L. .. Foils-», 2.2. La détermination des points de mesure en énergie

L. and .. .. ,

V. .. ,

. .. Les-resultats, , p.67

. .. Cu,

. .. La-production-de-contaminants,

. .. Ga,

. .. Cu,

. .. Ni,

L. .. Epaisse,

, Comme rappelé dans le tableau précédent 5.13, le 67 Ga et le 67 Cu émettent des gamma aux mêmes énergies mais avec des rapports d'embranchement différents. Souhaitant déterminer la section efficace de la réaction 70

, Zn(d,x) 67 Cu uniquement, l'activité de chacun de ces radionucléides doit être

, Ga lors de l'analyse des spectres, un système à deux équations est établi (5.1), vol.100

, Ces équations mettent en lien le nombre total de gamma collectés, N TOT, un pic (ici, 184 keV et 300 keV) et le nombre de gamma collectés venant de chaque acteur

, Chart of Nuclides from National Nuclear Data Center (NNDC)

Z. Randa and K. Svoboda, Excitation functions and yields of the ( d , p ) reactions on natural molybdenum for deuteron energies less than 13 MeV, J. Inorg. Nucl. Chem, vol.38, issue.12, pp.2121-2123, 1977.

A. Righetti, Usefulness of preoperative and postoperative Tc-99m (Sn)-pyrophosphate scans in patients with ischemic and valvular heart disease, Am. J. Cardiol, vol.39, issue.1, pp.43-49, 1977.

T. B. Bartel, F18-fluorodeoxyglucose positron emission tomography in the context of other imaging techniques and prognostic factors in multiple myeloma, Blood, vol.114, issue.10, pp.2068-2076, 2009.

C. Parker, S. Nilsson, and D. Heinrich, Alpha emitteur radium-223 and survival in metastatic prostate cancer," new Engl, J. Med, 2013.

F. Kraeber-bodéré, Tumor immunotargeting using innovative radionuclides, Int. J. Mol. Sci, vol.16, issue.2, pp.3932-3954, 2015.

P. D. Grimm, J. C. Blasko, J. E. Sylvester, R. M. Meier, and W. Cavanagh, 10-Year biochemical (prostate-specific antigen) control of prostate cancer with 125I brachytherapy, Int. J. Radiat. Oncol. Biol. Phys, vol.51, issue.1, pp.31-40, 2001.

G. Borghede, Combined treatment with temporary short-term high dose rate iridium-192 brachytherapy and external beam radiotherapy for irradiation of localized prostatic carcinoma, Radiother. Oncol, vol.44, issue.3, pp.237-244, 1997.

, World Nuclear Association, 2019.

J. L. Venselaar, P. H. Van-der-giessen, and W. J. Dries, Measurement and calculation of the dose at large distances from brachytherapy sources : Cs-137, Ir-192, and Co-60, Med. physics, Int. J. Med. Phys. Res. Pract, vol.23, issue.4, pp.537-543, 1996.

F. Rösch, H. Herzog, and S. M. Qaim, The beginning and development of the theranostic approach in nuclear medicine, as exemplified by the radionuclide pair 86 Y and 90 Y, Pharmaceuticals, vol.10, issue.2, pp.1-28, 2017.

R. P. Baum and H. R. Kulkarni, Theranostics: From molecular imaging using Ga-68 labeled tracers and PET/CT to personalized radionuclide therapy -the bad berka experience, Theranostics, vol.2, issue.5, pp.437-447, 2012.

W. R. Leo, Technique for Nuclear and Particle Physics Experiments, 2006.

J. F. Ziegler, J. P. Biersack, and M. D. Ziegler, SRIM : The stopping and range of ions in matter, 2013.

W. Iba, S. Kleeven, and . Zaremba, Energy definition for extracted beams in the C70 cyclotron, 2009.

H. Paradis, Développement de la mesure par spectrométrie gamma en coïncidence, 2016.

S. Y. Chu, L. P. Ekstrôm, and R. B. Firestone, The Lund/LBNL Nuclear Data Search version 2.0, 1999.

J. Fitzgerald and J. C. , Fitzpeaks Gamma Analysis Software version 3.66

J. K. Tuli, Nuclear Wallet cards, Brookhaven Natl. Lab, vol.45, issue.2, pp.179-180, 2011.

M. Sitarz, Radionuclide Yield Calculator (RYC) v2.0, 2018.

A. J. Koning and D. Rochman, Modern Nuclear Data Evaluation With The TALYS Code System, Nuclear Data Sheets 113, 2012.

C. Duchemin, Étude de voies alternatives pour la production de radionucléides innovants pour les applications médicales, hal Arch. thèse Dr., université de Nantes, 2015.

A. Guertin, How nuclear data collected for medical radionuclides production could constrain nuclear codes, EPJ Web Conf, vol.146, p.8008, 2017.
URL : https://hal.archives-ouvertes.fr/in2p3-01955280

S. Watanabe, High energy scattering of deuterons by complex nuclei, Nucl. Phys, vol.8, issue.C, pp.484-492, 1958.

Y. Han, Y. Shi, and Q. Shen, Deuteron global optical model potential for energies up to 200 MeV, Phys. Rev. C -Nucl. Phys, vol.74, issue.4, pp.1-11, 2006.

P. Demetriou, C. Grama, and S. Goriely, Improved global ?-optical model potentials at low energies, Nucl. Phys. A, vol.707, issue.1-2, pp.253-276, 2002.

H. Gruppelaar, P. Nagel, and P. E. Hodgson, Pre-equilibrium processes in nuclear reaction theory: the state of the art and beyond, La Riv. Del Nuovo Cim. Ser, vol.3, issue.7, pp.1-46, 1986.

E. Gadioli and P. Hodgson, Pre-equilibrium nuclear reactions, 1992.

S. Hilaire, C. Lagrange, and A. J. Koning, Comparisons between various width fluctuation correction factors for compound nucleus reactions, Ann. Phys. (N. Y), vol.306, issue.2, pp.209-231, 2003.

S. Goriely, S. Hilaire, and A. J. Koning, Improved microscopic nuclear level densities within the Hartree-Fock-Bogoliubov plus combinatorial method, Phys. Rev. C -Nucl. Phys, vol.78, issue.6, pp.1-14, 2008.

A. Hermanne, Reference Cross Sections for Charged-particle Monitor Reactions, Nucl. Data Sheets, vol.148, pp.338-382, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01758075

E. Garrido, Production de radioisotopes: de la mesure de la section efficace à la production, hal Arch. thèse Dr., université de Nantes, 2011.
URL : https://hal.archives-ouvertes.fr/tel-00662649

F. Poirier, STUDIES AND UPGRADES ON THE C70 CYCLOTRON ARRONAX, pp.235-237, 2016.

H. Kudo and K. Shima, Energy spectra of secondary electrons induced by fast ions under channeling conditions, Phys. Rev. B, vol.38, issue.1, pp.38-44, 1988.

F. S. Al-saleh, A. A. Al-harbi, and A. Azzam, Excitation functions of proton induced nuclear reactions on natural copper using a medium-sized cyclotron, Radiochim. Acta, vol.94, issue.8, pp.391-396, 2006.

M. U. Khandaker, M. S. Uddin, K. S. Kim, Y. S. Lee, and G. N. Kim, Measurement of cross-sections for the (p, xn) reactions in natural molybdenum, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, vol.262, issue.2, pp.171-181, 2007.

T. Siiskonen, Excitation functions of proton-induced reactions in natCu in the energy range 7-17 MeV, Appl. Radiat. Isot, vol.67, issue.11, pp.2037-2039, 2009.

M. Shahid, K. Kim, H. Naik, M. Zaman, S. C. Yang et al., Measurement of excitation functions in proton induced reactions on natural copper from their threshold to 43 MeV, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, vol.342, pp.305-313, 2015.

P. Kopecky, Proton Beam Monitoring via the in Copper, vol.36, pp.657-661, 1985.

N. and N. R. , Experimental Nuclear Reaction Data (EXFOR)

R. Michel, Cross sections for the production of residual nuclides by lowand medium-energy protons from the target elements, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, vol.129, issue.2, pp.153-193, 1997.

A. Hermanne, F. Szelecsenyi, M. Sonck, S. Takacs, F. Tarkanyi et al., New cross section data on 68 Zn(p,2n) 67 Ga and (nat)Zn(p, xn) 67 Ga nuclear reactions for the development of a reference data base, J. Radioanal. Nucl. Chem, vol.240, issue.2, pp.623-630, 1999.

F. Szelecsényi, Excitation function for the natTi(p,x)48V nuclear process: Evaluation and new measurements for practical applications, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, vol.174, issue.1-2, pp.47-64, 2001.

S. Takács, F. Tárkányi, M. Sonck, and A. Hermanne, New cross-sections and intercomparison of proton monitor reactions on Ti, Ni and Cu, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, vol.188, issue.1-4, pp.106-111, 2002.

M. S. Uddin, M. Hagiwara, F. Tarkanyi, F. Ditroi, and M. Baba, Experimental studies on the proton-induced activation reactions of molybdenum in the energy range 22-67 MeV, Appl. Radiat. Isot, vol.60, issue.6, pp.911-920, 2004.

E. Z. Buthelezi, F. M. Nortier, and I. W. Schroeder, Excitation functions for the production of 82Sr by proton bombardment of natRb at energies up to 100 MeV, Appl. Radiat. Isot, vol.64, issue.8, pp.915-924, 2006.

S. Takács, F. Tárkányi, B. Király, A. Hermanne, and M. Sonck, Evaluated activation cross sections of longer-lived radionuclides produced by deuteron induced reactions on natural nickel, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, vol.260, issue.2, pp.495-507, 2007.

A. Hermanne, S. Takács, R. Adam-rebeles, F. Tárkányi, and M. P. Takács, New measurements and evaluation of database for deuteron induced reaction on Ni up to 50 MeV, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, vol.299, pp.8-23, 2013.

N. Amjed, F. Tárkányi, F. Ditrói, S. Takács, and H. Yuki, Activation crosssections of deuteron induced reaction of natural Ni up to 40MeV, Appl. Radiat. Isot, vol.82, pp.87-99, 2013.

M. Avrigeanu, Deuteron-induced reactions on Ni isotopes up to 60 MeV, Phys. Rev. C, vol.94, issue.1, pp.1-16, 2016.

A. R. Usman, M. U. Khandaker, H. Haba, M. Murakami, and N. Otuka, Measurements of deuteron-induced reaction cross-sections on natural nickel up to 24 MeV, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, vol.368, pp.112-119, 2016.

F. Tárkányi, New experimental data, compilation and evaluation for the natCu(?, x)66Ga, natCu(?, x)67Ga and natCu(?, x)65Zn monitor reactions, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, vol.168, issue.2, pp.144-168, 2000.

F. Szelecsényi, K. Suzuki, Z. Kovács, M. Takei, and K. Okada, Alpha beam monitoring via nat Cu + alpha processes in the energy range from 40 to 60 MeV, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, vol.184, issue.4, pp.589-596, 2001.

F. Szelecsényi, Z. Kovács, K. Nagatsu, K. Fukumura, K. Suzuki et al., Investigation of direct production of 68 Ga with low energy multiparticle accelerator, Radiochim. Acta, vol.100, issue.1, pp.5-11, 2012.

M. Shahid, K. Kim, G. Kim, M. Zaman, and M. Nadeem, Measurement of excitation functions in alpha induced reactions on nat Cu, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, vol.358, pp.160-167, 2015.

A. R. Usman, M. U. Khandaker, H. Haba, N. Otuka, M. Murakami et al., Production cross-sections of radionuclides from ?-induced reactions on natural copper up to 50 MeV, Appl. Radiat. Isot, vol.114, pp.104-113, 2016.

I. S. Ciric, J. L. Quinn, and P. C. Bucy, Mercury 197 and Technetium 99m brain Scans in the diagnosis of Non-Neoplastic Intracranial lesions, Journal of Neurosurgery, pp.119-125

W. J. Meredith and J. B. Massey, Fundamental physics of radiology, pp.417-419, 1977.

R. R. Armas, Clinical studies with spleen-specific radiolabeled agents, Semin. Nucl. Med, vol.15, issue.3, pp.260-275, 1985.

A. Hermanne, F. Tárkányi, S. Takács, Y. N. Shubin, and S. Kovalev, Experimental determination of activation cross section of alpha-induced nuclear reactions on natPt, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, vol.251, issue.2, pp.333-342, 2006.

S. Sudár and S. M. Qaim, Cross sections for the formation of Hg195m,g, Hg197m,g and Au196m,g in alpha and He3-particule induced reactions on Pt: Effect of level density paramaters on the calculated isomeris cross sections ratio, Phys. Rev. C, vol.73, issue.3, p.34613, 2006.

T. Matzuk, Neutron Production in Ag, Ta, Au, Pt and Pb by the Interaction of 7.5-14 MeV Protons, vol.1, pp.21-26, 1970.

G. Chodil, R. C. Jopson, H. Mark, C. D. Swift, R. G. Thomas et al., ) and (p, 2n) cross sections of nine elements between 7.0 and 15.0 MeV, Nucl. Phys, vol.93, pp.648-672, 1967.

E. K. Elmaghraby, K. F. Hassan, H. Omara, and Z. A. Saleh, Production of the mercury-197 through proton induced reaction on gold, Appl. Radiat. Isot, vol.68, issue.9, pp.1694-1698, 2010.

R. Vandenbosch and J. R. Huizenga, Isomeric Cross-Section Ratios for Reactions Producing the Isomeric Pair Hg197,197m, Phys. Rev, vol.120, issue.4, 1960.

N. Poffé, Réactions ( p , xn ) induites dans l'or par des protons de 155

. Mev, Le J. Phys. et le radium, vol.21, p.343, 1960.

L. F. Hansen, R. C. Jopson, H. Mark, and C. D. Swift, Ta181(p, n)W181 and Au197(p, n)Hg197 excitation functions between 4 and 13 MeV, vol.30, pp.389-398, 1962.

N. Chevarier, A. Chevarier, and A. Demeyer, Réactions induites sur l'or par des deutons de 10 à 70 MeV, Le J. de Phys, vol.32, p.483, 1971.

F. Tárkányi, Activation cross-sections of deuteron induced nuclear reactions on gold up to 40MeV, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, vol.269, issue.12, pp.1389-1400, 2011.

M. Walther, Theranostic mercury: 197(m)Hg with high specific activity for imaging and therapy, Appl. Radiat. Isot, vol.97, pp.177-181, 2015.

F. Tárkányi, A. Hermanne, F. Ditrói, S. Takács, R. A. Rebeles et al., New data on cross-sections of deuteron induced nuclear reactions on gold up to 50 MeV and comparison of production routes of medically relevant Au and Hg radioisotopes, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, vol.362, pp.116-132, 2015.

C. R. Patra, R. Bhattacharya, D. Mukhopadhyay, and P. Mukherjee, Fabrication of Gold Nanoparticles for targeted therapy in pancreatic cancer, Adv Drug Deliv Rev. PMC, vol.62, issue.3, pp.346-361, 2011.

A. Subercaze, A. Guertin, F. Haddad, C. Koumeir, V. Métivier et al., Thick multi-layers analysis using high energy PIXE, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, vol.406, pp.104-107, 2017.
URL : https://hal.archives-ouvertes.fr/in2p3-01951320

A. Subercaze, C. Koumeir, V. Métivier, N. Servagent, A. Guertin et al., High energy PIXE: A tool to characterize multi-layer thick samples, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, vol.417, pp.41-45, 2018.
URL : https://hal.archives-ouvertes.fr/in2p3-01951159

S. Takács, M. Sonck, B. Scholten, A. Hermanne, and F. Tárkányi, Excitation functions of deuteron induced nuclear reactions on (nat)Ti up to 20 MeV for monitoring deuteron beams, Appl. Radiat. Isot, vol.48, issue.5, pp.657-665, 1997.

S. Takács, New cross-sections and intercomparison of deuteron monitor reactions on Al, Ti, Fe, Ni and Cu, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, vol.174, issue.3, pp.235-258, 2001.

K. Gagnon, M. A. Avila-rodriguez, J. Wilson, and S. A. Mcquarrie, Experimental deuteron cross section measurements using single natural titanium foils from 3 to

, MeV with special reference to the production of 47V and 51Ti, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, vol.268, issue.9, pp.1392-1398, 2010.

M. U. Khandaker, H. Haba, J. Kanaya, and N. Otuka, Excitation functions of (d,x) nuclear reactions on natural titanium up to 24 MeV, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, vol.296, pp.14-21, 2013.

P. Jahn, H. J. Probst, A. Djaloeis, W. F. Davidson, and C. Mayer-böricke, Measurement and interpretation of 197Au(d, xnyp) excitation functions in the energy range from 25 to 86 MeV, Nucl. Physics, Sect. A, vol.209, issue.2, pp.333-347, 1973.

, Stopping Powers and Ranges for Electrons (estar)

C. Alliot, Is there an interest to use deuteron beams to produce nonconventional radionuclides?, Radiother. Oncol, vol.118, p.49, 2016.
URL : https://hal.archives-ouvertes.fr/in2p3-01188685

A. Obata, Production of therapeutic quantities of 64Cu using a 12 MeV cyclotron, Nucl. Med. Biol, vol.30, issue.5, pp.535-539, 2003.

E. L. Hetherington, P. J. Sorby, and J. Camakaris, The preparation of high specific activity copper-64 for medical diagnosis, Int. J. Radiat. Appl. Instrumentation. Part, vol.37, issue.12, pp.1242-1243, 1986.

D. W. Mccarthy, High purity production and potential applications of copper-60 and copper-61, Nucl. Med. Biol, vol.26, issue.4, pp.351-358, 1999.

R. Laforest, F. Dehdashti, J. S. Lewis, and S. W. Schwarz, Dosimetry of 60/61/62/64Cu-ATSM: A hypoxia imaging agent for PET, Eur. J. Nucl. Med. Mol. Imaging, vol.32, issue.7, pp.764-770, 2005.

F. Dehdashti, In vivo assessment of tumor hypoxia in lung cancer with 60

. Cu-atsm, Eur. J. Nucl. Med. Mol. Imaging, vol.30, issue.6, pp.844-850, 2003.

M. L. Bonardi, Cross section studies on 64 Cu with zinc target in the proton energy range from 141 down to 31 MeV, J. Radioanal. Nucl. Chem, vol.264, issue.1, pp.101-105, 2005.

G. Pupillo, T. Sounalet, N. Michel, L. Mou, J. Esposito et al., New production cross sections for the theranostic radionuclide 67Cu, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, vol.415, pp.41-47, 2017.
URL : https://hal.archives-ouvertes.fr/in2p3-01952769

F. Szelecsényi, G. F. Steyn, S. G. Dolley, Z. Kovács, C. Vermeulen et al., Investigation of the 68Zn(p, 2p)67Cu nuclear reaction: New measurements up to 40 MeV and compilation up to 100 MeV, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, vol.267, issue.11, pp.1877-1881, 2009.

T. Stoll, S. Kastleiner, Y. N. Shubin, H. H. Coenen, and S. M. Qaim, Excitation functions of proton induced reactions on 68Zn from threshold up to 71 MeV, with specific reference to the production of 67Cu, Radiochim. Acta, vol.90, issue.6, pp.309-313, 2002.

N. T. Porile, S. Tanaka, H. Amano, M. Furukawa, S. Iwata et al., Nuclear reactions of Ga69 and Ga71 with 13-56 MeV protons, Nucl. Phys, vol.43, issue.C, pp.500-522, 1963.

S. Takacs, F. Tarkanyi, and Z. Kovacs, Excitation function of alpha-particle induced nuclear reactions on natural nickel, Nucl. Instruments Methods Phys. Res. Sect. B, vol.113, pp.424-428, 1996.

Y. Skakun and S. M. Qaim, Excitation function of the 64Ni(?,p)67Cu reaction for production of 67Cu, Appl. Radiat. Isot, vol.60, issue.1, pp.33-39, 2004.

N. T. Porile and D. L. Morrison, Reactions of 63Cu and 65Cu with alpha particules, Phys. Rev. journals Arch, vol.116, issue.5, p.1193, 1959.

M. U. Khandaker, H. Haba, M. Murakami, and N. Otuka, Production crosssections of long-lived radionuclides in deuteron-induced reactions on natural zinc up to 23 MeV, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, vol.346, pp.8-16, 2015.

F. Tárkányi, S. Takács, F. Ditrói, A. Hermanne, M. Sonck et al., Excitation functions of deuteron induced nuclear reactions on natural zinc up to

. Mev, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, vol.217, issue.4, pp.531-550, 2004.

D. Williams and J. Irvine, Nuclear excitation functions and thick-target yields : Zn+d and 40Ar(d,a), Phys. Rev, vol.130, issue.1, 2005.

D. Williams and J. Irvine, Nuclear Excitation Functions: Ar40, Zn68 (d,He3), Phys. Rev, vol.130, issue.1, pp.256-264, 1963.

J. Kozempel, K. Abbas, F. Simonelli, A. Bulgheroni, U. Holzwarth et al., Preparation of 67Cu via deuteron irradiation of 70Zn, Radiochim. Acta, vol.100, issue.7, pp.419-423, 2012.

T. Sounalet, Élaboration et optimisation de cibles dédiées à la production de radio-isotopes innovants pour la recherche médicale (Cu-67, Ge-68/Ga-68) au cyclotron ARRONAX, 2014.

G. Pupillo, Radioisotope production via accelerator for nuclear medicine applications, p.120, 2013.

J. Zweit, A. M. Smith, S. Downey, and H. L. Sharma, Excitation functions for deuteron induced reactions in natural nickel: Production of no-carrier-added 64Cu from enriched 64Ni targets for positron emission tomography, Int. J. Radiat. Appl. Instrumentation. Part, vol.42, issue.2, pp.193-197, 1991.