Le rôle des cellules souches mésenchymateuses médullaires dans la leucémie myélomonocytaire chronique
Chloe Jego

To cite this version:

HAL Id: tel-02429408
https://tel.archives-ouvertes.fr/tel-02429408v2
Submitted on 7 Jan 2020
Le rôle des Cellules Souches Mésenchymateuses Médullaires dans la Leucémie Myélomonocytaire Chronique

Thèse de doctorat de l'Université Paris-Saclay préparée à Gustave Roussy

École doctorale n°582 cancérologie : biologie - médecine - santé (CBMS)
Spécialité de doctorat: Science de la vie & Santé

Thèse présentée et soutenue à Villejuif, le 30 octobre 2019, par

Chloé Jégo

Composition du Jury :

Olivier Kosmider
PU, Institut Cochin (-- Service d'hématologie biologique) Président

Sophie Park
PU-PH, CHU Grenoble (-- INSERM U1209 et UMR5309) Rapporteur

Arnaud Jacquel
Chargée de recherche, C3M Nice (-- INSERM U1065) Rapporteur

Françoise Pflumio
Directrice de Recherche, CEA Fontenay-aux-Roses (-- INSERM 1274) Examineur

Eric Solary
PU-PH, Gustave Roussy (-- INSERM U1170) Directeur de thèse

Nathalie Droin
Chargée de recherche, Gustave Roussy (--INSERM U1170) Co-Directeur de thèse
<table>
<thead>
<tr>
<th>Sommaire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sommaire</td>
</tr>
<tr>
<td>Liste des abréviations ... 1</td>
</tr>
<tr>
<td>Liste des figures ... 5</td>
</tr>
<tr>
<td>Remerciements ... 7</td>
</tr>
<tr>
<td>Introduction ... 13</td>
</tr>
<tr>
<td>1. La Leucémie Myélomonocytaire Chronique .. 13</td>
</tr>
<tr>
<td>1.1. Les caractéristiques cliniques .. 13</td>
</tr>
<tr>
<td>1.2. Les critères diagnostiques ... 14</td>
</tr>
<tr>
<td>1.3. Les altérations cytogénétiques et moléculaires 18</td>
</tr>
<tr>
<td>1.4. L’architecture clonale de la LMMC et son évolution 20</td>
</tr>
<tr>
<td>1.5. La modélisation de la LMMC ... 25</td>
</tr>
<tr>
<td>2. Le microenvironnement normal .. 29</td>
</tr>
<tr>
<td>2.1. L’origine du concept de niche hématopoïétique 29</td>
</tr>
<tr>
<td>2.2. L’architecture de la niche hématopoïétique 30</td>
</tr>
<tr>
<td>2.3. Les cellules de la niche hématopoïétique 31</td>
</tr>
<tr>
<td>2.4. Le vieillissement de la niche .. 33</td>
</tr>
<tr>
<td>3. Le microenvironnement tumoral .. 34</td>
</tr>
<tr>
<td>3.1. Le concept de microenvironnement tumoral 34</td>
</tr>
<tr>
<td>3.2. Les composantes du microenvironnement tumoral 35</td>
</tr>
<tr>
<td>3.3. Le ciblage thérapeutique du microenvironnement tumoral 38</td>
</tr>
<tr>
<td>4. Le microenvironnement dans les hémopathies malignes 40</td>
</tr>
<tr>
<td>4.1. L’hématopoïèse pathologique affecte la niche 40</td>
</tr>
<tr>
<td>4.2. La niche malade affecte l’hématopoïèse 42</td>
</tr>
<tr>
<td>5. Le microenvironnement dans les modèles d’hémopathie 44</td>
</tr>
<tr>
<td>5.1. L’importance des cellules souches mésenchymateuses 44</td>
</tr>
<tr>
<td>La xénogreffe de cellules de la niche hématopoïétique 45</td>
</tr>
<tr>
<td>5.2. Un microenvironnement humanisé chez la souris 45</td>
</tr>
<tr>
<td>5.3. Le modèle des osselets générés à partir de cellules souches mésenchymateuses .. 46</td>
</tr>
<tr>
<td>Les objectifs du travail de thèse .. 49</td>
</tr>
<tr>
<td>Partie 1 : Mise au point du modèle murin humanisé 51</td>
</tr>
<tr>
<td>1. Matériel et méthode .. 51</td>
</tr>
<tr>
<td>1.1. Collection de cellules de sujets sains et de patients 51</td>
</tr>
<tr>
<td>1.2. Collection des cellules triées .. 52</td>
</tr>
<tr>
<td>1.3. Phénotype des cellules souches mésenchymateuses 52</td>
</tr>
<tr>
<td>1.4. Génération du modèle murin .. 53</td>
</tr>
</tbody>
</table>
1.5. Coupe histologiques et immunomarquage .. 54

2. Résultats .. 55
2.1. Réalisation du modèle ... 55
2.2. Le premier modèle réalisé .. 58
2.3. Les limites de l’amplification des cultures de cellules souches mésenchymateuses de sujets âgés ... 62
2.4. Les limites de l’utilisation de cellules souches mésenchymateuses de sujet âgé in vivo ... 65
2.5. La faible reproductibilité de la génération des osselets .. 69
2.6. Les résultats obtenus avec les cellules souches mésenchymateuses amplifiées en Autriche ... 72

3. Discussion Partie 1 : établissement d’un nouveau modèle murin de xénogreffe de LMMC avec un environnement médullaire humanisé .. 74
3.1. La génération de souris humanisées est difficilement reproductible, certainement à cause de l’entrée en sénescence des CSM in vitro .. 74
3.2. Optimiser les conditions de culture in vitro pour lutter contre la sénescence des CSM et améliorer l’efficacité de génération des osselets in vivo .. 75
3.3. Utilisation de lysat plaquettaire humain pour l’amplification des CSM in vitro 76
3.4. Identifier des marqueurs pour anticiper la génération ou non des osselets in vivo et pallier la variabilité inter-individuelle des donneurs ... 78
3.5. Le modèle des osselets est prometteur mais présente des limites pour l’étude de l’environnement médullaire âgé ... 79

Partie 2 : caractérisation ex vivo des CSM de patients .. 83
1. Résultats: A subset of mesenchymal stromal cells amplifies monocyte generation through IGFBP2 in chronic myelomonocytic leukemia .. 85
2. Discussion Partie 2 : caractérisation ex vivo des CSM de patients .. 121
2.1. IGFBP2 et le système des IGF .. 122
2.2. Perspectives d’études .. 129

Conclusion .. 135

Références ... 137
Liste des abréviations

A

<table>
<thead>
<tr>
<th>Abbr.</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABL1</td>
<td>Abelson 1</td>
</tr>
<tr>
<td>ADN</td>
<td>Acide Désoxyribonucléique</td>
</tr>
<tr>
<td>Adrβ2</td>
<td>Récepteurs adrénergiques B2</td>
</tr>
<tr>
<td>Adrβ3</td>
<td>Récepteurs adrénergiques B3</td>
</tr>
<tr>
<td>AHM</td>
<td>Agent hypométhylant</td>
</tr>
<tr>
<td>AKT</td>
<td>AKT Serine/Threonine Kinase</td>
</tr>
<tr>
<td>ALP</td>
<td>Alkaline Phosphatase</td>
</tr>
<tr>
<td>ANGPT1</td>
<td>Angiopoïétique</td>
</tr>
<tr>
<td>ANGPT2-TIE2</td>
<td>Angiopoietin 2 ligand - Tyrosine kinase with immunoglobulin and EGF homology domains 2</td>
</tr>
<tr>
<td>ARCH</td>
<td>Age-Related Clonal Hematopoiesis</td>
</tr>
<tr>
<td>AREB</td>
<td>Anémie Réfractaire avec Excès de Blastes</td>
</tr>
<tr>
<td>ARN</td>
<td>Acide ribonucléique</td>
</tr>
<tr>
<td>ASXL1</td>
<td>Additional Sex Combs Like 1</td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th>Abbr.</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCR</td>
<td>Breakpoint cluster region</td>
</tr>
<tr>
<td>b-FGF</td>
<td>Basic Fibroblast Growth Factor</td>
</tr>
<tr>
<td>BMP</td>
<td>Bone morphogenic proteins</td>
</tr>
</tbody>
</table>

C

<table>
<thead>
<tr>
<th>Abbr.</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>CALR</td>
<td>calréticuline</td>
</tr>
<tr>
<td>CAF</td>
<td>Cancer-Associated Fibroblasts</td>
</tr>
<tr>
<td>CAR</td>
<td>CXCL12-abundant reticular</td>
</tr>
<tr>
<td>CAR-T</td>
<td>Chimeric Antigen Receptor T cells</td>
</tr>
<tr>
<td>CBL</td>
<td>Cbl Proto-Oncogene</td>
</tr>
<tr>
<td>CCL2</td>
<td>C-C motif ligand 2</td>
</tr>
<tr>
<td>CCL5</td>
<td>C-C motif ligand 5</td>
</tr>
</tbody>
</table>

D

<table>
<thead>
<tr>
<th>Abbr.</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>DLL4</td>
<td>Delta Like Canonical Notch Ligand 4</td>
</tr>
<tr>
<td>DNMT1A</td>
<td>DNA Methyltransferase 1 Alpha</td>
</tr>
<tr>
<td>DNMT3A</td>
<td>DNA Methyltransferase 3 Alpha</td>
</tr>
<tr>
<td>DOK1</td>
<td>Downstream of Kinase 1</td>
</tr>
<tr>
<td>DOK2</td>
<td>Downstream of Kinase 2</td>
</tr>
</tbody>
</table>

E

<table>
<thead>
<tr>
<th>Abbr.</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDTA</td>
<td>Éthylène diamine tétra-acétique</td>
</tr>
<tr>
<td>EGF</td>
<td>Epidermal growth factor</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme-linked Immunosorbent Assay</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>ERRBS</td>
<td>Enhanced reduced representation bisulfite sequencing</td>
</tr>
<tr>
<td>ETV6</td>
<td>ETS Variant 6</td>
</tr>
<tr>
<td>EZH2</td>
<td>Enhancer of Zeste 2 Polycomb Repressive Complex 2 Subunit</td>
</tr>
<tr>
<td>F</td>
<td>French-American-British</td>
</tr>
<tr>
<td>FACS</td>
<td>Fluorescence activated cell sorting</td>
</tr>
<tr>
<td>FGF1</td>
<td>Fibroblast Growth Factor 1</td>
</tr>
<tr>
<td>FGFR1</td>
<td>Fibroblast Growth Factor Receptor 1</td>
</tr>
<tr>
<td>FISH</td>
<td>Fluorescence in situ hybridization</td>
</tr>
<tr>
<td>FLT3</td>
<td>Fms Related Tyrosine Kinase 3</td>
</tr>
<tr>
<td>Fra-1</td>
<td>Fos-related antigen 1</td>
</tr>
<tr>
<td>GAG</td>
<td>Glycosaminoglycans</td>
</tr>
<tr>
<td>GFM</td>
<td>Groupe Francophone des Myélodysplasies</td>
</tr>
<tr>
<td>GM</td>
<td>Granulo-monocytaire</td>
</tr>
<tr>
<td>GM-CSF</td>
<td>Granulocyte macrophage colony-stimulating factor</td>
</tr>
<tr>
<td>G-CSF</td>
<td>Granulocyte-colony stimulating factor</td>
</tr>
<tr>
<td>GRO-β</td>
<td>Growth regulated oncogene beta</td>
</tr>
<tr>
<td>HBD-1</td>
<td>Heparin binding domain</td>
</tr>
<tr>
<td>HES</td>
<td>Hématoxyline, éosine, safran</td>
</tr>
<tr>
<td>HIF1</td>
<td>Hypoxia inducible factor 1</td>
</tr>
<tr>
<td>HRAS</td>
<td>HRAS Proto-Oncogene</td>
</tr>
<tr>
<td>HSP27</td>
<td>Heat shock protein 27</td>
</tr>
<tr>
<td>ICB</td>
<td>Immune checkpoint blockers</td>
</tr>
<tr>
<td>IDH1</td>
<td>Isocitrate Dehydrogenase (NADP (+)) 1</td>
</tr>
<tr>
<td>IDH2</td>
<td>Isocitrate Dehydrogenase (NADP (+)) 2</td>
</tr>
<tr>
<td>IL-3</td>
<td>Interleukin-3</td>
</tr>
<tr>
<td>IL-6</td>
<td>Interleukin 6</td>
</tr>
<tr>
<td>IL-7</td>
<td>Interleukin-7</td>
</tr>
<tr>
<td>IL-8</td>
<td>Interleukin-8</td>
</tr>
<tr>
<td>IL-10</td>
<td>Interleukin 10</td>
</tr>
<tr>
<td>IL-32</td>
<td>Interleukin 32</td>
</tr>
<tr>
<td>IGFR</td>
<td>Insulin-like Growth Factor Receptor</td>
</tr>
<tr>
<td>IGF2</td>
<td>Insulin-like Growth Factor</td>
</tr>
<tr>
<td>IGFBP</td>
<td>Insulin-like Growth Factor Binding Proteins</td>
</tr>
<tr>
<td>IGFBP2</td>
<td>Insulin-like Growth Factor Binding Protein 2</td>
</tr>
<tr>
<td>IMS</td>
<td>Isopropyl Méthanolsulfonate</td>
</tr>
<tr>
<td>iPSC</td>
<td>induced Pluripotent Stem Cell</td>
</tr>
<tr>
<td>JAK2</td>
<td>Janus kinase 2</td>
</tr>
<tr>
<td>JMML</td>
<td>Juvenile Myelomonocytic Leukemia</td>
</tr>
<tr>
<td>KDM6B</td>
<td>Lysine Demethylase 6B</td>
</tr>
<tr>
<td>KRAS</td>
<td>KRAS Proto-Oncogene</td>
</tr>
<tr>
<td>LAM</td>
<td>Leucémie aiguë myéloïde</td>
</tr>
<tr>
<td>LAL-T</td>
<td>Leucémie Aiguë Lymphoïde T</td>
</tr>
<tr>
<td>LMMC</td>
<td>Leucémie myélomonocytaire chronique</td>
</tr>
<tr>
<td>LMMC-MD</td>
<td>Formes dysplasiques de LMMC</td>
</tr>
<tr>
<td>LOH</td>
<td>Loss Of Heterozygosity</td>
</tr>
<tr>
<td>LPA3</td>
<td>Lysophosphatidic Acid 3</td>
</tr>
<tr>
<td>MAPK</td>
<td>Mitogen activated protein kinases</td>
</tr>
</tbody>
</table>
MDSC: Myeloid-derived suppressor cell
MEC: Matrice extracellulaire
MET : Microenvironnement tumoral
Mib1: Mind bomb 1
MIR150: MicroRNA 150
MMP: Matrix metallopeptidase
MO: Moelle Osseuse
MPL : myeloproliferative leukemia protein
MR : Recombinaison mitotique
mTOR: Mechanistic Target Of Rapamycin Kinase
MYH11: Myosin Heavy Chain 11

N
NA: Noradrénaline
NF1 : Neurofibromin 1
NK: Natural Killer cell
NRAS : NRAS Proto-Oncogene
NMP : Néoplasme Myéloprolifératif

O
OMS : Organisation Mondiale de la Santé
OPN : Ostéopontine

P
P21: Cyclin-dependent kinase inhibitor 1
P53: Tumor protein P53
PCR: Polymerase Chain Reaction
PCM1: Pericentriolar material 1
PD1: Programmed cell death 1
PDGFA: Platelet Derived Growth Factor Subunit A
PDGFB: Platelet Derived Growth Factor Subunit B
PDL: Population doubling level

PDT: Population doubling time
PEG-PCL: Poly(ethylene glycol) - poly(ε-caprolactone)
PHF6: PHD Finger Protein 6
pHPL: Pooled Human Platelet Lysate
PI3K: Phosphoinositide-3-Kinase
PRPF8: Pre-MRNA Processing Factor 8
PS: Pénicilline/streptomycine
PTEN: Phosphatase And Tensin Homolog
PTPN11: Protein Tyrosine Phosphatase Non-Receptor Type 11
PV : Polyglobulie de Vaquez

R
RARγ: Acide rétinoïque
Rb1 : Rétinoblastome
ROS: Espèces réactives de l’oxygène
RPTP: Receptor Protein Tyrosine Phosphatase
RT-qPCR: Quantitative reverse transcription PCR
RUNX1: Runt Related Transcription Factor 1

S
SASP: Senescence Associated Secretory Profile
SBDS: SBDS Ribosome Maturation Factor
SCF: Stem cell factor
SETBP1: SET binding protein 1
SF3B1: Splicing Factor 3b Subunit 1
SG: Sang
SIRP: Signal Regulatory Protein
SLAN: 6-sulfo LacNAc
SMD: syndrome myélodysplasique
SRSF2: Serine and Arginine Rich Splicing Factor 2
SSEA4: Stage-specific antigen 4
SVF: sérum de veau foetal

T
TAM: Tumor associated macrophages
TAGLN: Transgéline
TCIPA: Tumour cell-induced platelet aggregation
TEM: Transition épithélio-mésenchymateuse
TERT: téiomérase transcriptase inverse
TET2: Ten-eleven translocation 2
TF: Tissue Factor
TGF-β: Transforming Growth Factor Beta
TIL: Tumor-infiltrating lymphocytes
TKI: Tyrosine kinase inhibitors

TNF-α: Tumor Necrosis Factor alpha
TP53: Tumor Protein P53
TPO: Thrombopoiétique

U
U2AF: U2 Small Nuclear RNA Auxiliary Factor
Utx: Ubiquitously transcribed tetragicopeptide repeat, X chromosome

V
VCAM-1: Vascular Cell Adhesion Molecule 1
VEGF: Vascular endothelium growth factor
VLA-4: Intégrine α4β1

W
WES: Whole-Exome Sequencing
Liste des figures

Figure 1: Schéma des hémopathies myéloïdes
Table 1: Traitement de la LMMC
Table 2: Critères diagnostics de la LMMC de la classification OMS 2016
Figure 2: Approche diagnostique de la LMMC
Figure 3: Répartition anormale des populations monocytaires dans la LMMC
Figure 4: Mutation retrouvées par WES dans les cellules CD14+ et CD34+ de LMMC
Table 3: Fréquence relative des mutations somatiques dans les SMD/NMP
Figure 5: Modèle d’évolution clonale de la LMMC
Figure 6: Modèle de pathogenèse de la LMMC
Table 4: Tableau récapitulatif des données cliniques des patients utilisés pour le modèle murin
Figure 22: Prolifération limitée des CSM âgées, sains ou non, en comparaison aux jeunes
Figure 23: Prise de greffe des souris implantées avec des CSM âgées, saines ou pathologiques
Figure 24: Prise de greffe des souris implantées avec des CSM jeunes
Figure 25: Photographie d’un osselet généré par Andreas Reinisch
Figure 26: Génération d’osselet à partir de CSM et lysat plaquettaire d’Andreas Reinisch
Figures principales et supplémentaires du papier sur la partie IGFP2
Figure 27: Système des IGF
Figure 28: Structure et fonction biologique des IGFBP
Figure 29: Structure d’IGFBP2
Figure 30: Activités cellulaires d’IGFBP2
Figure 31: Implication d’IGFBP2 dans la voie Ras
Figure 32: Résultats préliminaires de différenciations adipocytaire et ostéoblastiques des CSM
Figure 33: Résultats préliminaires de différenciations adipocytaire et ostéoblastiques des CSM
Remerciements

Cette expérience de thèse a été extrêmement enrichissante et formatrice. Elle m’a faite énormément grandir. Ce fut une expérience, difficile, parsemée de frustrations et de déceptions (c’est là le lot de la recherche !) mais aussi de succès (quand même !!), beaucoup de joie et de très belles rencontres. Au-delà de l’aspect scientifique, j’y ai appris patience, résilience et persévérance. Ces quatre années ont été jusque-là ma meilleure expérience de vie et ont fait de moi la femme que je suis aujourd’hui. Je suis donc extrêmement reconnaissante d’avoir eu la chance de la vivre.

Je souhaite remercier l’Ecole Doctorale de Cancérologie Paris-Sud qui m’a accordée une bourse pour les 3 premières années de ma thèse ainsi que la FRM pour m’avoir financée la dernière année.

J’adresse mes remerciements à mes directeur et directrice de thèse ainsi que l’ensemble de mon jury, pour le temps qu’ils auront accordé à la lecture et l’examenation de mes travaux. Merci à Arnaud Jacquel et Sophie Park d’avoir accepté d’être mes rapporteurs et Françoise Pflumio et Olivier Kosmider mes examineurs.

Je remercie Eric Solary et Nathalie Droin d’avoir eu confiance en moi sur ce projet et de m’avoir accueilli au sein de leur équipe. Je vous remercie pour votre accompagnement tout au long de cette aventure, qui a été loin d’être un long fleuve tranquille ! Je remercie Eric Solary pour le recul qu’il m’a appris à prendre sur mon projet. Merci à Nathalie Droin pour son aide précieuse sur toute la partie génomique de mon projet, merci pour ton expertise et ta disponibilité au quotidien.

Je souhaite également remercier tous mes collaborateurs sur ce projet, Françoise Pflumio et Laurent Renou sur la partie du développement du modèle murin. Nous avons rencontré de grosses difficultés ensemble sur cette partie, et je suis heureuse pour vous que vous ayez fini par trouver une solution. Ce fut un plaisir d’échanger avec vous sur ce projet.

A warm thank you to Andreas Reinisch for your collaboration and your welcoming at Graz, in Austria. Thank you for your availability and your advices to help us reproduce your model. Meeting you was an enriching experience.

Merci également Olivier Kosmider, Michaela Fontenay, Charles Dussiau, mais aussi Clotilde Bravetti et Laila Zairoli qui ont également participé aux réunions sur le modèle murin. Je souhaite surtout vous remercier pour m’avoir fourni les CSM de donneurs âgés sains et m’avoir permis de faire du single-cell RNAseq sur mes échantillons.

Je remercie chaleureusement Charles Dussiau pour son aide, Ô combien précieuse, sur l’ensemble du projet IGFBP2, pour avoir réalisé les expériences de single-cell RNAseq avec Clotilde ; mais aussi et surtout pour les dernières semaines avant le rendu du manuscrit pour ton analyse bioinfo des résultats de séquençage. Merci encore mille fois pour ton aide et ta disponibilité. Je te souhaite bonne chance et bon courage pour ta fin de thèse et serais ravie de pouvoir te renvoyer l’ascenseur d’une manière ou d’une autre.
Je souhaite également remercier Valentina Boeva et son étudiante Mélissa Saichi pour leur collaboration sur le single-cell RNAseq, et l’apprentissage que j’ai pu tirer de cette collaboration.

Merci à Caroline Barichon qui a réalisé son stage de master dans notre équipe sur mon projet. Merci pour ton travail et ton dévouement. Tu as été une super stagiaire, tu as su suivre le rythme assez difficile que requérait le projet et tu t’en es très bien sortie ! Grâce à toi, j’ai pu m’exercer au management et ce n’est pas si facile ! J’espère que tu as pu obtenir ta place en médecine. Je te souhaite tout plein de réussite !

Je souhaite également remercier les membres des différentes plateformes (PFIC, PFEP, PHCP, plateforme de génomique) pour leur aide sur le projet. Merci en particulier à Philippe Rameau qui m’a formé à la cytométrie en flux, ainsi que Cyril Catelain et Yann Lecluse qui ont tous subi mes retards inévitables aux trieurs, merci pour votre patience ! Merci à Corinne Laplace-Builhé pour sa formation à l’utilisation du microscope MicroVision. Merci également à Mélanie Porlot de la PFEP, mais aussi Christine Lacout et Sébastien Malinge de l’U1170, qui m’ont formé à la manipulation des souris. Merci à Olivia Bawa qui s’est chargée de toutes mes coupes histologiques.

Un gros merci à l’ensemble de l’équipe 4 et de l’unité U1170, et particulièrement à Margot Morabito, qui grâce à ses petites mains fait tourner l’ensemble des projets. Merci à Dorothée Sélimoglu-Buet pour ses conseils, Séverine Badel pour sa bonne humeur, Aygun Imanci pour ses petits mots toujours gentils : je te souhaite bonne chance pour ta thèse ! Merci à Jeffie Lafosse qui a travaillé d’arrache-pied avec Margot pour nous créer une belle base de données pour notre cohorte de patients. Une petite mention spéciale pour Captain (aka Christophe Willekens) qui a toujours le mot pour rire, et aussi merci de m’avoir dit que je ressemblais à Gal Gadot, ça m’a boosté l’égo, hahaha ! Bon courage pour les soirées, que dis-je, les NUITS que tu vas encore passer devant le Fortessa. Je suis bien contente que tout ça soit derrière moi !! Merci à tous pour ces 4 années passées ensemble, ça a été un plaisir de travailler avec vous !

Merci également à Françoise Porteu pour son expertise scientifique que j’admire, à Jean-Luc Villeval et Emilie Elvira-Matelot pour leur gentillesse.

Un merci spécial pour Lucie Laplane, que j’admire beaucoup et avec qui c’est toujours un plaisir de discuter : tu es un vrai puits de connaissances, on ne s’en lasse pas. J’adore ton approche de la recherche, elle m’a permis de prendre du recul sur ce que je faisais. Merci de ton aide pendant cette thèse.

Et parce qu’une thèse ce n’est pas que de la science, je voudrais remercier tous mes amis ainsi que ma famille.

Merci à ma cousine Julie Pichenot, de qui je suis très proche depuis l’enfance. Merci pour ton soutien et ton oreille attentive, et toutes nos sorties en début de thèse : un vrai bol d’air !

Merci à Florian Malard pour cette tranche de vie ensemble et pour tout ton soutien en début de thèse. Merci d’avoir cru en moi, de m’avoir supporté et de m’avoir poussée à ne rien lâcher. J’espère que ton expérience aux Etats-Unis saura te combler, après tout c’est ce dont tu rêvais !

Merci à Marie Cambot, ma maman du labo (qui a déjà toute une tribu à la maison) et avec qui on rigole toujours. Tu nous manques à Gustave Roussy ! J’espère que ton projet avec Pablo réussira et qu’il t’épanouira.

Et surtout merci aux amis et compagnons thésards ! Car on est tous dans le même bateau, on sait se serrer les coudes et s’amuser ensemble, histoire d’oublier un instant le poids de la thèse. Merci au Pupute’s Crew, qui a changé de nom, mainte et mainte fois avec les départs des anciens et arrivées des nouvelles recrues. Merci donc au IGR Royal Crew, IGR Hotties, et désormais IGR Girls.

Merci à Matthieu Mosca, comme tu l’as dit, on ne s’est pas toujours compris, mais on a quand même bien su rire ensemble et c’est le plus important.

Merci à Gayathri Yogarajah, mon petit poulet au curry qui s’est envolé vers de contrées lointaines au Canada. J’espère que ton arbre s’y sent bien là-bas. Je pense fort à toi, merci pour ta folie et ton amitié.

Merci à Maël Heiblig, ce jeune vieux, complètement à la ramasse. Je plains déjà tes enfants pour le gap générationnel et les blagues de papa que tu leur feras. Dommage que tu aies disparu de la circulation en cette dernière année de thèse, mais je ne te jette pas la pierre (toi-même tu sais !). Des gros bisous et bon courage pour la rédaction !

Merci à Allan Beke, mon compagnon de thèse au sein de l’équipe 4, le plus emmerdeur jamais connu ! Mais qu’est-ce qu’on l’aime cet emmerdeur ! Blague mise à part, ta rencontre a marqué un tournant dans ma vie, mais j’imagine que c’est ce qui arrive quand 2 opposés se rencontrent. Notre amitié a été mouvementée, on s’est disputé, on s’est réconcilié, on a eu des avis clairement divergents, mais ça ne nous a pas empêché d’être très proche, s’écouter, rire ensemble, se soutenir l’un l’autre et s’apprécier. Merci pour tout ce que tu as fait pour moi, ton soutien, ta bienveillance, mais aussi et peut-être surtout, tes coups de gueule, merci de m’avoir poussée au-delà de mes limites et de m’avoir fait oser.

Je voudrais également adresser un merci tout particulier aux filles, Marine Armand et Margaux Sevin que j’ai rencontré tardivement, et Yanis Pelinski. Comment vous dire à quel point je suis heureuse de vous avoir rencontré et de vous avoir près de moi tous les jours au labo. Vous êtes mon petit rayon de soleil à Gustave Roussy, mais en dehors aussi. Je suis fière de vous, vous êtes des femmes fortes et indépendantes, belles et intelligentes, toutes différentes. Merci de partager mon quotidien. Vous avez été la meilleure team de cheer-leaders qui soit ! Je vous aime fort et je crois en vous, je vous souhaite à toute la meilleure réussite possible !
J’entends déjà Yanís qui râle de ne pas avoir ses remerciements perso ! Ne t’en fais pas Princesse, ça arrive, c’était prévu ! Haha ! Ma petite Yanís, nous sommes arrivées presque jour pour jour en même temps au laboratoire, et je n’aurai su prédire que tu deviendrais ma meilleure amie. Tu es l’amie la plus loyale qu’il m’ait été donné d’avoir. Jamais la dernière pour m’emmener faire des conneries. Tu as été là dans mes moments les plus difficiles, tu as su me donner ton épaule pour pleurer et tu as su me redonner le sourire. Je ne compte plus les moments de crise de rire et de larmes avec toi ! Merci d’être-là, n’importe quand, n’importe où, de me laisser dormir dans ton canapé (je pense te demander un tiroir chez toi bientôt ;)). Je souhaite à tout le monde d’avoir une amie comme toi. Je t’embrasse fort et je souhaite bon courage pour la fin de ta thèse. Je ne serai plus au labo, mais tu sais très bien que je serai toujours là pour toi.

Merci également à Alexandre Durand, Daddy, pour ta douceur et pour ces moments d’échappées belles avec toi.

En un mot : MERCI !
1. La Leucémie Myélomonocytaire Chronique

1.1. Les caractéristiques cliniques

La Leucémie Myélomonocytaire Chronique (LMMC) est une pathologie clonale de la cellule souche hématopoïétique à l’intersection entre syndromes myélodysplasiques (SMD) et néoplasmes myéloprolifératifs (NMP), qui affecte la myélopoïèse, le plus souvent chez un sujet de plus de 50 ans (Figure 1).

Figure 1: Schéma des hémopathies myéloïdes

Lors de la myélopoïèse normale, l’abondance relative des lignées myéloïdes (érythropoïèse, granulopoïèse, monocytopoïèse, mégacaryopiièse) dans la moelle osseuse et le nombre de cellules dans le sang (exprimé en nombre de cellules par volume de sang) sont maintenus dans des limites étroites. La différenciation hématopoïétique progresse par étapes morphologiquement définies et seules les cellules matures sont libérées de la moelle osseuse dans le sang. Les néoplasmes myéloprolifératifs (NMP) sont caractérisés par la prolifération excessive d’une ou plusieurs lignées myéloïdes, parfois associée à une hémopoïèse extramédullaire, typiquement dans la rate et/ou le foie. La morphologie des cellules hématopoïétiques est normale et la différenciation est maintenue. Les syndromes myélodysplasiques (SMD) sont caractérisés par une diminution du nombre d’érythrocytes, de granulocytes et/ou de plaquettes dans le sang, alors que la moelle osseuse est très fréquement hypercellulaire, avec une hématopoïèse inefficace.

La caractéristique des SMD est la dysplasie, c’est-à-dire une morphologie cellulaire anormale. Cette dysplasie peut toucher une ou plusieurs lignées. Les critères diagnostiques de la dysplasie ont été bien définis mais il existe de nombreuses variations entre observateurs et le diagnostic peut être compliqué si la dysplasie est modérée. Les leucémies aiguës myéloïdes (LAM) sont caractérisées par un arrêt de différenciation et une accumulation de cellules myéloïdes non différenciées (myéloblastes). Les LAM sans antécédent d’hémopathie et sans exposition à une chimiothérapie ou à une radiothérapie sont dites « de novo », alors que le terme « LAM secondaire » indique une LAM qui s’est développée à partir d’un SMD ou d’un NMP préexistant ou après une exposition toxique. Les SMD/NMP présentent une combinaison de caractéristiques des SMD et des NMP avec une dysplasie et un excès de production de cellules hématopoïétiques d’au moins une lignée myéloïde. La progression d’un SMD ou d’un NMP vers un SMD/NMP est possible. Les flèches montrent les évolutions observées chez les patients.

(Source : Deininger et al, 2017)
patients symptomatiques, sans cytopénie majeure, ne sont pas traités mais font l’objet d’une surveillance vigilante pour enrayer toute maladie intercurrente. Les médicaments utilisés sont symptomatiques, des agents stimulants l’érythropoïèse chez les sujets anémiques aux médicaments cytotoxiques comme l’hydroxyurée dans les formes prolifératives (Table 1).5

Lorsque les facteurs de mauvais pronostic s’accumulent, les médicaments les plus utilisés sont les agents hypométhylants6. Malheureusement, leur effet essentiellement épigénétique7 n’est observé que chez 30 à 50% des patients et n’est que transitoire. Le décès des patients peut être la conséquence de la transformation de la maladie en leucémie aiguë, de l’aggravation des cytopénies ou de comorbidités évolutives.

<table>
<thead>
<tr>
<th>Agents médicamenteux</th>
<th>Effets escomptés/cible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydroxyurée</td>
<td>Limitation de la myéloprolifération (hyperleucocytose, atteintes viscérales)</td>
</tr>
<tr>
<td>Etoposide</td>
<td></td>
</tr>
<tr>
<td>Topotécan</td>
<td></td>
</tr>
<tr>
<td>Cytarabine à faible dose SC</td>
<td>Correction de l’anémie</td>
</tr>
<tr>
<td>Erythropoïétine</td>
<td></td>
</tr>
<tr>
<td>Agents hypométhylants (5-azacytidine, décitabine)</td>
<td>LMMC-MD : contrôle et amélioration des cytopénies et de la myéloprolifération</td>
</tr>
</tbody>
</table>

Table 1

Trajettement de la LMMC.
LMMC-MD : Formes dysplasiques de LMMC
Adapté de K. Hafraoui et al, Rev Med Suisse, 2013.5

C’est une pathologie encore difficile à diagnostiquer qui nécessite de croiser des données morphologiques, histopathologiques et cytogénétiques. Des efforts ont néanmoins été réalisés ces dernières années pour l’identifier plus facilement.

1.2. Les critères diagnostiques

La classification FAB (French-American-British)

La LMMC est décrite pour la première fois en 1976 par le groupe FAB qui distingue alors 2 catégories de syndromes myélodysplasiques : la LMMC et les Anémies Réfractaires avec Excès de Blastes (AREB)8–10. En 1982, le groupe propose une nouvelle classification des syndromes myélodysplasiques11. La classification FAB (French-American-British) place la LMMC dans le groupe des SMD en s’appuyant sur des données d’hémogramme et de myélogramme. Elle est définie par une monocytose sanguine supérieure à 1G/L, associée à une blastose sanguine inférieure à 5%, une blastose médullaire inférieure à 20%, la dysplasie d’une ou plusieurs lignées hématopoïétiques et l’absence de Corps d’Auer dans les cellules les plus immatures. En 1994, le groupe FAB distingue deux groupes de valeur pronostique distincte: les formes prolifératives sont définies par un nombre de leucocytes périphériques supérieur ou égal à 13 G/L, ce qui les distingue des LMMC dysplasiques dans lesquelles le nombre de leucocytes est inférieur à ce seuil.

La première classification de l’Organisation Mondiale de la Santé (OMS)

Après une première réévaluation de la classification FAB en 2001, l’Organisation Mondiale de la Santé intègre en 2008 des données cytogénétiques et moléculaires dans la classification des hémopathies myéloïdes9,10,12. Elle crée alors un nouveau groupe associant les caractéristiques des néoplasmes myéloprolifératifs et des syndromes myélodysplasiques au sein duquel la LMMC est la maladie la plus fréquente. Il s’agit pourtant d’une hémopathie relativement rare définie avant tout
par une monocytose sanguine inexpliquée persistant plus de 3 mois. Le diagnostic est facilité lorsqu’il existe une dysplasie dans au moins une lignée myéloïde. L’OMS recommande de s’assurer 1) que la blastose sanguine et médullaire est bien inférieure à 20% (ce n’est pas une leucémie aiguë), 2) qu’il n’y a pas de chromosome de Philadelphie au caryotype des cellules médullaires (ou de fusion BCR-ABL détectable par PCR) (ce n’est pas une leucémie myéloïde chronique), et, en cas d’éosinophilie, d’éliminer la présence d’un réarrangement affectant PDGFRA, PDGFRB ou FGFR1 ou d’une fusion PCM1-JAK2 (ces formes sont regroupées dans une catégorie indépendante et certaines sont sensibles à l’Imatinib). Enfin, l’OMS souligne l’importance pronostique du pourcentage de blastes dans la moelle en distinguant les LMMC-1 (moins de 10% de blastes dans la moelle, moins de 5% de blastes dans le sang) des LMMC-2 (les autres, évidemment plus graves).

La seconde classification de l’Organisation Mondiale de la Santé (OMS)

En 2016, l’OMS révise sa classification des néoplasmes myéloïdes et des leucémies aigües et apporte trois éléments nouveaux à la définition de la LMMC (Table 2)13. Le diagnostic de LMMC nécessite à la fois une monocytose périphérique absolue (>1G/L) et relative (≥10% des leucocytes). Les néoplasmes myéloprolifératifs présentant une monocytose pouvant être confondus avec une LMMC, il est désormais considéré que la présence de mutations associées aux NMP telles que JAK2, MPL et CALR suggèrent un NMP associé à une monocytose plutôt qu’une LMMC14. Enfin, on distingue 3 groupes (Figure 2) : LMMC-0, LMMC-1 et LMMC-2 en fonction du pourcentage de blastes périphériques et médullaires :

- LMMC-0 : blastes périphériques <2% et blastes médullaires <5%
- LMMC-1 : blastes périphériques entre 2-4% et blastes médullaires entre 5-9%
- LMMC-2 : blastes périphériques >5% et blastes médullaires entre 10-19%

<table>
<thead>
<tr>
<th>Critères diagnostiques de la LMMC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monocytose périphérique persistante ≥ 1 x 10^9/L, avec des monocytes représentant ≥10% du compte leucocytaire</td>
</tr>
<tr>
<td>Ne respecte pas les critères diagnostiques de l’OMS pour la fusion BCR-ABL, la LMC, la PV, ou de la TE*</td>
</tr>
<tr>
<td>Aucune évidence de réarrangements PDGFRA, PDGFRB, ou FGFR1, ou PCM-JAK2 (doivent être plus spécifiquement exclus en cas d’éosinophilie)</td>
</tr>
<tr>
<td><20% de blastes dans le sang et la moelle osseuse†</td>
</tr>
<tr>
<td>Une dysplasie dans au moins une lignée myéloïde. En cas de myelodysplasie minime ou absente, le diagnostic de LMMC peut être posé si d’autres critères sont rencontrés et :</td>
</tr>
<tr>
<td>Une anomalie génétique moléculaire ou cytogénétique clonale acquise est présente dans les cellules hématopoïétiques‡</td>
</tr>
<tr>
<td>Ou</td>
</tr>
<tr>
<td>Une monocytose (comme décrite précédemment) persiste pendant plus de 3 mois et</td>
</tr>
</tbody>
</table>
| Toutes les autres causes de monocytose ont été exclues

| Table 2 : Critères diagnostiques de la LMMC de la classification OMS 2016 |
|*Cas de NMP pouvant être associées à une monocytose ou pouvant en développer au cours de la maladie.|

† Ces pathologies peuvent simuler une LMMC. Dans ces rares cas, une histoire antérieure de NMP documentée exclue une LMMC, tandis que la présence de caractéristiques de NMP dans la moelle et/ou de mutations associées aux NMP (JAK2, CALR ou MPL) soutient un NMP avec une monocytose plutôt qu’une LMMC.

‡ Les blastes ou leurs équivalents incluent les myéloblastes, les monoblastes et les promyélocytes. Les promyélocytes sont des précurseurs monocytaires avec un cytoplasmé gris clair abondant ou légèrement basophile, avec des granules couleur ilias éparses, en petite quantité, finement distribués, une chromatine nucléaire en pointillés, un nucléole plus ou moins visible, et un noyau légèrement replié. Les monocyes anormaux, qui peuvent être présents dans le sang périphérique et la moelle osseuse, sont exclus du compte de blastes.

†La présence de mutations dans des gènes souvent associés aux LMMC (e.g. TET2, SRSF2, ASXL1, SETBP1) peut être utilisée pour soutenir un diagnostic. Il devrait cependant être noté que beaucoup de ces mutations sont associées à l’âge ou peuvent être présentes dans des sous- clones. Ainsi, l’interprétation de ces résultats génétiques doit être faite avec beaucoup de prudence.

Figure 2 : Approche diagnostique de la LMMC

*: Les anomalies du sang périphérique comprennent anémie non expliquée, thrombocytopenie, thrombocytose, leucocytose, éosinophilie, dysplasie granulocytaire (cellules pseudo Pelger-Huet), cellules myéloïdes immatures circulantes telles que myélocytes, métamyélocytes et promyélocytes, promonocytes et blastes.

**: FISH - fluorescence in situ hybridization, un test FISH pour PDGFRA et PDGFRB est hautement recommandé en cas de monocytose périphérique associée à une éosinophilie. La fusion oncogène ETV6-PDGFRB peut donner lieu à une monocytose mimant la LMMC. Les fusions PDGFRB sont communément associées à une éosinophilie et plus rarement à une monocytose : la plupart sont des fusions FIP1L1-PDGFRB. L’OMS recommande également un test FISH pour les réarrangements FGFR1 et la fusion PCM1-JAK2, bien que ces anomalies soient très rarement associées à une monocytose.

***: pour estimer la part de blastes dans le sang périphérique de patient LMMC, les blastes doivent être additionnés aux promonocytes circulants.

Source : Patnaik and Terrefi, AJH, 2018
L’apport de la cytométrie en flux

La monocytose périphérique n’est pas spécifique de la LMMC : une monocytose peut être associée à d’autres néoplasmes myéloprolifératifs (notamment la myélofibrose) ou être réactionnelle à des affections non hématologiques, qu’elles soient bénignes ou malignes, notamment lorsqu’elles induisent un syndrome inflammatoire. En clinique, il est nécessaire, devant une monocytose, de distinguer une LMMC d’une monocytose réactionnelle. L’OMS recommande d’attendre 3 mois et de conclure à une LMMC si l’on n’a pas trouvé d’autre explication.

Les monocytes sont hétérogènes. En 2010, une nomenclature internationale distingue trois populations fonctionnellement et immunophénotypiquement différentes : CD14+/CD16- (classiques ou MO1), CD14+/CD16+ (intermédiaires ou MO2) et CD14-/CD16+ (non-classiques ou MO3). Chez les sujets en bonne santé, on observe une majorité (environ 90%) de monocytes classiques, les 10% restant se répartissant entre monocytes intermédiaires et non classiques. En 2015, Selimoglu-Buet et al. 15 décrivent une méthode d’analyse en cytométrie en flux des sous-populations monocytaires dans différentes hémopathies myéloïdes et mettent en évidence une répartition caractéristique des sous-populations chez les patients atteints de LMMC. Chez ces patients, on observe presque systématiquement une augmentation de la fraction des monocytes classiques au sein des monocytes totaux, au détriment des autres populations, aussi bien en termes de chiffre absolu que de pourcentage.

Cette répartition anormale des populations monocytaires est indépendante du statut mutationnel du patient. Lorsqu’elle est retrouvée dans des syndromes myélodysplasiques, 50% d’entre eux ont une composante proliférative avérée un an plus tard. L’accumulation de monocytes classiques chez certains patients atteints d’un SMD annonce donc une progression vers la LMMC16. Cette répartition anormale des populations monocytaires n’est pas observée dans les monocytoses réactionnelles dans lesquelles on observe au contraire une augmentation de la fraction des monocytes intermédiaires et parfois non classiques.

Un seuil de 94% de monocytes classiques au sein de l’ensemble des monocytes est en faveur du diagnostic de LMMC (Figure 3) avec une spécificité de 95.1% et une sensibilité de 91.9%. Ce seuil semble aussi distinguer les patients LMMC de ceux atteints d’un NMP associé à une monocytose17. L’analyse en cytométrie en flux des populations monocytaires montre aussi une normalisation de la répartition des monocytes chez les patients qui répondent au traitement par un agent hypométhylant (AHM), suggérant que cette répartition anormale relève d’un mécanisme épigénétique qui sera identifié ultérieurement18.

Cette technique est donc un outil de choix pour aider au diagnostic des patients LMMC et fait du profil des sous-populations monocytaires un biomarqueur de la LMMC et de la réponse aux traitements par AHM.

Des faux-négatifs ont été observés chez les patients LMMC ayant développé une maladie auto-immune ou inflammatoire responsable de l’augmentation des monocytes intermédiaires16. L’utilisation de marqueurs supplémentaires (comme SLAN, travail sous presse dans Haematologica) et le développement de la cytométrie de masse sont des solutions prometteuses pour atteindre cet objectif.
Figure 3 : Répartition anormale des populations monocytaires dans la LMMC

A) Analyse en cytométrie en flux des populations monocytaires périphériques à partir de l’expression des marqueurs membranaires CD14 et CD16 dans une cohorte d’apprentissage de patients LMMC (CMML) en comparaison à des donneurs sains (Co), des donneurs sains âgés (Aged-Co) et des patients avec une monocytose réactionnelle (Reactive) ou atteints d’un SMD (MDS). Le pourcentage de chaque population monocytaire est indiqué sur le graphique.

B) Pourcentage de MO1 (monocytes classiques) dans une cohorte de validation de patients LMMC en comparaison à des donneurs sains âgés (Aged-Co) et des patients atteints d’un SMD ou d’un NMP (Non-CMML) ou ayant une monocytose réactionnelle (Reactive).

Source : Selimoglu-Buet et al., Blood 2015.

1.3. Les altérations cytogénétiques et moléculaires

1.3.1. Altérations cytogénétiques

Dans la plupart des cas (~70%) le caryotype des cellules médullaires et sanguines des patients est normal. Chez 30% des patients, on identifie des anomalies cytogénétiques clonales dans le sang et la moelle, les plus fréquentes étant la trisomie 8, une perte de l’Y, des anomalies du chromosome 7 (monosomie ou délétion 7q), la délétion du bras long du chromosome 20, la trisomie 21 et un caryotype complexe (>3 anomalies). Ces anomalies ont été classées en 3 groupes de signification pronostique favorable (caryotype normal, seule perte de l’Y ou seule der(3q)), intermédiaire et défavorable (caryotypes complexes ou monosomiques).
1.3.2. **Altérations moléculaires**

Contrairement à certaines tumeurs solides comme le mélanome et le cancer du poumon, et à l’instar de la plupart des autres hémopathies malignes, la LMMC se caractérise par un nombre relativement faible de mutations somatiques. On dénombre en moyenne 14 mutations dans les régions codantes de l’ADN et 500 dans l’ensemble du génome des monocytes d’un patient\(^7\). Ces mutations ne sont pas spécifiques de la LMMC et sont également retrouvées dans d’autres hémopathies myéloïdes\(^5\) (Table 3).

![Figure 4](image)

Figure 4 : Mutations retrouvées par Whole Exome Sequencing (WES) dans les cellules CD14+ et CD34+ de patients LMMC.

Les cellules CD3 ou des fibroblastes cutanés ont été utilisées comme référence. Sur 36 gènes identifiés comme fréquemment mutés en whole-exome sequencing (WES), 26 sont transcrits dans les cellules CD14+ et les cellules CD34+. Ces 26 gènes mutés de manière récurrente ont été classés selon leur fonction. Les couleurs indiquent le type de mutation. Deux couleurs séparées par un slash indiquent qu’il y a deux mutations distinctes dans le même gène.

Source : Merlevede et al., Nature Communication 2016 \(^7\)

Toutefois, on identifie un ensemble de gènes mutés de façon récurrente, en moyenne 3 par patient (Table 3, Figure 4). Ces mutations récurrentes touchent principalement des gènes impliqués dans (i) la régulation de l’épigénétique, tels que la méthylation de l’ADN (TET2, DNMT3A, IDH1 et IDH2) et les modifications des histones (EZH2, ASXL1, UTX), (ii) l’épissage des pré-ARN messagers (SRSF2, SF3B1, U2AF1, PRPF8), (iii) la voie de signalisation RAS (KRAS, NRAS, CBL, PTPN11, JAK2, et FLT3), (iv) les facteurs de transcription et l’assemblage du nucléosome (RUNX1 et SETBP1) et très rarement (v) la réponse aux dommages à l’ADN (TP53 et PHF6). Parmi ces mutations, les plus fréquentes touchent les gènes TET2 (60%), SRSF2 (50%), ASXL1 (40%) et les gènes impliqués dans la voie de signalisation RAS (30%).
1.4. L’architecture clonale de la LMMC et son évolution

La LMMC partage un certain nombre de mutations avec les SMD et les NMP. Aucune altération génétique n’est spécifique de la maladie. Parmi les raisons susceptibles d’expliquer l’hétérogénéité phénotypique induite par des altérations génétiques identiques, on peut citer leur répartition dans le clone, la cellule dans laquelle les altérations génétiques surviennent et leur ordre d’apparition. Ces hypothèses ont conduit à explorer l’architecture du clone et les caractéristiques de l’évolution clonale.

1.4.1. Dominance clonale précoce

La nature des mutations somatiques qui caractérisent le clone malade dans la LMMC est désormais bien connue, au moins en ce qui concerne celles qui affectent les régions codantes de l’ADN. On estime que ces mutations sont responsables d’environ 25 % du phénotype de la maladie :
une thrombopénie est fréquemment la conséquence de la mutation de RUNX1, une mastocytose traduit l’émergence d’un clone porteur d’une mutation de KIT, une forme proliférative évoque une mutation de la voie RAS etc. ... Il est probable que l’ordre d’apparition des mutations joue un rôle dans l’expression clinique de la maladie, comme cela a été montré dans les néoplasmes myéloprolifératifs à propos de TET2 et JAK2.

La LMMC est une pathologie qui émerge de la cellule souche du fait de l’accumulation de mutations qui sont la marque du vieillissement. Le séquençage complet du génome (Whole Genome Sequencing, WGS) des monocytes CD14+ de patients LMMC détecte chez tous les patients 2 signatures mutationnelles caractéristiques du vieillissement. Les analyses à l’échelle unicellulaire ont montré que plus de 75% des cellules CD34+CD38- sont mutées, ce qui témoigne d’une dominance clonale précoce.

L’hypothèse actuelle est la suivante : la première mutation somatique apparue (qui affecte très souvent TET2 ou ASXL1) induit une hématopoièse clonale asymptomatique, désormais qualifiée d’hématopoitique clonale de signification indéterminée (CHIP) ou d’hématopoièse clonale liée à l’âge (ARCH). La présence de cette mutation dans une fraction de lymphocytes T suggère son apparition dans une cellule souche. La seconde mutation, par exemple une mutation de SRSF2 qui est fréquemment associée à celle de TET2, induit de la dysplasie cellulaire et une augmentation de la différenciation vers la lignée granulo-monocytaire, aboutissant à une maladie clinique et/ou biologique (Figure 5).

Figure 5 : Modèle d’évolution clonale de la LMMC
Modèle proposé par Itzykson et al. 23 liant la dominance clonale précoce au biais de différenciation monocytique des progéniteurs immatures dans la LMMC. Selon leur stade d’expansion (tôt dans la LMMC, plus tardivement dans les autres néoplasmes myéloïdes chronique), les mutations TET2 donneront ou non une monocytose. Les cellules mutées pour TET2 sont représentées par des pointillés. La différenciation granulomonocytaire est représentée en vert, et la différenciation erythroïde en rouge.

Les mutations additionnelles induisent la progression de la LMMC vers une forme plus sévère, chronique ou aiguë. Plusieurs hypothèses, non-exclusives, peuvent contribuer à la progression. Certaines mutations favorisent l’instabilité génétique et la survenue de nouvelles mutations géniques, comme JAK2 (qui active les points de contrôle des dommages à l’ADN) ou NRAS (dommages oxydatifs). Il peut aussi exister des relations épistatiques entre certaines mutations,
donnant un avantage sélectif aux cellules les plus mutées, par rapport aux cellules ne portant qu’une mutation. C’est une des hypothèses qui explique l’association fréquente de mutations de TET2 et de SRSF2. La présence d’une mutation SRSF2 confère un désavantage sélectif aux cellules souches et progénitrices hématoïdiètes in vitro et in vivo, mais devient avantageuse dans un contexte TET2 muté. Cette relation d’épistasie peut également expliquer l’ordre d’apparition des mutations, TET2 étant l’événement initial qui prépare à l’acquisition d’une mutation de SRSF2.

Une autre hypothèse pourrait expliquer le biais de différenciation granulo-monocytaire dans la LMMC. Il existe une hypersensibilité des progéniteurs myéloïdes au GM-CSF associée à une augmentation de l’activité phospho-STAT5 conduisant à une hyperproduction de cellules granulo-monocytaires25–29. Des mutations dans les voies de signalisation, notamment la voie RAS, seraient responsables de cette hypersensibilité. Ce modèle ne correspond qu’aux LMMC prolifératives et mutées dans la voie RAS, soit 35-50% des patients.

Il est probable que les deux modèles moléculaires et fonctionnels - dominance clonale précoce et hypersensibilité au GM-CSF – co-existent (Figure 6).

Figure 6: Modèle de pathogénèse de la LMMC

Acquisition en deux étapes du biais granulo-monocytaire (GM) dans les cellules souches mutées ayant acquis un avantage sélectif, puis ces progéniteurs deviennent hypersensibles au GM-CSF du fait de mutations dans la voie de signalisation RAS. MD-CMML : LMMC myélodysplasique ; MP-CMML : LMMC myéloproliférative.

Source : R. Itzykson et al. Int J Hematol 201729

1.4.2. Architecture clonale

L’apparition des mutations secondaires se fait généralement de manière linéaire. Mais l’analyse de l’architecture clonale a également mis en évidence l’existence de quelques branchements, le plus souvent dus à une perte d’hétérozygotie ("LOH" en anglais, pour Loss of Heterozygoty) ou par recombinaison mitotique (Figure 7), et plus rarement, par interférence clonale23,24. La recombinaison mitotique pourrait d’ailleurs être favorisée par la présence de mutations dans la voie RAS, JAK2 ou les membres du complexe cohésine.
Par ailleurs, on retrouve une dérégulation des marques épigénétiques chez la plupart des patients. Cette dérégulation peut être la conséquence de l'accumulation aléatoires d’altérations liée à l’âge et/ou secondaires à des mutations dans des gènes de l’épigénétique (présentes chez 91.8% des patients - Figure 4). Cette dérégulation contribue également à l’oncogénèse, et le même modèle d’architecture clonale peut être appliqué aux altérations épigénétiques pour expliquer l’initiation et la progression de la LMMC.

Figure 7 : Modèle d’architecture clonale de la LMMC

Dans la plupart des cas, l’architecture clonale est caractérisée par l’accumulation linéaire de mutations (panneau de gauche). De rares cas d’interférence clonale (CI, pour clonal interference) donnent lieu à l’apparition de sous-clones portant des mutations distinctes (panneau du milieu). Des branchements peuvent aussi avoir lieu par perte d’hétérozygotie (LOH pour Loss of heterozygoty) ou par recombinaison mitotique (MR pour mitotic recombination) d’un locus muté, cette dernière générant deux cellules filles, l’une révertant vers le statut sauvage (pas d’allèle muté), l’autre homozygote pour la mutation (panneau de droite). Chaque triangle représente un allèle d’un gène. Chaque couleur indique un gène distinct.

Proposé par Itzykson et Solary. (Leukemia 2013)

1.4.3. **Evolution clonale**

Le maintien d’un clone et son expansion ne peuvent probablement pas s’expliquer par les seules altérations intrinsèques, qu’elles soient génétiques ou à épigénétiques, et à l’avantage compétitif (ou “fitness”) induit par ces altérations. La “fitness” d’un clone dépend également du contexte environnemental. Il est relatif à la “fitness” des clones qui l’entourent. La “fitness” d’un clone dépend des mutations initiatrices (ou “drivers”), des mutations secondaires (ou “passengers”), du taux de mutations, de la compétition avec les autres clones et les cellules normales résiduelles, de l’efficacité d’une thérapie, et du microenvironnement (Figure 8).

Figure 8 : Facteurs déterminant la compétitivité d’un clone leucémique dans la LMMC

Un point rouge représente une mutation initiatrice ou « driver ». Les mutations secondaires sont représentées en vert et jaune. Les cellules du microenvironnement sont représentées avec un noyau, tandis que les cellules « cibles » sont représentées sans.

Source : Itzykson et Solary, Leukemia 2013
Pour qu’un clone se maintienne, plusieurs paramètres peuvent intervenir. La figure 9 schématise et résume le rôle des mutations primaires et secondaires (Figures 9b à 9d), et celui des relations entre les différents clones (Figures 9e et 9f). Si la mutation initiale ne confère pas d’avantage sélectif au clone, celui-ci court à l’extinction (Figure 9a). Si la mutation initiale ou si la présence d’une altération secondaire (épistasie) confère un avantage compétitif au clone, celui-ci devient dominant (Figures 9b à 9d). Un nouveau clone muté peut également se maintenir dans la population grâce à sa dépendance aux autres clones présents dans la population (Figure 9f). On peut étendre cette hypothèse au dialogue entre les cellules du clone et son microenvironnement. Les cellules tumorales entrent en compétition avec les cellules saines pour le même environnement. Le maintien, voire la dominance du clone tumoral peuvent être liés à sa compétitivité dans un environnement donné. La dominance clonale précoces caractérisant la LMMC peut être le résultat de facteurs intrinsèques (altérations génétiques et/ou épigénétique), et extrinsèques (les cellules mutées sont plus adaptées à leur microenvironnement que les cellules saines).

Figure 9 Emergence et évolution de clones et sous clones

Un point rouge représente une mutation initiatrice ou “driver”. Les cellules du microenvironnement sont représentées avec un noyau. (a) Les mutations avec une faible “fitness” peuvent ne pas se fixer et conduire à l’extinction du clone. La dominance clonale peut avoir lieu si (b) la mutation initiatrice comporte une compétitivité intrinsèque forte et confère un avantage au clone, (c) dans le cadre d’une “oncogénèse adaptative”, à savoir une compétition favorable pour le clone muté avec des cellules altérées par le vieillissement, (d) l’addition d’une mutation secondaire (en vert) qui serait neutre ou légèrement désavantageuse seule, donne un avantage au clone (épistasie). Le clone peut également rester un sous-clone dans la population ciblée (e) du fait de l’hétérogénéité de la population, ou bien (f) de la dépendance des cellules mutées à un effet paracrine (flèches) provenant des cellules normales résiduelles de la même population.

Source : Itzyskon et Solary, Leukemia 2013
1.5. La modélisation de la LMMCC

Le manque de modèles robustes, aussi bien cellulaires qu’animaux, capables de récapituler fidèlement les caractéristiques de la LMMC, constitue une limite importante à l’étude de la maladie et de son traitement.

1.5.1. Les modèles cellulaires

En l’absence de lignée cellulaire, l’étude \textit{in vitro} de la LMMC s’est jusqu’alors limitée à l’utilisation de cellules primaires. Il n’existe pas de lignées cellulaires dérivées de patients en phase chronique de la maladie. Pour tenter de capturer et reproduire l’hétérogénéité génétique et phénotypique des cellules du clone tumoral, Beke, Laplane et al.30 et Taoka et al.31 ont utilisé la technologie des cellules souches pluripotentes reprogrammées ou iPSC (induced Pluripotent Stem Cells). Des clones ont été établis à partir de cellules hématopoïétiques souches et progénitrices CD34+ de patients. Ils ont ainsi capturé, au moins partiellement, l’hétérogénéité génétique de l’hématopoïèse du patient.

Ces clones modèles ont également reproduit avec succès certaines des caractéristiques physiopathologiques de la LMMC. En plus du biais de différenciation monocytaire, l’équipe d’Allan Beke a notamment observé la dysplasie de la lignée mégacaryocytaire observée chez le patient d’origine. Ils ont aussi observé une hétérogénéité phénotypique et fonctionnelle inter- et intra-clonale. Leur étude du méthylome par ERRBS a montré une hyperméthylation des îlots CpG chez les clones dérivés de patient comparativement aux donneurs sains, ainsi qu’une hétérogénéité inter et intra-clonale.

L’équipe de Taoka a quant à elle a créé un modèle murin de la LMMC en greffant en intrafémoral les cellules souches et progénitrices de LMMC produites \textit{in vivo} à partir d’iPSCs via la formation de tératomes. Ce modèle a permis le criblage de molécules et l’identification de 3 molécules d’intérêt pour le traitement de la LMMC.

En résumé, la technologie iPSC offre la possibilité de d’investiguer l’hétérogénéité tumorale à tous les niveaux, génétique, épigénétique, phénotypique, et fonctionnel. Cependant, et malgré les progrès réalisés dans la manipulation de ces modèles très lourds, le modèle iPSC reste fragile. Il n’est possible de générer qu’un nombre limité de clones iPSC à partir des cellules de chaque donneur. Par exemple, notre équipe n’a pu étudier qu’un seul patient et deux contrôles, ce qui ne reflète pas la variété clinique et biologique de la pathologie. La reprogrammation des cellules progénitrices tumorales est encore très difficile, et d’autres équipes ont rencontré les mêmes difficultés dans l’étude des SMD et des LAM.

1.5.2. Les modèles murins transgéniques

De nombreux modèles transgéniques portant les altérations communément retrouvées dans la LMMC ont été développés. La plupart d’entre eux ne récapitulent que partiellement les caractéristiques de la LMMC.

\textit{TET2} étant un des gènes les plus fréquemment mutés dans la LMMC et l’un des événements initiateurs de la pathologie, de nombreux modèles de perte de fonction de \textit{TET2} ont été générés32-35.
La délétion du gène conduit à l’émergence d’une pathologie myéloïde ressemblant à la LMMC, caractérisée par une myéloprolifération progressive, une hématoïpèse extramédullaire et une splénomégalie. L’autorenouvellement des CSH est augmenté. L’haploinsuffisance de TET2 est suffisante pour induire le phénotype.

D’autres équipes ont montré la collaboration des mutations JAK2V617F et NRAS avec celles de TET2 dans l’établissement de pathologies myéloprolifératives. Grâce à son modèle, l’équipe de Pan a confirmé l’hypothèse soulevée par les autres équipes selon laquelle, la mutation de TET2 est un événement initiateur qui conduit à l’accumulation de mutations secondaires permettant la transformation en hémopathie maligne. Cette hypothèse explique la longue latence avant l’apparition d’un phénotype malin.

D’autres modèles pour les gènes de l’épigénétique ont également été développés. On compte parmi eux, des modèles ASXL1-/- qui développent des leucémies myéloïdes, proches des SMD ou SMD/NMP. Plus récemment, des souris surexprimant KDM6B ou le gène de fusion NUP98-HBO1 - une fusion identifiée chez de très rares patients atteints de LMMC, dans les cellules souches hématoïpétiques, développent une pathologie proche de la LMMC. Selimoglu-Buet et al. ont montré que les souris dans lesquelles le gène MIR150 est délété ont une répartition anormale des populations monocytaires mimant celle observée chez les patients LMMC, sans pour autant générer de phénotype complet de la LMMC.

La voie RAS a également été extensivement étudiée. Des souris mutantes pour les gènes NRAS, KRAS, HRAS, CBL, NF1, et SHP2 (ou PTPN11) ont été générées. Et des souris dans lesquelles les gènes DOK1 et DOK2 sont délétés ou dans lesquelles FLT3 est dupliqué en tandem miment aussi la LMMC. Ces souris développent des pathologies proches de la LMMC ou de la JMML, avec une hyperprolifération myéloomonocytaire, une splénomégalie et une hypersensibilité au GM-CSF.

La plupart des modèles SRSF2 donnent un phénotype de SMD (sans prolifération) seulement après transplantation de moelle osseuse, suggérant la nécessité d’un stress supplémentaire à la mutation pour exprimer le phénotype. Le modèle de M. F. Smeets récapitule des caractéristiques de SMD/NMP à l’état natif. Tous montrent l’accumulation de mutations secondaires.

De manière plus surprenante car sans lien identifié avec la pathologie humaine, la délétion de gènes comme Bid, Dido, Arid4a, Arid4b, NR4A, CREBBP, Notch, TAK1, et XIST induit un phénotype proche de la LMMC.

Inversement, plusieurs modèles impliquant des mutations retrouvées dans la LMMC échouent à reproduire la pathologie. L’absence d’AML1 codée par RUNX1, gène impliqué dans la transcription et muté chez 15% des patients (Figure 3) ne donne pas de phénotype clair. Le développement myéloïde est normal, tandis que la maturation mégacaryoctaire et le développement des lymphocytes T et B sont défectueux. Malgré le fait qu’EZH2 soit retrouvé muté dans environ 5% des patients LMMC (Figure 3), les souris EZH2 ne développent pas de pathologie myéloïde, mais une LAL-T (Leucémie Aiguë Lymphoïde T). Ceci suggère qu’un environnement mutationnel, épigénétique ou cellulaire est nécessaire pour que les mutations de perte de fonction d’EZH2 participent à la leucémogénèse myéloïde.
En résumé, de nombreux modèles transgéniques ont été générés et ont permis de mieux comprendre l’implication des mutations étudiées dans la leucémogénèse. Cependant, la majorité sont des modèles monogéniques qui ne récapitulent pas l’ensemble des mutations présentes chez les patients et ne reproduisent que partiellement le phénotype et l’hétérogénéité clinique de la maladie humaine. Les souris présentent souvent des caractéristiques communes aux SMD, NMP et LMMC (ou LMMJ). Une raison pour expliquer ce phénomène est que les mutations qu’elles modélisent ne sont pas spécifiques de la LMMC. Certains modèles transgéniques impliquant des gènes retrouvés mutés chez les patients LMMC échouent totalement à reproduire la pathologie, tandis que d’autres ont besoin du stress réplicatif induit par la transplantation médullaire pour exprimer un phénotype ($SRFR2^{P95H}$).

Ensemble, ces données suggèrent un rôle de facteurs extérieurs à la cellule souche, impliquant un dialogue entre les cellules clonales différenciées et les CSHs clonales, ou entre les cellules leucémiques et le microenvironnement pour l’émergence et la progression de la pathologie.

1.5.3. Les modèles de xénogreffe

Les modèles d’étude de la LMMC in vivo les plus fidèles restent les modèles de xénogreffe dans des souris immunodéficientes. Ils permettent d’étudier l’ensemble des mutations et altérations épigénétiques présentes dans les patients et de reproduire, au moins partiellement, l’hétérogénéité clonale.

Néanmoins, leur efficacité reste limitée. La LMMC est une pathologie difficile à greffer, avec un taux de reconstitution dépassant rarement les 1% de cellules humaines dans les souris NSG et les greffes secondaires sont quasiment impossibles. L’utilisation de souris exprimant les cytokines humaines GM-CSF, IL-3 et SCF, ont permis à Y. Zhang et al. ainsi que A. Yoshimi et al. greffer des cellules hématoïdiètes de patients avec un taux de reconstitution élevé (jusqu’à plus de 80% de cellules humaines dans la moelle osseuse ou le foie), parfois transplantables secondairement. On retrouve des cellules humaines dans la moelle osseuse, le sang périphérique, la rate, le foie et même les poumons.

Les cellules greffées sont majoritairement des cellules myéloïdes et récapitulent l’ensemble des caractéristiques immunophénotypiques, morphologiques et génétiques observées chez les patients dont elles proviennent. Notamment, l’hétérogénéité clonale et sous-clonale des patients a bien été conservé après greffe.

En résumé, les caractéristiques cliniques, génétiques et moléculaires de la LMMC sont désormais bien connues. La part du microenvironnement dans la physiopathologie de la LMMC est en revanche peu étudiée.

La LMMC présente une expression clinique très variée ne pouvant être expliquée par la seule hétérogénéité génétique de la pathologie qui est très limitée et non spécifique. La dominance clonale précoce de la LMMC peut s’expliquer à la fois par des facteurs intrinsèques (altérations génétiques et/ou épigénétiques) et des facteurs extrinsèques (avantage sélectif des clones tumoraux dans leur environnement). L’évolution clonale peut également dépendre de relations paracrines et/ou de contact entre les cellules mutées et leur environnement. C’est ce qui est suggéré par l’hypersensibilité des progéniteurs myéloïdes au GM-CSF. L’influence de ces facteurs non-cellule autonomes pourrait en partie expliquer l’hétérogénéité phénotypique observée chez les patients.

Les modèles murins de la LMMC restent peu performants, notamment les modèles monogéniques qui ne reproduisent que partiellement le phénotype de la maladie. Malgré tout, de récents modèles de xénogreffe de cellules de patients ont généré des résultats prometteurs. L’expression ectopiques de cytokines humaines ont rendu la xénogreffe plus efficace, suggérant une nouvelle fois le rôle important de l’environnement cytokinique dans la physiopathologie de la maladie. Le développement de nouveaux modèles prenant en compte l’environnement tumoral reste à faire. Des souches de souris exprimant des cytokines humaines à des taux plus physiologiques ont été générées (MISTRG) et certaines équipes ont cherché à reproduire l’environnement de la moelle osseuse humaine chez la souris pour étudier son rôle dans la leucémogénèse.

Le manque de modèle robuste de la LMMC ainsi que les éléments décrits ci-dessus nous amène à penser qu’il serait utile de reproduire la maladie en prenant en compte le microenvironnement médullaire afin d’étudier 1) l’impact du microenvironnement sur le développement du clone et 2) l’impact du clone sur le microenvironnement.
2. Le microenvironnement normal

2.1. L’origine du concept de niche hématopoïétique

Chez l’adulte, la moelle osseuse (MO) est le siège de l’hématopoïèse. La première étape de ce processus, qui renouvelle les composants cellulaire du sang, est la différenciation des cellules souches hématopoïétiques (CSH). La majorité des CSH est dans un état de quiescence. Une CSH peut s’auto-renouveler ou se différencier en progéniteurs puis en précurseurs des différents lignages hématopoïétiques dont la différenciation finale abouti aux cellules matures du sang.

L’homéostasie du système hématopoïétique requiert un parfait équilibre entre différenciation et auto-renouvellement des CSH. Cet équilibre est perturbé lorsque survient une agression (infection, inflammation, traumatisme, hémorragie, hypoxie, etc...) afin d’adapter rapidement et précisément la production de cellules sanguines aux besoins de l’organisme.

En 1978, R. Schofield (Manchester) fait l’hypothèse que le microenvironnement dans lequel vivent les CSH est une des composantes régulant leur comportement (cf. résumé dans l’encadré ci-contre). C’est la notion de « niche hématopoïétique » au sein de laquelle le comportement de la CSH est sous l’influence coordonnée de facteurs intrinsèques et de signaux extrinsèques.

L’expérience à l’origine de ce concept mérite d’être décrite. Des souris femelles sont traitées par du Busulfan ou de l’isopropyl méthanosulfonate (IMS) avant de leur injecter des cellules médullaires de souris mâle isogénique et d’explorer dans les 6 mois qui suivent par l’analyse du caryotype l’origine des cellules de la moelle et des CFU-S. L’hématopoïèse des souris traitées au Busulfan est faite de 40 à 80% de cellules de la donneuse femelle. Celle des souris traitées par IMS est constituée exclusivement de cellules mâles du receveur. Ces résultats sont jugés compatibles avec le modèle d’une niche dans laquelle résident les cellules les plus immatures qui résistent au Busulfan mais sont sensibles à l’IMS.

Ce concept sera débattu pendant une vingtaine d’année avant que l’on s’accorde sur l’idée que la niche hématopoïétique est l’unité anatomique et fonctionnelle qui, par des interactions cellulaires et humorales, maintient l’équilibre entre quiescence et auto-renouvellement des CSH puis contrôle leur différenciation.
2.2. L’architecture de la niche hématopoïétique

La moelle osseuse hématopoïétique est localisée dans les cavités des os longs chez l’homme et chez la souris77,78 et dans celle des os du squelette axial chez l’homme (crâne, sternum, côtes, vertèbres et os iliaque). Elle est irriguée par un réseau vasculaire qui permet l’apport de de nutriments, d’oxygène, d’hormones et de facteurs de croissance aux cellules de la niche, ainsi que la gestion des déchets générés par les cellules de la moelle osseuse79. Elle est aussi richement innervée (Figure 10).

\begin{figure}[h]
\centering
\includegraphics[width=0.8\textwidth]{image10.png}
\caption{Anatomie et microarchitecture de la moelle osseuse}
\end{figure}

\textit{Source : Morrison & Scadden, Nature 2014}79

La niche hématopoïétique est donc un microenvironnement complexe. Il est composé de cellules et de molécules qui, par des effets chimiques et physiques, régulent la localisation, la maintenance et l’activité des CSH. Depuis le début du XXIère siècle, on distingue
- une niche endostéale80-83, au contact de l’os, composée d’ostéoblastes, de chondroblastes et d’adipocytes ayant pour origine une cellule souche mésenchymateuse (CSM), d’ostéoclastes issus de la différenciation des CSH, et de fibroblastes
- et une niche pérvasaire82-86 autour d’un réseau de vaisseaux fenêtrés formés par des cellules endothéliales.

Des facteurs diffusibles (cytokines, chimiokines, hormones, bone morphogenic proteins ou BMPs) et le système nerveux sympathique (fibres nerveuses entourées de cellules de Schwann non myélinisantes) sont impliqués dans le fonctionnement de ces niches hématopoïétiques. Des cellules hématopoïétiques matures présentes au sein de la moelle influencent aussi le devenir de la CSH et des cellules qui en dérivent. Il s’agit principalement des mégacaryocytes, des macrophages résidents et des lymphocytes T régulateurs (Figures 10-11)87,88.

30
Le bien-fondé de la distinction entre ces deux niches reste un sujet de controverse : ces deux niches sont étroitement liées anatomiquement et fonctionnellement.

2.3. Les cellules de la niche hématopoïétique

Les cellules qui forment la niche hématopoïétique interagissent avec les CSH par des contacts intercellulaires et par la synthèse et la sécrétion, selon un rythme circadien, de molécules solubles constituant autant de voies paracrines qui influencent directement ou indirectement la quiescence et la localisation des CSH (Figure 12).

Les cellules du lignage ostéoblastique sont les premières cellules dont le rôle dans la régulation de l’activité des CSH a été identifié. Après transplantation de CSH chez la souris sans ablation, on observe un enrichissement de ces cellules au sein de la niche endostéale. L’hormone parathyroïdienne (PTH) est un régulateur du renouvellement osseux qui active la production d’ostéoblastes. La stimulation de la formation des ostéoblastes par la PTH favorise production de CSH plus élevée, passant par la voie Notch-Jagged1. Les ostéoblastes stimulent également l’expansion des CSH par voie de contact via la molécule d’adhésion N-cadherine. L’activité cytokinique des ostéoblastes favorise la quiescence des CSH notamment via la sécrétion de l’ostéopontine (OPN), de l’angiopoïétine 1 (ANGPT1) et de la thrombopoïétine (TPO).

Cependant, les ostéoblastes ne sont pas les principaux producteurs d’ANGPT1 et de TPO, suggérant que leur action sur les CSH est relativement secondaire. Il semble que les cellules du lignage ostéoblastique soutiennent plutôt des progéniteurs hématopoïétiques plus engagés.
Figure 12

Acteurs cellulaires et moléculaires de la niche régulant l’activité des cellules souches hématopoïétiques

Source : Pinho & Frenette, Nature Reviews 2019

Les études 3D de la niche ont finalement révélé qu’en l’absence de stress, les CSH endogènes se concentrent autour des vaisseaux sanguins, en particulier les sinusoides, formant la niche périvasculaire. Les cellules endothéliales (CE) formant les artérioles et les vaisseaux sinusoïdaux sont responsables de la maintenance des CSH via la sécrétion de CXCL12, de stem cell factor (SCF), d’angiopoïétine 1 (ANGPT1) et de pléiotrophine. Les cellules endothéliales interagissent aussi directement avec les CSH via

- la protéine d’adhésion VCAM-1 qui se fixe à VLA-4 (intégrine α4β1) exprimée à la surface des CSH pour promouvoir leur rétention dans la moelle,
- des ligands de Notch, comme Jagged1, qui stimulent leur auto-renouvellement
- la E-selectine qui régule leur quiescence et leur survie.

Le rôle de l’innervation médullaire a été identifié secondairement. Les fibres sympathiques qui innervent la moelle régulent la mobilisation circadienne des CSH et des progéniteurs qui en dérivent via la sécrétion de noradrénaline (NA). Cette signalisation noradrénergique contrôle les oscillations circadiennes de la production de CXCL12 par les cellules du microenvironnement médullaire. Les signaux du système nerveux sympathique (SNS) jouent également un rôle dans la régénération hématopoïétique secondaire à un stress génotoxique. Les cellules de Schwann non myélénisantes qui entourent les artères favorisent la quiescence des CSH via l’activation des voies TGF-β et SMAD. Les signaux adrénergiques peuvent également directement promouvoir la migration et la prise de greffe des progéniteurs hématopoïétiques humains via le récepteur adrénergique β2.
Les principales cellules hématoïdières matures qui régulent les CSH dans la niche sont :

- les mégacaryocytes qui favorisent la quiescence des CSH via la sécrétion de CXCL4, TGF-β, et TPO et participent à la régénération de la niche après un stress (irradiation) en activant la voie FGF1 ;

- les macrophages qui favorisent indirectement la rétention des CSH dans la moelle en induisant l’expression de cytokines telles que CXCL12 par les CSM via l’oncostatine M. Ils jouent également un rôle direct sur les CSH, notamment en régulant la quiescence des CSH via TGF-β ;

- les lymphocytes T régulateurs qui promeuvent aussi la quiescence des CSH via la production d’adénosine induite par CD39 et la survie des CSH par la production d’IL-10, facilite la prise de greffe et protègent les CSH des attaques immunitaires.

On distingue désormais, au sein de la niche périvasculaire, une niche sinusoïdale dans laquelle se trouvent près de 80% des CSH et une niche artériolaire. La niche sinusoïdale implique les cellules stromales appelées « CAR » pour « CXCL12-abundant reticular » (aussi appelées Nes-GFP ou LEPR_) qui, comme l’indique leur nom, produisent abondamment CXCL12. Ces cellules secrètent aussi du SCF qui participe à la rétention et au maintien des CSH. Les cellules souches mésenchymateuses (ou cellules stromales mésenchymateuse) qui entourent les vaisseaux sinusoïdaux sont peu denses, formant un endothélium fenêtré. La niche artériolaire implique les cellules stromales NG2_ ou MYH11_ (Nes-GFP) que l’on observe près des artéries et les cellules souches mésenchymateuses participent à leur étanchéité car elles sont très serrées.

Les cellules souches mésenchymateuses expriment des facteurs régulateurs tels que VCAM1, ANG1, OPN, pléiotrophine qui jouent dans la rétention, la quiescence et le maintien des CSH. Leur différenciation est essentielle au maintien de l’intégrité des fonctions des CSH et à l’hématopoïèse. La formation d’adipocytes (qui s’accroît avec l’âge) a des effets délétères sur les fonctions des CSH : l’adiponectine qu’ils sécrètent diminue les capacités de prolifération des CSPH in vitro, et la présence d’adipocytes dans la moelle diminue les capacités de greffe des CSH in vivo.

2.4. Le vieillissement de la niche

La niche hématopoïétique évolue au cours du vieillissement. Cette évolution impacte les propriétés des CSH, notamment de leurs capacités d’auto-renouvellement et de “homing”, et l’hématopoïèse, qui se caractérise par un biais myéloïde de plus en plus marqué, un défaut de production des cellules lymphoïdes, une baisse des capacités de régénération. Il en résulte l’émergence de clones hématopoïétiques de taille croissante, une réponse moins forte à la vaccination, et le développement de maladies du système hématopoïétique (hémopathies malignes) et d’autres tissus (athérosclérose, sensibilité accrue aux infections et aux cancers, maladies auto-immunes).

Ce phénomène de vieillissement du tissu hématopoïétique est associé à de multiples altérations moléculaires des cellules du système en particulier des CSH qui ont des fonctions mitochondriales perturbées et produisent plus de radicaux libres de l’oxygène, accumulent des dommages de l’ADN (mutations ponctuelles, raccourcissement des télosmères),
mobilisation de rétro-éléments, modifications épigénétiques169,186–189, activent anormalement certaines voies de signalisation (mTOR190, autophagie191), ont une polarité altérée192, voire entrent en sénescence181,193–195.

Le vieillissement de la CSH n’est pas seulement intrinsèque à la cellule mais aussi favorisé par celui de sa niche196,197: la greffe de CSH est moins efficace dans un environnement médullaire âgé147,155. Le réseau vasculaire et l’innervation sympathique s’altèrent avec l’âge108,198,199. Les cellules souches mésenchymateuses se différencient plus volontiers en adipocytes200,201 (accumulation de moelle dite “jaune”) qu’en ostéoblastes ou en chondrocytes. Leurs capacités de soutien de l’hématopoïèse sont réduites et participeraient à l’expansion du lignage myéloïde138,140,202,203. L’environnement cytokinique est bouleversé. Par exemple, la synthèse et la sécrétion de CXCL12, JAGGED1 et SCF199 par les cellules endothéliales et les cellules stromales sont diminuées, ce qui réduit la rétention des CSH dans la niche et leurs capacités d’auto-renouvellement tandis que l’augmentation de la production de CCL5155 par les cellules souches mésenchymateuses participe au biais de différenciation myéloïde (Figure 13).

\begin{figure}
\centering
\includegraphics[width=\textwidth]{image13.png}
\caption{Les altérations de la niche hématopoïétique au cours du vieillissement.}
\footnotesize{Source: Pinho & Frenette, Nature Reviews 2019}
\end{figure}

3. Le microenvironnement tumoral

L’évolution du concept de microenvironnement tumoral ainsi que son rôle dans la tumorigénèse et son ciblage thérapeutique sont décrits dans la revue de Shelly Maman et Isaas P. Witz publiée en 2018 dans Nature Reviews204.

3.1. Le concept de microenvironnement tumoral

Jusqu’aux années 1980, le cancer est envisagé comme une maladie cellulaire autonome204. Un rôle central est attribué à l’activation d’oncogènes et à la perte d’oncosupprimeurs dans une cellule échappant de ce fait à toute régulation extérieure. La notion de microenvironnement tumoral (MET) avait été évoquée au XIXème siècle205. Stephen Paget, considéré comme le pionnier du concept, suggérait dès 1889 que la colonisation métastatique des cancers du sein était guidée par les

3.2. Les composantes du microenvironnement tumoral

Une des premières évidences d’un rôle du microenvironnement dans l’oncogénèse est apportée par Judah Folkman qui démontre en 1971 l’importance d’une néo-angiogenèse dans le développement et le maintien d’une tumeur.

Dans les décennies qui suivent, de multiples acteurs du microenvironnement - cellules résidentes ou recrutées, molécules de type cytokines ou chimokines, métabolites divers comme l’oxygène et le glucose, produits chimiques, matrice extracellulaire, contraintes physiques telles que la pression interstitielle et les limites spatiales - sont impliqués dans une relation bidirectionnelle avec les cellules tumorales (Figure 14).

Ces acteurs modifient le phénotype tumoral qui, à son tour, modifie son microenvironnement. L’effet de chaque acteur peut être pro-tumoral ou anti-tumoral.

Le rôle de l’angiogenèse

La tumeur est capable de s’approprier des phénomènes associés au développement physiologique. Un exemple est l’angiogénèse. Le microenvironnement tumoral contient souvent des quantités élevées de facteurs pro-angiogéniques comme le Vascular Endothelium Growth Factor (VEGF) et de facteurs anti-angiogéniques comme l'angiostatine. La balance entre ces cytokines influence la néo-angiogenèse qui participe à la croissance tumorale en permettant une amélioration de l’apport en nutriments et en favorisant la propagation des cellules tumorales dans l’organisme.

Le rôle des cytokines

L’environnement cytokinique est crucial aussi bien dans l’environnement des cellules tumorales primitives que dans celui des métastases. Les cellules tumorales détournent les interactions cytokines/récepteurs impliquées dans l’inflammation pour proliférer et envahir de nouveaux tissus.

Le rôle de la matrice extracellulaire (MEC)

La MEC contrôle la croissance, la morphologie et la motilité des cellules cancéreuses. La MEC est modifiée par le développement d’une tumeur maligne. Les métalloprotéases sécrétées par les cellules non-tumorales sont les principaux éléments responsables de ce remodelage. La composition
de la MEC en laminine, fibronectine, collagène, protéoglycanes et tenascine est altérée. Une densification de la MEC, appelée desmoplasie, est observée dans les tumeurs les plus agressives. Elle crée un environnement pro-tumoral en favorisant angiogénèse et métastases tout en constituant un environnement propice au maintien de caractères souches de certaines cellules tumorales.

Figure 14 : Composants des microenvironnements tumoral et métastatique

Représentation schématique des multiples composants du microenvironnement tumoral et de ses variations entre tumeur primaire et divers sites métastatiques, en l’occurrence le cerveau, le poumon et l’os.

Source S. Maman and I. P. Witz, Nature Reviews, 2018
Le rôle de l'inflammation et la réponse immunitaire

L'inflammation et l’absence de réponse immunitaire adaptée jouent un rôle important dans le développement des tumeurs. Un environnement inflammatoire chronique est la source d’événements oncogéniques et favorise l’émergence ou la progression d’une tumeur.

L’inflammation attire des cellules immunologiquement actives au sein de la tumeur : lymphocytes T reconnaissant spécifiquement un antigène exprimé par les cellules tumorales, lymphocytes B qui produisent des immunoglobulines dirigées contre les antigènes tumoraux, et cellules Natural Killer (NK). Ces cellules peuvent cependant n’avoir aucun effet lorsqu’elles sont neutralisées par la mise en jeu d’un système de contrôle négatif (immune checkpoint impliquant CTLA4 ou PD1). Le ciblage de certains acteurs moléculaires de cette régulation négative fait le succès de l’immunothérapie depuis une dizaine d’années.

Les plaquettes facilitent l’invasion de nouveaux tissus en formant avec les cellules tumorales circulantes des micro-thrombi (TCIPA, tumour cell-induced platelet aggregation) qui les protègent des stress mécaniques et de la surveillance immunitaire dans la circulation. Elles facilitent également la transition épithélio-mésenchymateuse (TEM), mécanisme à la base de l’invasion tumorale.

Les fibroblastes associés aux tumeurs

Les fibroblastes associés aux tumeurs (CAF, Cancer-Associated Fibroblasts) sont en partie responsables de la modification de la MEC et de l’immunosuppression. Ils ont une activité pro-tumorale en augmentant l’invasion tissulaire par les cellules cancéreuses via des interactions cellulaires hétérotypiques et la sécrétion de cytokines pro-invasives.

Le microenvironnement physique

L’angiogenèse tumorale produit des vaisseaux dont les caractéristiques (flux sanguin irrégulier, perméabilité anormale) provoquent une augmentation de la pression interstitielle au sein du tissu tumoral par rapport à un tissu sain. La prolifération des cellules tumorales au sein d’un tissu contraint crée une augmentation des forces de tension et de compression générant un stress physique, notamment une rigidité anormale, qui altère la fonction des cellules et participe à la régulation de l’invasion tumorale.
Les altérations métaboliques

Le métabolisme des cellules du microenvironnement tumoral peut être perturbé, comme l’est celui des cellules tumorales. L’utilisation préférentielle de la glycolyse par rapport à la respiration mitochondriale, même en présence de quantités suffisantes d’oxygène, est caractéristique. L’hypoxie et l’acidose, particulièrement dans la partie la plus profonde et centrale des tumeurs, très souvent nécrotique, sont habituelles. L’hypoxie provoque une augmentation de l’expression du facteur de transcription HIF1 (hypoxia inducible factor 1) qui induit la transcription de gènes régulant la progression tumorale.

Le microenvironnement métastatique

Les caractéristiques du microenvironnement tumoral varient d’un tissu à un autre, d’une tumeur primitive à une métastase, et entre métastases. La nature du microenvironnement métastatique conditionne la colonisation métastatique, conduisant à la notion de « niche pré-métastatique » propice à la formation de métastases comme l’avait théorisé Stephen Paget. Le recrutement de cellules progénitrices hématopoïétiques au niveau de ces sites en réponse aux signaux cytokiniques de la tumeur primaire crée des plateformes d’assemblage de cytokines, facteurs de croissances, molécules d’adhésion et enzymes de dégradation de la MEC attractive pour la dissémination de cellules tumorales.

3.3. Le ciblage thérapeutique du microenvironnement tumoral

La nature du microenvironnement tumoral conditionne l’efficacité des approches thérapeutiques anticancéreuses, lesquelles modifient à leur tour le microenvironnement (Figure 15). L’identification des multiples composants du microenvironnement tumoral et de leur rôle respectif dans la croissance et la propagation tumorale a ouvert la voie au développement de traitements ciblant non seulement la tumeur mais aussi son environnement.

Les cellules immunitaires et inflammatoires sont devenues les cibles ou les outils de diverses formes d’immunothérapie qui sont jusqu’alors la forme la plus efficace de thérapeutique ciblant le microenvironnement tumoral. Il s’agit du transfert adoptif de lymphocytes infiltrant la tumeur (TILs, Tumour-infiltrating Lymphocytes), des inhibiteurs de point contrôle (ICB, immune checkpoint blockers) et des cellules CAR-T (Chimeric Antigen Recepte8or T cells) qui sont des lymphocytes T autologues ou allogéniques modifiés génétiquement afin de reconnaître des antigènes de surface des cellules tumorales.

La lutte contre l’angiogénèse tumorale est une autre approche testée en thérapeutique humaine. Le VEGF est la cible initialement privilégiée pour développer des médicaments luttant contre l’angiogenèse tumorale. L’efficacité des médicaments ciblant la voie VEGF s’est avérée limitée, notamment du fait de l’activation concomitante du récepteur Notch par son ligand DLL4 (Delta-like ligand 4) qui est une voie d’activation de la formation de vaisseaux indépendante de VEGF. Une autre approche anti-angiogénique cible le système ANGPT2-TIE2 (Angiopoietin 2 ligand - Tyrosine kinase with immunoglobulin and EGF homology domains 2), mais son efficacité est, elle aussi, limitée par l’activation de voies alternatives de l’angiogénèse.
Il existe d’autres stratégies ciblant l’environnement tumoral plus que les cellules malades, par exemple celles visant à contrôler les mécanismes régulateurs de l’hypoxie. Compte-tenu des limites de la plupart de ces approches, il est probable que l’utilisation conjointe de thérapies ciblant la tumeur et son environnement sera nécessaire au contrôle complet de la progression tumorale.
4. Le microenvironnement dans les hémopathies malignes

4.1. L’hématopoïèse pathologique affecte la niche

Comme dans les autres maladies malignes, les hémopathies malignes se développent dans un microenvironnement que les cellules malades modifient progressivement à leur propre bénéfice. Ce qui est plus singulier est la démonstration, dans un nombre croissant de modèles murins, dans lesquels des altérations de la niche peuvent générer l’émergence d’un clone hématopoïétique malin. Ce double concept est illustré par la Figure 16.

Figure 16 : Modèles d’altérations de la niche hématopoïétique en conditions leucémiques

Source : Asada et al Int J Hematol 2017

Comme il l’a été décrit dans la première partie de l’introduction, les hémopathies myéloïdes sont caractérisées par l’émergence d’un clone tumoral composé de cellules souches leucémiques (CSL) porteuses d’altérations génétiques et épigénétiques responsables, au moins en partie, de l’expansion du clone dans l’organisme. Ces CSL partagent de nombreuses caractéristiques communes avec les
CSH normales et entrent en compétition avec ces dernières pour occuper l’environnement médullaire. Par exemple, les CSL expriment à un niveau élevé des molécules telles que CXCR4, VLA4 et CD44 qui augmentent leur capacité d’adhésion, de survie et de résistance aux thérapeutiques cytotoxiques.

Les cellules du clone tumoral modifient la niche hématopoïétique et la rendent plus permissive à la croissance tumorale, au dépend de l’hématopoïèse normale. Ces altérations de la niche touchent l’ensemble des acteurs de l’environnement médullaire (Figure 17). On observe des altérations morphologiques et fonctionnelles des cellules souches mésenchymateuses et des cellules qui en dérivent dans les hémopathies myéloïdes chroniques (néoplasmes myéloprolifératifs et syndromes myélodysplasiques) et dans les hémopathies myéloïdes aiguës (leucémie aiguë myéloïde). Par exemple, les cellules progénitrices BCR-ABL de la leucémie myéloïde chronique interagissent avec les cellules souches mésenchymateuses par contact direct ou par voie paracrine pour modifier leurs capacités de différenciation, générant des ostéoblastes anormaux dont les propriétés de soutien aux CSH saines sont détournées au profit des cellules leucémiques.

Figure 17
Altérations de la niche secondaires à la leucémie
Source : Pinho & Frenette, Nature Reviews 2019

L’inflammation altère les fonctions des CSH en modifiant le microenvironnement médullaire. Par exemple, il a été observé, dans le contexte d’une leucémie aiguë myéloïde, que l’accumulation locale de cytokines pro-inflammatoires s’accompagne de la production de facteurs anti-angiogéniques et de la réduction de la vascularisation endostéale. La densité et la qualité de la vascularisation favorisent alors la résistance au traitement en réduisant l’apport de molécules actives dans la niche.

L’innervation est un autre paramètre important. Dans des modèles murins transgéniques de néoplasme myéloprolifératif ou de leucémie aiguë myéloïde, on observe une altération des fibres nerveuses sympathiques qui participe à la progression de ces maladies.

- Dans un modèle de leucémie aiguë myéloïde, cette neuropathie s’accompagne d’une différenciation ostéoblastique accrue des cellules souches mésenchymateuses et d’une
diminution des cellules stromales péri-artériolaires NG2* et des facteurs de maintenance CXCL12 et SCF qu’elles produisent. Tandis que le blocage des récepteurs adrénergiques β2 (Adrβ2) mime cette neurodégénérescence secondaire à la leucémie et favorise l’infiltration médullaire par les cellules leucémiques, l’utilisation d’agonistes du récepteur Adrβ2 retarde la progression de la maladie211.

- Dans un modèle de néoplasme myéloprolifératif induit par la mutation JAK2*V617F214, les cellules souches et progénitrices mutées produisent en excès des cytokines pro-inflammatoires qui réduisent le nombre de fibres nerveuses sympathiques et de cellules de Schwann. Cette neuropathie conduit à l’apoptose des cellules souches mésenchymateuses Nestin+, corrigée par l’administration d’agonistes des récepteurs Adrβ3 qui réduit aussi le développement des cellules leucémiques.

4.2. La niche malade affecte l’hématopoïèse

Il arrive que des patients allogreffés développent une leucémie à partir des cellules saines qui leur ont été greffées215. Cette observation a suggéré l’hypothèse d’un rôle des altérations de la niche hématopoïétique dans l’initiation de la leucémie.

Ce concept210 a d’abord été validé par l’observation de l’émergence d’un néoplasme myéloprolifératif chez des souris déficientes pour le récepteur gamma pour l’acide rétinoïque (RARγ)216,217. La transplantation de cellules hématopoïétiques saines dans un environnement dépourvu de ce récepteur conduit toujours au développement d’un néoplasme myéloprolifératif, ce qui n’est pas observé lorsque des CSH mutées sont greffées dans un environnement sain216.

Cette observation était en accord avec le fait que l’invalidation d’autres gênes comme celui du rétinoblastome Rb1217 ou de Mind bomb 1 (Mib1)218 dans les cellules non hématopoïétiques de la niche conduit au développement d’un néoplasme myéloprolifératif à partir de cellules hématopoïétiques saines greffées dans cet environnement. La délétion de RBPJ, un effecteur de la voie Notch, dans les cellules endothéliales, a le même effet.

D’autres modèles sont venus renforcer cette hypothèse (Figure 18) :

- la stabilisation nucléaire de la β-catenine dans les ostéoblastes provoque un phénotype évoquant un syndrome myélodysplasique ou une leucémie aiguë myéloïde du fait d’une activation excessive de la voie Notch219.
- la délétion de Dicer1 dans les progéniteurs ostéoblastiques induit un syndrome myélodysplasique pouvant évoluer en leucémie aiguë myéloïde.
- la délétion du gène Sbds (reproduisant l’anomalie génétique constitutive de la maladie de Shwachman-Bodian-Diamond) dans les cellules souches mésenchymateuses induit un stress génotoxique dans les CSH saines en activant la voie p53 et la sécrétion de molécules pro-inflammatoires S100A8 ET S100A9220. Cette étude confirme les résultats présentés par l’équipe de Raaijmaker en 2010 qui avait montré qu’une déficience de Sbds dans les CSM conduisait au développement de myélodysplasie chez la souris221.
- l’expression d’un mutant du gène Ptpn11 analogue à celui prédisposant au développement d’une leucémie myélomonocytaire juvénile dans les CSM de la souris induit le développement d’une maladie myéloproliférative à partir de CSH saines222.
En résumé, la niche hématopoïétique est le siège d’un grand nombre d’interactions bi-directionnelles entre cellules souches et progénitrices hématopoïétiques et cellules du microenvironnement médullaire. Ces interactions participent à la régulation de l’homéostasie hématopoïétique. Le vieillissement de la niche prédispose à l’émergence de pathologies hématopoïétiques.

En conditions pathologiques, deux schémas non-exclusifs d’altération secondaire et primaire de la niche peuvent être proposés. Le premier, le plus classique, implique que l’émergence d’un clone hématopoïétique génère la formation d’un environnement permissif au développement d’un phénotype malade au dépend de l’hématopoïèse saine. Le second postule que le premier événement dans l’émergence d’une hémopathie clonale est une altération de l’environnement médullaire.

Les altérations de la niche hématopoïétique offrent des opportunités thérapeutiques. Des molécules modifiant l’interaction des cellules hématopoïétiques avec leur niche existent et pourraient avoir un intérêt dans le traitement de certaines hémopathies malignes. C’est dans cet esprit que des inhibiteurs du récepteur CXCR4 ont été testés dans le traitement de la leucémie aiguë myéloïde, en association avec une chimiothérapie.
5. Le microenvironnement dans les modèles d’hémopathie

5.1. L’importance des cellules souches mésenchymateuses.

Comme il a déjà été dit, les cellules souches mésenchymateuses ou cellules stromales mésenchymateuses, sont une des composantes cellulaires de la niche hématoïétique223. Bien que rares (0,01% des cellules médullaires), elles régulent l’activité des CSH. Elles sécrètent des facteurs de maintien des CSH (CXCL12, SCF, OPN, IL-7, VCAM-1, Ang1)87,134, produisent des vésicules extracellulaires (microvesicules et exosomes)224 contenant de petits ARN non-codants (miRNA - microRNA, et piRNA, Piwi-interacting RNA)225, interagissent directement avec les CSH et d’autres cellules de la niche telles que les macrophages et les cellules endothéliales. Leur activité est partiellement régulée par le système nerveux sympathique. Un biais de différenciation adipocytaire tel qu’il est observé au cours du vieillissement affecte le maintien des CSH dans la niche.

Ces cellules souches mésenchymateuses ont un rôle physiopathologique. Elles ont des fonctions immunsuppressives226. Elles sécrètent notamment TFGβ1, IL-10, prostaglandine E2, et l’enzyme de dégradation du tryptophane IDO qui affectent les lymphocytes T134. Elles ont aussi un rôle négatif sur la lymphopoïèse B via l’activine A227 et participent à la dormance tumorale134. Il a néanmoins été montré que les CSM pouvaient soit augmenter soit supprimer la réponse immunitaire contre le cancer228. La signature protéique des cellules stromales mésenchymateuse aurait un impact pronostique sur la survie des patients atteints de leucémie aiguë myéloïde229.

Comme il a déjà été mentionné, leur altération participe à la pathogénèse de multiples hémopathies malignes223. On retrouve des mutations dans les CSM différentes de celles retrouvées dans les cellules hématoïétiques de patients atteints de SMD230. Ces altérations pourraient induire l’émergence de pathologies220,222. Plusieurs articles ont démontré une altération des CSM soutenant les cellules leucémiques208,209,231. Wenk a notamment montré que le traitement des patients atteints de SMD par l’azacitine affecte directement les CSM pour promouvoir leurs propriétés supportrices des HSC saines au dépend des HSC pathologiques232. Il semble donc que les CSM jouent un rôle dans la leucémogénèse et leur ciblage thérapeutique pourrait être une nouvelle stratégie pour lutter contre les hémopathies malignes.

Ces cellules souches mésenchymateuses semblent jouer un rôle dans la LMML. En 2018, Hui Shi et al ont observé une altération du sécrétome des CSM des patients, participant au soutien de la leucémie233. La co-culture de CSM de patients avec des CD34+ de cordon a permis de mettre en évidence un rôle des CSM dans le biais de différenciation myéloïde par voie paracrine. L’étude du sécrétome a montré une réduction globale de l’activité cytokinique des cellules souches mésenchymateuses de ces patients et l’ajout ectopique des cytokines manquantes a permis la restauration partielle de l’hématoïèse en culture. Zannoni et al,234 ont montré un rôle pro-coagulant des CSM de patients via la sécrétion de vésicules extracellulaires contenant du TF (tissue-factor), pouvant potentiellement participer au développement de la tumeur.
La xénogreffe de cellules de la niche hématopoïétique

L’intérêt croissant pour le rôle de l’environnement tumoral dans l’émergence des hémopathies a conduit les chercheurs à développer des modèles de niche hématopoïétique \(^{235}\). Comme nous l’avons indiqué, le microenvironnement médullaire est un système complexe impliquant de multiples composants cellulaires et moléculaires formant une matrice cellulaire et extracellulaire richement innervée et vascularisée. Les études \textit{in vitro} de la niche sont par nature trop réductrices tant que l’on ne saura pas reconstituer, au moins en partie, la complexité du tissu médullaire dans une boîte de Pétri. C’est pourquoi les chercheurs ont privilégié les modèles de reconstitution du microenvironnement \textit{in vivo}.

Dans ce contexte, on peut considérer que la première approche a été de reconstituer un environnement cytokinique partiellement humanisé. Chez la souris immunodéficiente, malgré l’amélioration progressive des souches permettant la greffe des cellules humaines, certaines hémopathies, comme les syndromes myélodysplasiques, restent difficiles à greffer. La mise au point d’une souche de souris (NSGS) exprimant les cytokines humaines IL3, SCF et GM-CSF a été un premier pas dans ce sens\(^{236,237}\). Ce modèle permet d’obtenir un taux de prise de greffe de l’ordre de 90% des cellules de patients atteints de LMMC ou de LMMJ\(^{75}\) et une expansion satisfaisante des cellules myéloïdes humaines chez ces souris. Néanmoins, le niveau très élevé des cytokines humaines produites par ces souris pourraient être responsable de l’épuisement des CSH prévenant la réalisation de greffes secondaires et tertiaires\(^{238,239}\). C’est la raison pour laquelle les souris MISTRG expriment des gènes de cytokines humaines (CSF1 ou macrophage stimulating factor, IL3, SIRP, TPO, GM-CSF) qu’elles produisent à des taux plus physiologiques\(^{240}\).

En 2014, Medyouf et al ont montré l’apport de cellules souches mésenchymateuses de patients à la xénogreffe de cellules CD34+ de syndromes myélodysplasiques de ces mêmes patients chez la souris immunodéprimée NSGS (voie intrafémorale), la présence de cellules souches mésenchymateuses de patient permettant une meilleure reconstitution de la maladie comparativement à l’injection de CD34\(^+\) seules ou en co-injection avec des cellules souches mésenchymateuses de donneurs sains\(^{209}\). L’étude transcriptionnelle des cellules souches mésenchymateuses a montré une expression génique altérée. L’interprétation a été que des modifications épigénétiques induites par les cellules leucémiques participent à une boucle de régulation favorisant l’expansion du clone leucémique. Cependant, les cellules souches mésenchymateuses injectées dans la moelle disparaissent dès une semaine post-injection, remettant en question la théorie selon laquelle elles assureraient un rôle de soutien des cellules hématopoïétiques greffées\(^{241}\).

Dans l’ensemble, ces modèles restent très limités à la fois dans leur efficacité de prise de greffe, et dans la modélisation de l’environnement médullaire et de ses interactions avec les cellules hématopoïétiques.

5.2. Un microenvironnement humanisé chez la souris

Les recherches sur la génération osseuse et le besoin de méthodes efficaces pour la greffe ont conduit à l’élaboration de modèles de formation d’os ectopiques. La première tentative remonte à 1965 avec la génération d’osselets comportant du tissu osseux et médullaire mature avec une
hématopoïèse active. Les méthodes de génération d’osselets se sont multipliées pour étudier le rôle de l’environnement médullaire dans les hémopathies.

Un certain nombre de ces modèles utilisent les cellules souches mésenchymateuses médullaires humaines qui possèdent des propriétés d’auto-renouvellement et de différenciation en adipocytes, ostéoblastes et chondrocytes, voire en cellules endothéliales. Lorsque les cellules souches mésenchymateuses sont transplantées chez la souris, elles génèrent une niche hématopoïétique ectopique organisée et fonctionnelle. La différenciation des cellules souches mésenchymateuses en os in vivo peut être améliorée par l’utilisation de PTH (parathyroïde hormone) ou de BMP (Bone morphogenic proteins). Certains ont modifié génétiquement les cellules souches mésenchymateuses pour exprimer l’IL3 et la TPO humaine. D’autres ont utilisé des fragments de moelle osseuse fraîche (biopsie médullaire) implantés en sous-cutané dans du matrigel chez la souris NSG. L’implant subit une régénération osseuse et une vascularisation, créant une niche hématopoïétique humaine fonctionnelle et permettant la croissance de cellules leucémiques.

Une autre approche consiste en la génération d’osselets chimériques sous-cutanés en utilisant divers matériaux. Une partie utilise des échafaudages en céramique ostéo-inductifs, servant de support aux cellules souches mésenchymateuses. Certains requièrent une période de culture in vitro des supports ensemencés avec les cellules souches mésenchymateuses avant implantation par voie chirurgicale chez la souris. La greffe de cellules de patients atteints de myélome multiple, dont la survie et la croissance sont très dépendantes de leur environnement, est possible dans ce contexte. Ce modèle nécessite la culture de cellules souches mésenchymateuses dérivées de moelle pendant 7 jours dans un milieu de culture de différenciation ostéogénique, sur un support céramique de phosphate de calcium biphasique, avant implantation chirurgicale sous-cutanée chez la souris NSG.

Les cellules souches mésenchymateuses et les cellules endothéliales étant en étroite interactions dans la moelle, des modèles de co-implantation ont été développés, permettant la génération de tissu vasculaire. Certains modèles utilisent des cellules endothéliales humaines matures isolées de la veine de cordon ombilical (HUVEC) pour recréer le système vasculaire humain chez la souris.

Certains de ces modèles permettent de conserver l’hétérogénéité clonale des pathologies greffées ainsi que le les propriétés d’autorenouvellement des cellules souches leucémiques, comme l’attestent les manipulations de transplantation secondaire.

5.3. Le modèle des osselets générés à partir de cellules souches mésenchymateuses.

Un de ces modèles a retenu plus particulièrement notre attention pour l’étude du microenvironnement médullaire dans la LMMC. Andreas Reinisch et son équipe ont mis au point un modèle d’osselets générés à partir de cellules souches mésenchymateuses dérivées de moelle osseuse humaine, injectées par voie sous-cutanée, en suspension dans du matrigel contenant des facteurs pro-angiogéniques. Ce modèle présente l’avantage de ne pas nécessiter d’acte de
chirurgie, ni de pré-ensemencement des cellules souches mésenchymateuses *in vitro* sur leur support avant l’implantation chez la souris, ce qui simplifie considérablement la méthode (Figure 19).

Figure 19 : Protocole de génération d’osselet humanisé chez les souris NSG

Développé par Andreas Reinisch et al. (2016) \(^{54}\)

Ce modèle a permis la greffe de pathologies myéloïdes habituellement difficiles à étudier par xénotransplantation (leucémie aiguë myéloïde, leucémie promyélocyttaire et myélofibrose primitive). La fréquence des cellules initiatrices de tumeur était plus importante dans les souris portant les osselets que dans les souris non manipulées. Les cellules leucémiques ont préférentiellement colonisé les osselets avant de migrer vers la moelle osseuse murine, la rate et le foie, montrant l’importance du stroma humain dans l’installation de la leucémie.
Les objectifs du travail de thèse

Nous avons fait le constat que les anomalies génétiques et épigénétiques caractéristiques des cellules de leucémie myélomonocytaire chronique (LMMC) étaient de mieux en mieux connues et étudiées tandis que le rôle des facteurs extrinsèques au clone dans l’émergence de la maladie restaient en grande partie inexplorés.

Que savions-nous ? En 2008, une étude comparait le microenvironnement médullaire des patients atteints de syndrome myélodysplasique (SMD) à celui des patients atteints de LMMC. Cette étude avait identifié une différence importante : le stroma médullaire de LMMC produisait très peu d’interleukine-32 (IL-32) par comparaison au stroma médullaire normal tandis que celui des patients atteints de syndrome myélodysplasique produisit des quantités anormalement élevées d’IL-32. Les auteurs suggéraient que la diminution de l’IL-32 dans l’environnement médullaire des LMMC inhibait l’apoptose des cellules leucémiques et dérégulait la production de VEGF et d’autres cytokines.

Cette étude restait isolée au début de ma thèse. En 2018, une étude sino-américaine suggérait que les cellules souches mésenchymateuses médullaires de patients atteints de LMMC avaient une production réduite de multiples cytokines (IL-6, IL-8, and GRO-β), limitant la capacité de ces cellules à soutenir l’expansion de cellules CD34+ normales issues de sang de cordon. Très récemment, une équipe française a démontré la capacité des cellules souches mésenchymateuses médullaires de patients à libérer dans des vésicules extracellulaires un facteur pro-coagulant pouvant participer au développement de la leucémie.

Dans une première partie, mon travail a consisté à tenter de mettre au point le modèle in vivo de reconstitution d’un microenvironnement médullaire humanisé rapporté par Andreas Reinisch et collaborateurs en 2016 afin de l’appliquer à l’étude de la LMMC. Je rapporterai dans ce manuscrit les résultats préliminaires obtenus.

Les difficultés rencontrées dans la mise en place de ce modèle m’ont conduite à réorienter mon sujet de thèse en cours de troisième année. Ayant détecté une surproduction de la cytokine IGFBP2 (Insulin-like Growth Factor Binding Protein 2) dans le surnageant de culture des cellules souches mésenchymateuses des patients atteints de LMMC, j’ai focalisé mes efforts sur cette cytokine et son impact sur la différenciation hématopoïétique.

L’hypothèse que je défends à l’issue de ce travail est que la cytokine IGFBP2 est produite en grande quantité dans le microenvironnement médullaire des patients atteints de LMMC. Cette production anormale est au moins en partie due à une fraction des cellules souches mésenchymateuses et affecte la différenciation myéloïde des CSH en favorisant la génération de monocytes.

Je discuterai les conséquences que cette observation pourrait avoir sur la prise en charge des patients atteints de cette maladie.
Partie 1 : Mise au point du modèle murin humanisé

Andreas Reinisch et ses collaborateurs ont mis au point un modèle murin humanisé reproduisant la niche hématopoïétique humaine à partir de cellules souches mésenchymateuses dérivées de moelle osseuse humaine. Ce modèle s'appuie sur l'amplification *in vitro* de cellules souches mésenchymateuses avant leur implantation en suspension dans du matrigel sur les flancs de souris immunodéficientes NSG et leur différenciation *in situ*. L'environnement humanisé ainsi généré est capable de recruter et de soutenir les cellules hématopoïétiques humaines, normales ou pathologiques. Le premier objectif de ma thèse était l'adaptation de ce modèle à l’étude de la LMMC afin d’explorer les interactions entre cellules leucémiques et environnement.

Nous espérions explorer certaines des questions suivantes:

- Quel microenvironnement forment les cellules souches mésenchymateuses de patients comparées à des cellules de sujets sains du même âge ou plus jeunes ?
- Cet environnement est-il plus ou moins favorable au développement du clone leucémique issu de patients qu’un microenvironnement constitué de cellules de sujet sain, jeune ou plus âgé ?
- Les cellules de patients ont-elles un impact sur le microenvironnement constitué par des cellules souches mésenchymateuses de sujet sain, jeune ou plus âgé ?
- Le microenvironnement constitué de cellules de patients a-t-il un impact sur l’hématopoïèse développée à partir de CSH de sujet sain, jeune ou plus âgé ?
- Quel est l’impact d’un microenvironnement constitué de cellules de sujet sain âgé sur l’hématopoïèse issue de CSH de sujet sain et jeune ?

1. Matériel et méthode

1.1. Collection de cellules de sujets sains et de patients

Les échantillons de moelle osseuse de sujets âgés contrôles ont été obtenus à partir de têtes fémorales de patients ayant subi une intervention chirurgicale traitant une arthrose mécanique sans problème inflammatoire grâce à la collaboration des Dr Abdelkrim Achibet et Ludovic Mouchard (hôpital du Mans) ainsi que le Dr Phillippe Asquier (Pôle santé Léonard de Vinci, Chambray-lès-Tours).

Les échantillons de moelle osseuse de sujets jeunes contrôles ont été achetés auprès du groupe Lonza qui collectent ces cellules chez des volontaires sains aux Etats Unis et les acheminent en France dans un délai de 24h à 48h.

Les échantillons de patients atteints de LMMC ont été obtenus à l’occasion d’un bilan médullaire de la maladie réalisé dans un service d’hématologie du Groupe Francophone des Myélodysplasies (GFM).

Tous ces échantillons ont été obtenus avec le consentement éclairé du donneur et en accord avec la déclaration d’Helsinki.
1.2. Collection des cellules triées

Les cellules de la moelle osseuse hématopoïétique de donneurs sains âgés ont été obtenues en grattant la tête fémorale avant de la traiter par la DNase (2µg/mL) (Sigma). Ces cellules sont rincées au minimum au 1 :3 dans du PBS 1X (Gibco), centrifugées, suspendues dans du PBS 1X puis filtrées (100µm). Les autres échantillons médullaires ont été obtenus à l’occasion de ponction médullaire avec aspiration sur EDTA.

Les cellules souches et progénitrices hématopoïétiques ont été collectées à partir des cellules mononucléées sanguines ou médullaires triées sur un gradient de Ficoll (Pancoll, PAN-Biotech) puis isolées par une méthode de tri cellulaire magnétique positif basé sur l’expression du marqueur CD34 (CD34 MicroBead Kit, human - AutoMACS® Pro Separator, Miltenyi Biotec) selon les instructions du fabricant.

Les cellules souches mésenchymateuses ont été isolées par adhésion à partir des cellules mononucléées totales ou de la fraction CD34- des cellules mononucléées. Les cellules fraîchement isolées sont ensemencées à 2x10^⁶ /mL dans le milieu d’amplification des CSM composé à ½ αMEM (Gibco®), 10% SVF (HyClone, Lot: ANB18250), et ½ milieu StemMACS™ MSC Expansion Media (Miltenyi®), supplémenté à 1% penicilline/streptomycine (PS), 2mM L-glutamine (tous Gibco®), à 37°C, 5% CO₂, 20% O₂. Cette étape a été considérée comme le passage 0 (P0). Les cellules souches mésenchymateuses provenant du laboratoire d’Andreas Reinisch ont été cultivées dans de l’αMEM (Gibco®) supplémenté avec 2U/L d’héparine (Sigma-Aldrich - H3393), 10% de pool de lysats plaquettaire humains, 1% penicilline/streptomycine (PS), 2mM L-glutamine (tous Gibco®). Le pool de lysats plaquettaire humain provenant du laboratoire d’Andreas Reinisch est obtenu à partir du sang d’individus des groupes O et AB. Entre 24 et 72h après ensemencement, les cellules hématopoïétiques en suspension sont éliminées en changeant le milieu après rinçage au PBS 1X. Les cellules sont cultivées en moyenne 12 jours, décollées par traitement avec TrypLE EXPRESS (Gibco®) pendant 10min à 37°C (neutralisation, milieu 2 :3), et centrifugées à 300g pendant 7min à température ambiante. A partir de ce premier passage, les CSM sont ensemencées entre 1000 et 5000/cm² et sont passées lorsque la confluence atteint les 80%. Si les quantités de cellules le permettent, une fraction d’entre elle est congelée à 1x10^⁶/mL dans du milieu de culture 10% DMSO et stockées dans l’azote liquide à -195°C. Pour obtenir de grandes quantités de cellules, les cellules souches mésenchymateuses ont été cultivées dans des flasques à 1 et 4 étages (CF-1 et CF-4 EasyFill, Thermo Fisher, Nunc) dans 200 et 600 ml de milieu respectivement. Les cellules ont été utilisées pour les expériences à partir du passage 2. En fin de manipulation, les cellules restantes sont congelées à 1x10^⁶/mL dans du milieu de culture 10% DMSO et stockées dans l’azote liquide à -195°C.

1.3. Phénotype des cellules souches mésenchymateuses

A chaque passage, les cellules sont phénotypées au cytomètre en flux (BD LSRFortessa™, BD Biosciences) pour vérifier leur pureté. Après récolte des cellules, une fraction d’entre elles sont marquées 20 min à température ambiante à l’abri de la lumière dans 100µL de PBS1X (concentration maximale 1x10^⁶/100µL) avec True Human Stain Fc Block (dilution 1 :20, Biolegend) et les anticorps anti-CD90 (BUV395 ou BV605; dilution 1 :100, clone 5E10), CD105 (BV786 ou BV650, dilution 1 :100, clone 266), CD73 (PE-Cy7, dilution 1 :100, clone AD2),– tous chez BD Biosciences - CD166 (PE, dilution 1 :100, clone 3A6), CD45 (APC, dilution 1 :100, clone HI30), CD34 (APC, dilution 1 :100, clone 581),
CD14 (APC, dilution 1 : 100, clone M5E2), CD19 (APC, dilution 1 : 100, clone HIB19), HLA-DR (APC, dilution 1 : 100, clone L243) – tous chez Sony Biotechnology. La viabilité des cellules a été vérifiée par marquage au DAPI (dilution 1 : 6000, BD Biolegend).

1.4. Génération du modèle murin

Toutes les expériences ont été réalisées en accord avec les directives nationales et approuvées par le comité d’éthique CEEA-26. Pour notre étude, nous avons utilisé des souris immunodéficientes NSG (NOD.Cg-Prkdcsid Ii2rgtm1Wjl/SzJ, Jackson Laboratories Stock # : 005557) élevées au sein de notre animalerie en condition de stérilité.

Les cellules souches mésenchymateuses dérivées de moelle osseuse et sub-confluentes ont été décollées par traitement TrypLE EXPRESS (Gibco®) pendant 10 min à 37°C, puis neutralisées avec 2 : 3 de milieu, et centrifugées à 300 g pendant 7 min à température ambiante. Pour un osselet, 2 × 10^6 cellules ont été suspendues dans 60 µL de SVF ou de pHPL et mélangées avec 240 µL de matrigel (Angiogenesis Assay Kit, Millipore, Billerica, MA) maintenu à 4°C. Un volume total de 300 µL de cellules en suspension dans du matrigel a été injecté par voie sous-cutanée sur les flancs des souris NSG âgées de 6 à 12 semaines (jusqu’à 4 injections par souris) à l’aide de seringues à insuline maintenues à 4°C jusqu’au moment de l’injection. Pour pallier à la perte de cellules liée à la viscosité du matrigel, il est nécessaire de prévoir un volume et une quantité de cellule 10% supérieure à la quantité souhaitée. Après 3 à 7 jours, les souris ont été traitées quotidiennement à la parathyroïde hormone humaine (PTH (1–34); R&D Systems) par injection sous cutanée dorsale à raison de 40µg/kg de poids pendant 28 jours. Entre 8 et 10 semaines après injection des cellules souches mésenchymateuses, la génération des osselets a été vérifiée par palpation. L’observation d’une coloration violacée au travers de la peau des souris est un autre marqueur de développement.

Les souris portant les osselets ont alors été irradiées à 1,5Gy (X-rad 320, irradiateur à rayons X) 12 à 24h avant transplantation. Les cellules souches et progénitrices hématopoïétiques CD34+ de patients ont été décongelées et injectées par voie intra-veineuse (150 µL dans le sinus rétro-orbital) ou directement dans les osselets (20 µL) à l’aide d’une seringue à insuline en suspension dans du PBS 1X. Entre 8 et 12 semaines après la greffe de cellules CD34+, les souris ont été anesthésiées par inhalation d’isoflurane 1.5-2% pour le prélèvement d’échantillons de moelle en intra-fémoral et de sang au niveau sous-mandibulaire. Pour supprimer la douleur due aux prélèvements de moelle en intra-fémoral, les souris ont reçu de la buprénorphine (Buprécare ou Vertegesic) par voie sous-cutanée à une dose de 0,3mg/kg, 2 fois par jour pendant 2-3 jours.

Au terme de l’expérience, les souris ont été sacrifiées par dislocation cervicale et leurs fémurs et osselets ont été prélevés pour des analyses en cytométrie en flux ou par immunohistochimie. La prise de greffe a été évaluée sur 1x10^6 cellules provenant d’échantillons de sang, de moelle par cytométrie en flux (BD LSRFortessa™, BD Biosciences). Afin d’empêcher les liaisons aspécifiques, les cellules ont d’abord été incubées 5 min à température ambiante dans 100 µL de PBS1X avec True Human Stain Fc Block (dilution 1 : 20, Biolegend), et des anticorps reconnaissant les protéines murines CD16/CD32 (dilution 1 : 20, Biolegend). Les cellules ont ensuite été marquées 20 min à température ambiante à l’abri de la lumière avec les anticorps anti-protéine murine CD45 (BV510, dilution 1 : 100, clone 581), CD2 (PE ; dilution 1 : 100, clone HI30), CD34 (FITC ; dilution 1 : 100, clone 581), CD2 (PE ; dilution 1 : 100, clone RPA-2.10), CD19 (APC ;
dilution 1 :100, clone HIB19), CD15 (BV605 ; dilution 1 :100, clone W6D3), CD16 (APC Cy7 ; dilution 1 :100, clone 3G8), CD56 (PE Cy7 ; dilution 1 :100, clone 5.1 H11), tous chez Sony Biotechnology, CD11b PerCP (Cy5.5 ; dilution 1 :100, clone ICR F44), CD14 (BUV737 ou PB ; dilution 1:100, clone M5E2), CD33 (APC R700 ; dilution 1 :100, clone P67.6), CD24 (BUV395 ; dilution 1 :100, clone MLS) – tous chez BD Biosciences. La viabilité des cellules a été étudiée par marquage au Dapi (dilution 1 :6000, BD Biolegend).

1.5. Coupe histologiques et immunomarquage

Les fémurs et osselets fraîchement isolés ont été fixés dans du PBS1X 4% paraformaldehyde pendant 3 heures à température ambiante, puis stockés à 4°C pendant 24h.

Les fémurs et osselets ont été décalcifiés dans une solution acide pendant 30min grâce au Decalcifier (Sakura Finetek).

Les échantillons ont ensuite été déshydratés par bains successifs de 5 minutes dans de l’éthanol 70%, 100% et isopropanol, puis inclus dans de la paraffine grâce à LOGOS (automate de déshydratation sous vide, MM France).

Des coupes de 4µm d’épaisseur ont été réalisées avec un microtome puis séchées à 37°C jusqu’au lendemain. Le marquage HES (hématoxyline, éosine, safran) a été réalisé par un automate standard pour étudier la morphologie des organes.

Pour l’immunomarquage CD45 murin, les sections de paraffines ont été traitées à la chaleur pour l’extraction des antigènes (30 min au bain marie à 96°C puis 30’ à température ambiante dans un tampon Tris EDTA pH8. Les sections sont ensuite incubées 1 heure avec l’anticorps de rat anti-CD45 murin (Histopathology) au 1:100 et révélées grâce au Kit polink anti-rat (GBI Labs). Pour l’immunomarquage du CD45 humain, les sections sont traitées 30 min au bain marie à 96°C puis 30’ à température ambiante dans un tampon citrate pH7,3 avant d’être incubées 1 heure avec l’anticorps murin monoclonal anti-CD45 humain au 1 :500 (Dako). La révélation du marquage a été réalisée grâce au kit peroxydase/diaminobenzidine Klear mouse (Diagomics).

Les coupes ont été examinées et photographiées sous le microscope Provis AX70 Olympus (Microvision Instrument). Les photographies ont été réalisées en utilisant le logiciel Histolab puis traitées sur Archimedes (Microvision Instrument).
2. Résultats

2.1. Réalisation du modèle

L’établissement et l’exploitation du modèle passe par 7 étapes, pour une durée totale de 6 mois minimum (Figure 19):

1. L’isolement des cellules souches mésenchymateuses
2. Leur amplification ex vivo (environ 1 à 2 mois de culture)
3. Leur implantation in vivo en suspension dans du matrigel
4. Leur différenciation in situ (2 mois), avec traitement quotidien à la PTH pendant 28 jours
5. L’irradiation par rayons X des souris (1.5 Gy) et la xénotransplantation des cellules souches et progénétiques hématopoïétiques humaines CSPH (CD34-positives) de patients
6. L’évaluation de la prise de greffe 8 à 12 semaines après injection par cytométrie en flux
7. Le sacrifice des animaux et l’examen des organes par immunohistochimie

Les CSM sont isolées par adhérence à partir des cellules mononucléées (CMN) de la moelle osseuse après gradient de Ficoll ou à partir de la fraction CD34-négative des CMN après tri magnétique CD34 (Figure 20 A). On compte cette étape d’isolement comme le passage 0 (P0). Les cellules proviennent de têtes fémorales dans le cas des individus sains âgés, ou de ponction médullaire pour les individus sains jeunes et les patients.

Une fois les cellules isolées, celle-ci sont cultivées ex vivo via passages consécutifs (passages 1 à X) dans le but de les amplifier dans des quantités suffisantes pour permettre leur implantation chez la souris. Au cours des différents passages, la pureté des cellules est vérifiée par analyse en cytométrie en flux sur la positivité des marqueurs CD90, CD105, CD166, et CD73, et l’absence de marqueurs du lignage hématopoïétique (CD45, CD34, CD19, CD14, HLA-DR). Si le nombre de cellules récoltées en fin de passage le permet, des ampoules de 0,5 à 1 million de cellules sont réalisées afin de faire des réserves de cellules à l’azote, tandis que le reste des cellules est remis en culture.

Pour l’implantation chez la souris, les CSM proviennent soit de cellules cultivées directement après isolement de la moelle (elles sont dites « fraîches » - Figure 20 A), soit d’ampoules de cellules décongelées (Figure 20 B).
La génération d’un osselet demande 2×10^6 cellules. Pour avoir un groupe de minimum 5 souris portant chacune deux osselets, il faut donc un minimum de 20 millions de cellules. Dans l’idéal, nous souhaitons réaliser nos expériences sur des groupes de 8 souris portant chacune 4 osselets, ce qui représente 8 millions de cellules par souris. Un tel groupe nécessite donc la récolte d’au moins 64 millions de cellules, sans compter les volumes morts liés à l’injection et la viscosité du matrigel dans lequel les cellules sont resuspendues. Pour pallier à cette perte, une quantité et un volume supplémentaires de 10% est prévu, soit 20 000 cellules par sites d’injection, ce qui représente 2 millions de cellules supplémentaires pour un groupe de 5 souris à 2 osselets, et 6,4 millions cellules pour un groupe de 8 souris à 4 osselets.

Une fois un minimum de 22 millions à 70,4 millions de cellules récoltées après culture, les cellules sont implantées en sous-cutanée en suspension dans du matrigel contenant des facteurs proangiogéniques, sur les flancs des souris. Pour éviter la polymérisation du matrigel liée à la chaleur, tout le matériel, ainsi que les cellules et le SVF ou le lysat plaquettaire, sont maintenus à 4°C jusqu’au moment de l’injection.

Après implantation des CSM, les souris sont traitées quotidiennement par injections sous-cutanées de PTH (hormone parathyroïdienne humaine) pendant 28 jours pour potentialiser la différenciation osseuse et la création d’une niche hématopoïétique. S’en suit un nouveau mois pendant lequel les CSM continuent de se différencier in situ. A l’issue de ces 2 mois de différenciation, les souris sont rasées pour permettre la palpation et l’observation des osselets au travers de leur peau. Andreas
Reinisch a décrit dans ses différents articles la présence d’une coloration violette dans les osselets, attestant de la formation d’une cavité médullaire envahie par les cellules hématoïpoïétiques murines. Ce témoin visuel permet de valider la formation correcte des osselets, mais constitue également un repère spatial pour réaliser les injections et les prélèvements de moelle humanisée.

Après vérification de la formation des osselets, les souris sont irradiées sub-léthalement par rayon X (1,5 Gy) puis reçoivent l’injection de cellules hématoïpoïétiques CD34-positives de patients par voie intraveineuse ou par injection directement dans les osselets. L’injection dans les osselets doit être réalisée prudemment pour éviter la sortie du volume injecté liée à la pression et à l’espace restreint de la cavité: la seringue doit être maintenue fermement contre l’osselet. Les données cliniques des patients figurent dans la table 4 ci-dessous.

<table>
<thead>
<tr>
<th>Paramètre</th>
<th>#2248</th>
<th>#2232</th>
<th>#1375</th>
<th>#2257</th>
<th>#1056</th>
<th>#1387</th>
<th>#742</th>
<th>#1798</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sexe</td>
<td>F</td>
<td>M</td>
<td>M</td>
<td>ND</td>
<td>F</td>
<td>M</td>
<td>F</td>
<td>ND</td>
</tr>
<tr>
<td>Age</td>
<td>63</td>
<td>68</td>
<td>63</td>
<td>83</td>
<td>57</td>
<td>58</td>
<td>71</td>
<td>67</td>
</tr>
<tr>
<td>Hémogramme</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leucocytes, en G/L</td>
<td>34,1</td>
<td>41,3</td>
<td>22,61</td>
<td>-</td>
<td>74,5</td>
<td>33</td>
<td>49,1</td>
<td>93,13</td>
</tr>
<tr>
<td>Hémoglobine, en g/dL</td>
<td>9,3</td>
<td>13,2</td>
<td>15,7</td>
<td>-</td>
<td>9,1</td>
<td>9,2</td>
<td>7,9</td>
<td>10,1</td>
</tr>
<tr>
<td>Plaquettes, en G/L</td>
<td>60</td>
<td>155</td>
<td>52</td>
<td>-</td>
<td>68</td>
<td>30</td>
<td>70</td>
<td>260</td>
</tr>
<tr>
<td>PNN, en G/L</td>
<td>10,6</td>
<td>10,7</td>
<td>15,15</td>
<td>-</td>
<td>29,06</td>
<td>8,6</td>
<td>24,06</td>
<td>33</td>
</tr>
<tr>
<td>Monocytes, en G/L</td>
<td>16</td>
<td>10,9</td>
<td>1,81</td>
<td>-</td>
<td>10,43</td>
<td>12,9</td>
<td>14,14</td>
<td>39</td>
</tr>
<tr>
<td>Monocytes, en %</td>
<td>47</td>
<td>36</td>
<td>8</td>
<td>-</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>41,9</td>
</tr>
<tr>
<td>Blastes médullaires, en %</td>
<td>70</td>
<td>15</td>
<td>6</td>
<td>-</td>
<td>6</td>
<td>30</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>Type de LMMC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LMCC-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LMCC-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LMCC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transformation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>secondaire à</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>une LMCC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TET2</td>
<td>oui</td>
<td>-</td>
<td>oui</td>
<td>oui</td>
<td>-</td>
<td>oui</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ASXL1</td>
<td>-</td>
<td>oui</td>
<td>oui</td>
<td>oui</td>
<td>oui</td>
<td>oui</td>
<td>oui</td>
<td>oui</td>
</tr>
<tr>
<td>SRSF2</td>
<td>-</td>
<td>oui</td>
<td>-</td>
<td>oui</td>
<td>oui</td>
<td>oui</td>
<td>oui</td>
<td>oui</td>
</tr>
<tr>
<td>RUNX1</td>
<td>-</td>
<td>-</td>
<td>oui</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>oui</td>
<td>-</td>
</tr>
<tr>
<td>NRAS</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>oui</td>
<td>-</td>
</tr>
<tr>
<td>KRAS</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>oui</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CBL</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>oui</td>
<td>-</td>
<td>-</td>
<td>oui</td>
</tr>
<tr>
<td>SF3B1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ZRSR2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>DNMT3A</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>U2AF1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>JAK2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>EZH2</td>
<td>-</td>
<td>-</td>
<td>oui</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>IDH1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>IDH2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>FLT3</td>
<td>oui</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>KIT</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SETBP1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>oui</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CSF3R</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PHF6</td>
<td>oui</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PS3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Autres mutations</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>ETV6</td>
<td>STAG2</td>
<td>-</td>
<td>MIER3</td>
<td>PRICKLE3, SPECC1, ITGAD, MIER3</td>
</tr>
</tbody>
</table>

Table 4 Tableau récapitulatif des données cliniques des patients utilisés pour le modèle murin
Une première analyse FACS des échantillons de moelle et de sang des souris est ensuite réalisée à partir de 8 à 12 semaines après injection, pour vérifier la prise de greffe.

En fin de manipulation, les souris sont sacrifiées et les fémurs et osselets prélevés pour analyse immunohistochimique.

2.2. Le premier modèle réalisé

Afin de mettre en place le modèle, j’ai cherché à générer des osselets à partir de cellules souches mésenchymateuses d'un donneur jeune (CTJ1, enfant âgé de 7 ans, Table 5, ligne 1). Ces cellules, cultivées à partir de CSM congelées (500 000 cellules) à passage 3 et amplifiées jusqu’à passage 6 in vitro (3 passages post-décongélation), ont été injectées en sous-cutané dans du matrigel à 8 souris NSG mâles de 14 semaines au niveau de 4 sites distincts par animal. Deux mois après l’injection de ces cellules souches mésenchymateuses, les souris ont été irradiées à 1,5Gy par rayon X et injectées 24 heures après irradiation avec des CD34+ décongelées provenant d’un patient atteint de leucémie aiguë myéloïde. Une grande partie des cellules a souffert du cycle de congélation et décongélation, conduisant à leur mort (20% de cellules vivantes) ne permettant d’injecter que 1250 cellules environ par souris. Les cellules ont été injectées par voie intraveineuse chez 4 souris et dans 1 osselet sur 4 chez 4 autres souris.

Deux mois après implantation des cellules souches mésenchymateuses, nous avons perçu des osselets par palpation. Pour une souris, la palpation des osselets implantés dans la partie antérieure de ses flancs a été plus difficile, peut-être dû à leur localisation trop près des membres. Aucune coloration violette, témoin de la présence d’une cavité médullaire, n’a été observée à travers la peau des souris. Son absence a rendu difficile l’injection des CD34+ dans les osselets. A l’injection, ces structures se sont avérées très compactes. La prise de greffe a été évaluée 8 semaines après injection des cellules CD34+ par cytométrie en flux sur des échantillons de sang et de moelle osseuse des souris. Cette analyse n’a révélé aucune cellule hématopoïétique humaine dans la circulation ou la moelle des souris (données non montrées).

Nos tentatives de prélèvement de moelle au sein des osselets sont restées infructueuses, dû à la compacité des osselets et l’absence de coloration. Nous n’avons donc pas pu évaluer la prise de greffe dans la moelle humanisée par cytométrie en flux.
Tableau récapitulatif des expériences murines réalisées.

<table>
<thead>
<tr>
<th>N°</th>
<th>Provenance CSM</th>
<th>Passage des CSM</th>
<th>Nombre souris</th>
<th>Nombre d’osselets par souris</th>
<th>Niche hématopoïétique fonctionnelle</th>
<th>Culture des CSM avec SVF ou pHPL</th>
<th>Greffe de CD34+</th>
<th>Nombre de CD34+ injectées</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CTJ1</td>
<td>P6</td>
<td>7</td>
<td>4</td>
<td>Oui</td>
<td>SVF</td>
<td>LAM2248</td>
<td>1250</td>
</tr>
<tr>
<td>2</td>
<td>CTA1</td>
<td>P3</td>
<td>1</td>
<td>1</td>
<td>Non</td>
<td>SVF</td>
<td>non</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>CTA2</td>
<td>P3</td>
<td>1</td>
<td>1</td>
<td>Non</td>
<td>SVF</td>
<td>non</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>LMMC 2232</td>
<td>P3</td>
<td>1</td>
<td>1</td>
<td>Non</td>
<td>SVF</td>
<td>non</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>CTA1</td>
<td>P6</td>
<td>5</td>
<td>2</td>
<td>Non</td>
<td>SVF</td>
<td>LMMC1375</td>
<td>66000</td>
</tr>
<tr>
<td>6</td>
<td>LMMC 2257</td>
<td>P3</td>
<td>6</td>
<td>2</td>
<td>Non</td>
<td>SVF</td>
<td>LMMC2257</td>
<td>6500</td>
</tr>
<tr>
<td>7</td>
<td>CTJ1</td>
<td>P6</td>
<td>6</td>
<td>4</td>
<td>Non</td>
<td>SVF</td>
<td>LMMC1056</td>
<td>330200</td>
</tr>
<tr>
<td>8</td>
<td>CTJ1</td>
<td>P6</td>
<td>6</td>
<td>4</td>
<td>Non</td>
<td>SVF</td>
<td>LMMC1056</td>
<td>330200</td>
</tr>
<tr>
<td>9</td>
<td>CTJ1</td>
<td>P6</td>
<td>8</td>
<td>4</td>
<td>Non</td>
<td>SVF</td>
<td>LMMC1387</td>
<td>177500</td>
</tr>
<tr>
<td>10</td>
<td>CTJ1</td>
<td>P7</td>
<td>6</td>
<td>4</td>
<td>Non</td>
<td>SVF</td>
<td>LMMC1387</td>
<td>120000</td>
</tr>
<tr>
<td>11</td>
<td>CTJ2</td>
<td>P1</td>
<td>8</td>
<td>4</td>
<td>Non</td>
<td>SVF</td>
<td>LMMC742</td>
<td>222500</td>
</tr>
<tr>
<td>12</td>
<td>CTJ2</td>
<td>P3</td>
<td>5</td>
<td>4</td>
<td>Non</td>
<td>SVF</td>
<td>LMMC1798</td>
<td>393120</td>
</tr>
<tr>
<td>13</td>
<td>CTJ2</td>
<td>P4</td>
<td>6</td>
<td>4</td>
<td>Non</td>
<td>SVF</td>
<td>non</td>
<td>-</td>
</tr>
<tr>
<td>14</td>
<td>CTJ2</td>
<td>P4</td>
<td>5</td>
<td>4</td>
<td>Non</td>
<td>SVF</td>
<td>non</td>
<td>-</td>
</tr>
<tr>
<td>15</td>
<td>CTJ1</td>
<td>P7</td>
<td>8</td>
<td>4</td>
<td>Non</td>
<td>SVF</td>
<td>non</td>
<td>-</td>
</tr>
<tr>
<td>16</td>
<td>CTJ3 A.R**</td>
<td>P4</td>
<td>3</td>
<td>2</td>
<td>Oui</td>
<td>pHPL</td>
<td>non</td>
<td>-</td>
</tr>
<tr>
<td>17</td>
<td>CTJ3 A.R**</td>
<td>P6</td>
<td>2</td>
<td>2</td>
<td>Non</td>
<td>pHPL</td>
<td>non</td>
<td>-</td>
</tr>
<tr>
<td>18</td>
<td>CTJ3 A.R**</td>
<td>P7</td>
<td>2</td>
<td>2</td>
<td>Non</td>
<td>pHPL</td>
<td>non</td>
<td>-</td>
</tr>
</tbody>
</table>

Au moment du sacrifice, les osselets et les fémurs des animaux ont été prélevés. Une souris est décédée avant le sacrifice et n’a pas pu être analysée. Les tissus ont été fixés et des coupes histologiques ont été réalisées pour étudier la structure de la moelle murine et humanisée, ainsi que pour évaluer la prise de greffe par immunohistochimie. La quasi-totalité des souris présentait au moins 2 osselets avec une niche hématopoïétique fonctionnelle. A l’œil nu, le bilan global était de 22 osselets fonctionnels sur 28 prélevés (Figure 21 A). La souris pour laquelle la palpation des osselets avait été difficile présentait finalement 3 osselets fonctionnels sur 4. Malheureusement, seuls 23 osselets sur les 28 prélevés ont pu être analysés par immunohistochimie. En effet, les 4 osselets de chaque souris ont été inclus dans le même bloc de paraffine et placés sur la même lame. Si bien que pour 5 souris, les osselets n’étaient pas tous sur le même plan au moment de la coupe, rendant ainsi impossible l’analyse d’un osselet sur les 4 fixés pour chacune de ces souris. Le bilan des données immunohistochimiques s’élève donc à 18 sur 23 (Figure 21 B).
Deux observations importantes ont été faites

1 - Les coupes histologiques ont révélé que 18 osselets sur 23 présentaient des cavités médullaires envahies par des cellules hématopoïétiques murines, marquées par l’anticorps mCD45. La taille des cavités était variable d’un osselet à l’autre, avec une partie endostéale plus ou moins importante autour de la cavité, ce qui explique la difficulté rencontrée pour injecter ou prélever la moelle des osselets. L’immunomarquage des coupes d’osselets n’a révélé la présence de cellules humaines que chez 2 souris sur 7, certainement dû à la faible quantité de cellules injectées au départ. L’une d’entre elle avait été injectée par voie intraveineuse, tandis que l’autre avait reçu les cellules humaines par injection directement dans un osselet. La compacité des osselets peut également expliquer la faible prise chez les souris ayant reçu une injection de CSPH directement dans un osselet. (Figure 21 C et D).

2 – Lorsqu’elles étaient présentes, les cellules humaines ont été détectées exclusivement dans la niche hématopoïétique humanisée (Figure 21 D et E), quelque-soit la méthode d’injection. Dans le cas de la souris ayant reçu une injection intra-osselet, seul l’osselet injecté présentait des cellules humaines dans sa cavité médullaire. Les autres osselets de la souris n’avaient pas été colonisés par les cellules humaines. Ce résultat était concordant avec les résultats des analyses intermédiaires des échantillons de sang et de moelle en cytométrie en flux : ces analyses n’avaient détecté aucune cellule humaine dans le sang et la moelle des souris greffées.

Malgré la faible prise de greffe des cellules hématopoïétiques, ce premier résultat semblait très prometteur, confirmant les résultats publiés par Andreas Reinisch et ses collaborateurs, et suggérant l’importance des interactions entre les cellules hématopoïétiques et cellules du microenvironnement avec une certaine spécificité d’espèce.
Figure 21

Résultats des premiers osselets générés

A) Photos d’osselets portant une niche hématopoïétique fonctionnelle observable à l’œil nu.

B) Photo et coupe histologique de l’osselet le plus représentatif d’une niche hématopoïétique fonctionnelle en coloration HES (40X). Le détail de la coupe montre une paroi endostéale orangée et une colonisation de la cavité par des cellules hématopoïétiques colorées en violet.

C) Coupe histologique de l’osselet et marquage anti-CD45 murin en marron, révélant la colonisation de l’ensemble de l’osselet par le système hématopoïétique murin.

D) Coupe histologique de l’osselet et marquage anti-CD45 humain en marron, révélant la colonisation partielle de l’osselet par les cellules hématopoïétiques humaines, injectée par voie intraveineuse.

E) Coupe histologique du fémur de la souris porteuse de l’osselet et marquage anti-CD45 humain en marron. Aucune cellule n’est marquée sur l’ensemble de la coupe, montrant que les cellules humaines n’ont pas colonisé l’environnement murin.
2.3. Les limites de l’amplification des cultures de cellules souches mésenchymateuses de sujets âgés

J’ai reproduit cette expérience en utilisant des cellules souches mésenchymateuses issues de la moelle osseuse de sujets âgés, avec ou sans LMMC (Table 5, lignes 2 à 6). Comme nous l’avons indiqué, le modèle nécessite l’amplification préalable de ces cellules *in vitro*. Pour avoir un groupe de minimum 5 souris portant chacune 2 osselets, 20 millions de cellules étaient nécessaires (22 millions en comptant 10% de volume mort). L’amplification *in vitro* des cellules souches mésenchymateuses de sujet âgé, qu’il s’agisse d’un patient atteint de LMMC ou non, s’est avérée plus difficile que les CSM de donneurs jeunes. Sur 13 échantillons provenant de patients LMMC, seul un (patient #2257) a pu être amplifié suffisamment en culture pour permettre l’implantation de CSM chez 6 souris à raison de 2 osselets par souris (soit 8%, en bleu sur le graphique). Parmi les 13 échantillons de patients, 2 n’ont pas permis l’isolement de CSM (soit 15%) car aucune n’avait adhéré au plastique après ensemencement des cellules mononucléées de la moelle (en vert sur le graphique). Le reste d’entre elles a rarement permis de générer plus d’un million de cellules (4 sur 11 en comptant le patient 2257). Au final, 77% des échantillons de patients n’ont pas atteint les 22 millions de cellules en culture (en rouge sur le graphique).

Concernant les individus sains âgés, sur 6 échantillons, 4 ont généré suffisamment de cellules pour les implanter chez les souris contre 3 sur 3 pour les contrôle jeunes (Figure 22 A). Chacun de ces échantillons a subi un nombre variable de passages en fonction de leur capacité à proliférer et atteindre 80% de confluence. Lorsque, grâce aux comptes cellulaires effectués entre chaque passage, j’ai constaté que les cellules ne proliféraient pas, celles-ci ont été congelées et n’ont pas été ensemencées au passage suivant. Les échantillons de LMMC ont très rarement dépassé les 3 passages en culture. Pour comprendre ces différences, le niveau et le temps de doublement des cellules ont été calculés pour les 3 premiers passages et sont présentés Figure 22 B et C.

Le **niveau de doublement**, ou Population Doubling Level en anglais (PDL), correspond au nombre de fois que les cellules ont doublé pendant la culture.

On utilise la formule suivante : $PDL_{x} = 3.32 \times (\log (B_{x}) - \log (A_{x})) + PDL_{x-1}$
 où

- PDL_{x} correspond au niveau de doublement à la fin du passage X
- A_{x} correspond au nombre de cellules ensemencées à passage X
- B_{x} correspond au nombre de cellules récoltées à la fin du passage X
- PDL_{x-1} correspond au niveau de doublement à la fin du passage $X-1$ (passage précédent)

Comme la population de CSM au sein des CMN ou de la fraction de cellules CD34-négatives isolées de la moelle est hétérogène et difficilement mesurable, on compte par défaut le PDL du passage 0 (PDL_{0}) comme étant égal à 0. Le **temps de doublement**, ou Population Doubling Time en anglais (PDT), correspond au temps (ici en jours) nécessaire pour que les cellules se divisent en culture.
On utilise la formule suivante : \(\text{PDT}_X = \frac{(T_X - T_{X-1})}{3.32 \times (\log (B_X) - \log (A_X))} \) où

- \(\text{PDT}_X \) correspond au temps de doublement pendant le passage \(X \)
- \(A_X \) correspond au nombre de cellules ensemencées à passage \(X \)
- \(B_X \) correspond au nombre de cellules récoltées à la fin du passage \(X \)
- \(T_X - T_{X-1} \) correspond à la durée du passage \(X \) (en jours), avec :
 - \(T_X \) : jour de fin du passage \(X \)
 - \(T_{X-1} \) : jour de fin du passage précédent et ensemencement des cellules à passage \(X \)

Sur les figures 23 B et C, les points rouges désignent les échantillons qui n’ont pas permis la récolte de 22 millions de cellules après amplification en culture. Les points bleus représentent les échantillons dont la culture a permis la récolte de plus de 22 millions de cellules. Concernant les contrôles jeunes, les 3 échantillons étudiés sont ceux qui ont été utilisés pour l’implantation des CSM chez les souris (voir Table 5 : CTJ1, CTJ2 et CTJ3). Chaque culture précédant l’implantation des CSM chez les souris a été étudiée (au total \(n=13 \)).

Les échantillons provenant de patients ont tous été cultivés à partir de cellules fraîches et ne sont pas passés par une étape de congélation, tout comme les échantillons provenant de sujet âgé sains, à l’exception d’un, le CTA1. Cet échantillon a été d’abord congelé avant d’être de nouveau amplifié \(\text{in vitro} \) pour l’implantation chez la souris. Les données représentées pour cet échantillon concernent la culture après décongélation.

Les échantillons de sujets sains jeunes ont tous été congelés avant amplification en vue de les implanter chez la souris. Seule la première expérience utilisant les cellules du contrôle jeune 2 (Table 5 ligne 7) a été réalisée sur cellules fraîches.

Pour homogénéiser les échantillons et permettre la comparaison de leurs capacités prolifératives, les cellules ont été étudiées à partir de leur ensemencement au premier passage :

- \(P1 \) pour les cellules fraîches
- \(PX+1 \) pour les cellules décongelées à \(PX \)

Ainsi, le niveau de doublement des cellules décongelées a été calculé à partir du moment de la décongélation et non pas à partir du passage 0, ce qui introduirait un biais d’analyse.

Ces calculs ont permis de mettre en évidence un défaut de prolifération des cellules de patients, (Figure 22 B et C). A passage 3, la significativité est perdue entre les patients et les sujets jeunes, mais peut s’expliquer par le fait que peu d’échantillons sont parvenus à ce passage (seulement 5 sur 11). Les cellules provenant des sujets sains âgés semblent être à un stade intermédiaire entre les cellules de patient et les sujets sains jeunes.

De manière intéressante, si nous nous concentrons uniquement sur les échantillons pour lesquels nous avons récolté plus de 22 millions de cellules, les échantillons de donneurs jeunes ont tendance à permettre la récolte d’un plus grand nombre de cellules (Figure 22 D) en moins de passages (Figure 22 E) comparativement aux contrôles âgés et au patient, et ce à partir d’un nombre de cellules ensemencées au début de la culture semblable, voire inférieure (Figure 22 F). De nouveau, les contrôles âgés présentent un phénotype intermédiaire entre les contrôles jeunes et les...
patients. Ceci suggère une aggravation de la perte de capacité proliférative des CSM liée à l’âge chez les patients. Cette observation reste néanmoins fragile et un test de prolifération serait nécessaire pour confirmer ce résultat.
En conclusion, ces expériences nous ont permis de constater un défaut d’amplification ex vivo des cellules souches mésenchymateuses issues de sujets âgés avec ou sans LMMC, en accord avec leur défaut de différenciation ex vivo déjà constaté par l’équipe (thèse Nolwenn Lucas, données non publiées).

2.4. Les limites de l’utilisation de cellules souches mésenchymateuses de sujet âgé in vivo

Lors d’une première série d’expérience, les CSM fraîchement isolées de 2 donneurs sains âgés et d’un patient LMMC ont été implantées chez une seule souris chacun à raison d’un seul osselet par souris (total : 3 souris NSG mâles âgés de 10 à 14 semaines, 3 osselets, lignes 2 à 4 Table 5). Cette première série d’expériences avait pour but de vérifier la reproductibilité du modèle en utilisant des cellules provenant de sujets âgés sains ou malades.

Dans une deuxième série d’expérience, il a été possible d’injécter des cellules souches mésenchymateuses médullaires d’un donneur sain âgé (CTA1, 66 ans) ainsi que celles d’un patient atteint de LMMC (#2257, 83 ans) à un plus grand nombre de souris.

Les CSM du donneur sain âgé ont été injectées à 5 souris NSG mâles âgées de 15 semaines (nombre total de sites d’injection =10). Les CSM utilisées pour cette expérience ont été cultivées à partir de cellules congelées à passage 3. Elles ont été amplifiées in vitro 22 jours et ont subi 3 passages après décongélation, permettant la récolte de 24,1 millions de cellules.

Les CSM du patient ont été injectées à 6 NSGS femelles âgées entre 8 et 14 semaines (nombre total de sites d’injection =12). Ces cellules ont été récoltées après 48 jours de culture et 3 passages, sans étape de congélation (21,53 millions de细胞ules récoltées et implantées). L’utilisation de souris NSGS avait pour but d’améliorer le modèle proposé par Andreas Reinisch et collègues en implantant les CSM et en greffant les cellules hématopoiétiques dans un environnement cytokinique humanisé.

Deux mois après implantation des CSM, les osselets étaient palpables chez toutes les souris et à tous les sites d’injection, sauf chez 1 souris sur 5 du groupe implanté avec les CSM de CTA1, qui a été
écartée de l’étude. Aucune coloration violette n’a été observée au niveau de ces osselets à travers de la peau de ces souris.

Ces expériences suggèrent que, injectées en nombre suffisant, les cellules souches mésenchymateuses issues de sujets âgés atteints ou non de LMMC se développent chez la souris et génèrent des osselets sans différence marquée entre sujets sains et sujets du même âge atteints de LMMC, et ces osselets n’acquièrent pas la coloration violette suggérant le développement de cavités médullaires.

En dépit de l’hétérogénéité des osselets obtenus et des doutes concernant la formation de cavités médullaires, nous avons poursuivi ces expériences en injectant, après irradiation par rayon X à 1,5 Gy, des cellules CD34-positives de patient atteint de LMMC à ces souris. Le nombre de cellules injectées par souris était dépendant du nombre de cellules vivantes récupérées après décongélation.

En accord avec nos observations les tentatives d’injections directement dans les osselets se sont toutes avérées impossibles, suggérant des osselets trop compacts. Les cellules ont donc été injectées par voie intraveineuse dans tous les cas.

Le groupe de souris portant des osselets provenant de CTA1 a reçu l’injection d’environ 66 000 cellules CD34-positives du patient #1375 par souris (soit 39,6% des cellules congelées). La souris pour laquelle aucun osselet n’était palpable n’a reçu aucune injection : 4 souris ont donc été greffées au total dans ce groupe.

Pour le groupe de souris portant des osselets provenant d’un patient LMMC, nous avons souhaité greffer les cellules CD34-positives autologues à ce patient. Après décongélation des cellules, nous avons pu injecter environ 6500 cellules à chaque souris par voie intraveineuse (3,9% des cellules congelées).

Huit à douze semaines après l’injection des cellules hématopoïétiques humaines, la prise de greffe a été évaluée par cytométrie en flux dans le sang et la moelle de la souris. Elle n’a pas été évaluée dans les osselets car l’aspiration de moelle s’est avérée impossible.

L’analyse par cytométrie en flux a montré une prise de greffe dans une expérience sur deux (Figure 23 A).

Chez les souris NSGS portant un environnement médullaire de LMMC, seule 5 souris sur 6 ont pu être analysées par cytométrie en flux, une souris étant décédée avant d’avoir pu réaliser les prélèvements (Figure 23 A). Sur ces 5 souris, toutes ont présenté une prise de greffe, visible à la fois dans la moelle murine (15,83% en moyenne) et la périphérie (12,89% en moyenne). Ces chiffres sont relativement élevés en comparaison aux niveaux de prise de greffe habituellement observés chez les souris NSG avec des cellules de patients LMMC et semblent confirmer les résultats publiés chez les souris NSGS74. Le pourcentage de cellules humaines s’est montré variable d’une souris à l’autre avec un taux oscillant entre 6,33% et 22,19% dans le sang et 6,48% et 37,37% dans la moelle.

Néanmoins, malgré ces résultats très encourageants, l’analyse du sang et de la moelle murine 17 et 30 semaines post-greffe a montré que la greffe des cellules humaines n’était pas robuste (Figure 23 B). Aucune cellule humaine n’a été détectée en périphérie et à 17 semaines post-greffe seules 2 souris sur les 5 analysées à 12 semaines présentaient encore des cellules humaines dans la moelle (5,54% et 13,39% respectivement). Ces deux souris correspondent aux souris qui présentaient les plus hauts taux de reconstitution humaines à 12 semaines. A 30 semaines post-greffe, au moment du
sacrifice, seulement 3 souris sont encore vivantes, et une seule présente encore des cellules humaines dans la moelle murine (3,35%).

Chez les souris NSG portant un environnement médullaire humanisé sain greffées avec les cellules hématopoïétiques du patient 1375, 4 souris sur 4 ont pu être analysées par cytométrie. Presque aucune cellule humaine n’a été détectée dans le sang ni la moelle des souris à 8 semaines post-greffe, à l’exception d’une souris présentant 1,95% de cellules humaines dans la moelle (Figure 23 A).

Au sacrifice, fémurs et osselets ont été prélevés, fixés, et coupés pour analyse histologique. Quelle que soit la source de CSM utilisée (saine ou pathologique), les osselets prélevés étaient exclusivement constitués de tissu osseux, aucune niche hématopoïétique ne s’étant formée (Figures 23 C et 23 D). Chez les souris NSGS injectées avec les CSM et cellules CD34-positives du même patient, une souris présentait un faible marquage hCD45 dans ses fémurs. Chez les autres souris du groupe, aucune cellule humaine n’a été détectée par immunomarquage du CD45 humain. En revanche, les coupes histologiques des fémurs des souris NSG injectées avec des CSM saines et des CD34-positives du patient LMMC, ont permis de détecter des cellules marquées par l’anticorps anti-hCD45 chez 2 souris sur 4, indiquant une prise de greffe des cellules humaines dans la moelle murine (Figure 23 E). Le marquage CD45 humain détecté dans les fémurs montrait peu de cellules humaines, suggérant une faible prise de greffe qui pourrait expliquer la discordance avec l’analyse des fémurs par cytométrie en flux. Les cellules humaines présentes dans les échantillons prélevés de la moelle murine étaient peut-être trop peu nombreuses pour être détectées par cytométrie en flux.

Ces résultats suggèrent que, en l’absence de moelle humanisée au sein des osselets générés par les cellules souches mésenchymateuses humaines en sous-cutané, les cellules hématopoïétiques humaines nichent dans l’environnement médullaire murin. Elles circulent peu dans le sang périphérique, en accord avec les précédentes expériences de xénogreffe de cellules de LMMC chez la souris immunodéprimée.

67
Figure 23 : Prise de greffe des souris implantées avec des CSM âgées, saines ou pathologiques

A) Analyse par cytométrie en flux de la prise de greffe des CD34+ de patients 8 à 12 semaines post-greffe dans le sang (SG) et la moelle (MO) murine.
Les cellules hématopoïétiques du patient 1375 ont été injectées par voie intraveineuse aux souris NSG (5 souris) portant des osselets générés à partir de CSM de l’individu âgé sain CTA1. Une souris est décédée avant l’analyse réduisant le nombre de souris à 4. L’analyse ne détecte aucune cellules humaines dans la moelle murine ni dans le sang périphérique.
Les cellules hématopoïétiques du patient 2257 ont été injectées par voie intraveineuse aux souris NSGS (6 souris) portant des osselets générés à partir de CSM du même donneur (#2257). Une souris est décédée avant l’analyse réduisant le nombre de souris à 5. L’analyse détecte des cellules humaines dans la circulation et la moelle murine à des taux élevés (12.86% et 15.74% respectivement).

B) Comparaison des taux de cellules humaines dans la moelle murine des souris NSGS à 12, 17 et 30 semaines post-greffe.
L’analyse à 12, 17 et 30 semaines post-greffe montre une diminution de la quantité des cellules humaines dans la moelle murine. A 17 et 30 semaines post-greffe, aucune cellule humaine n’a été détectée dans le sang. Au moment du sacrifice à 30 semaines, seulement 3 souris sur 6 sont encore vivantes et une seule présente encore des cellules humaines dans la moelle murine (3,35%).

C) Photos d’un osselet généré à partir de CSM dérivées d’un individu sain âgé, prélevé après sacrifice. Les osselets obtenus avec les CSM du patient atteint de LMNC étaient identiques.

D) Coupe histologique de l’osselet montré figure 23 C en coloration HES et zoom de la coupe. La coupe montre un osselet plein, sans cavité médullaire, essentiellement composé de tissu osseux.

E) Coupe histologique d’un fémur de souris NSG greffée avec les CSM de l’individu sain CTA1 et les cellules hématopoïétiques du patient 1375. La coloration hCD45 révèle la présence de cellules hématopoïétiques humaines dans la moelle murine.
2.5. La faible reproductibilité de la génération des osselets

Supposant que le défaut des osselets générés, et notamment l’absence de cavité médullaire, pouvait être la conséquence de l’âge des donneurs et du vieillissement de ces cellules, j’ai renouvelé ces expériences en utilisant uniquement des cellules souches mésenchymateuses provenant d’un donneur jeune.

Pour cela, j’ai réutilisé des cellules du premier donneur âgé de 7 ans (CTJ1) et celles d’un autre donneur sain âgé de 19 ans (CTJ2) fourni par la société Lonza (Table 5, lignes 7 à 15). Le donneur jeune CTJ1 a été utilisé dans 5 nouvelles expériences, dont 4 d’entre elles ont été réalisées sur des souris NSG (28 souris au total, dont 8 mâles ; âgées entre 9 et 12 semaines, à raison de 4 osselets par souris, soit 112 osselets) et 1 expérience chez des souris NSGS (6 souris femelles âgées de 8 à 10 semaines, 4 osselets par souris, soit 24 osselets). Les cellules ont été décongelées à partir d’ampoules de 500 000 CSM congelées à passage 3 et amplifiées en moyenne 32 jours (3 passages post-décongélation en moyenne) et ont permis d’obtenir 67 millions de cellules en moyenne (minimum : 55 millions, maximum 80,8 millions).

Le donneur CTJ2 a été utilisé dans 4 nouvelles expériences, uniquement chez des souris NSG. La première expérience a été réalisée à partir de cellules fraîches non congelées, récoltées en fin de passage 1 après 23 jours de culture depuis P0. A la fin de ce passage, 151 millions de cellules ont été récoltées : une partie d’entre elles a été remise en culture (3,16 millions), 72 millions ont congelées tandis que le reste (75,6 millions) ont été utilisées pour l’implantation de 4 osselets chez 8 souris NSG femelles de 9 semaines (32 osselets au total). Les trois autres expériences ont utilisé des CSM congelées à P1, amplifiées en moyenne 31 jours avant l’implantation chez la souris. Les cellules ont été passées entre 2 et 3 fois après décongélation et ont permis de récolter en moyenne 42 millions de cellules (minimum : 30,8 millions, maximum 49,92 millions). Un total de 16 souris a été utilisé (uniquement des femelles âgées entre 9 et 12 semaines) et 64 osselets ont été générés.

Pour 6 de ces 9 expériences, les souris ont été irradiées par rayon X à 1,5 Gy 12 à 24 h avant l’injection de cellules CD34-positives décongelées par voie intraveineuse (Table 5, ligne 7 à 12).

Les résultats obtenus ont été très semblables à ceux obtenus avec les cellules souches mésenchymateuses de sujets âgés. Chacune des expériences a permis de générer des osselets palpables sous la peau de chaque souris, sans coloration violette visible (Figure 24 A). Pour certaines souris, la palpation des osselets en position était difficile, suggérant une taille réduite. L’évaluation de la prise de greffe par cymométrie en flux a de nouveau révélé la présence de cellules hématopoïétiques humaines hCD45-positives en quantité variable entre les souris d’un même groupe dans la moelle osseuse murine (Figure 24 B). L’efficacité de la prise de greffe s’est montrée variable entre les différents groupes.
Un patient a été injecté à deux groupes différents de souris (patient #1387) afin de déterminer la reproductibilité du modèle de xénogreffe (Table 5, lignes 8 et 9). Le premier groupe était composé de 8 souris NSG femelles portant chacune 4 osselets générés à partir des CSM du donneur CTJ1 à passage 6. Le second groupe était quant à lui composé de 6 souris NSG femelles portant chacune 4 osselets générés à partir des CSM du même donneur à passage 7. Au sein de ce groupe, une souris est décédée suite à l’irradiation, réduisant le nombre de souris de 6 à 5 pour l’analyse ultérieure de la prise de greffe.

Les cellules CD34-positives du patient #1387 ont été injectées en quantités relativement proches à chacun des groupes (177 500 cellules/souris, pour le premier et 120 000 cellules/souris pour le second) après décongélation de deux ampoules de 2 millions de cellules chacune. La décongélation de la première ampoule a permis la récupération de 72% des cellules congelées, tandis que la seconde, une semaine plus tard, n’a permis de récupérer que 30,6% des cellules. Finalement, l’analyse par cytométrie en flux de la moelle murine a révélé une hétérogénéité de prise de greffe entre les souris des deux groupes (5,47% en moyenne dans le premier groupe contre 2,03% dans le second) mais également entre les souris d’un même groupe. On retrouve ainsi entre 0,39% et 35,11%
de cellules humaines dans la moelle murine dans le premier groupe, et entre 0,64% et 3,97% dans le second groupe. Les différences entre les deux groupes peuvent s’expliquer par le nombre plus important de cellules injectées au premier groupe. Néanmoins, ces résultats montrent qu’il existe une variabilité de prise de greffe des cellules CD34-positives de LMMC, même lorsqu’elles proviennent d’un même patient.

D’autre part, j’ai comparé la prise de greffe de cellules CD34-positives d’un même patient atteint de LMMC (patient #1056) chez des souris NSG et NSGS chez lesquelles des osselets avaient été générés à partir du donneur CTJ1 (6 souris dans chaque groupe, portant chacune 4 osselets). La décongélation a permis de récupérer 99.36% des cellules congelées. Alors qu’aucune cellule humaine n’a été détectée chez les souris NSG, les cellules hCD45-positives représentaient en moyenne 0,25% des cellules médullaires chez les souris NSGS (entre 0,12% et 0,51%). Ces résultats restent fragiles. Néanmoins, ils suggèrent qu’un environnement cytokinique humanisé favorise la greffe des cellules de patients atteints de LMMC, en accord avec nos observations antérieures au sein de l’équipe.

Chez les deux derniers groupes, composés de 8 et 5 souris NSG respectivement, porteuses de 4 osselets générés à partir des CSM du donneur CTJ2 (P1 et P4) la prise de greffe dans la moelle murine a été évaluée à 0,67% et 1,33% en moyenne, avec un minimum de 0,17% de cellules humaines dans le premier groupe (patient 742) et 1,06% dans le second groupe (patient 1798). Le maximum de cellules humaines retrouvé était de 1,14% dans le premier groupe (patient 742) et 1,41% dans le second (patient 1798). Chaque groupe a reçu l’injection de 222 500 cellules par souris (60% de cellules vivantes après décongélation) et 393 120 cellules par souris (42% de cellules vivantes après décongélation) respectivement.

L’ensemble de ces données d’analyse par cytométrie en flux reflète la grande hétérogénéité de l’efficacité de reconstitution de l’hématopoïèse leucémique chez les souris, sans pouvoir faire le lien entre le nombre de cellules injectées et le taux de cellules humaines présentes dans la moelle.

Encore une fois, aucune cellule hématopoïétique humaine n’a été détectée dans le sang et il n’a pas été possible d’obtenir de la moelle humanisée du fait de la compacité des osselets. Au moment du sacrifice, les osselets étaient totalement blancs et compacts, sans cavité médullaire observable sur les coupes histologiques (comme donnée en exemple Figure 23 B et C).

Au vu de ces résultats, il semblait très probable que nous n’ayons pas réussi à former d’osselet non plus chez les souris des 3 derniers groupes. Nous avons donc sacrifié ces souris sans leur faire subir d’irradiation ni de greffe de cellules de patients, afin de vérifier la formation des osselets chez elles. De nouveau, aucun osselet ne présentait de cavité médullaire visible à l’œil nu, et les coupes histologiques ont confirmé cette observation.
2.6. Les résultats obtenus avec les cellules souches mésenchymateuses amplifiées en Autriche

Les difficultés rencontrées pour générer une niche hématopoïétique fonctionnelle dans notre laboratoire ainsi que dans le laboratoire de nos collaborateurs (Françoise Pflumio, Laurent Renou, et leurs collègues, CEA Fontenay-aux-roses) nous ont amené à prendre contact avec Andreas Reinisch afin de réévaluer ensemble notre approche expérimentale. Je me suis rendue en Autriche en Janvier de la 3ème année de ma thèse.

Il est d’abord apparu que, lors de l’amplification des cellules souches mésenchymateuses ex vivo, nous avions utilisé du sérum de veau foetal (SVF) en lieu et place de lysat plaquettaire humain (pooled Human Platelet Lysate ou pHPL). L’équipe dans laquelle Andreas Reinisch a mis au point son modèle avait aussi utilisé du SVF et généré ainsi des osselets comportant des niches fonctionnelles mais les résultats s’étaient avérés très aléatoires alors qu’ils étaient beaucoup plus reproductibles en utilisant un pool de lysats plaquettaires humains en lieu et place du SVF (résultats 10 fois sur 11, contre 2 sur 11 avec du SVF, non publiés). Le lysat plaquettaire permet une meilleure amplification des CSM humaines ex vivo, tout en conservant leurs propriétés de différenciation. De plus, il a été montré que le lysat plaquettaire humain améliorait les capacités des CSM à former des os in vivo.

Par ailleurs, la coloration violette des osselets générés en Autriche était très visible (Figure 25), beaucoup plus que tout ce que nous avions observé dans nos tentatives antérieures. Lors de l’injection de cellules dans les osselets ou lors de prélèvements de moelle dans ces osselets, une issue de sang au site d’injection est possible, montrant que le tissu est bien vascularisé. Ce résultat contrastait avec nos observations dans lesquelles les osselets très denses sont difficilement injectables et prélevables du fait de leur compacité, de la petite taille des cavités (lorsqu’il y en a) et de l’épaisseur de la partie endostéale qui les entoure.

Andreas Reinisch a eu l’amabilité de nous fournir des ampoules de cellules souches mésenchymateuses et des aliquots de son lysat plaquettaire humain pour que nous tentions de reproduire son modèle. A partir de ces échantillons (Table 5, ligne 16), j’ai été capable de générer des osselets humanisés avec une niche fonctionnelle dans 5 cas sur 6 et 3 souris sur 3 (Figure 26, 2 osselets par souris). Cependant, la coloration violette des osselets au travers de la peau des souris deux mois après implantation était très difficile, voire impossible à observer.
Figure 26 Génération d’osselets à partir de CSM et lysat plaquettaire d’Andreas Reinisch

A) Osselets générés chez 3 souris NSG à partir de CSM d’un donneur jeune provenant du laboratoire d’Andreas Reinisch, cultivées en milieu supplémenté avec du lysat plaquettaire humain (2 osselets par souris).

B) Coupe histologique de l’osselet présenté dans l’encart inférieur droit en A) colorée au HES. L’agrandissement de la coupe à droite montre une cavité médullaire bordée d’une paroi endostéale en orange, infiltrée par des cellules hématopoïétiques.

C) Coupe histologique du même osselet avec immunomarquage dirigé contre le CD45 murin, montrant un envahissement de la niche par les cellules hématopoïétiques murines en marron.

Au CEA, Laurent Renou a réussi à obtenir des résultats similaires à partir des mêmes échantillons, cultivés dans les mêmes conditions. Nos résultat conjoints suggèrent donc le lysat plaquettaire humain, tel que préparé par l’équipe d’Andreas Reinisch, est une composante importante de la phase d’amplification des cellules souches mésenchymateuses, contribuant à la génération d’osselets fonctionnels de manière reproductible au sein de plusieurs laboratoires utilisant des équipements et des animaleries distincts.

Cependant, nous avons tenté de reproduire une nouvelle fois ce résultat à partir des mêmes cellules et du même lysat plaquettaire dans nos deux laboratoires. Aucune de ces expériences n’a généré des osselets fonctionnels chez les souris greffées.

Malgré ces quelques résultats encourageants, les difficultés de reproduction et d’adaptation du modèle nous ont conduits à réorienter mon sujet de recherche sur la caractérisation ex vivo des cellules souches mésenchymateuses de sujet atteint de LMMC à la recherche d’altération susceptibles de contribuer à la physiopathologie de cette maladie.
3. Discussion Partie 1 : établissement d’un nouveau modèle murin de xénogreffe de LMMC avec un environnement médullaire humanisé.

Dans cette première partie de ma thèse j’ai travaillé à la mise en place d’un modèle murin de xénogreffe, humanisé par la présence d’un environnement médullaire reconstitué à partir de CSM humaine. Les objectifs étaient :

- améliorer la prise de greffe des cellules hématopoïétiques de patients atteints de LMMC en favorisant les interactions espèce spécifiques avec leur microenvironnement
- déterminer le rôle de l’environnement médullaire dans la physiopathologie de la LMMC.

Malgré quelques résultats encourageants, la mise au point d’un modèle de microenvironnement médullaire humanisé par greffe de cellules souches mésenchymateuses médullaires humaines en sous cutané chez la souris immunodéprimée s’est avérée délicate et difficilement reproductible. De multiples facteurs contribuent à ce défaut de reproductibilité, de la variabilité interindividuelle des cellules de donneur, sain ou malade, jeune ou âgé, aux modalités de culture et d’amplification de ces cellules *ex vivo*. Nous manquons de marqueurs prédictifs de la capacité de ces cellules à générer des osselets fonctionnels afin de sélectionner cellules donnant les meilleures chances de greffe. En l’état actuel, notre maîtrise du modèle s’est avérée insuffisante pour explorer les questions que nous souhaitons adresser.

3.1. La génération de souris humanisées est difficilement reproductible, certainement à cause de l’entrée en sénescence des CSM *in vitro*.

En m’appuyant sur les publications d’Andreas Reinisch, j’ai essayé d’adapter son modèle murin de reconstitution du microenvironnement médullaire humain à la LMMC.

Au final, 18 expériences ont été réalisées, sur un total de 88 souris (à raison de 5 à 8 souris par groupe en général) à partir de 7 donneurs de CSM différents (patients et sains confondus). Seulement deux expériences ont permis la génération effective d’une niche hématopoïétique. Au cours de ce travail, nous avons tenté d’identifier les facteurs responsables de ce succès limité.

Le but de ma thèse étant d’identifier le rôle de l’environnement chez les patients, j’ai d’abord essayé de comparer l’impact d’un environnement médullaire reconstitué à partir de CSM de patients avec celui de CSM saines âgées sur la prise de greffe des cellules leucémiques. Cependant, aucune de ces manipulations n’a permis d’obtenir de niche hématopoïétique humanisée fonctionnelle chez la souris.

L’utilisation de cellules provenant de sujets âgés, qu’ils soient malades ou non, pourrait être à l’origine de ce résultat. En effet, avec l’âge les capacités de prolifération et de différenciation des CSM diminuent\(^\text{193,194,259–263}\). Dans le sens de cette observation, l’amplification *in vitro* des CSM de patients et d’individus sains âgés, en quantité suffisante pour l’implantation *in vivo*, n’a été possible que très rarement. Ainsi, pour pouvoir obtenir suffisamment de cellules et des osselets fonctionnels, il faudrait utiliser des CSM provenant d’individus jeunes.

Dans son modèle, Andreas Reinisch n’a d’ailleurs utilisé que des CSM d’individus sains, âgés entre 21 et 45 ans, ce qui corroborerait cette hypothèse. Cependant, l’utilisation de CSM dérivées d’individus jeunes n’a abouti à la formation de niche hématopoïétique fonctionnelle que 2 fois sur 13.
au total. Il semblerait donc, que l'âge des donneurs ne soit pas la seule limite à la différenciation *in situ* des CSM en une niche hématopoïétique fonctionnelle.

Néanmoins, un mécanisme commun pourrait expliquer ce résultat et lier ces deux situations : la sénescence des CSM.

Du fait de leur multipotence, les CSM sont des cellules très attractives pour les stratégies de médecine régénérative et d'ingénierie tissulaire. Cependant, ce genre de technologies, comme le modèle murin d’Andreas Reinisch, demande une grande quantité de cellules et nécessite l’amplification intensive des CSM *in vitro*, bien souvent au-delà de la limite de Hayflick. La culture intensive des cellules *in vitro* conduit à leur épuisement et à leur entrée en sénescence. En effet, aucune activité télomérase n’a été détecté chez les CSM humaines (ni murine) ce qui leur confère une multipotence et un nombre limité de divisions possibles\(^{264,265}\).

Chez les individus âgés, les CSM ont déjà subi un grand nombre de cycles de division au cours de la vie du donneur. De ce fait, les CSM provenant d’individus âgés sont vraisemblablement plus à même de rentrer en sénescence tôt pendant la culture que des CSM jeunes. Néanmoins, l’amplification intensive et les passages successifs des CSM, même jeunes, peut conduire à leur entrée en sénescence et donc à une prolifération limitée, mais également une différenciation altérée.

Plusieurs publications font état d’une perte progressive des capacités de différenciation adipocytaire *in vitro* suite aux passages successifs en culture\(^{266-268}\). Ce résultat est par ailleurs surprenant, compte tenu de l’accumulation de tissu adipocytaire dans la moelle osseuse et des défauts de réparation osseuse observés avec l’âge\(^{138}\). Il existerait donc vraisemblablement une différence de comportement des CSM amplifiées *ex vivo* avec les CSM *in situ*.

3.2. Optimiser les conditions de culture *in vitro* pour lutter contre la sénescence des CSM et améliorer l’efficacité de génération des osselets *in vivo*

Pour lutter contre et limiter la sénescence liée à l’amplification des CSM *in vitro*, les conditions de culture doivent être optimisées. Des travaux ont déjà été réalisés pour tenter de répondre à ce besoin. Plusieurs stratégies ont été proposées, telle que l’utilisation de molécules géroprotectrices comme la vitamine C\(^{269}\) ou le curcumin\(^{270}\) qui restaurent l’activité de la télomérase transcriptase inverse (TERT), responsables de l’élargissement des télomères, et qui améliorent les capacités prolifératives des CSM. L’utilisation de molécules sénolytiques a également été étudiée afin d’éliminer les cellules sénescentes et “rajeunir” les tissus\(^{271}\). Les résultats de ces études sont mitigés : l’équipe de Grezella semble indiquer que ces molécules ne présentent pas de bénéfices aux CSM humaines en culture\(^{272}\) tandis que Geng propose la quercetine comme un candidat de choix pour la géroprotection des CSM\(^{273}\). Son activité antioxydante restaure les capacités de prolifération et d’auto-renouvellement des CSM. D’autres études ont montré un rôle géroprotecteur du sécrétome des CSM non sénescents via une prolifération et une différenciation ostéogénique accrue\(^{274,275}\). Hisamatsu et collègues\(^{276}\) ont mis en évidence une sécrétion de GDF6 (*Growth Differentiation Factor* 6) par les CSM jeunes capable de restaurer la différenciation ostéogénique des CSM âgées. LPA3 (*Lysophosphatidic Acid* 3) a également été identifié pour réguler négativement la sénescence\(^{277}\). En 2018, l’équipe de Daniel A. Balkov a montré que la culture des CSM dérivées de donneurs âgés sur un substrat copolymère de PEG-PCL (poly(ethylene glycol) - poly(ε-caprolactone)) réduisait le taux
d’espèces réactives de l’oxygène (ROS) dans ces cellules et augmentait leur potentiel de différenciation 278.

La sénescence altère également la multipotence des CSM et diminue leur différenciation ostéoblastique et adipocytaire in vitro. Pour permettre la formation d’osselets in vivo, nous pourrions stimuler la différenciation ostéoblastique en introduisant dans le milieu de culture des CSM des stimulis ostéoblastiques tels que la dexaméthasone, BMP2, la Vitamine D, les statins 266,279,280. Andreas Reinisch et collègues ont déjà travaillé à cette optimisation en incluant dans leur protocole un traitement quotidien de 28 jours des souris à la hPTH (hormone parathyroïdienne humaine) après implantation des CSM 89,90,281–283.

La manipulation génétique des CSM pourrait également être une possibilité pour lutter contre l’entrée en sénescence en introduisant le gène TERT. La transduction rétrovirale de la télomérase dans les CSM humaines a déjà permis d’étendre leurs capacités prolifératives jusqu’à 260 doubléments de populations, contre 26 dans les cellules contrôles, tout en conservant un caryotype normal, leurs marqueurs ostéoblastiques et en améliorant la formation d’os in vivo 284,285. Pour améliorer la différenciation ostéogénique et la formation d’os in vivo, nous pourrions également surexprimer les gènes BMP2, BMP6, BMP9, Fra-1, ou LiM mineralization protein 3 dans les CSM avant leur implantation 266,286–293. L’utilisation de ces différents agents dans la culture des CSM ainsi que leur manipulation génétique pourraient permettre de retarder la sénescence des cellules et maintenir leur multipotence. Ainsi, nous pourrions alors récolter plus facilement et rapidement un grand nombre de CSM, nécessaire à la génération de niches hématopoïétiques chez la souris. Mais également, nous serions capables de maintenir leurs capacités de différenciation plus longtemps, nous assurant ainsi de leur bonne différenciation in situ.

Néanmoins, dans le cadre de l’étude du rôle de l’environnement âgé, pathologique ou sain, dans la physiopathologie de la LMMC, la pertinence de l’utilisation d’agents géroprotecteurs ainsi que l’introduction ectopique d’une activité télomérase sont contestables. En effet, le vieillissement et ses conséquences pathologiques sont justement au cœur de l’étude que nous souhaitons mener. Modifier les cellules pour les “rajeunir” et les rendre plus performantes pour la génération de notre modèle est complètement à l’opposé de ce que nous cherchons à réaliser. Nous risquerions par ce biais de masquer les altérations des CSM des patients. Il en va de même pour la surexpression de gènes impliqués dans la différenciation ostéoblastique.

Ce genre de manipulations est intéressant à appliquer dans le cadre de l’optimisation d’un outil ou de d’une thérapie cellulaire (hors manipulation génétique des cellules, pour des raisons éthiques), mais pas dans le cadre de l’étude du vieillissement et du microenvironnement médullaire leucémique. Il peut également se révéler intéressant d’utiliser des molécules géroprotectrices dans le cadre de traitement de cancers (leucémiques ou non) si un effet délétère de la sénescence a été identifié chez les patients.

3.3. Utilisation de lysat plaquettaire humain pour l’amplification des CSM in vitro

Pour améliorer le potentiel de prolifération des CSM in vitro, l’équipe d’Andreas Reinisch a quant à elle choisi de supplémerter leur milieu de culture avec un pool de lysats plaquettaires humains (pHPL) en lieu et place de sérum de veau fœtal classiquement utilisé. Plusieurs équipes ont montré l’intérêt du pHPL dans l’amplification ex vivo des CSM humaines 257,258,294–296.
Historiquement, l’utilisation du lysat plaquettaire humain dans le milieu de culture avait pour but de réduire les risques d’infections chez les patients recevant une thérapie régénératrice grâce à l’injection de CSM humaines amplifiées ex vivo. Contrairement au SVF, le HPL présente l’avantage d’éviter la contamination des cellules avec des pathogènes connus (prions bovins, virus, zoonose) ou non, et donc leur transmission à l’homme, ainsi que la xénoimmunisation contre les antigènes bovins\(^{257,297}\). D’autre part, des études ont montré un rôle positif des dérivés plaquettaires dans la régénération des tissus et cicatrisation\(^{298–301}\). Le lysat plaquettaire humain est ainsi un outil idéal pour la génération des osselets.

En 2007, Katharina Schallmoser, Andreas Reinisch et leurs collègues\(^{257}\) ont montré que l’utilisation de lysat plaquettaire humain pour la culture des CSM permettait d’obtenir un plus grand nombre de cellules plus rapidement, comparativement à leur culture avec du SVF, tout en conservant leurs capacités de différenciation. Pour leur étude, ils ont utilisé un pool de lysats plaquettaires provenant d’une cinquantaine de donneurs pour éviter les effets liés à une variabilité interindividuelle. Le pool de lysat plaquettaire a été obtenu à partir de 40 couches leucoplaquettaires (ou buffy coat) d’individus du groupe O, et 10 unités de plasmas sanguins d’individus du groupe AB, pour éviter d’exposer les CSM aux antigènes des groupes sanguins ABO et aux isoaglutinines. Plusieurs cytokines nécessaires à la croissance des CSM sont produites par les plaquettes et retrouvées dans les dérivés plaquettaires, notamment EGF, bFGF, TGFb, PDGF-AA, PDGF-AB/BB. Katharina Schallmoser et son équipe n’ont pas pu déterminer si la culture plus robuste des CSM en présence de pHPL résultait uniquement de l’apport de ces cytokines ou non.

L’utilisation du pHPL permet également de favoriser les interactions cytokiniques espèces spécifiques avec les cellules humaines et de se débarrasser du stimulus de croissance cellulaire relativement artificiel fourni par le SVF. Il s’agit donc d’un facteur important à prendre en compte dans le cadre de la modélisation la niche hématopoïétique humaine.

Par ailleurs, des données non publiées d’Andreas Reinisch et collègues ont montré que l’utilisation de lysat plaquettaire humain pour la culture des CSM et leur implantation chez la souris permettait la génération d’osselets fonctionnels dans 10 cas sur 11, contrairement au SVF, pour lequel seulement 2 cas sur 11 ont présenté des niches hématopoïétiques humanisées. Compte-tenu de ces informations, il est très probable que l’utilisation du SVF pour l’amplification des CSM in vitro ait empêché la formation d’osselets lors de mes expériences. Le contenu cytokinique du lysat plaquettaire humain est donc vraisemblablement plus adapté aux CSM du fait de sa spécificité d’espèce. Un dosage des différentes cytokines présentes dans le milieu complémenté par du SVF ou du lysat plaquettaire, comme il l’a été réalisé par Schallmoser et al.\(^{257}\), permettrait d’identifier les différences entre les deux milieux, mais aussi de tester l’influence de chaque cytokine dans la génération d’osselets in vivo. Pour déterminer le rôle de chacune de ces cytokines, la meilleure option serait de recréer l’environnement cytokinique du lysat plaquettaire en ajoutant au milieu de culture des recombinants des cytokines, dans les mêmes concentrations, puis enlever indépendamment une cytokine. La comparaison de l’efficacité de génération des osselets en utilisant ces différents cocktails cytokiniques avec celle du lysat plaquettaire permettrait d’identifier les cytokines clés nécessaires. Ceci permettrait dans le même temps de créer un milieu de culture standard pour l’amplification ex vivo des CSM humaine et se défaire de la variabilité inter-individuelle des donneurs et du processus long et coûteux de manufacture du pHPL.
On peut néanmoins remettre en question l’hypothèse selon laquelle le lysat plaquettaire humain permettrait une différenciation des CSM en osselets in vivo plus efficace et reproductible, puisqu’en utilisant du pHPL, je n’ai réussi à générer des osselets fonctionnels qu’une fois sur trois. Cependant, il n’est pas non plus exclu que la raison de ce résultat soit l’entrée en sénescence des CSM, puisque j’ai utilisé le même donneur pour les trois expériences, en augmentant ainsi le nombre de passages en culture. C’est d’ailleurs de manière intéressante que l’équipe de Katharina Schallmoser et Andreas Reinisch a montré en 2010302, que les variations d’expression des gènes associés à la sénescence dans les CSM secondaires à une longue culture in vitro, étaient similaires entre les milieux supplémentés avec du pHPL et du SVF. Cette observation soutiendrait l’hypothèse de l’entrée en sénescence des CSM lors de mes dernières expériences.

3.4. **Identifier des marqueurs pour anticiper la génération ou non des osselets in vivo et pallier la variabilité inter-individuelle des donneurs**

Un autre facteur important qui limite la standardisation des protocoles est la grande variabilité interindividuelle des donneurs en terme de croissance cellulaire, potentiel de différenciation ostéogénique et capacité à générer des os in vivo.

Cette variabilité a été décrite très tôt303 et documentée depuis304,305. Le potentiel thérapeutique des CSM (et leur capacité à former des os in vivo par exemple) peut dépendre de différents facteurs tels que l’âge des donneurs266,306, la source d’origine des CSM253,307, mais également la technique et le site d’extraction des CSM304,308,309. De manière traditionnelle, les CSM humaines dérivées de moelle sont isolées à partir de ponction de moelle osseuse provenant de la crête iliaque ou de l’acetabulum, ou bien du sternum. Il a été rapporté que selon les opérateurs, la composition finale de l’échantillon peut varier303, avec une dilution plus ou moins importante avec du sang périphérique notamment, mais surtout une population de progéniteurs ostéogéniques variable310.

Une stratégie pour améliorer la reproductibilité du modèle d’Andreas Reinisch, serait d’identifier des marqueurs prédictifs de la différenciation ostéogénique in vivo. Des travaux ont déjà été réalisés pour tenter de répondre à cette question, mais restent lourds à mettre en place car chronophages et impliquant le sacrifice d’une partie des cellules cultivées. Il s’agit pour la plupart d’analyses de transcriptome de gènes impliqués dans l’ostéogénèse (OPN, ALP, COL1, OC, ON, S100A4...) ou de tests fonctionnels de différenciation in vitro. De plus, ces tests ne sont pas fiables à 100% quant au devenir des cellules in vivo.

L’idéal serait de pouvoir identifier des marqueurs de surface, traçables par cytométrie en flux avant l’implantation des CSM chez la souris de manière à ne pas trop alourdir le protocole. Certains marqueurs ont déjà été identifiés comme CD200, CD140a, SSEA4 comme étant différenciellement exprimés entre les différents progéniteurs311,312. Néanmoins, leur seule expression ne suffit souvent pas à prédire avec exactitude le potentiel de formation d’os in vivo.

Une autre stratégie pour améliorer la reproductibilité du modèle d’Andreas Reinisch serait non pas d’identifier les CSM à potentiel ostéogénique, mais plutôt les CSM sénescents ou pré-sénescents afin de (1) soit les éliminer de la culture comme mentionné plus haut, (2) soit d’écarter le donneur dont proviennent les CSM de l’étude.
Récemment, Wiese et collègues ont identifié un changement progressif du transcriptome des CSM in vitro, précédent l’entrée en sénescence. Il y aurait donc une signature transcriptomique des cellules pré-sénescentes et sénescentes, en plus des prédicteurs classiques de l’épuisement réplicatif comme la décelération de la prolifération, l’altération de la morphologie des CSM (qui deviennent plus plates et irrégulières, moins fusiformes) ainsi que l’expression de marqueurs de la sénescence. Les désavantages de l’étude du transcriptome dans le cadre de l’établissement d’un modèle murin comme le nôtre sont que cette méthode est chronophage et coûteuse en cellules. Elle ne permet pas une caractérisation rapide “on-line” des CSM.

Une revue récente, Zhai et collègues font l’inventaire des techniques de détection de la sénescence des CSM, ainsi que les avantages et inconvénients de chacune d’entre elles. Les auteurs ont mis l’accent sur les techniques non destructives et ne nécessitant pas de marquage des cellules.

Parmi les nouvelles méthodes de détection les plus intéressantes et les plus prometteuses figurent le marquage des protéines de surface CD106/VCAM1, CD146, CD10, dont l’expression diminue chez les CSM sénescentes, ou bien DPP4 et la vimentine, exprimées par les cellules sénescentes. Un autre marquage qui pourrait être compatible avec une visualisation par cytométrie en flux serait celui de la lipofuscine, un agrégat de protéines oxydées, métaux et lipides qui se forme à la surface des cellules sénescentes. La mesure de l’autofluorescence des cellules pourrait également s’avérer prometteur. L’utilisation de tels marqueurs pourrait également permettre un tri cellulaire par cytométrie en flux pour ne sélectionner que les cellules non sénescentes pour l’implantation chez les souris.

D’autres méthodes intéressantes décrites dans ce papier sont la mesure de la taille des cellules, mais également le profil SASP (Senescence Associated Secretory Profile) des surnageant de culture. Ces méthodes présentent l’avantage de ne pas nécessiter la destruction des cellules et d’être relativement rapides d’exécution.

Ces techniques d’identification des cellules sénescentes seraient advantageuses pour optimiser le protocole de génération des osselets afin d’écarter les échantillons sénescents du processus. Cependant, cette stratégie présente un sérieux biais pour l’étude de l’environnement médullaire âgé sain et pathologique in vivo, comme je l’ai déjà expliqué plus haut.

3.5. Le modèle des osselets est prometteur mais présente des limites pour l’étude de l’environnement médullaire âgé

En conclusion, le modèle murin développé par Andreas Reinisch et ses collègues présente l’avantage de pouvoir étudier à l’échelle de l’organisme les interactions entre le système hématopoïétique et l’environnement médullaire humains. Au contraire des modèles développés par Zhang et al. et Yoshimi et al. dans lesquels seul l’environnement cytokinique est humanisé, les osselets offrent un espace en trois dimensions dans lequel les cellules hématopoïétiques humaines greffées peuvent se nichier, tout en favorisant les échanges de contacts et paracrines espèces spécifiques avec les cellules de la niche. Comme il l’a été décrit en introduction, la niche hématopoïétique constitue une structure physique et fonctionnelle assurant l’homéostasie du système hématopoïétique en offrant un support aux cellules sanguines. Les interactions cellulaires qui y ont lieu pourraient favoriser le maintien des cellules souches hématopoïétiques et permettre une greffe plus robuste et durable que dans les modèles de xénogreffe actuellement disponibles. La réalisation de greffes sérieses pourrait répondre à cette hypothèse. D’autre part, ce modèle
permettrait en principe, de tester l'influence d’un environnement cellulaire dérivé d’individus sains ou pathologiques sur les cellules leucémiques et saines (efficacité de prise de greffe, sélection ou non de clones, expansion et/ou transformation tumorale...).

Nos résultats préliminaires corroborent les résultats publiés par le laboratoire de Reinisch dans la mesure où, en présence de niche hématopoïétique humanisée fonctionnelle, la prise de greffe des cellules hématopoïétiques se fait uniquement dans les niches humanisées. Ces résultats soulignent l'intérêt d’un modèle murin de niche humanisé dans l’étude in vivo des hémopathies malignes.

Néanmoins, nos difficultés à reproduire le modèle ouvrent la voie à l’amélioration du protocole via les conditions de culture ou bien la sélection des donneurs de CSM. Il semble finalement que ce modèle soit un bon modèle si son but est de favoriser la prise de greffe des cellules de patients LMMC, qui comme d’autres hémopathies myéloïdes, est une maladie difficilement étudiable in vivo. Cependant, dans le cadre de l’étude de rôle de l’environnement médullaire âgé, sain ou pathologique, comme nous espérons le faire, le modèle présente des limites. Les cellules utilisées pour reproduire l’environnement médullaire chez la souris proviennent d’individus d’âge avancés, qui ont déjà subi un certain nombre de division au cours de la vie du donneur. La culture intensive nécessaire à la génération des osselets par la suite provoque l’épuisement des cellules et ne permet malheureusement pas d’en produire suffisamment pour exploiter le modèle. Les solutions d’amélioration du protocole proposées dans cette discussion ne sont pas compatibles avec l’étude du rôle fonctionnel d’un environnement âgé dans la leucémogénèse car elles impliquent soit la modification des CSM dans un but de “rajeunissement”, soit une sélection des cellules les plus multipotentes, au détriment des cellules sénescentes ou pré-sénescentes. L’âge augmentant le phénotype sénèscent des cellules, nous introduirions donc un biais de sélection des cellules bien trop important. Une optimisation du modèle en vue d’utiliser moins de cellules pourrait être envisagée. Cette solution permettrait à la fois de réduire l’épuisement des CSM mais aussi de réduire l’introduction de biais expérimentaux associée à la culture intensive des cellules.

Dans les progrès futurs, il serait également intéressant de développer les osselets de Reinisch non pas dans des souris NSG mais chez des souris exprimant des cytokines humaines comme les MISTRG afin de recreer un environnement qui soit encore plus fidèle aux conditions physiologiques humaines.

En attendant, il serait plus avantageux de trouver un autre modèle d’environnement médullaire in vivo, moins coûteux en termes de nombre de cellules et plus facilement reproductible. Parmi les modèles murins existants, on retrouve ceux des équipes d’Anthon Martens249 et Dominique Bonnet315 qui utilisent des supports physiques en 3D pour l’ensemencement des CSM in vitro avant leur implantation par chirurgie aux souris immunodéficientes. Ces modèles ont l’avantage de demander moins de cellules que le modèle d’Andreas Reinisch (1 à 2x10^5 cellules par osselets, contre 2 millions pour le modèle d’Andreas Reinisch). Leurs protocoles restent néanmoins plus lourds avec un plus grand nombre d’étapes et surtout la nécessité d’une chirurgie qui est non sans risque pour la souris. Une autre technique serait de co-injecter les cellules leucémiques avec les CSM en intra-fémoral aux souris immunodéficientes, comme proposé par Rouault-Pierre et al en 2017241 et Meuneir et al. en 2018316 avec leurs modélisations des syndromes myélodysplasiques.
Il est également envisageable, si ces modèles s’avèrent également difficiles à reproduire, étant donné la complexité du protocole et les quantités de cellules requises, d’étudier le microenvironnement médullaire dans un système de culture en trois dimensions in vitro. Malgré l’imperfection de ce système dû aux biais introduits par la culture et le fait qu’il ne prenne pas en compte l’influence des interactions dans un organisme entier, ce genre de modèle reste une bonne alternative. En 2018, M VJ Braham et collègues ont publié un modèle 3D de niche hématopoïétique in vitro intéressant constitué d’un mix de cellules primaires ne nécessitant pas l’addition de cytokines au support 3D pour assurer le support des CSPH. Dans leur modèle, la combinaison de cellules différenciées adipocytaires, ostéogéniques et endothéliales dans du matrigel permet le support optimal des cellules CD138+ de myélome. Ce modèle relativement fidèle permet l’étude in vitro des interactions des CSHP avec leur environnement endostéal et périvasculaire. Ce modèle ainsi être une alternative intéressante pour l’étude de l’environnement médullaire dans la LMMC.
Partie 2 : caractérisation *ex vivo* des CSM de patients

Dans cette seconde partie, nous rapportons sous la forme d’une ébauche d’article les résultats encore préliminaires obtenus dans les 18 mois constituant cette seconde partie de thèse.

L’analyse de l’expression des gènes dans les cellules souches mésenchymateuses de patients amplifiées *ex vivo*, comparée à celle de cellule de sujets âgés sans LMMC amplifiées dans les mêmes conditions, suggère que la LMMC s’accompagne d’une dérégulation cytokinique au sein de laquelle nous avons retenu la production excessive d’IGFBP2, déjà notée dans un contexte de myélodysplasie.

La production excessive d’IGFBP2 par les cellules souches mésenchymateuses a été validée par le dosage de la protéine dans le surnageant de culture. La production d’IGFBP2 par ces cellules en culture est corrélée à un taux élevé d’IGFBP2 dans le surnageant médullaire. Cette augmentation du taux d’IGFBP2 est également détectée dans le plasma de certains patients.

Nos résultats complémentaires apportent trois informations 1) le séquençage d’ARN à l’échelle unicellulaire suggère que seule un fraction des cellules souches mésenchymateuses produit des quantités anormalement élevées d’IGFBP2 ; 2) ces expériences pilotes, réalisées dans 2 LMMC mais aussi une monocytose réactionnelle, révèlent que l’amplification de la production d’IGFBP2 peut aussi être observée dans ce contexte ; 3) la LMMC comme la monocytose réactionnelle induisent une perte de l’hétérogénéité des populations des CSM ; 4) le séquençage du promoteur du gène *IGFBP2* dans les cellules souches mésenchymateuses après traitement par le bisulfite suggère la déméthylation anormale de cytosines du promoteur de ce gène, susceptible d’expliquer sa surexpression ; 3) la protéine recombinante IGFBP2, ajoutée au cellules CD34 positives humaines en culture, n’a pas d’impact sur la prolifération mais favorise la différenciation monocytaire aux dépends de la différenciation granuleuse.

Ces résultats suggèrent que la dérégulation de la production d’IGFBP2 par les cellules souches mésenchymateuses de la moelle est une des composantes de la physiopathologie de la LMMC et des monocytoses réactionnelles qui participe à la différenciation monocytaire accrue des progéniteurs myéloydies.

Les travaux futurs devront explorer les mécanismes conduisant à la dérégulation d’IGFBP2 et d’autres gènes de cytokines dans les cellules souches mésenchymateuses de la moelle de patients atteints de LMMC ou de pathologie inflammatoire et l’importance de leur contribution à l’installation et à l’évolution de la monocytose.
A subset of mesenchymal stromal cells amplifies monocyte generation through IGFBP2 in chronic myelomonocytic leukemia

Chloé Jégo,1 Charles Dussiau,2 Caroline Barichon1, Dorothée Selimoglu-Buet,1 Melissa Saichi2, Clothilde Bravetti2, Laila Zairoli2, Margot Morabito1, Phillipe Rameau1, Cyril Catelain1, Yann Lecluse1, Lucie Laplane,1 Olivier Kosmider,1,3 Nathalie Droin,1 Eric Solary,1,4,5,6

1. INSERM U1170, Gustave Roussy Cancer Center, Villejuif, France
2. Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris 75014, France.
4. Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
5. Département d’hématologie, Gustave Roussy Cancer Center, Villejuif France

6. Correspondance to

Eric Solary
INSERM U1170, Gustave Roussy Cancer Center
114 rue Edouard Vaillant,
94804, Villejuif, France
eric.solary@gustaveroussy.fr
Phone : 33 1 42 11 51 58

Acknowledgements: The team is supported by the Ligue Nationale Contre le Cancer (Equipe labellisée 2017) and by grants from the French National Cancer Institute (INCa PRT-K and INCa PRC). CJ was supported by the Ligue Nationale Contre le Cancer and the Fondation pour la Recherche Médicale. We thank Dr Abdelkrim Achibet and Dr Ludovic Mouchard (Le Mans hospital) as well as Dr Phillippe Asquier (Pôle santé Léonard de Vinci, Chambray-lès-Tours) for providing us age-matched control bone marrow samples.
Abstract

Efforts to explore the pathogenesis of chronic myelomonocytic leukemia (CMML), a myeloid malignancy that associates features of myeloproliferative neoplasms (MPN) and myelodysplastic syndromes (MDS), have been mostly focused on genetic and epigenetic alterations of the leukemic clone. The present study investigates modifications of the bone marrow niche in CMML patients, focusing on mesenchymal stem cells (MSCs). We show that, compared to age-matched control donors, genes expressed in MSCs of CMML patients are enriched in cytokine and growth factor genes. More specifically, these cells synthesize and secrete elevated levels of Insulin-like Growth Factor Binding Protein 2 (IGFBP2). IGFBP2 overproduction, which may be epigenetically driven and can be detected also in the peripheral blood and bone marrow plasma, could promote the generation of monocytes at the expense of granulocytes. Single cell RNA sequencing experiments identify a restriction of MSC heterogeneity at the benefit of a subset that produces IGFBP2. Importantly, a very similar effect is detected in a reactive monocytosis. Together, these results suggest an amplification loop in which overproduced monocytes could promote the generation of IGFBP2 overproducing MSCs that, in turn, favor monocyte production.
Introduction

Chronic myelomonocytic leukemia (CMML) is a clonal neoplasm that arises from a single, somatically mutated, hematopoietic stem cell (HSC) and associates features of myeloproliferative neoplasms (MPN), as indicated by a persistent peripheral blood monocytosis, and myelodysplastic syndromes (MDS), with various, yet inconstant cytopenias. In the 2016 iteration of the classification of myeloid malignancies by the World Health Organization (WHO), CMML is the most frequent entity of the MPN/MDS overlap category (Arber DA 2016). The disease incidence rate that may be underestimated is about 4 per 1 000 000 per year. Median age at diagnosis is 72 year-old and the male predominance (2 males for 1 female) is similar to that observed in other ageing-associated myeloid malignancies. Clinical expression of the disease includes various combinations of constitutional symptoms, clinical effects of cytopenias or spleen size increase, extra-medullary myelomonocytic infiltrates, and autoimmune or inflammatory manifestations, mostly systemic vasculitis. CMML demonstrates a propensity to transform into hard-to-treat acute myeloid leukemia, which occurs in 20 to 25% of cases. The median overall survival of this aggressive malignancy ranges between 2 and 3 years and remains dismal in population-based studies.

CMML diagnosis requires the presence of both persistent peripheral blood monocytosis ≥1 × 10^9/L and monocytes accounting for ≥10% of the white blood cell differential count for at least 3 months. The peripheral blood leukocytosis may include monocyte or neutrophil predominance, macrocytic anemia and thrombocytopenia are common and sometimes immune related, hyperleukocytosis requesting urgent therapy and severe neutropenia are rare. In a hypercellular bone marrow, dysplasia is inconstant, blast cell percentage is heterogeneous, reticulin fibrosis, ring sideroblasts and mast cell infiltrates can be observed. Following WHO recommendation, other disorders, including acute leukemia, BCR-ABL-positive chronic myeloid leukemia and rare persistent monocytosis with eosinophilia and specific gene rearrangements must be excluded. In a hypercellular bone marrow, dysplasia is inconstant, blast cell percentage is heterogeneous, reticulin fibrosis, ring sideroblasts and mast cell infiltrates can be observed. An increase in the fraction of classical CD14+/CD16− peripheral blood monocytes higher than 94% facilitates CMML recognition when myeloid lineage dysplasia is absent.

The heterogeneous clinical and biological presentation of CMML contrasts with a low genetic heterogeneity that has been largely explored in the last decade. Non-specific clonal cytogenetic abnormalities are detected in 20–40% of patients. Using whole exome sequencing, molecular aberrations are identified in every CMML patient and affect mostly epigenetic, splicing, and signaling genes. Typically, the disease genomic fingerprint diversely combines mutations in TET2, SRSF2, and ASXL1 genes and genes of the RAS signaling pathway (mainly NRAS, KRAS, and CBL genes). The association of SRSF2 and TET2 mutations may be highly specific for CMML disease phenotype. Whole genome sequencing of leukemic cell DNA identifies two clock-like molecular signatures, supporting the idea that ageing is the main cause of the disease. Epigenetic alterations such as DNA hypermethylation complement genetic alterations to generate the disease phenotype.

Parameters of negative prognostic significance recognized by the WHO include a white blood cell count over 13 × 10^9 G/L, which separates MPN-CMML, in which the RAS/MAPK signaling pathway is frequently activated, from MDS-CMML whose outcome is better, and the blast percentage in the
blood and bone marrow that separate CMML-0 from CMML-1 and CMML-2. A number of prognostic scoring systems have been established, combining clinical, cytogenetic and molecular information to improve CMML prognostication. All these tools demonstrate similar and limited performance, suggesting that additional parameters contribute to delineate the disease severity.

Except allogeneic stem cell transplantation, which is a potentially curative option but is only rarely feasible because of age and comorbidities, there is no disease-modifying treatment of CMML. Treatment selection is driven by a personalized approach guided by symptom burden. Commonly used drugs include erythropoiesis supporting agents in anemic patients, cytoreductive drugs such as Hydroxyurea in the proliferative version of the diseases and hypomethylating agents in the most severe and dysplastic forms of the disease. Given the short survival of these patients, there is an unmet need for improved therapeutic strategies.

Efforts to explore CMML pathogenesis have been focused so far on cell autonomous factors, including genetic and epigenetic alterations of the hematopoietic clone. HSCs reside in specialized niches in the bone marrow, in close association with other tissue-resident cells that regulate their functions. These cells include mesenchymal stem and progenitor cells (MSCs), osteolineage cells, chondrocytes and adipocytes that derived from MSCs, endothelial cells, cells of the sympathetic nervous system and hematopoietic cells such as megakaryocytes and macrophages. In addition to maintaining HSC homeostasis, the niche could play a role in the pathogenesis of myeloid malignancies including CMML. Identifying extrinsic factors involved in CMML pathogenesis could guide therapeutic approaches aiming to target the leukemic niche specifically. So far, only one study of MSCs in CMML has been reported, identifying IL-32 as a marrow stromal marker that distinguished MDS, in which IL-32 production was increased, from CMML, in which IL-32 production was only one tenth the level measured in healthy controls.

In the present study, we explored bone marrow MSCs in CMML patients. We show that, compared to age-matched control donors, MSCs of CMML patients are enriched in a population of cells that synthesize and secrete high levels of Insulin-like Growth Factor Binding Protein 2 (IGFBP2). IGFBP2 overproduction, which may be epigenetically driven, could promote the generation of monocytes at the expense of granulocytes. Identification of a population of IGFBP2 overproducing MSCs in a patient with a reactive monocytosis suggests an amplification loop in which overproduced monocytes could promote the generation of IGFBP2 overproducing MSCs that, in turn, favor monocyte production.
Patients and methods

Patients samples.
All the biological samples were collected after informed consent according to the Declaration of Helsinki. Bone marrow and blood samples from CMML patients were collected at diagnosis or at medical follow-up. CMML patients were enrolled between 2017 and 2019 in a non-interventional study initiated by the Groupe Francophone des Myélodysplasies with informed consent following the authorization provided by the ethical committee Ile-de-France 1 (DC-2014-2091). A learning cohort included patients with a CMML diagnosis according to the WHO classification criteria (n = 12); age-matched healthy donors (n = 7). A validation cohort included CMML patients (n =22); age-matched healthy donors (n = 19). Another cohort of 22 healthy donors and 11 patients allowed us to dose IGF1 in the plasma. Detailed characteristics of these groups are in Supplemental Table 1 and 2. They were either untreated or received supportive care or cytotoxic treatment, in most cases hydroxyurea. Sorted monocyte DNA from these patients was subjected to a 38-gene panel targeted assay as previously described. Bone marrow samples from aged-matched healthy donors were collected from femoral heads of patients undergoing chirurgical intervention to treat mechanical osteoarthritis without inflammatory problems thanks to Dr Abdelkrim Achibet and Ludovic Mouchard (Le Mans hospital) as well as Dr Philippe Asquier (Pôle santé Léonard de Vinci, Chambray-lès-Tours) collaborations. Healthy cord blood samples were collected at Saint Louis hospital and buffy coats from healthy donors were obtained from Etablissement Français du sang, Rungis, France.

Isolation and expansion of BM-MSC.
Femoral heads from age-matched healthy donors were mechanically scrubbed with spatulas and treated with 2µg/mL sterile DNase (Sigma). DNase treatment was neutralized by adding 2:3 1X PBS (Gibco) and centrifuged at 300g during 10 minutes. Cells were then resuspended in 1X PBS and filtered (100µm). Bone marrow samples from CMML were harvested from medullary aspiration on EDTA. Bone marrow mononuclear cells from CMML and healthy donors were separated on Pancoll (Pan-Biotech, Dutscher, Brumath, France). CD34+ hematopoietic stem and progenitor cells were sorted with magnetic beads and the AutoMacs system (Miltenyi Biotech, Paris France). After sorting, CD34+ cells were frozen in FBS 10% DMSO (Sigma) and MSC were isolated by adhesion from CD34- cell fraction. CD34+ cell fraction was cultured at 2.10^6 cells/mL in MSC expansion medium composed of ½ αMEM (Gibco®), 10% FBS (Hyclone, lot: ANB18250), and ½ milieu StemMACS™ MSC Expansion Media (Miltenyi®), supplemented with 1% penicilline/streptomycine (PS), 2mM L-glutamine (all Gibco®), at 37°C, 5% CO2, 20% O2. This step is considered as passage 0 (P0) of MSC culture. Between 24 and 72 hours after seeding, hematopoietic cells in suspension in the medium were discarded and MSC were washed once with 1X PBS before changing culture medium. After approximately 12 days of culture (less if cells from clusters reached 80% confluence) cells were trypsinized 10 min at 37°C with TrypLEEXPRESS (Gibco®). Trypsine was neutralized by adding 2:3 of medium, and then cells were centrifuged at 300g for 10min at room temperature. From this passage, cells were cultured between 1000 to 5000 cells/cm² approximately 12 days before the next passage (less if cells reached 80% confluence). Passage 2 BM-MSCs were used for experiments.

Phenotypic analysis of BM-MSC.
Purity of harvested BM-MSC population was assessed by phenotypic analysis of the surface markers on BD LSRRfortessa™ flow cytometer (BD Biosciences). In brief, cells were kept from light and incubated for 30 min at room temperature with True Human Stain Fc Block (dilution 1 :20, Biolegend)
and anti-CD90 (BUV395; dilution 1:100, clone 5E10), CD105 (BV786, dilution 1:100, clone 266), CD73 (PE-Cy7, dilution 1:100, clone AD2) antibodies—all from BD Biosciences—CD166 (PE, dilution 1:100, clone 3A6), CD45 (APC, dilution 1:100, clone HI30), CD34 (APC, dilution 1:100, clone 581), CD14 (APC, dilution 1:100, clone M5E2), CD19 (APC, dilution 1:100, clone HIB19), HLA-DR (APC, dilution 1:100, clone L243) antibodies—all from Sony Biotechnology. Cell viability was assessed using DAPI solution (dilution 1:6000, BD Biolegend). Cells were then washed with 1X PBS containing 0.1% bovine serum albumin and analyzed by flow cytometry.

Isolation of CD34+ cells and monocytes.

CD34+ cells were isolated from BM of both CMML patient and age-matched healthy donors, and from healthy donor cord blood samples. Monocytes were isolated from healthy donor buffy coats and CMML patient peripheral blood. Peripheral blood mononucleated cells (PBMC) were separated on Pancoll (Pan-Biotech, Dutscher, Brumath, France). Hematopoietic stem and progenitor CD34+ cells and CD14+ monocytes were sorted with magnetic beads and the AutoMacs system (Miltenyi Biotech, Paris France).

RNA sequencing on bulk cells

RNA sequencing was performed on cultivated BM-MSC harvested after 4 days in culture at passage 2 at 1000 cells/cm² from healthy donors (n=3) and from CMML patients (n=6). Total RNA were extracted using phenol/chloroform (TRizol Invitrogen) protocol, with an RNA precipitation step by isopropanol overnight at -20°C. Total RNA were stored at -80°C until used. The RNA integrity (RNA Integrity Score ≥ 7.0) was checked on the Agilent 2100 Bioanalyzer (Agilent) and quantity was determined using Qubit (Invitrogen). SureSelect Automated Strand Specific RNA Library Preparation Kit was used according to manufacturer’s instructions with the Bravo Platform. Briefly, 100 ng of total RNA sample was used for poly-A mRNA selection using oligo(dT) beads and subjected to thermal mRNA fragmentation. The fragmented mRNA samples were subjected to cDNA synthesis and were further converted into double stranded DNA using the reagents supplied in the kit, and the resulting dsDNA was used for library preparation. The final libraries were bar-coded, purified, pooled together in equal concentrations and subjected to paired-end sequencing on Novaseq-6000 sequencer (Illumina) at Gustave Roussy.

RNA sequencing analysis.

First, reads from fastq files were trimmed to remove low quality sequence with trimmomatic (v.0.33). Transcript quantification for each RNA-seq sample were computed with salmon (V.01.13.1)

using the mapping-based method. The index was built with the set of transcripts from Genecode V27 (GRCh38.p10). Raw counts were produced at gene level, using the Genecode V27 gtf file. Differential analysis was performed using the package DESeq2

from R. Gene ontology annotation was performed using geneontology.org website. We selected the most accurate pathways based on higher fold change.

Single cell RNA sequencing.

Single cell RNA sequencing was performed on cultivated BM-MSC harvested after 7 days in culture at passage 3 from healthy donors (n=4), from CMML patients (n=2) and reactive monocytosis (n=1). BM-MSC were trypsinized as described above and counted in trypan blue before being encapsulated in a gel bead and loaded to Chromium Controller Instrument (10X Genomics). Cells were processed through the Chromium Single-cell 3′ v2 Library Kit (10X Genomics). Briefly, 10,000 cells were loaded onto a single channel of the 10X Chromium Controller. Messenger RNA from approximately ∼7,000
cells, captured and lysed individually within nanoliter-sized gel beads in emulsion, was reverse transcribed and barcoded using polyA primers with unique molecular identifier sequences before being pooled, amplified, and used for library preparation. Libraries were sequenced in SP flowcell of an Illumina NovaSeq 6000 system at Gustave Roussy.

Single cell RNAseq analysis.

In total, the seven cDNA samples were sequenced in one run in one flowcell in a NovaSeq. Sequencing results were demultiplexed and converted to FASTQ format using Illumina bcl2fastq software. The Cell Ranger Single-Cell Software Suite (https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/what-is-cell-ranger) was used to perform sample demultiplexing, barcode processing and single-cell 3’ gene counting. The cDNA insert was aligned to the hg19 reference genome. Only confidently mapped, non-PCR duplicates with valid barcodes and unique molecular identifiers were used to generate the gene-barcode matrix. Further analysis—including quality filtering, the identification of highly variable genes, dimensionality reduction, standard unsupervised clustering algorithms and the discovery of differentially expressed genes—was performed using the Seurat R package version 3.24 To exclude low-quality cells, we only keep the cells that had more than 200 detected genes. We also removed cells with more than 15% of the transcripts coming from mitochondrial genes. After removing unwanted cells from the dataset, we normalized the data by using the scranform R package (Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression BioRXive), with a direct interface to our single-cell toolkit Seurat. To visualize the data, we further reduced the dimensionality of the entire 12,697-cell dataset to project the cells in 2D space using UMAP, on the basis of the aligned canonical correlation analysis. Aligned canonical correlation analysis was also used as a basis for partitioning the dataset into clusters using a shared nearest neighbour modularity optimization algorithm. To determine cluster markers and differentially expressed genes, we used the FindMarkers function of Seurat v3 that enable us to Identify differentially expressed genes between two groups of cells using a Wilcoxon Rank Sum test

Cytokine array.

Cytokine array was carried out on culture supernatants of a learning cohort of BM-MSC from CMML patient (n=12) and age-matched healthy donors (n=7). In brief, BM-MSC were cultured in an expansion medium in a 12-well plate at a density of 1000 cells/cm², 700µL of medium per well at passage 2. After 4 days, culture supernatants were harvested and centrifuged at 3,000 rpm for 5 min in order to pellet debris and discard them. Supernatant aliquots of 500µL were transferred in new tubes and stored at -80°C until use. Cytokines in culture supernatant were detected by Human Cytokine XL Array Kit (R&D Systems) according to the manufacturer’s instructions. The signal was detected by imageQuant LAS 4000 camera (GE Healthcare Life Science, Vélizy, France) and quantified with ImageJ software.

ELISA assays.

IGFBP2 ELISA assays were carried out on culture supernatants of a validation cohort of BM-MSC from CMML patient (n=21), age-matched healthy donors (n=18), and on blood plasma from 31 CMML patients and 34 age-matched healthy donors, on culture supernatants after 4 days of culture at passage 2 at 1000 cells/cm² as described above. Assays were performed using human IGFBP2 Quantikine ELISA Kit (R&D Systems) following manufacturer’s instructions. IGF1 ELISA assay was performed on plasma isolated from 11 CMML patients and 22 age-matched healthy donors using
Human IGF1 Quantikine ELISA Kit (R&D Systems) following manufacturer’s instructions. Optical density was measured at 450nm and 540nm using EnSpire Multimode Plate Reader (Perkin Elmer). Background optical density was measured at 540nm and subtracted to 450nm OD measurements. DO measured for 0ng/ml standard was also subtracted to 450nm OD measurements. IGFBP2 concentration in samples was extrapolated from linear regression analysis of the standard curve.

RTqPCR.
Total RNA was isolated from BM-MSC harvested after 4 days in culture at passage 2 at 1000 cells/cm² with Trizol (Invitrogen). Reverse transcription was performed using SuperScript™ VILO™ cDNA Synthesis Kit (Invitrogen™) with random hexamers (Invitrogen). Real-time quantitative PCR was performed with AmpliTaq Gold polymerase in an Applied Biosystem 7500 thermocycler using the standard Power SyBr Green detection protocol as outlined by the manufacturer (Applied Biosystems). Briefly, 50 ng of total complementary DNA, 130nM of each primer, and 1X Power SYBR™ Green PCR Master Mix (Applied Biosystems™) were used in a total volume of 20 μL. Primer sequences are: hIGFBP2 F, 5’-CGGAGCAGGTTGCGACA-3’ and R, 5’-TTCTCCACAGGCGCTCTT-3’; hHPRT F, 5’-GGACAGGACTAGCTCTGG-3’ and R, 5’-CTTGAGCACACAGGGGTCA-3’; hRPL32 F, 5’-TGCTCTGAATGTTGTCACCTGA-3’ and R, 5’-CTGCAGTCTCCTTACACCT-3’; GUS F, 5’-GAAAATATGTTTGAGAGCTCATT-3’ and R, 5’-CCGAGTGAAGATCCCCTTTTA-3’.

IGFBP2 promoter analysis.
IGFBP2 promoter analysis was performed on BM-MSC samples from CMML patients (n=4) and aged-matched donors (n=2) harvested at passage 2 day 4, and stored at -80°C in RLT+ lysis Buffer (Quiagen) supplemented with 1M DTT. Total DNA and RNA was extracted using All Prep DNA/RNA Mini Kit (Qiagen). Two hundred nanograms of total gDNA were modified by bisulfi te treatment according to the manufacturer’s instructions (MethylDetector, Active Motif). Converted variant 1 IGFBP2 promoter was identified by PCR using primers Var1_prom_conv F1, 5’-GGATGGAAGGAGTTGGTATG-3’ or F2, 5’-GAATTGAATTGAGAGTAGATAAAG-3’ and R, 5’-CTTTTAAAAACCACCTCCCCCC-3’, and direct sequencing reaction was performed using standard conditions (Applied Biosystems).

Proliferation Assay.
Cord blood CD34+ cells were stained with CFSE (Carboxyfluorescein succinimidyl ester) using the Cell Proliferation Kit (CellTrace™; Invitrogen). Cells were incubated for 15 min at 1.10^6 cells/mL with CFSE (1:2500) in pre-heated 1X PBS (Gibco) supplemented with 0.1% FBS at 37°C protected from light. Anti-CD34 antibody (APC, dilution 1:100, clone 581, Sony Biotechnologies) was added to the staining solution, together with True Human Stain Fc Block (dilution 1 :20, Biolegend). Staining was stopped by addition of 5 volumes of pre-heated IMDM medium (Gibco) supplemented with 10% FBS (Hyclone, Lot: AE35928) 1% penicilline/streptomycine (PS) for 5 min at room temperature. After centrifugation at 350g for 5 min, cells were suspended in medium and double positive CFSE/CD34-APC cells were sorted using a BD Influx™ Cell sorter and plated in triplicates at 5,000 cells/mL in expansion medium IMDM (Gibco®), BIT 9500 Serum Substitute (dilution 1:5, StemCell Technologies), 1% penicilline/streptomycine (PS), 2mM L-glutamine (all Gibco), 100ng/mL human FLT3 ligand, 10ng/mL human IL3, 60ng human SCF (all Peprotech) at 37°C, 5% CO₂, 20% O₂. Half of the cells were cultured in presence of 500ng/mL human IGFBP2 recombinant (R&D Systems). Cells were harvested on day 3, 5, 7 and 9 of culture from individual triplicates for FACS analysis on CD34 expression...
Differentiation Assay.
Cord blood CD34⁺ cells were plated at 0.5x10⁶ cells/mL in l’αMEM (Gibco®), supplemented with 10% SVF (HyClone, Lot :RAE35928), 1% penicilline/streptomycine (PS), 2mM L-glutamine (all Gibco), 50ng/mL human FLT3 ligand, 10ng/mL human IL3, 50ng human SCF, 10ng/mL murine TPO, 10ng/mL human IL6 (all PeproTech) at 37°C, 5% CO₂, 20% O₂ overnight. On the following day, cells were stained for 20 min at room temperature, with True Human Stain Fc Block (dilution 1 :20, Biolegend), anti-human CD34 FITC antibody (dilution 1 :100, clone 581, SONY) and 7-AA D (dilution 1 :20, BD Biolegend). Living cells were sorted using BD FACSAria™ II, BD FACSAria™ Fusion or BD Influx™ Cell sorter. Sorted cells were then plated in duplicates in differentiation medium composed of αMEM (Gibco), 10% FBS (HyClone, Lot :RAE35928), 1% penicilline/streptomycine (PS), 2mM L-glutamine (all Gibco®), 50ng/mL human FLT3 ligand, 10ng/mL human IL3, 50ng human SCF, 10ng/ml human G-CSF (all PeproTech). One third of the cells were cultured in presence of 500ng/mL human IGFBP2 recombinant (R&D Systems), and one other third with 1000ng/mL. From day 6 of culture to day 9, cells were harvested daily for further analysis. To ensure the harvesting of adherent cells, they were treated with PBS EDTA 10nM for 10 min at 37°C before neutralization with 2:3 medium 10% FBS. Cells were stained with anti-human CD34 FITC (clone 581, Sony Biotechnologies), anti-human CD14 BV737 (clone M5E2, BD Biosciences), anti-human CD15 BV605 (clone W6D3, Sony Biotechnologies), CD16 APC-Cy7 (clone 3G8 Sony Biotechnologies), CD163 BV711 (clone BHI/61, BD Biosciences), HLA-DR BUV395 (clone G46-6, BD Biosciences) for 30 min at room temperature (all at 1:100) before acquisition on BD LSRFortessa™ flow cytometer (BD Biosciences). Data were analysed using Kaluza (Beckman Coulter, Brea, California, USA) and ModFit LT software was used to calculate the proliferation index.

Statistical Analysis.
All statistical analyses (Wilcoxon matched-pairs signed rank test for differentiation assays, Mann–Whitney test for CTR versus CMML, and Spearman correlation) were performed using Prism software.
Results

CMML- and age-matched donor MSCs show a differential pattern of growth factor gene expression

We first collected MSCs from the bone marrow of CMML patients and age-matched control donors, seeded these cells at a density of 1000 cells/cm², amplified them for 2 passages and collected MSCs at day 4 of passage 2. A multiparametric flow cytometry approach was used to check that >98% of these amplified cells were non-hematopoietic cells expressing CD73, CD90, CD105 and CD166 (Figure S1). Principal component analysis of gene expression, as measured by RNA sequencing in each of these samples, showed that patient samples clustered separately from controls (Figure S2). Accordingly, clustered analysis of gene expression in patients and control samples identified a heterogeneous but distinct gene signature between the two categories (Figure 1A). Global comparison of gene expression identified 617 genes that were up-regulated and 258 genes that were down-regulated in patient compared to control samples (Figure 1B). Gene ontology analysis suggested that deregulated pathways in patient cells were almost exclusively related to growth factor and cytokine activity and signaling (Figure 1C). Heatmap of growth factor and cytokine genes whose differential expression was involved in the definition of these pathways showed a clear signature of CMML-associated cells (Figure 1D). Supporting these results, IL-32 gene expression was decreased in CMML associated MSCs, in accordance with a previously reported analysis in CMML (21).

IGFBP2 secretion is increased in CMML-patient, ex vivo amplified MSCs.

To further explore the deregulation of growth factor and cytokine production by CMML-MSCs, we used cytokine arrays that detect 107 cytokines to analyze the supernatant of cells amplified ex vivo and collected at day 4 of passage 2. These experiments, performed in 12 CMML and 7 age-matched control samples (Table S1), detected a decreased amount of several cytokines in patient compared to control donor samples, including IGFBP3, ApoA1, YKL40, IL12p70 and IL19. In contrast, IGFBP2 was the most consistently increased cytokine detected in CMML cell supernatant (Figure 2A; median 8.95, range 0.51-27.42 arbitrary units in patient samples compared to median 0.38, range 0.2-3.31 arbitrary units in control samples; P<0.01).

These results were validated by the use of an ELISA assay in an independent cohort of 21 patient samples and 18 donor samples (characteristics of these cohorts are in Table S1) cultured in the same conditions (Figure 2B; median 4.1, range 0.4-21.2 ng/ml in patient samples compared to median 0.4, range 0.0-11.3 ng/ml in control samples; P<0.001). IGFBP2 concentration was higher in the supernatant of proliferative compared to dysplastic CMML, as defined by WHO criteria (Figure S3A; P<0.05) and with ASXL1 and NRAS mutation (Figure S3C) whereas no significant correlation was detected with other clinical and biological disease parameters (Figure S3A to S3C).

We then performed RT-qPCR analyses, validating RNA sequencing data by showing a significant up-regulation of IGFBP2 gene in patient-derived, ex vivo amplified MSCs (Figure 2C; P<0.01). Analyzing 39 control and CMML samples together, a significant correlation was detected between IGFBP2 gene expression relative to 3 distinct housekeeping genes and the cytokine concentration measured by ELISA in the culture supernatant (Figure S4). In order to explore the mechanisms by which IGFBP2 gene could be overexpressed in CMML patient MSCs, we performed Sanger sequencing of the gene promoter, without and with previous bisulfite treatment. We detected two cytosine residues that were typically demethylated in patient samples compared to healthy donor samples (Figure 3).

Finally, we used the ELISA assay to measure IGFBP2 level in peripheral blood plasma samples collected from 31 CMML patients and 34 age-matched controls (characteristics of these cohorts are in Table S1), showing a two-fold increase in the plasma level of the cytokine in patient samples.
(Figure 1D, median 603, range 128-1203 ng/ml in patient samples compared to median 322, range 85-1276 ng/ml in control samples; P<0.001). In only 6 cases, we were able to associate IGFBP2 concentration measured in peripheral blood plasma with that measured in corresponding MSC supernatant, showing no significant correlation (Figure S5A; Spearman r= 0.54, NS). Plasma concentration of IGFBP2 was observed to increase with age in MSC from healthy donors (Figure S6, Spearman r 0.61, P<0.0001). IGFBP2 plasma level was higher in patients with anemia, as defined by an hemoglobin level lower than 10g/dl (Figure S7A), without other significant correlation detected with clinical and biological disease characteristics, including gene mutations (Figure S7A to S7C).

Of note, IGFBP2 levels measured in 11 CMML bone marrow plasma samples were in the same range (median 615, range 415-1384 ng/ml) than those measured in peripheral blood plasma. In 9 of these cases, IGFBP2 concentration in bone marrow plasma was significantly correlated to that measured in the supernatant of ex vivo amplified MSCs (Figure S5B, Spearman r 0.88, P<0.0031). Single cell RNA seq experiments identify a subset of MDSCs that overproduce IGFBP2.

In order to determine how MSCs were reshaped in the context of CMML, we performed a pilot, single cell RNA sequencing (scRNAseq) experiment comparing 2 CMML, one reactive monocytosis and 4 age-matched healthy donor samples (see characteristics in Table S2). Cells were collected after ex vivo expansion in order to get access to a sufficient amount of cells. We first used UMAP (Uniform Manifold Approximation and Projection) to capture and visualize the global structure of the generated data. This dimensionality reduction technique indicated that cells in control samples could be grouped in 14 clusters, of which only 11 were detected in the two CMML samples and 12 in the reactive monocytosis sample (Figure 4A). One of these clusters was over-represented in CMML samples (cluster 2, 30.5%), another one in reactive monocytosis (cluster 4, 80.6%) (Supplementary table S3). Clusters lost (6, 9 & 11 in CMML, 5 & 10 in reactive monocytosis) could depend on the disease. Most differentially expressed genes among these two clusters compared to others are detailed in supplemental tables S4 and S5. In each category of samples, only a fraction of MSCs were observed to express IGFBP2 gene (Figure 4B). This fraction was very low in control samples, ranging from 0.53 to 3.15% of analyzed cells (Figure 4C & 4D), and the cells expressing IGFBP2 were dispersed in a number of different clusters, as defined using UMAP (Figure 4B). The fraction of cells expressing IGFBP2 was increased in the two tested CMML (9.66 and 17.42%, respectively) (Figure 4C & 4D), again dispersed in several clusters although the majority were in the main cluster identified in CMMLs samples (Figure 4B). Finally, the highest fraction of IGFBP2 overexpressing cells was detected in the reactive monocytosis sample (Figure 4C & 4D), suggesting that overproduction of IGFBP2 by bone marrow niche cells was not a specific feature of myeloid malignancies. Of interest, gene expression analysis in the population of cells that express IGFBP2 suggested high expression of TAGLN (Transgelin) gene (Table S6), a TGFB-inducible gene whose product promotes MSC differentiation and whose expression inhibition leads to decreased expression levels of IGFBP2 in hMSCs.

IGFBP2 promotes CD34+ cells differentiation into monocytes rather than granulocytes

We then explored how IGFBP2 overproduced by MSCs could affect the behavior of HSPCs. Since IGFBP2 has been reported to affect the proliferation of these cells, we first stained cord blood CD34+ cells with carboxy-fluorescein succinimidyl ester (CFSE), sorted CFSE / CD34-APC double stained cells and plated these cells in expansion medium with FLT3-ligand, IL-3 and SCF, in the absence or presence of 500 ng/mL IGFBP2, for 9 days. CFSE fluorescence was analyzed by flow cytometry in cells (after eliminating DAPI positive cells) every 2 days, starting on day 3 of culture. In these conditions, we failed to detect any significant effect of IGFBP2 on CD34+ cell proliferation.
(Figure 5A and 5B). We then analyzed how IGFBP2 could affect CD34⁺ cells differentiation. Cord blood CD34⁺ cells were plated in liquid medium in the presence of FLT3 ligand, IL-3, SCF and G-CSF, in the absence or presence of 500 or 1000 ng/mL IGFBP2 for 6 to 9 days before analyzing cell surface markers CD14, CD15, CD16, CD34, CD163 and HLA-DR by flow cytometry. We observed a time and dose-dependent effect of IGFBP2 that induced an increase in the fraction of CD14-labelled cells (at day 9, 42.4 +/- 7.6% in the absence of IGFBP2, 53.1 +/- 7.1% in the presence of 500 ng/mL IGFBP2 and 57.5 +/- 5.8% in the presence of 1000 ng/mL IGFBP2, P<0.05), at the expense of CD15-labelled cells (at day 9, 57.6 +/- 7.6% in the absence of IGFBP2, 46.9 +/- 7.1% in the presence of 500 ng/mL IGFBP2 and 42.5 +/- 5.8% in the presence of 1000 ng/mL IGFBP2, P<0.05) (Figure 5C). Of note, IGFBP2 may also decrease the kinetics of differentiation as the fraction of residual CD34⁺ cells in the culture medium was significantly higher at day 8 and day 9 in the presence of IGFBP2, i.e at day 9, the fraction of residual CD34⁺ cells was 13.9 +/- 4.8% in the absence of IGFBP2, 17.4 +/- 5.3% in the presence of 500 ng/mL IGFBP2 and 19.1 +/- 5.4% in the presence of 1000 ng/mL IGFBP2 (Figure 5C, P<0.05).
Discussion

The present study indicates that, in CMML patients, bone marrow MSCs have an abnormal pattern of cytokine production and identifies IGFBP2 as one of the most prominent cytokines overproduced by a fraction of these MSCs in the bone marrow niche of CMML patients. This secreted protein, which may be also overproduced by a fraction of MSCs in an inflammatory setting, could slow down the differentiation of CD34+ cells and favor the generation of monocytes at the expense of granulocytes. The bone marrow niche is altered in both dysplastic and proliferative myeloid malignancies. MDS cells reprogram their bone marrow niche, especially mesenchymal stromal cells (MSCs) [28,29]. In a mouse model of Jak2V617F MPN, disease creates neuropathic changes that affect the functions of perivascular MSCs [30]. Also, Gli1- expressing MSCs activated upon expansion of an MPN clone differentiate into matrix-producing myofibroblasts that contribute to fibrosis development [31]. When reprogrammed by dysplastic cells of the bone marrow, MSCs promote the propagation of MDS initiating cells in orthotopic xenografts, indicating a striking dependence of MDS propagating cells on surrounding MSCs [32]. The use of scaffolds coated with autologous MSCs also improves the engraftment of MDS cells, further suggesting that MDS propagating cells are highly dependent on their niche [33,34].

Here, we show that CMML patient MSCs demonstrate deregulated gene expression that, according to gene pathway analyses, mostly affect cytokine and growth factor genes. For example, these results validate the previously reported decrease in the production of IL-32, suggested to be a marrow stromal marker that distinguishes patients with MDS and CMML [21]. By measuring cytokines in the supernatant of ex vivo expanded patient-derived MSCs, we detect an overproduction of IGFBP2 that, on the contrary to IL-32, may be common to MDS and CMML [32], and, according to our preliminary results, also observed in reactive monocytosis, suggesting a non-specific inflammatory marker. The cytokine appears to be produced by a disease-associated subset of MSCs. Additional experiments at the single cell level will be required to determine if the cells that overproduce IGFBP2 in CMML, MDS and reactive monocytosis have a similar pattern of gene expression. Another important question that could be addressed in whether the gender-dependent functions of IGFBP2 could be one of the parameters that account for the strong predominance of males among CMML patients.

In the MDS setting, MSC show widespread cytosine hypermethylation, which, for example, leads to the aberrant activation of the WNT/β-catenin pathway in myeloid cells [35,36]. Our preliminary results rather argue for a demethylation of cytosine residues in the promoter of IGFBP2 gene in CMML patient MSCs. These results need to be validated and extended by further analyzing IGFBP2 gene regulation in MSCs and exploring the global pattern of DNA methylation in MSCs of CMML patients and age-matched donors.

IGFBP2 is a member of IGFBP family, which is made of six high affinity proteins that coordinate and regulate IGF bioavailability and activity through binding the growth factors IGF-I and IGF-II. Out of the cells, IGFBP2 demonstrates also IGF-I and IGF-II independent bioactivities, i.e. interacts with cell surface integrin receptors and binds to extracellular matrix components and cell membrane proteoglycans. IGFBP2 form complexes with various other proteins that are released through IGFBP2 proteolysis. Ablation as well as overexpression of the Igfbp2 gene in mice identified key and gender-dependent functions of the protein in bone formation, body weight regulation and metabolism [37]. In the hematopoietic system, IGFBP2 was reported to support ex vivo [38] and in vivo [39] expansion of healthy HSCs. In mice, bone marrow stromal cells that are deficient for IGFBP2 have a decreased
ability to support the survival and expansion of repopulating HSCs in transplantation experiments, and the C-terminus part of the secreted protein may be responsible for IGFBP2-mediated HSC expansion. These effects have been mostly documented in transplantation experiments and we failed to detect any significant effect of IGFBP2 on CD34⁺ cell proliferation in liquid culture.

IGFBP2 could also modulate the differentiation of MSCs in an autocrine manner by promoting adipogenesis⁴⁰. Our preliminary experiments demonstrate a differentiation bias of patient MSCs into adipocytes, which could potentially involve an IGFBP2-dependent autocrine loop. Of note, IGFBP2 was also suggested to play a cell autonomous function in the leukemic cell clone as IGFBP2 mRNA is aberrantly expressed in a variety of leukemic cells, and clinical studies have associated elevated serum and mRNA levels of IGFBP2 in blast cells with chemoresistance and a poor outcome in pediatric as well as adult leukemias⁴¹. The currently analyzed cohort of CMML patients will need to be extended to determine if IGFBP2 plasma level correlates with clinical and biological features of this specific disease.

Recent observations in mouse models have introduced the concept of niche-driven oncogenesis in the hematopoietic system, i.e. primary alterations of the mesenchymal niche could induce MDS and promote their acute transformation^{42,43}. Activating mutations in Ptpn11, which encodes the protein tyrosine phosphatase SHP2, in mouse MSCs and osteoprogenitors had detrimental effects on HSCs through excessive production of the chemokine CCL3, which recruits monocytes to the niche and provokes the release of proinflammatory cytokines⁴⁴. Also, in a mouse model of the Shwachman-Diamond syndrome (SDS), perturbation of MSCs induces a genotoxic stress in HSCs through inflammatory signaling involving a p53-S100A8/9-TLR pathway⁴⁵, an alarmin-mediated inflammatory signaling similar to that activated by other cells in the microenvironment such as myeloid-derived suppressor cells⁴⁶ and by HSCs themselves as a consequence of founder genetic alterations⁴⁷, licensing a redox-sensitive inflammasome circuit in HSCs⁴⁸. In the context of human myeloid malignancies, distinguishing primary alterations in MSCs from MSC reprogrammation by malignant cells remains a difficult task. If IGFBP2 production by MSCs can be increased in an inflammatory setting and contribute to monocyte expansion, this cytokine may be one of the components that contribute to niche-driven oncogenesis.

Such a role could also make IGFBP2, which is a critical point in the crosstalk of several signaling pathways, a potential therapeutic target to disrupt critical interactions between malignant stem cells and their stroma. As a proof of concept, IGFBP2 can be targeted with OGX-225, an antisense oligonucleotide that could attenuate cancer cell line aggressiveness⁴⁹. Alternative approaches will depend on whether IGFBP2 affects myeloid cell development in a IGF1-dependent manner or not as several therapeutic strategies that target IGF-1R with monoclonal antibodies (Dalotuzumab; Cixutumumab) and small molecule tyrosine kinase inhibitors (BMS-754807) are currently developed in clinics and could be used in the myeloid disease setting if IGFBP2 effects depend on IGF1. Further research will consolidate the current observation and explore if targeting IGFBP2 could make sense as a therapeutic strategy to prevent CMML emergence or progression.
Figures legend

Figure 1 - RNAseq analysis of CMML patients-derived and healthy donor derived MSCs. MSCs were sorted from bone marrow samples collected in 6 patients with a CMML and 3 age-matched controls, expanded ex vivo and collected at day 4 of passage 2. A. Heatmap of the clustered analysis of differentially expressed genes. Red: high expression, blue: low expression P: CMML samples; CTR: age-matched donor samples. B. Volcano plot representation of differentially expressed genes in MSCs from CMML patients (n=6) and CTR (n=3). DE-Down, genes down-regulated in CMML samples compared to controls; DE-Up, genes up-regulated in CMML samples compared to controls; NDE, genes not differentially expressed between CMML and control samples; Pathway genes, genes defining pathways. C. Pathway analysis was performed using geneontology.org. D. Heatmap of genes whose differential expression defined pathways named “Signaling receptor binding” and “Growth factor activity”

Figure 2 - CMML patient derived MSCs produce high levels of IGFBP2 also found in the plasma. A. Array analysis of cytokines (n=107) present in the supernatant of MSCs of 12 CMML patients and 7 age-matched controls amplified ex vivo and collected at day 4 of passage 2. B. ELISA quantification of IGFBP2 production in the supernatant of MSCs of a validation cohort of age-matched controls (n=18) and CMML patients (n=21). C. RT-qPCR measurement of IGFBP2 mRNA expression in MSCs from the same cohort, using RPL32 gene as housekeeping gene. D. ELISA quantification of IGFBP2 peripheral blood plasma level of 34 age-matched controls and 31 CMML patients. Mean and SEM are shown. Statistical analyses: Mann-Whitney test, ** P<0.01; *** P<0.001.

Figure 3 - IGFBP2 gene promoter methylation profile. Sanger sequencing of bisulfite-treated DNA of MSCs collected from 4 CMML patients and 2 age-matched controls. Top, original sequence without bisulfite; below, bisulfite-converted sequence. Unmethylated cytosine (C in blue) converted into uracile, then into thymidine; methylated cytosine residues remain unconverted (Y, purple).

Figure 4 - Single cell RNA sequencing of MSCs. Cells from 4 age-matched controls (CTR), 2 CMML patients (P2723 and P2775) and one patient with reactive monocytosis were collected after ex vivo amplification, at day 7 of passage 3. A. UMAP representation of cell clusters in CTR, CMML and reactive monocytosis samples. In total, 14 clusters had been defined, based on differentially expressed genes. CMML samples are predominantly composed of cluster #2 and reactive monocytosis cluster #4. B. UMAP representation of cells expressing IGFBP2 (in blue) among the different groups. C. Percentage of cells expressing IGFBP2 in each sample. D. IGFBP2 expression in each sample. A threshold of 0.5 had been defined to differentiate IGFBP2 expressing cells (IGFBP2+) from IGFBP2 non expressing cells (IGFBP2−)

Figure 5 – IGFBP2 effects on CD34+ hematopoietic stem and progenitor cells. A. Cord blood CD34+ cells were stained with CFSE to monitor their proliferation capacity in the absence or presence of 500ng/mL human recombinant IGFBP2. Cells were analyzed by flow cytometry on day 3, 5, 7 and 9. Top: CFSE intensity without (left) or with (right) IGFBP2 during 3 (purple), 5 (blue), 7 (green), and 9 (red) days. Bottom: CFSE intensity without (red) or with (blue) IGFBP2 at indicated days. B. Proliferation Index of CD34+ cells with (in grey) or without IGFBP2 (in black) among time, as determined using ModFit software. C. Impact of IGFBP2 (500 and 1000 ng/mL) on CD34+ cells differentiation in vitro (n=7). Percentages of CD34+ (% singulets), CD14+ and CD15+ cells (on differentiated cells) were assessed by flow cytometry on day 6, 7, 8 and 9 of culture (Wilcoxon patched-pairs signed rank test).

Supplemental figures
Supplemental figure 1. Gating strategy used for multiparameter flow cytometry analysis of MSC expanded ex vivo and collected by exposure to trypsin. Morphology assessment was used to select the cells of interest. We then eliminated DAPI-positive dead cells and focused on singlets. Within these cells, the percentage of hematopoietic cells, as assessed using a mixture of CD45, CD34, CD14, CD15, CD19 and HLA-DR (all in APC lineage markers, was checked to be lower than 5% (every samples showing more than 5% hematopoietic cells was discarded) before examining the expression of MSC specific markers CD90, CD166, CD73 and CD105.

Supplemental figure 2. Unsupervised cluster by principal component analysis showing the differential clustering of control (in blue) and CMML samples (in red).

Supplemental Figure 3. Relationship between IGFBP2 in MSC culture supernatant, clinical parameters and IGFBP2 gene expression in MSCs IGFBP2 concentration in MSC culture supernatant collected at day 4 of passage 2 in: A. Top left panel: WHO-defined dysplastic (n =6) and proliferative (n = 2) CMML; Top right panel: WHO-defined subcategories of CMML, including CMML-0 (n = 3), CMML-1 (n = 9), CMML-2 (n = 8); Bottom left panel: CMML patients without (n = 8) and with (n = 13) anemia, as defined by hemoglobin <12g/dL for males and <11.5 g/dL for females; Bottom right panel: CMML patients with a platelet count higher (n = 6) or lower (n = 13) than 150G/L; B. CMML patient groups per mutation category: epigenetic (TET2, ASXL1, DNMT3A, IDH2, EZH2), splicing (SRSF2, ZRSF2) and signaling (NRAS, KRA, CBL, JAK2) genes. C. CMML patients without or with indicated gene mutations. All panels, Mann-Whitney test, * P<0.05; NS, non significant.

Supplemental Figure 4. Relationship between IGFBP2 in MSC culture supernatant and IGFBP2 gene expression in MSCs. Spearman correlation between IGFBP2 concentration measured in MSC culture supernatant collected at day 4 of passage 2 and IGFBP2 mRNA level in MSC collected simultaneously. CMML patients, n=39. Three housekeeping genes were used: GUS (β-glucuronidase, top panel), RPL32 (Ribosomal Protein L32, middle panel) and HPRT (hypoxanthine-guanine phosphoribosyltransferase, bottom panel) genes.

Supplemental Figure 5. Relationship between IGFBP2 level in MSC culture supernatant and in peripheral blood and bone marrow plasma. A. Spearman correlation between IGFBP2 concentration measured in MSC culture supernatant collected at day 4 of passage 2 and in the peripheral blood plasma. CMML patients, n=6; B. Spearman correlation between IGFBP2 concentration measured in MSC culture supernatant collected at day 4 of passage 2 and in bone-marrow supernatant of MSC. CMML patients; n=9.

Supplemental Figure 6. Relationship between IGFBP2 level in peripheral blood plasma and age. Spearman correlation between IGFBP2 concentration in peripheral blood and age was established in 34 control donors.

Supplemental Figure 7. Relationship between IGFBP2 plasma concentration, clinical parameters and IGFBP2 gene expression in MSCs IGFBP2 plasma concentration in A. Top left panel: WHO-defined dysplastic (n =16) and proliferative (n = 15) CMML; Top right panel: WHO-defined subcategories of CMML, including CMML-0 (n = 9), CMML-1 (n = 12), CMML-2 (n = 8); Bottom left panel: CMML patients without (n = 12) and with (n = 17) anemia, as defined by hemoglobin <12g/dL for males and <11.5 g/dL for females; Bottom right panel: CMML patients with a platelet count higher (n = 14) or lower (n = 17) than 150G/L; B. 28 CMML patients grouped per mutation category: epigenetic (TET2, ASXL1, DNMT3A, IDH2), Splicing (SRSF2, ZRSF2, U2AF1), signaling (NRAS, KRA, CBL, JAK2) C. 28 CMML patients without or with indicated mutations. All panels, Mann-Whitney test, * P<0.05; NS, non significant.

Supplemental tables
Supplemental table 1: Clinical and biological characteristics of patients and age-matched controls used for cytokine array analysis of MSC culture supernatants, RTqPCR analysis of IGFBP2 gene expression; ELISA validation of IGFBP2 increased concentration in culture supernatant; ELISA measurement of IGFBP2 in peripheral blood plasma and in bone marrow plasma; bulk RNAseq analysis.

Supplemental table 2. Clinical and biological characteristics of patients and age-matched controls used for single-cell RNA sequencing and their IGFBP2 concentration in MSC culture supernatant and peripheral blood.

Supplemental table 3. Repartition of clusters among the different samples in absolute cell number and percentage.

Supplemental table 4. List of differentially expressed genes in MSC cluster 2 compared to other clusters, as defined by UMAP of single-cell RNA sequencing analyses.

Supplemental table 5. List of differentially expressed genes in MSC cluster 4 compared to other clusters, as defined by UMAP of single-cell RNA sequencing analyses.

Supplemental table 6. List of most differentially expressed genes between cells expressing IGFBP2 (IGFBP2+ cells) or not (IGFBP2− cells).

Supplemental table 7. List of most differentially expressed genes between CMML and control MSCs.

Supplemental table 8. List of most differentially expressed genes between reactive monocytosis and control MSCs.

Supplemental table 9. List of most differentially expressed genes between reactive monocytosis and CMML MSCs.
JEGO C. et al, Figure 1

A

B

C

D

Receptor regulator activity
Glycosaminoglycan binding
Growth factor receptor binding
Signaling receptor binding
Growth factor activity

Enrichment score [-LOG(p-value)]
JEGO C. et al, Figure 5

A

B

C

106
JEGO C. et al, Supplemental Figure 1

JEGO C. et al, Supplemental Figure 2
<table>
<thead>
<tr>
<th>Number of XY Pairs</th>
<th>Spearman r</th>
<th>95% confidence interval</th>
<th>P value (two-tailed)</th>
<th>P value summary</th>
<th>Exact or approximate P value?</th>
<th>Is the correlation significant? (alpha=0.05)</th>
</tr>
</thead>
<tbody>
<tr>
<td>39</td>
<td>0.7703</td>
<td>0.5945 to 0.8758</td>
<td>< 0.0001</td>
<td>***</td>
<td>Gaussian Approximation</td>
<td>Yes</td>
</tr>
<tr>
<td>39</td>
<td>0.7944</td>
<td>0.6332 to 0.8895</td>
<td>< 0.0001</td>
<td>***</td>
<td>Gaussian Approximation</td>
<td>Yes</td>
</tr>
<tr>
<td>39</td>
<td>0.7276</td>
<td>0.5276 to 0.8510</td>
<td>< 0.0001</td>
<td>***</td>
<td>Gaussian Approximation</td>
<td>Yes</td>
</tr>
</tbody>
</table>

IGFBP2 concentration in culture supernatant (ng/mL)

mRNA levels

relative to HPRT

relative to GUS

relative to RPL32
JEGO C. et al, Supplemental Figure 5

A

Number of XY Pairs	6
Spearman r | 0.5429
P value (two-tailed) | 0.2972
P value summary | ns
Is the correlation significant? (alpha=0.05) | No

B

Number of XY Pairs	9
Spearman r | 0.8833
P value (two-tailed) | 0.0031
P value summary | **
Is the correlation significant? (alpha=0.05) | Yes

JEGO C. et al, Supplemental Figure 6

Number of XY Pairs	34
Spearman r | 0.6132
95% confidence interval | 0.3377 to 0.7919
P value (two-tailed) | 0.0001
P value summary | ***
Is the correlation significant? (alpha=0.05) | Yes

Gaussian Approximation
JEGO C. et al, Supplemental Figure 7

A

<table>
<thead>
<tr>
<th>Clinical parameter</th>
<th>Normal</th>
<th>Anemia</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGFBP2 concentration (ng/mL)</td>
<td>0</td>
<td>1500</td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th>IGFBP2 concentration (ng/mL)</th>
<th>CMML-0</th>
<th>CMML-1</th>
<th>CMML-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>0</td>
<td>1500</td>
<td></td>
</tr>
<tr>
<td>Anemia</td>
<td>0</td>
<td>1500</td>
<td></td>
</tr>
</tbody>
</table>

C

<table>
<thead>
<tr>
<th>Mutational status</th>
<th>TET2</th>
<th>ASXL1</th>
<th>DNMT3A</th>
<th>RUNX1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>0</td>
<td>1500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anemia</td>
<td>0</td>
<td>1500</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mutational status</th>
<th>SRSF2</th>
<th>ZRSF2</th>
<th>U2AF1</th>
<th>PHF6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>0</td>
<td>1500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anemia</td>
<td>0</td>
<td>1500</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mutational status</th>
<th>NRAS</th>
<th>KRAS</th>
<th>CBL</th>
<th>JAK2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>0</td>
<td>1500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anemia</td>
<td>0</td>
<td>1500</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Cohort Table

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Patients (n=6)</th>
<th>Age-matched controls (n=9)</th>
<th>Patients (n=12)</th>
<th>Age-matched controls (n=11)</th>
<th>Patients (n=21)</th>
<th>Age-matched controls (n=31)</th>
<th>Patients (n=34)</th>
<th>Age-matched controls (n=34)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>0 (0)</td>
<td>2</td>
<td>4 (33.33)</td>
<td>5 (41.67)</td>
<td>10 (47.62)</td>
<td>12 (66.67)</td>
<td>8 (25.81)</td>
<td>20 (60.60)</td>
</tr>
<tr>
<td>Male</td>
<td>6 (100)</td>
<td>1</td>
<td>8 (66.67)</td>
<td>2 (18.18)</td>
<td>11 (52.38)</td>
<td>6 (33.33)</td>
<td>21 (67.74)</td>
<td>14 (41.17)</td>
</tr>
<tr>
<td>Age, median (range)</td>
<td>69 (60-74)</td>
<td>77 (72-78)</td>
<td>69 (60-74)</td>
<td>72 (56-78)</td>
<td>73 (64-78)</td>
<td>79 (61-85)</td>
<td>73 (56-91)</td>
<td></td>
</tr>
<tr>
<td>Hemogramme</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leucocytose, median in G/L (range)</td>
<td>9.70 (4.40-29.80)</td>
<td>-</td>
<td>20.15 (13.15-35.78)</td>
<td>-</td>
<td>16.41 (34.15-115.7)</td>
<td>-</td>
<td>10.90 (4.28-76.60)</td>
<td>6.55 (3.00-6.70)</td>
</tr>
<tr>
<td>Hemoglobin, median in g/dL (range)</td>
<td>10.50 (10.20-13.60)</td>
<td>-</td>
<td>10.30 (8.00-15.78)</td>
<td>-</td>
<td>10.20 (5.8-14)</td>
<td>-</td>
<td>10.00 (6.80-16.8)</td>
<td>13.65 (11.80-15.20)</td>
</tr>
<tr>
<td>Platelets, median in G/L (range)</td>
<td>51 (40-91)</td>
<td>-</td>
<td>77.50 (50.0-146.0)</td>
<td>-</td>
<td>85 (50.0-146.0)</td>
<td>-</td>
<td>109 (50.0-146.0)</td>
<td>232.50 (154.00-384.00)</td>
</tr>
<tr>
<td>PNN, median in G/L (range)</td>
<td>4.50 (3.00-5.00)</td>
<td>-</td>
<td>8.94 (0.51-47.43)</td>
<td>-</td>
<td>8.57 (0.51-47.43)</td>
<td>-</td>
<td>4.60 (0.00-26.48)</td>
<td></td>
</tr>
<tr>
<td>Monocytose, median in % (range)</td>
<td>22.99 (2.88-35.00)</td>
<td>-</td>
<td>23.99 (16.00-55.22)</td>
<td>-</td>
<td>25.99 (12.5-55.57)</td>
<td>-</td>
<td>29.40 (7.0-52)</td>
<td>8.00 (7.46-12.38)</td>
</tr>
<tr>
<td>Medullar blasts, median in % (range)</td>
<td>11.50 (5.00-57.00)</td>
<td>-</td>
<td>7 (1-16)</td>
<td>-</td>
<td>7 (1-17)</td>
<td>-</td>
<td>7.00 (1-18)</td>
<td>-</td>
</tr>
<tr>
<td>CMML type, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMML-0</td>
<td>0 (0)</td>
<td>-</td>
<td>2 (16.67)</td>
<td>-</td>
<td>3 (14.29)</td>
<td>-</td>
<td>9 (29.03)</td>
<td>-</td>
</tr>
<tr>
<td>CMML-1</td>
<td>2 (33.33)</td>
<td>-</td>
<td>4 (33.33)</td>
<td>-</td>
<td>9 (42.86)</td>
<td>-</td>
<td>12 (38.71)</td>
<td>-</td>
</tr>
<tr>
<td>CMML-2</td>
<td>3 (50.00)</td>
<td>-</td>
<td>5 (41.67)</td>
<td>-</td>
<td>8 (38.10)</td>
<td>-</td>
<td>8 (28.57)</td>
<td>-</td>
</tr>
<tr>
<td>ND</td>
<td>1 (16.67)</td>
<td>-</td>
<td>1 (8.33)</td>
<td>-</td>
<td>1 (5.00)</td>
<td>-</td>
<td>2 (6.67)</td>
<td>-</td>
</tr>
<tr>
<td>IGFBP2 concentration median in ng/mL (range)</td>
<td>9.65 (0.0-21.25)</td>
<td>0.50 (0-2.83)</td>
<td>4.08 (0.49-2.25)</td>
<td>0.44 (0.00-11.32)</td>
<td>402.66 (128.07-1203.01)</td>
<td>321.66 (84.75-1276.25)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mutational profile (performed on CD14+ cells)

Patients without mutations analysis, n (%)	3 (50.0)	-	2 (16.67)	-	2 (9.52)	-	3 (9.68)	-
TET2 mutated, n (%)	3 (50.00)	-	8 (66.67)	-	12 (55.55)	-	19 (61.29)	-
ASXL1 mutated, n (%)	1 (16.67)	-	4 (33.33)	-	5 (23.81)	-	11 (55.6)	-
SF3B1 mutated, n (%)	3 (50.00)	-	5 (41.67)	-	8 (38.10)	-	11 (55.6)	-
RUNX1 mutated, n (%)	2 (33.33)	-	1 (8.33)	-	8 (38.10)	-	6 (31.58)	-
NRAS mutated, n (%)	1 (16.67)	-	5 (41.67)	-	5 (57.14)	-	5 (16.13)	-
KRAS mutated, n (%)	0 (0)	-	1 (8.33)	-	1 (8.33)	-	3 (10.95)	-
CEB mutated, n (%)	0 (0)	-	0 (0)	-	1 (8.33)	-	7 (22.58)	-
SF3B1 mutated, n (%)	0 (0)	-	1 (8.33)	-	3 (14.29)	-	1 (3.12)	-
ERAS mutated, n (%)	0 (0)	-	0 (0)	-	1 (8.33)	-	5 (16.13)	-
DNMT3A mutated, n (%)	0 (0)	-	1 (8.33)	-	1 (8.33)	-	5 (16.13)	-
U2AF1 mutated, n (%)	0 (0)	-	0 (0)	-	0 (0)	-	1 (3.12)	-
ZRSR2 mutated, n (%)	0 (0)	-	0 (0)	-	0 (0)	-	5 (16.13)	-
CSF3R mutated, n (%)	0 (0)	-	0 (0)	-	0 (0)	-	0 (0)	-
IDH1 mutated, n (%)	0 (0)	-	0 (0)	-	0 (0)	-	0 (0)	-
IDH2 mutated, n (%)	0 (0)	-	0 (0)	-	0 (0)	-	0 (0)	-
EZH2 mutated, n (%)	0 (0)	-	0 (0)	-	0 (0)	-	5 (16.13)	-
JAK2 mutated, n (%)	0 (0)	-	0 (0)	-	0 (0)	-	5 (16.13)	-
IDH2 mutated, n (%)	0 (0)	-	0 (0)	-	0 (0)	-	5 (16.13)	-
FLT3 mutated, n (%)	0 (0)	-	0 (0)	-	0 (0)	-	5 (16.13)	-
KIT mutated, n (%)	0 (0)	-	0 (0)	-	0 (0)	-	0 (0)	-
CSF3R mutated, n (%)	0 (0)	-	1 (8.33)	-	2 (15.38)	-	1 (3.12)	-
P53 mutated, n (%)	0 (0)	-	0 (0)	-	0 (0)	-	5 (16.13)	-
Other mutations, n (%)	1 (16.67)	-	5 (41.67)	-	7 (33.33)	-	8 (25.81)	-

Culture supernatant: learning cohort

Culture supernant: validation cohort

Peripheral blood plasma

Culture supernatant: learning cohort

Culture supernatant: validation cohort

Peripheral blood plasma
<table>
<thead>
<tr>
<th>Parameter</th>
<th>P2723</th>
<th>P2775</th>
<th>Reactive Monocytosis</th>
<th>CTR3</th>
<th>CTR16</th>
<th>CTR18</th>
<th>CTR20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sexe</td>
<td>Male</td>
<td>Male</td>
<td>Male</td>
<td>Female</td>
<td>Female</td>
<td>Female</td>
<td>Female</td>
</tr>
<tr>
<td>Age</td>
<td>73</td>
<td>70</td>
<td>63</td>
<td>77</td>
<td>75</td>
<td>79</td>
<td>88</td>
</tr>
<tr>
<td>Hemogramme</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leucocytose, median in G/L</td>
<td>32,15</td>
<td>4,4</td>
<td>11,6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hemoglobin, median in g/dL</td>
<td>8,4</td>
<td>10</td>
<td>15,3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Platelets, median in G/L</td>
<td>146</td>
<td>14</td>
<td>512</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Monocytose, median in G/L</td>
<td>6,43</td>
<td>1,5</td>
<td>1,6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Monocytose, median in %</td>
<td>20</td>
<td>34</td>
<td>15,3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Medullar blasts, median in %</td>
<td>6</td>
<td>4</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CMML type</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMML type</td>
<td>CMML-1</td>
<td>CMML-0</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>IGFBP2 concentration median in ng/mL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In peripheral blood</td>
<td>-</td>
<td>549,72</td>
<td>207,72</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>In culture supernatant</td>
<td>3,92</td>
<td>4,82</td>
<td>6,47</td>
<td>0,02</td>
<td>0</td>
<td>0,38</td>
<td>0,26</td>
</tr>
<tr>
<td>Percentage of IGFBP2 expressing cells</td>
<td>17,42</td>
<td>9,66</td>
<td>52,71</td>
<td>0,67</td>
<td>3,15</td>
<td>2,66</td>
<td>0,53</td>
</tr>
<tr>
<td>Mutational profile (performed on CD14+ cells)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TET2 mutated</td>
<td>yes</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ASXL1 mutated</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SF3B1 mutated</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>RUNX1 mutated</td>
<td>yes</td>
<td>yes</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>NRAS mutated</td>
<td>yes</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>KRAS mutated</td>
<td>yes</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CBL mutated</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SF3B1 mutated</td>
<td>yes</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ZRSR2 mutated</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>DNMT3A mutated</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>U2AF1 mutated</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>JAK2 mutated</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>EZH2 mutated</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>IDH1 mutated</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>IDH2 mutated</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>FLT3 mutated</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>KIT mutated</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SETBP1 mutated</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CSF3R mutated</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PHF6 mutated</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PS3 mutated</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Other mutations</td>
<td>GATA2</td>
<td>MPL</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sample</td>
<td>CTR</td>
<td>CMML</td>
<td>Reactive Monocytosis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-----</td>
<td>------</td>
<td>----------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>cell number</td>
<td>percentage</td>
<td>cell number</td>
<td>percentage</td>
<td>cell number</td>
<td>percentage</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>3414</td>
<td>33.91</td>
<td>157</td>
<td>38.1</td>
<td>17</td>
<td>1.59</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2557</td>
<td>25.39</td>
<td>1939</td>
<td>47.05</td>
<td>5</td>
<td>0.47</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>246</td>
<td>2.44</td>
<td>1259</td>
<td>30.55</td>
<td>149</td>
<td>13.93</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1443</td>
<td>14.37</td>
<td>85</td>
<td>2.06</td>
<td>6</td>
<td>0.56</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>31</td>
<td>0.31</td>
<td>21</td>
<td>0.51</td>
<td>862</td>
<td>80.56</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>582</td>
<td>5.78</td>
<td>10</td>
<td>0.24</td>
<td>2</td>
<td>0.19</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>557</td>
<td>5.53</td>
<td>7</td>
<td>0.17</td>
<td>0</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>431</td>
<td>4.28</td>
<td>306</td>
<td>7.43</td>
<td>8</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>198</td>
<td>1.97</td>
<td>25</td>
<td>0.61</td>
<td>8</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>187</td>
<td>1.76</td>
<td>51</td>
<td>1.24</td>
<td>0</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>176</td>
<td>1.75</td>
<td>4</td>
<td>0.10</td>
<td>1</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>128</td>
<td>1.27</td>
<td>132</td>
<td>3.19</td>
<td>0</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>93</td>
<td>0.92</td>
<td>69</td>
<td>1.67</td>
<td>3</td>
<td>0.28</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>26</td>
<td>0.26</td>
<td>56</td>
<td>1.36</td>
<td>9</td>
<td>0.84</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>10069</td>
<td>100.00</td>
<td>4121</td>
<td>100.00</td>
<td>1070</td>
<td>100.00</td>
<td></td>
</tr>
</tbody>
</table>

Reactive Monocytosis

<table>
<thead>
<tr>
<th>Sample</th>
<th>CTA3</th>
<th>CTA4</th>
<th>CTA16</th>
<th>CTA18</th>
<th>CTA20</th>
<th>P2723</th>
<th>P2775</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cell number</td>
<td>percentage</td>
<td>cell number</td>
<td>percentage</td>
<td>cell number</td>
<td>percentage</td>
<td>cell number</td>
</tr>
<tr>
<td>0</td>
<td>2397</td>
<td>62.13</td>
<td>230</td>
<td>10.33</td>
<td>645</td>
<td>57.28</td>
<td>136</td>
</tr>
<tr>
<td>1</td>
<td>1173</td>
<td>3.01</td>
<td>401</td>
<td>20.19</td>
<td>101</td>
<td>9.06</td>
<td>62</td>
</tr>
<tr>
<td>2</td>
<td>402</td>
<td>1.56</td>
<td>25</td>
<td>1.89</td>
<td>59</td>
<td>4.58</td>
<td>110</td>
</tr>
<tr>
<td>3</td>
<td>167</td>
<td>6.72</td>
<td>74</td>
<td>2.89</td>
<td>55</td>
<td>3.59</td>
<td>18</td>
</tr>
<tr>
<td>4</td>
<td>26</td>
<td>0.60</td>
<td>43</td>
<td>1.22</td>
<td>11</td>
<td>0.88</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>525</td>
<td>13.61</td>
<td>29</td>
<td>1.27</td>
<td>18</td>
<td>1.50</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>450</td>
<td>11.66</td>
<td>71</td>
<td>3.11</td>
<td>31</td>
<td>2.75</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>52</td>
<td>1.35</td>
<td>55</td>
<td>2.28</td>
<td>17</td>
<td>1.75</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>450</td>
<td>11.66</td>
<td>71</td>
<td>3.11</td>
<td>31</td>
<td>2.75</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>35</td>
<td>0.92</td>
<td>118</td>
<td>5.17</td>
<td>3</td>
<td>0.44</td>
<td>46</td>
</tr>
<tr>
<td>10</td>
<td>23</td>
<td>0.60</td>
<td>12</td>
<td>0.48</td>
<td>3</td>
<td>0.35</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>0.00</td>
<td>0</td>
<td>0.00</td>
<td>0</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>0.00</td>
<td>0</td>
<td>0.00</td>
<td>0</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>3858</td>
<td>100.00</td>
<td>2284</td>
<td>100.00</td>
<td>1126</td>
<td>100.00</td>
<td>2801</td>
</tr>
</tbody>
</table>
JEGO C. et al, Supplemental Table 4

<table>
<thead>
<tr>
<th>Gene</th>
<th>p_val</th>
<th>avg_logFC</th>
<th>cluster 2</th>
<th>other clusters</th>
<th>p_val_adj</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANKRD1</td>
<td>6.74E-256</td>
<td>0.370</td>
<td>0.36</td>
<td>0.08</td>
<td>8.94E-252</td>
</tr>
<tr>
<td>SRGN</td>
<td>1.10E-203</td>
<td>0.260</td>
<td>0.33</td>
<td>0.08</td>
<td>1.46E-199</td>
</tr>
<tr>
<td>TAGLN</td>
<td>1.24E-182</td>
<td>0.444</td>
<td>0.83</td>
<td>0.53</td>
<td>1.65E-178</td>
</tr>
<tr>
<td>COL1A1</td>
<td>2.86E-126</td>
<td>-0.518</td>
<td>0.66</td>
<td>0.81</td>
<td>3.79E-122</td>
</tr>
<tr>
<td>COL1A2</td>
<td>3.25E-116</td>
<td>-0.461</td>
<td>0.56</td>
<td>0.75</td>
<td>4.31E-112</td>
</tr>
<tr>
<td>S100A4</td>
<td>3.76E-106</td>
<td>-0.287</td>
<td>0.02</td>
<td>0.27</td>
<td>4.99E-102</td>
</tr>
<tr>
<td>PCSK7</td>
<td>1.59E-105</td>
<td>0.257</td>
<td>0.44</td>
<td>0.21</td>
<td>2.11E-101</td>
</tr>
<tr>
<td>FTH1</td>
<td>5.28E-103</td>
<td>-0.470</td>
<td>0.70</td>
<td>0.85</td>
<td>7.00E-09</td>
</tr>
<tr>
<td>TGFBI</td>
<td>4.00E-81</td>
<td>-0.374</td>
<td>0.32</td>
<td>0.54</td>
<td>5.30E-77</td>
</tr>
<tr>
<td>TPM2</td>
<td>2.20E-72</td>
<td>0.271</td>
<td>0.71</td>
<td>0.52</td>
<td>2.92E-68</td>
</tr>
<tr>
<td>IGFBP3</td>
<td>8.38E-65</td>
<td>-0.424</td>
<td>0.23</td>
<td>0.43</td>
<td>1.11E-60</td>
</tr>
<tr>
<td>FTL</td>
<td>1.27E-58</td>
<td>-0.357</td>
<td>0.64</td>
<td>0.78</td>
<td>1.68E-54</td>
</tr>
</tbody>
</table>

JEGO C. et al, Supplemental Table 5

<table>
<thead>
<tr>
<th>Gene</th>
<th>p_val</th>
<th>avg_logFC</th>
<th>cluster 4</th>
<th>other clusters</th>
<th>p_val_adj</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGFBP2</td>
<td>0.00E+00</td>
<td>0.65</td>
<td>0.60</td>
<td>0.03</td>
<td>0.00E+00</td>
</tr>
<tr>
<td>IGFBP5</td>
<td>0.00E+00</td>
<td>0.35</td>
<td>0.35</td>
<td>0.02</td>
<td>0.00E+00</td>
</tr>
<tr>
<td>FN1</td>
<td>8.91E-193</td>
<td>0.63</td>
<td>0.94</td>
<td>0.66</td>
<td>1.18E-188</td>
</tr>
<tr>
<td>IGFBP7</td>
<td>4.51E-171</td>
<td>0.58</td>
<td>0.81</td>
<td>0.45</td>
<td>5.98E-167</td>
</tr>
<tr>
<td>TAGLN</td>
<td>6.78E-166</td>
<td>0.59</td>
<td>0.88</td>
<td>0.55</td>
<td>8.99E-162</td>
</tr>
<tr>
<td>SPARC</td>
<td>6.97E-157</td>
<td>0.53</td>
<td>0.80</td>
<td>0.45</td>
<td>9.24E-153</td>
</tr>
<tr>
<td>TPM1</td>
<td>9.75E-120</td>
<td>0.47</td>
<td>0.82</td>
<td>0.53</td>
<td>1.29E-115</td>
</tr>
<tr>
<td>AC090498.1</td>
<td>1.57E-110</td>
<td>0.41</td>
<td>0.68</td>
<td>0.36</td>
<td>2.08E-106</td>
</tr>
<tr>
<td>PCSK7</td>
<td>1.58E-101</td>
<td>0.33</td>
<td>0.51</td>
<td>0.21</td>
<td>2.09E-97</td>
</tr>
<tr>
<td>CALD1</td>
<td>1.96E-84</td>
<td>0.39</td>
<td>0.78</td>
<td>0.51</td>
<td>2.60E-80</td>
</tr>
<tr>
<td>SERPINE2</td>
<td>2.89E-80</td>
<td>0.40</td>
<td>0.68</td>
<td>0.40</td>
<td>3.83E-76</td>
</tr>
<tr>
<td>RPS4X</td>
<td>2.56E-68</td>
<td>-0.35</td>
<td>0.37</td>
<td>0.64</td>
<td>3.39E-64</td>
</tr>
<tr>
<td>S100A4</td>
<td>7.03E-63</td>
<td>-0.29</td>
<td>0.01</td>
<td>0.26</td>
<td>9.33E-59</td>
</tr>
<tr>
<td>GAPDH</td>
<td>8.14E-57</td>
<td>-0.30</td>
<td>0.62</td>
<td>0.84</td>
<td>1.08E-52</td>
</tr>
<tr>
<td>CTGF</td>
<td>1.15E-56</td>
<td>0.28</td>
<td>0.55</td>
<td>0.32</td>
<td>1.53E-52</td>
</tr>
<tr>
<td>VIM</td>
<td>1.03E-54</td>
<td>-0.31</td>
<td>0.80</td>
<td>0.91</td>
<td>1.37E-50</td>
</tr>
<tr>
<td>MT-CO1</td>
<td>4.49E-43</td>
<td>-0.26</td>
<td>0.72</td>
<td>0.87</td>
<td>5.96E-39</td>
</tr>
<tr>
<td>S100A6</td>
<td>1.19E-41</td>
<td>-0.27</td>
<td>0.70</td>
<td>0.85</td>
<td>1.58E-37</td>
</tr>
<tr>
<td>LGALS1</td>
<td>6.34E-41</td>
<td>-0.25</td>
<td>0.82</td>
<td>0.92</td>
<td>8.41E-37</td>
</tr>
<tr>
<td>TIMP1</td>
<td>3.61E-33</td>
<td>0.28</td>
<td>0.66</td>
<td>0.49</td>
<td>4.79E-29</td>
</tr>
<tr>
<td>MT2A</td>
<td>3.68E-32</td>
<td>-0.33</td>
<td>0.56</td>
<td>0.70</td>
<td>4.88E-28</td>
</tr>
</tbody>
</table>
JEGO C. et al, Supplemental Table 6

<table>
<thead>
<tr>
<th>Gene</th>
<th>p_val</th>
<th>avg_logFC</th>
<th>IGFBP2+ cells</th>
<th>IGFBP2- cells</th>
<th>p_val_adj</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGFBP2</td>
<td>0,00E+00</td>
<td>0,88</td>
<td>1,00</td>
<td>0,00</td>
<td>0,00E+00</td>
</tr>
<tr>
<td>TAGLN</td>
<td>1,06E-150</td>
<td>0,53</td>
<td>0,88</td>
<td>0,54</td>
<td>1,41E-146</td>
</tr>
<tr>
<td>IGFBP7</td>
<td>1,95E-112</td>
<td>0,48</td>
<td>0,74</td>
<td>0,45</td>
<td>2,59E-108</td>
</tr>
<tr>
<td>PCSK7</td>
<td>8,00E-97</td>
<td>0,30</td>
<td>0,50</td>
<td>0,21</td>
<td>1,06E-92</td>
</tr>
<tr>
<td>FN1</td>
<td>6,22E-79</td>
<td>0,41</td>
<td>0,86</td>
<td>0,67</td>
<td>8,25E-75</td>
</tr>
<tr>
<td>AC090498.1</td>
<td>7,41E-79</td>
<td>0,34</td>
<td>0,63</td>
<td>0,36</td>
<td>9,82E-75</td>
</tr>
<tr>
<td>CALD1</td>
<td>1,72E-64</td>
<td>0,34</td>
<td>0,74</td>
<td>0,52</td>
<td>2,28E-60</td>
</tr>
<tr>
<td>TPM1</td>
<td>6,34E-62</td>
<td>0,36</td>
<td>0,72</td>
<td>0,54</td>
<td>8,40E-58</td>
</tr>
<tr>
<td>SPARC</td>
<td>9,29E-59</td>
<td>0,35</td>
<td>0,67</td>
<td>0,46</td>
<td>1,23E-54</td>
</tr>
<tr>
<td>SERPINE2</td>
<td>1,32E-40</td>
<td>0,27</td>
<td>0,61</td>
<td>0,41</td>
<td>1,75E-36</td>
</tr>
<tr>
<td>RPS4X</td>
<td>1,73E-40</td>
<td>-0,26</td>
<td>0,45</td>
<td>0,63</td>
<td>2,30E-36</td>
</tr>
<tr>
<td>VIM</td>
<td>2,47E-38</td>
<td>-0,25</td>
<td>0,83</td>
<td>0,91</td>
<td>3,28E-34</td>
</tr>
<tr>
<td>TIMP1</td>
<td>1,40E-34</td>
<td>0,27</td>
<td>0,66</td>
<td>0,49</td>
<td>1,86E-30</td>
</tr>
</tbody>
</table>

JEGO C. et al, Supplemental Table 7

<table>
<thead>
<tr>
<th>Gene</th>
<th>p_val</th>
<th>avg_logFC</th>
<th>LMMC</th>
<th>CTR</th>
<th>p_val_adj</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAGLN</td>
<td>7,70E-208</td>
<td>0,51</td>
<td>0,82</td>
<td>0,50</td>
<td>1,02E-203</td>
</tr>
<tr>
<td>SRGN</td>
<td>2,56E-190</td>
<td>0,26</td>
<td>0,33</td>
<td>0,08</td>
<td>3,40E-186</td>
</tr>
<tr>
<td>ANKRD1</td>
<td>4,49E-181</td>
<td>0,29</td>
<td>0,32</td>
<td>0,08</td>
<td>5,96E-177</td>
</tr>
<tr>
<td>COL1A1</td>
<td>1,93E-153</td>
<td>-0,59</td>
<td>0,62</td>
<td>0,82</td>
<td>2,56E-149</td>
</tr>
<tr>
<td>PCSK7</td>
<td>5,03E-143</td>
<td>0,31</td>
<td>0,45</td>
<td>0,18</td>
<td>6,66E-139</td>
</tr>
<tr>
<td>S100A4</td>
<td>5,85E-134</td>
<td>-0,34</td>
<td>0,00</td>
<td>0,30</td>
<td>7,75E-130</td>
</tr>
<tr>
<td>COL1A2</td>
<td>1,51E-127</td>
<td>-0,50</td>
<td>0,54</td>
<td>0,76</td>
<td>2,00E-123</td>
</tr>
<tr>
<td>TGFBI</td>
<td>8,35E-102</td>
<td>-0,42</td>
<td>0,30</td>
<td>0,55</td>
<td>1,11E-97</td>
</tr>
<tr>
<td>FTH1</td>
<td>2,17E-99</td>
<td>-0,46</td>
<td>0,70</td>
<td>0,85</td>
<td>2,87E-95</td>
</tr>
<tr>
<td>TPM2</td>
<td>1,18E-79</td>
<td>0,29</td>
<td>0,71</td>
<td>0,51</td>
<td>1,57E-75</td>
</tr>
<tr>
<td>IGFBP3</td>
<td>2,93E-79</td>
<td>-0,48</td>
<td>0,20</td>
<td>0,43</td>
<td>3,88E-75</td>
</tr>
<tr>
<td>RPS4X</td>
<td>1,23E-78</td>
<td>-0,28</td>
<td>0,45</td>
<td>0,67</td>
<td>1,63E-74</td>
</tr>
<tr>
<td>CALD1</td>
<td>1,43E-63</td>
<td>0,27</td>
<td>0,67</td>
<td>0,49</td>
<td>1,90E-59</td>
</tr>
<tr>
<td>FTL</td>
<td>3,60E-59</td>
<td>-0,36</td>
<td>0,64</td>
<td>0,79</td>
<td>4,78E-55</td>
</tr>
<tr>
<td>MT2A</td>
<td>9,93E-58</td>
<td>0,27</td>
<td>0,83</td>
<td>0,69</td>
<td>1,32E-53</td>
</tr>
</tbody>
</table>
JEGO C. et al, Supplemental Table 8

<table>
<thead>
<tr>
<th>Gene</th>
<th>p_val</th>
<th>avg_logFC</th>
<th>Reactive monocytosis</th>
<th>CTR</th>
<th>p_val_adj</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGFBP2</td>
<td>0.00E+00</td>
<td>0.59</td>
<td>0.01</td>
<td>0.00E+00</td>
<td></td>
</tr>
<tr>
<td>IGFBP5</td>
<td>0.00E+00</td>
<td>0.31</td>
<td>0.02</td>
<td>0.00E+00</td>
<td></td>
</tr>
<tr>
<td>TAGLN</td>
<td>7.37E-221</td>
<td>0.65</td>
<td>0.50</td>
<td>9.76E-217</td>
<td></td>
</tr>
<tr>
<td>FN1</td>
<td>3.11E-201</td>
<td>0.94</td>
<td>0.65</td>
<td>4.12E-197</td>
<td></td>
</tr>
<tr>
<td>IGFBP7</td>
<td>9.36E-167</td>
<td>0.56</td>
<td>0.42</td>
<td>1.24E-162</td>
<td></td>
</tr>
<tr>
<td>AC090498.1</td>
<td>6.39E-147</td>
<td>0.44</td>
<td>0.33</td>
<td>8.48E-143</td>
<td></td>
</tr>
<tr>
<td>SPARC</td>
<td>4.42E-140</td>
<td>0.49</td>
<td>0.46</td>
<td>5.86E-136</td>
<td></td>
</tr>
<tr>
<td>TPM1</td>
<td>5.89E-133</td>
<td>0.47</td>
<td>0.52</td>
<td>7.81E-129</td>
<td></td>
</tr>
<tr>
<td>PCSK7</td>
<td>1.47E-129</td>
<td>0.34</td>
<td>0.18</td>
<td>1.94E-125</td>
<td></td>
</tr>
<tr>
<td>RPS4X</td>
<td>1.76E-101</td>
<td>0.36</td>
<td>0.67</td>
<td>2.33E-97</td>
<td></td>
</tr>
<tr>
<td>CALD1</td>
<td>1.52E-98</td>
<td>0.76</td>
<td>0.49</td>
<td>2.02E-94</td>
<td></td>
</tr>
<tr>
<td>S100A4</td>
<td>2.96E-93</td>
<td>-0.34</td>
<td>0.30</td>
<td>3.93E-89</td>
<td></td>
</tr>
<tr>
<td>SERPINE2</td>
<td>1.18E-74</td>
<td>0.67</td>
<td>0.40</td>
<td>1.56E-70</td>
<td></td>
</tr>
<tr>
<td>IGFBP2</td>
<td>5.84E-95</td>
<td>0.44</td>
<td>0.16</td>
<td>7.75E-91</td>
<td></td>
</tr>
<tr>
<td>IGFBP5</td>
<td>8.94E-89</td>
<td>0.30</td>
<td>0.03</td>
<td>1.18E-84</td>
<td></td>
</tr>
<tr>
<td>NDUFA4L2</td>
<td>8.66E-88</td>
<td>0.26</td>
<td>0.01</td>
<td>1.15E-83</td>
<td></td>
</tr>
<tr>
<td>MT2A</td>
<td>5.03E-75</td>
<td>-0.52</td>
<td>0.57</td>
<td>6.67E-71</td>
<td></td>
</tr>
<tr>
<td>COL1A1</td>
<td>6.73E-68</td>
<td>0.46</td>
<td>0.62</td>
<td>8.93E-64</td>
<td></td>
</tr>
<tr>
<td>SERPINE2</td>
<td>1.67E-61</td>
<td>0.44</td>
<td>0.39</td>
<td>2.21E-57</td>
<td></td>
</tr>
<tr>
<td>LGALS1</td>
<td>1.39E-52</td>
<td>-0.31</td>
<td>0.93</td>
<td>1.84E-48</td>
<td></td>
</tr>
<tr>
<td>PTX3</td>
<td>2.51E-50</td>
<td>0.29</td>
<td>0.13</td>
<td>3.32E-46</td>
<td></td>
</tr>
<tr>
<td>TPM1</td>
<td>1.33E-42</td>
<td>0.32</td>
<td>0.61</td>
<td>1.77E-38</td>
<td></td>
</tr>
<tr>
<td>COL1A2</td>
<td>3.41E-41</td>
<td>0.33</td>
<td>0.54</td>
<td>4.53E-37</td>
<td></td>
</tr>
<tr>
<td>IGFBP7</td>
<td>1.28E-40</td>
<td>0.35</td>
<td>0.58</td>
<td>1.70E-36</td>
<td></td>
</tr>
<tr>
<td>GAPDH</td>
<td>3.52E-39</td>
<td>-0.29</td>
<td>0.82</td>
<td>4.66E-35</td>
<td></td>
</tr>
<tr>
<td>IGFBP3</td>
<td>1.25E-36</td>
<td>0.27</td>
<td>0.20</td>
<td>1.66E-32</td>
<td></td>
</tr>
<tr>
<td>MT-CO3</td>
<td>2.28E-35</td>
<td>-0.29</td>
<td>0.73</td>
<td>3.02E-31</td>
<td></td>
</tr>
</tbody>
</table>

JEGO C. et al, Supplemental Table 9

<table>
<thead>
<tr>
<th>Gene</th>
<th>p_val</th>
<th>avg_logFC</th>
<th>Reactive monocytosis</th>
<th>LMMC</th>
<th>p_val_adj</th>
</tr>
</thead>
<tbody>
<tr>
<td>FN1</td>
<td>5.84E-135</td>
<td>0.63</td>
<td>0.68</td>
<td>7.75E-131</td>
<td></td>
</tr>
<tr>
<td>SPARC</td>
<td>1.04E-126</td>
<td>0.61</td>
<td>0.38</td>
<td>1.38E-122</td>
<td></td>
</tr>
<tr>
<td>IGFBP2</td>
<td>5.84E-95</td>
<td>0.44</td>
<td>0.16</td>
<td>7.75E-91</td>
<td></td>
</tr>
<tr>
<td>IGFBP5</td>
<td>8.94E-89</td>
<td>0.30</td>
<td>0.03</td>
<td>1.18E-84</td>
<td></td>
</tr>
<tr>
<td>NDUFA4L2</td>
<td>8.66E-88</td>
<td>0.26</td>
<td>0.01</td>
<td>1.15E-83</td>
<td></td>
</tr>
<tr>
<td>MT2A</td>
<td>5.03E-75</td>
<td>-0.52</td>
<td>0.83</td>
<td>6.67E-71</td>
<td></td>
</tr>
<tr>
<td>COL1A1</td>
<td>6.73E-68</td>
<td>0.46</td>
<td>0.62</td>
<td>8.93E-64</td>
<td></td>
</tr>
<tr>
<td>SERPINE2</td>
<td>1.67E-61</td>
<td>0.44</td>
<td>0.39</td>
<td>2.21E-57</td>
<td></td>
</tr>
<tr>
<td>LGALS1</td>
<td>1.39E-52</td>
<td>-0.31</td>
<td>0.93</td>
<td>1.84E-48</td>
<td></td>
</tr>
<tr>
<td>PTX3</td>
<td>2.51E-50</td>
<td>0.29</td>
<td>0.13</td>
<td>3.32E-46</td>
<td></td>
</tr>
<tr>
<td>TPM1</td>
<td>1.33E-42</td>
<td>0.32</td>
<td>0.61</td>
<td>1.77E-38</td>
<td></td>
</tr>
<tr>
<td>COL1A2</td>
<td>3.41E-41</td>
<td>0.33</td>
<td>0.54</td>
<td>4.53E-37</td>
<td></td>
</tr>
<tr>
<td>IGFBP7</td>
<td>1.28E-40</td>
<td>0.35</td>
<td>0.58</td>
<td>1.70E-36</td>
<td></td>
</tr>
<tr>
<td>GAPDH</td>
<td>3.52E-39</td>
<td>-0.29</td>
<td>0.82</td>
<td>4.66E-35</td>
<td></td>
</tr>
<tr>
<td>IGFBP3</td>
<td>1.25E-36</td>
<td>0.27</td>
<td>0.20</td>
<td>1.66E-32</td>
<td></td>
</tr>
<tr>
<td>MT-CO3</td>
<td>2.28E-35</td>
<td>-0.29</td>
<td>0.73</td>
<td>3.02E-31</td>
<td></td>
</tr>
</tbody>
</table>
References

2. Discussion Partie 2 : caractérisation ex vivo des CSM de patients

Dans la seconde partie de mes travaux, j’ai travaillé à la caractérisation ex vivo des CSM de patients atteints de LMMC. Mon but était de déterminer si ces cellules étaient altérées dans un contexte leucémique et si ces altérations jouaient un rôle de soutien dans l’hématopoïèse pathologique.

L’analyse de l’expression des gènes dans les CSM d’individus sains et de patients a permis d’identifier des voies de signalisation altérées chez les patients, parmi lesquelles, les voies impliquant la communication cellulaire et l’activité des facteurs de croissance et des cytokines. Les CSM régulent l’hématopoïèse via une communication paracrine avec les CSH et les autres cellules présentes dans l’environnement médullaire. J’ai concentré mes efforts sur l’étude du profil cytokinique des CSM. L’étude semi-quantitative par cytokine array des surnageants de culture m’a permis, dans une cohorte d’apprentissage, d’identifier la surproduction significative d’IGFBP2 (Insuline-like Growth Factor Binding Protein 2) par les CSM de patients. Nous avons alors focalisé nos investigations sur cette cytokine qui avait été rapportée comme un facteur contribuant à l’amplification des cellules souches et progénitrices hématopoïétiques humaines. Sa surproduction a été confirmée dans une cohorte de validation par dosage ELISA des surnageants de culture : on retrouve en moyenne 3,5 fois plus d’IGFBP2 chez les patients. De manière intéressante, un dosage ELISA des plasmas sanguins de patients et d’individus sains a mis en évidence des taux plasmatiques significativement élevés chez les patients (en moyenne 1,6 fois plus élevés chez les patients). Cette surproduction a été validée par RTqPCR et le RNAseq. Lorsque les données étaient disponibles, une corrélation a pu être mise en évidence entre la surexpression du gène et la surproduction de la protéine (ELISAs). Les patients dont les surnageants de moelle osseuse ont pu être dosés en parallèle des études ex vivo (9 au total) ont montré une corrélation entre ces deux évaluations, suggérant que les CSM sont les principales productrices d’IGFBP2 dans la moelle.

On note cependant une hétérogénéité au sein des patients avec certains d’entre eux exprimant des taux d’IGFBP2 proches de ceux des individus sains. L’étude des informations cliniques des patients a permis de déterminer une corrélation entre un taux d’IGFBP2 élevé et les formes proliférative de la LMMC, ainsi que la présence de mutations ASXL1 et NRAS. Ceci suggère qu’IGFBP2 pourrait être un biomarqueur des formes les plus sévères de la pathologie. L’étude d’une plus grande cohorte est nécessaire pour confirmer ces résultats préliminaires.

Grâce à l’analyse des transcripts à l’échelle unicellulaire, il apparaît que, au moins chez certains patients atteints de LMMC, une fraction des cellules souches mésenchymateuses produisent une quantité anormale de cette protéine. Cette propriété, qui semble d’origine épigénétique, a pour conséquence un biais de différenciation des progéniteurs myéloïdes vers la lignée monocyttaire. IGFBP2 pourrait donc contribuer à amplifier la monocytose caractéristique de cette maladie. L’origine primaire ou secondaire de la surproduction d’IGFBP2 par les CSM de patients reste à déterminer, ainsi que le mécanisme moléculaire par lequel IGFBP2 joue sur les CSPH.
2.1. IGFBP2 et le système des IGF

IGFBP2 fait partie d’une famille de 6 protéines structurellement et fonctionnellement similaires, les IGFBPs (Insuline-like Growth Factor Binding Protein). Ces cytokines se fixent aux IGF (Insulin-like Growth Factor) avec une forte affinité et régulent leur biodisponibilité et fonction. IGFBP2 a été proposée comme un biomarqueur dans plusieurs cancers, et son rôle dans des voies indépendantes aux IGF a soulevé un intérêt croissant pour cette protéine.

2.1.1. Le système des IGF

Le système des IGF joue un rôle important dans la régulation de la prolifération cellulaire, la différenciation, et l’apoptose. Ce système comprend les ligands IGF-1 et IGF-2, leurs récepteurs IGF1R et IGF2R, ainsi que les IGFBPs qui peuvent se fixer de manière compétitive aux IGF (Figure 27). Les six IGFBP partagent une structure hautement conservée composée de 3 domaines de tailles similaires. On retrouve ainsi les régions conservées N-terminale et C-terminale riches en cystéines, connectées par une région “linker” moins conservée (Figure 28). La région linker peut être glycosylée et phosphorylée et ainsi moduler les fonctions des IGFBP. La capacité de fixation aux IGF nécessite les deux régions N- et C-terminales, et l’affinité des IGFBP pour les IGF est variable. La région “linker” est unique à chaque IGFBP et est impliquée dans leur protéolyse par différentes protéases résultant en la libération des IGF.

Figure 27 : Système des IGFs

Le système des IGF comprend deux ligands : IGF-I et IGF-II, des récepteurs membranaires IGF-IR et IGF-IIR, ainsi que le récepteur à l’insuline IR (isoforme a) et un récepteur hybride IGFIR/IR. L’insuline est incluse à ce schéma pour illustrer l’intermodulation d’IRa et IGFIR/IR par les différents ligands. Le système compte aussi 6 protéines de liaison ayant une forte affinité pour les IGF, les IGFBP (IGFBP [1-6]) qui modulent les activités des IGF/II. IGFBP3 et IGFBP5 forment également des complexes avec la sous-unité labile acide (Acid Labile Subunit – ALS).

Source : Yau SW et al, J Cell Com Signal 2015
Les IGF sont des protéines structurellement et fonctionnellement similaires à l’insuline, dont l’activité passe essentiellement par la fixation au récepteur IGF1R. La fixation au récepteur active des voies de signalisation promouvant la croissance, la survie et la différenciation cellulaire.

Figure 28 : Structure et fonctions biologiques communes des IGFBP

(A) Les régions N-Terminale (bleue) et C-terminale (jaune) sont connectées par une région linker (verte). Les deux domaines N- et C-terminaux contiennent des domaines de fixations aux IGF (orange).

(B) La protéolyse des IGFBP par des protéases (rose) se font dans la région linker et d’autres modifications post-transcriptionnelles de cette région peuvent résulter en la libération des IGF.

(C) Une fois libérées les IGF se fixe à leurs récepteurs (violet) pour exercer leurs fonctions biologiques.

Source : Ding & Wu, Frontiers in Endocrinology 2018

Dans le sang périphérique, la plupart des IGF (75%) circulent sous forme de de complexe ternaire avec IGFBP3 (l’IGFBP la plus représenté dans l’organisme) et la glycoprotéine ALS (Acid Labile Subunit). Le reste des IGF sont fixés aux IGFBP et forment un complexe binaire avec celles-ci (Figure 27). Les IGFBP régulent ainsi la biodisponibilité des IGF et assurent également une meilleure stabilité des IGF dans la circulation en augmentant leur temps de demi-vie de quelques minutes (dans un complexe binaire) à quelques heures (dans un complexe ternaire). IGFBP2 représente la deuxième plus importante IGFBP présente dans la circulation sanguine. Tandis qu’IGFBP3 est significativement bas dans le plasma de patients atteints de cancer, IGFBP2 est, elle, retrouvée à des taux plasmatiques élevés.

2.1.2. Structure et fonctions biologiques d’IGFBP2

Comme les autres IGFBP, IGFBP2 possède les régions N- et C-terminal impliquées dans la liaison aux IGF, et une région linker dans laquelle on trouve un site de clivage protéolytique (Figure 29). On retrouve un domaine HBD-1 (Heparin Binding Domain) dans sa région linker et un second HBD-2 dans sa partie C-ter permettant son interaction avec la membrane cellulaire ainsi qu’avec la matrice extracellulaire (MEC). Le domaine HBD-1 correspond aussi à un domaine NSL permettant l’importation d’IGFBP2 dans le noyau via son interaction avec le complexe importineα-importineβ. Le domaine HBD-1 permet sa fixation à la surface des cellules via son interaction avec le protéoglycane RPTPβ (Receptor Protein Tyrosine Phosphatase β) conduisant à l’inhibition de son activité. Dans sa partie C-terminale se trouve un domaine de fixation aux intégrines RGD qui permet son ancrage à la surface de la cellule via une interaction avec les intégrines α5β1 et αVβ3.
2.1.3. Fonctions d’IGFBP2

Le rôle physiologique d’IGFBP2 est très complexe et comprend (1) réguler la quantité d’IGFs libres dans la circulation et localement, (2) protéger les IGFs de la dégradation métabolique et clairance et ainsi maintenir un réservoir d’IGF et (3) exercer des fonctions indépendantes aux IGF via des récepteurs propres (Figure 30, page suivante).
Activité dépendante aux IGF : IGFBP2 module la biodisponibilité des IGF à leurs récepteurs, avec l’implication de protéases spécifiques d’IGFBP2. IGFBP2 interagit également avec la matrice extracellulaire et les récepteurs protéoglycanes (CSPG ; RPTPβ) fournissant ainsi un réservoir péricellulaire d’IGF. Activité indépendante aux IGF : IGFBP2 possède également des activités intrinsèques exercées via ses interactions avec les intégrines (α5β1, αVβ3) ou par sa translocation à l’intérieur de la cellule où elle peut interagir avec des partenaires cytoplasmiques (PAPA-1 et P21), ou bien aller dans le noyau via sa séquence NLS grâce au complexe d’importines α6. À l’intérieur du noyau, elle peut activer, directement ou indirectement, la transcription de gènes impliqués dans la tumorigénèse, notamment VEGF. Bien que ces actions soient vraisemblablement indépendantes des IGF, on ne peut tout de même pas écarter leur implications aux activités intrinsèques d’IGFBP2.

Source : Yau SW et al J Cell Comm Signal, 2015

2.1.4. Rôle dépendant des IGF

IGFBP2 peut avoir un rôle à la fois inhibiteur et activateur de la voie des IGF326,337. En effet, en se fixant aux IGF il régule leur biodisponibilité. Ainsi, la séquestration des IGF va empêcher leur fixation à leur récepteur et donc l’activation des voies de signalisation en aval. Cependant, IGFBP2 peut également activer la voie des IGF en augmentant leur concentration péricellulaire, notamment en se fixant sous forme de complexe binaire à la matrice extracellulaire. La protéolyse d’IGFBP2 permettra ensuite la libération des IGF et leur fixation aux récepteurs pour une activation rapide des voies en aval. IGFBP2 peut également activer les IGFR en s’y fixant directement via son domaine RGD ou HBD326. La fixation d’IGFBP2 aux protéoglycanes à la surface des cellules promeut également l’activité des IGF en inhibant l’activité phosphatase de RPTPβ, ce qui a pour conséquence une diminution de...
l’activité de PTEN et une augmentation de la signalisation Akt. D’autres chercheurs ont montré qu’IGFBP2 empêcherait l’endocytose et la dégradation d’IGF2 via IGF2R, grâce à une affinité accrue du complexe IGFBP2/IGF2 aux glycosaminoglycanes (GAGs).

2.1.5. Rôle indépendant des IGF

En plus de son activité dépendante des IGF, IGFBP2 exerce également des fonctions indépendantes à cette voie. Grâce à ses domaines HBD et RGD, IGFBP2 peut directement se fixer aux intégrines et à la MEC et induire diverses actions biologiques. Divers papiers ont rapporté une activité inhibitrice d’IGFBP2 sur PTEN et de P53, ainsi qu’une stimulation de PI3K/Akt, MAPK, MMPs, CD24... IGFBP2 peut également être internalisée et interagir avec p21 et PAPA1, affectant la croissance cellulaire.

IGFBP2 exerce également une activité nucléaire et active la transcription d’un certain nombre de gènes dont VEGF. Il a aussi été rapporté qu’une surexpression d’IGFBP2 induisait l’expression de gènes impliqués dans la prolifération cellulaire, la migration et l’invasion, tandis que des gènes suppresseurs de tumeur étaient down-régulés.

2.1.6. IGFBP2 et cancer

Plusieurs revues recensent les actions d’IGFBP2 dans une grande variété de cancers. En 2017, Hung et collègues montrent notamment un rôle important d’IGFBP2 dans la progression cancéreuse et les métastases via HSP27. IGFBP2 a été proposé comme biomarqueur dans un grand nombre de cancers : gliomes, prostate, ovariens, colorectaux, pancréatiques, poumons, cervicaux, sein, foie, tête et cou, rhabdomyosarcome, gastriques ...

A titre d’exemple, la surexpression d’IGFBP2 (et d’IGFBP5) dans les cancers du sein corrèle avec leur agressivité et pourrait servir de biomarqueur pour les risques biologiques et cliniques, ainsi que les risques de résistance et de rechute. Son rôle dans les gliomes, les adénocarcinomes, les mélanomes, les cancers du sein, et de la prostate ont été largement décrits.

Parce que son expression a été retrouvée réduite dans certains cancers, Pickard et McCance questionnent le rôle pro ou anti-tumoral d’IGFBP2 dans leur revue publiée en 2015 dans Endocrinologie. En effet, IGFBP2 peut également jouer un rôle inhibiteur de la voie des IGF et pourrait donc inhiber la croissance et la survie tumorale. Il semblerait finalement que ses propriétés oncogéniques soient surtout le résultat de ses fonctions indépendantes aux IGF.

2.1.7. Leucémies

De manière intéressante, IGFBP2 a été proposée comme biomarqueur des leucémies aigües myéloïdes et son expression associée à un mauvais pronostic, à un haut risque de rechute post-greffe, à une chimiorésistance, et à une survie globale diminuée.

IGFBP2 promeut la survie et la migration des cellules leucémiques via l’inhibition de PTEN et l’activation de la voie Akt. IGFBP2 aurait un rôle dans la régulation de la prolifération et de la...
différenciation des lymphocytes T et dans le développement des cellules pro-B bien que son implication n’a pas été clairement montrée. En 2013 l’équipe de Ferreira montre une reconstitution des cellules lymphoïdes réduite in vivo en présence d’IGFBP2 et d’Angt1-5 dans le milieu de culture des CD34+ de cordons. Néanmoins, la présence des cytokines a permis une meilleure prise de greffe des cellules cultivées en général, suggérant un rôle de soutien des CSPH d’IGFBP2.

La plupart des papiers concernant IGFBP2 et l’hématopoïèse soulignent plutôt son rôle de soutien des CSPH en stimulant leur survie, leur prolifération et leur prise de greffe chez la souris. L’équipe de Li Ming Ong a d’ailleurs montré le rôle de soutien d’IGFBP2 pour la survie des cellules hématopoïétiques grâce à leur co-culture avec des CSM.

2.1.8. Quel rôle d’IGFBP2 dans la leucémogenèse ?

Les expériences de prolifération n’ont montré aucune différence entre cellules traitées ou non par IGFBP2. Il reste tout de même à évaluer son rôle dans la prolifération des cellules leucémiques. IGFBP2 a un rôle dans la différenciation des HSCP. Les expériences de différenciation des cellules CD34+ traitées avec IGFBP2 montrent un biais de différenciation vers les monocytes à défaut des granulocytes. Afin de valider ces observations, les mêmes expériences doivent être réalisées sur des cellules CD34+ de patients. Ces expériences pourraient nous permettre de déterminer si la présence d’IGFBP2 potenatialise le biais de différenciation des patients.

La voie des IGF peut collaborer avec d’autres voies de signalisation comme Ras pour induire la prolifération et la survie cellulaire et participer à la progression tumorale (Figure 31). Une telle association est envisageable dans le cadre de la LMMC dans laquelle le voie Ras est souvent activée. IGFBP2 pourrait participer à l’hypersensibilité au GM-CSF en activant la voie Ras, expliquant le biais de différenciation myéloïde observé en culture.

Figure 31 Implication d’IGFBP2 dans la voie Ras

Source : Yao X et al, Tumor Biology 2016
L’analyse de l’expression des gènes à l’échelle unicellulaire a permis de montrer que seules deux sous-populations de cellules expriment IGFBP2. Ces sous-populations sont presque inexistantes chez les contrôle tandis qu’elles constituent l’essentiel des cellules chez les patients comparativement aux contrôles. Les individus sains présentent par ailleurs une grande diversité de sous-clones, qui diminue drastiquement chez les patients. Il semble donc qu’il y ait une sélection de sous-clones exprimant IGFBP2 chez les patients atteint de LMMC, au dépend des autres. De manière intéressante, l’étude d’une monocytose réactionnelle montre également la sélection d’un sous-clone surexprimant IGFBP2. Cet échantillon présente les niveaux d’expression d’IGFBP2 les plus élevés. Le sous-clone trouvé dans la monocytose réactionnelle semble particulier à cette situation.

IGFBP2 a également été retrouvée produite en excès par les CSM de patients atteints de SMD. Il est possible que la surproduction d’IGFBP2 soit le résultat d’un contexte inflammatoire commun à plusieurs pathologies. Cette hypothèse est particulièrement intéressante compte-tenu du fait qu’une augmentation des cytokines pro-inflammatoires telles que IL6, IL1β, IL10, IL32 et TNFα a été retrouvée dans la moelle et le plasma des patients atteints de LMMC. Par ailleurs, Street et collègues ont montré en 2006 que l’inflammation est un modulateur de la voie des IGF. La corrélation positive entre les taux plasmatiques élevés de TNFα, IL6, IL1β et IGFBP2 suggère que ces cytokines inflammatoires sont responsables d’une surproduction d’IGFBP2. Les cellules leucémiques pourraient donc modifier leur niche en créant un environnement inflammatoire responsable de la surproduction d’IGFBP2 par des CSM.

La disparition de l’hétérogénéité des CSM observée dans nos résultats de single-cell RNAseq évoque une sélection de populations exprimant IGFBP2 chez les patients. Cette sélection pourrait créer un environnement plus permissif aux cellules leucémiques et participer à la physiopathologie de la LMMC. C’est ce que suggèrent les résultats des manipulations de différenciation des HSPC avec un biais de la différenciation myéloïde vers les monocyes en présence d’IGFBP2. Il a été montré que l’IL6 produit par les cellules leucémiques avait un rôle positif sur le développement de la CML en induisant un biais de différenciation myéloïde des progéniteurs hématoïdiétiques. Compte-tenu du rôle des cytokines inflammatoires dans la production d’IGFBP2 et de leurs taux élevés chez les patients atteints de LMMC, il est probable qu’une boucle de rétrocontrôle positive semblable ait lieu via IGFBP2.

L’analyse des gènes différemment exprimés entre les cellules IGFBP2 positives et IGFBP2 négatives n’a pas permis d’identifier de marqueur de surface qui pourrait faciliter leur identification. La forte expression du gène TAGLN qui régule la différenciation des CSM et la production d’IGFBP2 ouvre des perspectives intéressantes. Ces résultats restent très fragiles compte-tenu du nombre de cellules et de gènes étudiés par échantillon, ainsi que la taille réduite de la cohorte. Un grand nombre de cellules ont dû être écartées de l’analyse car elles ne présentaient pas les critères qualité nécessaires. Une grande disparité existe entre les échantillons et pourrait masquer un message important sur la répartition des sous-populations. Pour pallier au manque de puissance de cette étude et valider ces résultats préliminaires, il est essentiel de réaliser des expériences complémentaires sur un minimum de 3 échantillons contrôles, 3 LMMC et 3 monocytoses réactionnelles. L’ajout d’échantillons de SMD et NMP est envisageable. Afin d’éviter le biais imposé par la culture des CSM, nous pourrions tenter de réaliser cette expérience sur des moelles fraîches en sortie de tri enrichies en CSM (déplétion CD45 par exemple, ou tri positif sur le marqueur CD271).
2.2. Perspectives d’études

2.2.1. Régulation de l’expression d’IGFBP2

Les résultats d’analyse bisulfite suggèrent que la surexpression d’IGFBP2 passe par une déméthylation de son promoteur. D’autres équipes (revues par Pickard et McCance, 2015) ont déjà fait le lien entre l’expression d’IGFBP2 et l’état de méthylation de son promoteur suggérant qu’il s’agit d’un important régulateur de son expression.

L’analyse de motifs du promoteur d’IGFBP2 a identifié plusieurs facteurs de transcriptions possiblement responsables de son expression, parmi lesquels SP1, YY1, ERG1, CMYC, EZH2. Le facteur de transcription SP1 a été identifié pour réguler l’expression d’IGFBP2 dans la lignée de cancer du sein MCF-7. Une déméthylation du promoteur pourrait ainsi permettre à ces facteurs de s’y fixer et activer l’expression d’IGFBP2. D’autres facteurs de transcription ont été identifiés. HIF1a régule l’expression d’IGFBP2 en conditions hypoxiques, tandis que P53 active son expression. Menin permet de réprimer IGFBP2 en modifiant la structure de la chromatine au niveau de son promoteur. Une transactivation IGFBP2 par les IGF a également été rapportée.

L’étude par RNAseq des CSM de patients a mis en évidence un grand nombre de gènes surexprimés dont le promoteur est doté de la marque répressive H3K27me3 en condition saine, dont IGFBP2. Ce résultat suggère une altération à grande échelle de l’état de la chromatine avec une perte de la marque H3K27me3 chez les patients. Une dérégulation des ADN méthyl-transférases serait responsable d’une baisse de la marque H3K27me3 dans les CSM avec l’âge. La surexpression d’IGFBP2 par les CSM de patients pourrait être le résultat du vieillissement des CSM, aggravé par un contexte leucémique. Des analyses de ChIPseq sur des CSM de patients et d’individus sains âgés permettraient de répondre à cette hypothèse.

Il a été montré que le traitement des SMD par l’azacytidine permettait le soutien d’une hématopoïèse normale par modification des CSM. La faible expression d’IGFBP2 dans certains glioblastomes a pu être corrigée par la 5-azacytidine. Ceci suggère un rôle de DNMT1A dans la régulation de l’expression d’IGFBP2. Il serait intéressant de faire la corrélation entre la prise de ce traitement et l’expression d’IGFBP2 dans les CSM ou les cellules du clone tumoral chez les patients LMMC.

Enfin, pour valider l’hypothèse d’une activation de l’expression d’IGFBP2 par un contexte inflammatoire, il serait nécessaire de cultiver des CSM de donneurs âgés sains en présence de cytokines inflammatoires et d’étudier leur impact sur l’expression d’IGFBP2.

2.2.2. IGFBP2 et CSM

Il est possible qu’IGFBP2 exerce un rôle autocrine sur les CSM. Des données mentionnent un rôle d’IGFBP2 dans la différenciation des CSM soit vers le lignage ostéoblastique, soit vers le lignage adipocytaire. IGFBP2 pourrait donc déséquilibrer la composition de l’environnement médullaire. Nous pourrions réaliser des tests de différenciation in vitro des CSM saines avec ou sans recombinant d’IGFBP2, ou étudier la capacité de différenciation des CSM de patients en fonction de leur taux d’expression d’IGFBP2. Des résultats préliminaires suggèrent un défaut de différenciation ostéoblastique des CSM de patients comparativement aux contrôles, tandis que la différenciation ostéoblastique...
adipocytaire semble maintenue, voire accentuée (Figure 32). Compte-tenu du rôle délétère des adipocytes sur l’hématopoïèse, il est probable qu’un biais de différenciation vers cette lignée engendre un désavantage à l’hématopoïèse normale et participe à la dominance du clone tumoral (si tant est que celui-ci ne soit pas affecté négativement par ce nouvel environnement).

Figure 32

Expériences de différenciation adipocytaire et ostéocytaire réalisées sur 3 échantillons contrôles et 3 échantillons de patients en parallèle à passage 2. En figure sont les photos de 2 échantillons représentatifs du groupe, avec à gauche les cellules d’un individu sain âgé et à droite celles d’un patient LMMC. En haut, sont les résultats de la différenciation adipocytaire, en bas ceux de la différenciation ostéoblastique, photographiés à J21 de la différenciation à l’aide du MacroFluo Leica. Les cellules adipocytaires ont été colorées à l’Oil Red O, tandis que les cellules ostéoblastiques ont été colorées à l’Alizarin Red. On peut voir que les cellules adipocytaires se sont correctement formées chez les groupes, avec une densité de cellules différenciées légèrement plus importante chez les patients. Concernant la différenciation ostéoblastique, on constate que les cellules des patients sont toutes mortes, tandis qu’on voit un dépôt calcique normal chez les contrôles.

Des analyses immunohistochimiques de biopsies de moelle de patients permettraient de déterminer la proportion d’adipocytes et d’ostéoblastes dans la niche médullaire, en lien ou pas avec la sécrétion d’IGFBP2. IGFBP2 pourrait également être responsable d’une hyperprolifération des CSM dans la moelle des patients. La prolifération des CSM âgées saines en présence d’IGFBP2 et la prolifération des CSM de patients sécrétant plus ou moins d’IGFBP2 mériterait d’être aussi explorées. Cependant, étudier les capacités de prolifération et de différenciation des CSM en fonction de leur niveau d’expression d’IGFBP2 comporte plusieurs limites :

- ceci nécessite un screening, chronophage, des cellules en amont
- les résultats préliminaires de nos single-cell RNAseq montrent que seules deux sous-populations de CSM expriment IGFBP2. Une hétérogénéité du niveau d’expression et de production d’IGFBP2 a été détectée entre les patients.

L’utilisation des CSM de donneurs âgés sains, n’exprimant pas ou très faiblement IGFBP2, permet un meilleur contrôle des conditions de culture et donc une meilleure interprétation des résultats. La manipulation génétique de cellules âgées saines pour sur-exprimer IGFBP2 est également envisageable.

Des expériences préliminaires sont en cours pour déterminer l’impact d’IGFBP2 sur les CSM, mais également les CD34+ et les CD14+ d’individus sains. Brièvement, les cellules sont isolées à partir du sang ou de la moelle des donneurs, puis mis en culture pendant 24h avec 0 ou 1000ng/ml d’IGFBP2. Par la suite, les cellules sont congelées sous forme de culots secs à -80°C avant d’être lysées puis de réaliser l’extraction de leur ARN pour des études d’expression de gènes par RNAseq.
Cette étude nous permettra d’analyser l’impact d’IGFBP2 sur les différentes voies de signalisation activées ou inhibées sur les différents types cellulaires. La comparaison des résultats avec ceux de cellules CD34+, CD14+ et CSM de patients non traitées par IGFBP2 permettra de déterminer si le traitement des cellules saines réside en l’émergence d’un phénotype LMMC. Nous pourrions alors suggérer un rôle pré-leucémique d’IGFBP2.

2.2.3. Mécanisme d’action d’IGFBP2

Bien que nous ayons pu mettre en évidence un rôle d’IGFBP2 dans le biais de différenciation des CSPH de cordons, aucun mécanisme moléculaire n’a été identifié.

Afin de déterminer la dépendance d’IGFBP2 aux IGF dans ce biais de différenciation, il faudrait dans un premier temps étudier par western blot, l’expression des récepteurs aux IGF, des intégrines et des protéoglycanes chez les CD34+ de cordon, d’individus sains âgés et de patients. Ceci pourrait dans un premier temps nous donner une piste et éventuellement éliminer des possibilités concernant les mécanismes d’actions d’IGFBP2. Dans un second temps, nous pourrions réaliser les expériences de différenciation des CD34+ dans les conditions suivantes :

- des CD34+ seules en guise de contrôles
- supplémentées avec 1000 ng/mL d’IGFBP2 comme contrôle positif
- supplémentées seulement avec des agonistes des IGFR/ des intégrines/ des protéoglycanes pour activer les voies en aval
- supplémentées avec IGFBP2 et des antagonistes des IGFR /des intégrines/des protéoglycanes pour vérifier si IGFBP2 exerce toujours sa fonction
- supplémentées avec IGFBP2 et des anticorps dirigés contre IGF1/2 pour vérifier si IGFBP2 exerce toujours sa fonction

Nous pourrions également utiliser la technologie Octet RED96e de ForteBio qui permet l’analyse d’interactions protéine-protéine in vitro notamment dans les surnageants de culture et les lysats, afin d’identifier le ou les partenaires protéiques d’IGFBP2 dans les conditions de différenciation.

Par ailleurs, IGFBP2 pouvant être clivée par des protéases, il serait intéressant d’étudier les différentes formes de la protéine présente chez les patients.

Aussi, les taux plasmatiques d’IGF1 et IGF2 chez les patients pourraient également nous donner une indication sur le rôle de la voie des IGF dans la physiopathologie de la LMMC. J’ai déjà réalisé des dosages ELISA des sérums de patients et d’individus sains âgés pour IGF1 n’ayant montré aucune différence significative entre les deux groupes (Figure33).

Figure 33
Dosage plasmatique par ELISA d’IGF1 chez 22 individus sains âgés et 11 patients atteints de LMMC. Aucune différence significative
Les résultats des RNAseq des CSM des patients et de contrôles ont montré une augmentation de l’expression d’IGF2 chez les patients. L’augmentation de l’expression d’IGF2 a été associée à plusieurs cancers\(^\text{381}\). Un ELISA des sérums de patients et d’individus sains serait donc intéressant à réaliser afin d’évaluer le potentiel rôle d’IGF2 dans la LMMC et sa relation avec IGFBP2.

D’autre part, IGFBP2 a été retrouvé surexprimée par les CSM des patients, cependant on retrouve également IGFBP2 à des taux plasmatiques élevés. La localisation des CSM dans la moelle osseuse et leur quantité ne peuvent pas expliquer à elles seules une telle augmentation d’IGFBP2 dans la circulation. Il est probable que d’autres cellules surexpriment IGFBP2, certainement les cellules du clone leucémique, comme dans le cas des LAM. Dans le sens de cette hypothèse, il a été montré que les mutations KRAS induisent l’expression d’IGFBP2\(^\text{382}\). Une étude à l’échelle transcriptomique et protéomique des cellules du clone devrait être réalisée pour confirmer cette hypothèse.

2.2.4. **IGFBP2 : biomarqueur et nouvelle cible thérapeutique de la LMMC?**

IGFBP2 ayant été proposée pour être un biomarqueur dans de nombreuses tumeurs, la question s’est également posée dans le cadre de la LMMC.

Malheureusement, les cohortes étudiées lors de ma thèse sont de taille trop réduites et manquent de puissance pour espérer dégager un message clair. Néanmoins, des résultats préliminaires intéressants montrent une corrélation entre l’expression d’IGFBP2 et le phénotype myéloprolifératif des patients ainsi que la présence de mutations ASXL1 et NRAS qui sont tous 3 des facteurs de mauvais pronostic. Par ailleurs, une corrélation positive existe entre des taux plasmatiques d’IGFBP2 élevés et l’âge chez les individus sains, suggérant ici un effet du vieillissement.

D’autre part, IGFBP2 régule la voie des IGF et est impliqué dans le métabolisme de l’insuline\(^\text{383}\). Elle a d’ailleurs été trouvée impliquée dans la sensibilité à l’insuline liée à l’âge\(^\text{384}\). Ainsi, il serait intéressant de récupérer les indices de masse corporelle des patients afin de faire le lien avec leur taux d’IGFBP2 plasmatique.

Une étude à grande échelle sur des groupes d’une centaine d’individus, de patients atteints de LMMC, de monocytose réactionnelle et de contrôle est essentielle pour déterminer si IGFBP2 pourrait être un marqueur pronostic de la LMMC.

IGFBP2 pourrait alors devenir une nouvelle cible thérapeutique de la LMMC. La surexpression d’IGFBP2 dans de nombreux cancers a ouvert la voie au développement de nouvelles stratégies thérapeutiques. Un inhibiteur direct d’IGFBP2 a été rapporté, OGX-225, un oligonucléotide antisens de seconde génération, qui diminue l’expression d’IGFBP2 dans les lignées de cancer du sein in vitro et in vivo\(^\text{385}\). De plus, OGX-225 atténue les phénotypes agressifs des lignées de cancer du sein. Bien qu’il s’agisse d’une étude préliminaire dans l’application d’IGFBP2 dans les thérapies ciblées, ces résultats offrent de bons espoirs.

D’autre part, IGFBP2 est impliquée dans de nombreuses voies de signalisation ce qui offre la possibilité d’une stratégie de multithérapie combinée avec d’autres inhibiteurs. IGF1R a notamment été largement étudié. Il existe deux catégories de stratégies thérapeutiques en développement clinique : les anticorps monoclonaux (mAb) qui ciblent IGF1R, et les petites molécules inhibitrices de
tyrosines kinases (TKIs). Le Dalotuzumab (MK0646) est un recombinant IgG1 mAB dirigé contre IGF1R. Des études précliniques ont montré qu’il diminue la croissance tumorale en inhibant la signalisation IGF et exerce une activité anti-tumorale in vitro et in vivo. Le Cixutumumab est un autre inhibiteur d’IGF1R, qui a été étudié dans plusieurs cancers et dont les résultats montrent que cet agent est bien toléré. Un TKI d’IGF1R, BMS-754807, a montré des résultats prometteurs et est en cours d’essai clinique.

IGFBP2 a été montrée comme étant un marqueur de la réponse aux thérapies ciblant IGF1R. Kang et al ont rapporté que l’expression d’IGFBP2 est significativement réduite dans les lignées cellulaires des rhabdomyosarcomes résistant aux anticorps anti-IGF1R. L’addition d’IGFBP2 a des niveaux physiologiques a significativement sensibilisé les lignées cellulaires à l’anticorps anti-IGF1R R1507. Cependant, l’augmentation d’IGFBP2 dans les cancers pancréatiques est associée à une résistance aux thérapies IGF1R.

La détermination du rôle dépendant ou indépendant aux IGF d’IGFBP2 semble être une priorité pour la mise en place d’une thérapie adaptée.
Conclusion

L’ensemble de ces travaux démontre que la niche hématopoïétique est altérée chez les patients atteints de LMMC. Si la modélisation d’une moelle humaine pour étudier la maladie a échoué, nos travaux ont démontré que les CSM de ces patients ont une hétérogénéité réduite et produisent des quantités anormalement élevées d’IGFBP2 qui semble participer au biais de production des monocytes. Cette anomalie n’a rien de spécifique : elle est aussi observée dans les SMD et une monocytose réactionnelle. Elle n’en est pas moins intrigante : IGFBP2 crée-t-elle un environnement propice à l’évolution d’un clone hématopoïétique ou sa surproduction n’est-elle que la conséquence de l’inflammation induite par la maladie ? L’extension des observations recueillies au cours de cette thèse sera indispensable pour tenter de répondre à cette question.
Références

Titre : Rôle des cellules souches mésenchymateuses médullaires dans la Leucémie Myélomonocytaire Chronique (LMMC)

Mots clés : Leucémie, Xénogreffe, Microenvironnement, Cellules souches mésenchymateuses, IGFBP2

Résumé : La leucémie myélomonocytaire chronique (LMMC) est une hémopathie myéloïde rare du sujet âgé. Les caractéristiques cliniques, génétiques et moléculaires de la maladie sont bien connues. L’expression très hétérogène de la maladie ne peut être expliquée par la seule hétérogénéité génétique du clone leucémique. Les altérations épigénétiques jouent manifestement un rôle important. Le rôle de facteurs extrinsèques issus du microenvironnement est plus obscur. La niche hématopoïétique est le siège d’interactions entre cellules. Deux schémas non-exclusifs d’altération primaire ou secondaire de la niche sont proposés. Le premier implique que l’émergence d’un clone hématopoïétique modifie son environnement. Le second postule que le premier événement dans l’émergence d’une hémopathie clonale est une altération de l’environnement. Mon travail de thèse a étudié les altérations du microenvironnement médullaire chez les patients et leur impact sur la physiopathologie de la maladie selon 2 axes: 1) la mise au point d’un modèle murin de reconstitution de la niche hématopoïétique humaine et 2) la caractérisation des cellules souches mésenchymateuses des patients.

Dans une première partie, j’ai transposé un modèle rapporté en 2016 à l’étude de la LMMC. Ce modèle de greffe de cellules médullaires humaines chez la souris immunodéprimée s’est avéré difficilement reproducible. Dans la seconde partie, j’ai analysé les cellules souches mésenchymateuses de patients atteints de LMMC. J’ai identifié la production excessive d’IGFBP2 (Insuline-like Growth Factor Binding Protein 2), conséquence probable d’une dérégulation épigénétique. Le séquençage des CSM à l’échelle unicellulaire a révélé une restriction de l’hétérogénéité de ces cellules dont une fraction seulement produit IGFBP2. Finalement, j’ai montré qu’IGFBP2 favorise la différenciation des progéni-teurs myéloïdes vers la lignée monocyttaire. IGFBP2 pourrait donc contribuer à amplifier la monocytose caractéristique de cette maladie.

En conclusion, la LMMC s’accompagne de modifications des cellules de la niche hématopoïétique dont certaines produisent des quantités excessives d’IGFBP2. La recherche de l’origine de ce dérèglement et de son importance dans la progression de la maladie permettra d’évaluer l’intérêt potentiel d’une neutralisation de cette cytokine à des fins thérapeutiques.

Title : Role of medullar mesenchymal stem cells in chronic myelomonocytic leukemia (CMML)

Keywords : Leukemia, Xenograft, Microenvironment, Mesenchymal stem cells, IGFBP2

Abstract: Chronic myelomonocytic leukemia (CMML) is a rare myeloid hemopathy of the elderly. Clinical, genetic and molecular characteristics of the disease are well-known. The highly heterogeneous expression of the disease can’t be solely explained by genetic heterogeneity of the leukemic clone. Epigenetic alterations obviously play an important role. However, the role of intrinsic factors from the medullar microenvironment in CMML physiopathology is still poorly understood. The hematopoietic niche hosts a lot of bi-directional interactions between cells. Two non-exclusive schemes of primary and secondary alterations of the niche can be proposed. First postulate implies that the emergence of a hematopoietic clone alters its environment. The second one supposes that the first event causing the emergence of a clonal hemopathy is an alteration of the environment. My PhD work consisted of studying medullar alterations in patients and their impact on CMML physiopathology upon 2 axes: 1) to set up a murine model of human hematopoietic niche reconstitution 2) to caracterise mesenchymal stem cells from CMML patient ex vivo.

During the first part of my PhD, I adapted a model published in 2016 to CMML. This model of human MSC graft in immunodeficient mice proved to be hardly reproducible. During the second part, I analysed of CMML patients MSC. I identified an excessive production of IGFBP2 (Insuline-like Growth Factor Binding Protein 2) probably secondary to an epigenetic deregulation. Single cell RNA sequencing revealed a restriction of MSC heterogeneity of which only a fraction produces IGFBP2. Finally, I showed that IGFBP2 favors myeloid progenitors differentiation towards monocytic lineage. IGFBP2 could therefore contribute to the amplification of CMML characteristic monocytosis. To conclude, CMML goes along with modifications of hematopoietic niche cells, some of which produce excessive amounts of IGFBP2. Investigation on the origin of this alteration and its significance in disease progression should allow to evaluate the potential interest of its neutralization for therapeutic strategies.