. .. Introduction, 122 5.2 Supraconductivité : définition, contexte et enjeux

.. .. Conclusion,

W. Grochala, R. Hoffmann, J. Feng, and N. W. Ashcroft, The Chemical Imagination at Work in Very Tight Places, Angewandte Chemie International Edition, vol.46, p.3620, 2007.

C. Bosch, The Development of the Chemical High Pressure Method During the Establishment of the New Ammonia Industry : Nobel Lecture, Oslo, 1932.

F. P. Bundy, H. T. Hall, H. M. Strong, and R. H. Wentorf, Man-Made Diamonds, Nature, vol.176, p.51, 1955.

R. M. Hazen, The Diamond Makers, 1999.

C. E. Weir, E. R. Lippincott, A. Van-valkenburg, and E. N. Bunting, Infrared studies in the 1-to 15-micron region to 30,000 atmospheres, Journal of Research of the National Bureau of Standards Section A: Physics and Chemistry, vol.63, p.16, 1959.

A. Gruber, A. Dräbenstedt, C. Tietz, L. Fleury, J. Wrachtrup et al., Scanning Confocal Optical Microscopy and Magnetic Resonance on Single Defect Centers, Science, New Series, vol.276, p.32, 1997.

J. R. Maze, P. L. Stanwix, J. S. Hodges, S. Hong, J. M. Taylor et al., Nanoscale magnetic sensing with an individual electronic spin in diamond, Nature, vol.455, p.644, 2008.

G. Balasubramanian, I. Y. Chan, R. Kolesov, M. Al-hmoud, J. Tisler et al., Nanoscale imaging magnetometry with diamond spins under ambient conditions, Nature, vol.455, p.648, 2008.

. Bibliographie,

L. Rondin, J. Tetienne, T. Hingant, J. Roch, P. Maletinsky et al., Magnetometry with nitrogen-vacancy defects in diamond, Reports on Progress in Physics, vol.77, p.36, 2014.

H. Mao, X. Chen, Y. Ding, B. Li, and L. Wang, Solids, liquids, and gases under high pressure, Reviews of Modern Physics, vol.90, p.23, 2018.

A. P. Drozdov, M. I. Eremets, I. A. Troyan, V. Ksenofontov, and S. I. Shylin, Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system, Nature, vol.525, p.127, 2015.

A. P. Drozdov, P. P. Kong, V. S. Minkov, S. P. Besedin, M. A. Kuzovnikov et al., Superconductivity at 250 K in lanthanum hydride under high pressures, Nature, vol.569, p.528, 2019.

M. Somayazulu, M. Ahart, A. K. Mishra, Z. M. Geballe, M. Baldini et al.,

R. J. Struzhkin and . Hemley, Evidence for Superconductivity above 260 K in Lanthanum Superhydride at Megabar Pressures, Physical Review Letters, vol.122, p.127, 2019.

E. Wigner and H. B. Huntington, On the Possibility of a Metallic Modification of Hydrogen, The Journal of Chemical Physics, vol.3, p.126, 1935.

P. Loubeyre, F. Occelli, and P. Dumas, Observation of a first order phase transition to metal hydrogen near 425 GPa, vol.23, p.126, 2019.

L. P. Gor'kov and V. Z. Kresin, Colloquium : High pressure and road to room temperature superconductivity, Reviews of Modern Physics, vol.90, p.11001, 2018.

J. Xu, H. Mao, R. J. Hemley, and E. Hines, The moissanite anvil cell: A new tool for high-pressure research, Journal of Physics: Condensed Matter, vol.14, p.11543, 2002.

A. Dewaele, P. Loubeyre, F. Occelli, O. Marie, and M. Mezouar, Toroidal diamond anvil cell for detailed measurements under extreme static pressures, Nature Communications, vol.9, p.18, 2018.

Z. Jenei, E. F. O'bannon, S. T. Weir, H. Cynn, M. J. Lipp et al., Single crystal toroidal diamond anvils for high pressure experiments beyond 5 megabar, Nature Communications, vol.9, p.3563, 2018.

R. Boehler and K. Hantsetters, New anvil designs in diamond-cells, High Pressure Research, vol.24, p.391, 2004.

R. Letoullec, J. P. Pinceaux, and P. Loubeyre, The membrane diamond anvil cell: A new device for generating continuous pressure and temperature variations, High Pressure Research, vol.1, p.77, 1988.

A. Easylab, , p.20

B. Guigue, Structure et propriétés magnétiques de quelques super-hydrures sous pression : recherche d'un supraconducteur à TC ambiante et de similarités avec l'hydrogène métallique, 2019.

P. I. Dorogokupets and A. R. Oganov, Ruby, metals, and MgO as alternative pressure scales: A semiempirical description of shock-wave, ultrasonic, x-ray, and thermochemical data at high temperatures and pressures, Physical Review B, vol.75, p.24115, 2007.

J. Rueff and A. Shukla, Inelastic x-ray scattering by electronic excitations under high pressure, Reviews of Modern Physics, vol.82, p.847, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00644066

O. Mathon, F. Baudelet, J. Itié, S. Pasternak, A. Polian et al., XMCD under pressure at the Fe K edge on the energy-dispersive beamline of the ESRF, Journal of Synchrotron Radiation, vol.11, p.423, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00002169

R. Torchio, Y. O. Kvashnin, S. Pascarelli, O. Mathon, C. Marini et al., X-Ray Magnetic Circular Dichroism Measurements in Ni up to 200 GPa: Resistant Ferromagnetism, Physical Review Letters, vol.107, p.237202, 2011.

T. Mitsui, N. Hirao, Y. Ohishi, R. Masuda, Y. Nakamura et al., Development of an energy-domain 57 Fe-Mössbauer spectrometer using synchrotron radiation and its application to ultrahigh-pressure studies with a diamond anvil cell, Journal of Synchrotron Radiation, vol.16, p.723, 2009.

Q. Wei, C. Mccammon, and S. A. Gilder, High-Pressure Phase Transition of Iron: A Combined Magnetic Remanence and Mössbauer Study, Geochemistry, Geophysics, Geosystems, vol.18, p.4646, 2017.

I. Troyan, A. Gavriliuk, R. Ruffer, A. Chumakov, A. Mironovich et al., Observation of superconductivity in hydrogen sulfide from nuclear resonant scattering, Science, vol.351, p.1303, 2016.

M. Debessai, J. J. Hamlin, and J. S. Schilling, Comparison of the pressure dependences of Tc in the trivalent d-electron superconductors Sc, Y, La, and Lu up to megabar pressures, Physical Review B, vol.78, p.64519, 2008.

M. P. Raphael, M. E. Reeves, and E. F. Skelton, Nonlinear response of type II superconductors: A new method of measuring the pressure dependence of the transition temperature Tc(P), Review of Scientific Instruments, vol.69, p.1451, 1998.

D. D. Jackson, C. Aracne-ruddle, V. Malba, S. T. Weir, S. A. Catledge et al., Magnetic susceptibility measurements at high pressure using designer diamond anvils, Review of Scientific Instruments, vol.74, p.2467, 2003.

P. L. Alireza and S. R. Julian, Susceptibility measurements at high pressures using a microcoil system in an anvil cell, Review of Scientific Instruments, vol.74, p.4728, 2003.

K. Y. Yip, K. O. Ho, K. Y. Yu, Y. Chen, W. Zhang et al., Measuring magnetic field texture in correlated electron systems under extreme conditions, Science, vol.366, p.131, 2019.

P. L. Alireza, S. Barakat, A. Cumberlidge, G. Lonzarich, F. Nakamura et al., Developments on Susceptibility and Magnetization Measurements under High Hydrostatic Pressure, Journal of the Physical Society of Japan, vol.76, p.216, 2007.

P. L. Alireza and G. G. Lonzarich, Miniature anvil cell for high-pressure measurements in a commercial superconducting quantum interference device magnetometer, Review of Scientific Instruments, vol.80, p.23906, 2009.

A. Marizy, B. Guigue, F. Occelli, B. Leridon, and P. Loubeyre, A symmetric miniature diamond anvil cell for magnetic measurements on dense hydrides in a SQUID magnetometer, High Pressure Research, vol.37, p.27, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02177513

M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup et al., The nitrogen-vacancy colour centre in diamond, Physics Reports, vol.528, p.32, 2013.

M. V. Dutt, L. Childress, L. Jiang, E. Togan, J. Maze et al., Quantum Register Based on Individual Electronic and Nuclear Spin Qubits in Diamond, Science, vol.316, p.1312, 2007.

P. Neumann, R. Kolesov, B. Naydenov, J. Beck, F. Rempp et al., Quantum register based on coupled electron spins in a room-temperature solid, Nature Physics, vol.6, p.249, 2010.

L. Robledo, L. Childress, H. Bernien, B. Hensen, P. F. Alkemade et al., High-fidelity projective read-out of a solid-state spin quantum register, Nature, vol.477, p.574, 2011.

G. D. Fuchs, G. Burkard, P. V. Klimov, and D. D. Awschalom, A quantum memory intrinsic to single nitrogen-vacancy centres in diamond, Nature Physics, vol.7, p.789, 2011.

G. Kucsko, P. C. Maurer, N. Y. Yao, M. Kubo, H. J. Noh et al., Nanometre-scale thermometry in a living cell, Nature, vol.500, p.54, 2013.

. Bibliographie,

M. Fukami, C. Yale, P. Andrich, X. Liu, F. Heremans et al., All-Optical Cryogenic Thermometry Based on Nitrogen-Vacancy Centers in Nanodiamonds, Physical Review Applied, vol.12, p.14042, 2019.

F. Dolde, H. Fedder, M. W. Doherty, T. Nöbauer, F. Rempp et al., Electric-field sensing using single diamond spins, Nature Physics, vol.7, p.459, 2011.

P. Wang, Z. Yuan, P. Huang, X. Rong, M. Wang et al., High-resolution vector microwave magnetometry based on solid-state spins in diamond, Nature Communications, vol.6, p.6631, 2015.

L. Shao, R. Liu, M. Zhang, A. V. Shneidman, X. Audier et al., Wide-Field Optical Microscopy of Microwave Fields Using Nitrogen-Vacancy Centers in Diamonds, Advanced Optical Materials, vol.4, p.1075, 2016.

A. Horsley, P. Appel, J. Wolters, J. Achard, A. Tallaire et al., Microwave Device Characterization Using a Widefield Diamond Microscope, Physical Review Applied, vol.10, p.55, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02346269

M. Chipaux, L. Toraille, C. Larat, L. Morvan, S. Pezzagna et al., Wide bandwidth instantaneous radio frequency spectrum analyzer based on nitrogen vacancy centers in diamond, Applied Physics Letters, vol.107, p.233502, 2015.

D. A. Broadway, B. C. Johnson, M. S. Barson, S. E. Lillie, N. Dontschuk et al.,

L. C. Doherty, J. Hollenberg, and . Tetienne, Microscopic Imaging of the Stress Tensor in Diamond Using in Situ Quantum Sensors, Nano Letters, vol.19, p.32, 2019.

P. Kehayias, M. J. Turner, R. Trubko, J. M. Schloss, C. A. Hart et al., Imaging crystal stress in diamond using ensembles of nitrogenvacancy centers, vol.46, p.32, 2019.

C. L. Degen, Scanning magnetic field microscope with a diamond single-spin sensor, Applied Physics Letters, vol.92, p.243111, 2008.

J. M. Taylor, P. Cappellaro, L. Childress, L. Jiang, D. Budker et al., High-sensitivity diamond magnetometer with nanoscale resolution, Nature Physics, vol.4, p.37, 2008.

M. Chipaux, A. Tallaire, J. Achard, S. Pezzagna, J. Meijer et al., Magnetic imaging with an ensemble of nitrogen-vacancy centers in diamond, The European Physical Journal D, vol.69, p.32, 2015.

D. R. Glenn, R. R. Fu, P. Kehayias, D. L. Sage, E. A. Lima et al., Micrometer-scale magnetic imaging of geological samples using a quantum diamond microscope, Geochemistry, Geophysics, Geosystems, vol.18, p.44, 2017.

L. P. Mcguinness, Y. Yan, A. Stacey, D. A. Simpson, L. T. Hall et al., Quantum measurement and orientation tracking of fluorescent nanodiamonds inside living cells, Nature Nanotechnology, vol.6, p.358, 2011.

R. Schirhagl, K. Chang, M. Loretz, and C. L. Degen, Nitrogen-Vacancy Centers in Diamond: Nanoscale Sensors for Physics and Biology, Annual Review of Physical Chemistry, vol.65, p.83, 2014.

A. Nowodzinski, M. Chipaux, L. Toraille, V. Jacques, J. Roch et al., Nitrogen-Vacancy centers in diamond for current imaging at the redistributive layer level of Integrated Circuits, Microelectronics Reliability, vol.55, p.1549, 2015.

S. E. Lillie, N. Dontschuk, D. A. Broadway, D. L. Creedon, L. C. Hollenberg et al., Imaging Graphene Field-Effect Transistors on Diamond Using Nitrogen-Vacancy Microscopy, Physical Review Applied, vol.12, p.44, 2019.

M. W. Doherty, N. B. Manson, P. Delaney, and L. C. Hollenberg, The negatively charged nitrogen-vacancy centre in diamond: The electronic solution, New Journal of Physics, vol.13, p.25019, 2011.

J. R. Maze, A. Gali, E. Togan, Y. Chu, A. Trifonov et al., Properties of nitrogen-vacancy centers in diamond: The group theoretic approach, New Journal of Physics, vol.13, p.33, 2011.

A. Alkauskas, B. B. Buckley, D. D. Awschalom, and C. G. De-walle, First-principles theory of the luminescence lineshape for the triplet transition in diamond NV centres, New Journal of Physics, vol.16, p.73026, 2014.

L. Rondin, Réalisation d'un magnétomètre à centre coloré NV du diamant, vol.37, p.139, 2013.

N. B. Manson, J. P. Harrison, and M. J. Sellars, Nitrogen-vacancy center in diamond: Model of the electronic structure and associated dynamics, Physical Review B, vol.74, p.104303, 2006.

A. Dréau, J. Maze, M. Lesik, J. Roch, and V. Jacques, High-resolution spectroscopy of single NV defects coupled with nearby 13 C nuclear spins in diamond, Physical Review B, vol.85, p.134107, 2012.

. Bibliographie,

M. W. Doherty, F. Dolde, H. Fedder, F. Jelezko, J. Wrachtrup et al.,

. Hollenberg, Theory of the ground-state spin of the NV -center in diamond, Physical Review B, vol.85, p.205203, 2012.

M. Lesik, Engineering of NV Color Centers in Diamond for Their Applications in Quantum Information and Magnetometry, 2015.
URL : https://hal.archives-ouvertes.fr/tel-01158995

V. M. Acosta, E. Bauch, M. P. Ledbetter, C. Santori, K. C. Fu et al.,

H. Beausoleil, J. F. Linget, F. Roch, S. Treussart, W. Chemerisov et al., Diamonds with a high density of nitrogen-vacancy centers for magnetometry applications, Physical Review B, vol.80, p.115202, 2009.

M. Lesik, J. Tetienne, A. Tallaire, J. Achard, V. Mille et al., Perfect preferential orientation of nitrogen-vacancy defects in a synthetic diamond sample, Applied Physics Letters, vol.104, p.113107, 2014.

J. Michl, T. Teraji, S. Zaiser, I. Jakobi, G. Waldherr et al.,

N. B. Doherty, J. Manson, J. Isoya, and . Wrachtrup, Perfect alignment and preferential orientation of nitrogen-vacancy centers during chemical vapor deposition diamond growth on (111) surfaces, Applied Physics Letters, vol.104, p.102407, 2014.

S. Pezzagna, D. Rogalla, D. Wildanger, J. Meijer, and A. Zaitsev, Creation and nature of optical centres in diamond for single-photon emission-overview and critical remarks, New Journal of Physics, vol.13, p.35024, 2011.

S. Pezzagna, B. Naydenov, F. Jelezko, J. Wrachtrup, and J. Meijer, Creation efficiency of nitrogen-vacancy centres in diamond, New Journal of Physics, vol.12, p.72, 2010.

A. Dréau, M. Lesik, L. Rondin, P. Spinicelli, O. Arcizet et al., Avoiding power broadening in optically detected magnetic resonance of single NV defects for enhanced dc magnetic field sensitivity, Physical Review B, vol.84, p.46, 2011.

A. M. Wojciechowski, M. Karadas, A. Huck, C. Osterkamp, S. Jankuhn et al., Contributed Review: Camera-limits for wide-field magnetic resonance imaging with a nitrogen-vacancy spin sensor, Review of Scientific Instruments, vol.89, p.31501, 2018.

D. R. Glenn, D. B. Bucher, J. Lee, M. D. Lukin, H. Park et al., Highresolution magnetic resonance spectroscopy using a solid-state spin sensor, Nature, vol.555, p.351, 2018.

F. Münzhuber, J. Kleinlein, T. Kiessling, and L. W. Molenkamp, Polarization-assisted Vector Magnetometry in Zero Bias Field with an Ensemble of Nitrogen-Vacancy Centers in Diamond, p.49, 2017.

. Bibliographie,

M. P. Backlund, P. Kehayias, and R. L. Walsworth, Diamond-Based Magnetic Imaging with Fourier Optical Processing, Physical Review Applied, vol.8, p.51, 2017.

S. Kitazawa, Y. Matsuzaki, S. Saijo, K. Kakuyanagi, S. Saito et al., Vectormagnetic-field sensing via multifrequency control of nitrogen-vacancy centers in diamond, Physical Review A, vol.96, p.42115, 2017.

J. M. Schloss, J. F. Barry, M. J. Turner, and R. L. Walsworth, Simultaneous Broadband Vector Magnetometry Using Solid-State Spins, Physical Review Applied, vol.10, p.51, 2018.

H. Clevenson, L. M. Pham, C. Teale, K. Johnson, D. Englund et al., Robust highdynamic-range vector magnetometry with nitrogen-vacancy centers in diamond, Applied Physics Letters, vol.112, p.51, 2018.

J. M. Mccoey, R. W. Gille, B. Nasr, J. Tetienne, L. T. Hall et al., Rapid, High-Resolution Magnetic Microscopy of Single Magnetic Microbeads, Small, vol.15, p.1805159, 2019.

D. J. Mccloskey, N. Dontschuk, D. A. Broadway, A. Nadarajah, A. Stacey et al., Enhanced wide-field quantum sensing with nitrogen-vacancy ensembles using diamond nanopillar arrays, 2019.

E. V. Levine, M. J. Turner, P. Kehayias, C. A. Hart, N. Langellier et al., Principles and techniques of the quantum diamond microscope, Nanophotonics, 2019.

S. Felton, A. M. Edmonds, M. E. Newton, P. M. Martineau, D. Fisher et al., Hyperfine interaction in the ground state of the negatively charged nitrogen vacancy center in diamond, Physical Review B, vol.79, p.75203, 2009.

B. Smeltzer, J. Mcintyre, and L. Childress, Robust control of individual nuclear spins in diamond, Physical Review A, vol.80, p.50302, 2009.

N. Mizuochi, P. Neumann, F. Rempp, J. Beck, V. Jacques et al., Coherence of single spins coupled to a nuclear spin bath of varying density, Physical Review B, vol.80, p.41201, 2009.

M. Chipaux, Ensembles de Centres Azote-Lacune Du Diamant Pour La Cartographie de Champs Magnétiques à l'échelle Microscopique et l'analyse de Spectres de Signaux Dans Le Domaine Hyperfréquence, 2014.

L. Toraille, K. Aïzel, É. Balloul, C. Vicario, C. Monzel et al.,

J. Siaugue, S. Sampaio, N. Rohart, L. Vernier, T. Bonnemay et al.,

F. Roch and M. Dahan, Optical Magnetometry of Single Biocompatible Micromagnets for Quantitative Magnetogenetic and Magnetomechanical Assays, Nano Letters, vol.18, p.7635, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02350740

J. Dobson, Remote control of cellular behaviour with magnetic nanoparticles, Nature Nanotechnology, vol.3, p.139, 2008.

F. Pinaud, S. Clarke, A. Sittner, and M. Dahan, Probing cellular events, one quantum dot at a time, Nature Methods, vol.7, p.275, 2010.

L. Bonnemay, C. Hoffmann, and Z. Gueroui, Remote control of signaling pathways using magnetic nanoparticles, Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, vol.7, 2015.

Q. Pankhurst, J. Connolly, S. Jones, and J. Dobson, Applications of magnetic nanoparticles in biomedecine, J. Phys. D: Appl. Phys, vol.36, p.167, 2003.

C. Wu, Y. Shen, M. Chen, K. Wang, Y. Li et al., Recent Advances in Magnetic-Nanomaterial-Based Mechanotransduction for Cell Fate Regulation, Advanced Materials, vol.30, p.1705673, 2018.

C. Monzel, C. Vicario, J. Piehler, M. Coppey, and M. Dahan, Magnetic control of cellular processes using biofunctional nanoparticles, Chemical Science, vol.8, p.7330, 2017.

F. Etoc, D. Lisse, Y. Bellaiche, J. Piehler, M. Coppey et al., Subcellular control of Rac-GTPase signalling by magnetogenetic manipulation inside living cells, Nature Nanotechnology, vol.8, p.193, 2013.

D. Seo, K. M. Southard, J. Kim, H. J. Lee, J. Farlow et al., A Mechanogenetic Toolkit for Interrogating Cell Signaling in Space and Time, Cell, vol.165, p.1507, 2016.

A. H. De-vries, B. E. Krenn, R. Van-driel, and J. S. Kanger, Micro Magnetic Tweezers for Nanomanipulation Inside Live Cells, Biophysical Journal, vol.88, p.2137, 2005.

P. Tseng, D. D. Carlo, and J. W. Judy, Rapid and Dynamic Intracellular Patterning of Cell-Internalized Magnetic Fluorescent Nanoparticles, Nano Letters, vol.9, p.3053, 2009.

P. Tseng, J. W. Judy, and D. Carlo, Magnetic nanoparticle-mediated massively parallel mechanical modulation of single-cell behavior, Nature Methods, vol.9, p.51, 2012.

S. Rampini, P. Li, and G. U. Lee, Micromagnet arrays enable precise manipulation of individual biological analyte-superparamagnetic bead complexes for separation and sensing, Lab on a Chip, vol.16, p.3645, 2016.

. Bibliographie,

E. Schäffer, S. F. Nørrelykke, and J. Howard, Surface Forces and Drag Coefficients of Microspheres near a Plane Surface Measured with Optical Tweezers, Langmuir, vol.23, p.3654, 2007.

D. L. Roy, G. Shaw, R. Haettel, K. Hasselbach, F. Dumas-bouchiat et al., Fabrication and characterization of polymer membranes with integrated arrays of high performance micro-magnets, Materials Today Communications, vol.6, p.50, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01950201

M. Barthelmess, C. Pels, A. Thieme, and G. Meier, Stray fields of domains in permalloy microstructures-Measurements and simulations, Journal of Applied Physics, vol.95, p.5641, 2004.

R. P. Cowburn, Property variation with shape in magnetic nanoelements, Journal of Physics D: Applied Physics, vol.33, p.1, 2000.

, Quantum Design-MPMS3 User's Guide

J. Tetienne, L. Rondin, P. Spinicelli, M. Chipaux, T. Debuisschert et al., Magnetic-field-dependent photodynamics of single NV defects in diamond: An application to qualitative all-optical magnetic imaging, New Journal of Physics, vol.14, p.95, 2012.

J. L. Webb, J. D. Clement, L. Troise, S. Ahmadi, G. J. Johansen et al., Nanotesla sensitivity magnetic field sensing using a compact diamond nitrogenvacancy magnetometer, Applied Physics Letters, vol.114, p.231103, 2019.

M. W. Doherty, V. V. Struzhkin, D. A. Simpson, L. P. Mcguinness, Y. Meng et al., Electronic Properties and Metrology Applications of the Diamond NV -Center under Pressure, Physical Review Letters, vol.112, p.47601, 2014.

J. Teissier, A. Barfuss, P. Appel, E. Neu, and P. Maletinsky, Strain Coupling of a Nitrogen-Vacancy Center Spin to a Diamond Mechanical Oscillator, Physical Review Letters, vol.113, p.71, 2014.

M. S. Barson, P. Peddibhotla, P. Ovartchaiyapong, K. Ganesan, R. L. Taylor et al.,

. Doherty, Nanomechanical Sensing Using Spins in Diamond, Nano Letters, vol.17, p.66, 2017.

. Bibliographie,

P. Udvarhelyi, V. O. Shkolnikov, A. Gali, G. Burkard, and A. Pályi, Spin-strain interaction in nitrogen-vacancy centers in diamond, Physical Review B, vol.98, p.66, 2018.

M. S. Barson, The Mechanical and Thermal Properties of the Nitrogen-Vacancy Centre in Diamond, p.153, 2018.

P. Ovartchaiyapong, K. W. Lee, B. A. Myers, and A. C. Jayich, Dynamic strainmediated coupling of a single diamond spin to a mechanical resonator, Nature Communications, vol.5, p.4429, 2014.

V. M. Acosta, E. Bauch, M. P. Ledbetter, A. Waxman, L. Bouchard et al., Temperature Dependence of the Nitrogen-Vacancy Magnetic Resonance in Diamond, Physical Review Letters, vol.104, p.70801, 2010.

T. Plakhotnik, M. W. Doherty, J. H. Cole, R. Chapman, and N. B. Manson, All-Optical Thermometry and Thermal Properties of the Optically Detected Spin Resonances of the NV -Center in Nanodiamond, Nano Letters, vol.14, p.4989, 2014.

M. Kobayashi and Y. Nisida, High Pressure Effects on Photoluminescence Spectra of Color Centers in Diamond, Japanese Journal of Applied Physics, vol.32, p.279, 1993.

B. Deng, R. Q. Zhang, and X. Q. Shi, New insight into the spin-conserving excitation of the negatively charged nitrogen-vacancy center in diamond, Scientific Reports, vol.4, p.5144, 2015.

N. Aslam, G. Waldherr, P. Neumann, F. Jelezko, and J. Wrachtrup, Photo-induced ionization dynamics of the nitrogen vacancy defect in diamond investigated by single-shot charge state detection, New Journal of Physics, vol.15, p.70, 2013.

M. Yao, T. Zhu, and D. Shu, Effects of external stress field on the charge stability of nitrogen vacancy centers in diamond, Applied Physics Letters, vol.111, p.42108, 2017.

E. Bourgeois, A. Jarmola, P. Siyushev, M. Gulka, J. Hruby et al., Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond, Nature Communications, vol.6, p.8577, 2015.

M. Romanova, Theoretical Study of the Many-Body Electronic States of Defects in Diamond: The Case of the NV Center under High Pressure, 2019.

M. Lesik, P. Spinicelli, S. Pezzagna, P. Happel, V. Jacques et al., Maskless and targeted creation of arrays of colour centres in diamond using focused ion beam technology, Physica Status Solidi A, vol.210, p.2055, 2013.

. Bibliographie,

J. Renaud, Application Des Faisceaux d'ions Focalisés à La Création de Centres NV Du Diamant. Caractérisation de Ces Faisceaux d'ions Issus d'une Source Plasma, 2019.

J. Botsoa, T. Sauvage, M. Adam, P. Desgardin, E. Leoni et al., Optimal conditions for NV -center formation in type-1b diamond studied using photoluminescence and positron annihilation spectroscopies, Physical Review B, vol.84, p.125209, 2011.

J. Tisler, G. Balasubramanian, B. Naydenov, R. Kolesov, B. Grotz et al.,

F. Hemmer, J. Jelezko, and . Wrachtrup, Fluorescence and Spin Properties of Defects in Single Digit Nanodiamonds, ACS Nano, vol.3, p.1959, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00481219

D. Solli and R. Jeanloz, Nonmetallic gaskets for ultrahigh pressure diamond-cell experiments, Review of Scientific Instruments, vol.72, p.2110, 2001.

T. Meier and J. Haase, Anvil cell gasket design for high pressure nuclear magnetic resonance experiments beyond 30 GPa, Review of Scientific Instruments, vol.86, p.123906, 2015.

M. G. Pravica and I. F. Silvera, Nuclear magnetic resonance in a diamond anvil cell at very high pressures, Review of Scientific Instruments, vol.69, p.479, 1998.

N. Spengler, P. T. While, M. V. Meissner, U. Wallrabe, and J. G. Korvink, Magnetic Lenz lenses improve the limit-of-detection in nuclear magnetic resonance, PLOS ONE, vol.12, p.182779, 2017.

T. Meier, N. Wang, D. Mager, J. G. Korvink, S. Petitgirard et al., Magnetic flux tailoring through Lenz lenses for ultrasmall samples: A new pathway to high-pressure nuclear magnetic resonance, Science Advances, vol.3, p.78, 2017.

T. Meier, S. Khandarkhaeva, S. Petitgirard, T. Körber, E. Rössler et al., NMR close to Mega-Bar Pressures, p.78, 2018.

L. G. Steele, M. Lawson, M. Onyszczak, B. T. Bush, Z. Mei et al., Optically detected magnetic resonance of nitrogen vacancies in a diamond anvil cell using designer diamond anvils, Applied Physics Letters, vol.111, p.221903, 2017.

R. Akhmedzhanov, L. Gushchin, N. Nizov, V. Nizov, D. Sobgayda et al., Microwave-free magnetometry based on cross-relaxation resonances in diamond nitrogen-vacancy centers, Physical Review A, vol.96, p.13806, 2017.

. Bibliographie,

A. Wickenbrock, H. Zheng, L. Bougas, N. Leefer, S. Afach et al., Microwave-free magnetometry with nitrogen-vacancy centers in diamond, Applied Physics Letters, vol.109, p.53505, 2016.

W. A. Bassett and E. Huang, Mechanism of the Body-Centered Cubic-Hexagonal Close-Packed Phase Transition in Iron, Science, New Series, vol.238, p.110, 1987.

L. Toraille, M. Lesik, T. Plisson, J. Renaud, F. Occelli et al., Magnetic measurements on micrometer-sized samples under high pressure using designed NV centers, Science, vol.366, p.130, 2019.

S. Hsieh, P. Bhattacharyya, C. Zu, T. Mittiga, T. J. Smart et al.,

N. Z. Höhn, M. Rui, S. Kamrani, S. Chatterjee, M. Choi et al.,

V. I. Moore, R. Levitas, N. Y. Jeanloz, and . Yao, Imaging stress and magnetism at high pressures using a nanoscale quantum sensor, Science, vol.366, p.1349, 2019.

A. Aesar,

H. K. Mao, J. Xu, and P. M. Bell, Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions, Journal of Geophysical Research, vol.91, p.4673, 1986.

A. Dewaele, M. Torrent, P. Loubeyre, and M. Mezouar, Compression curves of transition metals in the Mbar range: Experiments and projector augmented-wave calculations, Physical Review B, vol.78, p.104102, 2008.

A. Dewaele, C. Denoual, S. Anzellini, F. Occelli, M. Mezouar et al., Mechanism of the ? -phase transformation in iron, Physical Review B, vol.91, p.174105, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01216768

A. Monza, A. Meffre, F. Baudelet, J. Rueff, M. Astuto et al., Iron Under Pressure: "Kohn Tweezers" and Remnant Magnetism, Physical Review Letters, vol.106, p.112, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00644400

D. Adler, Mechanisms for Metal-Nonmental Transitions in Transition-Metal Oxides and Sulfides, Reviews of Modern Physics, vol.40, p.714, 1968.

O. Mathon, F. Baudelet, J. P. Itié, A. Polian, M. Astuto et al., Dynamics of the Magnetic and Structural ? -Phase Transition in Iron, Physical Review Letters, vol.93, p.255503, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00001588

B. W. Lebert, T. Gorni, M. Casula, S. Klotz, F. Baudelet et al., Epsilon iron as a spin-smectic state, Proceedings of the National Academy of Sciences, vol.116, p.20280, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02295306

K. Shimizu, T. Kimura, S. Furomoto, K. Takeda, K. Kontani et al., Superconductivity in the non-magnetic state of iron under pressure, Nature, vol.412, p.316, 2001.

D. Jaccard, A. Holmes, G. Behr, Y. Inada, and Y. Onuki, Superconductivity of -Fe: Complete resistive transition, Physics Letters A, vol.299, p.282, 2002.

K. Takemura and A. Dewaele, Isothermal equation of state for gold with a He-pressure medium, Physical Review B, vol.78, p.104119, 2008.

P. Mangin and R. Kahn, Superconductivity: An Introduction, 2017.

H. K. Onnes, Further experiments with liquid helium. H. On the electrical resistance of pure metals etc. VII. The potential difference necessary for the electric current through mercury below 4°19 K, KNAW Proceedings, vol.15, p.1406, 1913.

J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Theory of Superconductivity, Physical Review, vol.108, p.1175, 1957.

J. G. Bednorz and K. Müller, Possible High Tc Superconductivity in the Ba-La-Cu-0

, Z. Physik B -Condensed Matter, vol.64, p.189, 1986.

M. K. Wu, J. R. Ashburn, C. J. Torng, P. H. Hor, R. L. Meng et al., Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure, Physical Review Letters, vol.58, p.908, 1987.

M. A. Subramanian, J. Torardi, P. L. Gopalakrishnan, J. C. Gai, T. R. Calabrese et al., Bulk Superconductivity up to 122 K in the Tl-Pb-Sr-Ca-Cu-O System, Science, vol.242, p.249, 1988.

L. Gao, Y. Y. Xue, F. Chen, Q. Xiong, R. L. Meng et al., Superconductivity up to 164 K in HgBa 2 Ca m-1 Cu m O 2m+2+? (m=1, 2, and 3) under quasihydrostatic pressures, Physical Review B, vol.50, p.4260, 1994.

C. Buzea and T. Yamashita, Review of the superconducting properties of MgB 2, Science and Technology, vol.14, p.131, 2001.

V. A. Sidorov, M. Nicklas, P. G. Pagliuso, J. L. Sarrao, Y. Bang et al., Superconductivity and Quantum Criticality in CeCoIn 5, Physical Review Letters, vol.89, p.157004, 2002.

N. W. Ashcroft, Metallic Hydrogen: A High-Temperature Superconductor?, Physical Review Letters, vol.21, p.1748, 1968.

N. W. Ashcroft, Hydrogen Dominant Metallic Alloys: High Temperature Superconductors?, Physical Review Letters, vol.92, p.187002, 2004.

L. Boeri, Understanding Novel Superconductors with Ab Initio Calculations, pp.1-41, 2018.

J. A. Flores-livas, L. Boeri, A. Sanna, G. Profeta, R. Arita et al., A Perspective on Conventional High-Temperature Superconductors at High Pressure: Methods and Materials, 2019.

J. E. Gubernatis and T. Lookman, Machine learning in materials design and discovery: Examples from the present and suggestions for the future, Physical Review Materials, vol.2, p.120301, 2018.

F. Capitani, B. Langerome, J. Brubach, P. Roy, A. Drozdov et al.,

J. P. Nicol, T. Carbotte, and . Timusk, Spectroscopic evidence of a new energy scale for superconductivity in H3S, Nature Physics, vol.13, p.859, 2017.

P. C. Canfield and G. W. Crabtree, Magnesium Diboride: Better Late than Never, Physics Today, vol.56, p.34, 2003.

V. Moshchalkov, M. Menghini, T. Nishio, Q. H. Chen, A. V. Silhanek et al., Type-1.5 Superconductivity, Physical Review Letters, vol.102, p.117001, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00608348

A. Waxman, Y. Schlussel, D. Groswasser, V. M. Acosta, L. Bouchard et al., Diamond magnetometry of superconducting thin films, Physical Review B, vol.89, p.54509, 2014.

N. Alfasi, S. Masis, O. Shtempluck, V. Kochetok, and E. Buks, Diamond magnetometry of Meissner currents in a superconducting film, AIP Advances, vol.6, p.75311, 2016.

N. M. Nusran, K. R. Joshi, K. Cho, M. A. Tanatar, W. R. Meier et al.,

Y. Canfield, T. A. Liu, R. Lograsso, and . Prozorov, Spatially-resolved study of the Meissner effect in superconductors using NV-centers-in-diamond optical magnetometry, New Journal of Physics, vol.20, p.43010, 2018.

Y. Schlussel, T. Lenz, D. Rohner, Y. Bar-haim, L. Bougas et al., Widefield imaging of superconductor vortices with electron spins in diamond, Physical Review Applied, vol.10, p.34032, 2018.

Y. Xu, Y. Yu, Y. Y. Hui, Y. Su, J. Cheng et al., Mapping Dynamical Magnetic Responses of Ultrathin Micron-Size Supercon-Bibliographie ducting Films Using Nitrogen-Vacancy Centers in Diamond, Nano Letters, vol.19, p.5697, 2019.

K. Joshi, N. Nusran, M. Tanatar, K. Cho, W. Meier et al., Measuring the Lower Critical Field of Superconductors Using Nitrogen-Vacancy Centers in Diamond Optical Magnetometry, Physical Review Applied, vol.11, p.14035, 2019.

V. M. Acosta, L. S. Bouchard, D. Budker, R. Folman, T. Lenz et al., Color Centers in Diamond as Novel Probes of Superconductivity, Journal of Superconductivity and Novel Magnetism, vol.32, p.85, 2019.

A. Aesar,