runtime [Willhalm et al. 2008].

– COOLFluid is an open computational platform for multi-physics simulation and
research. It features a collection of parallel numerical solvers for unstructured
meshes such as finite-differences and finite-volume based solvers for computational
fluid dynamics problems [Lani et al. 2013]. Some parts of the solver are GPU-
enabled [Lani et al. 2014] and the implicit multi-fluid finite volume solver has been
successfully run on up to 60.000 cores.

• Lagrangian particle methods:

– Many GPU enabled SPH implementation have been proposed [Amada et al.
2004][Hérault et al. 2010][Cercos-Pita 2015]. Distributed open source SPH solvers
based on CUDA and OpenCL include:

1. GPUSPH [Rustico et al. 2012] (MPI+CUDA),
2. DualSPHysics [Valdez-Balderas et al. 2013] (MPI+CUDA)
3. PySPH [Ramachandran 2016] (MPI+OpenCL)

– GADGET-2 is a code for collisionless cosmological simulations using SPH. A parallel
version has been designed to run with MPI and reached total particle numbers of
more than 250 million [Springel 2005]. A third version of the solver is being written
to prepare for the exascale era [Goz et al. 2017].

– A new family of eulerian solvers based on lagrangian particles and finite-volume
approximation (Lagrange-flux) is being developed as an alternative to Lagrange-
remap schemes with better scalability in mind [De Vuyst 2016a][De Vuyst 2016b].

– Partial GPU acceleration of eulerian-lagrangian particle-laden turbulent flow simu-
lations has been performed by [Sweet et al. 2018].

• Remeshed particle methods:

– PPM has been as the first highly efficient MPI parallel solver based on remeshed-
particles [Sbalzarini et al. 2006]. It provides a general-purpose, physics-
independent infrastructure for simulating systems using particle methods. Using
PPM along with the vortex method, simulations of vortex rings with up to 6× 109

particles were performed on 16.000 cores [Chatelain et al. 2008b]. The same method
was then applied to numerical simulations of aircraft wakes [Chatelain et al. 2008a]

– In the mean time, two-dimensional remeshed particle methods were ported to
GPU by using CUDA and extended with vortex penalization techniques [Rossinelli
et al. 2008] [Rossinelli et al. 2010]. Corresponding spectral fluid solver was imple-
mented by using the CUDA FFT library (cuFFT).
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– SCALES: This library proposes a MPI-based Fortran implementation of remeshed-
particles methods. It has been successfully run up to 8192 cores with 89% scala-
bility for grids of size 20483 [Lagaert et al. 2014].

– HySoP: In parallel an hybrid MPI-OpenCL code has been developed for the transport
of a scalar in a turbulent flow [Etancelin et al. 2014]. The fluid solver was also
FFT-based (FFTW) and solved on CPUs while the scalar, defined on a finer grid, was
transported on GPUs.

– MRAG-I2D: This is an open source software framework for multiresolution of two-
dimensional incompressible viscous flows on multicore architectures (OpenMP). The
solver uses remeshed particles and high order interpolating wavelets [Rossinelli et
al. 2015].

• Spectral and pseudo-spectral methods:

– Tarang is a general-purpose pseudo-spectral parallel code developed for turbulence
and instability studies. It has been validated up to grid of size 40963 and offers good
weak and strong scaling up to several thousand processors. It features periodic as
well as homogeneous boundary conditions [Verma et al. 2013].

– SpectralDNS is a periodic FFT solver for turbulent flows that has been imple-
mented by using only Python modules: pyFFTW and MPI4py. This solver scales
well up to 3000 cores by using the hybrid MPI-OpenMP capabilities offered by
FFTW [Mortensen et al. 2016].

– Dedalus translates symbolic user-supplied partial differential equations into an ef-
ficient MPI distributed spectral solver. It supports Fourier, sine and cosine bases as
well as polynomial bases (Chebyshev, Hermite, Laguerre) and scales up to thou-
sand of cores [Burns et al. 2016].

– CaNS is a FFTW based code for massively parallel numerical simulations of turbulent
flows. It aims at solving any fluid flow of an incompressible, Newtonian fluid that
can benefit from a FFT-based solver [Costa 2018]. It proposes the same boundary
conditions as Tarang supplemented with general boundary conditions on the last
axis and offers good strong scaling performances up to 10.000 cores.

– FluidSim is a framework for studying fluid dynamics on periodic domains by using
Python [Mohanan et al. 2018]. It is based on FluidFFT is a common API for FFT
HPC libraries. This Python module allows to perform two- and three-dimensional
FFTs with FFTW and cuFFT.

– Shenfun is a high performance computing platform for solving PDEs by the spec-
tral Galerkin method on multi-dimensional tensor product grids [Mortensen 2018].
It proposes a Python user interface similar to FEniCS and can solve periodic prob-
lems (Fourier) and problems where the last direction is inhomogeneous by using a
mix of Chebyshev and Legendre bases. It is parallelised by using mpi4py-fft pack-
age and scales up to thousand of cores for periodic boundary conditions [Mortensen
et al. 2019].
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for sediment flows

Most of the libraries presented here are available as open-source projects and propose a large
set of numerical methods using many different spatial and temporal discretization techniques.
Those numerical routines are often distributed up to thousands of CPU cores by using hybrid
MPI-OpenMP or MPI-OpenCL programming models. More and more solvers are starting to
integrate at least partial GPU support. This partial GPU support often comes from the drop-in
replacement of underlying linear solvers (CUDA libraries cuSparse, cuBLAS and OpenCL equiv-
alents clSparse, clBLAS) or other accelerated libraries (cuRAND, cuFFT or clRNG, clFFT).
Distributed GPU computing is becoming more and more popular especially for particle based
methods. For many applications GPU adoption is penalized by additional CPU-GPU memory
transfers. As an example multi-GPU distributed implementations of spectral Fourier based
solvers do not scale well because of the additional cost implied by host-device transfers [Wu
et al. 2013].

The tendency is clearly to simplify the user interfaces from compiled Fortran or C++ config-
uration files to accessible scripting languages such as Python while relying on compiled code
under the hood for performance. An ever increasing number of high performance libraries
are made available through simple Python modules (pyFFTW, pyBLAS, pyMUMPS, ...). Because
those wrappers provide a pythonic access to equivalent performances, it is now possible to
implement performant distributed numerical solvers using directly Python as the core lan-
guage (FluidSim, PySPH, HySoP), enabling faster development cycles [Wagner et al. 2017].
Writing multi-threaded compiled extensions to Python has never been easier than today with
the advent of tools like Cython [Behnel et al. 2011], Numba [Lam et al. 2015] and Pythran
[Guelton et al. 2015]. The same goes for GPU-programming with the PyOpenCL and PyCUDA
Python modules provided by [Klöckner et al. 2012]. Finally the mpi4py module allows fast
prototyping and development of MPI-based distributed solvers [Smith 2016].

Because the problems to be solved are not known in advance, some libraries use code gen-
eration techniques from user specified inputs such as symbolic equations (FEniCS, Dedalus).
Code generation is also a common technique used for GPU-programming [Klöckner et al. 2012].
In this work we will be particularly interested in the development of numerical routines using
finite-differences, remeshed-particles and spectral methods in an hybrid MPI-OpenCL context.
Similar code generation techniques will be used to generate finite-difference based numeri-
cal routines from user-supplied symbolic expressions. A particular attention will be paid to
OpenCL performance portability between different compute devices. The corresponding nu-
merical methods are introduced in section 2 and are implemented within the HySoP library
in section 3.
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Conclusion

We first described the derivation of the Navier-Stokes equations along with their simplification
to the incompressible case. The velocity-vorticity formulation has been derived from the
associated velocity-pressure formulation. Remeshed particle methods are CFL free numerical
schemes used to discretize the transport that fit well with the velocity-vorticity formulation of
the incompressible Navier-Stokes equations. Those methods are particularly adapted for the
transport of fields that diffuse slower than the vorticity due to viscous momentum diffusion.
Those flows are more commonly known as high Schmidt number flows. In such a flow, the
slowly diffusive agent will develop smaller physical scales, up to a ratio depending on the
square root of the Schmidt number, when compared to the smallest velocity eddies.

Sediment dynamics is still poorly understood and multiple physical models with increasing
complexity exist. Those models mostly depend on the mass loading and the physical prop-
erties of the said sediments in the carrier fluid. Monodisperse distribution of particles with
a mass loading of less than 1% can be reduced to a dual-way coupling between the particle
concentration and the fluid, in an eulerian-eulerian framework. When the fluid density is only
slightly affected by the presence of these additional particles, the equations can be simplified
by using the Boussinesq approximation. As small particles may diffuse slower than other fields
such as temperature or salinity, a configuration where two such species are present can lead
to double-diffusive instabilities. In the nature, this situation can happen near sediment-laden
riverine outflows flowing into the ocean. Although double-diffusivity is known to enhance
vertical fluxes, effective sedimentation velocity cannot be numerically investigated because of
the high Schmidt numbers in play for fine particles.

From a single mathematical problem, different numerical methods can be considered. The
choice of the numerical method strongly depend on the target problem and available comput-
ing architectures. Here the choice of a remeshed particle method is natural but not sufficient.
The use of high performance computing is required to be able to achieve sufficient reso-
lution and solve all the physical scales of the sediment concentration up to the Batchelor
scale. In this work, we will extend the HySoP library, a Python-based solver based on hybrid
MPI-OpenCL programming that targets heterogeneous compute platforms. We will be able to
solve custom user specified numerical problems such as incompressible Navier-Stokes fully on
accelerator. The resulting solver will be modular enough to be able to run high performance
GPU accelerated numerical simulation of particle-laden sediment flows.
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Introduction

In this chapter we derive a computational framework that will allow the resolution of the
transport of a passive scalar in a turbulent flow, possibly at high Schmidt number. As seen
in section 1.1.10, the modeling of the transport of a passive scalar in such a flow can be
carried out using a system of continuous equations consisting of Navier-Stokes equations cou-
pled with a scalar advection-diffusion equation (1.36). Both the momentum equation and the
scalar equation can be viewed, at least partially, as advection-diffusion equations, one for the
vorticity and the other for the scalar. Those two equations can be split into transport and
diffusion terms, by relying on so-called operator splitting methods. The idea behind the pro-
posed numerical method is to split the equations such that each subproblem can be solved by
using a dedicated solver based on the most appropriate numerical scheme and by employing
a space discretization that is regular enough to be handled by accelerators. Semi-lagrangian
(remeshed) particle methods makes it possible to solve convection problems without impos-
ing a Courant-Friedrichs-Lewy stability constraint, but a less restrictive stability condition
allowing the use of larger time steps [Cottet et al. 2000][Van Rees et al. 2011][Mimeau et al.
2016]. On the one hand this is method particularly adapted for the transport of scalars in
high Schmidt number flows, as introduced in chapter 1. On the other hand, through the
presence of an underlying grid, this method allows to the use of eulerian solvers. In particular
we will use Cartesian grids that are compatible with a wide variety of numerical methods
such as finite difference methods and spectral methods.

The resulting solver should be able to run on multiple compute nodes, each exhibiting one or
more accelerators. Thus, the numerical scheme is designed by employing numerical methods
that are known to perform reasonably well in this context. In particular, each numerical
scheme should exhibit adequate theoretical strong scalability with respect to the number of
compute nodes used for the simulation. Choosing a numerical scheme that is not known to
scale well would constitute a real performance bottleneck [Mathew et al. 2011]. Maximizing
the memory bandwidth is crucial in this context because most of the aforementioned numerical
methods are generally memory bound. The use of regular grids, enabled by the remeshed
particle method, is particularly adapted to heavily vectorized hardware such as GPUs. Indeed,
Cartesian grids will allow us to saturate memory controller of the target devices in memory-
bound situations.

The chapter is organized as the following: we first give an overview of the method by split-
ting the problem into several subproblems, each of them accounting for a specific part of the
underlying physics. Each of the resulting subproblems can be solved by using a grid compat-
ible numerical method. Those additional numerical methods are introduced in the following
subsections. We then show that some of those operators can further be split directionally
reducing the overall cost and complexity of the method. The two last subsections focus on
spectral methods from periodic problems to problems with any general set of boundary con-
ditions. Spectral methods are mainly used to compute the velocity from the vorticity but also
provide an alternative method to solve timestep limiting diffusion problems. The resulting
hybrid particle-spectral-finite differences method will be particularly adapted for the problem
of interest in this work.
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2.1 Outline of the method

In this section we describe how we can split the problem into simpler subproblems to solve the
incompressible Navier-Stokes equations on a n-dimensional spatial domain Ω coupled with a
passive scalar. We will then decompose the problem by applying operator splitting strategies,
consisting in solving successively different operators within the same time iteration.

Let n be the dimension of the spatial domain Ω ⊂ Rn, T = [tstart, tend] be the time domain,
u(x, t) : Ω × T → Rn be the velocity field, ω(x, t) : Ω × T → Rp be the vorticity field, and
θ(x, t) : Ω×T → R be the scalar field passively transported in the flow. The numerical method
is obtained by starting with the incompressible Navier-Stokes equations in their velocity-
vorticity formulation coupled with a passive scalar, recalled bellow.

∇ · u = 0
ω = ∇× u

∂ω

∂t
+ (u · ∇)ω = (ω · ∇)u+ ν∆ω +∇× fext

∂θ

∂t
+ (u · ∇) θ = κ∆θ

(2.1a)
(2.1b)

(2.1c)

(2.1d)

In those equations, fext represents an external forcing term that depends on the problem being
solved, ν is the constant kinematic viscosity of the fluid, and κ is the constant diffusivity of
the scalar. Additionally, equation (2.1b) imposes that p = n(n−1)

2 , such that the vorticity field
has three components in 3D and only one in 2D. In two dimensions, the vorticity is orthogonal
to the flow plane, so that stretching term (ω · ∇)u vanishes and the vorticity equation (2.1c)
reduces to a convection-diffusion equation that may include an additional external forcing
term. Operator splitting will be applied for both the momentum equation (2.1c) and the
scalar equation (2.1d).

2.1.1 Operator splitting

The approach followed here is summarized here for one time iteration. First, the scalar θ and
the vorticity ω = ∇× u are evolved at fixed velocity u using an operator splitting on their
respective equations. More precisely, we first split the scalar equation (2.1d) into independent
convection and diffusion equations as the following:

1. Scalar convection: ∂θ

∂t
+ (u · ∇) θ = 0 (2.2)

2. Scalar diffusion:
∂θ

∂t
= κ∆θ (2.3)
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We also split the vorticity transport equation (2.1c) in which the successive terms respectively
model the convection, the stretching, the diffusion and the external forcing applied to the
vorticity field:

1. Convection: ∂ω

∂t
+ (u · ∇)ω = 0 (2.4)

2. Diffusion:
∂ω

∂t
= ν∆ω (2.5)

3. Stretching: ∂ω

∂t
= (ω · ∇)u (2.6) (only in 3D)

4. External forces: ∂ω

∂t
= ∇× fext (2.7) (depends on the problem being solved)

As we will see later, the order of resolution of those equations is not important, but this is the
one we will use throughout the manuscript. Viscous splitting within the framework of vortex
methods was originally proposed in the early seventies by [Chorin 1973]. Its convergence has
been proven by [Beale et al. 1982] and reformulated by [Cottet et al. 2000] to suit to the
present vortex formulation.

The vorticity transport equation (VTE) has to be coupled to the system giving the velocity
in terms of the vorticity. Hence, once the scalar and the vorticity have been evolved, the
new divergence free velocity is computed from the vorticity by using a Poisson solver. The
velocity is directly linked to the vorticity through the following relation obtained by taking
the curl of (2.1b) and the incompressibility condition (2.1a):

∆u = −∇× ω (2.8)

In some situations it is more convenient to use the Helmholtz decomposition of the velocity:

u = ∇×ψ +∇φ (2.9)

The stream function ψ and potential function φ then satisfy the following independent
systems that have to be complemented with appropriate boundary conditions:

∆ψ = −ω
∇ ·ψ = 0

(2.10a)
(2.10b)

and ∆φ = 0 (2.11)

The pressure can be easily recovered from the velocity field and the forcing term in the case
of constant density ρ and dynamic viscosity µ by taking the divergence of equation (1.27b)
together with the incompressibility condition (2.1a) to obtain the following Poisson equation:

∆P = ρ∇ · [fext − (u · ∇)u] = ∇ · [Fext − ρ(u · ∇)u] (2.12)
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2.1.2 Temporal resolution

The time is discretized on time domain T from tstart to tend using a variable timestep dtk > 0
that will be determined later for each iteration k such that t0 = tstart and tk+1 = tk + dtk ≤
tend. In addition we define T = tend − tstart > 0 as the total duration of the simulation. For
a given field F ∈ {u,ω, θ} and a given k with associated time tk ∈ T , we define F k as F (tk).

Given an initial state (uk,ωk) at a given time tk, we can compute (uk+1,ωk+1) at time
tk+1 = tk + dtk using the following algorithm:

1. (a) Update the scalar and obtain θk+1 from θk and uk using equation (2.1d) by solving
successively each split operator (2.2) and (2.3).

(b) Update the vorticity and obtain an intermediate vorticity field ωk,∗ from ωk and
uk using equation (2.1c) at fixed velocity uk by solving successively each split
operator (2.4), (2.5), (2.6) and (2.7).

2. Correct the newly obtained vorticity ωk,∗ to obtain ωk+1 such that the associated veloc-
ity uk+1 becomes divergence free by using the Helmholtz decomposition of the velocity
(2.9). Compute the new velocity uk+1 from ωk+1 by solving the Poisson problem (2.8)
or by solving independently (2.10) and (2.11).

3. Compute the new timestep dtk+1 from the stability criteria of the numerical schemes
depending on uk+1, ωk+1, θk+1 and the spatial discretization parameters. Advance in
time by setting tk+1 = tk + dtk and k = k + 1.

Steps (1a) and (1b) are independent and can be computed concurrently. Moreover the pressure
term P k+1 can be recovered after step 2 by solving the Poisson problem (2.12).

The timestep only depends on the numerical methods used for each of the subproblems ob-
tained in the splitting steps. We will denote ∆tadv, ∆tdiff , ∆tstretch and ∆tfext the timesteps
computed from the stability criteria of each of the subproblems for the vorticity ω. The
scalar transport also constraints the timestep to be less than ∆tadv,θ and ∆tdiff,θ. A constant
maximum timestep ∆tmax is also introduced to cover the case of dual-way couplings where
the stability constraints would be too loose to ensure the convergence of the method. As we
will never be interested in the pressure term, this results in algorithm 1.

The transported fields may exhibit a multiscale property. This means that the scalar θ may
be discretized on a finer mesh compared to the velocity or vorticity mesh. We will see that for
performance reasons we will only use Cartesian grid discretizations which are parametrized
by a constant space step dx = (dx1, · · · , dxn). Specific non-uniform grid discretizations may
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be required for Chebyshev spectral solvers introduced in the last section.

k ← 0
t0 ← tstart
u0 ← u(t = tstart)
ω0 ← ω(t = tstart)
θ0 ← θ(t = tstart)
dt0 ← min(∆tmax,∆t0adv,∆t0diff ,∆t0stretch,∆t0fext,∆t0adv,θ,∆t0diff,θ, tend − t0)
while tk < tend do

θk,1 ← convect(θk , dtk,uk) Transport θk at velocity uk during period dtk

θk+1 ← diffuse(θk,1, dtk, κ) Diffuse θk,1 with coefficient κ during period dtk

ωk,1 ← convect(ωk , dtk,uk) Transport ωk at velocity uk during period dtk

ωk,2 ← diffuse(ωk,1, dtk, ν) Diffuse ωk,1 with coefficient ν during period dtk

ωk,3 ← stretch(ωk,2, dtk,uk) Stretch ωk,2 at velocity uk during period dtk

ωk,4 ← forcing(ωk,3, dtk) Apply external forces to ωk,3 during period dtk

ωk+1 ← correct(ωk,4) Correct the vorticity ωk,4 to ensure ∇ · uk+1 = 0
uk+1 ← poisson(ωk+1) Compute uk+1 from ωk+1 using a Poisson solver
tk+1 ← tk + dtk

dtk+1 ← min(∆tmax,∆tk+1
adv ,∆t

k+1
diff ,∆t

k+1
stretch,∆t

k+1
fext,∆t

k+1
adv,θ,∆t

k+1
diff,θ, tend − tk+1)

k ← k + 1
end

Algorithm 1: Algorithm to solve the one-way coupling of a scalar with the incompress-
ible Navier-Stokes equations (2.1) by using operator splitting and variable timestep dt.

Classical eulerian solvers on such grids are submitted to a CFL condition [Courant et al. 1967]
that caps the timestep ∆tadv depending on velocity u and space step dx:

C = ∆tadv
(

n∑
i=1

‖ui‖∞
dxi

)
< Cmax (2.13)

When ω and θ live on the same grid, it entails that dxω = dxθ and thus ∆tadv = ∆tθ,adv.
Under the assumption of high Schmidt number, Sc = ν

κ � 1, it is of interest to choose a finer
grid to solve for all the physical scales of the scalar. In this case we may choose dx =

√
Sc dxθ,

which implies ∆tadv,θ = ∆tadv/
√
Sc. Within this framework, passively coupling a single scalar

with a high Schmidt number can potentially slow down the whole simulation by a factor
√
Sc.

Using a lagrangian scheme instead of an eulerian scheme for advection allows to get rid of this
factor at the cost of loosing the underlying uniform grid discretization of eulerian methods.
The present method use semi-lagrangian schemes, that are able to combine the best of both
worlds. With particle methods, the stability of the method just depends on the gradient of
the velocity:

LCFL = ∆t ‖∇u‖∞ ≤ Cmax (2.14)
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The scalar diffusion term may also restrict the timestep because of stability considerations.
The use of an explicit finite difference scheme on a diffusion equation with diffusion coefficient
α is stable under:

C = ∆tdiff max
i∈J1,nK

(
α

dx2
i

)
< Cmax (2.15)

When ω and θ live on the same grid, we have dxω = dxθ such that ∆tdiff = ∆tdiff,θ/Sc and
thus ∆tdiff � ∆tdiff,θ, the scalar has no impact on the diffusion time step for high Schmidt
numbers. It is however possible to use an unconditionally stable solver such as spectral
diffusion to get rid of ∆tdiff . If we choose dx =

√
Sc dxθ, we obtain ∆tdiff,θ = ∆tdiff .

Hence the additional diffusion of scalar at high Schmidt number should never impact the
number of iterations of the solver given the same explicit diffusion schemes are used. When
the diffusion limits the timestep is is possible to use an implicit spectral formulation instead.

2.1.3 Directional splitting

The operator splitting introduced in section 2.1.1 and illustrated in algorithm 1 is further
decomposed by using a directional Strang splitting on advection, diffusion, stretching and
external forcing operators. Such a Strang splitting can be used to speed up calculation for
problems involving multidimensional partial differential equations by reducing them to a sum
of one-dimensional problems [Strang 1968]. This method makes it possible to decouple the
spatial directions by solving one-dimensional advection problems by alternating the directions.

Let L be a linear differential operator on y such that

∂ỹ

∂t
= L(ỹ) t ∈ [tk, tk + dt[

ỹk = ỹ(tk) = yk

(2.16a)

(2.16b)

We want to solve problem 2.16 to obtain yk+1 = ỹ(tk + dt).

A Strang splitting allows to solve problem (2.16) when L can be decomposed as a sum of p
differential operators by solving successively partial differential equations arrising from the
splitting. It is particularly interesting when L = L1 + L2 + · · · + Lp is relatively difficult or
costly to compute directly while there are readily available methods to compute each of the
splitted differential operators Li separately. In such a case, the method can then be used to
speed up calculations at first and second order in time.

First order in time Strang splitting is achieved by solving successfully the p operators during
a full timestep dt as the following:

→
yk=yk

0

L1 (dt)→
yk

1

L2 (dt)→
yk

2

· · · →
yk

p−1

Lp (dt) →
yk

p =yk+1
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input : dt, yk = y(tk)
output: yk+1 = y(tk + dt), solution of problem 2.16
yk0 ← yk

for i ∈ J1, pK do

Solve
∂ỹ

∂t
= Li(ỹ) t ∈ [tk, tk + dt[

ỹk = ỹ(tk) = yki−1

yki ← ỹ(tk + dt)
end
yk+1 ← ykp

Algorithm 2: First order Strang splitting applied to operator L = L1 + · · ·+ Lp

Second order (in time) Strang splitting can be achieved by solving successfully p operators
back and forth with half a timestep:

→
yk=yk

0

L1
(
dt
2

)
→
yk

1

L2
(
dt
2

)
→
yk

2

· · · →
yk

p−1

Lp

(
dt

2

)
→

yk
p =yk+1

2
0

Lp

(
dt

2

)
︸ ︷︷ ︸

or equivalently Lp(dt)

→
y

k+1
2

1

· · · →
y

k+1
2

p−2

L2
(
dt
2

)
→
y

k+1
2

p−1

L1
(
dt
2

)
→

y
k+1

2
p =yk+1

input : yk = y(tk)
output: yk+1 = y(tk + dt), solution of problem 2.16
yk0 ← yk

for i ∈ J1, pK do

Solve
∂ỹ

∂t
= Li(ỹ) t ∈ [tk, tk + 1

2dt[

ỹk = ỹ(tk) = yki−1

yki ← ỹ(tk + 1
2dt)

end

y
k+1

2
0 ← ykp

for i ∈ J1, pK do

Solve
∂ỹ

∂t
= Lp−i+1(ỹ) t ∈ [tk + 1

2dt, t
k + dt[

ỹk+1
2 = ỹ(tk + 1

2dt) = y
k+1

2
i−1

y
k+ 1

2
i ← ỹ(tk + dt)

end

yk+1 ← y
k+1

2
p

Algorithm 3: Second order Strang splitting applied to operator L = L1 + · · ·+ Lp
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In order to obtain only one-dimensional problems, the idea is to split directionally all partial
differential equations relating to advection (2.2, 2.4), diffusion (2.3, 2.5), stretching (2.6) and
external forcing (2.7) by breaking them down into n directional terms of the form:

∂f

∂t
= L

(
x, t,f ,

∂f

∂x1
, · · · , ∂f

∂xn
,
∂f2

∂x2
1
, · · · , ∂f

2

∂x2
n

)

= L1

(
x, t,f ,

∂f

∂x1
,
∂f2

∂x2
1

)
+ · · ·+Ln

(
x, t,f ,

∂f

∂xn
,
∂f2

∂x2
n

)
(2.17)

where f = [ω1, · · · ,ωp,u1, ...,un, θ]T . This kind of directional splitting offers many advan-
tages as only one-dimensional problems have to be solved for directionally split operators
leading to a dimension agnostic implementation. It also reduces the arithmetic intensity
while being well suited for vectorized hardware architectures such as CPUs and GPUs [Magni
et al. 2012][Etancelin 2014]. Once the decomposition L1, · · · , Ln is known for all operators
we can apply first or second order Strang splitting by grouping each direction to solve the
respective operators as exposed in algorithm 4.

(k, t0)← (0, tstart)
(u0,ω0, θ0)← u(t = tstart),ω(t = tstart), θ(t = tstart)
dt0 ← min(∆tmax,∆t0adv,∆t0diff ,∆t0stretch,∆t0fext,∆t0adv,θ,∆t0diff,θ, tend − t0)
while tk < tend do

// Advection and diffusion of the scalar θ at constant velocity u
θk,0 ← θk

for i← 0 to (n− 1) do
θk,2i+1 ← directional convecti+1(θk,2i+0, dtk, uki+1)
θk,2i+2 ← directional diffusei+1(θk,2i+1, dtk, ν)

end
// Advection, diffusion, stretching and ext. forcing of vorticity ω at constant u
ωk,0 ← ωk

for i← 0 to (n− 1) do
ωk,4i+1 ← directional convecti+1(ωk,4i+0, dtk, uki+1)
ωk,4i+2 ← directional diffusei+1(ωk,4i+1, dtk, ν)
ωk,4i+3 ← directional stretchi+1(ωk,4i+2, dtk,uk)
ωk,4i+4 ← directional forcingi+1(ωk,4i+3, dtk)

end
// Correction of the vorticity and computation of the new divergence-free velocity
ωk+1 ← correct(ωk,4n)
uk+1 ← poisson(ωk+1)
// Compute the new timestep and advance in time
tk+1 ← tk + dtk

dtk+1 ← min(∆tmax,∆tk+1
adv ,∆t

k+1
diff ,∆t

k+1
stretch,∆t

k+1
fext,∆t

k+1
adv,θ,∆t

k+1
diff,θ, tend − tk+1)

k ← k + 1
end

Algorithm 4: Extension of algorithm 1 by using first order directional Strang split-
ting on both the scalar θ and the vorticity ω.
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2.2 Spatial discretization

The physical domain Ω is first embedded into a n-dimensional bounding box B that has
origin xmin = (xmin1 , · · · , xminn ) and length L = (L1, · · · , Ln) such that xmax = (xmin1 +
L1, · · · , xminn +Ln) and Ω ⊂ [xmin1 , xmax1 ]×· · ·× [xminn , xmaxn ]. If Ω is not initially box-shaped,
it is possible to inject additional penalization terms into the momentum equation (2.1c) and
split it accordingly to impose the right boundary conditions on Ω. This includes homoge-
neous Dirichlet boundary conditions [Angot et al. 1999], homogeneous Neumann boundary
conditions [Kadoch et al. 2012] and its non homogeneous counterpart [Sakurai et al. 2019]
and can also be used to model the boundaries of complex obstacles moving inside the fluid
domain. However, in this manuscript, the physical domain Ω will systematically represent a
rectangular cuboid of dimension n and we will not make any distinctions between Ω and B.
2.2.1 Cartesian grids

Such a box is then discretized by using rectilinear grids defined by a tessellation of hyper-
rectangle cells that are all congruent to each other. We will denote dx = (dx1, · · · , dxn) the
size of each of those elements and N c = (N c

1 , · · · ,N c
n) their number in each direction such

that L = N c � dx where � denotes elementwise multiplication (Li = N c
i dxi ∀i ∈ J1, nK).

When dx1 = · · · = dxn, all the elements tesselating the domain are hypercubes and we obtain
a Cartesian grid. All the components of velocity u and vorticity ω are discretized on the
same collocated grid, formed by the N v cell vertices defined by xi = xmin + i � dx for all
i = (i1, · · · , in) ∈ J0,N v

1 J× · · · × J0,N v
n J.

Figure 2.1 – Illustration of the discretization of rectangle-shaped domain B
spanning from xmin = (0, 0) to xmax = (Ly, Lx). Here P = (0, 1), the domain is Lx-
periodic on the x-axis. It is discretized by using N c = (5, 8) rectangle cells of size
dx = (dy, dx) = (Ly/N c

y , Lx/N c
x), yielding N v = (6, 8) vertices where the velocity u and

vorticity ω fields are defined. The blue vertices are not included in the discretization because
they represent redundant vertices arising from the periodization of the x-axis, as ω∗,8 = ω∗,0.
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The number of vertices on axe i depends on whether the domain is Li-periodic or not on the
said axis. If we define P = (P1, · · · ,Pn) ∈ {0, 1}n such that Pi = 1 if the domain is periodic on
axe i and Pi = 0 if not, the number of verticesN v is defined by N v

i = N c
i +1−Pi ∀i ∈ J1, nK.

The vertices are globally indexed and stored in memory by using row-major ordering, where
consecutive elements of a row reside next to each other. This ordering is defined by the
following relation: Ii = ((((· · ·+ in−3)N v

n−2 + in−2)N v
n−1 + in−1)N v

n + in) = i · S with stride
S = (S1, · · · ,Sn) where Si = Πn

j=i+1N v
j as illustrated on figure 3.29.

The convention in 2D is that the first axe corresponds to the y-axis and the second one
corresponds to the x-axis such that a domain of size L = (L1, L2) = (Ly, Lx) is discretized
using N c = (N c

y ,N c
x) rectangle cells of size dx = (dy, dx) forming N v = (N v

y ,N v
x ) vertices

globally indexed by Ii = I(i1,i2) = i1N v
x + i2 by taking into account the periodicity of the

domain P = (Py,Px). The 3D case follows the same idea, the first axis being the z-axis.
In this case, the axes are ordered as (z, y, x) such that vertex vi = v(i1,i2,i3) has a global
index Ii = ((i1N v

y + i2)N v
x + i3 = i · S with S = (N v

xN v
y ,N v

x , 1) and position xi = (zmin +
i1dz, ymin+ i2dy, xmin+ i3dx). This convention is made such that the x-axis always represent
the last axis where the vertex indices (and memory offsets) are contiguous.

The rationale behind this choice of discretization is that parallel computing is easy on rec-
tilinear grids. First, when the grid is big enough with respect to the number of compute
ressources, it is easy to perform domain decomposition on multiple processes as shown on fig-
ure 2.2. Secondly, Cartesian grids enable a wide variety of numerical methods such as finite
differences [Courant et al. 1952], spectral methods [Canuto et al. 2012] and pseudo-spectral
methods [Fornberg 1998]. It can be used in conjonction with remeshed particle methods
[Cottet et al. 2000]. Last but not least, such a regular data structure offers uniform mapping
from indexes to vertex coordinates, and can be allocated as a single large contiguous chunk
of memory. Hence, this data structure is adapted for use with parallel computing platforms
such as CUDA [Luebke 2008] and OpenCL [Stone et al. 2010]. Indeed, hardware peculiarities
such as memory hierarchy or vector execution units inherent to the processors or coprocessors
this kind of application programming interfaces can drive make them attractive [Owens et al.
2008][Cottet et al. 2013].

Figure 2.2 – Example of domain decomposition in 24 subdomains
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2.2.2 Field discretization, interpolation and restriction

Each scalar field ωi, ui and θ are then discretized on such regular grids. In all this work the
velocity and the vorticity components will be discretized on grids with the same sizeN v. The
scalar θ may be discretized on a finer grid such that this new grid contains N c

θ = m �N c

cells where m = N c
θ �N c ∈ Nn is the grid ratio. Its associated number of vertices can be

obtained as before by computing N v
θ =N c

θ + 1−P . From now on we denote N = ∏n
i=1N v

i

and Nθ = ∏n
i=1N v

θ,i.

In practice those variables may interact due to the couplings and thus we need to be able to
compute a restriction of θ on the coarse grid and interpolate the velocity and vorticity fields
on the fine grid. There exist many different methods to compute an interpolation:

• Local polynomial interpolation (n-linear or n-cubic splines, see [Keys 1981])

• Local interpolation by using interpolating kernels defined in section 2.3.

• Global Fourier spectral interpolation for periodic and homogeneous boundary condi-
tions. Can be computed in O (N logN +Nθ logNθ) by using a n-dimensional forward
and backward Fast Fourier transform with zero-padding (see section 2.6).

• Global Chebyshev spectral interpolation for general boundary conditions. Can be com-
puted in O (N logN +Nθ logNθ) at the Chebyshev-Gauss-Lobatto points by using Fast
Chebyshev transforms and in O

(
N2 +N2

θ

)
on a regular grid (see section 2.7).

For the local interpolation methods, the associated interpolation kernel has a compact support
s = s � dx with s ∈ Nn. Local interpolation algorithms usually treats one direction after
another to reduce the computational complexity of the method, going from O ([∏n

i=1 si]Nθ)
to O ([∑n

i=1 si]Nθ).

Figure 2.3 – Local interpolation by using an interpolating kernel (2.35)

Each of those methods have a corresponding restriction method such as low-pass filtering for
global spectral methods and local restrictions for the local methods.
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2.3 Hybrid particle-grid method

In this section we propose to introduce an hybrid method for the transport of scalar quantities
using the particle method. This method will allow us to solve equations (2.2) and (2.4) and
constitute the very first step of our numerical method as shown bellow:

A particle method is able to solve a transport equation of the form:

∂θ

∂t
+ (u · ∇) θ = 0 (2.18)

where the scalar field θ is transported at velocity u.

With particle methods, the variables are discretized on a set of particles which correspond to
an elementary volume of the domain. The general principle is that particles carry quantities
corresponding to the variables of the problem. The particles are then transported in the
velocity field and are free to evolve over the whole domain in a grid-less fashion.

In such a lagrangian framework, the scalar field θ(x) can be approximated by the discrete
sum of P particles {pi | i ∈ J1, P K} each carrying a quantity θi at position xi:

θ(x) '
P∑
i=1

θiWε(x− xi) (2.19)

The carried quantity θi is obtained by computing the mean value of θ inside the elementary
discrete volume Vi that the particle represent:

θi = 1
|Vi|

∫
Vi

θ(x)dx (2.20)
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The function Wε that appears in the equation (2.19) is a regularization function whose choice
and properties are specific to each particle method. In all cases, it is constructed so that its
limit when ε tends to 0 is the Dirac measure δ.

During the resolution, the particles are displaced relative to the velocity field and then interact
to give a new distribution of the transported quantities. If the transported quantity is the
vorticity ω, as in equation (2.4), this leads to a new velocity field u. Particles are transported
along their characteristics and evolve on a grid free domain. The motion of the particles is
dictated by the following set of equations:

dxi
dt = u(xi, t) ∀i ∈ J1, P K (2.21)

As a grid-free method, it has the advantage of being free from any stability condition that
would restrict the timestep depending on some grid discretization parameter or the distance
between two particles. Indeed, with traditional eulerian methods, the timestep is constrained
by a Courant-Friedrichs-Lewy (CFL) condition where C is often less than one.

CFL = ∆t ‖u‖∞
∆x ≤ C (2.22)

With particle methods, the stability of the method, and thus the timestep, just depends on
the gradient of the velocity:

LCFL = ∆t ‖∇u‖∞ ≤ C (2.23)

In practice, the constant C, called the LCFL (for lagrangian CFL), leads to a less restrictive
condition than the CFL condition (2.22). This generally makes it possible to use larger time
steps than in the case of an eulerian method. This feature is particularly interesting for high
Schmidt number flows [Etancelin et al. 2014].

2.3.1 Semi-lagrangian methods

A well-known disadvantage of lagrangian methods is that the particles have trajectories that
follow the velocity field and thus particle distribution may undergo distortion. This manifests
itself by the clustering or spreading of the flow elements in high strain regions and leads to
the deterioration of the representation of the fields by lack or excess of particles in some areas
of the flow [Cottet et al. 2000]. This particle overlapping condition has been recognized as a
major difficulty to perform accurate simulations, in particular for non-linear problems.

Semi-lagrangian methods were developed for the resolution of flows dominated by advection,
mainly in the field of meteorology [Staniforth et al. 1991] and are able to combine the ad-
vantages of both eulerian (grid-based) and lagrangian (grid-free) methods. To maintain the
regularity of the particle distribution, particles are remeshed on an underlying eulerian grid
every few timesteps [Koumoutsakos et al. 1995]. When the particles are remeshed at every
timestep, we obtain a systematic representation of the transported quantities on the grid,
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hence the name semi-lagrangian method. Within this framework particle methods can be
combined with grid-based techniques such as spectral methods and finite difference methods.
Because the particles are systematically remeshed it is possible to create the particles only at
the beginning of each advection step and to destroy them just after remeshing.

There exist two classes of semi-lagrangian methods:

• Backward semi-lagrangian method: The resolution consists to start from a grid
point and integrate backward in time along the characteristics (advection step). The
quantity interpolated at this new point is then transported to the starting point (inter-
polation step).

• Forward semi-lagrangian method: In this case we also start from a grid point, but
the trajectory is integrated forward in time (advection step). The quantity transported
by the particle is then distributed on the surrounding points (remeshing step).

Figure 2.4 – Illustration of the two classes of semi-lagrangian methods

In this work we will use the high-order forward semi-lagrangian particle method proposed by
[Cottet et al. 2014]. As a forward method, it features an advection and a remeshing step.

Advection step

At each time iteration of the method, particles are created on the underlying eulerian grid at
positions {xi = xmin + i� dx | i ∈ J0,N v

1 J× · · · × J0,N v
n J} and are transported along their

characteristics while the associated transported quantities θi remain constant. The particle
positions are driven by transport equations (2.21) and the new position of the particles are
given by the following set ordinary differential equations:

∂xi
∂t

= u(xi) t ∈ [tk, tk+1[

xki = xi(tk) = xmin + i� dx
(2.24)
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In this work we will numerically integrate particle positions in time by using explicit Runge-
Kutta methods, which are described in section 2.3.2. The only difficuly that may arrise during
this step is the interpolation of the velocity field, at all the intermediate positions of the
particles (see figure 2.5). For a first order scheme, namely the Euler scheme, no interpolation
is needed because the particles initially coincide with the eulerian grid where the velocity is
known from the last timestep. In this case, the new position of the particles can be computed
as the following:

xk+1
i = xki + dt uki (2.25)

Using a Runge-Kutta scheme of the second order leads to this second expression:

xki,1 = xki + dt

2 u
k
i

xk+1
i = xki + dt u

(
xki,1

) (2.26)

Here it is clear that the intermediate position xki,1 will not always be aligned with the grid
and the computation of the velocity at this point requires an interpolation. Figure 2.5 shows
the difference between the two methods, by using bilinear interpolation.

Figure 2.5 – Advection with first and second order explicit Runge-Kutta schemes

During the advection step, n-linear interpolation is used to evaluate velocity at positions that
are not grid aligned. A value inside a cuboid cell is computed by the weighted average of
the values present at the 2n vertices forming the cell. As the scheme is not CFL constrained,
a given particle can potentially travel over multiple cells at once and the cell in which the
particle may arrive intersects the sphere centered at initial particle position xi = xmin+i�dx
with radius r = dt ‖u‖∞. Let x be the position at which the velocity has to be interpolated
and y = (x − xmin) � dx be the grid-normalized coordinate of x. The multi-index j of the
cell that contains the particle is obtained by taking the integer part of the grid-normalized
coordinate: j = byc. Similarly the weights α ∈ [0, 1[n for the n-linear interpolation are
obtained by extracting the fractional part: α = y − byc = y − j. The value of the velocity
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at the new position x and time tk is then obtained by the following formula:

uk (x) =
∑

d∈{0,1}n

(
n∏
i=1

αdi
i (1− αi)1−di

)
ukj+d (2.27)

Figure 2.5 illustrates the two-dimensional interpolation of the velocity required for the second
order Runge-Kutta method and corresponds to the case j = (0, 0) and α = (αy, αx) =
(1/3, 1/3). The velocity at position x = j +α is bilinearly interpolated using formula (2.27)
that can be expanded to the following expression:

uk(x) = (1− αy)(1− αx)uk0,0 + (1− αy)αxuk0,1 + αy(1− αx)uk1,0 + αyαxu
k
1,1

In a multiscale approach, the velocity is known only on a coarser grid than that of the scalar
and we have to use interpolation even in with the first order method. In this case we have
N c
θ = m�N c

u where m ∈ Nn denotes the grid ratio and we proceed in two steps:

1. First we interpolate the velocity from the coarse grid to the fine grid by using a given
interpolation method. When the grid ratio between the velocity and the transported
quantity is high, higher order interpolation schemes may be used (n-cubic splines or
spectral interpolation, see section 2.2.2).

2. Now that the transported quantity θ and the velocity u are known on the same grid,
particles are advected on the fine grid by using n-linear interpolation to get the velocity
at intermediate particles positions.

Figure 2.6 – Example of multiscale advection by using bilinear interpolation

Remeshing step

Once the particles have been advected, they have to be remeshed onto the grid by using a
remeshing kernel Wε, also called remeshing formula. The multidimensional case is generally
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treated by tensor product of one-dimensional kernels Wε(x) =
n∏
i=1

Wε(xi). Those formulas
usually have a high arithmetic cost, especially for high order remeshing formula that exhibit
large supports. Figure 2.7 illustrates the advection and remeshing procedure applied to a
single particle marked with a blue cross. Initially particles are grid-aligned and their size
represent the value they are carrying. After the displacement of the particles according to the
velocity field represented by the thick red arrows, the particles are remeshed onto neighboring
grid points:

Figure 2.7 – Example of two-dimensional remeshing by tensor product

In this case, a single particle is remeshed onto S = 16 surroundings grid location (represented
by the fine blue arrows) and the remeshing formula has a support s of 2dx (2 dxi in each
direction i), or simply 2 in grid-normalized coordinates of the particle yp = (xp−xmin)�dx.
If we simplify equation (2.19) by using the grid normalized coordinates and grid-independent
kernels W (y) = Wε(y � dx) we obtain the following expression:

θk+1
i =

P∑
p=1

θkp W
(
(xk+1

p − xi)� dx
)

=
P∑
p=1

θkp W

yk+1
p − yi︸︷︷︸

=i

 (2.28)

This expression can be simplified by taking into account the support s of the remeshing
kernel. Let us denote Pki the set of index of the particles p that where advected inside the
rectangular cuboid centered around i with size 2s. Equation (2.28) can be rewritten as:

θk+1
i =

∑
p∈Pk

i

θkp W
(
yk+1
p − i

)
Pki =

{
p ∈ J1, P K |

(
yk+1
p − i

)
∈ ]− s1, s1[× · · ·×]− sn, sn[

}
(2.29a)

(2.29b)

A given particle of global index p, associated to multi-index j such that p = I(j), has an
initial grid-aligned grid-normalized coordinate ykp = ykj = j. In this configuration we can
express the ball that contains the position of the particle after advection:

yk+1
j ∈

{
y | ‖y − j‖2 ≤ dt max

x∈Ω
(‖u(x)� dx‖2)

}
⊂
{
y | |yi − ji| ≤ dt ‖ui‖∞

dxi
∀i ∈ J1, nK

}
Let dkj = yk+1

j − ykj be the grid-normalized displacement of a given particle pj and c =
(c1, · · · , cn) with ci = si+bdt ‖ui‖∞ /dxic. Equation (2.29) can be rewritten by using directly
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the neighbor particle coordinates and displacements:

θk+1
i =

c1∑
j1=−c1

· · ·
cn∑

jn=−cn

θki+j W
(
yk+1
i+j − i

)

=
c1∑

j1=−c1

· · ·
cn∑

jn=−cn

θki+j W
(
dki+j + j

)
(2.30)

In practice we only need to store the particle displacements dki and the remeshing proce-
dure goes the other way arround: each advected particle is remeshed on the S = ∏n

i=1 si
surrounding grid locations as illustrated on figures 2.7, 2.8 and in algorithm 5.

Input : Input scalar field θk+1 ∈ RN v
1 ×···×N

v
n

Input : Grid-normalized particle displacement field d ∈
(
RN v

1 ×···×N
v
n

)n
Output: Output scalar field θk ∈ R(N v

1 +2c1)×···×(N v
n +2cn)

for i ∈ J−c1,N v
1 + c1J× · · · × J−cn,N v

n + cnJ do
θk+1
i ← 0

end
for i ∈ J0,N v

1 J× · · · × J0,N v
n J do

j ← i+ bdic
α← di − bdic
for p ∈ J−s1 + 1, s1K× · · · × J−sn + 1, snK do

θk+1
j+p ← θk+1

j+p + θki W (p−α)︸ ︷︷ ︸
=

n∏
l=1

W (pl−αl)

end
end

Algorithm 5: Remeshing procedure using a remeshing kernel W with support s

The inner loop of algorithm 5 computes the contribution of particle pi carrying quantity θki
to the S grid locations present in the neighborhood of its new position yk+1

i = i+dki = j+α
as illustrated on figure 2.8 for the one-dimensional case. The values that are remeshed in the
boundary cells, outside of the domain, are handled depending on the boundary conditions as
a post-processing step.

Figure 2.8 – One-dimensional remeshing kernel with support s = [−3, 3]
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Multi-dimensional remeshing is generally achieved by tensor product of one-dimensional ker-
nels, resulting in S calls to the one-dimensional remeshing formula per particle. We will see
that the evaluation of W implies to evaluate high order polynomials, and thus the remeshing
procedure through tensor product has high arithmetic intensity. It is possible to reduce the
number of remeshing kernel calls by performing a directional splitting trough the use of a
Strang splitting as proposed by [Magni et al. 2012]. This is presented in section 2.5.1.

2.3.2 Explicit Runge-Kutta methods

The accuracy in time can be improved in the advection step by using more ellaborate time
stepping schemes such as the explicit Runge-Kutta methods [Kutta 1901]. The most widely
known scheme of Runge-Kutta family is generally referred to as RK4 or the Runge-Kutta
method. Here for simplicity and without any loss in generality and consider that f is scalar
valued. We consider the following initial value problem ∂f

∂t
= F (t, f) with f(tk) = fk and

we seek to find fk+1 = f(tk + dt).

The fourth-order (in time) Runge-Kutta scheme is obtained as the following:

fk+1 = fk + dt

6
(
F k1 + 2F k2 + 2F k3 + F k4

)
F k1 = F (tk, fk)

F k2 = F

(
tk + dt

2 , f
k + dt

2 F
k
1

)
F k3 = F

(
tk + dt

2 , f
k + dt

2 F
k
2

)
F k4 = F

(
tk + dt, fk + dt F k3

)

(2.31a)

(2.31b)

(2.31c)

(2.31d)

(2.31e)

Here fk+1 is the RK4 approximation of f(tk+1) at order p = 4. It is determined by the current
value plus the weighted average of four estimated slopes Fi multiplied by the timestep dt.
The four slopes are estimated by evaluating F at different intermediate estimations (ti, fi)
such that ti ∈ {tk, tk + dt

2 , t
k + dt}:

• F k1 is the initial slope F (tk, fk) as seen before with the Euler method.

• F k2 is the slope at the midpoint tk + 1
2dt based on initial slope F k1 .

• F k3 is the slope at the midpoint tk + 1
2dt based on the second slope F k2 .

• F k4 is the slope at the endpoint tk + dt based on the third slope F k3 .

The final slope is obtained by giving greater weights to the slopes obtained at the midpoints.
The family of explicit Runge-Kutta methods is simply a generalization of the RK4 method



2.3. Hybrid particle-grid method 81

presented above. An explicit scheme of s stages is given by the following expressions:

fk+1 = fk + dt
s∑
i=1

biF
k
i

F k1 = F
(
tk, fk

)
F k2 = F

(
tk + c1dt, f

k + a1,1F
k
1

)
F k3 = F

(
tk + c2dt, f

k + a2,1F
k
2 + a2,2F

k
1

)
...

F ks = F

(
tk + cs−1dt, f

k +
s−1∑
i=1

as−1,iF
k
i

)

(2.32a)

(2.32b)

(2.32c)

(2.32d)

(2.32e)

(2.32f)

All the required coefficients can be summed up in a Butcher tableau [Butcher 1963]:

0
1
2

1
2

1
2 0 1

2

1 0 0 1
1
6

1
3

1
3

1
6

Butcher tableau for RK4

0

c1 a11

c2 a21 a22
...

... . . .

cs−1 as−1,1 as−1,2 · · · as−1,s−1

b1 b2 · · · bs−1 bs

General Butcher tableau

0
1
3

1
3

2
3 −1

3
1
2

1 1 −1 1
1
8

3
8

3
8

1
8

Butcher tableau for RK4 38

The method is consistent under ∑i
j=1 ai,j = ci for all i ∈ J1, s − 1K and a method of order p

has at least s stages. The only consistent explicit Runge-Kutta method with one stage is the
Euler method. In practice we will use methods with up to four stages, denoted RK1 (Euler),
RK2, RK3 and RK4 which are the classical Runge-Kutta methods complemented with RK4 38
which is a variation of the fourth-order scheme called the 3/8-rule [Butcher et al. 1987]. All
those methods offer the same accuracy in time as their respective number of stages (p = s).
This is not possible with methods using more than four stages. The primary advantage the
RK4 38 method is that almost all of the error coefficients are smaller for the price of some
extra FLOPs and memory.

As those methods are explicit, there is no need to solve any linear system and the total cost
of the method is due to the s evaluations of F along with 2s + k − 1 additions and 2s + k

multiplications where s − 1 ≤ k ≤ s(s + 1)/2 represent the number of non-zero coefficients
aij . Those same Runge-Kutta schemes will also be used for diffusion and stretching in a
finite differences framework. In this case f represent a space dependent field, and the cost of
the method is hidden in the s evaluations of F where partial space derivatives of f can be
obtained by applying centered finite difference stencils.
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2.3.3 Construction of the remeshing formulas

This subsection is dedicated to the construction of one-dimensional remeshing kernels W (x).
Due to their nature, particle methods are suitable for solving conservation equations. It
is therefore important that the remeshing step, performed in equation (2.19), enforce those
conservation properties. In particular, remeshing formula should be designed to preserve the
moments of the quantities transported. In dimension one, the discrete moment of order m ∈ N

of the transported field θ is defined by
N v

x−1∑
i=0

xmi θi.

Therefore, a remeshing kernel must satisfy the conservation equalities of the following discrete
moments up to the p-th moment:

N v
x−1∑
i=0

xmi θki =
N v

x−1∑
i=0

xmi θk+1
i ∀m ∈ J0, pK (2.33)

where p is directly linked to the spatial order of the method (and the support s of the kernel).

By using equation (2.30) with n = 1, equation (2.33) is satisfied under:∑
j∈Z

jmW (x− j) = xm ∀x ∈ R ∀m ∈ J0, pK (2.34)

It also has to be symmetric W (x) = W (−x) so that there is no preferred remeshing direction.
(this implies that the odd moments are all zero). As W approximates a Dirac, it is preferable
that it satisfies the interpolation condition W (j) = δj,0 ∀j ∈ Z which is compatible with
the 0-th moment equation that states that the global scalar quantity is preserved during
the transport ∑j∈ZW (x − j) = 1. The interpolation property allows an exact conservation
of remeshed quantities carried by particles that happen to be grid-aligned (particles whose
position coincides with a grid point after advection). Thus, at zero-velocity, the scalar field θ
remains the same.

A first family of kernels can be obtained by looking for functions with support p+1 built with
p+ 1 piecewise polynomials of order p (with support 1). The coefficients of the polynomials
are obtained enforcing the conservation of the p first moments with equations (2.34). Kernels
arising from this family are not regular enough and some of them are not even continuous.
This entails a loss of numerical precision [Cottet et al. 2009b]. A second family of kernels that
are more regular can be obtained up by the use of regular B-splines [Schoenberg 1988]. This
family does not enforce the interpolation condition and offers up to second order moment
conservation for a given regularity r. The lack of high order moment preservation properties
of this family have been later compensated by using Richardson extrapolation while preserv-
ing their regularity [Monaghan 1985]. This family has been used since the end of the 90’s
[Koumoutsakos 1997][Salihi 1998] in the context of semi-lagrangian methods. However, high
order kernels obtained by this method also lack the interpolation property.

The present method will use the family high order kernels proposed by [Cottet et al. 2014]
that allows to obtain a remeshing kernel of any order p and any regularity r while preserving
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the interpolation property. The kernels are found as with the first family, by looking for
piecewise polynomials with compact support. Those kernels satisfy the following properties:

• P1: Parity W (x) = W (−x)

• P2: Compact support [−s, s] with s ∈ N

• P3: Piecewise polynomial of degree q on the integer subsets.

• P4: Overall regularity r.

• P5: Preservation of the p first moments.

• P6: Interpolation property W (j) = δj0 ∀j ∈ Z

The three first properties restrict the problem to find s polynomials of degree q yielding
s(q + 1) unknowns. Because the odd moment are automatically preserved by the parity of
the kernel, we only take into account an even number moments p ∈ 2N. Choosing support
s = 1 + p/2 and polynomials of degree q = 2r + 1 with r ≥ p/2 give enough equations to
solve the linear system satisfying all the properties. The kernels obtained by this method are
named Λp,r and some of them are listed in the following table:

Kernel Max. preserved moment Regularity Support Degree
Λp,r p ∈ 2N Cr, r ≥ p/2 [−s, s], s = 1 + p/2 q = 2r + 1
Λ2,1 2 C1 [−2, 2] 3
Λ2,2 2 C2 [−2, 2] 5
Λ4,2 4 C2 [−3, 3] 5
Λ4,4 4 C4 [−3, 3] 9
Λ6,4 6 C4 [−4, 4] 9
Λ6,6 6 C6 [−4, 4] 13
Λ8,4 8 C4 [−5, 5] 9
Λ8,6 8 C6 [−5, 5] 13

Table 2.1 – Comparative of some high order semi-lagrangian remeshing kernels

The default remeshing kernel that we will use in this work is Λ4,2:

Λ4,2(x) =



1− 5
4 |x|

2 − 35
12 |x|

3 + 21
4 |x|

4 − 25
12 |x|

5 if 0 ≤ |x| < 1

−4 + 75
4 |x| −

245
8 |x|

2 + 545
24 |x|

3 − 63
8 |x|

4 + 25
24 |x|

5 if 1 ≤ |x| < 2

18− 153
4 |x|+

255
8 |x|

2 − 313
24 |x|

3 + 21
8 |x|

4 − 5
24 |x|

5 if 2 ≤ |x| < 3

0 if |x| ≥ 3

(2.35)

This specific formula is illustrated on figure 2.8. Other remeshing formulas can be found in
appendix A of [Etancelin 2014] and some of them are illustrated on figure 2.9.
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(a) Λ2,r (b) Λ4,r

(c) Λ6,r (d) Λ8,r

(e) Λ10,r

Figure 2.9 – Illustration of some semi-lagrangian remeshing kernels Λp,r
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2.4 Finite difference methods

Finite-difference methods (FDM) are numerical methods for solving differential equations by
approximating them with difference equations, in which finite differences approximate the
derivatives [Smith et al. 1985]. Let f : R → R be the function whose derivatives are to be
approximated, such that f is p times continuously differentiable, f ∈ Cp(R,R). Then by
Taylor’s theorem, we can write a Taylor series expansion around point x ∈ R:

f(x+ h) =
p∑
q=0

f (q)(x)
q! hq +Rp(h) (2.36)

where Rp(x) = O
(
hp+1) is a remainder term, resulting of the difference between the Taylor

polynomial of degree p and the original function f . It is then possible to extract the target
derivative f (d)(x) with d ≤ p in terms of elements in f(x + Zh) by building a linear system
consisting of s = imax − imin + 1 Taylor series expanded around x + ih at order p for i ∈
Jimin, imaxK ⊂ Z. If we denote fx = (f(x+ ih))i∈Jimin,imaxK then the d-th derivative of f
evaluated at x, can be approximated by h−d(S · fx) where S ∈ Qs is the associated finite
difference stencil. The resulting order of the stencil depends on the order of the Taylor
series p, the approximated derivative d and how errors terms cancel each other out. When
imin = −imax the finite difference scheme is said to be centered, imax = 0 yields a backward
finite difference scheme and imin = 0 a forward finite differences scheme.

The centered finite difference stencils approximating f (d) with accuracy m contains s =
2q + 1 coefficients S with q =

⌊
d+1

2

⌋
+
⌊
m+1

2

⌋
. The s coefficients of the stencil

(S−q, S−q+1, · · · , S0, · · · , Sq−1, Sq) can be computed by solving the following linear system:

(−q)0 (−q + 1)0 · · · (q − 1)0 q0

(−q)1 (−q + 1)1 · · · (q − 1)1 q1

· · · · · · · · · · · · · · ·
(−q)d (−q + 1)d · · · (q − 1)d qd

· · · · · · · · · · · · · · ·
(−q)2q (−q + 1)2q · · · (q − 1)2q q2q





S−q
S−q+1
· · ·

S−q+d
· · ·
Sq


=



0
0
· · ·
d!
· · ·
0


(2.37)
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The following table contains the coefficients of the central differences obtained for the first
and second derivative with several orders of accuracy for a uniform grid spacing h:

derivative accuracy S−3 S−2 S−1 S0 S1 S2 S3

1 2 −1/2 0 1/2
1 4 1/12 −2/3 0 2/3 −1/12
1 6 −1/60 3/20 −3/4 0 3/4 −3/20 1/60
2 2 1 −2 1
2 4 −1/12 4/3 −5/2 4/3 −1/12
2 6 1/90 −3/20 3/2 −49/18 3/2 −3/20 1/90

Table 2.2 – Finite differences coefficients for first and second derivatives

For example, table 2.2 states that the first and second derivatives of f at order 4 at point x
can be approximated by:

f (1)(x) = 1
h2

[
+ 1

12f(x− 2h)− 2
3f(x− h) + 2

3f(x+ h)− 1
12f(x+ 2h)

]
+O

(
h4)

f (2)(x) = 1
h2

[
− 1

12f(x− 2h) + 4
3f(x− h)− 5

2f(x) + 4
3f(x+ h)− 1

12f(x+ 2h)
]

+O
(
h4)

(2.38a)

(2.38b)

For a fourth order accuracy stencil, the local truncation error is proportional to h4.

2.4.1 Spatial derivatives

Finite difference coefficients can be extended to any function f(Rn,R) ∈ Cp(Rn,R) and can
be computed on arbitrarily spaced grids [Fornberg 1988]. As part of this work we will remain
in the uniform grid spacing case for discretization in space as presented in subsection 2.2.
We will also approximate derivatives with at least fourth order accuracy to prevent odd-even
decoupling which is a discretization error that can occur on collocated grids and which leads
to checkerboard patterns in the solution [Harlow et al. 1965].

Let F be the discretization of a scalar field f : B → R on the cuboid domain B ∈ Rn with
global grid size N v containing a total of N = ∏n

i=1N v
i elements and let S ∈ Qs1 × · · ·Qsn

be a centered stencil of size s = 2q + 1 containing k ≤
∏n
i=1 si non-zero coefficients that

approximate some mixed spatial derivative of f on the grid at order m. The approximation
of the derivative D over the whole domain is obtained by performing a convolution between
the stencil S and the grid data F = {Fi = f(xmin + i� dx) | i ∈ J1,N v

1 J× · · · J0,N v
n J} con-

taining additional boundary values that we will later call ghost nodes (see algorithm 6). This
operation costs (k − 1)N additions and kN multiplications and can thus be computed in
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O (kN) operations.

Input : n-dimensional centered stencil S ∈ Rs1×···×sn with s = 2q + 1
Input : n-dimensional array F ∈ R(N v

1 +2q1)×···×(N v
n +2qn)

Output: n-dimensional array D = F ∗ S ∈ RN v
1 ×···×N

v
n

for i ∈ J0,N v
1 J× · · · × J0,N v

n J do
Di ← 0
for j ∈ J−q1,+q1K× · · · × J−qn,+qnK do

if Sj 6= 0 then
Di ← Di + SjFq+i+j

end
end

end

Algorithm 6: Convolution of a discretized field F with a centered stencil S of size
s = 2q + 1. F is discretized on a grid of size N v + 2q, q being the size of additional
required boundary layers for input. The n-dimensional stencil S is indexed as in
equation (2.37) whereas input and output arrays have indexes starting at zero. The
additional inner loop conditional is here to highlight the fact that S may be sparse.

Figure 2.10 – Stencils approximating the 2D Laplacian: Examples of five-point and
nine-point centered stencils that approximate the Laplacian operator ∆ = ∂

∂x2 + ∂

∂y2 on a
uniform grid with second order accuracy (leading error coefficients are however not the same).

Stencils can in general represent more than simple derivatives, it can for example approximate
sums of derivatives as shown on figure 2.10. The mask of non-zero coefficients of a given stencil,
represented in red, gives the location of values that have to be read to compute one value of
the output, located at the center. The number of non-zero coefficients k of a finite difference
stencil is typically small. Although dense centered stencils such as the second order nine-point
Laplacian stencil have (2q+ 1)n non-zero coefficients, they are seldomly used for fourth-order
accuracy because of performance reasons. In 3D, the fourth order accuracy dense Laplacian
stencil requires (2 ∗ 2 + 1)3 = 125 input values, 125 multiplications and 124 additions to
compute one single output value. Assuming the values are represented with double precision
floating point numbers of 8 bytes each, and that the multiplications and additions are done by
using fused multiply-add operations, this gives an arithmetic intensity of 125/8 ' 15.6 FLOP/B.
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Nowadays, most common architectures like CPUs and GPUs are optimized to target 5 FLOP/B
for double precision computations [Rupp 2013]. A higher FLOP per byte ratio indicates that
the given algorithms fully saturate the hardware compute units [Williams et al. 2009]. In
this case, this means that this stencil would, in average, be compute-bound by a factor of
3 or put in other words that it would only use at most one third of the available memory
bandwidth for an given device. Sparse stencils, such as the one obtained by sum or tensor
product of 1D stencils, have the order of 1 + 2qn non-zero coefficients and thus are memory-
bound. The same calculation for the sparse fourth-order accuracy 3D Laplacian stencil yields
an arithmetic intensity of 8/8 = 1 FLOP/B. Hence sparse stencils are likely to to be memory
bound.

2.4.2 Finite difference schemes

A finite difference scheme can be used to approximate the solution of a partial differential
equation such as (2.5), (2.6) and (2.7). It is obtained by approximating both space and time
using finite differences. In this section we will focus on the two-dimensional diffusion equation
as encountered in equation (2.5). The simplest temporal integration scheme is the explicit
Euler scheme. It can be directly obtained by taking the Taylor expansion of ω(x, t) around
tk + dt at order p = 1 with gives:

∂ω

∂t
(t = tk) = ωk+1 − ωk

dtk
+O (dt) (2.39)

By using equations (2.38b) and (2.39) applied to ω(t = tk) along with equation (2.5) we
obtain:

ωk+1
i1,i2
− ωki1,i2
dt

+O (dt) =

+ ν

dx2

[
− 1

12ωi1,i2−2 + 4
3ωi1,i2−1 −

5
2ωi1,i2 + 4

3ωi1,i2+1 −
1
12ωi1,i2+2

]
+O

(
dx4

)
+ ν

dy2

[
− 1

12ωi1−2,i2 + 4
3ωi1−1,i2 −

5
2ωi1,i2 + 4

3ωi1+1,i2 −
1
12ωi1+2,i2

]
+O

(
dy4

) (2.40)

from which we can easily express the value of the variable at the next timestep ωk+1
i1,i2

:

ωk+1
i1,i2

= ωki1,i2

+ νdt

dx2

[
− 1

12ωi1,i2−2 + 4
3ωi1,i2−1 −

5
2ωi1,i2 + 4

3ωi1,i2+1 −
1
12ωi1,i2+2

]
+νdt

dy2

[
− 1

12ωi1−2,i2 + 4
3ωi1−1,i2 −

5
2ωi1,i2 + 4

3ωi1+1,i2 −
1
12ωi1+2,i2

]
+O

(
dx4

)
+O

(
dy4

)
+O (dt)

(2.41)

This constitutes a fourth order scheme in space and first order in time finite differences scheme.
It is illustrated on figure 2.11. Higher order in time can be achieved trough the use of an
higher order Runge-Kutta scheme.
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Figure 2.11 – Explicit 2D finite difference scheme used to solve the heat equation
with first order accuracy in time and fourth order accuracy in space. This scheme requires
one read and one write and a total of 9 multiplications and 8 additions, giving an operational
intensity of about 0.56FLOP/B in double precision by using fused multiply-add operations.

The major drawback of this explicit method is that the scheme in not unconditionally stable
and for problems with large diffusivity the timestep restriction can be too severe. The von
Neumann stability analysis [Crank et al. 1947] states that this scheme is stable under the
following condition that restricts the timestep:

max
(
νdt

dx2 ,
νdt

dy2

)
≤ 1

2 (2.42)

This explicit numerical scheme can be generalized in any dimension for all partial differential
equations of the form:

∂f

∂t
= L

(
x, t,f ,

∂fk1

∂xk1
, · · · , ∂f

km

∂xkm

)
with m ∈ N and ki ∈ Nn where ∂fk

∂xk
= ∂fk1+···+kn

∂xk1
1 · · · ∂x

kn
n

Equations (2.3), (2.5), (2.6) and (2.7) however do not contain any mixed spatial partial
derivatives and fall into the following family of partial differential equations:

∂f

∂t
= L

(
x, t,f ,

∂f

∂x1
, · · · , ∂f

∂xn
,
∂f2

∂x2
1
, · · · , ∂f

2

∂x2
n

)
(2.43)

with f = [ω1, · · · ,ωp,u1, ...,un, θ]T .
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2.4.3 Performance considerations

Achieving theoretical peak bandwidth or peak performance when dealing width the evaluation
of three-dimensional (and higher dimensions) stencils is not an easy task [Datta et al. 2008].
This comes from the fact that when we estimate the number of operations per bytes we
assume that the device has infinite cache such that each input value can be remembered
after its first read. It is also assumed that data can be read and written at theoretical peak
bandwidth, which may not be the case here because of the non-contiguous memory accesses.
For dense stencils that require O (100) input values per output (fourth order Laplacian stencil
in 3D), the data can simply not fit in cache requiring the implementation of stencil-dependent
caching strategies. For sparse stencils the problem is by definition memory bound and memory
accesses have to be optimized.

As stencil computation is a key part of many other high-performance computing applications,
such as image processing and convolutional neural networks, numerous techniques have been
developed to achieve optimal performance for multi-dimensional stencils:

• Rearrange the n-dimensional data to preserve the locality of the data points by using
space-filling curves like Z-ordering instead of the linear row-major ordering [Nocentino
et al. 2010]. Note that for GPUs, textures already provide space filling curves builtin
for 2D and often 3D arrays [Li et al. 2003][Sugimoto et al. 2014]. This optimization
technique is easiest to implement but do not provide enormous gains for general stencils.

• Manually tune the vectorization, memory accesses and how the data is cached with
respect to the target architecture and the given stencil [Brandvik et al. 2010]. This has
been the main approach for early CUDA and OpenCL implementations [Micikevicius 2009]
[Su et al. 2013].

• As manual tuning requires a lot of work, the next idea was logically to develop frame-
works, that for a given stencil, automatically generate optimized code for a target
language and autotune its runtime parameters [Zhang et al. 2012] [Holewinski et al.
2012] [Cummins et al. 2015].

• Although the first solutions are all software based, there also exist hardware based
solutions. It is for example possible to redesign the memory hardware to be optimized
for stencil computations on FPGAs by using FPGA-compatible OpenCL platforms [Verma
et al. 2016] [Wang et al. 2017][Zohouri et al. 2018].

The approach we will choose in this work is somehow orthogonal to what is usually done for
finite differences based fluid solvers: we will not use any high dimensional stencils at all. In
fact the absence of mixed spatial partial derivatives in equations (2.1c) and (2.1d) allows us
to split all n-dimensional stencils that arrise from the approximation of the spatial derivatives
to be split as efficient 1D stencils. This offers numerous advantages:

• One-dimensional stencil optimizations like vectorization are easy to implement. As they
only require contiguous memory accesses they maximize the cache hits.
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• By implementing only 1D computations, the algorithm becomes dimension-agnostic.
The support of n-dimensional problems is added by simply looping over the dimensions.

• This idea fits nicely into the directional splitting framework already introduced in section
2.1.3.

All the optimization aforementioned only work if the data is contiguous for all axes. This
suppose that between the treatment of each direction, the data is rearranged in memory
such that the next axis to be computed becomes contiguous in memory. This just shifts the
performance bottleneck and the implementation effort on the permutations, that by definition
do not compute anything, and are thus intrinsically memory-bound. However transpositions
and permutations are also required for many other applications such as to compute fast
Fourier transforms [Nukada et al. 2008] (that will be required for the spectral method) and
many cache-aware and cache-oblivious algorithms have been developed for many different
architectures [Ruetsch et al. 2009][Jodra et al. 2015][Lyakh 2015][Springer et al. 2016].

2.5 Directional splitting

In order to obtain only one-dimensional stencils and one dimensional remeshing kernels, the
idea is to split directionally all partial differential equations by breaking them down into n

directional terms:

∂f

∂t
= L

(
x, t,f ,

∂f

∂x1
, · · · , ∂f

∂xn
,
∂f2

∂x2
1
, · · · , ∂f

2

∂x2
n

)

= L1

(
x, t,f ,

∂f

∂x1
,
∂f2

∂x2
1

)
+ · · ·+Ln

(
x, t,f ,

∂f

∂xn
,
∂f2

∂x2
n

)
(2.44)

Once F1, · · · , Fn are known for diffusion, stretching and external forces, we can apply a first
or second order Strang splitting to solve the respective operators (2.1.3).

This section is dedicated to express the directional splitting of all those operators. The
analysis is done in the three-dimensional case where the velocity and the vorticity have three
scalar components each but all the results can easily be extended to any dimension when
applicable.
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2.5.1 Advection

The three-dimensional transport equation (2.18) can be split into three distinct differential
operators, each taking into account the effect of advection in a given direction:

∂θ

∂t
= − (u · ∇)θ︸ ︷︷ ︸

L(u,∂xθ)

= −
(
ux
∂θ

∂x︸ ︷︷ ︸
Lx(ux,∂xθ)

+ uy
∂θ

∂y︸ ︷︷ ︸
Ly(uy ,∂yθ)

+ uz
∂θ

∂z︸ ︷︷ ︸
Lz(uz ,∂zθ)

)
(2.45)

As the advection is treated with a forward remeshed particle method the method is decom-
posed into an advection and a remeshing step. In the current direction i, the directionally
split method just consists into a one-dimensional advection with velocity component ui fol-
lowed by a one-dimensional remeshing procedure as described in [Etancelin 2014]. This is
illustrated on the following figure:

Figure 2.12 – Directional splitting of the advection-remeshing procedure
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2.5.2 Diffusion

This operator appears in equation (2.1c) as a momentum diffusion due to shear stress and in
equation (2.1d) as a scalar diffusion term due to molecular diffusivity:

∂ω

∂t
+ (u · ∇)ω = (ω · ∇)u+ ν∆ω +∇× fext

∂θ

∂t
+ (u · ∇) θ = κ∆θ

To illustrate the directional operator splitting (2.17), let us define f = [ωx, ωy, ωz, θ]T and
D = diag(ν, ν, ν, κ). Merging equations (2.3) and (2.5) leads to ∂tf = L (∂xxf) = D∆f and
we want to express L as a sum of directional operators Lx, Ly and Lz where Li contains only
spatial derivatives with respect to axe i. The expression of Li for each axis can be obtained
by expanding the equation to four independent scalar partial differential equations:

∂f

∂t
= D∆f ⇔



∂ωx
∂t
∂ωy
∂t
∂ωz
∂t
∂θ

∂t


=



ν∆ωx

ν∆ωy

ν∆ωz

κ∆θ


=



ν

(
∂ω2

x

∂x2 + ∂ω2
x

∂y2 + ∂ω2
x

∂z2

)

ν

(
∂ω2

y

∂x2 +
∂ω2

y

∂y2 +
∂ω2

y

∂z2

)

ν

(
∂ω2

z

∂x2 + ∂ω2
z

∂y2 + ∂ω2
z

∂z2

)

κ

(
∂θ2

∂x2 + ∂θ2

∂y2 + ∂θ2

∂z2

)


We are looking to express L

(
∂f2

∂x2 ,
∂f2

∂y2 ,
∂f2

∂z2

)
as Lx

(
∂f2

∂x2

)
+Ly

(
∂f2

∂y2

)
+Lz

(
∂f2

∂z2

)
.

As the right hand side of the equations does not contain any mixed derivative we can split
it into three parts, each of them containing the partial derivatives specific to each axis. Here
the red, green and blue terms represent the splittings for axe x, y and z.

1. x-axis splitting:
∂f

∂t
= Lx

(
∂f2

∂x2

)
= D

∂f2

∂x2 (2.47)

2. y-axis splitting:
∂f

∂t
= Ly

(
∂f2

∂y2

)
= D

∂f2

∂y2 (2.48)

3. z-axis splitting:
∂f

∂t
= Lz

(
∂f2

∂z2

)
= D

∂f2

∂z2 (2.49)

The same procedure can be repeated for any dimension n and for any operator that does not
contain mixed spatial derivatives.
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2.5.3 Stretching

Vortex stretching is the lengthening of vortices in three-dimensional fluid flow, associated with
a corresponding increase of the component of vorticity in the stretching direction, due to the
conservation of angular momentum. Here we want to evaluate explicitly the contribution due
to the stretching term appearing in the conservation of momentum equation (2.1c).

∂ω

∂t
+ (u · ∇)ω = (ω · ∇)u+ ν∆ω +∇× fext

In the following, we will rather use the equivalent notation (∇u)ω = (ω · ∇)u where ∇u is
the (spatial) velocity gradient of u in dimension n:

∂ω

∂t
= (∇u)ω (2.50)

Equation (2.50) can be rewritten equivalently in either its conservative form or non-
conservative form:

1. Conservative formulation: The stretching term can be rewritten in a conservative
fashion by using the incompressibility condition (2.1a) and the definition of the vorticity
(2.1b):

∂ω

∂t
= ∇ · (u⊗ ω) (2.51)

This expression can be obtained by expanding the right hand side as the following
∇ · (u⊗ ω) = u (∇ ·ω) + (∇u)ω and by taking into account the fact that the vorticity
is also divergence free: ∇ ·ω = ∇ · (∇×u) = ∇× (∇ ·u) = 0. From a numerical point
of view, the discretized version of the solver will not lead to the same property. Put in
other words, this means that numerically we may have ∇ · ω 6= 0 during the different
stages of the solver.

2. Non-conservative formulations: We can split the Jacobian matrix of the velocity
field into its symmetric and antisymmetric parts:

∇u = ∇u +∇uT
2 + ∇u −∇u

T

2 = 1
2
(
γ̇ + Ω̇

)
(2.52)

and then express the coefficients of Ω̇ using vorticity components ω = ∇× u:

Ω̇ = ∇u −∇u
T

2 = 1
2



0 ∂ux
∂y
− ∂uy

∂x

∂ux
∂z
− ∂uz

∂x

∂uy
∂x
− ∂ux

∂y
0 ∂uy

∂z
− ∂uz

∂y

∂uz
∂x
− ∂ux

∂z

∂uz
∂y
− ∂uy

∂z
0


= 1

2



0 −ωz +ωy

+ωz 0 −ωx

−ωy +ωx 0


(2.53)
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From the above relation we can deduce that Ω̇ω = 0 from which we obtain directly that
(∇u)ω = (∇uT )ω which gives a new non-conservative stretching formulation:

∂ω

∂t
= (∇u)Tω (2.54)

More generally we can choose a linear combination of those two terms:

∂ω

∂t
=
[
α∇u + (1− α)(∇u)T

]
ω ∀α ∈ R (2.55)

With α = 1
2 , we obtain the following expression for the stretching term:

∂ω

∂t
= ∇u +∇uT

2 ω = γ̇ω (2.56)

Equations (2.51) and (2.55) with α ∈ {0, 0.5, 1} give the classical stretching formulations used
in the literature [Mimeau 2015]. Those formulations are directionally split as the following:

1. Conservative formulation:

∂ω

∂t
= ∇ · (u⊗ ω) ⇔



∂ωx
∂t
∂ωy
∂t
∂ωz
∂t


=



∂uxωx
∂x

+ ∂uxωy
∂y

+ ∂uxωz
∂z

∂uyωx
∂x

+ ∂uyωy
∂y

+ ∂uyωz
∂z

∂uzωx
∂x

+ ∂uzωy
∂y

+ ∂uzωz
∂z


The splitting of the conservative formulation is straightforward once the scalar equations
have been expressed:

(a) x-axis splitting:
∂ω

∂t
= ∂

∂x
[ωxu] (2.57)

(b) y-axis splitting:
∂ω

∂t
= ∂

∂y
[ωyu] (2.58)

(c) z-axis splitting:
∂ω

∂t
= ∂

∂z
[ωzu] (2.59)
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2. Non-conservative formulations:

∂ω

∂t
=
[
α∇u + (1− α)∇uT

]
ω

⇔



∂ωx
∂t
∂ωy
∂t
∂ωz
∂t


= α



∂ux
∂x

∂ux
∂y

∂ux
∂z

∂uy
∂x

∂uy
∂y

∂uy
∂z

∂uz
∂x

∂uz
∂y

∂uz
∂z





ωx

ωy

ωz


+ (1− α)



∂ux
∂x

∂uy
∂x

∂uz
∂x

∂ux
∂y

∂uy
∂y

∂uz
∂y

∂ux
∂z

∂uy
∂z

∂uz
∂z





ωx

ωy

ωz



The directional splitting of the non-conservative formulations is less elegant but is easily
obtained by extracting the directional space derivatives:

(a) x-axis splitting:



∂ωx
∂t
∂ωy
∂t
∂ωz
∂t


=



∂ux
∂x

ωx + (1− α)
[
∂uy
∂x

ωy + ∂uz
∂x

ωz

]
α
∂uy
∂x

ωx

α
∂uz
∂x

ωx


(2.60)

(b) y-axis splitting:



∂ωx
∂t
∂ωy
∂t
∂ωz
∂t


=



α
∂ux
∂y

ωy

∂uy
∂y

ωy + (1− α)
[
∂ux
∂y

ωx + ∂uz
∂y

ωz

]
α
∂uz
∂y

ωy


(2.61)

(c) z-axis splitting:



∂ωx
∂t
∂ωy
∂t
∂ωz
∂t


=



α
∂ux
∂z

ωz

α
∂uy
∂z

ωz

∂uz
∂z

ωz + (1− α)
[
∂ux
∂z

ωx + ∂uy
∂z

ωy

]


(2.62)
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2.5.4 External forces and immersed boundaries

External forces (2.7) are handled by an operator of the form:

∂ω

∂t
= ∇×A ⇔



∂ωx
∂t
∂ωy
∂t
∂ωz
∂t


=



∂Az
∂y
− ∂Ay

∂z

∂Ax
∂z
− ∂Az

∂x
∂Ay
∂x
− ∂Ax

∂y


They can be split as the following:

1. x-axis splitting: 

∂ωx
∂t
∂ωy
∂t
∂ωz
∂t


=



0

−∂Az
∂x

∂Ay
∂x


(2.63)

2. y-axis splitting: 

∂ωx
∂t
∂ωy
∂t
∂ωz
∂t


=



∂Az
∂y

0

−∂Ax
∂y


(2.64)

3. z-axis splitting: 

∂ωx
∂t
∂ωy
∂t
∂ωz
∂t


=



−∂Ay
∂z

∂Ax
∂y

0


(2.65)
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2.6 Fourier spectral methods

Spectral methods are a class of techniques to numerically solve certain differential equations
in which the solution of the differential equation is decomposed in a function space whose
basis are non-zero over the whole domain [Orszag 1969]. Unlike finite differences for which
only local information are used to find a solution, spectral methods use basis functions that
spans over the whole domain. Because spectral methods constitute global approaches, they
offer excellent convergence properties given that the solution is smooth [Gottlieb et al. 1977].

In this section we will first focus on spectral methods arising the decomposition of periodic
functions in Fourier series to numerically solve diffusion and Poisson problems on Cartesian
grids. Spectral diffusion is unconditionally stable. It is an interesting alternative to explicit
finite-differences based solvers when the diffusivity is high. Poisson solvers allow to correct
the vorticity and compute the velocity from the corrected vorticity. This results into fast
numerical solvers by using the fast Fourier transform [Cooley et al. 1965]. The method is then
extended to handle Dirichlet and Neumann homogeneous boundary conditions by changing
the basis of functions while remaining compatible with the use of the fast Fourier transform
(FFT). The difficulties concerning domain decomposition within this spectral framework are
discussed in the next chapter.

2.6.1 Discrete Fourier transform

In spectral methods for differential equations, considering one dimension here for simplicity,
one has a periodic function y : [0, L[→ C with period L that expands as a Fourier series:

y(x) =
∞∑

p=−∞
ŷp e+2iπ px

L

ŷp = 1
L

L∫
0

y(x) e−2iπ px
L dx

(2.66a)

(2.66b)

where i denotes the imaginary unit.

One then wishes to apply a differential operator like dq
dxq for some q ∈ N∗. Differentiation is

performed term-by-term in the Fourier domain:

dyq
dxq (x) =

∞∑
p=−∞

(
2iπpx

L

)q
ŷp e+2iπ px

L (2.67)

which is just a pointwise multiplication of each ŷp by a complex factor depending on p.

To implement this on a computer, one approximates the Fourier series by a discrete Fourier
transform (DFT) and we replace the function y(x) by N discrete samples y = (yj)j∈J0,NJ
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such that yj = y(jdx) with dx = L
N . Within this discrete framework ŷ = (ŷp)p∈J0,NJ is

approximated by the discrete Fourier transform (DFT):

ŷp = 1
N

N−1∑
j=0

yj e−2iπ jp
N (2.68)

and the discrete samples yj are recovered from the discrete Fourier coefficients ŷp by the
associated inverse transform (IDFT):

yj =
N−1∑
p=0

ŷp e+2iπ jp
N (2.69)

An alternative and more compact notation is ŷ = F (y) and y = F−1 (ŷ). With these
notations, it follows that F−1 (F (y)) = y.

Fast Fourier Transform

The nice thing about the discrete Fourier transform expressions is that ŷ can be computed
from y in only O (NlogN) operations by a fast Fourier transform (FFT) algorithm instead
of O

(
N2) operations obtained for a näıve implementation based on its definition. By far

the most commonly used FFT is the Cooley-Tukey algorithm that is a divide and conquer
algorithm that recursively breaks down a DFT of any composite size N = N1N2 into many
smaller DFTs of sizes N1 and N2 [Cooley et al. 1965]. The best known use of this algorithm
is to divide the transform into two pieces of size N/2 at each step (radix-2 decimation),
and is therefore limited to power-of-two sizes N = 2p, but any factorization can be used
in general. This algorithm has led to multiple variants called split-radix FFT algorithm
[Duhamel et al. 1984]. The Cooley-Tukey has the disadvantage that it also requires extra
multiplications by roots of unity called twiddle factors, in addition to the smaller transforms.
The prime-factor algorithm (PFA) or Good-Thomas algorithm is a variant of Cooley-Tukey
when N1 and N2 are coprimes that do not require those extra multiplications [Good 1958].
Transforms of arbitrary sizes, including prime sizes can be computed by the use of Rader
[Rader 1968] or Bluestein [Bluestein 1970] algorithms that work by rewriting the DFT as a
convolution. In the presence of round-off error, many FFT algorithms are much more accurate
than evaluating the DFT definition directly. Considering that ε is the machine floating-point
relative precision, the upper bound on the relative error for the Cooley-Tukey algorithm is
O (ε logN) versus O

(
εN
√
N
)

for the näıve DFT formula [Gentleman et al. 1966]. The root
mean square (RMS) errors are much better than these upper bounds, being only O (ε logN)
for Cooley-Tukey and O

(
ε
√
N
)

for the näıve DFT [Schatzman 1996]. Those algorithms
makes working with Fourier series practical: we can quickly and accurately transform back
and forth between space domain (where multiplying by functions is easy) and Fourier domain
(where operations like derivatives are easy) by using single or double precision floating point
numbers.
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Trigonometric interpolation and derivatives

FFT implementations like FFTW, FFTPACK, MKL-FFT or clFFT compute DFTs and IDFTs
in forms similar to equations (2.68) and (2.69), with the coefficients arranged in order (from
p = 0 to N−1 for the forward transform and from j = 0 to N−1 for the backward transform).
This ordering turns out to make the correct implementation of FFT-based differentiation more
obscure. Let y′ denote the sampling of the q-th derivative of y(x) and ŷ′ its corresponding
discrete Fourier transform. From equation (2.67) one should expect that ŷ′ can be expressed
from ŷ by the following relation: ŷ′p =

(
2iπpx

L

)q
ŷp. However in practice, this is not the case.

In order to compute derivatives, we need to use the IDFT expression to define a continuous
interpolation between the samples yj and then differentiate this trigonometric interpolation.
At first glance, interpolating seems very straightforward: one simply evaluates the IDFT
expression (2.69) at non-integer x ∈ [0, L[:

yN (x) =
N−1∑
p=0

ŷp e+2iπ px
L (2.70)

This indeed defines an interpolation but this is not the only one. The reason there is more
than one interpolation is due to aliasing: Any term of the form ŷp e+2iπ pj

N in the IDFT can
be replaced by ŷp e+2iπ j(p+mN)

N for any integer m and still give the same samples y because
ŷp e+2iπ pj

N = ŷp e+2iπ pj
N e+2iπjm︸ ︷︷ ︸

=1 ∀m∈Z

= ŷp e+2iπ j(p+mN)
N .

Essentially, adding mN to p means that the interpolated function y(x) oscillates m extra
times in between the sample points yj and yj+1. This has no effect on y but has a huge effect
on its derivatives such as y′. The unique minimal-oscillation trigonometric interpolation of
order N is obtained by the following formula [Johnson 2011]:

yN (x) =


ŷ0 +

(N/2−1)∑
p=1

(
ŷp e+2iπ px

L + ŷN−p e−2iπ px
L

)
+ ŷN/2 cos

(
π
Nx

L

)
if N is even

ŷ0 +
(N−1)/2∑
p=1

(
ŷp e+2iπ px

L + ŷN−p e−2iπ px
L

)
if N is odd

(2.71a)

(2.71b)

In this formula, the N/2 (Nyquist) term is absent for odd N .

The treatment of the maximum frequency (Nyquist component) is especially tricky when
computing derivatives on even sized grid that are typically fast to compute FFTs: an odd
mode is left without a conjugate partner as seen in the interpolant (2.71a).

We define the N wavenumbers k = (kp)p∈J0,NJ with kp =


2iπ
L
p if p ≤

⌊
N − 1

2

⌋
2iπ
L

(p−N) if p >
⌊
N − 1

2

⌋ .

Computing ∂yq

∂xq
(x) from spectral interpolation (2.71b) and evaluating it xj ∈ x for an odd
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N gives directly y′p = (kp)qyp. For even N and even derivatives, the result stays the same
because the Nyquist component remains a cosine that evaluates to +1 or −1 at all discrete
samples xj . For even N and odd derivatives however the derivation of (2.71a) contains a
Nyquist component with a sine that evaluates to 0 at all xj such that yN/2 vanishes. In this
case we have to modify the formula to y′p = (1 − δp,N/2)(kp)qyp to impose y′N/2 = 0. Hence
performing a second derivative is not equivalent to performing the spectral first derivative
twice unless N is odd (the discretized spectral differential operators do not inherit all of the
properties of the continuum operators).

To express any derivative, we define vector k′ = (k′p)p∈J0,NJ with k′p = (1− δp,N/2)kp.

gN (xj) =
(

d2qf

dx2q

)
N

(xj) =
N−1∑
p=0

ĝp e+2iπ jp
N with ĝp = (kp)2q︸ ︷︷ ︸

∈R

f̂p

hN (xj) =
(

d2q+1f

dx2q+1

)
N

(xj) =
N−1∑
p=0

ĥp e+2iπ jp
N with ĥp = k′p(kp)2q︸ ︷︷ ︸

∈C

f̂p

(2.72a)

(2.72b)

Smoothness and spectral accuracy

In order to apply the discrete Fourier transform to interpolate a signal, compute derivatives
or solve partial differential equations, the spectral approximation fN (x) from equation (2.71)
should converge rapidly to f(x) as N → ∞. Let f ∈ L2(R) be a L-periodic function.
The convergence rate of the spectral approximation fN is dictated by the regularity of the
periodized function f :

1. If f(x) is analytic, the Fourier series converges exponentially fast:

f ∈ L2(R) ∩ Cω(R) ⇒ ∃α > 0 ‖fN (x)− f(x)‖∞ = O
N→∞

(
e−αN

)
(2.73)

2. If f(x) has p square-integrable continuous derivatives and a (p + 1)-th derivative of
bounded variation, the Fourier series converges at order p:

f ∈ L2(R) ∩ Cp(R)

f (q) ∈ L2(R) ∀q ∈ J1, pK

f (p+1) ∈ BV (R)

⇒ ‖fN (x)− f(x)‖∞ = O
N→∞

( 1
Np+1

)
(2.74)

3. If f is piecewise continuous (discontinuous at some points or simply non-periodic), with
a first derivative of bounded variation, fN is not a good approximation anymore:

 f ∈ L2(R) ∩ C0
I (R) \ C0(R)

f (1) ∈ BV (R)
⇒


‖fN (x)− f(x)‖∞ = O

N→∞
(1)

‖fN (x)− f(x)‖2 = O
N→∞

( 1√
N

) (2.75)
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The three different cases are illustrated on figure 2.13 and 2.14. The inability to recover point
values of a non-periodic (or discontinuous), but otherwise perfectly smooth function from
its Fourier coefficients is known as the Gibbs phenomenon. Away from the discontinuity the
convergence is rather slow (|f(x)−fn(x)| = O (1/N)) and close to the discontinuous locations
xd there is an overshoot that does not diminish with increasing N (|f(xd)−fN (xd)| = O (1)).

Figure 2.13 – Spectral interpolation of 1-periodic functions of varying regularity.
The three functions considered here are all one-periodic square-integrable functions with at
least a first derivative with bounded variations. For all x ∈ [0, 1[ we define f , g and h as f(x) =
cos(2πx)sin(4πx) ∈ Cω(R), g(x) = 1 − 2|0.5 − x| ∈ C0(R) and h(x) = |x| ∈ C0

I (R) \ C0(R).
Those functions have decreasing regularity and match the three convergence cases (2.73),
(2.74) and (2.75). Each leftmost plot represent the function f(x) to be interpolated (blue)
and its spectral DFT interpolant f7(x) obtained by evaluating (2.71) using O (N) operations
per point (orange) with N = 7 samples. The samples xj = j/8 ∈ [0, 1[ used to compute the
DFT are shown as red points and discrete interpolation of size 3N is represented by magenta
crosses. This interpolation is obtained by an IDFT of the N spectral coefficients f̂ padded
with 2N zeros, computed in O (log 3N) operations per point. Rightmost plots represent the
pointwise errors between each function and their interpolant f(x)− f7(x).
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Figure 2.14 – Spectral convergence of 1-periodic functions of varying regularity.
Here the black dotted line represents the machine error y = ε ' 2.22× 10−16, see figure 2.13.

DFT of a real signal

When the DFT takes a purely real signal y : [0, L[→ R as input, it is possible to use a smaller
index set due to the Hermitian symmetry of the output: ŷp =

(
ŷN−p

)∗ where c∗ denotes the
complex conjugate of c. It is possible to take advantage of these circumstances in order to
achieve roughly a factor of two improvement in both speed and memory usage. This real-to-
complex forward discrete Fourier transform that takes N reals as input and outputs

⌊
N
2

⌋
+ 1

complex numbers will be denoted H as opposed to F that performs a complex-to-complex
transform The corresponding forward H and backward H−1 transforms are defined as:

ŷp = 1
N

N−1∑
j=0

yj e−2iπ jp
N ∀p ∈ J0, bN/2c+ 1J

yj = ŷ0 +
bN−1

2 c∑
p=1

(
ŷp e+2iπ jp

N + ŷ∗p e−2iπ jp
N

)
+ 12Z (N) ŷN/2 cos(jπ)︸ ︷︷ ︸

=(−1)j

∀j ∈ J0, NJ

(2.76a)

(2.76b)

where 12Z (N) is one when N is even and zero when N is odd.

Using the Hermitian symmetry of the output and equation (2.71) leads to:

yN (x) = ŷ0 + 2
bN−1

2 c∑
p=1

[
Re (ŷp)cos

(
2πpx

L

)
− Im (ŷp)sin

(
2πpx

L

)]

+12Z (N) ŷN/2 cos
(
π
Nx

L

) (2.77)

In this formula ŷ0 ∈ R represent the mean of the signal and when N is even, ˆyN/2 ∈ R is
also a real coefficient associated to the highest frequency (Nyquist frequency). As a direct
consequence, real-valued samples yj = y(xj) will result in a purely real-valued interpolation
y(x) for all x. Equations (2.72) remain valid to compute even and odd derivatives with
modified versions of k and k′, mainly kp = 2iπ

L
p and k′p = (1− δp,N/2)kp for p ∈ J0, bN/2cK.
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Multi-dimensional discrete Fourier transform

The n-dimensional DFT is achieved by tensor product of one-dimensional DFTs. Let θ(x, t) :
Ω×T → R be a n-dimensional L-periodic (in space) and time-dependent scalar field with L =
(L1, · · · , Ln) and Ω = [0, L1[× · · ·× [0, Ln[. The field is discretized on a Cartesian grid ofN =
N v = N c cells and vertices such that θk =

{
θkj = θ(j � dx, tk) | j ∈ J0,N1J× · · · × J0,NnJ

}
with dx = L�N and N = ∏n

i=1Ni.

The forward n-dimensional discrete Fourier transform applied to θk is defined as:

θ̂kp = 1
N

N1−1∑
j1=0

 e−2iπ p1j1
N1

N2−1∑
j2=0

 e−2iπ p2j2
N2 · · ·

Nn−1∑
jn=0

e−2iπ pnjn
Nn θkj



= 1
N

N1−1∑
j1=0

· · ·
Nn−1∑
jn=0

θkj e−2iπ
∑n

q=1
pqjq
Nq ∀p ∈ J0,N1J× · · · × J0,NnJ

(2.78)

which can be simplified by using the following notation: θ̂k = F
(
θk
)

= F1
(
F2
(
· · · Fn

(
θk
)))

where Fi denotes the forward partial discrete Fourier transform along axis i. Similarly we
define the backward n-dimensional DFT as θk = F−1

(
θ̂k
)

= F−1
n

(
F−1
n−1

(
· · · F−1

1

(
θ̂k
)))

.
Those two transforms can be computed in O (N logN) operations by using successive calls
to any compatible one-dimensional FFT algorithm to compute each transforms Fi or F−1

i .

The q-th spatial derivative of θ is obtained as in the one-dimensional case and for all j ∈
J0,N1J× · · · × J0,NnJ we have:

ζN (xj) =
(
∂qθ

∂xq

)
N

(xj) = ∂q1+···+qnθ

∂xq1
1 · · · ∂x

qn
n

(j � dx)

=
N1−1∑
p1=0

· · ·
Nn−1∑
pn=0

[
n∏
i=1

exp
(

2iπpiji
Ni

)]
ζ̂p1,··· ,pn

with ζ̂p1,··· ,pn =
(

n∏
i=1

[
1− 12Z+1 (qi) δpi,Ni/2

]
(kpi)

qi

)
θ̂p1,··· ,pn

(2.79)

If the partial derivative is not performed on every axis, it is possible to compute only a partial
m-dimensional transform with m < n.

As we will only deal with real scalar fields as inputs, the n-dimensional real-to-complex forward
discrete Fourier transform is defined as the following:

H : RN1×···×Nn−1×Nn → CN1×···×Nn−1×bNn
2 c+1

θk 7→ θ̂k = F1
(
F2
(
· · · Fn−1

(
Hn

(
θk
)))) (2.80)

Its corresponding complex-to-real backward transform is defined as H−1 = H−1
n ◦F−1

n−1 ◦ · · · ◦
F−1

1 . In this case we have H−1
(
H
(
θk
))

= θk where where Hi and H−1
i use the Hermitian

symmetry of the DFT on the last axis (n is the first axis being forward transformed).
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2.6.2 Spectral diffusion

Diffusion problems were already encountered in equation (2.3) and were already solved by
using the finite differences approach in section 2.4.2. Let Ω be a n-dimensional periodic box
of size L discretized on a grid of N c = N v = N point with N = ∏n

i=1Ni. Let θk be the
discretization of θ(x, t) : Ω×T → R with θkj = θ(j�dx, tk) ∀j ∈ J = J0,N1J× · · · × J0,NnJ
with dx = L �N . Here we suppose that θ(t = tk) ∈ L2(R) and θ(t = tk+1) ∈ L2(R) are
at least C2 with first and second order derivatives that are square integrable and with third
order derivatives of bounded variations.

We want to solve the following diffusion equation implicitely in time so that there will be no
restriction on the timestep:

∂θ

∂t
= κ∆θ t ∈ [tk, tk + dt[

θk = θ(tk)

(2.81a)

(2.81b)

where κ is a constant. Implicit discretization in time using an Euler scheme yields:

θ(x, tk+1) = θ(x, tk) + dt κ∆θ(x, tk+1) ∀x ∈ Ω (2.82)

In order to solve this equation, we impose equality (2.82) for the variable discretized on the
grid θkj = θ(tk, xj):

θk+1
j = θkj + dt κ∆θk+1

j ∀j ∈ J (2.83)

The derivatives can then be approximated at order p by a weighted sum of the discretized
variable values:

θk+1
j = θkj + dt κ

∑
i∈J

lj,i θ
k+1
i +O

(
N−p

)
∀j ∈ J

⇔ θk+1 = θk + dt κL θk+1 +O
(
N−p

)
for some L ∈MN (R)

(2.84)

(2.85)

This equation can be rewritten

Aθk+1 = θk +O
(
N−p

)
with A = IN − dt κB ∈MN (R) (2.86)

Using centered finite differences to approximate the derivatives leads to a linear system that
is not easy to solve efficiently for a general n > 1. In this case A is a sparse Toeplitz
matrix [Recktenwald 2004] and it is known that general Toeplitz systems can be solved by
the Levinson algorithm in O

(
N2) operations [Trench 1964] and can be reduced to O

(
N1.5)

by using iterative algorithms such as successive over-relaxation [Liu 2002]. The order in space
of this method in space will depend on the order of the stencil choosed to approximate the
second derivatives and the sparsity of A decreases with increasing order. When n = 1, the
complexity drops to O (N) for slightly modified tridiagonal Toeplitz systems by using the
Scherman-Morison formula to recover a trigiagonal Toeplitz system along with the Thomas
algorithm [Stone 1973].
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We can also rewrite equation (2.82) by using the spectral interpolation of θ(x), denoted θN (x)
at time tk and tk+1 = tk + dt in order to obtain a solution in only O (N logN) operations by
using two FFTs along with O (N) posprocessing:

θN (x, tk+1) = θN (x, tk) + dt κ∆θk+1
N (x) ∀x ∈ Ω (2.87)

As before, in order to solve this equation, we impose equation (2.87) on the N spatial dis-
cretization points xj = i� dx:

θk+1
N (xj) = θkN (xj) + dt κ∆θk+1

N (xj) ∀j ∈ J (2.88)

Let θ̂k represent the n-dimensional complex-to-complex DFT of θk and θ̂k+1 be the one of
θk+1. We can rewrite equation 2.88 by identifying the coefficients in the spectral basis:

θ̂k+1
p = θ̂kp + dt κ∆θ̂k+1

p ∀p ∈ J

= θ̂kp + dt κ

(
n∑
i=1

k2
pi

)
θ̂k+1
p ∀p ∈ J

(2.89)

(2.90)

which can be rewritten [
1− dt κ

(
n∑
i=1

k2
pi

)]
θ̂k+1
p = θ̂kp ∀p ∈ J

⇔ A θ̂k+1 = θ̂k with A = IN − dt κdiag (kp · kp)p∈J
and kp = [kp1 , · · · , kpn ]T

(2.91)

(2.92)

Hence in the frequency space the matrix A ∈MN (R) becomes diagonal due to the properties
of the Fourier transform with respect to the derivatives (2.72). This system can be solved
in O (N) operations. Here θ̂k is obtained by DFT in O (N logN) operations and θk+1 can
be recovered by IDFT in O (N logN) operations. The order of convergence of the method is
O (N−p) with p ≥ 2 depending n the smoothness of θk+1(x).

Spectral convergence is achieved only for smooth θ:

• Polynomial convergence is achieved for θ ∈ C∞ given its derivatives are all square-
integrable. In this case the error is of order O (N−p) for all p ∈ N.

• Exponential convergence is achieved for θ ∈ Cω, the additional condition being that
there exists some constant C ∈ R such that the all its spatial derivatives θ(k) are
bounded by Ck1+k2+···+kn k1!k2! · · · kn! (see [Komatsu 1960]).

In practice those two cases are indistinguishable at the discrete level. Although the diffusive
process may help to enhance the local regularity away from the boundaries, this method
does not work well for non-periodic boundary conditions because there is no hope of uniform
convergence for discountinuous θ. The specific handling of general non-periodic boundaries
is described in the last section of this chapter.
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The algorithm to compute θk+1 from θk is straightforward:

input : dt, θk = θ(tk)
output: θk+1 = θ(tk + dt), solution of problem (2.81)
θ̂k ← F

(
θk
)

for p ∈ J do

θ̂k+1
p ←

θ̂kp
1− dt κ (kp · kp)

end
θk+1 ←= F−1

(
θ̂k+1

)
Algorithm 7: Spectral resolution of a periodic Poisson problem

2.6.3 Vorticity correction and computation of velocity

Let ω∗ be the state of the discretized vorticity after convection, diffusion, stretching and ex-
ternal forcing corresponding to ωk,4 in algorithm 1 or ωk+ 1

2 ,4n in algorithm 4. The correction
step consists into correcting ω∗ to ωk+1 such that ωk+1 = ∇×uk+1 where uk+1 is divergence
free. Once the vorticity has been projected, the divergence-free velocity can be recomputed
from vorticity by solving Poisson equation (2.8) spectrally as in the last subsection. To derive
required equations, it is convenient to work with the Helmholtz decomposition of the velocity
uk+1 and the vorticity ω∗:

uk+1 = ∇×ψ +∇φ
ωk+1 = ω∗ +∇e

(2.93)
(2.94)

In addition we are free to impose ∇ ·ψ = 0 and we want the velocity to stay divergence free
at time tk+1:

∇ · uk+1 = 0
ωk+1 = ∇× uk+1

(2.95)
(2.96)

Equations (2.93), (2.94), (2.95) and (2.96) lead to:

∇ · ωk+1 = ∇ · (∇× uk+1) = ∇× (∇ · uk+1︸ ︷︷ ︸
=0

) = 0

∇ · uk+1 = ∇ · (∇×ψ +∇φ) = 0
⇒ ∆φ = 0

∇ · ωk+1 = ∇ · (ω∗ +∇e) = 0
⇒ ∆e = −∇ · ω∗

(2.97)

(2.98)

(2.99)

The Poisson problem relating to the correction of the vorticity is obtained by applying the
Laplace operator to equation (2.94) along with equation (2.99):

∆ωk+1 = ∆ (ω∗ +∇e) = ∆ω∗ +∇∆e = ∆ω∗ −∇(∇ · ω∗) (2.100)
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Finally, the equation relating to ψ is obtained by taking the curl of equation (2.93) along
with equation (2.96):

ωk+1 = ∇× uk+1 = ∇×∇×ψ +∇φ = ∇×∇×ψ = −∆ψ +∇ (∇ ·ψ︸ ︷︷ ︸
=0

) = −∆ψ (2.101)

The general algorithm to compute ωk+1 and uk+1 from ω∗ is thus the following:

1. Correct ω∗ such that ωk+1 is divergence-free using a Poisson solver:

∆ωk+1 = ∆ω∗ −∇(∇ · ω∗) (2.102)

2. Compute uk+1
0 using a Poisson solver:

∆ψ = −ωk+1

∇ ·ψ = 0
uk+1

0 = ∇×ψ

(2.103)
(2.104)
(2.105)

3. Compute uk+1
1 using a Poisson solver:

∆φ = 0
uk+1

1 = ∇φ
(2.106)
(2.107)

4. Compute uk+1 using the two computed velocities:

uk+1 = uk+1
0 + uk+1

1 (2.108)

On a fully periodic domain Ω, the only solution to u1 is 0 so step 3 and 4 can be skipped,
and step 2 is simplified because we do not have to impose ∇ · ψ = 0 on the domain bound-
aries while solving for ψ. Other boundary conditions are taken in account in next sub-
section. In 2D, ∇ · ω∗ is 0 because ω∗ = [0, 0, ω∗z(x, y)]T , so there is no correction to do,
and step 1 can also be skipped. Basically this leads to the same algorithm as for the dif-
fusion in the previous subsection, followed by the computation of a curl as exposed in al-
gorithm 8. This algorithm requires one DFT and two IDFTs such that the total cost of
the method is proportional to 3N logN with N = N1N2. The 3D case shown in algorithm
9 is a bit more computationally intensive because the vorticity has to be corrected, lead-
ing to 3 DFTs and 6 IDFTS for a total cost proportional to 9N logN with N = N1N2N3.
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input : ω∗, (uk+1
x , uk+1

y ), vorticity and spatial mean of the velocity components
output: ωk+1, (uk+1

x , uk+1
y ), divergence free vorticity and velocity

ωk+1 = ω∗

ω̂k+1 ← F
(
ωk+1

)
for p = (px, py) ∈ J0,NxJ×J0,NyJ do

if p = (0, 0) then(
ûk+1
x,0 , û

k+1
y,0

)
←
(
uk+1
x , uk+1

y

)
else

ψ̂p ←
ω̂k+1
p

k2
px

+ k2
py(

ûk+1
x,p , û

k+1
y,p

)
←
(
−kpy ψ̂p,+kpxψ̂p

)
end

end(
uk+1
x , uk+1

y

)
←
(
F−1

(
ûk+1
x

)
,F−1

(
ûk+1
y

))
Algorithm 8: Algorithm to compute divergence-free vorticity and velocity on a 2D
fully periodic domain discretized on N = (Ny,Nx) points where Nx and Ny are odd.

input : (ω∗x, ω∗y , ω∗z), (uk+1
x , uk+1

y , uk+1
z ), vorticity and spatial mean of the velocity

output: (ωk+1
x , ωk+1

y , ωk+1
z ), (uk+1

x , uk+1
y , uk+1

z ), divergence free vorticity and velocity
(ω̂∗x, ω̂∗y , ω̂∗z)←

(
F (ω∗x) ,F

(
ω∗y

)
,F (ω∗z)

)
for p = (px, py, pz) ∈ J0,NxJ×J0,NyJ×J0,NzJ do

if p = (0, 0, 0) then(
ω̂k+1
x,0 , ω̂

k+1
y,0 , ω̂k+1

z,0

)
←
(
ω̂∗x,0, ω̂

∗
y,0, ω̂

∗
z,0

)
(
ûk+1
x,0 , û

k+1
y,0 , û

k+1
z,0

)
←
(
uk+1
x , uk+1

y , uk+1
z

)
else(

ω̂k+1
x,p , ω̂

k+1
y,p , ω̂

k+1
y,p

)
←
(
ω̂∗x,p, ω̂

∗
y,p, ω̂

∗
z,p

)
− kp

[
kpxω̂

∗
x,p + kpy ω̂

∗
y,p + kpz ω̂

∗
z,p

k2
px

+ k2
py

+ k2
pz

]
(
ψ̂x,p, ψ̂y,p, ψ̂z,p

)
←

 ω̂k+1
x,p

k2
px

+ k2
py

+ k2
pz

,
ω̂k+1
y,p

k2
px

+ k2
py

+ k2
pz

,
ω̂k+1
z,p

k2
px

+ k2
py

+ k2
pz


(
ûk+1
x,p , û

k+1
y,p , û

k+1
z,p

)
←
(
kpz ψ̂y,p − kpy ψ̂z,p, kpxψ̂z,p − kpz ψ̂x,p, kpy ψ̂x,p − kpxψ̂y,p

)
end

end(
uk+1
x , uk+1

y , uk+1
z

)
←
(
F−1

(
ûk+1
x

)
,F−1

(
ûk+1
y

)
,F−1

(
ûk+1
z

))
(
ωk+1
x , ωk+1

y , ωk+1
z

)
←
(
F−1

(
ω̂k+1
x

)
,F−1

(
ω̂k+1
y

)
,F−1

(
ω̂k+1
z

))
Algorithm 9: Algorithm to compute divergence-free vorticity and velocity on a 3D
fully periodic domain discretized on N = (Nz,Ny,Nx) points with N∗ ∈ 2N + 1.
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2.6.4 Real to real transforms and homogeneous boundary conditions

It is possible to extend the validity of algorithms 7, 8 and 9 to homogeneous Dirichlet and
homogeneous Neumann boundary conditions by periodizing the signal by introducing left and
right even or odd extensions [Martucci 1994]. In order for this to work, the discrete Fourier
transform (DFT) has to be replaced by either a discrete sine transform (DST) or a discrete
cosine transform (DCT) corresponding to the required boundary condition. The distinction
between a DST or a DCT and a DFT is that the former use only sine or cosine functions,
while the latter uses both cosines and sines with the frequencies halved. Given N discrete
equispaced samples fj = f(xj) of a non-periodic function f : [0, L] → R, the signal can be
periodized in various ways, each of them imposing a particular boundary condition. Each
boundary can be either even or odd (2 choices per boundary) and can be symmetric about
a data point or the point halfway between two data points (also 2 choices per boundary).
This gives a total of 16 transforms, half of these possibilities where the left extension is even
corresponding to the 8 types of DCTs and the other half where the left extension is odd to
the 8 types of DSTs. In practice, boundary conditions are imposed on collocated or staggered
grids so only 4 types of DCTs and DSTs are of interest in order to solve PDEs.

The four transforms for which the homogeneous boundary conditions can be prescribed at
the grid points (collocated grid) are given bellow:

Left-right B.C. Extensions Transform Unnormalized discrete transform

Dirichlet-Dirichlet odd-odd DST-I f̂p =
N−1∑
j=0

2fj sin
(

π

N + 1(p+ 1)(j + 1)
)

Dirichlet-Neumann odd-even DST-III f̂p =
N−1∑
j=0

(2− δj,N−1)fj sin
(
π

N
(p+ 1

2)(j + 1)
)

Neumann-Dirichlet even-odd DCT-III f̂p =
N−1∑
j=0

(2− δj,0)fj cos
(
π

N
(p+ 1

2)(j)
)

Neumann-Neumann even-even DCT-I f̂p =
N−1∑
j=0

(2− δj,0 − δj,N−1)fj cos
(

π

N − 1(p)(j)
)

The four other transforms correspond to boundaries prescribed in between two grid points:

Left-right B.C. Extensions Transform Unnormalized discrete transform

Dirichlet-Dirichlet odd-odd DST-II f̂p = 2
N−1∑
j=0

fj sin
(
π

N
(p+ 1)(j + 1

2)
)

Dirichlet-Neumann odd-even DST-IV f̂p = 2
N−1∑
j=0

fj sin
(
π

N
(p+ 1

2)(j + 1
2)
)

Neumann-Dirichlet even-odd DCT-IV f̂p = 2
N−1∑
j=0

fj cos
(
π

N
(p+ 1

2)(j + 1
2)
)

Neumann-Neumann even-even DCT-II f̂p = 2
N−1∑
j=0

fj cos
(
π

N
(p)(j + 1

2)
)
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Choosing one of those transforms impose the left and right boundary conditions of the spectral
interpolant fN for a given function f . In other words, f is projected into a basis that verify
the chosen boundary conditions. The eight different cases are shown on the following figure:

Figure 2.15 – Spectral interpolation by using the eight real-to-real transforms
Interpolation of f(x) = 1 − 2|x − 0.5| on interval [0, 1] by using eight different sine and co-
sine transforms each corresponding to specific homogeneous boundary conditions. Red dots
represent the five samples fj = f(xj) used to compute the forward transform and blue dots
represent implicit zeros due to the homogeneous Dirichlet boundary conditions (those points
are thus not used in the forward and backward transforms). All leftmost plots represent the
four collocated boundary configurations while the rightmost plots represent the four staggered
boundary configurations. The function f is represented in blue and its interpolant fN ob-
tained by evaluating (2.109) (orange). The magenta crosses are obtained efficiently with the
corresponding backward transforms of roughly three times the size of the forward transform.
The effective size of the forward and backward transforms is not the same in all cases (3,4,4,5)
top-to-bottom for the collocated cases and (5,5,5,5) for the staggered cases.



112 Chapter 2. Numerical method

Upper part of figure 2.15 shows the even and odd extensions for the transforms of interest
where the boundary conditions are imposed on the grid. Other transforms are however
required to compute the corresponding inverse transforms. Let (φp)p∈J0,N−1K be the basis of
sines or cosines of the considered transform, the spectral interpolant of f(x) is given by:

f(x) ' fN (x) =
N−1∑
p=0

f̂pφp(x) (2.109)

The reconstruction basis are summarized in the following table:

Transform Inverse Odd inv. s kp Basis functions φp(x)
DST-I DST-I DCT-I 0 π(p+ 1)/L 2 sin (kp x)
DST-II DST-III DCT-III 0 π(p+ 1)/L (2− δp,N−1) sin (kp x)
DST-III DST-II DCT-II 0 π (p+ 1

2)/L 2 sin (kp x)
DST-IV DST-IV DCT-IV 0 π (p+ 1

2)/L 2 sin (kp x)
DCT-I DCT-I DST-I 1 π p/L (2− δp,0 − δp,N−1) cos (kp x)
DCT-II DCT-III DST-III 1 π p/L (2− δp,0) cos (kp x)
DCT-III DCT-II DST-II 1 π (p+ 1

2)/L 2 cos (kp x)
DCT-IV DCT-IV DST-IV 1 π (p+ 1

2)/L 2 cos (kp x)

This brings to six the total number of required transforms to handle all homogeneous boundary
conditions on a collocated grid (DCT-I, DCT-II, DCT-III, DST-I, DST-II and DST-III). All
those transforms will be referred to as real-to-real transforms as opposed to the DFT and the
IDFT which are complex-to-complex, real-to-complex or complex-to-real transforms.

The computation of even derivatives is done similarly to the DFT, by multiplying the Fourier
coefficients f̂ by some constant wavenumbers k that depends on p and by applying the
corresponding inverse transform. For odd derivatives, things get a little more complicated
because of the change of basis: sines become cosines, and cosines become sines. Thus the
inverse transform to compute odd derivatives is not the same as the inverse transform used
to compute even derivatives (the standard backward transform). This specific odd derivative
transform will be referred to as the odd inverse transform. All inverse and odd inverse
transforms are summarized in the previous table. As for the DFT, all the inverse transforms
have to be scaled according to some implementation dependent normalization factor that
depends on the transform size N . The size of the transform may be less than the grid size
N because of implicit zeros enforced by the homogeneous Dirichlet boundary conditions as it
can be seen on figure 2.15.

f (q)(x) ' f (q)
N (x) =

N−1∑
p=0

f̂pφ
(q)
p (x)

=
N ′−1∑
p=0

f̂ ′pϕp(x)
(2.110)
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For even derivatives φp = ϕp and N = N ′ but for odd derivatives φp and N may be different
than ϕp and N ′. The odd collocated case can be especially tricky to handle depending on the
considered transforms, because of the change of the basis and the number of coefficients.

L

Figure 2.16 – Zoom on the symmetries exhibited by the different transforms.
In each case, we look at a DCT or DST of N v = 10 input samples for the collocated case
and N c = 9 for the staggered case (shown as red and purple dots). Purple dots corresponds
to implicit zeros enforced by the sine or cosine basis φp. The size of the transform N is the
number of samples minus the number of collocated Dirichlet boundary conditions. The data
extension, shown as gray dots, is the result of applying left and right even or odd extensions
enforcing the left and right homogeneous boundary conditions. Image adapted from DCT-
symmetries and DST-symmetries from Steven G. Johnson, licensed under CC BY-SA 3.0.

Here because there is no periodicity, P = 0 and the grid size corresponds to the number
of grid vertices N = N v = N c + 1, but the presence of homogeneous Dirichlet boundary
conditions may alter the size N of the corresponding transform in the collocated case:

1. Collocated grid: boundaries are prescribed on the grid vertices. In this case we have
dx = L/(N − 1) and xj = j dx with j ∈ J ⊂ J0,N − 1K:

(a) Dirichlet-Dirichlet: j ∈ J1,N − 2K, the forward DST-I transform is of size N =
N − 2 with dx = L/(N + 1) because of implicit x0 = xN−1 = 0.

(b) Dirichlet-Neumann: j ∈ J1,N − 1K, the forward DST-III transform is of size
N = N − 1 with dx = L/N because of implicit x0 = 0.

(c) Neumann-Dirichlet: j ∈ J0,N − 2K, the forward DCT-III transform is of size
N = N − 1 with dx = L/N because of implicit xN−1 = 0.

(d) Neumann-Neumann: j ∈ J0,N − 1K, the forward DCT-I transform is of size
N = N with dx = L/(N − 1).

https://commons.wikimedia.org/wiki/File:DCT-symmetries.svg
https://commons.wikimedia.org/wiki/File:DCT-symmetries.svg
https://commons.wikimedia.org/wiki/File:DST-symmetries.svg
http://math.mit.edu/~stevenj/
https://creativecommons.org/licenses/by-sa/3.0
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2. Staggered grid: Here the boundary conditions are imposed in between two grid points
so the transforms are all of size N = N c = N v − 1 = N − 1. For all the cases we have
dx = L/N = L/(N − 1) and xj = (j + 1

2) dx with j ∈ J0,N − 2K.

Computation of derivatives

Let q ∈ 2N, the computation of the even q-th derivative in the frequency space is done as in the
Fourier space by elementwise multiplication of f̂ by the real wavenumbers k = (kp)p∈J0,N−1K
corresponding to the transform: k′ = (−1)b(s+q)/2ckq. Here kq = k � k � · · · � k is defined
as the elementwise q-th power of k and s and k are forward transform dependent quantities
that are summarized in the table under equation (2.109). The values of the derivatives are
obtained at the same points than for the forward transform.

For odd derivatives, q ∈ 2N+ 1, the left and right boundaries are swapped due to the change
of basis and this may change the size of the transform in the collocated Dirichlet-Dirichlet
and Neumann-Neumann cases. Here we describe the algorithm to compute odd derivatives
for all collocated cases: Let dl and dr represent the setup of left and right boundaries (dl = 1
when there is a left homogeneous boundary and 0 otherwise, and similarly for the right
boundary condition). For a collocated boundary setup, the size of the forward transform is
N = N − dl − dr and the size of the odd derivative backward transform is N ′ = N − (1 −
dl)− (1− dr) = N − d′l − d′r. The location x′j of the N ′ resulting samples f (q)(x′j) correspond
to the ones associated to the odd derivative forward transform:

dx = L/(N − 1)
xj = j dx ∀j ∈ Jdl,N − drJ
x′j = j dx ∀j ∈ Jd′l,N − d′rJ

k′p = (−1)b(s+q)/2ckqp ∀p ∈ J0, NJ

f̂ ′p =


0 if p = dldr − 1
0 if p = N ′ − dldr
k′p+d′

l
d′r
f̂ ′p+d′

l
d′r

else
∀p ∈ J0, N ′J

(2.111a)
(2.111b)
(2.111c)
(2.111d)

(2.111e)

Convergence of the method

The real-to-real transforms are subject to the same convergence properties as the DFT when
considering the discrete signal obtained by applying left and right extensions. For the DFT
we saw that implicit periodicity of the transform meant that discontinuities usually occur at
the boundaries because any random segment of a signal is unlikely to have the same value
at both the left and right boundaries. A similar problem arises for all real-to-real transforms
that happens to impose en odd symmetry (an homogeneous Dirichlet boundary condition).
For those six transforms there is a discontinuity for any function that does not happen to
be zero at Dirichlet boundaries. When there is such a discontinuity, there is no expected
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uniform convergence of the interpolant (‖f − fN‖∞ = O (1)) so we cannot use this method
for interpolation. Because of the integrations we may however expect to uniformly converge
with second order to the solution of a Poisson equation (algorithm 7) and with first order
to the solution of a Poisson-curl problem (algorithm 8 and 9). In practice we will only use
those last two algorithms when the vorticity is zero at the Dirichlet boundaries such that the
order only depend on the smoothness of the vorticity. In contrast, the Neumann-Neumann
cases where both extensions are even always yields a continuous extension at the boundaries
and we recover exponential convergence with any smooth input. This is why DCT-I and
DCT-II generally perform better for interpolation and signal compression than other real-to-
real transforms.

Multi-dimensional transforms

Let F = F1 ◦ F2 ◦ · · · ◦ Fn denote a n-dimensional real-to-real or real-to-complex
forward transform with associated real-to-real or complex-to-real backward transform
F−1 = F−1

n ◦ · · · ◦ F−1
1 . Let SX and CX with X ∈ {I, II, III} denote the six re-

quired sine and cosine transforms and S−1
X and C−1

X their corresponding inverse trans-
forms. We recall that the complex-to-complex DFT is denoted F and the real-to-complex
DFT with Hermitian symmetry is denoted H. With these notations we have Fi ∈
{F ,H,SI ,SII ,SIII , CI , CII , CIII , } and F−1

i ∈
{
F−1,H−1,S−1

I ,S−1
II ,S

−1
III , C

−1
I , C−1

II , C
−1
III ,

}
providing reconstruction basis (φi,p)p∈J0,MiJ whereM represent the size of the transform. In
practice the axes of the problem are reordered for performance reasons and the permutation is
such that all the real-to-real transforms come first (non-periodic axes), followed an Hermitian
real-to-complex DFT for the first periodic axis, and complex-to-complex DFTs for all the sub-
sequent periodic axes. The first transform being done on axis x (the last one, contiguous in
memory), such a configuration yields a periodicity mask of the form P = (1, · · · , 1, 0, · · · , 0).
We recall that the number of grid vertices (the grid size) is defined by N v = N c + 1 − P
where N c represent the number of grid cells and that dx = L � N c. This defines nodes
xj = xstart + j � dx ∀j ∈ J = J0,N v

1 J× · · · × J0,N v
n J.

Let dl = (di,l)i∈J1,nK and dr = (di,r)i∈J1,nK such that di,l (respectively di,r) denote whether
problem imposes a left (respectively a right) homogeneous boundary condition on the i-th
axis. The size of the forward transform isM =N−dl−dr because of the implicit hyperplanes
containing only zero-valued nodes due the homogeneous Dirichlet boundary conditions. Let
f = (f(xj))j∈K with K = Jd1,l,N1 − d1,rJ× · · · × Jdn,l,Nn − dn,rJ be the M = ∏n

i=1Mi

samples such that f̂ = F (f) = (f̂p)p∈K. The spectral interpolant fM is defined similarly to
the multi-dimensional DFT as:

f(x) ' fM (x− xstart) =
M1−1∑
p1=0

· · ·
Mn−1∑
pn=0

[
n∏
i=1

φi,pi (x)
]
f̂p1,··· ,pn (2.112)

Each forward directional transform Fi has associated diagonal derivative matrices of any given
order q ∈ N such that in general D(q)

i is not square and has shape (M′i,Mi), D(q)
i 6=

(
D

(1)
i

)q
defined by (2.72) and (2.111). For all the transforms, those matrices depend on the parity
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of q, the simplest case being that for an even DFT derivative D(q)
i = diag(k0, · · · , kNi−1)q ∈

MNi(C) where the ki are the associated complex wavenumbers. Let (F ′)−1 denote the inverse
transform required to compute the q-th derivative. (F ′)−1 may be different than F−1 due to
the change of basis entailed by odd derivatives on non-periodic axes. This also modifies the
points x′j where the derivative samples are recovered and we define d′l = 1− dl, d′r = 1− dr,
M′ =N − d′l − d′r, M ′ =

∏n
i=1Mi and K′ = Jd′1,l,N1 − d′1,rJ× · · · × Jd′n,l,Nn − d′n,rJ.

With those notations we have:

f = f (xj) j ∈ K

f ′ ' ∂q1+···+qnf

∂xq1
1 · · · ∂x

qn
n

(xj) j ∈ K′

f̂ = F (f)
f̂ ′ = K f̂

f ′ = (F ′)−1(f̂ ′)

K = D
(q1)
1 ⊗D(q2)

2 ⊗ · · · ⊗D(qn)
n ∈MM ′,M (K) with K ∈ {R,C}

(2.113a)

(2.113b)

(2.113c)
(2.113d)
(2.113e)

(2.113f)

In practice the matrices D(qi)
i and K are never built and we proceed by iterating on the

spectral coefficients as in the pure periodic case. From now on for simplicity we consider only
the case M = M ′ where D(q)

i = diag(d(q)
i,0 , · · · , d

(q)
i,Mi−1) is always a square diagonal matrix.

Modification of the algorithms to handle homogeneous boundary conditions

Spectral diffusion algorithm 7 only use second derivatives and requires minimal modification
to handle all real-to-real transforms:

input : dt, θk = θ(tk)
output: θk+1 = θ(tk + dt), solution of problem (2.81)
θ̂k ← F

(
θk
)

for p ∈ K do

θ̂k+1
p ←

θ̂kp

1− dt κ
n∑
i=1

d
(2)
i,pi

end
θk+1 ←= F−1

(
θ̂k+1

)
Algorithm 10: Spectral diffusion with mixed periodic and homogeneous Dirich-
let/Neumann boundaries

Algorithm 8 and 9 that solve the Poisson-curl problem have to be modified such that the
mean velocity can only be imposed for fully periodic problems, fully homogeneous Neumann
boundaries problems or a mix of the two (which is coherent with the fact those are the only
transforms for which d

(q)
0 = 0). Moreover, the presence of odd derivatives may introduce

zero-padding and offsets as seen in (2.111) on every axes.
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For clarity those extra offsets have not been included in the following modified algorithm:

input : ω∗, (uk+1
x , uk+1

y ), vorticity and weighted mean of the velocity components
output: ωk+1, (uk+1

x , uk+1
y ), divergence free vorticity and velocity

ωk+1 = ω∗

ω̂k+1 ← F
(
ωk+1

)
for p ∈ K do

if p1 = p2 = 0and d(2)
1,0 + d

(2)
2,0 = 0 then(

ûk+1
x,0 , û

k+1
y,0

)
←
(
uk+1
x , uk+1

y

)
//Only happens for periodic/Neumann BCs

else

ψ̂p ←
ω̂k+1
p

d
(2)
1,p1 + d

(2)
2,p2(

ûk+1
x,p , û

k+1
y,p

)
←
(
−d(1)

1,p1ψ̂p,+d
(1)
2,p2ψ̂p

)
end

end(
uk+1
x , uk+1

y

)
←
(

(F ′∂y
)−1

(
ûk+1
x

)
, (F ′∂x

)−1
(
ûk+1
y

))
Algorithm 11: Algorithm to compute divergence-free vorticity and velocity on a 2D
domain with a mix of periodic and homogeneous boundary conditions.
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2.7 Extension to general non-periodic boundary conditions
In order to solve spectrally Poisson problems with general boundary conditions, the spectral
basis has once again to be changed. We already saw that because of the Gibbs phenomenon,
non-periodic signals cannot be reconstructed accurately by IDFT, the error being of the order
of the jump discontinuity (2.75). The same goes for real-to-real transforms enforcing Dirichlet
boundary conditions where the signal does not happen to be zero on the said boundaries. In
those problematic cases, increasing the number of samples N does not improve accuracy
because ‖f − fN‖∞ = O (1) as shown on figure 2.14 for L∞ convergence results.

In this subsection we propose to solve the following one-dimensional problem where
L (φ, ∂xφ, ∂x2φ, · · · ) is a linear operator with left and right boundary conditions specified:

L φ = f on [0, L]

αl φ(0) + βl
∂φ

∂x
(0) = γl

αr φ(L) + βr
∂φ

∂x
(L) = γr

(αl, αr) 6= (0, 0)

(2.114a)

(2.114b)

(2.114c)

(2.114d)

Boundary condition α β γ

Homogeneous Dirichlet 1 0 0
Homogeneous Neumann 0 1 0
Dirichlet 1 0 γ

Neumann 0 1 γ

Robin α β γ

2.7.1 General spectral methods

As already seen for the periodic case, the idea behind a spectral method is to approximate a
solution f(x) by a finite sum:

fN (x) =
N∑
p=0

f̂pφp(x)

f̂p =
b∫
a

h(x)f(x)φp(x)dx

(2.115a)

(2.115b)

where {φp}p∈J0,NK is a set of orthogonal basis functions with respect to some weighting function
h(x) and where f represent a square integrable function with respect to h, noted as f ∈ L2

h.
Successful expansion basis meets the following requirements:

1. Convergence: The approximation fN (x) should converge uniformly to f(x) as N→∞.

2. Differentiation: Given coefficients f̂ , it should be easy to determine the set of coeffi-
cients f̂ ′ representing some derivative:

f
(q)
N (x) =

N∑
p=0

f̂pφ
(q)
p (x) '

N∑
p=0

f̂ ′pφp(x) (2.116)

3. Transformation: The computation of expansion coefficients f̂ from function values
uj = u(xj) for j ∈ J0, NK should be algorithmically efficient.
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Spectral accuracy for non-periodic functions is generally achieved trough the use of Fourier
series in orthogonal polynomials on some interval (a, b). All of the classical orthogonal poly-
nomials [Gautschi 2004] can be reduced to one of the following four types:

Polynomial Symbol Weight h(x) Interval [a,b] Domain
Trigonometric Pp(x) 1 [0, 2π[ periodic

Jacobi Pα,βp (x) (1− x)α(1 + x)β [−1,+1] bounded
Laguerre Lαp (x) xαe−x [0,+∞[ semi-bounded
Hermite Hp(x) e−x2 ]−∞,+∞[ unbounded

As we only need to solve PDEs on bounded domains [0,L] the natural choice is to use Jacobi
polynomials and their derivatives when the domain is not periodic.

Jacobi polynomials

Jacobi polynomials [Jacobi 1859] are useful to handle non-periodic functions on bounded
domains Ω = [0, L] with a simple change of variable to [−1, 1]. The class of orthonormal
Jacobi polynomials are defined for α > −1 and β > −1 by the following formula:

Pα,βp (x) =
√
ωα,βp

(−1)p
p!2p (1− x)−α(1 + x)−β dp

dxp
[
(1− x)α(1 + x)β(1− x2)p

]
ωα,βp = p! (α+ β + 2p+ 1) Γ (α+ β + p+ 1)

2α+β+1Γ (α+ p+ 1) Γ (β + p+ 1)

(2.117a)

(2.117b)

Special cases of the Jacobi polynomials are the ultraspherical polynomials Cλp (x) (or Gegen-
bauer polynomials) obtained with α = β = λ− 1

2 . Special cases of ultraspherical polynomials
include Legendre polynomials Lp(x) with α = β = 0, Chebyshev polynomials of the first
kind Tp(x) with α = β = −1

2 and Chebyshev polynomials of the second kind Up(x) with
α = β = +1

2 . Like for the periodic case, the Fourier-Jacobi series of a function f is uniformly
convergent on [−1, 1] under regularity constraints and the convergence rate that depends on
the smoothness of f but also the distribution of samples used to approximates the series
coefficients.

As trigonometric interpolation in equispaced points suffers from the Gibbs phenomenon where
‖f − fN‖∞ = O (1), polynomial interpolation in equispaced points suffers from the Runge
phenomenon where ‖f − fN‖∞ = O

(
2N
)
, which is much worse [Grandclement 2006]. A par-

ticularly interesting non-uniform distribution of points xj to limit the Runge phenomenon are
the zeros of some Chebyshev and Legendre polynomials, also called Gauss-Lobatto-Chebyshev
(GLC) and Gauss-Lobatto-Legendre points (GLL), respectively. Those nodes gives a polyno-
mial interpolant that is not to far from the optimal polynomial of order N , denoted foptN :∥∥∥f − foptN

∥∥∥
∞
≤ (1 + ΛN ) ‖f − fN‖∞ (2.118)

where ΛN is the Lebesgue constant [Ibrahimoglu 2016] for the considered interpolation nodes:

ΛGLCN = O
N→∞

(logN) ΛGLLN = O
N→∞

(√
N
)

ΛUniformN = O
N→∞

(
2N

N logN

)
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The uniform convergence rate ‖f − fN‖∞ also depends on the interpolation technique:

1. Expansions in Legendre polynomials are optimal approximants in the L2-norm:
f ∈ L2([−1, 1]) ∩ Cp([−1, 1])

f (q) ∈ L2([−1, 1]) ∀q ∈ J1, pK ⇒ ‖f − fN‖2 = O
N→∞

(
N−p−1−1

2
)

(2.119)

2. Expansions in Chebyshev polynomials are optimal approximants in the L∞-norm:


f ∈ L2

h([−1, 1]) ∩ Cp([−1, 1])

f (q) ∈ L2
h([−1, 1]) ∀q ∈ J1, pK ⇒


‖f − fN‖L2

h
= O

N→∞

(
N−p−1−1

2
)

‖f − fN‖∞ = O
N→∞

(
N−p−1) (2.120)

with weights h(x) = hChebyshev(x) = 1√
1− x2

.

2.7.2 Chebyshev collocation method

The Chebyshev polynomials of the first kind can alternatively be defined by following the
recurrence relation:

T0(x) = 1
T1(x) = x

Tp+1(x) = 2xTp(x)− Tp−1(x)

(2.121a)
(2.121b)
(2.121c)

Tp is the only polynomial satisfying Tp(cos(θ)) = cos(pθ).

The Chebyshev-Gauss-Lobatto points have a better asymptotic behaviour for the Lebesgue
constant and have the advantage of being known analytically. The N+1 points have analytical
formula xj = −cos (jπ/N) ∈ [−1, 1] for j ∈ J0, NK. Moreover, with the knowledge of the N+1
samples f = (f(xj))j∈J0,NK it is possible to compute the expansion coefficients f̂ in the basis
of orthogonal Chebyshev polynomials of order N efficiently by applying a type one cosine
transform (DCT-I) with O (N logN) complexity by using a specialized variant of FFT [Neagoe
1990]. In practice, it is better to reverse the indices of the Chebyshev-Gauss-Lobatto points,
yielding xj = cos (jπ/N) to have a direct correspondance with the DCT-I. In this case if we
define weights w = (1 + δp0 + δpN )p∈J0,NK we have f̂ = CI(f) � w, the first and the last
coefficients being scaled by a factor one-half. As the inverse of the DCT-I is the DCT-I itself,
f can also be computed from f̂ with the same complexity with f = CI(f̂ �w). The result of
these procedures has eventually to be scaled by some factor depending of N according to the
chosen implementation. This fast algorithm only works when f has no sharp discontinuity
on [−1, 1] because the DCT-I coefficients are subject to the same convergence results as the
DFT (without the periodicity constraint) and thus are subject to the Gibbs phenomenon.
The same error result in O

(
ε
√
N
)

holds when using a suitable algorithm (FFTW has a correct
implementation unlike FFTPACK, see [Frigo et al. 2005] part B). Another way to compute the
coefficients is to compute the N + 1 scalar products 〈f, φj〉h directly by using the discrete
variant of formula (2.115b).
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The convergence of the interpolation at the Chebyshev-Gauss-Lobatto points is illustrated
on figure 2.17 for three different functions defined on [−1, 1] with varying regularity. As for
the Fourier transform in the periodic case, a limit case can be provided by a discontinuous
function where convergence can not be guaranteed as formulated in (2.120).

Figure 2.17 – Spectral Chebyshev interpolation of functions of varying regularity.
The three functions considered here are all square-integrable functions with respect to weight
function h(x) = 1/

√
1− x2. For all x ∈ [−1, 1] we define f , g and h similarly to the DFT

interpolation presented on figure 2.13 as f(x) = cos(2πy)sin(4πy) ∈ Cω(R) with y = (x+1)/2,
g(x) = 1 − |x| ∈ C0(R) and h(x) = [[[x > 0]]] ∈ C0

I (R). Those functions have decreasing
regularity and theoretical convergence rate is given by (2.120). Each leftmost plot represent
the function f(x) to be interpolated (blue) and its spectral Chebyshev interpolant f16(x)
(orange) obtained by evaluating (2.71) with N + 1 = 16 samples. The 16 samples fj = f(xj)
with xj = cos(jπ/15)) ∈ [−1, 1] used to compute the interpolation are shown as red points.
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Figure 2.18 – Convergence of the GLC Chebyshev interpolation method.
See figure 2.17 for the definition of functions f , g and h. Here the coefficients f̂ and ĝ are
computed efficiently by using the DCT-I while coefficients ĥ are computed up to N = 212

by scalar products because of the discontinuity of the function h(x). The black dotted line
represents the machine error for double precision floating point numbers y = ε ' 2.22×10−16.

Given N+1 values of at the Gauss-Lobatto-Chebyshev points one can also approximate f(x)
by using the N+1 interpolating polynomials LN,j(x) associated to the Chebyshev polynomial
of degree N :

LN,j(x) = (−1)j+1(1− x2)T ′N (x)
(1 + δj0 + δjN )N2(x− xj)

∀ j ∈ J0, NK

f(x) '
N∑
j=0
LN,j(x) f(xj) =

N∑
j=0
LN,j(x) fj

LN,i(xj) = δij ∀(i, j) ∈ J0, NK2

(2.122a)

(2.122b)

(2.122c)
This leads to a first way to compute derivatives at the Chebyshev extreme points:

f (q)(x) '
N∑
j=0
L(q)
N,j(x) fj

f ′ = Dq
N f

(2.123a)

(2.123b)

Multiplication by the first order Chebyshev differentiation matrix DN =
(
∂LN,j
∂x

(xi)
)
ij

trans-

forms a vector data at the Gauss-Lobatto-Chebyshev points into approximative derivative on
those same points. DN is a matrix of size (N + 1)× (N + 1) and is explicitly defined by:

(DN )00 = −(DN )NN = 2N2 + 1
6

(DN )jj = −xj
2(1− x2

j )
∀ j ∈ J1, N − 1K

(DN )ij = 1 + δi0 + δiN
1 + δj0 + δjN

(−1)i+j
xi − xj

∀ i 6= j
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The Chebyshev differentiation matrix is nilpotent of degree N + 1 and has the interesting
property of being skew-centrosymmetric implying that D2q

N is centrosymmetric and D2q+1
N is

skew-centrosymmetric for all positive integers q. In practice we loose the symmetry properties
when taking into account certain boundary conditions because DN is modified to take into
account the boundary conditions at x = x0 = −1 and x = xN = 1. Suppose we want to solve
the following second order boundary value partial differential equation:

N∑
i=0

ai(x)∂
iφ

∂xi
(x) = f(x) on ]− 1,+1[

αl φ(−1) + βl
∂φ

∂x
(−1) = γl

αr φ(+1) + βr
∂φ

∂x
(+1) = γr

(αl, αr) 6= (0, 0)

(2.124a)

(2.124b)

(2.124c)

(2.124d)

Let x0, · · · , xN be the N+1 Chebyshev-Gauss-Lobatto collocation points in [-1,+1]. We can
define Ai = diag(ai(x0), · · · , ai(xN )) for all i ∈ J0, NK and:

φ =



φ(x0)
φ(x1)
φ(x2)

...
φ(xN−1)
φ(xN )


f =



f(x0)
f(x1)
f(x2)

...
f(xN−1)
f(xN )


f =



γr
f(x1)
f(x2)

...
f(xN−1)

γl


(2.125)

LN =
[
N∑
i=0

Ai(DN )i
]

and LN =


αr(IN+1)0j + βr(DN )0j

(LN)ij

αl(IN+1)Nj + βl(DN )Nj

 (2.126)

The solution to the linear system LN φ = f satisfies the two boundary conditions (2.124b)
at x = x0 = −1 and (2.124c) at x = xN = +1 while equation (2.124a) is satisfied at all the
N − 1 inner collocation points x1, · · · , xN−1.

2.7.3 Chebyshev-Tau method

An other way to solve this system is to use the representation of φ(x) in the basis of Chebyshev
polynomials. The derivatives can then be obtained in the spectral basis similarly to the DFT
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via the multiplication of the coefficient by an upper triangular first derivative matrix D̂N .

fN (x) =
N∑
p=0

f̂pTp(x)

f
(q)
N (x) =

N∑
p=0

f̂pT
(q)
p (x) =

N∑
p=0

f̂ ′pTp(x)

(2.127a)

(2.127b)

where f̂ ′ can be obtained from f̂ with the knowledge of the of the matrix D̂N =
(
〈∂xTi, Tj〉h

)
ij

that transforms the spectral coefficients of the interpolant to the spectral coefficients of the
derivative in the orthogonal Chebyshev basis:

f̂ ′ = (D̂N )qf̂

(D̂N )ij = 12Z+1 (i+ j) j

2− δi0
∀(i, j) ∈ J0, NK2

(2.128a)

(2.128b)

The procedure to solve the problem is then same then for the Fourier transform:

• All spatial derivatives are computed in the spectral space with equation (2.128).

• All linear operations (additions, subtractions, multiplication by a scalar) can be equally
made in the spectral or in the physical space:

(c0φ+ c1ψ)N (x) = c0φN (x) + c1ψN (x)
F (c0φ+ c1ψ) = c0φ̂+ c1ψ̂

• All non-linear products are made in the real space, and the result is transfered back to
the spectral space:

(φψ)N (x) = φN (x)ψN (x)

F (φ�ψ) = F
(
F−1

(
φ̂
)
�F−1

(
ψ̂
))

where special care may be taken to dealias the product [Uhlmann 2000]

If we suppose that all the ai do not depend on x with ai(x) = ci in equation (2.124a) then we
obtain the system L̂N φ̂ = f̂ with L̂N = ∑N

i=0 ci
(
D̂N

)i
. The left (2.124b) and right (2.124c)

boundary conditions are then included in the two last rows of L̂N . The value of the Chebyshev
polynomials and their first derivative at left and right boundaries can be computed with the
following formulas:

T (0)
p (−1) = (−1)p T (0)

p (1) = 1
T (1)
p (−1) = (−1)p+1 p2 T (1)

p (1) = p2

(2.129a)
(2.129b)
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Thus by defining Tl = (Tp(−1))p, T ′l =
(
T

(1)
p (−1)

)
p
, Tr = (Tp(1))p and T ′r =

(
T

(1)
p (1)

)
p

for

p ∈ J0, NK we can include the boundary conditions in L̂ and f̂ :

LN =


(L̂N)ij

αlTl + βlT
′
l

αrTr + βrT
′
r


and f =



f̂(x0)
f̂(x1)

...
f̂(xN−2)

γl
γr


(2.130)

The solution to the linear system LN φ̂ = f satisfies the system including the two boundary
conditions. Once the system has been solved, it is possible to recover the solution φ at the
Chebyshev extreme points by performing an inverse Chebyshev transform on φ̂, which is
nothing more than a scaled inverse type one cosine transform. Similarly f̂ is obtained from
f by using a forward Chebyshev transform.

2.7.4 Chebyshev-Galerkin method

An alternative method to solve second order boundary value problems with Fourier-Chebyshev
series is to take into account the boundary conditions directly in the basis, similarly to the
real-to-real transforms of previous section. In the context of spectral methods this is known
as the Galerkin method.

For the Chebyshev polynomials it is known that for homogeneous boundary conditions of
the form (2.124b)-(2.124c) with γl = γr = 0, there exist a unique set of constants (ap, bp) ∈
RN+1 × RN+1 such that:

Gp(x) = Tp(x) + ap Tp+1(x) + bp Tp+2(x) (2.131)

satisties the boundary conditions for given (αl, αr, βl, βr). The resulting basis is not orthogonal
but spans the solution space [Shen et al. 2011].

Here we propose to extend this result to non-homogeneous boundary conditions. The bound-
ary values being given by equations (2.129), we can derive a system to solve for the coefficients
that satify any boundary condition (with γl 6= 0 and γr 6= 0):

G(0)
p (−1) = (−1)p + ap (−1)p+1 + bp (−1)p+2

G(0)
p (+1) = 1 + ap + bp

G(1)
p (−1) = (−1)p p2 + ap (−1)p+1 (p+ 1)2 + bp (−1)p+2 (p+ 2)2

G(1)
p (+1) = p2 + ap (p+ 1)2 + bp (p+ 2)2

(2.132a)
(2.132b)
(2.132c)
(2.132d)

the system being given by:

αlG
(0)
p (−1) + βlG

(1)
p (−1) = γl

αrG
(0)
p (+1) + βrG

(1)
p (+1) = γr

(2.133a)
(2.133b)



126 Chapter 2. Numerical method

The general solution to this system can be found by any symbolic computation software and
we obtain the following:

ap = Ap
Bp

and bp = Cp
Dp

Ap = (−1)1−p
(
αr γl + 4βr γl(p+ 1) + βr γl p

2
)

+
(
αl γr + 4(αl βr − αr βl + βl γr)(p+ 1) + βl γr p

2
)

Bp = (2αl αr + 5αl βr + 5αr βl + 8βl βr) + (6αl βr + 6αr βl + 24βl βr)p
+ (2αl βr + 2αr βl + 26βl βr)p2 + (12βl βr)p3 + (2βl βr)p4

Cp =
(
−αl − βlp2 + (−1)−p γl

) (
αr + βrp

2 + 2βrp+ βr
)

+
(
−αr − βrp2 + γr

) (
αl + βlp

2 + 2βlp+ βl
)

Dp =
(
αl + βlp

2 + 2βlp+ βl
) (
αr + βrp

2 + 4βrp+ 4βr
)

+
(
αl + βlp

2 + 4βlp+ 4βl
) (
αr + βrp

2 + 2βrp+ βr
)

The expression of ap and bp is greatly simplified for the common cases of Dirichlet-Dirichlet
(αl = αr = 1), Dirichlet-Neumann (αl = βr = 1), Neumann-Dirichlet (βl = αr = 1) and
Neumann-Neumann (βl = βr = 1) boundary conditions:

(αl, βl, αr, βr) ap bp

(1, 0, 1, 0) γr
2 −

(−1)−p γl
2

γr
2 + (−1)−p γl

2 - 1

(1, 0, 0, 1) (γr + 4(p+ 1)) + (−1)1−p (γlp2 + 4γlp+ 4γl
)

2p2 + 6p+ 5

(
γr − p2)+

(
(−1)−p γl − 1

) (
p2 + 2p+ 1

)
2p2 + 6p+ 5

(0, 1, 1, 0) γrp
2 + 4(γr − 1)(p+ 1) + (−1)1+p γl

2p2 + 6p+ 5

(
(−1)pγl − p2)+ (γr − 1)

(
p2 + 2p+ 1

)
2p2 + 6p+ 5

(0, 1, 0, 1) γr + (−1)1+p γl
2 (p2 + 2p+ 1)

γr − 2p2 + (−1)pγl
2 (p2 + 4p+ 4)

Table 2.3 – Chebyshev-Galerkin coefficients (2.131) for usual boundary conditions

Once the coeffients ap and bp are known for given left and right boundary conditions, it is
possible to express any function f in terms of Chebyshev and Chebyshev-Galerkin Fourier
series:

fN (x) =
N∑
p=0

f̂pTp(x)

=
N−2∑
p=0

f̃pGp(x)

with Gp(x) = Tp(x) + ap Tp+1(x) + bp Tp+2(x)

(2.135)
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By identifying terms in the Chebyshev orthogonal basis, it is possible to express the N + 1
Chebyshev coefficients f̂ in terms of the N − 1 Chebyshev-Galerkin coefficients f̃ :

f̂0 = f̃0

f̂1 = f̃1 + a0f̃0

f̂p = f̃p + ap−1f̃p−1 + bp−2f̃p−2 ∀p ∈ J2, N − 2K

f̂N−1 = aN−2f̃N−2 + bN−3f̃N−3

f̂N = bN−2f̃N−2

(2.136a)
(2.136b)
(2.136c)
(2.136d)
(2.136e)

This gives an O (N) procedure to go from the Chebyshev-Galerkin coefficients to the Cheby-
shev coefficients and we denote Rc the associated matrix of size (N + 1, N − 1) such that
f̂ = Rc f̃ . Because Rc is not a square matrix, we can not compute its inverse, fortunately
there exist two different iterative approaches with the same complexity to compute f̃ from f̂ :

Forward algorithm:

f̃0 = f̂0

f̃1 = f̂1 − a0f̃0

f̃p = f̂p − ap−1f̃p−1 − bp−2f̃p−2

Backward algorithm (defined for bp 6= 0):

f̃N−2 = f̂N/bN−2

f̃N−3 = (f̂N−1 − aN−2f̃N−2)/bN−3

f̃N−2−p = (f̂N−p − f̃N−p − aN−p−1f̃N−p−1)/bN−p

We denote Rg the matrix of size (N − 1, N + 1) associated to one of those algorithms. With
this definition we have f̃ = Rg f̂ under the assumption that the N + 1 coefficients f̂ represent
a function with the correct boundary conditions (2.124b) and (2.124c). With these matrices
with have Rg Rc = IN−2 but RcRg 6= IN . The Chebyshev-Galerkin derivative matrix D̃N

of shape (N − 1, N − 1) is obtained from the Chebyshev derivation matrix D̂N of shape
(N + 1, N + 1) by computing D̃N = RgD̂NRc.

The procedure to find the solution to problem (2.124) with constant coefficients at the
Chebyshev-Gauss-Lobatto points is then the following:

1. Preprocessing:

(a) Compute the N − 1 coefficients ap and bp corresponding to the left and right
boundary condition by using equation (2.134).

(b) Compute D̂N and L̂N =
N∑
i=0

ci
(
D̂N

)i
, L̂N is a square matrix of size N + 1.

(c) Compute Rc, Rg and L̃N = RgL̂NRc, L̃N is a square matrix of size N − 1.

2. Compute the coefficients of f̂ from f in O (N logN) by using a scaled DCT-I transform.

3. Compute f̃ = Rgf̂ in O (N) operations.

4. Solve L̃N φ̃ = f̃ to find the coefficients of φ in the Chebyshev-Galerkin basis.

5. Compute φ̂ = Rcφ̃ in O (N) operations.

6. Compute the φ from φ̂ in O (N logN) by using a scaled DCT-I transform.
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2.7.5 Comparison of the different methods

In this section we check the convergence of the different methods with respect to the following
one-dimensional Poisson problem:

∂φ2

∂x2 (x) = f(x) = e4x on Ω = ]− 1, 1[

φ(−1) = φ(1) = 0

(2.139a)

(2.139b)

The analytical solution is φ(x) = (f(x) − xsinh(4) − cosh(4))/16. As the problem features
homogeneous Dirichlet boundary conditions we can use the DST-I and DST-II transforms
with associated collocated or staggered grid. With those transforms we cannot expect better
than second order convergence because of the Gibbs phenomenon: f(1) ' 54.6� 0. We com-
pare the results obtained by implicit centered finite differences and various spectral methods
with the analytical solution. The associated linear systems are shown on figure 2.19 for a
discretization of N = 32 nodes.

(a) DST-I / DST-II (b) FDC2 (c) FDC6

(d) Chebyshev-Tau (e) Chebyshev-Galerkin (f) Chebyshev collocation

Figure 2.19 – Matrix layouts associated to the different methods (N = 32).
Each dot corresponds to a non-zero entry in the matrix. Coefficients are color graded from
lowest (blue) to highest absolute value (red). FDCx corresponds to implicit centered finite
differences of given spatial order (decentered on the boundaries when required).
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For the discrete sine transforms, there is no linear system to solve because the forward
transform performs the diagonalization of the problem. Implicit centered finite-differences
schemes lead to banded Toeplitz matrices of increasing bandwidth. The Chebyshev colloca-
tion method requires the resolution of a dense matrix while the Chebyshev-Galerkin method
yields a checkerboard matrix. Finally, the Chebyshev-Tau method gives an upper triangular
checkerboard matrix. All those linear systems are solved without using any preconditioner.
As it can be seen on figure 2.20, we recover the expected convergence rates for all methods.

Figure 2.20 – Convergence of the different methods for a one-dimensional homoge-
neous Dirichlet Poisson problem. FDCx corresponds to implicit centered finite differences
of given order, ChebC to the collocated Chebyshev method, ChebT to the Chebyshev-Tau
method, ChebG to the Chebyshev-Galerkin method and DST-x to the discrete sine transforms.

Conclusion
In this chapter we built an hardware agnostic numerical method that allows us to solve
the incompressible Navier-Stokes equations passively coupled with the transport of a scalar,
possibly at high Schmidt number. The main idea behind the proposed numerical method
is the use of a remeshed particle method. While this method is particularly adapted for
the transport of scalars in high Schmidt number flows, the presence of an underlying grid
allows to the use of efficient eulerian solvers. The resulting method consists in an hybrid
particle, spectral and finite differences based numerical method especially designed to reduce
the timestep constraints associated to high Schmidt number flows. Those numerical methods
are further adapted in order to become accelerator-friendly.

Within this framework, the governing equations are discretized on a rectangular computa-
tional box and the domain is meshed by using regular grids. Boundary conditions are pre-
scribed on the walls. The numerical method is not limited to periodic boundary conditions
and can take into account other kind of boundary conditions such as homogeneous Dirichlet,
homogeneous Neumann or even more general boundary conditions. The numerical method
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is based on two different kinds of operator splitting, namely viscous and directional splitting.
Viscous splitting decomposes the problem into subproblems that each can be solved with
a specific set of numerical methods. All of those subproblems but the recovery of velocity
from vorticity are further split directionally by using a Strang splitting of first or second or-
der, yielding one-dimensional subproblems. This makes the corresponding numerical scheme
dimension-agnostic and thus simpler to implement. It is predicted that the choice of a Carte-
sian discretization along with a simple data permutation strategy in between the treatment
of different directions allows efficient implementations on vectorized hardware such as CPUs
and GPUs.

Transport is solved at fixed velocity, one direction at a time, by using a high order remeshed
particle method that does not suffer from a timestep restriction depending on the grid size
(CFL) but rather on velocity gradients (LCFL). Stretching and external forcing are handled
with directionally split explicit finite differences. Diffusion can be treated either by using
explicit finite differences or with a spectral solver. When the overall timestep of the simulation
is limited by some timestep associated to a diffusion subproblem, it may be better to choose an
implicit spectral method that does not enforce any timestep restriction. Finally, the recovery
of velocity from the vorticity is always done through a spectral solver. All of those operators
are solved one after another within a simulation iteration with variable timestepping. Explicit
finite differences and transport each enforce a minimum timestep for a given iteration. A wide
variety of spectral methods has been presented to handle any second order boundary value
problems. Periodicity is handled with the Fourier transform while homogeneous boundary
conditions can be handled by sine and cosine transforms under certain assumptions. All the
other cases are handled by Chebyshev polynomials, at the cost of increased computational
complexity. The recovery of velocity from vorticity and diffusion can be solved by using a
tensor product of spectral bases statisfying the right boundary conditions. With this spectral
method, there is no linear system to solve unless Chebyshev polynomials are used.

In the next chapter we will see how to implement efficiently those numerical methods de-
pending on the target hardware. Results obtained with this numerical framework as well
as performance statistics will also be given. The split operators presented in this chapter
constitute the basic bricks that will be used to solve every other incompressible Navier-Stokes
problems.
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Introduction

One of the main objective of this thesis consists in the efficient implementation of the numerical
schemes presented in the previous chapter. The resulting implementation should be able to
operate on accelerators, possibly in a distributed environment. The numerical code should be
easy to adapt to new architectures while retaining the possibility of operating on conventional
machines for the sake of sustainability.

In a first part, we give an overall presentation of the HySoP library, the general high-
performance computing framework in which we will combine multiple levels of parallelism.
Within this framework, the description of a numerical algorithm is handled by building a
graph of operators. This first global view on the library is the opportunity to focus on task
parallelism.

In a second part, we focus on the specific care required for the implementation on hardware
accelerators. Numerical methods are implemented once for multiple different architectures by
relying on the OpenCL standard. We show that the regularity of the data structures combined
to data permutations leads to coalesced memory accesses that are well suited for vectorized
hardware. Performance-portability can achieved by the way of code generation techniques
associated to automatic runtime kernel performance tuning. Benchmark results are given and
analyzed for four reference configurations ranging from simple consumer grade desktop CPUs
to professional grade GPUs. In particular we focus on the individual OpenCL implementation
of each algorithm as well as runtimes statistics obtained for full two- and three-dimensional
incompressible Navier-Stokes simulations. The numerical scheme is then validated on the
Taylor-Green Vortex problem.

The last part is dedicated to the distributed implementation of the algorithms, domain de-
composition and the specific challenges raised by distributed computing in the context of
spectral transforms.
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3.1 The HySoP library

HySoP is a library dedicated to high performance direct numerical simulation of fluid related
problems based on semi-lagrangian particle methods, for hybrid architectures providing mul-
tiple compute devices including CPUs, GPUs or MICs. The high level functionalities and the
user interface are mainly written in Python using the object oriented programming model.
This choice was made because of the large software integration benefits it can provide [Sanner
1999]. Moreover, the object oriented programming model offers a flexible framework to im-
plement scientific libraries when compared to the imperative programming model [Arge et al.
1997][Cary et al. 1997]. It is also a good choice for the users as the Python language is easy
to use for beginners while experienced programmers can pick it up very quickly [Oliphant
2007a]. The numerical solvers are mostly implemented using compiled languages such as
Fortran, C/C++, or OpenCL for obvious performance reasons. It is also possible to implement
numerical algorithms using directly Python, which is an interpreted language, hence slower
for critical code paths under heavy arithmetic or memory load. The Python language support
is however the key for rapid development cycles of experimental features. It also allows to
easily implement routines that compute simulation statistics during runtime, relieving most
of the user post-processing efforts and enabling live simulation monitoring.

The compiled Fortran and C++ compute backends allow us to integrate a variety of external
dependencies by connecting them to the main HySoP python module with interface wrappers
such as F2PY or SWIG. Note that many scientific libraries already provide Python interfaces
so that they can be directly used in python without needing the user to implement his own
wrapper. In addition to the compiled languages, the library offers the possibility to compile
generated code just-in-time during execution. This is the case for OpenCL, the language used
to drive OpenCL-compatible accelerators, like GPUs, but also to translate python methods to
fast machine code by using the Numba just-in-time compiler. Most of the dependencies that
the HySoP library uses are described in appendix B.

This subsection provides implementation details of the HySoP library from its origin to the
most recent developments (2012-2019). It aims to cover computational-backend agnostic
design choices that allows us to discretize the variables and equations of a given fluid-related
problem into subproblems, each being solved individually by some operator embedded into a
directed acyclic graph. A first level of parallelism is explored here, namely task parallelism.

3.1.1 Origin and current state of the library

The name of the library, Hybrid Simulation with Particles (HySoP), comes from its orig-
inal purpose to propose a high performance framework for flow simulations based on semi-
lagrangian particle methods. This library got created under the impulsion of [Etancelin 2014].
To this day the scope of the library is a bit larger and the library has more or less become
a framework to develop high performance computational fluid-related routines operating on
fields discretized on regular meshes. The library still uses the original Fortran implementa-
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tion [Lagaert et al. 2012] of the remeshed particle proposed by [Cottet et al. 2009b] and further
developed by [Magni et al. 2012]. The original Fortran code, named SCALES, was capable of
running on massively parallel CPU architectures by using the Message Passing Interface (MPI).
At this time the advection remeshing routines were coupled with a fully pseudo-spectral
Navier-Stokes solver.

Shortly after, HySoP was born, by wrapping a subset of the SCALES library, mainly the particle
remeshing functions, using F2PY and by implementing a custom solver for the fluid simula-
tion, arising from successive developments of the underlying numerical schemes [Balarac et
al. 2014] [Lagaert et al. 2014]. Current developments of the library builds on the original
implementation of [Etancelin et al. 2014] featuring an high order remeshing method and
the porting of CPU intensive particle remeshing routines onto GPU accelerators by using the
OpenCL standard [Cottet et al. 2014]. This was the genesis of the OpenCL computing backend
in the HySoP library. During this phase, the directional splitting approach was introduced in
order to optimize the memory accesses, and thus improve achieved the memory bandwidth,
for the OpenCL-based remeshing kernels. In the mean time, an hybrid vortex penalization
method was developed to be able to handle complex geometries on Cartesian grids [Mimeau
et al. 2014] and to solve more challenging problems [Mimeau et al. 2015][Mimeau et al. 2017].
Apart from developing the HySoP library, current efforts focus on the integration of high order
remeshed particles within the YALES2 library [Moureau et al. 2011].

Figure 3.1 – HySoP logo representing an hyssop (Hyssopus officinali) plant whose
seeds are transported by the wind, referring to the lagrangian nature of particle methods.

One of the main objective of this thesis was to continue the porting efforts towards accelerators
for other sequential CPU operators that quickly became the new simulation bottleneck on GPU-
enabled compute nodes. In addition to this performance objective, there was also the need to
support homogeneous boundary conditions as the library historically only handled periodic
boundary conditions which are not suitable for most sedimentation problems. Due to the huge
number of features to add to the existing library and the existing partition of code bases, it
was decided to fork the project to rethink the entire codebase. The main vision concerning
the new implementation was to keep most of the parts that worked in the original library
while using the experience gained during those first development years to improve what did
not work as expected. From now on the original code prior to the fork will be referred as
hysop-origin and the current state of the library as hysop-current.
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Using lines of code (LOC) to measure software progress is like using kilograms for measuring
progress in aircraft manufacturing. It is however a good metric to grasp where the developing
efforts went during the transition period.

Python

34.5 kLOC

Fortran

19.4 kLOC

OpenCL
6.6 kLOC

Other
0.9 kLOC

(56.2%)

(31.6%)

(10.7%)

(1.5%)

hysop-origin [59ec5c5a]
61.5 kLOC

Python

120.9 kLOC

Fortran

20.2 kLOC

C++
10.0 kLOC

Other
5.7 kLOC

(77.1%)

(12.9%)

(6.4%)

(3.7%)

hysop-current [ba4352fc]
156.9 kLOC

Figure 3.2 – Evolution of the programming languages used in the HySoP library.

Figure 3.2 shows that the entire code base has grown by a factor 2.6 in terms of total source
code lines. Most of the efforts went into adding new features directly into the core of the library
by using the Python programming language (x3.5). The Fortran backend, implementing
legacy operators like the remeshing kernels and some spectral operators has remained roughly
the same as the original implementation. The C++ backend is completely new and mainly
addresses non-periodic boundary conditions.

At first glance, the lack of OpenCL sources in hysop-current might be surprising for a version
of the library that pretends to support more OpenCL operators compared to its predecessor.
This is due to the change of philosophy in the handling of OpenCL source code, passing from
parsed static kernels to fully code generated ones for more versatility (see section 3.2 for more
information). Finally an increase can be seen in terms of tests and continuous integration,
represented by the Other section that contains mainly scripts, build utilities and Docker files
used to automate the testing process. During this period Git records 1034 changed files, 135k
insertions and 62k deletions. The main differences between the two versions are summarized
in table 3.1. Details about the original design of the library can be found mostly in [Etancelin
2014] and [Mimeau 2015].
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Feature origin current Commentary
Fortran support 3 3 The legacy Fortran backend is still supported.
C/C++ support 7 3 A new C++ backend has been added to the library.
OpenCL support partial full Only GPU advection and diffusion were supported.
MPI support full partial Currently spectral operators have no MPI support.
JIT support OpenCL OpenCL, Numba Some critical NumPy routines are translated by LLVM.
OpenCL source code file based code generated Implementation of a OpenCL code generator
OpenCL autotuner 7 3 The tuner guaranties portable OpenCL performances.
OpenCL symbolic 7 3 Generate OpenCL code from symbolic expressions.
Domain dimension 3D* 2D/3D/nD 2D simulations could be done by faking 3D ones.
Boundary cond. only periodic homogeneous Added homogeneous Dirichlet and Neumann BC.
Data types float/double any HySoP now supports all NumPy data types.
Fields/Parameters scalar, vector any Added support for any type of tensor variable.
Memory ordering transposition noop Passing from C to Fortran ordering has no cost.
Operator creation manual semi-automatic Some operators are now automatically generated.
Topology creation manual automatic* Manual topology specification is still possible.
Operator ordering manual automatic Automatic ordering through dependency analysis.
Memory transfers manual automatic Automatic memory transfers between CPU and GPU.
Buffer sharing manual automatic Temporary buffers are shared across all operators.
Problem setup manual automatic This feature enables quick prototyping.

Table 3.1 – Comparison of some features between hysop-origin and hysop-current.

HySoP
Python	User	Interface

C++
(JIT)

OpenCL
(JIT)

HySoP
C++
sources

HySoP
Fortran
sources

Numpy

CUDA
(JIT)

HySoP	C++	Library
(cpp2hysop.so)

HySoP	Fortran	Library
(f2hysop.so)

Numba pyOpenCL pyCUDA

Python	BackendFortran	Backend OpenCL	BackendC++	Backend CUDA	Backend

f2hysop cpp2hysop

Numpy	C	API

HySoP
Python
bytecode

HySoP
OpenCL
sources

HySoP
OpenCL

Code	Generator

POCL

F2PY SWIG

Figure 3.3 – Different computing backends present in the HySoP library.
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3.1.2 Design of the library

As stated in the introduction, the library is designed around a Python core interface sitting
on the top of different computing backends such as Fortran, C++ and OpenCL. The end user
needs to specify his problem using a Python script to interact with the library. Figure 3.3
show the backends interact with the base Python layer.

The code is organized around various mathematical and logical concepts.

Physical domain

The first thing the user has to do is to specify the domain of definition of the variables
involved in the problem. A physical domain Ω ⊂ Rn represents the physical domain where
the simulation will take place. At this time the only available type of domain in the library are
n-dimensional rectangular cuboids, obstacles being handled by using a vortex penalization
method [Mimeau et al. 2016]. Rectangular boxes can be described by an origin xstart =
(x0, · · · , xn1) and the length of each of its edges L = (L0, · · · , Ln) . By default the unit
box is returned by setting xstart = 0 and L = 1. Apart from defining the physical domain
of definition of variables, a domain may also provide information about domain periodicity
P = (P1, · · · ,Pn).

hysop.domain.box.Box

hysop.domain.box.BoxView hysop.domain.domain.Domain

hysop.domain.domain.DomainView _domain

Figure 3.4 – Simplified UML diagram representing the Domain class hierarchy.

A Box is a Domain that owns all those properties (L,P , · · · ), while BoxView is a read-only
access to those properties with axes permutated. In practice a Box is a BoxView with default
axes (1, · · · , n). Views will prove themselves useful in the presence of local data permutations.

Continuous fields

Once a domain is defined, it becomes possible to create named continuous scalar, vector or
tensor fields. In HySoP, a continuous field is an abstract object which represents the usual



138 Chapter 3. Implementation and High Performance Computing

vector field, in a mathematical sense, i.e some function which associates integer, real or
complex valued scalar, vector or tensor to each point x of the space at a given time t:

f : Ω× T → Km = Km1×m2×···×mM

(x, t) 7→ f(x, t)

with Ω ⊂ Rn, T = [tstart, tend], K ⊂ C, n ∈ N∗, M ∈ N∗ and mi ∈ N∗ ∀i ∈ J0,MJ.

In practice M = 1 for scalar fields, M = 2 for vector fields and M = 3 for second order tensor
fields such as the gradient of velocity. Such objects are used as input and/or output variables
of operators and must be defined with at least:

• a name: compulsory (required for logs, i/o and code generation).

• a domain: the n-dimensional physical domain Ω of definition of the field.

The underlying scalar data type that will be set upon discretization can also be specified.
By default fields are set to data type HYSOP REAL which will be either float (single precision
floating point numbers) or double (double precision floating point numbers) depending on
HySoP build configuration. Integer and complex data types are also supported. Default
boundary conditions can also be specified. As an example if the field will only be discretized
on boxed domains, one can specify left and right boundary conditions for each of the n axes.

ScalarField 
 

TensorField 
 

FieldContainerI 
 
 
 

contains 
in a  

np.ndarray 

*

VectorField 

Figure 3.5 – Simplified UML diagram of the ContinuousField class hierarchy.

Scalar, vector and tensor fields are seen as a scalar field containers and each inherit the
common FieldContainerI interface such that independent scalar field operations are imple-
mented only once. Each scalar field is associated to a symbolic representation with the help
of Sympy. Tensor fields are associated to NumPy arrays of scalar field symbols. Those symbolic
representations can be used later within a code generation framework.

Continuous fields are later discretized on one or more topologies. Topologies are domain
discretizations associated to a specific domain decomposition. Before this discretization step,
no memory is dynamically allocated for fields.
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Parameters
They constitute another source of time-dependent inputs and outputs for operators.

p : T → Km = Km1×m2×···×mM

t 7→ p(t)

Together with continuous fields, they compose what we will call input and output variables.
They are designed like continuous fields that have no space dependencies and follow exactly
the same implementation design: ScalarParameter and TensorParameter can be of any
data type and all inherit from a common ScalarParameterContainerI interface. They are
associated to symbolic variables and the memory required by a given parameter is allocated
at its creation (there is no spatial discretization step for parameters). The dependence in
time can be removed by declaring the parameter constant and by providing an initial value.

Discretization parameters
A DiscretizationParameter instance contains information about the way to discretize a
given type of domain (type of the mesh, distribution and number of mesh nodes). A
DiscretizationParameter does not assume anything about the boundary conditions but
the boundary conditions may alter the way fields are discretized because they impose
a specific choice of spectral methods. A CartesianDiscretizationParameter just con-
tains the number of cells N c a Cartesian grid (uniform space step dx) should contain
in each direction and is compatible with Box domains. Other Box-compatible variants
include ChebyshevDiscretizationParameter that also contains the number Chebyshev-
Gauss-Lobatto nodes (variable space step dx) the resulting regular grid should contain in
each direction (here N c corresponds the order of the Chebyshev polynomials). Finally
RegularGridDiscretizationParameter allows the user to enforce the node distribution (uni-
form or CGL) on a per-axis basis. It can also be configured to deduce the node distributions
from the knowledge of the scalar field left and right boundary conditions.

Compatible left and right boundary pairs include:

• Periodic boundary conditions : PERIODIC-PERIODIC

• Homogeneous boundary conditions: ODD-ODD, ODD-EVEN, EVEN-ODD, EVEN-EVEN

• General boundary conditions: BC(αl, βl, γl)-BC(αr, βr, γr)

The two first kind of boundary pairs are mapped to uniform sample spacings (compatible
with the usual discrete Fourier transform and collocated real-to-real transforms). Axes for
which general boundary conditions are imposed are mapped to Chebyshev-Gauss-Lobatto
nodes (compatible with the fast Chebyshev transform). For performance reasons, the user
has to order the axes in such a way that the general boundary condition pairs come first,
followed by the periodic boundary pairs and finally homogeneous boundary pairs. This is so
that spectral transforms are performed by chaining real-to-real (sine and cosine transforms),
real-to-complex (FFT with Hermitian symmetry), complex-to-complex (complex FFT) and
finally fast Chebyshev transforms (scaled type one cosine transforms).
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Discretization
A Discretization is obtained when bringing together a Domain and
DiscretizationParameter. The most common type of discretization we
will use is the CartesianDiscretization that is the result of applying a
CartesianDiscretizationParameter to a Box domain. The boxed domain origin
xmin, size L and periodicity P allows to compute the physical node coordinates xj . The
resulting grid has size N v = N c + 1 − P and the node coordinates are deduced from
the specified node distribution. For regular grids we store only the per direction offsets
(xi,j)j∈J0,N v

i J
for every axe i ∈ J0, nJ. The position of a grid node on a regular grid is then

given by xj = (x1,j1 , x2,j2 , · · · , xn,jn) and the different node distributions are recalled here:

• Uniform distribution: xi,j = xmin,i + j dxi with dxi = Li/N c
i .

• Gauss-Chebyshev-Lobatto distribution: xi,j = xmin,i + Li(1− cos(jπ/N c
i ))/2

Topologies and meshes
A Topology brings together a Discretization, a MPI communicator, a compute backend
and a specified number of ghosts G ∈ Nn. It is responsible to generate a Mesh object and
handle domain decomposition among all processes of the communicator. For a regular dis-
cretization of boxed domains this mainly consists into splitting the global regular grid into
smaller local regular grids. Ghosts are extra boundary nodes required by some operators
to compute values close to the local subdomain boundaries. A Mesh also maps the local-
to-process mesh properties to global mesh properties. For the usual regular grid case, one
obtain a CartesianTopology operating on a MPI Cart communicator (with splitting mask
S ∈ {0, 1}n and periodicity mask P ∈ {0, 1}n) on the top of a CartesianMesh. The splitting
mask S controls the directions in which the domain can be split while the periodicity mask
enables or disables the communications between processes handling global domain left and
right boundaries. It is required that S · S ≥ 1 when the number of processes P is more
than one so that domain decomposition can happen. The CartesianTopology provides fa-
cilities to perform local ghost exchanges and accumulation with direct and diagonal neighbor
processes. The compute backend dictates the memory allocation policy (where the memory
will be allocated) and drives eventual host-to-device and device-to-host memory exchanges
required by any OpenCL context.
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Compute backends
Currently there exist three kinds of compute backends that dictates where memory will be
physically allocated and what memory exchanges are required to perform local data redistri-
butions and inter-process communications:

• HOST BACKEND: Memory is allocated in the main memory. This first kind of backend is
used to implement Python operators (PythonOperator) or wrap C++ and Fortran op-
erators (CppOperator and FortranOperator). With this backend, MPI exchanges can
be done directly from and to host buffers.

• OPENCL BACKEND: Memory is allocated in the memory of a specific OpenCL device on a
specific OpenCL platform. Dedicated GPUs and MICs have their own embedded memory
and CPUs can use OpenCL buffers stored the main memory. Here two variants are possible
depending on the location of the OpenCL buffers. CPU devices can map and unmap their
memory directly to the main memory such that all HOST BACKEND compatible operators
and MPI exchanges works seamlessly. Devices providing their own memory require data
exchanges between host and device memories. In this case MPI exchanges are done less
efficiently trough temporary hosts buffers (unlike CUDA, MPI cannot work directly with
OpenCL buffers [Wang et al. 2013]).

• HYBRID BACKEND: Memory is allocated in the main memory and is partially allocated on
every supplied backend that cannot map memory to host (mostly OpenCL devices with
dedicated memory banks). This is the only backend that allows hybrid CPU-GPU com-
putations or multi-device computations by using only one MPI process. CPU cores can
be used by any OpenCL platform compatible with the target CPU (such as AMD, Intel
and POCL OpenCL platforms) or in a multi-threaded context (Numba, MKL-FFT, FFTW).

Operators
An Operator represents a function that takes zero or more continuous fields and parameters
as inputs and zero or more continuous fields and parameters as outputs. As one may expect,
operators do not work with every type of topologies, discretizations and boundary conditions.
Each operator proposes a default implementation (on a specific compute backend) and enforce
requirements on the discretization of the fields and the layout of the topology on a per variable
basis (FieldRequirements) and on a global variable basis (OperatorRequirements). Opera-
tors are usually bound to a compute backend trough the common interfaces (PythonOperator,
CppOperator, FortranOperator, OpenClOperator and HybridOperator) that enforce de-
fault requirements such as the memory ordering and memory location.

Simulation
A Simulation instance is responsible to handle the time parameter t as well as the timestep
parameter dt of a given discretized problem. It calls the underlying problem operators imple-
mentation in order at every timestep. The timestep can be either fixed or decided during the
current timestep by any operator. Many timestep criterias are implemented in the library
such as CFL and LCFL constraints.
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Problems
A Problem is a sequence of operators that are organized in a directed acyclic graph (DAG).
Operators are created by the user and inserted one by one into the graph. The nodes represent
operators while edges represent read and write dependencies of scalar fields and parameters.
The order of application of operations is deduced by performing a topological sort of this
graph. Apart from giving the order of operations this graph also allows us to extract task
parallelism. Subproblems can be represented with subgraphs or operator generators and can
be inserted directly into a Problem.

Discrete fields
Discrete fields are continuous fields that have been discretized on a given topology. A single
continuous field can be discretized on a given domain on multiple different topologies (different
mesh, number of ghosts, compute backend and domain decomposition). The DiscreteField
class hierarchy is a bit more complicated because it has to handle views. In general
DiscreteScalarField is a ScalarField discretized on a Mesh handled by some Topology. A
CartesianDiscreteScalarField is a ScalarField discretized on a CartesianMesh handled
a CartesianTopology backed up by a MPI Cart communicator. All processes handling a
given DiscreteScalarField allocate their own local data (typically one value per local mesh
node). The size and location of the memory depends on the chosen discretization, topology
and compute backend. For Cartesian meshes, the resulting local subgrids are also regular
grids that can be allocated as one big local chunk of contiguous memory.
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Figure 3.6 – Simplified UML diagram of the DiscreteField class hierarchy.

A DiscreteScalarFieldView is a read-only access to a given DiscreteScalarField prop-
erty (but not necessarily to the discrete field’s data). As for continuous fields, dis-
crete fields come with their tensor counterparts (which are M -dimensional containers of
DiscreteScalarFieldViews). As usual all those types inherit common container interfaces
to group common functionalities. An operator can declare to require some temporary discrete
fields. In this case the discrete fields data is automatically provided by a temporary buffer
memory pool that is common to all operators. The validity of the content of a temporary field
(or any other kind of temporary buffer) is tied to the lifetime of the current applied operator.
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Topology state

A TopologyState is a type of object that can alter the functionality of a View (such as
DomainView, TopologyView, MeshView, DiscreteFieldView and their child class variants).
One property is independent of the type of topology and record whether the underlying data
should be considered to be read-only or read-write (only relevant to DiscreteFields which
are objects that own data). A view that is set up with a read-only state will only return host
and device buffers marked as read-only (whenever the associated compute backend offers this
possibility). The topology state of a CartesianTopology is extended to handle a current
local transposition state and C or Fortran ordering. This comes from the fact that once the
boxed domain has been decomposed, each process allocates a unique contiguous chunk of
local memory for all its required discrete fields. Those two additional states record the actual
logical representation of this memory.

Operators are implemented by accessing to domain, topology, mesh, discrete field information
through views that are set up during the construction of the problem (the graph of operators)
where each topology states are tracked and updated depending on operator requirements. For
example accessing the global grid sizeN v = (N v

zN v
y ,N v

x ) of a three-dimensional discrete field
trough a view will return (N v

y ,N v
x ,N v

z ) if the actual local transposition state is set to (2, 3, 1).
An operator that enforces the last axis (x-axis) to be continuous in memory for a given field
has to ask for either (1, 2, 3) or (2, 1, 3) transposition states trough a FieldRequirement for
the considered input or output field. The graph generator is then responsible to modify the
last known state of the field by inserting automatically operators such as local transpositions
to satisfy the operator requirements. The graph builder also automatically handles memory
transfers between topologies with different compute backends (host-host, host-device and
device-device transfers), and data redistribution for discrete fields that are defined on different
topologies.

3.1.3 HySoP from a user point of view
In practice, the user only defines its variables (fields and parameters) and builds a problem
by inserting operators. Operators can be obtained through simplified operator interfaces
that gather all the available implementations. The user specifies associated input and output
variables along with their discretizations (most of the time the knowledge of N c is enough for
uniform Cartesian grids). The library then handles the rest of the operations by generating
a directed graph of operators, finding common topologies between operators depending on
their requirements and discretizing the fields. Prior to simulation, the initialization of the
fields can be done with simple Python methods. A typical user script looks like this:

#> Compute initial vorticity formula symbolically and translate symbolic
# expressions to equivalent numerical functions by using numpy and sympy
import numpy as np, sympy as sm
x, y = sm.symbols(’x y’, real=True)
u, v = sm.tanh(30*(0.25-sm.Abs(y-0.5))), 0.5*sm.sin(2*sm.pi*x)
w = v.diff(x) - u.diff(y)
U,V,W = (sm.lambdify((x,y), f) for f in (u,v,w))
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def init_velocity(data, coords, component):
data[...] = U(*coords) if (component==0) else V(*coords)

def init_vorticity(data, coords, component):
data[...] = np.nan_to_num(W(*coords))

from hysop import Box, Simulation, Problem, MPIParams
from hysop.constants import Implementation
from hysop.defaults import VelocityField, VorticityField, TimeParameters
from hysop.operators import (DirectionalAdvection, DirectionalDiffusion,

StrangSplitting, PoissonCurl)
ndim, npts = 2, (128,128)

#> Define domain, default MPI communicator and common operator parameters
box = Box(dim=ndim)
mpi_params = MPIParams(comm=box.task_comm)
extra_params = {’mpi_params’: mpi_params, ’implementation’: Implementation.OPENCL}

#> Variables (time, timestep, velocity, vorticity)
t, dt = TimeParameters()
velo = VelocityField(box)
vorti = VorticityField(velo)

#> Directionally split advection and diffusion of vorticity (second order Strang)
advection_dir = DirectionalAdvection(velocity=velo, advected_fields=vorti, dt=dt,

velocity_cfl=2, variables={velo: npts, vorti: npts}, name=’adv’, **extra_params)
diffusion_dir = DirectionalDiffusion(fields=vorti, coeffs=1e-4, dt=dt,

variables={vorti: npts}, name=’diff’, **extra_params)
splitting = StrangSplitting(ndim, order=2)
splitting.push_operators(advection_dir, diffusion_dir)

#> Poisson operator to recover the velocity from the vorticity
poisson = PoissonCurl(velocity=velo, vorticity=vorti, name=’poisson’,

variables={velo:npts, vorti: npts}, **extra_params)

#> Create and setup the problem (graph of operators)
problem = Problem()
problem.insert(splitting, poisson)
problem.build()

#> Create a simulation, initialize fields and solve the problem
simu = Simulation(start=0.0, end=1.25, dt0=1e-2, t=t, dt=dt)
problem.initialize_field(velo, formula=init_velocity)
problem.initialize_field(vorti, formula=init_vorticity)
problem.solve(simu)
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Those fifty lines of Python solve a fully periodic two-dimensional Navier-Stokes equation
with fixed timestep, discretized on a Cartesian grid of size N c = (128, 128) entirely on the
OpenCL compute backend (default OpenCL platform and device are assumed here). It solves
the double shear layer case presented in [Brown 1995] (p.17) by using the same ideas as al-
gorithm 4: advection and diffusion of vorticity ω at fixed velocity u by using the directional
splitting approach (introduced in section 2.5), followed by the recovery of the velocity from
the vorticity using a spectral Poisson-curl operator (section 2.6). The full example includ-
ing variable timestep is available as one of the many examples provided by the library, see
hysop/examples/shear layer/shear layer.py.

Because nothing has been specified by the user, the library assumes that all numerical methods
use their default parameters. The library defaults to:

• Time integrator: explicit second order Runge-Kutta scheme (RK2).

• Finite differences: explicit fourth order centered finite differences (FDC4)

• Interpolation: linear interpolation (LINEAR)

• Remeshing kernel: C2 with four preserved moments Λ4,2 (L42)

The DirectionalDiffusion operator defaults to explicit finite differences with default time
integrator (RK2+FDC4) and DirectionalAdvection operator to default time integrator, linear
interpolation of velocity and default remeshing kernel (RK2+L42+LINEAR). Default boundary
conditions and discretization are all set to PERIODIC and CartesianDiscretization so that
the PoissonCurl operator uses a Fourier spectral solver on a regular Cartesian grid. The
library then deduces the number of required ghosts depending on the order of the numer-
icals methods, build the topologies and the graph of operators. The resulting DAG can
be obtained by calling problem.display() right after problem.build(). Operators, repre-
sented by nodes have default names that can be overridden by the user (here ’adv’, ’diff’,
’poisson’ corresponds to DirectionalAdvection, DirectionalDiffusion and PoissonCurl
operators). For performance reasons, the library automatically inserts LocalTranpose op-
erators that are responsible to make the current axe contiguous in memory in directional
splitting contexts (default name ’T’). The edges show the variable dependencies between op-
erators. Edge dependencies are shown as discrete fields (continuous field + topology index)
or parameters:
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3.1.4 Graph of operators and task parallelism

The HySoP library is responsible to generate a Directed Acyclic Graph of operators based
on user input. In this graph, the vertices represent tasks to be performed (operators), and
the edges represent constraints that one task must be performed before another. This DAG
of tasks is then analyzed to extract independent execution paths that can be scheduled on
available hardware [Kwok et al. 1999][Simon 2018][Canon et al. 2018]. Once the user has
described and inserted all operators, the graph builder proceeds as the following:

1. Generate initial directed graph: Iterate over all operators as ordered by the user
and compute the following on a per operator basis:

(a) Iterate over operator input fields and check their current topology state. If the cur-
rent topology state does not match one of the operator required topology states,
do not insert this operator directly into the graph but insert as many as required
local permutations and topology redistributions as required to fulfill current op-
erator needs. Data redistribution include host-device memory transfers as well as
inter-process communications.

(b) Handle input dependencies: For each input scalar field, insert an edge from the
operator lastly wrote the field to the current one. Add this operator to the reading
record of all input fields.

(c) Handle output dependencies: For each output scalar field, insert an edge from
all operators that are reading the field to the current one. Clear the reading
and writing records of all output fields and add this operator to the writing record.
From the knowledge of all the input field topology states, compute resulting output
field topology states and update the topology state record of all output fields.

An example of initial DAG obtained after this step is given on figure 3.7.

2. Insert additional operators to match input topology states: Additional local
permutations and redistributions of data may be required in order to loop over a problem
(output states have to match input states). The graph is not closed so that is does not
contain any directed cycles.

3. Perform topological sort: Apart from drastically reducing the number of edges
contained in the graph, the result of the topological ordering gives a valid execution
sequence of the tasks.

4. Extract independent execution queues: Iterate on operators in topological order
to find out which one can be executed concurrently. Generate a new work queue until
all independent operators are affected (see figure 3.8).

Independent tasks can be distributed on different compute nodes (different processes) or
locally on the same compute nodes by using multi-threading, OpenCL device fission or asyn-
chronous programming techniques (or a mix of all those methods). Support of compute-node
level task parallelism has already been implemented in [Etancelin 2014].
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Figure 3.7 – Example of directed graph of operators obtained after step one

Figure 3.8 – Example of DAG of operators obtained after step four: Operators are
represented by the nodes and each color represent an independent execution path. On this
graph there can be up to seven different operators that are executed at the same time.
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3.1.5 Integration of numerical methods

When required, the HySoP library dynamically generates the exact numerical coefficients of
the numerical schemes. This includes finite-differences coefficients and remeshing formulas
(polynomial coefficients), which values can be obtained by solving a corresponding linear
system (equation 2.37). Those linear systems are solved by using infinite precision rational
numbers based linear solvers provided either by Sympy or Python-FLINT Python modules.
Implementing a new explicit Runge-Kutta scheme only requires the user to provide a Butcher
tableau (equation 2.31). Those numerical schemes are used later for the implementation
of host-side operators but also device-side operators such as in the OpenCL code generation
framework. The code generation framework allows kernels to be specialized and optimized
exactly for user chosen numerical methods. Once generated, coefficients are cached to disk.

For efficiency reasons, explicit centered finite differences associated to multi-stage time inte-
grators are treated in one go without any ghost exchanges happening in the middle of the
process. In a given direction, this implies to multiply the number of required ghosts g by the
number of stages s, resulting in a ghost layer of size s g. The number of required ghosts g
is at least the spatial order of approximation of the derivatives divided by two. This means
that for fourth order centered finite differences FDC4 (requires 2 ghosts vertices, see section
2.4.1) and a second order Runge-Kutta time integrator RK2 (two integration steps), the ghost
layer will be of size 4. With this configuration, one-dimensional diffusion would be solved as
the following:

u = u(x, t), solve ∂u

∂t
= ∂u2

∂x2 on Ω from t = t0 to t0 + dt

uk,0i = uni ∀i ∈ J−4, N + 3K

F k,0i =
[
−uk,0i−2 + 16uk,0i−1 − 30uk,0i + 16uk,0i+1 − u

k,0
i+2

12 dx2

]
∀i ∈ J−2, N + 1K

uk,1i = uk,0i + dt

2 F k,0i ∀i ∈ J−2, N + 1K

F k,1i =
[
−uk,1i−2 + 16uk,1i−1 − 30uk,1i + 16uk,1i+1 − u

k,1
i+2

12 dx2

]
∀i ∈ J0, N − 1K

uk+1
i = uk,0i + dt F k,1i ∀i ∈ J0, N − 1K

uk−4 uk−3 uk−2 uk−1 uk0 uk1 uk2 uk3 uk4 uk5 uk6 uk7 uk8 uk9 ukN ukN+1 u
k
N+2 u

k
N+3

uk,0−4 uk,0−3 uk,0−2 uk,0−1 uk,00 uk,01 uk,02 uk,03 uk,04 uk,05 uk,06 uk,07 uk,08 uk,09 uk,0N uk,0N+1 u
k,0
N+2 u

k,0
N+3

F k,0−2 F k,0−1 F k,00 F k,01 F k,02 F k,03 F k,04 F k,05 F k,06 F k,07 F k,08 F k,09 F k,0N F k,0N+1

uk,1−2 uk,1−1 uk,10 uk,11 uk,12 uk,13 uk,14 uk,15 uk,16 uk,17 uk,18 uk,19 uk,1N uk,1N+1

F k,10 F k,11 F k,12 F k,13 F k,14 F k,15 F k,16 F k,17 F k,18 F k,19

uk,20 uk,21 uk,22 uk,23 uk,24 uk,25 uk,26 uk,27 uk,28 uk,29



3.2. Implementation on hardware accelerators 149

3.2 Implementation on hardware accelerators

One of the main objective of this thesis was to pursue the OpenCL development efforts towards
hardware-accelerated numerical simulation in HySoP, initiated by [Etancelin 2014]. Graphics
Processing Units (GPUs) and other accelerators promise tremendous advantages in throughput
over conventional processor architectures. Those advantages ideally result in a large reduction
of execution time for suitable compute or bandwidth-bound algorithms. However, execution
time is not the only time scale to consider when comparing architectures. The development
time for a scientific code will, in many cases, constitute a significant fraction of its useful
lifespan. CUDA and OpenCL are the two competing standards capable of driving GPUs [Su et al.
2012b]. They both provide a language that is a subset of C or C++ and a runtime library
dedicated to compile and execute code on compatible target devices. A short overview and
comparison of both those standards is proposed in [Tompson et al. 2012].

Within the HySoP library, the choice of the OpenCL standard over CUDA has been made so
that more devices can be supported within a single implementation (such as CPUs, MICs and
GPUs from any vendor). Under fair comparison, OpenCL offers roughly the sames performances
guaranties than CUDA [Fang et al. 2011]. The HySoP library requires the OpenCL platforms to
be compliant with the OpenCL 1.2 standard:

• OpenCL 1.1 offers memory operations on subregions of a buffer including read, write
and copy of 1D, 2D, or 3D rectangular subregions [Khronos2010]. This is required to
perform efficient boundary layer exchanges (ghost exchanges).

• OpenCL 1.2 introduces device partitioning and IEEE 754 compliance for single-precision
floating point math [Khronos2011] required for the correctness of single-precision nu-
merical routines.

While the OpenCL standard provides a unified abstraction to widely divergent hardware ar-
chitectures, performance portability remains a difficult problem, even for contemporary com-
peting architectures available today [Klöckner et al. 2012]. As an example, writing efficient
software for GPUs using low-level programming environments such as OpenCL or CUDA requires
the developer to map computation directly onto GPU architectural design (number of compute
units, on-chip memory type and size, designed arithmetic intensity, optimal memory access
patterns, ...). Architectural design often being unavailable to the programmer, GPU program-
ming relies extensively on experimentation and microbenchmarking.

This section describes the new strategies that have been incorporated into the HySoP library
to reduce the time passed in OpenCL development cycles and to guaranty some performance
portability across nowadays, and hopefully future generations of architectures. The resulting
implementation is able to run fully accelerated Navier-Stokes simulations on CPUs and GPUs.
It can be extended by users without prior OpenCL experience by using a code generation
framework based on symbolic expressions. Benchmark results are given for four reference
compute platforms ranging from consumer grade CPUs to server grade GPUs (section 1.4.5).
The resulting implementation is validated on a three-dimensional reference simulation.



150 Chapter 3. Implementation and High Performance Computing

3.2.1 Arrays, buffers and memory handling

All the memory is allocated prior to simulation during the building of the problem. Problem
building is constituted of the following three steps:

1. Initialization: Each operator contained in the problem is initialized, operator topology
requirements are set up (min and max number of ghosts G, splitting mask S, local
transposition state T , C or Fortran data ordering, compute backend, ...).

2. Discretization: the topology requirements are collected at a scalar field level and
compatible requirements are merged together in order to create the minimal number of
different topologies for a given scalar field. Topologies are created and continuous scalar
fields are discretized on each of their associated topologies. The graph of operators is
created and simplified with topological sort, giving the order of application as well as
independent execution of operators.

3. Setup: Each operator asks for extra temporary buffers to work with. Those extra
work buffers can be of any shape and data type and can even require special memory
alignment. Temporary fields memory requirements are automatically registered. All the
memory requests are collected, reduced to one-dimensional contiguous chunks of mem-
ory and allocated in common memory pools. Each memory sharing group (execution
queue and compute backend pair) gets its own memory pool. Those raw contiguous
buffers are then sliced, reshaped and viewed as any other data type to suit each of the
memory requests. Temporary buffers obtained by this mechanism are only considered
valid while the operator is being applied because of this memory sharing policy (the
temporary buffer content may be overwritten by any subsequent operator). This of
importance since GPU memory is usually a precious ressource [Rupp 2013].

Dynamic allocation of memory is a slow operation and is not suited for time critical sections
of the code such as the execution of an operator. This is mainly why all the memory is preal-
located in the discretization and setup steps. It is not released until the very end of the sim-
ulation through a call to problem.finalize(). The memory is either provided by Python or
OpenCL buffers which are respectively wrapped by numpy.ndarray or pyopencl.Array n-
dimensional array types. The NumPy library is responsible to allocate host side memory
while the PyOpenCL library is responsible to allocate device memory. A pyopencl.Array is
a numpy.ndarray work-alike that stores its data and performs its computations on a given
OpenCL compute device. PyOpenCL provides some functionalities that are equivalent to numpy
through a runtime code generation framework provided by the library itself [Klöckner et al.
2012]. This framework includes elementwise algebraic operations, reductions and scans with
automatic type promotion. Basically, each different array operation triggers the code genera-
tor, the compilation of the generated code and the call to the resulting OpenCL kernel (a kernel
refers to a function that can be executed on a OpenCL device). As an example, the expression
a+b∗sin(c) where a, b and c are three n-dimensional arrays will generate, compile and execute
three different kernels (sin(•), • ∗ • and •+ •) for every different shape and data type of the
operands (the library also supports broadcasting of scalars). It also requires to dynamically
allocate three temporary arrays of the same shape and datatype as the intermediate result
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for every kernel. This leads to the generation of kernels with smaller arithmetic intensities
and dynamic allocation of temporaries. Evaluating array expressions by using overloaded op-
erators is thus less efficient. It is possible to use the lower level kernel generation interfaces of
the PyOpenCL library (ElementwiseKernel, ReductionKernel and GenericScanKernel) to
generate kernels that evaluate multi-stage expressions on several operands at once. Moreover,
generated kernel objects can be kept so that they can be used again later.

We take advantage of this kernel generation framework to extend the support of n-
dimensional arrays to a broader range of NumPy functionalities. The HySoP array imple-
mentation include support for the following subset of NumPy functionalities: binary op-
erations (elementwise bit operations), logic functions (truth value testing, array contents,
logical operations and comparisons), mathematical functions (trigonometric functions, hy-
perbolic functions, rounding, sums and products, exponents and logarithms, other special
functions, arithmetic operations, complex numbers functions and miscellaneous), random
sampling (uniform distributions), statistics (order statistics, averages and variances). See
https://docs.scipy.org/doc/numpy/reference/routines.html for corresponding numerical rou-
tines. The support of standard host-to-host sliced array memory transfer is extended to
host-to-device, device-to-host and device-to-device memory transfers by performing multi-
ple calls to clEnqueueCopyBufferRect so that the user never bothers to call any low-level
OpenCL function. It is powerful enough to support and encourage the creation of custom
application by its users. All of the implemented NumPy-like routines are tested against the
reference NumPy ones for various shapes and data type associations such that the HySoP ar-
ray interface closely mimic the NumPy one. This test is one of the many tests present in the
HySoP test suite that is driven by the continuous integration software development practice
[Duvall et al. 2007][Meyer 2014].

The need for such feature-complete implementations of numpy compatible array interfaces
targeting accelerators has recently led to the release of two new Python modules, namely
CuPy for CUDA-compatible arrays [Nishino et al. 2017] and ClPy for OpenCL-compatible ar-
rays [Higuchi et al. 2019]. Some other interesting C++ libraries such as Thrust, VexCL and
ArrayFire also offers n-dimensional array support for various compute backends (although
they do not support the NumPy interface). Thrust is a library that offers parallel algorithms
on arrays based on the Standard Template Library (STL) on C++, CUDA, OpenMP and TBB
compute backends [Bell et al. 2012]. Multiple expressions involving arrays are automatically
merged by using C++ expression templates [Veldhuizen 1995] and iterators. VexCL provide the
same ideas for OpenCL [Demidov 2012]. Unfortunately those two libraries do not offer any
Python bindings. ArrayFire has array support for CPU, CUDA and OpenCL compute backends
[Malcolm et al. 2012]. It recently got Python support through the arrayfire-python mod-
ule [Chrzeszczyk 2017]. Multiple expressions involving arrays are automatically merged by
its own just-in-time engine. Those libraries provide productive high-performance computa-
tional software ecosystems for creators of scientific libraries. All the Python solutions being
posterior to the beginning to this work, the HySoP module uses its own implementation of
n-dimensional array functionalities backed up by PyOpenCL code generation capabilities.

http://web.archive.org/web/20190701052555/https://docs.scipy.org/doc/numpy/reference/routines.html
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3.2.2 OpenCL code generation framework

OpenCL 1.2 is a subset of the C language, and because target architectures are often not known
is advance, OpenCL sources are usually compiled at runtime. Just-in-time (JIT) compilation is
thus the natural way to obtain executable binaries (kernels) in OpenCL. For simple application,
the source code can be loaded from external files or directly embedded into the application
as a literal string constants. When the source code has to be modified to suit some of the
user inputs, the JIT capability makes it possible to generate code at runtime instead. This
is known as Run-Time Code Generation (RTCG) and is used in all of the array libraries
presented in the previous section. Code can be generated by three different methods:

• Simple string formatting: Using raw Python builtin string formatting capabilities
(PEP 3101) is already sufficient for a large range of applications. It can be used to
inject specific values for given keywords such as the data type and loop ranges. This
simple technique can compensate for the lack of generic programming capabilities such
as C++ templates that are available in CUDA and OpenCL 2.x kernels. Note that it is also
possible to use the C-preprocessor [Stallman et al. 1987] within OpenCL source code and
to provide custom defines at compilation.

• Textual templating: When the generated code depends on some control flow while
the code variants are textually related, it may be easier to use a templating engine that
can do more than simple keyword substitution. As an example, the templating engine
used by PyOpenCL to provide code generation capabilities such as ElementwiseKernel
is Jinja2 [Ronacher 2008].

• Code generation from abstract syntax trees (AST): When the generated code
variants are not textually related, it may become appropriate to introduce a full repre-
sentation of the target code in the host language (here Python). Abstract syntax trees
allow code to be generated by using all the facilities provided by the host language.
In Python, C-like code generation can be done with a variety modules such as CodePy,
cgen and cfile but the most mature AST based code generator seems to be provided
by Sympy (even if it does not offer direct OpenCL support). A list of scientific libraries
using AST based code generation techniques can be found in [Terrel 2011].

Runtime code generation has been used in the HySoP library since the first OpenCL implemen-
tation [Etancelin 2014]. The library was capable of dynamically generating efficient advection,
remeshing, diffusion and transposition OpenCL kernels by using file-based static sources, the
C-preprocessor to select the numerical methods and a custom source parser to enable the
vectorization of expressions. This method would be classified as a simple string formatting
technique. The main disadvantage with this approach is that each new numerical method
requires sources and C macros to be modified, even if it is just a simple variant of an existing
one. The source code is also obfuscated in the presence of many preprocessor macros.
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In the present work, this code generation framework has been replaced by two complementary
AST-based approaches:

1. An OpenCL code generation framework based on Python context managers (PEP 343)
capable of generating any OpenCL kernel directly in Python. Context managers are used
to handle code sections and code blocks such that the code generator does reflect the
structure of the generated code [Filiba 2012]. Inside a block, each individual line of code
is then generated by using simple Python string formatting capabilities. This process
is assisted by many helper classes representing OpenCL variables, arrays, and functions
to be called.

2. An OpenCL code generator based on the Sympy AST representation. This is particularly
useful to automatically generate and vectorize symbolic expressions supplied by the
user.

The code generating task is facilitated by the PyOpenCL library that already provides mappings
between OpenCL vector types and NumPy types and a way to convert NumPy structured types
to OpenCL ones (structured data has no reason to be identically laid out in memory between
the host and device because of alignment concerns). The first code generator is responsible
to generate all the OpenCL source codes at kernel and function level (type declaration, kernel,
functions, arguments, variables). Together with simple string formatting, it can be used to
generate any source code directly in Python. The following piece of code generates a custom
kernel that performs n-dimensional array copy with arbitrary shape and stride up to n = 3:

class CopyKernel(KernelCodeGenerator):
def __init__(self, work_dim, known_vars, **kwds):

kargs = self.gen_kernel_arguments(work_dim, ’float’, **kwds)
super(CopyKernel, self).__init__(name=’copy_kernel’, work_dim=work_dim,

kernel_args=kargs, known_vars=known_vars, **kwds)
self.gencode(known_vars=known_vars, **kwds)

def gen_kernel_arguments(self, work_dim, btype, **kwds):
kargs = ArgDict()
kargs[’src’] = CodegenVariable(name=’src’, ctype=btype, nl=True, ptr=True,

ptr_restrict=True, add_impl_const=True, storage=’__global’, const=True, **kwds)
kargs[’dst’] = CodegenVariable(name=’dst’, ctype=btype, nl=True, ptr=True,

ptr_restrict=True, add_impl_const=True, storage=’__global’, **kwds)
kargs[’array_shape’] = CodegenVectorClBuiltin(’N’, ’int’, work_dim, **kwds)
return kargs

def gencode(s, **kwds):
loop_index = CodegenVectorClBuiltin(’k’, ’int’, s.work_dim, **kwds)
src, dst, lid, local_size, global_size, array_shape = map(s.vars.get, (’src’,

’dst’, ’local_id’, ’local_size’, ’global_size’, ’array_shape’))
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loop_context = lambda i: s._for_(’{j}={start}; {j}<{N}; {j}+={step}’.format(
j=loop_index[i], N=array_shape[i],
start=0 if i else lid[i], step=global_size[i] if i else local_size[i]))

loop_contexts = tuple(loop_context(i) for i in xrange(s.work_dim-1,-1,-1))

array_strides = tuple(’*’.join(tuple(str(array_shape[j])
for j in xrange(i))) if i else ’1’
for i in xrange(s.work_dim))

array_offset = ’+’.join(’{}*{}’.format(loop_index[i], array_strides[i])
for i in xrange(s.work_dim))

with s._kernel_():
s.decl_aligned_vars(lid, local_size, global_size, const=True)
s.decl_vars(loop_index)
with contextlib.nested(*loop_contexts):

dst.affect(s, init=src[array_offset], i=array_offset)

Context managers (such as block , kernel , function , for , if and their variants) help
to keep code blocks organized. The development process is simplified with helper routines such
as edit() that opens the generated code in the default terminal editor and test compile()
that tries to compile the code for a designated OpenCL device. The previous code generates
the following code for work dim set to 3:

__kernel void copy_kernel(__global const float *const restrict src,
__global float *const restrict dst,
int3 N) {

const int3 lid = (int3)(get_local_id(0),get_local_id(1),get_local_id(2));
const int3 L = (int3)(get_local_size(0),get_local_size(1),get_local_size(2));
const int3 G = (int3)(get_global_size(0),get_global_size(1),get_global_size(2));

int3 k;
for (k.z=0; k.z<N.z; k.z+=G.z) {

for (k.y=0; k.y<N.y; k.y+=G.y) {
for (k.x=lid.x; k.x<N.x; k.x+=L.x) {

dst[k.x*1+k.y*N.x+k.z*N.x*N.y] = src[k.x*1+k.y*N.x+k.z*N.x*N.y];
}

}
}

}

The code generator offers helper routine to handle struct, union, enum and various type of
variables such as PyOpenCL arrays that each can have given different offset, strides and data
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type. Functions are implemented as separate code generators such that they can be reused
across different kernels (and other functions). The code generator uses by default eleven
ordered code sections to generate valid OpenCL: the first block consists in C-preprocessor
macros and is followed by enum definitions (enums cannot be forward declared) and union,
struct, function and kernel prototypes. Those six header sections are followed by union
and struct declarations, global scope constants and finally function and kernel implemen-
tations. The direct implication of runtime code generation is that most variables are now
known at compile time. Within the previous code sample, this include the array shape N
but also local and global work sizes (L and G which specify respectively the number of work-
items that make up a work-group and the total number of global work-items that have to be
spawned). The knowledge of those variables allows the compiler to optimize the generated
code appropriately. To give an example, the same code is regenerated with work dim set to
2 and by using the known vars capabilities of the generator and providing the value of N, G
and L:

/* kernel_prototypes */
__kernel __attribute__((reqd_work_group_size(512,1,1)))
void copy_kernel(__global const float *restrict src,

__global float *restrict dst);

/* global_scope_constants */
__constant const int2 N = (int2)((+1024),(+1024));

/* kernel_declarations */
__kernel void copy_kernel(__global const float *const restrict src,

__global float *const restrict dst) {

const int2 lid = (int2)(get_local_id(0),get_local_id(1));
const int2 L = (int2)((+512),(+1));
const int2 G = (int2)((+512),(+512));

int2 k;
for (k.y=0; k.y<N.y; k.y+=G.y) {

for (k.x=lid.x; k.x<N.x; k.x+=L.x) {
dst[k.x*1+k.y*N.x] = src[k.x*1+k.y*N.x];

}
}

}

The generated kernel signature now exposes one less argument (that has become a global
scope constant) and enforces an explicit work group size that is set to (512, 1, 1). This
simple kernel already raise the problem of choosing appropriate values for the work-group
size and the global work size for given device and array shape. In general, the values of L
and G are obtained by a simple heuristic. For a given device, better values may be obtained
by performing kernel microbenchmarking.



156 Chapter 3. Implementation and High Performance Computing

Sympy offers a way to generate compilable code directly from Sympy expressions. (see
http://docs.sympy.org/latest/modules/utilities/codegen.html). In particular its C code gen-
erator can be extended by implementing code printers to handle symbolic representations
of additional OpenCL constructs. Each Sympy symbolic expression is represented by an un-
derlying AST where each node is either a subexpression or a concrete symbol. With such
a representation it is possible to determine the OpenCL type (int, float8, custom complex
type, ...) of each node by taking into account the implicit casting rules of the language. It
also makes it possible to inject additional explicit cast and conversion expressions to handle
the non-implicit cases of promotion or demotion of builtin vector types (see [Khronos2011],
section 6.2). The idea behind this approach is to propose to the users (and implementers) a
way to generate efficient OpenCL based operators without having to use the tedious class-based
code generator to generate custom elementwise kernels.

Code generation from symbolic expressions use the class-based code generator under the hood
to generate the final code. It is mainly capable of generating elementwise operations, the it-
eration shape being determined by field of array symbols present in the expressions. The
generated code targets contiguous cached memory accesses and the optimal kernel configu-
ration and runtime parameters are automatically determined by kernel microbenchmarking
(see subsection 3.2.3). The resulting symbolic DSL also incorporate features aimed at gener-
ating kernels that are able to integrate PDEs by using explicit finite differences with explicit
Runge-Kutta time integrators. The basic symbolic codegen interface allows to mimic the
capabilities provided by PyOpenCL elementwise kernels but with additional automatic tuning
of kernel runtime parameters. Symbolic operator interfaces are also provided such that once
a kernel has been generated, it is automatically wrapped into an operator and its topology
requirements are automatically set up depending on determined numerical methods. Finally
the process of splitting expressions according to directional derivatives (as presented in section
2.5) is automated to generate directional operators from general symbolic expressions.

To sum up, given four arrays (a, b, c, d) of given shape and data type it is possible to compute
d = a + b ∗ sin(d) on the OpenCL backend by using one of the following code generation
frameworks provided by the HySoP library:

• Simple elementwise operations on arrays based on the PyOpenCL stack:
kernel = array_backend.nary_op((A,B,C), (D,),

operation=’y0[i] = x0[i]+x1[i]*sin(x2[i])’,
build_kernel_launcher=True)

• Elementwise operations from symbolic expressions with automatic parameter tuning:
As, Bs, Cs, Ds = OpenClElementwiseKernelGenerator.arrays_to_symbols(A,B,C,D)
expr = Assignment(Ds, As+Bs*sympy.sin(Cs))
kernel = kernel_generator.elementwise(’custom_kernel’, expr)

• A more general code generator requiring the implementation of a custom kernel class.
class CustomKernel(KernelCodeGenerator):

...

The last method offers more flexibility but requires the user to master the OpenCL standard.

http://web.archive.org/web/20180804181025/http://docs.sympy.org/latest/modules/utilities/codegen.html
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The HySoP symbolic code generator offers good performances when compared to state of
the art array libraries. The performance is first compared for OpenCL CPU platforms where
HySoP outperforms all considered array libraries. The Xeon E5-2695v4 achieves 57.99 GB/s
(42.5% of peak memory bandwidth) while the Core i7-9700K achieves 14.16 GB/s (66.5% of
peak memory bandwidth) for double-precision arrays of 5123 = 227 elements (1GiB / array).

Figure 3.9 – Three dimensional array benchmark on CPU: Mean runtime required to
compute d=a+b*sin(c) over 1024 runs where a, b, c, and d are double-precision arrays of
shape (Nz, Ny, Nx). This computation is run on the following array backends: Numpy [Van Der
Walt et al. 2011] (sin, multiply, add), Numexpr [Cooke et al. 2017], Pythran [Guelton et al.
2015] (-DUSE XSIMD -fopenmp -march=native -O2), Cython [Behnel et al. 2011] (-fopenmp
-march=native -O2), PyOpenCl [Klöckner et al. 2012] (ElementwiseKernel), and autotuned
HySoP symbolic code generator (MEASURE). The NumPy implementation is not multithreaded.
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All considered OpenCL and CUDA GPU platforms perform roughly the same under enough
workload. CUDA based solutions (PyCuda and cupy) exhibit 45% faster runtimes than their
OpenCL counterparts (PyOpenCl and HySoP) for the consumer grade GPU (GeForce RTX
2080Ti). The generated code being roughly the same between PyOpenCl and PyCuda, this
could be explained by differing kernel compilation flags between the two platforms [Fang et
al. 2011]. The Tesla V100-SXM2 achieves 774.4 GB/s (86.0% of peak bandwidth) while the
GeForce RTX 2080Ti achieves 263.4 GB/s (42.8% of peak bandwidth vs. 62.1% for CUDA).

Figure 3.10 – Three dimensional array benchmark on GPU: Mean runtime required
to compute d=a+b*sin(c) over 1024 runs where a, b, c, and d are double-precision arrays of
shape (Nz, Ny, Nx). This computation is run on the following array backends: PyOpenCl and
PyCuda [Klöckner et al. 2012] (ElementwiseKernel), CuPy [Nishino et al. 2017] and autotuned
HySoP symbolic OpenCL code generator (MEASURE). PyCuda and CuPy are CUDA based libraries
whereas PyOpenCL and HySoP are based on OpenCL (using Nvidia OpenCL platforms). The
kernel is compute-bound on the consumer-grade GPU.
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3.2.3 Permutations and automatic tuning of kernel runtime parameters

Performance auto-tuning is a well established technique which has been applied in a variety of
high performance libraries targeting CPUs with multi-level caches, such as ATLAS for dense lin-
ear algebra [Whaley et al. 1998], OSKI for sparse linear algebra [Vuduc et al. 2005] Datta2009
for stencil based computations [Datta et al. 2009], and FFTW for fast Fourier transforms [Frigo
et al. 2012]. It has been naturally suggested as a solution to the OpenCL performance porta-
bility problem [Fang et al. 2011]. Determining the best set of optimizations that have to be
applied to a kernel to be executed on a given OpenCL device is a challenging problem [Dolbeau
et al. 2013]. For instance, some kernel optimizations may result in excellent performance on
GPUs, but reduce performance on CPUs. In the case the target device is not known in ad-
vance, the choice of the best kernel execution parameters has to rely on some runtime kernel
microbenchmarking strategy. Such OpenCL kernel autotuning strategy has been successfully
applied to the same application specific problems as on the CPU: stencil based computations
[Datta et al. 2008], fast Fourier transforms (MPFFT [Li et al. 2013]), sparse linear algebra
(clSpMV [Su et al. 2012a]), and dense linear algebra (clMagma [Cao et al. 2014]).

Numerical simulations performed with HySoP with the OpenCL backend generate tens to hun-
dreds of different OpenCL kernels, each of them requiring a specific configuration to achieve
the best performance. Moving an application to a different device often requires a new opti-
mization configuration for each kernel [Grauer-Gray et al. 2012]. The aim of automatic kernel
parameter tuning is to guaranty some performance portability by relying solely on empirical
data, instead of any performance model or a priori knowledge of the target compute device
[Du et al. 2012]. In section 1.4.5 we already identified at least three parameters to optimize
in order to get closer to device peak memory bandwidth: local and global grid size and vec-
torization. The global and local grid sizes can easily be tuned at runtime without performing
any modification to the code and constitute parameters of choice for quick kernel autotuning
[Spafford et al. 2010]. In practice, other kernel optimization parameters are mostly application
dependent [Zhang et al. 2013].

In the present work, all kernels are code generated and autotuned during problem setup and
the same kernels are then called a certain number of times at every timestep. A unique
kernel may be called thousands of time during a single simulation. It is thus computationally
efficient to spend some time in the exploration of the kernel parameter space.

Kernel code
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Figure 3.11 – Interactions between the kernel code generator and kernel autotuner
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Many different methods exist to explore the parameter space, from simple brute-force ap-
proaches to autotuners based on efficient discrete search algorithms [Werkhoven 2019] or even
on machine learning [Falch et al. 2015]. Those two last approaches are more efficient since
they only explore a subset of the entire tuning parameter configuration space. Here we choose
simplicity and opt for a classical brute forcing algorithm as provided by [Nugteren et al. 2015]
(see figure 3.11). The autotuner is implemented directly into the HySoP library and provides
a planning interface similar to FFTW to reduce the time passed during the autotuning step.
It features four levels of parameter sets (enabled with the planning rigor flags ESTIMATE,
MEASURE, PATIENT and EXHAUSTIVE) depending on how much time the user is willing to pay
during the planning phase.

One kernel is code generated per kernel parameters sets (including hard-coded runtime pa-
rameters such as local and global grid size) and is benchmarked by averaging statistics over
a given amount of successive runs. Kernels that underperform the actual best candidate over
some threshold value (usually 120%) are automatically pruned out from the optimization
process. The procedure then consists into keeping half of the best candidates and doubling
the number of successive runs to refine bench statistics until there is only one kernel left.
Once the autotuner has found an optimal set of parameters, the results are cached on disk for
the actual device configuration, allowing faster subsequent runs. The case of the local per-
mutation kernels is interesting in this context because of the large space of kernel generation
parameters.

Transposition or permutations kernels are generated by using the following set of classical
optimizations:

• Only coalesced memory transactions from and to device global memory.

• Use of a square window of local memory (called a tile) to handle transposition between
the axis contiguous in memory (the last one) and its corresponding permutation. The
array is permutated tile by tile out of place (inplace permutation can also be done easily
for 2D arrays but requires two tiles in local memory).

• Minimize bank conflicts on local memory transposition by offsetting each line by one
element. Shared memory usually is divided into equally-sized memory modules, called
banks. They are organized such that successive words are assigned to successive banks.
These banks can be accessed simultaneously, and to achieve maximum bandwidth work-
items should access local memory associated with different banks

• Use of diagonal work-group reordering to minimize partition camping. As with local
memory, global memory is often divided into multiple partitions that have all to be
accessed simultaneously by work-items of a given work-group to achieve global maximal
bandwidth. Given a work-group index, the position of tile is found by using diagonal
array coordinates.

Those optimizations, described in [Ruetsch et al. 2009] and [Baqais et al. 2013], can be
generalized to permutations in any dimensions. The kernel autotuner tries to find optimal
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parameters such as the tile size, global and local sizes and has to enable or disable the use of
diagonal coordinates and tile offsetting. The maximum tile size is determined by the device
available local memory per work-group: 32kiB for the two CPUs and 48kiB for the two GPUs.
To transpose 4B elements (float or int), this leads to maximum tiles size of 90 and 110
(90 × 90 and 110 × 110 elements). For 2D inplace transpositions, two tiles are required and
the maximal tile size drops to 64 and 78 respectively. In practice the autotuner only explore
tile sizes that are powers of 2 (and of the form 2i 3j in EXHAUSTIVE mode).

The HySoP library provides options to configure the kernel autotuner and to dump resulting
kernel execution statistics. As an example, the following statistics represent all the different
configurations generated for the transposition of a single-precision floating point array of
shape (16384, 16384):

Figure 3.12 – Kernel statistics obtained for 2D transposition of arrays of size 163842

The kernel autotuner generate hundreds of different kernels which mean runtimes are mea-
sured initially over 8 runs. The resulting distribution of relative runtimes (with respect to
the mean mean-runtime across all benched kernels) is represented in an histogram with log
scale. Sky blue overlay correspond to kernels that have been pruned out during the procedure.
Green, orange and red vertical lines represent, respectively, best, median and worst runtime.
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The kernel autotuner gives the following optimal parameters on the different devices for two
and three-dimensional arrays of size 163842 and 5123:

Device Axes Shape DC TO TS G L t (ms) BDW (GB/s)
E5-2695v4 (2,1) 163842 7 7 32 (4096,512) (8,1) 31.6 69.0 (50%)
E5-2695v4 (1,3,2) 5123 7 7 64 (64,64,512) (8,8,1) 20.5 52.4 (38%)
E5-2695v4 (2,1,3) 5123 7 3 64 (2,512,512) (1,1,1) 17.7 60.7 (44%)
E5-2695v4 (3,1,2) 5123 7 3 32 (16,16,512) (1,1,1) 23.3 46.1 (34%)
E5-2695v4 (2,3,1) 5123 7 3 64 (8,512,8) (1,1,1) 24.0 44.7 (33%)
E5-2695v4 (3,2,1) 5123 7 3 64 (8,512,8) (1,1,1) 22.0 48.8 (36%)
i7-9700K (2,1) 163842 7 7 64 (8192,256) (32,1) 152.6 14.1 (66%)
i7-9700K (1,3,2) 5123 7 7 64 (64,16,512) (8,2,1) 84.6 12.7 (59%)
i7-9700K (2,1,3) 5123 7 3 64 (64,512,512) (16,1,1) 90.6 11.9 (56%)
i7-9700K (3,1,2) 5123 7 7 64 (64,16,512) (8,2,1) 99.6 10.8 (48%)
i7-9700K (2,3,1) 5123 7 7 64 (64,512,8) (8,1,1) 100.9 10.6 (48%)
i7-9700K (3,2,1) 5123 7 7 64 (64,512,8) (8,1,1) 89.8 12.0 (54%)
V100-SXM2 (2,1) 163842 7 3 64 (16384,4096) (64,16) 3.1 693 (77%)
V100-SXM2 (1,3,2) 5123 7 3 64 (512,64,512) (64,8,1) 1.4 767 (85%)
V100-SXM2 (2,1,3) 5123 7 3 32 (128,512,512) (64,1,1) 1.4 767 (85%)
V100-SXM2 (3,1,2) 5123 7 3 32 (256,256,512) (16,16,1) 1.4 767 (85%)
V100-SXM2 (2,3,1) 5123 3 3 32 (512,512,16) (32,1,1) 2.2 488 (54%)
V100-SXM2 (3,2,1) 5123 7 3 32 (512,512,16) (32,1,1) 2.2 488 (54%)
RTX 2080Ti (2,1) 163842 7 3 32 (16384,4096) (32,8) 5.6 385 (62%)
RTX 2080Ti (1,3,2) 5123 7 3 32 (512,64,512) (32,4,1) 2.0 537 (87%)
RTX 2080Ti (2,1,3) 5123 7 7 32 (128,512,512) (128,1,1) 2.0 537 (87%)
RTX 2080Ti (3,1,2) 5123 7 3 16 (512,256,512) (16,8,1) 2.0 537 (87%)
RTX 2080Ti (2,3,1) 5123 7 7 32 (512,512,16) (32,1,1) 2.9 370 (60%)
RTX 2080Ti (3,2,1) 5123 7 7 32 (512,512,16) (32,1,1) 3.0 358 (58%)

Table 3.2 – Kernel autotuning results for 2D and 3D OpenCL permutation kernels:
Best configuration determined by the kernel autotuner in PATIENT mode for two and three-
dimensional single-precision floating point arrays of given shape. Mean runtime value is
obtained by at least 128 runs of the best resulting kernel. Axes corresponds to the state of axes
after permutation starting from unpermutated configuration (1,2) and (1,2,3) where the first
axis (resp. the last axis) has the greatest (resp. smallest) stride in memory. DC corresponds
to diagonal coordinates, TO to tile offsetting, TS to tile size, BDW to achieved global memory
bandwidth and G and L to global and local grid sizes. Achieved global memory bandwidth is
also given in percentage of theoretical peak memory bandwidth of the target device.

Apart from the dual CPU configuration, every possible permutations for two and three-
dimensional arrays achieve more than 50% of the device theoretical peak global memory
bandwidth. On the two GPUs , some permutations even achieve more than 85% of the max-
imal theoretical value. Diagonal coordinates is an optimization that could be disabled for
every benched platforms whereas tile offsetting seems to help in half the cases. Those perfor-
mances are in agreement with dedicated multidimensional array permutation libraries target-
ing CUDA such as TTC (Tensor Transposition Compiler [Springer et al. 2016], cuTT (CUDATensor
Transpose library [Hynninen et al. 2017] and TTLG (Tensor Transposition Library for GPUs [Ve-
durada et al. 2018]). To the author’s knowledge there exist no such dedicated dense tensor
permutation library for OpenCL. Performance on CPUs is also comparable to HPTT (High Per-
formance Tensor Transposition, [Springer et al. 2017]).
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The Intel OpenCL platform seems unable to surpass half the bandwidth in a multi-socket
configuration (dual Xeon E5-2695v4 with four memory channels per CPU). This behaviour
was already seen on clpeak and elementwise benchmarks, and could be the result of the
memory policy that is in place for the allocation of the CPU OpenCL buffer on the underlying
NUMA architecture [Lameter 2013]. We recall that a NUMA node is defined as an area where
all memory has the same speed as seen from a particular CPU (a node can contain multiple
CPUs). We study the effect of the memory policy on a quad socket Intel Xeon E7-8860 v4
platform with a theoretical peak global memory bandwidth of 51.2 GB/s per node (one node
containing one CPU). The kernel considered here is the 2D transposition of single-precision
floating point arrays of size 163842. To enforce memory policies we use the NUMA library
(through its Python binding of the same name) and the numactl utility [Kleen 2005].

A first batch of statistics is collected with the numactl utility:
• Only one CPU with local allocation (numactl --cpunodebind=0 --membind=0) yields

80.7ms mean execution time, or 26.6GB/s (52.0% of the peak memory bandwidth of
one memory node).

• All CPUs with allocation on NUMA node 0 (numactl --cpunodebind=0,1,2,3
--membind=0) yields 83.5ms mean execution time, or 25.7GB/s (50.0% of the peak
memory bandwidth of one memory node).

• Only one CPU with local allocation interleaved on all nodes (numactl --cpunodebind=0
--interleave=0,1,2,3) yields 62.3ms mean execution time, or 34.5GB/s (16.8% of the
peak memory bandwidth of all memory nodes).

• All CPUs with local allocation (numactl --cpunodebind=0,1,2,3 --localalloc)
yields 28.8ms mean execution time, or 74.5B/s (36% of the peak memory bandwidth
of all memory nodes).

A second batch of statistics is gathered directly in OpenCL by using device fission ca-
pabilities offered by the OpenCL 1.2 standard [Sych 2013] and Intel specific extension
cl intel device partition by names [Yariv et al. 2013]. We create four non-overlapping
sub-devices containing specific compute units based on libnuma.node to cpu, splitting the
OpenCL device into the four subdevices corresponding to the four physical CPUs. The best ker-
nel obtained with the command numactl --cpunodebind=0 --membind=0 is recovered and
compiled for every of those subdevices. One array buffer is allocated on each NUMA node
and each device is benched on all those four buffers by using a subdevice-specific queue.

Node
0 1 2 3

N
od

e

0 10 21 21 21
1 21 10 21 21
2 21 21 10 21
3 21 21 21 10

(a) Node distance as obtained with numactl

OpenCl Subdevice
0 1 2 3

B
uf

fe
r 0 81.5 124.5 123.6 124.6

1 125.2 81.4 124.1 124.6
2 124.7 124.3 81.2 124.3
3 125.2 124.3 124.2 81.3

(b) Mean runtime for 2D transposition (ms)

Table 3.3 – Performance of transposition on a quad socket NUMA architecture
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The joint use of the four subdevices results in mean runtimes of 27.4ms which is similar with
the 28.8ms result obtained with numactl --cpunodebind=0,1,2,3 --localalloc. Enforc-
ing memory policies with numactl or by manual device fission does not seem to help much
in this context, the maximal obtained mean relative bandwidth being of the order of 37%
(and 50% for a single socket). As a point of comparison, the STREAM memory bandwidth
benchmark [Bergstrom 2011] achieves up to 54% of peak memory bandwidth for its best run.

3.2.4 Directional advection operator

In this subsection we study the performance of the directional advection operator. As seen
in chapter 2, the transport of a scalar θ in a velocity field u is decomposed into n (or 2n)
substeps with directional splitting, where n is the dimension of the problem. Each substep is
further decomposed as transport, remeshing and local permutation of data such that the next
advected axis becomes contiguous in memory. At a first sight, this results into enqueuing 3n
kernels for a first order or 6n kernels for second order Strang splitting, but we also have to
take into account ghost exchanges and ghost accumulation (even for serial processes).

Given a timestep dt that fulfills a LCFL condition (2.23), a user chosen CFL condition (2.22)
and a direction i, directional advection consists into the following steps:

1. Interpolate velocity to the scalar grid by using an interpolation scheme (only if the two
grids have different resolutions).

2. Create particles aligned with the underlying scalar field grid and perform particle ad-
vection at fixed velocity ui(x) by using an explicit Runge-Kutta time integrator 2.3.2.
Particles may be transported up to C ≥ dt ‖ui‖∞ /dxi cells outside of the domain (where
C is obtained from the arbitrary CFL condition). The required ghosts for the velocity
and input scalar is thus 1 + bCc.

3. Remesh all the particles with algorithm 5 by using a remeshing kernel Λp,r that has
support [−s, s] with s = 1 + p/2. This requires 1 + bCc+ s ghosts to remesh the output
scalar field.

4. Accumulate ghost remeshed quantities to the left and to the right processes (with respect
to the current direction). For a serial process with periodic boundary conditions in the
current direction, this will accumulate left ghost values to rightmost compute grid values.

5. Update ghosts by performing a full ghost exchange.

6. Perform a local permutation such that the next axis becomes contiguous in memory. In
2D, this corresponds to a transposition but in 3D multiple different permutations are
available.

Within a multi-grid context where the scalar is discretized on a finer grid, the number of
scalar ghosts is multiplied by the grid ratio in the considered direction. The user chosen CFL
number should be such that ghost exchange has a reasonable cost (see section 3.3.2).
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The OpenCL implementation in mainly based on the one of [Etancelin 2014] and has been fit
into the code generation and auto-tuning framework. Each line that is contiguous in memory
represent and independent one-dimensional transport problem that is treated iteratively by
one work-group (by iterating on sublines which length is a multiple of the work-group size).
During the advection step, the velocity is only read once and is cached in local memory to
allow for efficient linear interpolations. During the remeshing step, the particles are remeshed
to local memory before being written back to global memory. In the case local memory do
not improve performance, this caching behaviour can be disabled by the autotuner.

Advection kernel

The arithmetic intensity of the advection kernel only depends on the Runge-Kutta scheme
(the Butcher tableau), and the chosen interpolation scheme. In practice we only use linear
interpolation during the advection step (a more elaborate interpolation method may be used
to interpolate velocity to the fine grid as a pre-processing step). For fields discretized on N v

points and a Runge-Kutta scheme of s steps, the advection step performs s evaluations of the
velocity per particle along with 2s+ k − 1 additions and 2s+ k multiplications per particles
where s − 1 ≤ k ≤ s(s + 1)/2 represent the number of non-zero coefficients aij contained in
the Butcher tableau (see section 2.3.2). Evaluation of velocity has no additional cost on the
first stage (particles are grid aligned) and for all subsequent stages it cost approximately '
5 FLOP / particle, see equation (2.27)). The computation of the initial particle position
requires one multiplication per particle. The total number of particles is N =

n∏
i=1
N v
i and if

we consider all operations we obtain a total of (4s+ 2k+ 5s)N operations. The total number
of memory transaction in terms of elements is N reads of velocity and N writes of resulting
particle position (2N memory transactions). If we denote S the element size in bytes this
gives a total arithmetic intensity of (9s + 2k)/(2S) FLOP/B. The following table shows the
usual cases of single- and double-precision Euler, RK2, RK3, RK4 and RK4 38 Runge-Kutta
methods:

s k FLOP/E FLOP/B (SP) FLOP/B (DP)
Euler 1 0 4.5 1.1 0.6
RK2 2 1 10 2.5 1.3
RK3 3 2 15.5 3.9 1.9
RK4 4 3 21 5.3 2.6
RK4 38 4 5 23 5.8 2.9

Table 3.4 – Approximative arithmetic intensity of the advection kernels

In practice, the arithmetic intensity also depends on vectorization and the size of input at
constant CFL number. The total memory that has to be read include velocity ghosts and is
thus larger than N . The vectorization also plays a role because some particle independent
scalar quantities can be computed once for multiple particles at a time.

Because computing arithmetic intensity by hand is a tricky task, even for simple algorithms,
we rely on an automatic tool to collect kernel execution statistics from code generated kernels.
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This tool is based on Oclgrind, a virtual OpenCL device simulator which goal is to provide a
platform for creating tools to help OpenCL development [Price et al. 2015]. The simulator is
built on an interpreter for the LLVM IR (LLVM intermediate representation [Lattner et al. 2004])
and provide a lightweight method to run kernels in isolation from any OpenCL host code. This
interface is provided via the oclgrind-kernel command, which takes as input a simulator file
(*.sim) describing how to run the kernel (location of the OpenCL source code, configuration
of kernel arguments, and global and local sizes). Perhaps the most interesting feature of
Oclgrind is that it provides a simple plugin interface that allows third-party developers to
extend its functionality. This interface allows a plugin to be notified when various events
occur within the simulated kernel, such as an instruction being executed or memory being
accessed. Plugins are implemented in C++ by extending the virtual oclgrind::Plugin class
and have to be compiled as external dynamically loadable libraries.

As most of HySoP kernels are code generated such kernel simulation files can easily be gen-
erated by the autotuner that has the full knowledge of the source code and associated kernel
arguments. By adding a simple callback support, the autotuner can run arbitrary user scripts
with the knowledge of the source location, simulation file and runtime statistics. Such a script
can run oclgrind-kernel with a custom plugin and analyze its outputs. The present work
use this approach with a custom plugin that computes instructions statistics occurring dur-
ing the simulation of some target kernel. The plugin collects data about integer and floating
point operations as well as memory transactions (private/local/constant/global) and outputs
them to disk for further analysis. An example of statistics obtained with this plugin is given
appendix (C). The user script can then proceed to compute the effective floating point oper-
ations per byte FLOP/B and integer operations per byte IOP/B by using global memory data
(all target kernels only load and store a given piece of global data once). The mean runtime
being provided by the autotuner, it is then possible to compute mean achieved bandwidth
and mean achieved compute statistics.
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Figure 3.13 – Overview of the process to gather kernel execution statistics
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We use this method to collect statistics of directional advection on the Tesla V100-SXM2
GPU for various Runge-Kutta schemes and grid resolutions. Full results, including execution
times are available in tables C.1 and C.2 and corresponding rooflines are plotted here:

Figure 3.14 – Roofline of 2D and 3D, single- and double-precision advection
From figure 3.14 it is clear that advection is a memory-bound problem on the Tesla GPU and
that arithmetic intensity increases with integration order in time. Achieved global memory
bandwidth increases with the size of the array. This is expected because one work-group is
scheduled per line (particles are all independent) and device occupancy increases when more
work-groups are scheduled at a time. The achieved bandwidth also depends on the size of
the work-groups (number of work items) and associated workload. Although the smallest 3D
problem spawns twice the number of work-groups when compared to the smallest 2D problem
(4096 vs. 2048), the 2D problem achieves much higher bandwidth simply because the smallest
2D problem is 16 times bigger than the smallest 3D problem (20482 vs. 643). Under enough
workload the directional advection kernels achieve at least 70% of global peak theoretical
memory bandwidth for single-precision and 80% for double-precision, the maximal achieved
bandwidth being of 86.9%. Thanks to the massive memory bandwidth provided by the
second generation of High Bandwidth Memory (HBM2) stacked onto the device, it takes only
1.62 milliseconds to transport 5123 (' 134.2 millions) particles by using single-precision. Put
the other way around, this represent one particle every 12 picoseconds or 83 giga-particles
per second. Once all particles have been spawned and advected, the remeshing kernel is
responsible to remesh those free particles onto the grid.
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Remeshing kernel

The main problem with remeshing is that consecutive particles can be accumulated at the
same time to the same local memory locations by neighboring work-items. The historical
OpenCL implementation of the library is based on the assumption that because of the regularity
of the velocity (imposed by the LCFL), the maximal number of particles per cell is kept small
after the advection step. Under this hypothesis, local memory data races can be avoided by
enforcing a given work-item to treat a certain amount of consecutive neighboring particles
(usually 2, 4, 8 or 16 to fit OpenCL vector builtins). In practice this implementation has shown
good results on many different test cases but it tends to reduce device occupancy (reduced
work-group sizes). A new implementation of the remeshing kernel has been introduced by
using atomic additions in local memory. Unfortunately most devices do not provide 64bit
atomic intrinsics so this second implementation may only be available for single-precision
floating point numbers on certain devices such as NVidia GPUs. Atomic operations on floating
point values are usually not readily available and are thus implemented with the usual union +
atomic cmpxchg workaround [Hamuraru 2016]. Apart from these parameters, the autotuner
has to find the optimal vectorization and workload per work-item. As before, results are given
for two- and three-dimensional, single- and double-precision arrays in tables C.3 and C.4 and
the corresponding rooflines are depicted here:

Figure 3.15 – Roofline of 2D and 3D, single- and double-precision remeshing
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The remeshing formula Λp,r is a piecewise polynomial of a certain order that is evaluated
with Horner’s method. High order remeshing formulas that preserve multiple moments with
decent overall regularity tend to be compute-bound but multiple scalars can be advected at a
time to save on expensive calls to the remeshing formula. Because additional scalars decrease
arithmetic intensity, we only consider the best case scenario (in terms memory bandwidth)
of a single advected scalar. As it can be seen on figure 3.15, for a single scalar the Tesla
V100 GPU and the Λ8,4 remeshing formula, we obtain an algorithm that is at the same time
compute and memory bound (the sweet spot of designed arithmetic intensity). Out of the 32
single-precision problem configurations, the kernel autotuner has chosen the implementation
based on atomic operations 30 times. For all those cases the preferred vectorization parameter
alternates between 1 and 2 and under high load the achieved relative global memory band-
width lies between 83.1% and 90.0%. As there is no double-precision atomic support on this
device, all the double-precision results arrise from the version without atomic intrinsics (where
the preferred vectorization becomes 2). For those cases, the achieved relative bandwidth is
between 77.0% and 86.6%. The Λ8,4 remeshing kernel exceeds 10 TFLOPS of compute for the
single-precision (10779 GFLOPS or 72.3% of the device capabilities) and about half of it for
the double-precision version. For all cases the achieved performance is roughly 16 picoseconds
per remeshed particles or 64 giga-particles per second (single-precision).

Overall n-dimensional transport performance

The n-dimensional transport of a scalar is obtained by chaining n advection and remeshing
operators interleaved with n permutations of the scalar. The graph builder automatically de-
termines that each of the velocity components have to be in permutated state so that velocity
data is permutated only once at problem initialization (in fact the velocity components are
just initialized in permutated state). This gives a total of 3n operators for first order Strang
splitting and this number doubles for second order Strang splitting. As only two-dimensional
square arrays support inplace transpositions, inplace two-dimensional rectangle and three-
dimensional permutations are performed out-of-place to a temporary buffer, followed by a
device-to-device copy to the source array. This decreases the permutation performance by a
factor of two (transposition is memory bound). Those 3n operators map to 3n OpenCL kernels
plus n device-to-device copies (except for 2D square discretizations), plus additional copy and
accumulation of hyperplane layers required for ghost exchange and ghost accumulation. As
some OpenCL platforms do not correctly support device-to-device rectangular copies from and
to non-overlapping subregions of the same buffer, ghost exchange and ghost accumulation
are done inefficiently by using temporary preallocated device buffers and by performing twice
the required number of copies. A ghost exchange costs 4 copies per direction and a ghost
accumulation 6 copies and two accumulation kernels. Each directional advection operation
require a directional ghost accumulation and a full ghost exchange. For advection, this brings
the total number of ghost related copy kernels to d(4d + 6). Besides paying extra kernel
launch latency, the device-to-device copies of discontinuous chunks of data perform poorly.
The solution to this problem would be to implement custom ghost exchange and ghost ac-
cumulation kernels. This would however not improve the distributed implementation of the
library because device-to-device copies of ghosts layers have to be replaced with device-to-host
and host-to-device copies from and to host buffers (to perform MPI exchanges).
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Figure 3.16 show single-precision kernel execution statistics gathered on 100 iterations of n-
dimensional advection on the NVidia GeForce RTX 2080Ti GPU for various configurations of
time integrators and remeshing kernels:

Figure 3.16 – Distribution of runtime for n-dimensional single-precision transport
Mean runtime and runtime ratio is given for different kind of kernels. Each bar corresponds to
a specific configuration (Runge-Kutta scheme and remeshing formula). D2D copy corresponds
to copies required for permutations and ghosts to ghost exchange and accumulation. The
number between parenthesis, when given, corresponds to the number of calls per iteration.

From figure 3.16 it is clear that the whole advection problem is memory bound on the
consumer-grade GPU, as it was the case for the server-grade GPU in the previous roofline
analyses. In 2D, every numerical method results into the same runtime. In 3D the situation
is the same but the runtime is increased by roughly 5% due to increased number of ghosts re-
quired by higher order remeshing formula Λp,r (the support of the remeshing kernel increases
with the number of even preserved moments p).
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Due to the directional splitting approach and differences in the number of copies between
the 2D and 3D cases the overall achieved performance for transport depends on the number
of dimensions. On this device, a particle can be transported every 160 picoseconds on a 2D
domain (6.3 giga-particles per second) and every 410 picoseconds in 3D (2.44 giga-particles
per second) regardless of the order of the methods. Permutations constitute most of the run-
time (45 to 48%) and further optimization of the transposition kernels could lead up to 30%
improvement in total runtime. We saw that different permutations perform differently and at
this time the operator graph builder does not perform microbenchmarking to determine the
best permutation axes. Another improvement track would be to use one of the CUDA trans-
position library and to convert the generated CUDA code to OpenCL (or more elegantly to
implement OpenCL code generation in one of those frameworks). Proper CUDA support also
constitute a long-term goal of the HySoP library.

The same benchmark run on the dual CPU device reveals that transport is compute-bound
mainly by the remeshing step (figure 3.17). On this device the advection step takes longer
with increasing time integration order (Runge-Kutta schemes). Remeshing also have bigger
runtimes for remeshing formulas with increasing number of preserved moments and take up
to 59% of the runtime for the Λ8,4 formula. Achieved performance range from 1099 to 2127 pi-
coseconds per particle (0.5 to 0.9 giga-particles per second). Two-dimensional single-precision
performance is roughly ten times worse than the consumer GPU for approximately a factor
four in price tag. For double-precision computations this performance gap reduces (transport
is compute-bound in double-precision on consumer GPUs due to architecture design).

Figure 3.17 – Distribution of runtime for single-precision transport on the CPU
Mean runtime and runtime ratio is given for different kind of kernels. Each bar corresponds
to a configuration consisting in a specific Runge-Kutta scheme that affects advection and a
specific remeshing formula Λp,r that is used during the remeshing step. D2D copy corresponds
to copies required for transpositions and ghosts to ghost exchange and accumulation. The
number between parenthesis, when given, corresponds to the number of calls per iteration.
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3.2.5 Finite differences operators

Finite difference operators such as diffusion and stretching are all implemented by using the
symbolic code generation framework. Given a symbolic expression containing n-dimensional
scalar fields and spatial derivatives of scalar fields (but no mixed spatial derivatives) the
expression is automatically split into n expressions corresponding to what we did manually
in section 2.5. This is done by simple depth-first Sympy expression AST traversal. Once the
directional symbolic expressions are found, spatial symbolic variables are permutated so that
all memory accesses become coalesced. As for advection and remeshing, it will be the graph
builder’s responsibility to inject permutations operators prior to each directional operator.
The symbolic code generator then generates kernels corresponding to those expressions by
mapping the symbolic representation to OpenCL. Each expression requires multiple analysis
and transformation steps until the final code is generated.

Because expressions are directional, we always fall in the case of independent 1D problems. As
before, a work-group is responsible to handle one contiguous line by iterating by sublines. All
global memory loads and stores happen only once, and data is cached in local memory in order
not to be memory-bound. Symbolic expressions are vectorized at code generation depending
on a vectorization parameter. As for all other code generated kernels, the autotuner tries
different combinations of parameters to find the best kernel candidate. The whole process
is depicted on figure 3.18. The customization of the numerical method is done by passing
method arguments such as the type of time integrator or the order of centered finite differences
that have to be used to approximate the derivatives. The number of required ghosts per scalar
field and per direction is extracted from the symbolic expressions and the knowledge of the
methods. Because multiple symbolic expressions can be supplied to integrate multiple scalar
fields at once with right hand sides that depend on all those fields and their spatial derivatives
(like in equation 2.44) this analysis is not straightforward.
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At this time, symbolic code generation only work for input and output scalar fields discretized
on the same Cartesian grid (but with varying number of ghosts). This means that the
symbolic code generator do not handle on the fly interpolation of fields defined on coarser
grids. Some frequently used operators such as finite differences based diffusion and stretching
are directly provided by the library. Withing this framework, a user can easily generate custom
OpenCL finite difference operators. As an example diffusion and conservative stretching can
be generated by building the following symbolic expressions:

import numpy as np
from hysop import Box
from hysop.defaults import VelocityField, VorticityField, \

TimeParameters, ViscosityParameter
from hysop.symbolic.field import Assignment, div, laplacian

box = Box(dim=3)
velo = VelocityField(box)
vorti = VorticityField(velo)
t, dt = TimeParameters()
nu = ViscosityParameter(1e-3)

# Get associated symbolic variables
xs, ts = box.s, t.s
Us, Ws, nus = velocity.s, vorticity.s, nu.s

# Vorticity diffusion (three scalar expressions)
lhs = Ss.diff(ts)
rhs = nus*laplacian(Ws, xs)
print Assignment.assign(lhs, rhs)

# Conservative stretching (three scalar expressions)
lhs = Ws.diff(ts)
rhs = div(np.outer(Us, Ws).freeze(), xs)
print Assignment.assign(lhs, rhs)

This will print the following symbolic expressions:

and

To save on memory bandwidth, stretching and diffusion kernels can be merged together by
just summing the two right hand sides together. Note that here all directional expressions
will be equivalent and generate exactly the same kernels. Autotuning will only happen once.
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Kernels statistics are collected for 3D single- and double-precision directional operators on
5123 fields on the Nvidia Tesla V100-SXM2 GPU. Diffusion and stretching results are avail-
able in table C.5 and C.6. The corresponding rooflines for the stretching operator are depicted
here:

Figure 3.19 – Rooflines of single- and double-precision directional stretching

Those kernels are memory-bound and achieved relative global memory bandwidth lies between
26 and 84% depending on the number of stages of the Runge-Kutta time integrator and finite
difference order (FDCx). The theoretical local memory bandwidth can be computed from [Jia
et al. 2018] for the Volta GPU architecture which leads to 13.2TB/s at device base clock
(1290MHz). Achieved local memory bandwidth goes as high as 9.0TB/s for the RK4-FDC8
configuration (68% of device capabilities). As all memory accesses are coalesced and without
bank conflicts, it is unclear why higher local memory bandwidth cannot be achieved, and
the lack of proper OpenCL profiling tools for NVidia GPUs does not help. Without further
analysis it is assumed that those performance results are linked to increasing pressure on
local memory coupled to local memory barriers (one barrier per time integrator stage) and
possible memory alignment issues. A local memory barrier is a work-group level construct
that will flush any variables to local memory. It is required between integrator stages so that
local memory transactions are visible to all work-items in given work-group. The alternative
would be to call the kernel s times where s is the number of stages. This would decrease the
overall performance of the operator because of additional global memory transactions.
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3.2.6 Spectral transforms

The last kind of operators that we need to be able to solve an incompressible Navier-Stokes
problem are spectral operators. This include the recovery of velocity from vorticity (Poisson
problem with computation of curl, see algorithm 9) and spectral diffusion (algorithm 7). As
we saw in section 2.6.4, the boundary conditions directly determine what kind of solver to
use, the simplest configuration being a fully periodic domain, in which case only forward
and backward discrete Fourier transforms are required. All kind of homogeneous boundary
conditions can be solved by using real-to-real transforms (DCT and DST variants). General
boundary conditions are solved spectrally by using the most suitable representation in Cheby-
shev polynomials (with Tau or Galerkin methods). In this subsection we do not consider the
distributed case.

The general idea is to build a n-dimensional transform by tensor product of one-dimensional
transforms, interleaved with data permutations for exactly the same memory coalescing rea-
sons that justified directional operator splitting. Additionally we impose a forward transform
ordering for efficiency: first real-to-real transforms (homogeneous BCs), followed by a real-to-
complex transform (first periodic BC), followed by complex-to-complex transforms (additional
periodic BCs) and finally fast Chebyshev transforms (general BCs). This transform ordering
imposes the ordering of corresponding boundary conditions and thus the physical ordering
of the problem to be solved. Backward transforms just follow the reversed order with cor-
responding inverse transforms. Spectral operators always perform the following steps: first
forward transform input scalar fields from physical to spectral space, compute output scalar
fields in spectral space and finally transform them back to physical space.

Let N v be the size of the grid discretization and N =
n∏
i=1
N v
i be the total number of grid

points. We saw that all forward and backward transforms can be implemented in

O (N logN) = O

 n∑
i=0

 n∏
j=1
j 6=i

N v
j

N v
i logN v

i


complexity with some variant of the Fast Fourier Transform. This is usually the most costly
step in spectral operators because the post-processing step can be done in onlyO (N) complex-
ity. The presence of general boundary conditions can drastically increase the post-processing
step up to O

(
N3) due to the necessity of solving a general linear system of size N × N .

However in practice there is rarely more than one axis that has general boundary conditions
and in this case the complexity drops to

O
(
N(N v

n )2
)

= O

n−1∏
j=1
N v
j

 (N v
n )3


because there would be N/N v

n independent linear systems to solve.

In practice many FFT libraries exist targeting classical CPUs such as FFTW, FFTPACK and
MKL-FFT but also accelerators such as the OpenCL library clFFT and the CUDA li-
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brary cuFFT. Those libraries are accessible in Python through pyFFTW (FFTW wrapper),
NumPy (C FFTPACK wrapper), SciPy (Fortran FFTPACK wrapper), mkl fft (MKL-FFT wrap-
per), gpyfft (clFFT wrapper) and scikit-cuda (cuFFT wrapper). All those libraries and
wrappers but the CUDA based ones are usable in the HySoP library and are described in
appendix B. The performance varies greatly from one FFT backend to another and we use
gearshifft, a benchmark suite for heterogeneous implementations of FFTs [Steinbach et al.
2017], to gather runtimes for reference 2D DFTs of increasing size (see figure 3.20). Without
any surprises, vendor specific libraries are always faster and open-source alternatives such as
FFTW and clFFT lie behind with a two- to ten-fold performance hit.

Those libraries come with various levels of support for FFT related transforms. This in-
cludes available type of transforms (real-to-real, real-to-complex, complex-to-real, complex-
to-complex), their sizes (usually a product of powers of 2, 3, 5, 7 and so on), their type (single
or double-precision transforms) and whether or not they offer multithreading or multipro-
cessing implementations. The main problem for GPU compatible libraries (clFFT and cuFFT)
is that none of them provide the real-to-real sine and cosine transforms required to imple-
ment solvers with homogeneous boundary conditions. Fortunately it is possible to implement
DCT-I, II and III as well as DST-I, II and III by using classical DFTs with O (N) pre- or
post-processing steps. The general idea is to transform input or output signals by reorder-
ing and multiplication by some twiddle factors. The method may also depend on the signal
size [Wang 1985][Chan et al. 1990][Chan et al. 1992]. With those methods DCT-II, DCT-III,
DST-II and DST-III can be computed efficiently in O (N logN) complexity and O (ε logN)
root mean square error where N is the size of the transform and ε the machine floating-point
relative precision. For the DCT-I and the DST-I transforms there exist O (N logN) algorithms
with O

(
ε
√
N
)

RMS error. We use the same approach as FFTW and we use O (2N log 2N) im-
plementations with O (ε logN) error to get comparable accuracy between all implementations
[Frigo et al. 2005]. We use the pre- and post-callback facilities offered by the clFFT library
to perform those steps without requiring additional global memory transactions.

The n-dimensional transforms are then computed by iteratively performing batched one-
dimensional transforms followed by local data permutations with the local permutation ker-
nels introduced earlier. In order to do this all FFT backends are wrapped to fit a common
FFT planning and queuing interface that has to handle all types of transforms, data move-
ments, data permutations and zero-filling. The planner then proceeds to generate all required
compute plans by using two additional temporary buffers to perform the required transforms.
The best case scenario is when all of the data can fit inside the device’s memory, in which case
the transform is entirely handled on the GPU. In all others cases, the data has to pass from
the device to the host, leading to a drastic performance drop due to memory transfers. As
an example the NVidia Tesla V100-SXM2 offers 900GB/s of global memory bandwidth but
host-device memory transfers are capped at 16GB/s (more then fifty times less). With such
a reduced effective memory bandwidth, the FFT computation is likely to be memory bound.
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Figure 3.20 – FFT benchmark, 2D complex-to-complex discrete Fourier transforms
Comparison of different CPU and GPU compatible FFT backends. Each point represent the mean
over 64 runs of complex-to-complex DFT of size N = n2. FFTW is compiled with ICC 19.0.5
and run with either the OpenMP or the Pthreads threading layer with planning rigor flag
set to FFTW MEASURE. The POCL OpenCL platform provides support for CPUs but also Nvidia
GPUs by generating directly PTX for the target device.
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3.2.7 Navier-Stokes runtime distribution

Now that all operators have been written to work with OpenCL, we can run 2D and 3D
incompressible Navier-Stokes simulations in their velocity-vorticity formulation (1.28). We
recall that stretching only appears in the 3D case. We run 100 iterations of the problem
on a fully periodic domain to analyse the average cost of one iteration without computing
any timestep criteria. Spectral operators include curl computation, the poisson solver and
diffusion of vorticity. Advection and stretching are split on the grid with a first order Strang
splitting. Figure 3.21 shows statistics obtained on the dual CPU device while figure 3.22 exposes
2D and 3D statistics obtained on the two GPU devices. The transpose category now takes
into account local permutations due to the directional splitting but also the permutations
required to perform FFTs. The D2D category represent device-to-device copies requires for the
permutations and for out-of-place FFTs. diffusion, curl and poisson categories correspond
to the post-transform elemenwise kernels that are required to compute output fields in the
Fourier space.

For 2D simulations the only relevant parameter seems to be the order of the remeshing kernel
that goes from 12 to 17% of total runtime. Fourier transforms and permutations represent
50% of the total runtime, followed by ghosts (18%), remeshing and advection (< 10%). Apart
from the small increase in runtime due to high order remeshing (+6%) all the mean iteration
times fluctuate around 50ms. In the case of 3D simulations, data movements represent about
60% of the runtime (permutations, ghost exchanges and device-to-device copies). Stretching
is sensible to both the order of the finite differences and the number of integration stages and
represents 10 to 25% of total runtime. The highest order in space and time configuration
only cost about 25% more runtime than the lowest order configuration. The CPU platform
seems to be really inefficient in terms of ghost exchanges and is already compute bound at
the advection step.

Figure 3.21 – Distribution of runtime for single-precision Navier-Stokes on CPU
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Figure 3.22 – Distribution of runtime for single-precision Navier-Stoke on GPU
Mean runtime and runtime ratio is given for different kind of kernels. Each bar corresponds to
a specific configuration (time integrator, remeshing formula and finite differences order). The
number between parenthesis, when given, corresponds to the number of calls per iteration.

Overall this corresponds in the worst case scenario to 1.3 × 109 vertices per second (0.74
ns/vertex) on the NVidia GeForce RTX 2080Ti for the 2D case and 240 × 106 vertices per
second (4.2 ns/vertex) on the NVidia Tesla V100 SXM2 for the 3D case. The dual CPU setup
only provides 43 × 106 vertices per second (22 ns/vertex) in 2D and 7.1 × 106 vertices per
second (142 ns/vertex) in 3D. From those results it is clear that the best way to achieve even
better performances is to optimize and possibly eliminate useless ghost exchanges. The solver
should also benefit from improved bandwidth in permutation kernels.
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3.2.8 Validation of the solver

In this section we are interested in the validation of the OpenCL solver and associated numer-
ical methods with the Taylor-Green vortex benchmark, which constitutes a relevant three-
dimensional test case before applying those methods to more complex models. The simula-
tion is handled in a fully periodic cubic domain of size [0, 2π]3 and the evolution of viscous
incompressible flow is described by the Navier-Stokes equations in their velocity-vorticity
formulation:

ω = ∇× u
∇ · u = 0

∂ω

∂t
+ (u · ∇)ω = (ω · ∇)u+ ν∆ω

(3.1a)
(3.1b)

(3.1c)

Velocity is recovered with
∆ψ = −ω
u = ∇×ψ

(3.2a)
(3.2b)

The velocity is initialized with the following smooth conditions:

ux(x, t = 0) = sin(x)cos(y)cos(z)
uy(x, t = 0) = −cos(x)sin(y)cos(z)

uz(x, t = 0) = 0

(3.3a)
(3.3b)
(3.3c)

All fields are discretized on a cubic grid with n points in each directions (N = n3) and the
viscosity is given by ν = 1/Re = 1/1600. The Poisson solver and diffusion of vorticity are
computed spectrally whereas transport and stretching are solved respectively with remeshed
particles and finite differences. The whole simulation is run from t = 0 to t = 20 on a single
OpenCL device. For all runs, the problem always fits in the device’s embedded memory.

We first consider a fixed timestep dt = 10−3 (dimensionless time) and two configurations:

1. A first configuration using single-precision floating point numbers, a second order time
integrator RK2, a remeshing formula that preserves the four first moments Λ4,2, fourth
order centered finite differences FDC4 and first order Strang splitting.

2. A second configuration featuring double-precision floating point numbers, a fourth order
time integrator RK4 38, a remeshing formula that preserves the eight first moments Λ8,4,
eighth order centered finite differences FDC8 and second order Strang splitting.

Those two configurations are representative of default and highest order numerical methods
available in the HySoP library. They should thus be representative of average and worst
runtime per iteration. On the NVidia Tesla V100-SXM2 the first configuration can be run
up to N = 8963 while the second configuration up to N = 5123. The expected compute
complexity of one timestep is O (N logN) because of the FFTs.
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This is effectively what we get in practice as seen on figure 3.23.

Figure 3.23 – Mean runtime per timestep for the resolution of the Taylor-Green
vortex problem. Results averaged over at least 20000 iterations on grids of increasing size.

Comparison with reference data

The results will be compared to two reference flow solutions obtained by dealiased pseudo-
spectral solvers. The first reference solution is obtained with a dimensionless timestep dt =
10−3 and a low storage 3-steps Runge-Kutta scheme [Hillewaert 2012]. The second reference
solution uses a fourth order Runge-Kutta time integrator with a CFL set to 0.75 [Van Rees
et al. 2011]. These two reference pseudo-spectral solvers have been grid-converged to a 5123

grid.

The first parameter of interest is the temporal evolution of the enstrophy integrated on the
domain:

ε(t) = 1
|Ω|

∫
Ω
ω(t) · ω(t) dΩ (3.4)

The second set of reference data consists in the isocontours of the dimensionless norm of the
vorticity at t = 8 and t = 9 in the plane x = 0. Reference enstrophy and isocontour data are
also available from [Van Rees et al. 2011] and [Hillewaert 2012].

It can be clearly seen on figure 3.24 that both cases spatially converge to some enstrophy curve
that is not far away from the reference enstrophy as spatial discretization increases. Figure
3.25 shows the distance of the enstrophy obtained with the present method to the reference
data. Without any surprises the higher order method with N = 5123 is closer to the reference
enstrophy curve than the lower order method (even at higher discretizations N = 8963).
Isocontours of the norm of the vorticity are compared on figure 3.26. The discrepancies at
t = 9 suggest to reduce the timestep around the enstrophy peak, and this can be done by
introducing a variable timestep that is driven by a lagrangian CFL. Hence we introduce a
third case that corresponds to Case-II with variable timestepping.
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(a) Case I - t ∈ [0, 20] (b) Case II - t ∈ [0, 20]

(c) Case I - t ∈ [7.5, 10] (d) Case II - t ∈ [7.5, 10]

Figure 3.24 – Evolution of enstrophy with respect to time for various configurations
and comparison with reference [Hillewaert 2012]. Simulation at fixed timestep dt = 10−3.

(a) Comparison with [Van Rees et al. 2011] (b) Comparison with [Hillewaert 2012]

Figure 3.25 – Comparison of obtained enstrophy to reference enstrophies obtained
with pseudo-spectral DNS at N = 5123. Case-III is run with a smaller average timestep.
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(a) Case I - ‖ω‖2 (x = 0) - t=8.0 (b) Case I - ‖ω‖2 (x = 0) - t=9.0

(c) Case I - Isocontours of vorticity - t=8.0 (d) Case I - Isocontours of vorticity - t=9.0

(e) Case II - Isocontours of vorticity - t=8.0 (f) Case II - Isocontours of vorticity - t=9.0

Figure 3.26 – Slice of vorticity at x=0 and comparison of isocontoursfor ‖ω‖2 (x =
0) ∈ {1, 5, 10, 20, 30} in the top-left part of the slice (represented by a green rectangle).
Solution is obtained with fixed timestep dt = 10−3 (red) are compared with the 7683 results
of [Van Rees et al. 2011] (black). This corresponds to iterations 8000 and 9000 of the numerical
simulation.
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In order to fully converge in time, the third case introduces variable timestepping with dras-
tic timestep constraints: a CFL condition of 1/10 along with a lagrangian CFL of 1/32. The
resulting timestep lies between 6.7 × 10−5 and 1.3 × 10−3, the mean timestep being around
2.3× 10−4 (4.3 times more iterations than Case-I and Case-II). The simulation is run with
the same parameters as case two (high order methods with double-precision up to 5123 dis-
cretization). At 5123, the resulting simulation runs on a single GPU and spans over 85982
iterations at 1.09s per iteration (49% performance hit due to the computation timestep cri-
terias) which represent approximatively one day and two hours. As seen on figure 3.27, the
resulting enstrophy curve at N = 5123 is really close to the reference curve, even after t = 10
when compared to the same simulation at fixed timestep dt = 10−3. Without variable time
stepping, the total number of iterations would be around 3× 106 (two days and 18 hours).

(a) Case III - t ∈ [0, 20]

(b) Case III - t ∈ [7.5, 10]

Figure 3.27 – Evolution of enstrophy with respect to time - variable timestep
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(a) Norm of vorticity - t=8.0 (b) Norm of vorticity - t=9.0

(c) Top view - t=8.0 (d) Top view - t=9.0

(e) Side view of the upper part of the compute domain - t=8.0

(f) Side view of the upper part of the compute domain - t=9.0

Figure 3.28 – Volume rendering of the norm of the vorticity ‖ω‖ ≥ 10
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3.3 Distributed computing

This section focus on the last kind of parallelism provided by the HySoP library, namely data-
parallelism. The regular grid is split into multiple subgrids to perform domain decomposition.
Each process is then responsible to handle one subdomain by using one or more compute
backends. The second part focuses on the different strategies that can be adopted concerning
ghost layers data exchanges with neighboring processes such as cross and diagonal ghost
exchanges. In the last part we will see that the domain decomposition process is constrained
by the Fourier based spectral solver.

3.3.1 Domain decomposition

The large cuboid computational domain B is divided into smaller cuboid subdomains. Its
discretization, consisting in a rectilinear global grid of N v vertices, can be split in K lo-
cal subgrids each labelled by their local cuboid subdomain position p = (p1, · · · , pn) ∈
J0, P1J× · · · J0, PnJ. Every subdomain is affected to a specific compute process denoted Pp =
P(p1, ..., pn). The K = Πn

j=1Pj subdomains and processes are defined by P = (P1, · · · , Pn)
splittings of the box, one for each direction of the space, and are indexed in a row-major
ordering similar to the vertices. The local vertex grid belonging to process P(p1, ..., pn) has
size Nv,p = (Nv,p1

1 , · · · , Nv,pn
n ) and is allocated locally to the process it belongs in the main

memory or in some dedicated accelerator memory by using the OpenCL standard. An example
of uniform domain decomposition is shown on figure 3.29. However, the domain decomposi-
tion is not required to be uniform, the only condition for a splitting to be valid being, at the
discrete level, the following:

Pi−1∑
pi=0

Nv,pi
i = N v

i ∀i ∈ J1, nK (3.5)

For the rest of the notations, we adopt the following convention: calligraphic letters such asN v

represent global parameters while their uppercase counterpart Nv represent local parameters.
All local parameters are associated to a given subdomain indexed by p but the multi-index can
be dropped when there is no ambiguity. Similarly to the global grid, the vertices belonging to
the subdomain discretization are indexed using row-major ordering such that vertex vj has
index Ij = ((((· · · + jn−3)Nv

n−2 + jn−2)Nv
n−1 + jn−1)Nv

n + in) = j · S where j represent the
local index and the local stride S = (S1, · · · , Sn) is defined by Si = Πn

j=i+1N
v
j . Passing from

the global index i to the local index j is made possible by the knowledge for each processes
of their coordinates and the exclusive prefix sum of the local grid sizes as illustrated on figure
3.29. More specifically, the process of coordinates p = (p1, · · · , pn) has its local grid offset by
Op = (Op1

1 , · · · , Opn
n ) vertices such that Opk

i = ∑pk
p=1N

v,p
i ∀i ∈ J1, nK ∀pk ∈ J0, PiJ.
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This leads to the following relations that links the global index Ii and local index Ij for a
given subdomain of coordinate p, global vertex multi-index i and local vertex multi-index j:

Ii = i · S
Ij = j · S

ik = Opk
k + jk

(3.6a)
(3.6b)
(3.6c)

with

ik =



⌊ Ii
Sk

⌋
if k = 1

⌊Ii mod Sk−1
Sk

⌋
else

(3.7)

and

jk =



⌊
Ij
Sk

⌋
if k = 1

⌊
Ij mod Sk−1

Sk

⌋
else

(3.8)

In practice each subdomain is extended on the boundaries such that the discretization contains
additional ghosts vertices, useful for stencil based numerical methods such as finite differences
[Micikevicius 2009]. The number of required ghost nodes G = (G1, · · · , Gn) depends on the
spatial order of the numerical method and the frequency of interprocess boundary data ex-
changes. Those ghost layers are required to compute values close to the local subdomain
boundaries. Once a scalar field has been written to by an operator, its ghosts layers are inval-
idated and will become valid again after a ghost exchange step where all processes exchange
their inner data with their neighbors as illustrated by the blue arrows on figure 3.30. In 2D,
each process may exchange data with up to 4 direct neighbors and 4 diagonal neighbors. Sub-
domains that are on domain boundary B may exchange less data if the boundary conditions
are not periodic, in which case the ghost node values can be computed locally, directly from
the knowledge of the boundary conditions and inner node values.

3.3.2 Interprocess communications

Each subdomain is of coordinate p is affected to a specific process Pp. All processes can
communicate with each other via MPI by using a MPI Cart Cartesian topology. With such a
configuration, calculations, such as a global sum, require very small amounts of data to be
globally communicated between the K processes (O (K) communications). When possible, it
is of interest to overlap communications with regular computations, so that the interprocess
data exchanges happen while something is being computed, taking no extra communication
time when compared with sequential execution [Khajeh-Saeed et al. 2013]. This is an im-
portant optimization because MPI interconnect hardware has a bandwidth O(10-200GB/s)
that is generally up to an order of magnitude less than local to process hardware memory
bandwidth O(50-1000GB/s) [Bode et al. 2004].
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Figure 3.29 – Example of uniform grid distributionbetween 4 processes P(0,0), P(0,1),
P(1,0) and P(1,1) aliased by P0, P1, P2 and P3 corresponding to the example presented in figure
2.1. The global grid of size N v = (6, 8) is split by P = (2, 2) processes in each direction such
that the local grid size handled by process of coordinates p, namely P(py,px) = P2py+px , contains
N v,(py ,px) = (Nv,py

y , Nv,px
x ) = (3, 4) vertices. The index present above each node correspond

to the global node index Ii = i1N v
x + i2 = i · S with global stride S = (N v

x , 1).

Figure 3.30 – Extension of the subdomain with ghosts nodes: The subdomain of
coordinates p = (py, px) = (1, 1), discretized on a local grid of size N v,p = (Nv,py

y , Nv,px
x ) =

(3, 4), is extended withG = (Gy, Gx) = (1, 2) ghost nodes that overlaps the neighbor processes
subdomains. Process P3 = P(1,1) sends and receives data from and to its neighboring processes
in the topology presented on figure 3.29. In this case the periodicity condition on the x-axis
is such that process P2 is at the same time the left and right neighbor. Upper ghost nodes
represented in grey accounts for a specific non-periodic boundary condition on the y-axis.
The local extended subgrid has size N v,p+ 2G = (5, 8) and is represented with a dashed line.
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All stencil based operators that require G ghosts to operates need to perform a ghost layer
exchange for each of the scalar discrete fields they are writing to. Although the boundary
data is typically small (less than 10%) compared to the internal data of the partitions, the
MPI communications are also typically very slow (more than 10 times slower) than the internal
operations. In the case of nD stencils that are the result of a tensor product of 1D stencils, it is
possible for each process to exchange data only with its 2n direct neighbors, connected by an
hyperrectangle of dimension n− 1 that we will call a (n-1)-rectangle or simply a (n-1)-face.
However when the stencil is dense, a process has to communicate with all its 3n−1 neighbors,
including all the diagonals as represented on figure 3.30 with dashed blue arrows.

This splits the ghost exchange methods into two categories:

• Cross exchange: Each process exchange data with its direct left and right neighbors
in each direction. A given process sends, for a given direction i, a n-rectangle ghost
layer of size (N1, · · · , Ni−1, Gi, Ni+1, · · · , Nn) to the left and to the right, such that the
size of the communication is 2(∏n

i=1N
v,p
i )(∑n

i=1Gi/N
v,p
i ) elements per process. If the

grid is uniformly distributed between processes, such that N v
i = PiN

v
i the total data

sent by all the K = Πn
i=1Pi processes becomes:

Esend = 2K
(

n∏
i=1

Nv
i

)
n∑
i=1

Gi
Nv
i

=
(

n∏
i=1
N v
i

)
n∑
i=1

2Gi
Nv
i

(3.9)

We can compare this quantity with the total grid data in terms of elements Etot =
(∏n

i=1N v
i ) constituting the global grid and compute the ratio:

α = Esend
Etot

=
n∑
i=1

2Gi
Nv
i

=
n∑
i=1

2PiGi
N v
i

(3.10)

Equation (3.10) tells us that to minimize the communications we should choose a number
of processes Pi and a number of ghosts Gi that are small enough compared to the global
grid size N v

i :

2PiGi � N v
i ∀i ∈ J1, nK

2Gi � Nv,pi
i ∀i ∈ J1, nK ∀p ∈ J0, P1J× · · · × J0, PnJ

(3.11a)
(3.11b)

• Full exchange: In this case each process exchange data with all its 3n neighbors.
There exists exactly 2n−k

(n
k

)
k-rectangles on the boundary of a n-rectangle. The cross

exchange corresponds to the case where each neighbors pair share a common k-face
where k = n− 1. For a given process and a given k, the size of the sent data belongs to
{G1, N1}×· · ·×{Gn, Nn} where we select k components of N and n−k components of
G depending on the chosen direction d ∈ {−1, 0, 1}n \ {0} where k = n− d · d ∈ J1, nK.
If the grid is uniformly distributed between processes, such that N v

i = PiN
v
i the total

data sent by all the K = Πn
i=1Pi processes becomes:

Esend = K
∑

d∈{−1,0,1}n

d 6=0

[
n∏
i=1

(Gi)|di|(Nv
i )1−|di|

]
= K

[
n∏
i=1

(Nv
i + 2Gi)−

n∏
i=1

Nv
i

]
(3.12)
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As for the cross exchange case we can compare this quantity with the total data con-
stituting the global grid and compute the ratio of elements to send:

α =

n∏
i=1

(Nv
i + 2Gi)−

n∏
i=1

Nv
i

n∏
i=1

Nv
i

=
n∏
i=1

(
1 + 2Gi

Nv
i

)
− 1 =

n∏
i=1

(
1 + 2PiGi

N v
i

)
− 1 (3.13)

As one could expect, equation (3.13) gives exactly the same condition on the number of
processes and ghosts as (3.11a) and (3.11b) in order to minimize the communications.

• Full exchange with only 2n neighbors: It is also possible to exchange diagonal data
by exchanging a bit more elements but with only 2n messages instead of 3n. This can
be achieved by performing successfully for each direction i, to the left and to the right, a
cross exchange of size (N1 +2G1, · · · , Ni−1 +2Gi−1, Gi, Ni+1 +2Gi+1, · · · , Nn+2Gn) per
process. If the grid is uniformly distributed between processes, such that N v

i = PiN
v
i ,

this gives the following numbers of elements to send for all processes:

Esend = 2K
(

n∏
i=1

(Nv
i + 2Gi)

)
n∑
i=1

Gi
Nv
i + 2Gi

(3.14)

which gives a send ratio of

α =
(

n∏
i=1

(
1 + 2Gi

Nv
i

))
n∑
i=1

2Gi
Nv
i + 2Gi

(3.15)

In case of a uniform Cartesian grid this can be rewritten α = nx(1+x)n−1 with x = 2G
N

.

If we want to keep the communication ratio under α for a Cartesian grid decomposed in
hypercubes (N = N1 = · · · = Nn) with the same number of ghosts in any direction (G = G1 =
· · · = Gn), this implies that G <

N

2
α

n
for the cross exchange and G <

N

2
[
(1 + α)1/n − 1

]
=

N

2
α

n
+ O

(
α2) when α → 0 for the full exchange. The full exchange with limited number

of neighbors does not give a nice expression to describe the number of ghosts G in function
of the ratio α. For all the three cases, the expression is without any surprises the same for
one-dimensional problems (n = 1).

As expected, the number of ghosts at fixed α decreases by decreasing local grid size N . For
example if each subdomain is discretized by using local grids of size 512n and we want to
keep the communications bellow α = 10% this gives a maximum of 12 ghosts in 2D and
8 ghosts in 3D independently of the type of exchange. In 4D, the cross and full exchange
can be made with up to 6 ghosts, but the full exchange with limited number of neighbors
only allows a maximum of 5 ghosts. Although the number of ghosts may not be constrained
by the exchange method for reasonable values of N and n, we must not forget that with
cross exchange a process only performs communication with up to 2n neighbors whereas
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with the full exchange a process communicates with up to 3n − 1 other processes (6 vs 26
in communications 3D). The higher number of communications is likely to saturate the MPI
interconnect system and is not free if we take into account communication latencies. This is
why we will use the full exchange with only 2n neighbors when full ghost exchange is required,
at the cost of more data to communicate.

Some operations require full interprocess global communications (α ≥ 100%). This is espe-
cially the case for the Fast Fourier Transform (FFT), extensively used by spectral operators.
For each axis i, the FFT algorithm requires the knowledge of all the lines in the current axis,
imposing Pi = 1 at the ith step such that Nv

i = N v
i . A solution is to set Pn to 1, yielding

slab or pencil like MPI topologies, and to perform global data permutations in between each
step [Pekurovsky 2012]. This is described in the next subsection.

Figure 3.31 – Local grid data layout owned by process P3 = P(1,1) as shown on figure
3.30. The full domain split by using a uniform domain decomposition with underlying local
discrete grid size N v = (Nv

y , N
v
x ) = (3, 4) forming what we will call the local compute

domain, represented by the green vertices. The discretization is extended on the boundaries
by G = (Gy, Gx) = (1, 2) additional ghosts vertices represented in grey, forming the local
domain. The local grid is allocated as as single block of memory, consisting into the local
domain grid of size N v + 2G which rows are eventually padded by some virtual vertices,
represented in turquoise, to enforce eventual memory alignement requirements. The local to
process grid data is stored contiguously using a row-major ordering as shown in red. Each
local compute node v is indexed by its global index Ii, represented in black, and its local
index Ij , represented in blue. Local and global vertex indices are linked by equations (3.6). In
this case, if the elements stored in the grid would be double precision floating point numbers
of 8 bytes each, the padding would ensure that each line is aligned on a 16x8=128B boundary.
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3.3.3 Field discretization

Each operator, as listed in algorithm (1), generally takes multiple scalar fields Ri ∈ R as
inputs and writes to multiple scalar fields Wi ∈ W as outputs, some scalar fields being at
the same time inputs and outputs in which case they belong to R ∩ W. For example the
3D stretching operator defined by equation (2.6) takes R = {ωx,ωy,ωz,ux,uy,uz} as inputs
and outputs the following scalar fields W = {ωx,ωy,ωz}. Each scalar field is discretized on
one or more topology. A topology T (B,N v,O,G) is defined by a domain B, a global grid
resolution N v along with the local domain decomposition defined by the knowledge of the
number of splittings defined by the subgrid offsets O ∈ MK,n(N) for all subdomains and the
number of ghosts G that are the same for all the K local grids. A process is responsible
to compute the outputs from the local domain discretization of the inputs of size N v + 2G,
comprising the local compute domain of size N v and the additional ghost layers (see figure
3.31).

3.3.4 Spectral solvers

In section 2.6 we saw that the Fast Fourier Transform of multidimensional data could be
performed as a sequence of one-dimensional transforms along each dimension. An three-
dimensional array of size (Nz, Ny, Nx) can be Fourier transformed by first performing NyNz

independent one-dimensional transforms of size Nx, followed by NxNz transforms of size
Ny, and finally NxNy transforms of size Nz. However in a domain-decomposition context,
the signal to be transformed is distributed in the memory of multiple different compute
nodes. In such a case, there exists at least one direction (a splitting direction) where the
required one-dimensional data is not available locally to the node. There exist two main
approaches when the signal does not fit entirely on one node, the first approach consisting
in global redistributions of data to ensure that the required one-dimensional signal data is
locally available when needed. The second approach consists into implementing directly a
distributed FFT algorithm. This is known as the binary exchange method (as opposed to
the transpose or permutation method). Those two methods are reviewed in [Foster et al.
1997] and the implementation based on global permutations of data has often be proven to be
superior for large problems and in the presence of many compute nodes [Gupta et al. 1993].
As the HySoP library provides its own abstraction for FFT-based transforms, it also has to
provide a way to compute those transforms in a distributed context. The implementation of
distributed spectral transforms is still a work in progress but several execution policies and
data redistribution methods are to be explored.

Slab decomposition is the simplest way to decompose a domain (only one direction is dis-
tributed) and a full forward transform can be computed in performing batched 2D transforms
in the slabs followed by a global permutation of data and batched 1D transforms on the last
axis. After this forward transform, local data is contiguous on the first axis (the z-axis). The
backward transform just follows the reversed operation order to recover a contiguous x-axis.
Slab decompositions are very efficient but they are limited to a small number of processes (the
maximum number of processes scales with min(Nx, Ny, Nz)). This decomposition method is
the one provided by FFTW [Frigo et al. 2012].
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Figure 3.32 – Example of slab decomposition of a three-dimensional domain

Next levels of parallelism are achieved by splitting the domain in more directions and for a
three-dimensional domain we obtain the so-called pencil decomposition. Here the maximum
number of processes scales with min(NxNy, NyNz, NxNz)) but an additional global permu-
tation is required. Many open-source implementations of pencil decomposition exist such
as P3DFFT [Pekurovsky 2012] and 2DDECOMP&FFT [Li et al. 2010]. PFFT is is a library that
provides general n-dimensional pencil support on the top of FFTW [Pippig 2013].

Figure 3.33 – Example of pencil decomposition of a three-dimensional domain

Apart from the differences in the way to distribute data, some methods exhibit different tech-
niques to handle local data transpositions. Most of the methods perform local transposes
prior to global data redistributions (as in the serial case, see [Frigo et al. 2005]) but permu-
tation of data can also happen during data exchange through modern MPI features such as
MPI ALLTOALLW [Dalcin et al. 2019]. The best method will depends on many factors such as
the latencies and bandwidth provided by the inter-node communication network and the ones
involved in eventual host-device memory exchanges.

Conclusion

In this chapter we introduced HySoP, a high-performance library dedicated to fluid-related
numerical simulations. The library is developed since 2012 and consists in a Python interface
that sits on top of compiled languages such as Fortran and C++. It also relies on just-in-time
compilation techniques through OpenCL and Numba. Within this framework, problems are
described by building a directed acyclic graph of operators which execution order is deter-
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mined by topological sort. Three different kind of parallelism are exposed, task parallelism
that is directly extracted from the knowledge of the graph, accelerator parallelism that allows
to use efficiently various kind of coprocessors by using the OpenCL-1.2 standard and finally
data parallelism through domain decomposition. The main contributions of this work to the
HySoP library include the dynamic generation of certain numerical methods depending on
user needs, the simplification of the user interface with the introduction of DAGs and an
extensive command line interface, the generalization of directional splitting, the possibility
to generate efficient accelerated elementwise and finite-differences based operators through
a symbolic backend and code generation techniques, the introduction of kernel parameter
autotuning, the support of non-periodic boundary conditions and finally the implementation
of accelerated spectral operators.

A numpy like n-dimensional array interface targeting the OpenCL backend has been im-
plemented. This interface extends pyopencl.Array and allows quick prototyping of
OpenCL based operators. Advection and remeshing have been adapted to fit the new
OpenCL code generation framework. The generated code is such that full lines of cache are
not required anymore yielding some interesting performance improvements on GPUs and the
possibility to run the solver on larger discretizations. Local data permutations kernels have
been generalized to any dimension to satisfy graph builder and FFT planner requirements.
An OpenCL code generator based on symbolic expressions has been implemented. All code
generated kernels pass through a user-configurable autotuning process that strives to mini-
mize kernel runtime by tweaking vectorization, global and local sizes and other kernel specific
parameters. When not readily available, real-to-real transforms are computed with a clas-
sical FFT algorithm with Hermitian symmetry associated to some pre- or post-processing
steps. Those transforms are required to handle homogeneous boundary conditions in spec-
tral operators and are implemented on the top of many different external FFT libraries. An
Oclgrind plugin has been implemented to collect OpenCL kernel instruction statistics and,
apart from remeshing, all kernels are generally memory bound on the considered devices.
For all kernels, achieved global memory bandwidth lies between 25 and 90% of maximal
theoretical device bandwidth.

Each individual operator is validated within a continuous-integration development practice.
The numerical method is validated on a three-dimensional Taylor-Green vortex benchmark
that runs exclusively on accelerator with either fixed or variable timestep. It is shown that
even if adaptive timestepping increases the mean runtime per iteration due to the computation
of additional flow characteristics, the overall simulation duration decreases when compared
to equivalent fixed timestep simulation. A three-dimensional incompressible Navier-Stokes
problem discretized on a 5123 grid with double-precision runs roughly at the rate of one
iteration per second on a single server-grade GPU. There is still a lot of room for optimizations,
ranging from the elimination of useless ghost exchanges to the improvement of achieved
memory bandwidth in some permutation kernels. Current implementation efforts focus on
MPI spectral transforms to allow fully distributed simulations. In the next chapter we use the
HySoP library to perform high-performance simulations of sediment flows.
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Introduction

Figure 4.1 – River delta of Irrawaddy, Myanmar (European Space Agency)

In this chapter we apply our numerical method to sediment flows that can occur in sediment-
laden riverine outflows as depicted on figure 4.1. The processes that drive sediment settling
are complex and still poorly known. Understanding the settling mechanisms is the key to be
able to predict where sediments will settle. We consider a sedimentary process where small
particles with negligible inertia, seen as a continuum, settle with a constant Stokes velocity
above salt water. When such a layer of particle-laden fresh water flows above clear saline
water, both Rayleigh-Taylor and double diffusive fingering instabilities may arise. Both of
those instabilities increase the vertical transport of sediments. This simple model already
raises numerical difficulties because of the high Schmidt numbers involved.

We first verify that our numerical method match the results obtained in the literature. The
comparison is drawn in 2D and 3D for a large set of dimensionless parameters specific to
this physical problem. We then show that within our framework, the performance delivered
by GPUs allows us to compute large ensemble averages of parameters characterizing the flow.
The ultimate goal being to understand vertical sediment transport with Schmidt numbers
encountered in the nature, we finally develop strategies to increase the simulated Schmidt
number.
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4.1 Statement of the problem

This section follows the description of the problem originally introduced in [Burns et al. 2012].
We consider an initial stationary, unbounded single-phase fluid with a vertically stratified
density profile. Within this carrier fluid, a layer of particle-laden fresh water is initially
placed above denser clear, saline water. Sediment concentration C and salinity S are taken as
a physical continuum and are coupled with incompressible Navier-Stokes equations. The fluid
has a velocity u(x, t) and an associated vorticity ω(x, t). Its density ρ(x, t) depends on the
base density of clear water ρ0, augmented by local sediment concentration 0 ≤ C(x, t) ≤ 1
and salinity 0 ≤ S(x, t) ≤ 1. The evolution of the species in the carrier fluid is governed
by transport-diffusion equations, and the sediment concentration is transported relatively to
some constant Stokes settling velocity Vst that is determined by particle properties. The
presence of sediment and salt induces local gravity current which modifies the behavior of the
fluid through the change of local density profiles (see figure 4.2).
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Salt water
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Figure 4.2 – Two-dimensional problem configuration. Here Vp corresponds to the di-
mensionless Stokes settling velocity of the particles while κ∗ correspond to scalar diffusivities.

We do not take into account any particle-particle interactions such that the numerical model
only exhibits dual-way coupling. As seen in section 1.2 this assumes that particles have negli-
gible inertia, which is the case for silt and clay. The Stokes settling velocity of a given particle
depends on its size and shape [Gibbs 1985]. Imposing the same constant settling velocity for
all particles characterizes a dilute monodisperse suspension. The particles diffusion coefficient
can be obtained from the Einstein-Stokes equation [Miller 1924], and is much smaller than the
typical salinity diffusion coefficient. The small diffusion coefficient of the particles accounts
for Brownian motion or the mixing that occurs in real polydisperse suspensions of particles,
as a result of a distribution of particle shapes and sizes. The resulting dynamic of the problem
should not vary significantly under κc = 0.
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The density ρ is assumed to be a linear function in S and C:

ρ(x, t) = ρ0[1 + αS(x, t) + γC(x, t)] (4.1)

where (α, γ) are the density expansion coefficients of salinity and sediments. In practice,
typical density expansion coefficients encountered for sediments and salt are of the order of 2
to 4%.

4.1.1 Governing equations

The resulting numerical model is very similar to the heat-salt system (1.43) used to model
thermohaline convection introduced in section (1.3.2). It is extended by introducing an addi-
tional relative settling velocity in the transport term relating to the particles:

ρ = ρ0 (1 + αS + γC)
∂ρ

∂t
+∇ · ρu = 0

ρ

[
∂u

∂t
+ (u · ∇)u

]
= µ0∆u−∇P + ρg

∂S

∂t
+ (u · ∇)S = κs∆S

∂C

∂t
+ (u · ∇)C − Vp

∂C

∂z
= κc∆C

(4.2a)

(4.2b)

(4.2c)

(4.2d)

(4.2e)

This numerical model may exhibit double-diffusive behaviours depending on the settling ve-
locity of the particles but also on the other constants of the problem.

The physical constants of the problem are:
ρ0 Fresh water density
ν0 Kinematic viscosity of fresh water
α, γ Density expansion coefficients of salinity and sediments
κs, κc Diffusion coefficients of salinity and sediments
Vst Stokes settling velocity of the particles
g = −gez Acceleration due to gravity

The nondimensionalization procedure is fully described in [Burns et al. 2012] and yields the
following set of dimensionless parameters:

Rs = αSmax/γCmax Stability ratio
Sc = ν0/κs Schmidt number between salt and water
τ = κs/κc Diffusivity ratio between salt and sediments
Vp = Vst/(ν0g′)

1
3 Dimensionless settling velocity of the particles

g′ = γCmaxg Reduced gravity

where αSmax and γCmax refer to the maximum added density due to salinity and particles.
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The average yearly sediment concentration of dirty rivers ranges from 10 to 40kg/m3 [Mulder
et al. 1995]. The value Rs = 2 corresponds to a mass loading of roughly 20kg/m3 of sediments
and a salinity of 3%. Vp = 0.04 corresponds to the dimensionless settling velocity of spherical
particles of radius 10µm such as clays and silts. The Schmidt number between salt and water
is approximately Sc = 700. Assuming a diffusivity ratio τ = 25, this gives a Schmidt number
between sediments and water of τSc = 17500.

The physics tells us that the scalars may develop physical scales up to 27 and 133 times
smaller than the finest velocity scales, for salt and sediment respectively (see section 1.1.10).
Once the problem is grid converged, multiplying the grid resolution by two makes it possible
to multiply the Schmidt number by a factor of four. It is thus estimated that passing from
Sc = 7 to Sc = 700 on a 3D simulation will require to pass from a grid of size 1537×512×512
as obtained in [Burns et al. 2015] to a grid of size 15370 × 5120 × 5120 which is a problem
that is 103 times larger then the current best simulation. The increased spatial resolution
naturally comes with increased number of iterations because of timestep restrictions. While
numerical considerations make it hard to achieve Sc = 700, the physical mechanisms to be
explored are also relevant for smaller Schmidt numbers such as a warm river outflow into a
cold lake (Sc = 7) or the settling of small water droplets in a temperature gradient in the air
(Sc = 0.7).

4.1.2 Boussinesq approximation

As we consider only small local density perturbations, we place ourselves under the Boussi-
nesq approximation where local variations of density are only taken into account in external
forces (represented in blue in equations 4.2). This approximation has been introduced in
section 1.1.6, and we perform the usual pressure shift to include the base density of water
into the pressure term. In the end, when passing to the velocity-vorticity formulation the
shifted pressure disappears and the resulting single-phase Boussinesq fluid is evolved with the
following dimensionless set of equations:

ω = ∇× u
∇ · u = 0

∂ω

∂t
+ (u · ∇)ω − (ω · ∇)u = ∆ω −∇× (RsS + C) ez

∂S

∂t
+ (u · ∇)S = 1

Sc
∆S

∂C

∂t
+ (u · ∇)C − Vp

∂C

∂z
= 1

τSc
∆C

(4.3a)
(4.3b)

(4.3c)

(4.3d)

(4.3e)

The velocity is recovered from the vorticity by solving the following Poisson problem:

∆ψ = −ω
∇ ·ψ = 0
u = ∇×ψ

(4.4a)
(4.4b)
(4.4c)

Note that from now on u, ω, S and C refer to dimensionless fields.
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4.1.3 Boundary conditions

As depicted on figure 4.2 for the 2D case, the boundary conditions in the horizontal directions
are periodic. The 3D case adds an additional horizontal axis (x, y), the vertical direction being
always considered as z. Top and bottom walls, denoted Γt and Γb respectively, are slip walls
with no penetration. On those walls, we impose a no-flux boundary condition for the salinity
field. For the sediment field we use a no-flux boundary condition formulated with respect to
the Stokes settling velocity of the particles on Γt and the no-flux boundary condition on Γb.

∂u||
∂z

= 0 and uz = 0 on Γt ∪ Γb

VpC −
1

τSc

∂C

∂z
= 0 on Γt et ∂C

∂z
= 0 on Γb

∂S

∂z
= 0 on Γb ∪ Γt

(4.5a)

(4.5b)

(4.5c)

The •|| notation will always denote horizontal components •x in 2D and (•x, •y) in 3D.

4.1.4 Initial conditions

As stated earlier the flow is initially quiescent and the initial sediment concentration field
is given by a smoothed step profile. The initial salinity field is then obtained by computing
S = 1− C.

u0(x, y, z) = 0 and ω0(x, y, z) = 0

C0(x, y, z) = 1
2

[
1 + erf

(
z − δ(x, y)

l0

)]
S0(x, y, z) = 1− C0(x, y, z)

(4.6a)

(4.6b)

(4.6c)

δ(x) is a small initial random perturbation that is uniformly distributed. The initial thickness
of the profile l0 represent less than 1% of the total domain height and for all this chapter we
fix l0 to 1.5. Initial sediment concentration profile C0(z) and salinity profile S0(z) are given
for δ = 0 on figure 4.3.
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0 1

Figure 4.3 – Initial vertical sediment profile for z ∈ [−200, 200] and l0 = 1.5.

Unless otherwise specified we define δ(x, y) as p0 l0 [U(0, 1)− 0.5] with p0 = 0.1 so that the
initial perturbation stays within ±5% of initial profile thickness l0. Here U(0, 1) represent
random samples obtained from a uniform distribution over [0, 1].
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4.1.5 Interfacial instabilities

Similarly to the heat-salt system, the initial vertical density profile ρ0(z) = ρ(z, t = 0) is such
that the system is initially gravitationally stable (∂ρ0

∂z < 0). Here both the settling velocity of
the particles and the difference in the scalar diffusivities may destabilize the initial interface.

If we first consider Vp = 0, the problem is purely double-diffusive and we know that the
form of the resulting vertical motions depends on whether the driving energy comes from the
component having the high or low diffusivity (section 1.3.2). We recall that in this case two
basic type of convective instabilities may arrise: diffusive and fingering configurations. In our
problem, a layer of particle-laden fresh water initially lies on top of a denser layer of saline
water. Because the salinity S, which diffuses τ = 25 times faster than sediments, provides
the stable stratification, the resulting instabilities will be of finger type.

The presence of a non-zero settling velocity Vp can significantly increase the instability growth
rate because particles settle downwards into the upper region of the saline layer, where they
form an unstable layer of excess density which is gravitationally unstable. An important
parameter is the ratio of the particle settling velocity to the diffusive spreading velocity of the
salinity interface. When this ratio is kept below unity, instabilities are still mostly determined
by double-diffusive effects. For ratios above unity, large settling velocities or equivalently large
Schmidt numbers, the salinity does not diffuse fast enough to keep up with the particles that
are settling. In this case, it is expected that Rayleigh-Taylor instabilities dominate the flow
[Lord 1900].

Hence, when a layer of particle-laden fresh water flows above clear saline water, both Rayleigh-
Taylor and double diffusive fingering instabilities may arise. Those two kind of instabilities
are represented on figure 4.4. In both cases, the vertical fluxes can be much larger than the
vertical transport in a single-component fluid because of the coupling between diffusive and
convective processes [Turner 1985].

Solid particles in suspension
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z

Salt water

Rayleigh-Taylor instabilities

(a) Rayleigh-Taylor instabilities (b) Double-diffusive fingering

Figure 4.4 – Sketch of the different kind of instabilities the flow can develop.
Figure adapted from [Burns et al. 2015]. The dotted line represent sediment interface location.
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4.2 Setup and validation of the solver

In this section we describe how the algorithm to solve incompressible Navier-Stokes equations
coupled with a passive scalar is extended to handle dual-way coupling with sediment and
salinity fields. After defining all the timestep criterias required for this particular problem, the
problem is described within the HySoP framework. The resulting solver is compared to state
of the art numerical simulations for reference two- and three-dimensional flow configurations.

4.2.1 Outline of the method

In order to solve the dimensionless problem 4.3 we use the same approach as in algorithms
1 and 4. In those algorithm we replace the transport and diffusion of the passive scalar θ at
fixed velocity u, by the independent transport and diffusion of scalar field S and sediment
concentration field C. The stretching and buoyancy term ∇× (Rs S +C) are then computed
and integrated into the vorticity ω by using the directional splitting approach introduced in
section 2.5.

Given an initial state (uk,ωk, Ck, Sk) at a given time tk, we can compute
(uk+1,ωk+1, Ck+1, Sk+1) at time tk+1 = tk + dtk by using the following algorithm:

1. Independently perform each transport-diffusion steps for the vorticity, salinity and sed-
iment concentration fields at fixed velocity. Diffusion can be either spectral or finite-
differences based depending on the timestep criterias and actual grid discretization.

(a) Obtain ωk,1 from ωk, uk and equation (4.3c).
(b) Obtain Sk+1 from Sk, uk and equation (4.3d).
(c) Obtain Ck+1 from Ck, uk − Vpez and equation (4.3e).

2. Compute conservative stretching (1) and the Buoyancy term ∇× (Rs S + C) direction-
ally by using explicit finite differences. Integrate those terms into ωk,1 with an explicit
Runge-Kutta time integrator and a directional Strang splitting to obtain ωk,2.

3. Correct the newly obtained vorticity ωk,2 to obtain the divergence-free vorticity ωk+1

and compute uk+1 spectrally with equations 4.3a, 4.3b, 4.4 and algorithm 11.

4. Compute timestep criterias and determine the new timestep by computing

dtk+1 = min
(
dtk+1

CFL , dt
k+1
LCFL, dt

k+1
STRETCH, dt

k+1
DIFF, dtMAX

)
(4.7)

Advance in time by setting tk+1 = tk + dtk and k = k + 1.

Within a multiscale approach where the sediments and salinity fields are discretized on a
finer grid than the one of the velocity and the vorticity, this algorithm is modified such that
velocity is interpolated to the fine grid prior to step 1 and scalar fields are restricted to the
coarse grid in-between step 1 and 2. By default all fields are defined on the same grid and the
fastest diffusing component being the vorticity (for Sc above unity) the vorticity is diffused
spectrally while the scalars are diffused by using explicit finite differences split on the grid.
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4.2.2 Timestep criterias

Let dx = (dz, dy, dx) denote the space step associated to the coarse grid where the flow is
discretized (u, ω) and dx∗ = (dz∗, dy∗, dx∗) the one associated to the grid where the scalars
are discretized (S, C). In a multiscale context we have dx∗i ≤ dxi for all i ∈ J1, nK else
dx∗ = dx. As for the Taylor-Green problem with variable timestep introduced in section
3.2.8 the timestep is determined by:

1. An arbitrary CFL to determine the maximum number of advection ghosts on the coarse
grid. Here we have also to take into account directional splitting and additional settling
velocity Vp:

CFL = max
(
dt ‖ux‖∞

dx
,
dt ‖uy‖∞

dy
,
dt ‖uz‖∞

dz
,
dt ‖uz − Vp‖∞

dz
,

)
≤ CCFL (4.8)

2. A lagrangian CFL condition bellow unity that does not depend on any space step so
that particles do not cross during the advection step. Because the settling velocity is
constant, we recover the classical LCFL timestep criteria, here formulated with respect
to vorticity instead of the gradient of velocity:

LCFL = max
(
dt ‖ωx‖∞ , dt ‖ωy‖∞ , dt ‖ωz‖∞

)
≤ CLCFL ≤ 1 (4.9)

3. A stability condition for the stretching term:

dt max
i∈J1,3K

 ∑
j∈J1,3K

∥∥∥∥∥∂ui∂xj

∥∥∥∥∥
∞

 ≤ CSTRETCH (4.10)

where CSTRETCH is a constant depending on the time integration scheme used to discretize
the stretching. For explicit Runge-Kutta schemes we have CSTRETCH ≥ 2 (see [Mimeau
2015], appendix B).

4. A stability condition for the explicit finite-differences based diffusion terms:

max
(
dt S−1

c

(dx∗)2 ,
dt S−1

c

(dy∗)2 ,
dt S−1

c

(dz∗)2 ,
dt (τSc)−1

(dx∗)2 ,
dt (τSc)−1

(dy∗)2 ,
dt (τSc)−1

(dz∗)2

)
≤ CDIFF (4.11)

where CDIFF ≥ 0.5 is a constant depending on the chosen explicit Runge-Kutta scheme.

An additional constant timestep criteria dtMAX ensures the convergence of the coupling between
the carrier fluid (u,ω) and the transported scalars (S,C). Note that because the flow is
initially quiescent, this constant timestep drives the simulation during the first timesteps.
In practice because the flow is laminar (Re = 1), this timestep criteria may constraint the
timestep during the whole simulation under reasonable discretization and particle settling
velocity Vp. Unless otherwise specified, we use CCFL = 1.0, CLCFL = 0.95, CSTRETCH = 2,
CDIFF = 0.5 and dtMAX = 0.1.
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4.2.3 Numerical setup

Most of the required numerical routines have already been introduced in chapter 3 and the
problem is described within the HySoP framework by using existing operators. We use the
Λ4,2 remeshing kernel along with fourth-order Runge-Kutta scheme RK4, fourth-order centered
finite-differences FDC4 and second order Strang splitting. The fields are discretized by using
single-precision floating point numbers. The resolution of this problem on the OpenCL com-
puting backend requires minimal changes to the existing codebase: the buoyancy term is
computed from the directional symbolic code-generation interface introduced in section 3.2.5
and advection routines are adapted to take into account an optional relative velocity. The
library generates a graph containing 85 operators with up to nine independent execution
queues. This graph includes operators that compute the timestep criterias as well as moni-
tors that compute flow characteristics during the simulation.

The boundary conditions on Γb and Γt are homogeneous boundary conditions that are com-
patible with real-to-real spectral transforms introduced in section 2.6.4. In all the other
directions the domain is periodic and we use classical Fourier transforms. The slip walls with
no penetration boundary condition

∂u||
∂z

= 0 and uz = 0 also yields real-to-real transform
compatible vorticity boundary conditions. All top and bottom no-flux boundary conditions
on the scalar fields are handled with homogeneous Neumann boundary conditions. The height
of the domain is set to be sufficiently large such that the results are not affected by the lower
or upper boundary planes.

4.2.4 Flow characteristics

In order to verify that our solver performs well when compared to state of the art numerical
results we have to compute many different horizontally averaged flow characteristics. We use
the same notations as in [Burns et al. 2015]. Horizontally averaged quantities are computed
as:

〈•〉 (z, t) =
∫ xmax

xmin

∫ ymax

ymin

•(x, y, z, t)dxdy (4.12)

The quality of horizontally averaged statistics can be improved by using a large horizontal
domains or by computing ensemble averages over multiple runs with the same parameters.

Scalar interfaces tracking: The error function is solution of the laminar diffusion equation
with constant diffusion coefficient starting from a discontinuous initial condition [List et al.
1979] and serves to provide a good physical approximation of actual sediment and salt con-
centration profiles. We can thus track both the thickness of a given interfacial region as well
as its position by computing the least-squares fit of the horizontally averaged scalar profiles
to an error function:

1. We fit 〈C〉 (z, t) against Cfit(z, t) = 0.5
[
1 + erf

(
z − zc(t)
lc(t)

)]
to obtain zc(t) and lc(t).

2. We fit 〈S〉 (z, t) against Sfit(z, t) = 0.5
[
1− erf

(
z − zs(t)
ls(t)

)]
to obtain zs(t) and ls(t).
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z• is the location at which 〈•〉fit = 0.5, location of the horizontally averaged interface, whereas
l• represents the thickness of the horizontally averaged profile. The optimization process is
done every few timesteps and takes as input the last known interface location z∗• and thickness
l∗•, initial values being set to zc = zs = 0 and lc = ls = l0. The fitting procedure is weighed
more heavily around the last known position of the interface z∗• than near the end points of
the profile. The weights are chosen to have analytical formula w(z) = 1

1 + 10−2(z − z∗•)2 .

Height, thickness ratio and nose region ratio: After the fitting procedure we can
compute the sediment to salinity thickness ratio as well as the offset between the interface
locations. The thickness ratio is defined as ξ(t) = lc(t)/ls(t) and the height is defined as the
difference between the upward salinity interface and downward sediment interface locations:
H(t) = zs(t) − zc(t) ≤ 0. Within this nose region both salinity and sediment are present in
high concentrations.

The nose region height to salinity profile thickness ratio is defined as Rt(t) = H(t)/ls(t). Note
that both H(t) and ls(t) diffuse with time but the nose region remains embedded within the
larger region containing the salinity gradients: H(t) < ls(t). It has been observed in [Burns
et al. 2012] that this ratio will dictate the dominant type of instability:

• H/ls ≤ O (0.1): double-diffusive fingering dominates.

• H/ls ≥ O (0.1): sediment and salinity interfaces become increasingly separated in space,
the dominant instability mode becomes Rayleigh-Taylor like.

They show that the ratio Rt initially grows and then plateaus, at a value that is determined
by the balance between the flux of sediment into the nose region coming from above, the
sediment flux out of the nose region below, and the rate of sediment accumulation within the
region.

Vertical interface velocities: Upwards salinity interface velocity vzs is obtained by a
linear fit of zs(t− t0) = vzs t where t0 represents the delay before the salinity interface begins
to move upwards. Downwards sediment interface velocity vcs is obtained by a linear fit of
zc(t− t0) = vcs t. Before the initial delay t0 it is expected that zc(t) = −Vp t and zs(t) ' 0.

Turbulent interface diffusivities: Fitting the interfacial thicknesses l• to diffusive
√
t

profiles allows us to compute the turbulent diffusivities of the sediment and salt interfaces. If

we assume that the averaged profiles evolve as ∂ 〈S〉
∂t

= 1
Sc

∂2 〈S〉
∂z2 and ∂ 〈C〉

∂t
= 1

τSc

∂2 〈C〉
∂z2

we can fit

• ls(t) to ls,fit(t) = 1
Sc
t

1
2 to obtain Sc.

• lc(t) to lc,fit(t) = 1
τ Sc

t
1
2 to obtain τ.
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4.2.5 Comparison with two-dimensional reference solution

The first reference simulation is obtained from [Burns et al. 2015] with the following low
Schmidt number configuration, discretized over a grid of size N v = (3n+1, n) with n = 1024:

• t ∈ [tstart, tend] = [0, 500]

• Ω = [zmin, zmax]× [xmin, xmax[= [−600,+600]× [0, 750[

• Sc = 0.7, τ = 25, Vp = 0.04, Rs = 2

Sediment and salt interfaces are fitted with error functions during the simulation every ∆t = 1
dimensionless time. This yields 500 estimations of interface locations (zc, zs) and interface
thicknesses (lc, ls). Snapshots of horizontally averaged profiles of sediment concentration and
salinity as well as their error function fit are plotted on figure 4.5.
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Figure 4.5 – Snapshots of horizontally averaged sediment and salt profiles
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Quantitative comparison

Figure 4.5 shows that the horizontally averaged salinity profile shares many features with the
horizontally averaged sediment profile. The salinity profile is much smoother due to the faster
diffusion of salinity and the results of the error function fitting procedure are much closer to
the original curves than the ones of obtained from averaged sediment concentrations. The evo-
lution of fitted average interface locations (zc(t), zs(t)) and interface thicknesses (lc(t), ls(t)) is
shown on figure 4.6 and compared to reference results. The fitting procedure used to estimate
those parameters is not exactly the same in the reference data because the weighting proce-
dure used in [Burns et al. 2015] is not described. The parameter that is the most sensible to
the optimization procedure for a given scalar is the interface location and the method em-
ployed to obtain reference interface locations seems to be much more sensible than ours (data
has been smoothed out in the data extraction process, see figure 8 of [Burns et al. 2015] for
original curves). The two runs also differ in the random displacement of the initial interface
determined by δ(x) in equation 4.6. As stated earlier, we use a uniform distribution of the
form δ(x) = 10−1 l0 [U(0, 1)− 0.5] which may be different in amplitude than the one used to
obtain reference data.
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Figure 4.6 – Evolution of horizontally averaged interface locations and thicknesses

Qualitative comparison

Figures 4.7 and 4.8 show the sediment and salinity fields at four different times t ∈
{40, 100, 200, 300}, top-to-bottom. The domain has been truncated in the vertical direc-
tion z ∈ [−300, 300] so that our results can be compared to reference data available from
[Burns et al. 2015], figure 4. As it can be seen on the top frames, the interface is initially
displaced by a random perturbation δ(x) but develops a definite preferred wavelength dur-
ing the early development of the instability. Overall our solver seems to capture the same
physical scales and interface displacements as the reference one. Here the instability is clearly
double-diffusive with the emergence of fingers at the interface. As for the reference solution,
we observe both positively and negatively buoyant plumes that detach from the interfaces at
t = 200 and eventually collide around t = 300.
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Figure 4.7 – Comparison of 2D sediment slices with reference data: C(x, z, t) for
x ∈ [0, 750], z ∈ [−300, 300] and t ∈ {40, 100, 200, 300}. Left slices corresponds to [Burns
et al. 2015] and right slices to our results. Parameters: Vp = 0.04, Sc = 0.7, Rs = 2.0, τ = 25.
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Figure 4.8 – Comparison of 2D salt slices with reference data: S(x, z, t) for x ∈
[0, 750], z ∈ [−300, 300] and t ∈ {40, 100, 200, 300}. Left slices corresponds to [Burns et al.
2015] and right slices to our results. Parameters: Vp = 0.04, Sc = 0.7, Rs = 2.0, τ = 25.
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When the simulation starts, it can be clearly seen that the sediment interface begins to move
downward with velocity Vp as a result of initial particle settling (orange and red curves on
figure 4.6). Initial sediment interface location prediction −Vpt is shown as a dashed line and
after t0 = 40 double-diffusive processes take over. Before t0 we also observe that the initial
salinity interface does not move much (it only diffuses upwards at rate 1/Sc). After t0, both
the sediment and salinity interface thicknesses can be fit to

√
t diffusive profiles (represented

with dashed lines) and we obtain roughly the same profiles as in the reference data. In this
configuration, the turbulent diffusion resulting from the double-diffusivity instability along
with the settling velocity of sediments has modified the sediments evolution from diffusing
τ = 25 times more slowly than salinity, to diffusing close to twice as fast.

Finally we can compare the ratio of the nose region height H(t) = zs(t) − zc(t) to the
salinity interface thickness ls(t). It is expected from [Burns et al. 2012] that once is fully
developed (after t0), the ratio H/ls remains roughly constant. This is effectively what we get
in practice, with a ratio Rt(t) that is in agreement to the one obtained in the reference data.
The fluctuations are mainly due to the differences in the estimation of interface locations zc(t)
and zs(t). Those fluctuations can be smoothed out by computing an ensemble average over
multiple runs with different initial random perturbations (see section 4.3.1).

0 100 200 300 400 500

t

0.00

0.05

0.10

0.15

(zs − zc)/ls

Ratio of the nose region height to the salinity interface

ls (current method)

ls (Meiburg et al.)

Figure 4.9 – Evolution of the ratio of the nose region height to the salinity interface thickness

4.2.6 Comparison with three-dimensional reference solution

The second reference simulation is also obtained from [Burns et al. 2015] and features the
following configuration:

• t ∈ [tstart, tend] = [0, 150]

• Ω = [zmin, zmax]× [ymin, ymax[×[xmin, xmax[= [−110,+65]× [0, 100[×[0, 100[

• Sc = 7, τ = 25, Vp = 0.04, Rs = 2

It is discretized over a grid of size N v = (3n+ 1, n, n) with n = 512.
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This moderate Schmidt number configuration will highlight different flow features. Note
that the domain is now much smaller so that the space step allows to simulate this ten-fold
increase in the Schmidt number. Our simulation is carried out on a slightly bigger domain
then the one of the reference simulation. We use Ω = [zmin, zmax]×[ymin, ymax[×[xmin, xmax[=
[−128,+64]× [0, 128[×[0, 128[ so that the space step is dx = (dz, dy, dx) = (0.125, 0.25, 0.25).

(a) C(x,y,z=+10) (b) C(x,y,z=-10) (c) C(x,y,z=+10) (d) C(x,y,z=-10)

Reference Present Method

Figure 4.10 – Comparison of 3D sediment slices with reference data: C(x, y, z, t)
for (x, y, z) ∈ [0, Lx[× [0, Ly[×{−10,+10}, and t ∈ {75, 100, 125, 150}. Left slices corresponds
to reference and right slices to our results. Parameters: Vp = 0.04, Sc = 7, Rs = 2.0, τ = 25.
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Figure 4.10 shows four different snapshots of horizontal slices of the sediment concentration,
above an below the initial interface position at z = ±10. Left reference slices represent a
dimensionless physical surface of size [0, 100[2 while right slices corresponds to our results
obtained on slightly larger surfaces of size [0, 128[2. Above the interface at z = +10, the plots
show circular spots representing the upward moving salt fingers. The only change in this
structure is that more and more fingers appear with time. The first frame at z = −10 and
t = 75 show downward moving sediment fingers that are similar in size, although larger in
count, when compared to the upward moving salt fingers at the same period. After t = 100,
sediment fingers are no longer circular but stretched by local convection zones. This is suggests
that Rayleigh-Taylor instabilities dominate in the lower region of the flow. It can be better
seen on the lower isocontours of the sediment concentration C = −1.5 at t = 100 that are
shown on figure 4.11. Exactly as for [Burns et al. 2015] we observe that the convection zones
become larger with time, yielding polygon-like shapes. Overall we observe the same structures
as in the reference data, but our results seem to be lagging behind with a delay of ∆t = 15
(dimensionless time). It is believed that the amplitude of the initial perturbation δ(x, y) is
the cause of such a difference. Here we use the same initialization as for the 2D case, δ(x, y)
as p0 l0 [U(0, 1)− 0.5] with p0 = 0.1 whereas for the reference data δ has not been specified.

(a) Reference (b) Present Method

Figure 4.11 – Comparison of 3D sediment isocontours with reference data: contours
C(x, y, z) = 0.5 at t = 100 showing upward (top) and downward (down) moving fingers.
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4.3 High performance computing for sediment flows

In this section we explore the performance and limitations of our solver with respect to the
sediment-laden fresh water above salt water problem.

4.3.1 Ensemble averaged two-dimensional simulations

The two reference simulations with Sc = 0.7 and Sc = 7 have already shown the influence
of the Schmidt number on instabilities. For small Schmidt numbers, molecular diffusion
is high and the settling velocity is too low to have a real effect on the evolution of the
interfaces in which case double diffusion dominates. Larger Schmidt number values result
in a sharper salinity interface and the double-diffusive mode is replaced by Rayleigh-Taylor
instabilities. We cannot however draw any conclusions from a single numerical simulation.
The idea of [Burns et al. 2015] is to perform a parametric study over 170 simulations with
various configurations of the dimensionless parameters of this problem (Vp, Rs, τ, Sc). Those
simulations each yield horizontally averaged flows quantities that are ensemble-averaged over
10 runs to see the effect of the parameters on the H/ls ratio that determines the type of
instabilities. This represents an embarrassingly parallel problem that is a first application to
our high performance solver.

To illustrate this, we run four different two-dimensional configurations from Sc = 0.07 to
Sc = 70.0 and compute ensemble-averaged parameters every ∆t = 5 over 100 runs. It takes
227s to compute a case from t = 0 to 500 with dtMAX = 1, discretized on (n+ 1, n) points with
n = 4096 on a single Nvidia Tesla V100 GPU. Those four different ensemble-averaged cases
thus run in approximately 6 hours and 20 minutes on a single compute node containing four
of such GPUs. Samples of obtained statistics are shown on figure 4.12 where the thick lines
represent ensemble averaged statistics. Estimated interface velocities and diffusivities as well
as median thickness ratios and nose region height to salinity thickness ratios are shown in
table 4.1 for n = 2048 and n = 4096. It can be seen that the cases Sc = 7 and Sc = 70 do no
converge to the expected solution because of insufficient spatial discretization.

n = 2048
Sc Vzs Vzc Sc τ ξ Rt

0.07 9.27× 10−3 −2.45× 10−2 1.07× 101 1.15× 100 1.16× 100 6.71× 10−2

0.7 1.57× 10−2 −3.24× 10−3 3.39× 100 1.65× 100 1.67× 100 1.63× 10−1

7.0 1.71× 10−2 9.40× 10−3 8.64× 10−1 1.45× 100 1.43× 100 3.24× 10−1

70.0 1.22× 10−2 9.09× 10−3 2.17× 10−1 1.21× 100 1.21× 100 5.68× 10−1

Sc n = 4096
0.07 8.84× 10−3 −2.57× 10−2 1.05× 101 1.18× 100 1.19× 100 6.66× 10−2

0.7 1.52× 10−2 −3.52× 10−3 3.40× 100 1.66× 100 1.66× 100 1.62× 10−1

7.0 1.65× 10−2 9.08× 10−3 8.70× 10−1 1.45× 100 1.44× 100 3.22× 10−1

70.0 1.24× 10−2 9.48× 10−3 2.10× 10−1 1.19× 100 1.19× 100 5.88× 10−1

Table 4.1 – Ensemble averaged statistics for different Schmidt numbers. Parameters
are averaged over 100 runs for Vp = 0.04, Rs = 2, τ = 25 and Sc ∈ {0.07, 0.07, 7, 70}.
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(a) Interface locations (b) Interface thicknesses (c) Thickness ratio

Figure 4.12 – Ensemble averaged quantities at varying Schmidt number of 2D
flows, averaged over 100 runs with N v = (4097, 4096) from Sc = 0.07 (top) to Sc = 70
(bottom) on domain Ω = [−1024, 1024]2. With this discretization, the two highest Schmidt
configurations are under-resolved, dx = (0.5, 0.5), and result in positive sediment interface
velocities. Parameters: Vp = 0.04, Sc = {0.07, 0.7, 7, 70} , Rs = 2.0, τ = 25.
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Figure 4.13 – 3D sediment isocontours at moderate Schmidt number Sc = 7 : Plot of
the contours C(x, y, z) = 0.5 for t ∈ {75, 100, 125, 150} (top-to-bottom) showing upward (left)
and downward (right) moving sediment fingers. Color represent vertical velocity. Parameters:
Vp = 0.04, Sc = 7, Rs = 2.0, τ = 25.
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4.3.2 Three-dimensional simulations

On a GPU with 32GB of memory, our implementation is able to solve single-precision two-
dimensional problems with discretizations up to (32768, 16384) and three-dimensional config-
urations up to (1537, 512, 512). On an Nvidia Tesla V100, the three-dimensional problem
is memory-bound and can be solved at a rate of 10.9s per iteration, including the computa-
tion of the statistics and timestep criterias. A compute-node with 256GB of memory and a
sufficient number of CPUs can handle a simulation of size up to (3073, 1024, 1024). In this
case the problem is compute-bound and it takes around 24 minutes per iteration on a quad
socket Intel Xeon E7-8860 v4 platform when using the Intel MKL-FFT library to perform
the spectral transforms. The total number of iterations required to solve a typical three-
dimensional problem from t = 0 to 150 ranges from 300 to 2000 depending on the setting
of dtMAX and imposed CFL constant. With dtMAX = 0.1 and CCFL = 1, the 1537 × 512 × 512
simulation takes under 6 hours on the aforementioned GPU device and can be used for Schmidt
numbers up to Sc = 28 on the three-dimensional domain Ω = [−128, 64]× [0, 128]× [0, 128].

The resulting isocontours of sediment concentration obtained with the GPU setup and Sc = 7
are shown on figure 4.13. This specific configuration is at the interface between the two kind
of instabilities we may encounter: double-diffusion and Rayleigh-Taylor instabilities. Before
t = 100 we can clearly see sediment fingers moving both upwards and downwards, result of
a double-diffusive process. After t = 100, the instabilities become more and more Rayleigh-
Taylor like. As introduced in section 1.3.2 the dominant type of instability can be deduced
from the knowledge of the particle settling velocity and the diffusive spreading velocity of the
salinity layer. More precisely, the key parameter that determines whether the settling process
is dominated by double-diffusive or Rayleigh-Taylor instabilities is the ratio of the nose region
height to the salinity thickness Rt = H/ls. By performing a parametric study over 15 different
two-dimensional configurations, [Burns et al. 2015] showed that the value of the nose thickness
ratio Rt could be predicted a priori based on the knowledge of the dimensionless grouping
RsVp

√
Sc. Because there currently exist no three-dimensional reference data for Schmidt

numbers higher than 7, we propose to validate our implementation to higher Schmidt numbers
by checking the fit between the predicted values of H/ls and obtained results. Table 4.2 (A-B-
C-D) shows the two-dimensional configurations used by Burns and its collaborators to perform
their parametric study. We introduce a new dimensionless group (E) that characterizes our
three-dimensional test cases. We explore Schmidt numbers ranging from Sc = 3.5 to Sc = 28.0
while other dimensionless parameters are kept constant.

Case τ Sc Rs Vp Lx Ly Lz Nx Ny Nz

A 25 0.7 2.0 (0.02, 0.04, 0.08, 0.16) 750 – 600 1536 – 4097
B 25 7.0 2.0 (0.01, 0.02, 0.04, 0.08) 300 – 250 2048 – 4097
C 25 70.0 2.0 (0.01, 0.02) 125 – 100 2048 – 4097
D 25 0.7 (1.1, 1.5, 2.0, 4.0, 8.0) 0.04 750 – 600 1536 – 4097
E 25 (3.5, 7.0, 14.0, 28.0) 2.0 0.04 128 128 256 512 512 1537

Table 4.2 – Dimensionless group values and grid properties for the parametric
study. The first four classes of parameters (A,B,C,D) corresponds to the 15 two-dimensional
setups of [Burns et al. 2015] that have non-vanishing settling velocities. The last class (E)
corresponds to our three-dimensional cases with increasing Schmidt numbers up to Sc = 28.
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For small values of RsVp
√
Sc (small settling velocity or big salinity diffusivity) the sediment

inflow into the nose region from above is small and double-diffusive fingering compensate with
an equal sediment outflow from within the nose region (H/ls remains small). For large values
of RsVp

√
Sc (large settling velocity or small salinity diffusivity), the sediment inflow into the

nose region from above is high and the nose region height H grows faster than the salinity layer
thickness ls. As sediments accumulate in the nose region, H/ls grows until achieving a critical
value where Rayleigh-Taylor instabilities kicks in, releasing downward sediments plumes. The
transition between small and large values has been identified as RsVp

√
Sc = O (0.1).

Our four three-dimensional test cases (E) are run simultaneously on a single compute node
containing four GPUs and give the following results:

τ Rs Vp Sc H(t = 150) ls(t = 150) RsVp
√
Sc Rt = H/ls

25 2.0 0.04 3.5 4.57 18.8 0.150 0.243
25 2.0 0.04 7.0 3.99 12.8 0.212 0.312
25 2.0 0.04 14.0 3.66 7.34 0.299 0.499
25 2.0 0.04 28.0 2.14 3.63 0.423 0.590

Table 4.3 – Obtained nose region ratio for three-dimensional test cases (E).

We compare those results with the a priori prediction of the nose thickness ratio from [Burns
et al. 2015]. As seen on figure 4.14, all the four predictions are in agreement with our results.

Figure 4.14 – Prediction of the nose thickness ratio H/ls versus obtained results.
Dots, squares, triangles and crosses correspond to the two-dimensional results obtained by
[Burns et al. 2015] with parameters groups (A,B,C,D) defined in table 4.2. The superimposed
plus signs correspond to our three-dimensional results obtained for parameter group (E), from
smallest Schmidt number (left, Sc = 3.5) to highest Schmidt number (right, Sc = 28.0).
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The sediment concentration isocontours corresponding to averaged quantities from table 4.3
are shown on figure 4.16. As expected, with increasing Schmidt number, we see the transition
from a double-diffusive fingering behaviour (RsVp

√
Sc = 0.15) to a Rayleigh-Taylor dominated

configuration (RsVp
√
Sc = 0.42). The two lowest Schmidt number configurations feature

salt fingers initially present on both sides of the interface that are eventually suppressed by
Rayleigh-Taylor instabilities after t = 100. For the two highest Schmidt number configurations
no more sediment fingers can be seen. Instead, we can see downward moving sediment plumes
that have a mushroom like structure characteristic of Rayleigh-Taylor instabilities.

4.3.3 Achieving higher Schmidt numbers

Achieving a Schmidt number of 100, an order of magnitude above the grid-converged simula-
tion at Sc = 24, will require a discretization of at least (3073, 1024, 1024). This would be too
costly for a single compute-node and too big too fit into a single GPU memory. Some memory
could be saved by using the multiscale approach where only the scalars are discretized on a
fine grid of size (3073, 1024, 1024) while velocity and vorticity are discretized on a coarser grid
of size (1537, 512, 512). It is however not possible to perform this simulation on a GPU with
only 32GB of RAM because a single field discretized on the fine grid with single-precision would
take up to 13GB of memory.

We recall that when using a multiscale approach, the ratio between the scalar and velocity
grids can be initially computed as the square root of the respective Schmidt numbers (see
section 1.1.10). For τ = 25 and Sc = 100 we have

√
τSc ' 50. This indicates that we could

use grid ratios up to 50 in each direction between the velocity and sediment concentration grid
(and 10 for the salinity grid). To illustrate this point, the different physical scales obtained
for a problem with Sc = 7 and τ = 25 are shown on figure 4.15

Figure 4.15 – Example of the physical scales obtained with Sc = 7 and τ = 25.

In practice to simplify the interpolation and restriction steps, we restrict ourselves to power of
two grid ratios (2, 4, 8, 16, · · · ). A two- and three- dimensional convergence study with fixed
initial displacement δ has shown that, when the flow is sufficiently resolved, such a multiscale
approach worked well with linear interpolation up to a grid ratio of 2. Higher grid ratios
required at least cubic polynomial interpolation.
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(a) Sc = 3.5 (b) Sc = 7.0 (c) Sc = 14.0 (d) Sc = 28.0

Figure 4.16 – 3D sediment isocontours for varying Schmidt number: Plot of the con-
tours C(x, y, z) = 0.5 for t ∈ {100, 125, 150} showing upward (top) and downward (bottom)
moving fingers at n = 512. Parameters: Vp = 0.04, Sc ∈ {3.5, 7, 14, 28} , Rs = 2.0, τ = 25.
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Currently the only limitation of our implementation relies in the fact that we perform in-core
computations on single GPUs with rather limited memory (32GB per GPU). This means that
the problem has to fit in the embedded GPU memory (VRAM). On the contrary CPU devices can
directly use the main memory (RAM) which is usually larger (currently, 128GB to 512GB per
compute node is rather common) but offer far lower floating-point compute capabilities (see
table 1.2).

Hence, a solution to achieve higher Schmidt numbers on accelerators having limited memory
capabilities is to perform out-of-core simulations by storing the whole problem in the host
memory instead of device memory. The idea is then to overlap compute kernels, device-to-
host and host-to-device memory transfers by using multiple OpenCL command queues [Van
Werkhoven et al. 2014]. The second solution is to distribute the computation across multiple
GPUs by using domain decomposition. Ongoing developments efforts are thus focused on
distributed spectral operators and support for out-of-core computations.

Conclusion

This chapter was dedicated to the simulation of particle-laden clear water above salt-water.
The full physical model has first been introduced, followed by the specification of initial and
boundary conditions. The computational domain consists in a box, compatible with Cartesian
grid discretization. The use of the remeshed particle method make it possible to discretize the
sediment concentration and salinity on a finer grid than that of the flow variables, without
impacting the timestep. An algorithm to solve this problem within our framework has been
proposed along with associated timestep criterias. Homogeneous boundary conditions are
handled by using the spectral solver introduced in section 3.2.6. The horizontally averaged
flow characteristics of interest in this kind of problem have been detailed. In the end, the
whole simulation, including the computation of averaged quantities, can run exclusively on
the OpenCL compute backend.

The proposed implementation was run for two- and three-dimensional configurations and com-
pared to reference solutions available from state of the art numerical simulations. Obtained
numerical results were in agreement both qualitatively and quantitatively. We then showed
that within our framework, the performance delivered by GPUs allowed us to compute large
ensemble averages of parameters characterizing the flow. Subsequent three-dimensional runs
for for Schmidt numbers comprised between Sc = 3.5 and Sc = 24 showed the transition from
a double-diffusive fingering behaviour to a Rayleigh-Taylor dominated configuration. Because
all other dimensionless parameters were kept constant between the different cases, this was
the expected behaviour and our results all fit the prediction of the nose thickness ratio. We
thus demonstrated that it was possible to simulate flows at Schmidt numbers while keeping
reasonable compute times on a single GPU. The ultimate goal being to understand vertical
sediment transport with Schmidt numbers encountered in the nature (Sc = 1750), we finally
developed strategies to increase the simulated Schmidt number. While the results obtained
on a single GPU looks very promising, going even higher in Schmidt number will require to
distribute the computations on multiple GPUs.



Conclusion and perspectives

General conclusion

The main objective of this work was to achieve high Schmidt number sediment-laden flow
simulations by using adapted numerical methods in a high performance computing context.

The physics of this kind of problem is characterized by the presence of several phenomena at
different physical scales that is due to the large difference in the diffusivities of the transported
components. Those type of flows are more commonly referred to as high Schmidt number
flows. The need for high performance computing and adapted numerical methods was mo-
tivated by the fact that such flows are very demanding in terms of computing ressources.
Achieving high Schmidt numbers is the key to be able to numerically investigate the settling
of fine particles arising from sediment-laden riverine outflows. The underlying numerical sim-
ulations are designed to identify the dominant sediment settling mechanisms which in turn
can help to determine the location of sediment deposits on the sea floor. Based on the state
of the art, this work proposes an efficient numerical method that is able to capture the dy-
namics of high Schmidt number flows in which there exist a two-way coupling between the
transported quantities and the fluid.

A first chapter has been dedicated to a review of the underlying physical model and its
derivation. The mathematical models required for the modeling of sediment flows have first
been introduced, leading to the modelization of dilute monodisperse distribution of small
particles as a continuum, that is, a particle concentration. The corresponding model was
reduced to a coupling between the particles and the fluid, in an eulerian-eulerian framework.
This model served as a base model for the physics of sediment-laden fresh water above salt
water and was then further simplified by using a Boussinesq approximation. The final model
consisted in a coupling between two scalars, representing salinity and sediment concentration,
with the carrier fluid. The small diffusivity of fine sediments such as clay or fine silts was
estimated by a semi-empirical model and led to Schmidt numbers between sediment and water
as high as 17500. We saw that in such a flow, the slowly diffusive particles could develop
smaller physical scales, up to a ratio depending on the square root of the Schmidt number,
when compared to the smallest velocity eddies.

The second chapter was focused on the development the numerical method. This numerical
method has been designed by starting from a state of the art numerical method adapted to
the resolution of incompressible Navier-Stokes equations passively coupled with the transport
of a scalar, at high Schmidt number. The key idea behind the proposed numerical method
relies in the use of a semi-lagrangian (remeshed) particle method which benefits are twofold.
Firstly, this method do not suffer from a timestep restriction depending on the grid size (CFL)
but rather on velocity gradients (LCFL), reducing the timestep constraints associated to high
Schmidt number flows. Secondly, the presence of an underlying grid allows to the use of

221



222 Conclusion and perspectives

efficient eulerian solvers. The final proposed method consisted in an hybrid method based on
semi-lagrangian particles, spectral methods and finite differences based methods. By relying
heavily on operator splitting techniques, the method has been further adapted in order to
become accelerator-friendly.

In the third chapter, the high performance implementation of the method has been described.
Details about the development of associated numerical routines were given. Required numer-
ical methods were implemented once for multiple different architectures by relying on the
OpenCL standard. Performance-portability has been achieved by the way of code generation
techniques associated to automatic runtime kernel performance tuning. Within the solver,
the description of a numerical algorithm has been handled by building a graph of operators.
The translation of finite differences based methods to GPU accelerated operators has been
simplified by an OpenCL code generator based on symbolic expressions. An implementation of
efficient OpenCL real-to-real transforms, required to handle homogeneous boundary conditions
in spectral operators, has been proposed. A tool dedicated to the collection of OpenCL ker-
nel instruction statistics has been implemented to evaluate the performance of the proposed
numerical routines. For all kernels, achieved global memory bandwidth lied between 25 and
90% of peak device memory bandwidth. Two other levels of parallelism were also described:
task parallelism that is automatically extracted from a directed acyclic graph of operators
and domain decomposition. This implementation has been validated on a three-dimensional
Taylor-Green vortex benchmark running exclusively on single GPU accelerator.

Chapter four has been devoted to the simulation of particle-laden clear water above salt-
water. The problem to be solved as well as target averaged flow statistics were introduced.
Reference solutions were obtained from state of the art two- and three-dimensional numerical
simulations. Similar configurations were run with the proposed implementation by using
a single GPU. Obtained numerical results were in agreement with the reference data both
qualitatively and quantitatively. Even though no reference data exists for Schmidt numbers
higher than 7, subsequent run at higher Schmidt numbers showed that the resulting flow
was dominated by the expected type of instabilities, slowly passing from a double-diffusive
fingering behaviour to Rayleigh-Taylor dominated settling as the Schmidt number increased.
We thus demonstrated that it was possible to simulate Schmidt numbers four times higher
than current state of the art simulations by using a single GPU accelerator. Distributing the
computations on multiple GPUs will allow us to reach even higher Schmidt numbers while
keeping reasonable compute times.

Perspectives

Many perspectives emerge from the numerical and applicative aspects of this work. First
of all, since the spectral solvers have been rewritten from scratch to implement the support
of homogeneous boundary conditions on accelerators, the distributed MPI implementation
introduced in section 3.3.4 has not been implemented yet. This is the current blocking point
for distributed multi-GPU simulations and constitute an essential step to develop the full
potential of the proposed numerical method. Moreover, two performance bottlenecks have
been identified in chapter 3.2: ghost exchanges and permutations kernels.
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The roadmap to achieve higher Schmidt numbers within the HySoP library is the following:
1. Short term perspectives to achieve Schmidt numbers up to Sc ' 100:

(a) Implement CPU−GPU data streaming to perform numerical simulations up to 8 GPUs
on a single compute node. The problem will have to fit in the compute node mem-
ory while being sent back and forth through the PCI bus. While this will reduce
the performance of memory-bound kernels, it will allow to compute bigger prob-
lems in terms of spatial resolution without having to wait for the next generation
of GPU cards. Here the basic idea is to overlap kernels, device-to-host and host-to-
device copies by using multiple command queues [Van Werkhoven et al. 2014].

(b) This will also be the opportunity to implement hybrid OpenCL-OpenCL computing
by using CPU and GPU OpenCL platforms at the same time. A simple microbench-
mark could be used to determine the optimal compute granularity and the workload
between CPU and GPU [Henry et al. 2014] [Aji et al. 2015].

2. Mid-term perspectives to achieve Schmidt numbers Sc ' 400:

(a) Implement distributed spectral solvers and perform numerical simulations up to
64 GPUs. Here an approach similar to [Aji et al. 2012] and [Dalcin et al. 2019]
should be preferred. This would yield three levels of parallelism by using hybrid
MPI-OpenCL-OpenCL programming.

(b) If possible, introduce better permutations kernels, based on open-source CUDA
tensor-transpose libraries [Hynninen et al. 2017][Vedurada et al. 2018]. Determine
preferred permutation axes by microbenchmarking prior to graph building.

(c) Reduce the number of required ghost exchanges by integrating ghosts exchange to
the graph analysis step presented in section 3.1.4.

3. Long-term perspectives to achieve Schmidt numbers Sc ' 1600 (512 GPUs):

(a) Implement time sub-stepping for finite-difference based diffusion operators. Here
the numerical method of choice would be RKC, a family of Runge-Kutta-Chebyshev
formulas with a stability bound that is quadratic in the number of stages [Som-
meijer et al. 1998].

(b) Depending on the performance of the distributed spectral solver, implement
an alternative solver based on an Aitken-Schwarz algorithm [Garbey et al.
2002][Baranger et al. 2003]. This algorithm trades the global permutations re-
quired by the spectral transforms with simple ghost exchanges, at the price of
increased complexity.

(c) Use the task parallelism provided by the graph analysis by using asynchronous
capabilities of the Python language [Hunt 2019]. At this point, this would yield four
levels of parallelism (Task-MPI-OpenCL-OpenCL). Simulations containing blocking
MPI communications and disk I/O should largely benefit from this feature.

The HySoP library is planed to be open-sourced by the end of the year (2019). The short term
perspectives listed here are currently a work in progress within the library.
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Numerically speaking many interesting tracks could be explored, ranging from the comparison
of the different interpolation and restriction methods in multiscale approaches to the use
of higher order directional splitting schemes. When considering the applicative aspects of
this work, many things come to mind because of the great flexibility of the numerical code
developed in this work. Indeed, the HySoP library can be used as a high performance numerical
toolbox for any fluid-related problem which resolution algorithm can be expressed in terms of
operators. The library is modular and can be extended by implementing additional Python,
C++, Fortran, or OpenCL operators.

If we stick to the original aim of this work, the next logical step is to extend the work of
[Burns et al. 2015] by performing ensemble averaged three-dimensional simulations of in-
creasing Schmidt numbers (Sc > 28). Those numerical results could eventually be used to
identify the dominant settling mechanism of fine particles for Schmidt numbers encountered
in the nature (Sc = 1750). While this application was focused on vertical convection, the
study of horizontal convection at high Schmidt numbers is also of importance [Cohen et al.
2018][Konopliv et al. 2018]. The developed method could also be used to explore many other
physical problems where transported quantities, diffusing at different rates, would be coupled.
This is especially the case for chemical reactions happening in turbulent flows [Schwertfirm
et al. 2010][Watanabe et al. 2015].

Acknowledgments

The author thanks Professor Eckart Meiburg and Peter Burns for their valuable inputs
about the numerical aspects of their model. The author would also like to thank Jean-
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Appendix A

Mathematical notations

A.1 Function spaces

• C0(Ω,K) is the spaces of continuous functions f : Ω→ K.

• C0
I (Ω,K) is the space of piecewise continuous functions f : Ω→ K.

• Spaces of differentiable functions: Let k ∈ N∗, we define the space of functions f :
Ω→ K that are k-th time differentiable as Dk(Ω,K). The class of infinitely differentiable
functions D∞(Ω,K) s defined the intersection of the sets Dk(Ω,K) as k varies over the
non-negative integers.

• Spaces of piecewise continously differentiable functions: Let k ∈ N∗, we de-
fine the space consisting of functions f ∈ Dk(Ω,K) whose k-th derivative is piecewise
continuous as CkI (Ω,K). The class of infinitely piecewise continuously differentiable
functions C∞I (Ω,K) s defined the intersection of the sets CkI (Ω,K) as k varies over the
non-negative integers.

• Spaces of continuously differentiable functions: Let k ∈ N∗, we define the space
consisting of functions f ∈ CkI (Ω,K) whose k-th derivative is continuous as Ck(Ω,K).
The class of infinitely continuously differentiable functions C∞(Ω,K) is defined the
intersection of the sets Ck(Ω,K) as k varies over the non-negative integers.

• Space of analytic functions: The space of analytic function Cω(Ω,K) is the space of
inifinitely differentiable functions that are locally given by a convergent power series:

f ∈ Cω(Ω,K) ⇔ f ∈ C∞(Ω,K) and ∀x0 ∈ Ω lim
x→x0

+∞∑
n=0

f (n)(x0)
n! (x− x0)n = f(x0)

• Relation between spaces Ck, CkI , Dk and Cω:

C0
I ⊃ C0 ⊃ D1 ⊃ C1

I ⊃ C1 ⊃ · · · ⊃ Dk ⊃ CkI ⊃ Ck ⊃ · · · ⊃ D∞ = C∞I = C∞ ⊃ Cω

• Lebesgue spaces: Let 1 ≤ p < ∞ and K ∈ {R,C}, we define the space Lp(Ω) of
functions for which the p-th power of the absolute value is Lebesgue integrable:

f : Ω→ K ∈ Lp(Ω) ⇔ ‖f‖p =

∫
Ω

|f(x)|pdx

1/p

< +∞
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A.2 Functions and symbols

• Set of integers: Let (a, b) ∈ Z2 such that a < b, we define the following integer sets:

Ja, bK = [a, b]
⋂

Z Ja, bJ =[a, b[
⋂

Z

Ka, bK = ]a, b]
⋂

Z Ka, bJ =]a, b[
⋂

Z

• Iverson bracket: The Iverson converts any logical proposition into a number that is

one if the proposition is satisfied, and zero otherwise: [[[P]]] =
{

1 if P is true
0 otherwise

• Kronecker delta: Let (i, j) ∈ R2, we define δi,j = [[[i = j]]] =
{

1 if i = j

0 if i! = j

• Indicator function: The indicator function of a set K is defined as:

1K(x) = [[[x ∈ K]]] =
{

1 if x ∈ K
0 if x /∈ K

A.3 Vector operations

Let n ∈ N, a ∈ Rn and b ∈ Rn we use the following notations:

• Dot product: a · b =
n∑
k=1

akbk ∈ R

• Cross product: a× b =

 3∑
i=1

3∑
j=1
Ekijaibj


k∈J1,3K

∈ R3 (where E is the Levi-Civita symbol)

• Elementwise sum: a+ b = (ak + bk)k∈J1,nK ∈ Rn

• Elementwise subtraction: a− b = (ak − bk)k∈J1,nK ∈ Rn

• Elementwise multiplication: a� b = (akbk)k∈J1,nK ∈ Rn

• Elementwise division: a� b = (ak/bk)k∈J1,nK ∈ Rn

• Elementwise flooring: bac = (bakc)k∈J1,nK ∈ Rn

• Elementwise ceiling: dae = (dake)k∈J1,nK ∈ Rn

• Tensor product: a⊗ b = (aibj)(i,j)∈J1,nK2 ∈Mn(R)
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A.4 Vector calculus identities

The following vector calculus identities are required to derive the Navier-Stokes equations. In
those identities ϕ represent a scalar field, u and v are vector fields and A is a tensor field.

Divergence formulas

∇ · (ϕv) = ϕ(∇ · v) +∇ϕ · v

∇ ·
(
ϕA
)

= ϕ
(
∇ ·A

)
+A∇ϕ

∇ ·
(
Av
)

=
(
∇ ·A

)
· v +A : ∇v

∇ · (u⊗ v) = ∇uv + u(∇ · v)

(A.1a)

(A.1b)

(A.1c)

(A.1d)

Divergence theorem (Green-Ostrogradski)

The divergence theorem states that the outward flux of a tensor field through a closed surface
is equal to the volume integral of the divergence over the region inside the surface. It relates
the flow of a vector field through a surface to the behavior of the tensor field inside the surface:

∫
Ω
∇ϕ dv =

∮
∂Ω
ϕ n ds∫

Ω
∇ · v dv =

∮
∂Ω
v · n ds∫

Ω
∇ · T dv =

∮
∂Ω
Tn ds

(A.2a)

(A.2b)

(A.2c)





Appendix B

HySoP dependencies and tools

This appendix provides some information and references about the dependencies the HySoP li-
brary uses. Il also covers basic tools that are usefull to build the library and analyze code
metrics. It is better used with the electronic version of this work through hyperlinks.

B.1 FFT libraries

• FFTPACK: FFTPACK is a package of Fortran and C subroutines for the fast Fourier
transform (FFT). It includes complex, real, sine, cosine, and quarter-wave single and
double precision one-dimensional transforms [Swarztrauber 1982].
Link: https://www.netlib.org/fftpack

• FFTW: The Fastest Fourier Transform in the West is a C subroutine library for com-
puting the discrete Fourier transform (DFT) in one or more dimensions, of arbitrary
input size, and of both real and complex data [Frigo et al. 1998]. It can also computes
discrete cosine and sine transforms (DCT/DST). The library supports single and dou-
ble precision floating point numbers as well as extended precision long double and
non standard float128 quadruple-precision floating point types. It provides two dif-
ferent multithreaded implementations using OpenMP and POSIX threads (pthread) in
addition to distributed-memory transforms through MPI. Benchmarks comparing the
performance of FFTW to other FFT implementations can be found in [Frigo et al. 2012].
Link: http://www.fftw.org

• MKL-FFT: Intel specific FFT implementation for multidimensional complex-to-
complex, real-to-complex, and real-to-real transforms of arbitrary length. The library
supports single and double precision floating point numbers and proposes FFTW inter-
faces for compatibility. It provides a multithreaded implementation through user suplied
OpenMP or pthread threads in addition to distributed-memory transforms through MPI.
Link: https://software.intel.com/en-us/mkl/features/fft

• clFFT: clFFT is a C++ library containing FFT functions written in OpenCL. In addition
to GPU devices, the library also supports running on CPU devices to facilitate debug-
ging and heterogeneous programming. It supports one-dimensional, two-dimensional
and three-dimensional single and double precision batched transforms whose dimension
lengths can be a combination of powers of 2, 3, 5, 7, 11 and 13.
Link: https://github.com/clMathLibraries/clFFT
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B.2 Python modules

• SciPy: SciPy is a Python based ecosystem of open-source software for mathematics,
science, and engineering [Oliphant 2007b]. The SciPy library is one of the core packages
that make up the SciPy stack. It provides many user-friendly and efficient numerical
routines such as routines for numerical integration, interpolation, optimization and lin-
ear algebra. It also provide a pythonic wrapper to the Fortran FFT routines of FFTPACK.
Link: https://www.scipy.org

• NumPy: NumPy is the fundamental package for scientific computing with Python. It
contains among other things a powerful n-dimensional array object supporting sophis-
ticated broadcasting functions [Van Der Walt et al. 2011]. NumPy can also be used as
an efficient multi-dimensional container of generic data. Arbitrary data-types can be
defined to mimic C structures. It contains tools to integrate C++ and Fortran code, see
F2PY. It also provide a pythonic wrapper to the C FFT routines of FFTPACK.
Link: https://www.numpy.org

• Sympy: Sympy is a Python library for symbolic mathematics [Meurer et al. 2017]. It
aims to become a full-featured computer algebra system (CAS) while keeping the code
as simple as possible in order to be comprehensible and easily extensible. Beyond use
as an interactive tool, Sympy can be embedded in other applications and extended with
custom functions.
Link: https://www.sympy.org

• Python-FLINT: Python-FLINT is a module wrapping FLINT (Fast Library for Number
Theory) and Arb (Arbitrary-precision ball arithmetic). It features integer, rationals, real
and complex numbers with arbitrary precision as well as polynomials and matrices over
all those types [Hart 2010][Johansson 2013]. This module is used mainly for its linear
solver when solving for a matrix containing rationals. It is much more performant than
the equivalent solver proposed by Sympy with sympy.Rational elements.
Link: http://fredrikj.net/python-flint

• PyOpenCL: PyOpenCL lets you access GPUs and other massively parallel compute de-
vices from Python trough the OpenCL API [Klöckner et al. 2012]. It tries to offer com-
puting goodness in the spirit of its sister project PyCUDA. PyOpenCL offers broad support
and works with with Intel, Nvidia, AMD and POCL OpenCL implementations.
Link: https://documen.tician.de/pyopencl

• MPI4py: MPI4py provides bindings of the Message Passing Interface standard for the
Python programming language, allowing any Python program to exploit multiple pro-
cessors [Dalćın et al. 2005]. This package is constructed on top of the MPI-1/2/3 spec-
ifications and provides an object oriented interface. It supports point-to-point (sends,
receives) and collective (broadcasts, scatters, gathers) communications of any picklable
object, as well as optimized communications of Python objects exposing the single-
segment buffer interface such as NumPy arrays.
Link: https://mpi4py.readthedocs.io
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• pyFFTW: pyFFTW is a pythonic wrapper around FFTW. The ultimate aim is to present a
unified interface for all the possible transforms that FFTW can perform. Both the complex
DFT and the real DFT are supported. Real to real transforms are not supported in
the master branch yet (but are available as a merge request). This wrapper does not
support the MPI capabilities of FFTW.
Link: https://github.com/pyFFTW/pyFFTW

• gpyfft: gpyfft is a Python wrapper for the OpenCL FFT library clFFT. It is designed to
tightly integrate with PyOpenCL and consists of a low-level Cython based wrapper with
an interface similar to the underlying C library. On top of that it offers a high-level
interface designed to work on data contained in instances of pyopencl.array.Array.
The high-level interface takes some inspiration from pyFFTW.
Link: https://github.com/geggo/gpyfft

• mkl fft: The mkl fft Python module wraps the MKL-FFT library and provides
numpy.fft and scipy.fftpack compatible FFT interfaces to NumPy and SciPy.
Link: https://github.com/IntelPython/mkl_fft

• graph-tool: graph-tool is is an efficient Python module for manipulation and statis-
tical analysis of graphs. The core data structures and algorithms are implemented in
C++, making extensive use of template metaprogramming, based heavily on the Boost
Graph Library. An extensive array of features is included, such as support for arbi-
trary vertex, edge or graph properties and topological aglorithms.
Link: https://graph-tool.skewed.de

B.3 Build tools

• Numba: Numba translates Python functions to optimized machine code at runtime using
the industry-standard LLVM compiler library [Lam et al. 2015]. Numba compiled numer-
ical algorithms in Python can approach the speeds of C or Fortran. Numba is designed
to be used with NumPy arrays and functions, the source code remains pure Python while
Numba handles the compilation at runtime just in time (JIT). Numba generates special-
ized code for different array data types and layouts to optimize performance. It supports
vector instructions and adapts to the CPU capabilities (SSE, AVX, AVX-512) and enable
GPU acceleration through CUDA and ROCm.
Link: https://numba.pydata.org

• F2PY: The purpose of F2PY, the Fortran to Python interface generator, is to provide
a connection between Python and Fortran languages [Peterson 2009]. F2PY is part of
NumPy and is also available as a standalone command line tool. It makes it possible to
call Fortran 77/90/95 external subroutines and Fortran 90/95 module subroutines as
well as C functions and allows access to Fortran 77 COMMON blocks and Fortran 90/95
module data, including allocatable arrays.
Link: https://docs.scipy.org/doc/numpy/f2py

https://github.com/pyFFTW/pyFFTW
https://github.com/geggo/gpyfft
https://github.com/IntelPython/mkl_fft
https://graph-tool.skewed.de
https://numba.pydata.org
https://docs.scipy.org/doc/numpy/f2py
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• SWIG: The Simplified Wrapper and Interface Generator is a software development tool
that connects programs written in C and C++ with a variety of high-level programming
languages including Python [Beazley 1996]. SWIG is most commonly used to create high-
level interpreted or compiled programming environments, user interfaces, and as a tool
for testing and prototyping C/C++ software.
Link: http://www.swig.org

• LLVM: The LLVM Project is a collection of modular and reusable compiler and
toolchain technologies [Lattner et al. 2004]. The LLVM Core libraries provide a mod-
ern source and target-independent optimizer, along with code generation support for
many popular CPUs. These libraries are built around a well specified code representation
known as the LLVM intermediate representation (LLVM IR).
Link: https://llvm.org

B.4 Benchmarking and debugging tools
• clpeak: clpeak is a synthetic benchmarking tool to measure peak capabilities of

OpenCL devices [Bhat 2017]. It measures peak metrics that can be achieved using vector
operations such as global memory bandwidth, host-to-device and device-to-host mem-
ory bandwidth, peak compute for single and double precision floating point numbers
and kernel launch latencies.
Link: https://github.com/krrishnarraj/clpeak

• mixbench: The purpose of mixbench is to evaluate performance bounds of GPUs on
mixed operational intensity kernels [Konstantinidis et al. 2015]. The executed kernels
are customized on a range of different operational intensity values. Modern GPUs are
able to hide memory latency by switching execution to threads able to perform compute
operations. Using this tool one can assess the practical optimum balance in both types
of operations for GPUs with CUDA, OpenCL or HIP.
Link: https://github.com/ekondis/mixbench

• gearshifft: This is a simple and easy extensible benchmark system to answer the
question, which FFT library performs best under which conditions [Steinbach et al.
2017]. Conditions are given by compute architecture, inplace or outplace as well as real
or complex transforms, data precision, and so on. This project supports FFTW, MKL-FFT,
clFFT, rocFFT and cuFFT libraries.
Link: https://github.com/mpicbg-scicomp/gearshifft

• Oclgrind: Oclgrind implements a virtual OpenCL device simulator [Price et al. 2015].
and aims to provide a platform for creating tools to aid OpenCL development. This
project implements utilities for debugging memory access errors, detecting data-races
and barrier divergence and for interactive OpenCL kernel debugging. The simulator is
built on an interpreter for LLVM IR. Oclgrind provides a simple plugin interface that
allows third-party developers to extend its functionality. This interface allows a plugin to
be notified when various events occur within the simulator, such as an instruction being
executed, memory being accessed, or work-group synchronisation constructs occurring.
Link: https://github.com/jrprice/Oclgrind

http://www.swig.org
https://llvm.org
https://github.com/krrishnarraj/clpeak
https://github.com/ekondis/mixbench
https://github.com/mpicbg-scicomp/gearshifft
https://github.com/jrprice/Oclgrind


Appendix C

Oclgrind plugin and kernel statistics

This plugin aims to output execution statistics about OpenCL kernels run in isolation in
Oclgrind. It is heavily inspired from the InstructionCounter plugin already provided by
the device simulator and is thus subject to the same 3-clause BSD license (https://github.
com/jrprice/Oclgrind/blob/master/LICENSE). This plugin has been tested with LLVM
6.0.1 and Oclgrind 18.3.

C.1 Requirements, build and usage
The plugin consists into a single source file with associated header (InstructionDumper.h
and InstructionDumper.cpp) which are compiled to a shared library
(libOclgrindInstructionDumper.so). To build the plugin, it is required to copy
oclgrind core directory (core/*.h and core/*.cpp) in the current directory. It also
requires LLVM to be present at LLVM DIR, a c++17 compatible compiler defined as CXX and
boost progress and property tree headers to be present in include path. Please refer
to the online documentation to obtain more information about the plugin build process
(https://github.com/jrprice/Oclgrind/wiki/Creating-Plugins).

The simplest way to get the source code and a working plugin is to clone the repository:

#!/usr/bin/env bash
export CXX=...
export LLVM_DIR=...
git clone https://gitlab.com/keckj/oclgrind-instruction-dumper
make

Oclgrind can be built from the cloned submodule or directly installed from the system
package manager (sudo apt-get install oclgrind). A basic kernel simulation file is
present in the repository in the test subdirectory. After build the test can be run with make
test (see https://gitlab.com/keckj/oclgrind-instruction-dumper). The general
command to run the plugin on an arbitrary kernel is the following:

oclgrind-kernel --plugins $(pwd)/libOclgrindInstructionDumper.so kernel.sim

Although the plugin supports multithreaded execution, kernel isolation remains a slow
process for large kernels (its runs exclusively on CPU). When execution is too long,
instruction statistics can be extrapolated from the first work-group by defining the
OCLGRIND ONLY FIRST WORKGROUP environment variable (its value is not checked).
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C.2 Output sample and obtained kernel statistics

Here is a sample of statistics that are output by the plugin for the three dimensional directional
remeshing kernel with Λ8,4 on a 5123 single-precision array. The values are printed to the
standard output stream correspond only to the first work-group (out of 5122 work-groups).
The output has been formatted to fit the page:
{

"op_counts": {
"Add": "9604", "Sub": "3072", "Mul": "3072",
"FSub": "512", "FMul": "8192",
"Alloca": "18944", "GetElementPtr": "10988",
"Load": "101400", "Store": "39288",
"Trunc": "10928", "BitCast": "3072",
"ZExt": "4608", "SExt": "3692",
"ICmp": "3900", "FCmp": "5120",
"PHI": "512", "Call": "48256",
"ExtractElement": "11068", "InsertElement": "384",
"Ret": "5760", "Br": "28820"

},
"function_calls": {

"lambda_8_4__0_86b2": "512", "lambda_8_4__1_86b2": "512",
"lambda_8_4__2_86b2": "512", "lambda_8_4__3_86b2": "512",
"lambda_8_4__4_86b2": "512", "lambda_8_4__5_86b2": "512",
"lambda_8_4__6_86b2": "512", "lambda_8_4__7_86b2": "512",
"lambda_8_4__8_86b2": "512", "lambda_8_4__9_86b2": "512",
"barrier(unsigned int)": "2560", "convert_int_rtn(float)": "512"

},
"memory_op_bytes": {

"load": { "private": "483344", "global": "4096",
"constant": "0", "local": "2240" },

"store": { "private": "164080", "global": "2096",
"constant": "0", "local": "2240" },

"total": { "private": "647424", "global": "6192",
"constant": "0", "local": "4480" }

},
"integer_ops": { "32": "15748" },
"floating_point_ops": { "32": "86016" },
"work_group": { "executed": "1", "total": "262144" }

}

If we consider that all work group will perform an equivalent number of instructions and
memory transactions, this kernel has an arithmetic intensity of 86016/6192=13.89 FLOP/B.
By knowing the runtime of this kernel on a considered target device, one can deduce achieved
bandwidth (GB/s) and compute (GFLOP/s).
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Boussinesq, Joseph (1877). Essai sur la théorie des eaux courantes. Impr. nationale (cit. on
p. 14).

Brandvik, Tobias and Graham Pullan (2010). “SBLOCK: A framework for efficient stencil-
based PDE solvers on multi-core platforms”. In: 2010 10th IEEE International Conference
on Computer and Information Technology. IEEE, pp. 1181–1188 (cit. on p. 90).

Britter, RE and JE Simpson (1978). “Experiments on the dynamics of a gravity current head”.
In: Journal of Fluid Mechanics 88.2, pp. 223–240 (cit. on p. 29).

Brown, David L (1995). “Performance of under-resolved two-dimensional incompressible flow
simulations”. In: Journal of Computational Physics 122.1, pp. 165–183 (cit. on p. 145).

Burns, Keaton J, Geoffrey M Vasil, Jeffrey S Oishi, Daniel Lecoanet, and Benjamin Brown
(2016). “Dedalus: Flexible framework for spectrally solving differential equations”. In:
Astrophysics Source Code Library (cit. on p. 57).

Burns, P and E Meiburg (2012). “Sediment-laden fresh water above salt water: linear stability
analysis”. In: Journal of Fluid Mechanics 691, pp. 279–314 (cit. on pp. 2, 37, 197, 198,
205, 210).

— (2015). “Sediment-laden fresh water above salt water: nonlinear simulations”. In: Journal
of Fluid Mechanics 762, pp. 156–195 (cit. on pp. 2, 37, 40, 199, 201, 204, 206–210, 212,
213, 216, 217, 224).

Butcher, John C (1963). “Coefficients for the study of Runge-Kutta integration processes”.
In: Journal of the Australian Mathematical Society 3.2, pp. 185–201 (cit. on p. 81).

Butcher, John Charles and JC Butcher (1987). The numerical analysis of ordinary differential
equations: Runge-Kutta and general linear methods. Vol. 512. Wiley New York (cit. on
p. 81).

Buyevich, Yu A (1971). “Statistical hydromechanics of disperse systems Part 1. Physical
background and general equations”. In: Journal of Fluid Mechanics 49.3, pp. 489–507
(cit. on p. 27).

Caldwell, Douglas R (1973). “Thermal and Fickian diffusion of sodium chloride in a solution
of oceanic concentration”. In: Deep Sea Research and Oceanographic Abstracts. Vol. 20.
11. Elsevier, pp. 1029–1039 (cit. on p. 35).



244 Bibliography

Canon, Louis-Claude, Loris Marchal, Bertrand Simon, and Frédéric Vivien (2018). “Online
scheduling of task graphs on hybrid platforms”. In: European Conference on Parallel
Processing. Springer, pp. 192–204 (cit. on p. 146).

Canuto, Claudio, M Yousuff Hussaini, Alfio Quarteroni, A Thomas Jr, et al. (2012). Spectral
methods in fluid dynamics. Springer Science & Business Media (cit. on p. 71).

Cao, Chongxiao, Jack Dongarra, Peng Du, Mark Gates, Piotr Luszczek, and Stanimire Tomov
(2014). “clMAGMA: High performance dense linear algebra with OpenCL”. In: Proceed-
ings of the International Workshop on OpenCL 2013 & 2014. ACM, p. 1 (cit. on p. 159).

Carvalho, Carlos (2002). “The gap between processor and memory speeds”. In: Proc. of IEEE
International Conference on Control and Automation (cit. on p. 43).

Cary, John R, Svetlana G Shasharina, Julian C Cummings, John VW Reynders, and Paul J
Hinker (1997). “Comparison of C++ and Fortran 90 for object-oriented scientific pro-
gramming”. In: Computer Physics Communications 105.1, pp. 20–36 (cit. on p. 133).
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Modélisation numérique et calcul haute performance de transport de
sédiments

Résumé — La dynamique des écoulements sédimentaires est un sujet qui concerne
de nombreuses applications en géophysiques, qui vont des questions d’ensablement des
estuaires à la compréhension des bassins sédimentaires. Le sujet de cette thèse porte
sur la modélisation numérique à haute résolution de ces écoulements et l’implémentation
des algorithmes associés sur accélérateurs. Les écoulements sédimentaires font intervenir
plusieurs phases qui interagissent, donnant lieu à plusieurs types d’instabilités comme les
instabilités de Rayleigh-Taylor et de double diffusivité. Les difficultés pour la simulation
numérique de ces écoulements tiennent à la complexité des interactions fluides/sédiments
qui font intervenir des échelles physiques différentes. En effet, ces interactions sont difficiles
à traiter du fait de la grande variabilité des paramètres de diffusion dans les deux phases
et les méthodes classiques présentent certaines limites pour traiter les cas où le rapport
des diffusivités, donné par le nombre de Schmidt, est trop élevé. Cette thèse étend les
récents résultats obtenus sur la résolution directe de la dynamique du transport d’un scalaire
passif à haut Schmidt sur architecture hybride CPU-GPU et valide cette approche sur
les instabilités qui interviennent dans des écoulements sédimentaires. Ce travail revisite
tout d’abord les méthodes numériques adaptées aux écoulements à haut Schmidt afin de
pouvoir appliquer des stratégies d’implémentations efficaces sur accélérateurs et propose
une implémentation de référence open source nommée HySoP. L’implémentation proposée
permet, entre autres, de simuler des écoulements régis par les équations de Navier-Stokes
incompressibles entièrement sur accélérateur ou coprocesseur grâce au standard OpenCL
et tend vers des performances optimales indépendamment du matériel utilisé. La méthode
numérique et son implémentation sont tout d’abord validées sur plusieurs cas tests classiques
avant d’être appliquées à la dynamique des écoulements sédimentaires qui font intervenir
un couplage bidirectionnel entre les scalaires transportés et les équations de Navier-Stokes.
Nous montrons que l’utilisation conjointe de méthodes numériques adaptées et de leur
implémentation sur accélérateur permet de décrire précisément, à coût très raisonnable, le
transport sédimentaire pour des nombres de Schmidt difficilement accessibles par d’autres
méthodes.

Mots clés : Transport sédimentaire, couplage bidirectionnel, méthodes particulaires,
double diffusivité, HPC, GPU, HySoP
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Numerical modelling and High Performance Computing for sediment flows

Abstract — The dynamic of sediment flows is a subject that covers many applications
in geophysics, ranging from estuary silting issues to the comprehension of sedimentary
basins. This PhD thesis deals with high resolution numerical modeling of sediment flows
and implementation of the corresponding algorithms on hybrid calculators. Sedimentary
flows involve multiple interacting phases, giving rise to several types of instabilities such
as Rayleigh-Taylor instabilities and double diffusivity. The difficulties for the numerical
simulation of these flows arise from the complex fluid/sediment interactions involving
different physical scales. Indeed, these interactions are difficult to treat because of the great
variability of the diffusion parameters in the two phases. When the ratio of the diffusivities,
given by the Schmidt number, is too high, conventional methods show some limitations.
This thesis extends the recent results obtained on the direct resolution of the transport of a
passive scalar at high Schmidt number on hybrid CPU-GPU architectures and validates this
approach on instabilities that occur in sediment flows. This work first reviews the numerical
methods which are adapted to high Schmidt flows in order to apply effective accelerator
implementation strategies and proposes an open source reference implementation named
HySoP. The proposed implementation makes it possible, among other things, to simulate
flows governed by the incompressible Navier-Stokes equations entirely on accelerator or
coprocessor thanks to the OpenCL standard and tends towards optimal performances inde-
pendently of the hardware. The numerical method and its implementation are first validated
on several classical test cases and then applied to the dynamics of sediment flows which
involve a two-way coupling between the transported scalars and the Navier-Stokes equations.
We show that the joint use of adapted numerical methods and their implementation on
accelerator makes it possible to describe accurately, at a very reasonable cost, sediment
transport for Schmidt numbers difficult to reach with other methods.

Keywords: Sediment transport, dual-way coupling, particle methods, double diffu-
sivity, HPC, GPU, HySoP
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