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Titre : Perturbations Génétiques Multiplexées Du Réseau Régulateur De E. coli 
Résumé : Malgré les progrès réalisés dans le séquençage de l’ADN, nous n’avons pas encore compris comment le 

phénotype d’un organisme se rapporte au contenu de son génome. Cependant, il est devenu clair que l'impact des 
gènes dépend du contexte. La simple présence d'un gène dans un génome ne nous informe pas du moment où il est 
exprimé et des autres gènes qui y sont exprimés. Comprendre comment l'expression des gènes est régulée est un 
élément nécessaire pour comprendre comment les phénotypes émergent d'un génotype donné. Les facteurs de 
transcription, qui peuvent activer ou réprimer l'expression d'un gène, forment un réseau complexe d'interactions 
entre eux et leurs gènes ciblés. Ce réseau consiste en une hiérarchie de groupes de facteurs de transcription 
fortement liés, chacun lié à des processus cellulaires distincts. La structure de ce réseau de régulation 
transcriptionnelle est-elle significative pour la réponse transcriptionnelle d'une cellule? Ici, nous utilisons une 
protéine de liaison à l'ADN programmable appelée CRISPR (répétitions courtes palindromiques groupées 
régulièrement) pour perturber l'expression génique des régulateurs globaux au sein du réseau de régulation 
transcriptionnelle. Ces régulateurs mondiaux régulent de nombreux processus cellulaires distincts et ont de 
nombreuses cibles génétiques. Le système CRISPR nous permet de perturber ces régulateurs dans toutes les 
combinaisons possibles, y compris les perturbations d'ordre supérieur avec tous les régulateurs mondiaux 
potentiellement ciblés perturbés en même temps. Nous enregistrons ensuite à la fois le modèle d'expression du 
transciptome en utilisant le séquençage de l'ARN et l'adéquation de chaque souche. Nous trouvons que la structure 
du réseau de régulation augmente la dimensionnalité de la réponse transcriptionnelle plutôt que de la réduire. Cela 
se traduit par une épistasie importante au-delà des interactions par paires. Cela a des implications sur la façon dont 
ces réseaux évoluent. L'épistasie par paires que nous trouvons entre les facteurs de transcription globaux repose sur 
la présence ou l'absence d'autres perturbations. Cela implique que d'autres perturbations pourraient agir comme 
des mutations de potentialisation. Le nombre de voies d'évolution potentielles augmente avec les épistasies d'ordre 
élevé, même si cela ne nous dit rien sur la qualité de ces voies. Fait important, les répliques de cette thèse sont 
toujours en cours et les données présentées ici n’ont pas encore exclu les artefacts expérimentaux. 
Mots clefs : CRISPR, microfluidique, réseau transcriptionnel, Association génotype-phénotype, 
séquençage de l'ARN 
Title : Multiplexed Genetic Perturbations of the Regulatory Network of E. coli 
Abstract : Despite advances in DNA sequencing, we have yet to understand how an organism’s phenotype relates 

to the contents of their genome. However it has become clear that the impact of genes are context dependant. The 
mere presence of a gene within a genome does not inform us of when it is expressed, and which other genes are 
expressed along with it. Understanding how gene expression is regulated is a necessary piece of understanding how 
phenotypes emerge from a given genotype. Transcription factors, which can activate or repress the expression of a 
gene, form a complex network of interactions between themselves and their targeted genes. This network consists 
of a hierarchy of groups of strongly connected transcription factors, each relating to distinct cellular processes. Is 
the structure of this transcriptional regulatory network significant to the transcriptional response of a cell? Here we 
use a programmable DNA binding protein called CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) 
to perturb gene expression of global regulators within the transcriptional regulatory network. These global 
regulators are regulating many distinct cellular processes and have many genetic targets. The CRISPR system allows 
us to perturb these regulators in all possible combinations, including higher order perturbations with potentially all 
targeted global regulators perturbed at the same time. We then record both the expression pattern of the 
transciptome using RNA sequencing, and the fitness of each strain. We find that the structure of the regulatory 
network increases the dimensionality of the transcriptional response rather than reducing it. This results in 
significant high order epistasis beyond pair-wise interactions. This has implications for how these networks evolve. 
The pair-wise epistasis we find between global transcription factors rely on the presence or absence of other 
perturbations. This implies that other perturbations could act as potentiating mutations. The number of potential 
evolutionary paths increases with high order epistasis, although this alone tells us nothing about the quality of those 
paths. Importantly, the replicates for this thesis are still on-going and the data presented here has not yet excluded 
experimental artefacts. 
Keywords : CRISPR, Microfluidics, Transcriptional Network, Genotype to Phenotype Mapping, single-
cell RNA sequencing  
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1   Introduction 
 

One of the outstanding problems in biology is predicting phenotype from a given genotype, and how 

changes to genotype will influence phenotype. Undoubtedly a landmark moment, the human genome 

project promised to dramatically accelerate diagnosis, prevention and treatment of disease. This would 

not be limited to single-gene disorders but also complex diseases such as heart disease, schizophrenia and 

cancer [1]. Upon completion of the human genome, a blueprint for the future of genomics was proposed 

as a building with the human genome project as the foundation [2]. The first floor of this blueprint was 

genomics to biology, and set out 3 grand challenges for us to accomplish next. These included a complete 

catalogue of all the components encoded in the human genome, how genome-encoded components 

function together to give rise to functions on the cellular and organism scales, and understanding how 

genomes change to take on new functional roles. The advent of deep sequencing techniques has resulted 

in an explosion of genomic information, yet completion of these three challenges remains elusive. 

Identifying all of the components in the human genome is difficult. In 2018, an additional 348 human 

transcription factors were identified, and the current list is likely still incomplete [3]. Cancer genomics has 

highlighted the challenges in understanding how the components we do know interact. The ‘one gene, 

one function, one disease’ model does not match observations that different mutations in the same gene 

result in a variety of different phenotypes [4]. Finally, rather than understanding how genomes evolve to 

produce new functions, new information from genetics is forcing us to reconsider fundamental 

assumptions in evolution. The gene has long been considered the unit of inheritance [5], however the 

difficulty in linking them to the phenotypes needed for natural selection has called this into question. It 

has become apparent that the expression profile of genes, that is to say how and when they are expressed, 

as well as post-transcriptional events are just as important as the genetic sequence in determining 

function. 

With such complexity, it is useful to turn to our trusty model organism Escherichia coli. E. coli is the 

most well studied organism in the world [6]. It has the most exhaustively annotated genome at only 4.6 

MB compared to the 3,234.8 MB in the human genome but it also shares many of the same challenges. 

We still do not know how genetic elements interact to form complex phenotypes. For example, the mere 

presence of a virulence factor is not predictive of a virulent phenotype in clinical settings.  The 

pathogenicity of a bacterium is conferred by both the virulence factors it possesses and the immune status 

of the host.  Crucially, this interplay between host and pathogen depends on how and when these 

virulence factors are expressed [7].  As a result, the same virulence factors located in different bacterial 

genomes can result in different phenotypes.  This phenotypic heterogeneity arising from the same genetic 

sequence is even more pronounced in the case of antibiotic persistence.  In this example, within a bacterial 

population of clonal, genetically identical cells there is a phenotypically distinct subpopulation, which 

survive antibiotic treatment despite lacking any antibiotic resistance.  This phenomenon is characterised 

by a classic biphasic killing curve when treated with antibiotics, in which a susceptible sub-population 

displays rapid death, and a persistent population has a much flatter slower death rate [8].  Persistence is 

a phenotypic switch that does not involve genotypic change, and progeny from persister cells will retain 

the same killing dynamics as the original population.  How these multiple phenotypes arise in a genetically 

clonal population remains unknown.  
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 Deep sequencing has allowed us to measure the entire transcriptome of a population of cells, 

which is all the mRNA expressed at a given time. This allows for a ‘Top-Down’ systems biology approach 

to understanding how gene expression is controlled at a global scale. The difficulty remains that gene 

expression profiles are the result of highly entangled interactions between many genes [9], statistical 

inference from large scale "omics" screens are at most validated from internal consistency [10], and 

genetic and protein interaction networks have only limited overlap in micro-organisms [11]. Part of these 

problems arise from measurement errors and batch effects biasing the resulting data [12], while 

experimental design may explain the remaining difficulties. Current experimental data is generally limited 

to single or pair-wise genetic perturbations, with poorly understood predictive power [13]. Most screens 

also consist of measuring only a few parameters for many mutants [14] or the full transcriptome for only 

a few mutants [15].  

Recent technological advances can address these issues. A bacterial phage defense system, 

CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) allows for the programmable 

repression of gene expression in bacteria [16]. This allows for a simple method to quickly create a library 

of thousands of genetically perturbed strains, which can be multiplexed to knock-down multiple genes at 

a time. This has already been paired with another recent development, massively parallelized single-cell 

RNA-seq [17] [18]. By performing cDNA synthesis on RNA from single cells in nanolitre droplets, many 

thousands of RNA-seq experiments can be done at once. When used on a population of cells each 

containing a unique CRISPR perturbation, the full transcriptome of thousands of perturbations can be 

recorded in a single experiment [19] [20].  

Here we develop and deploy these strategies in the context of the regulatory network of E. coli. 

Complex interdependences between genes have been the subject of diverging conclusions. On one hand, 

an elementary superimposition principle has been proposed for gene responses [21], down to the point 

that E. coli transcriptional programs may reduce to an interpolation between growth and starvation [22]. 

On the other hand, the complexity of regulatory systems and the cooperative nature of biological 

interactions suggest a much richer phenomenology [23], and consistently, network control theory shows 

that a high number of genes need to be controlled to drive the cell as a whole in a desired state [24].  

Here we pose the following question: is there a relationship between the connections in 

transcriptional regulatory network and the response of the system to perturbations? While this seems 

straight-forward, we lack the parameters necessary to make an explicit model. We can however measure 

the dimensionality of the transcriptional response. This approach allows us to assess the connectivity in a 

way that does not depend on non-linearities such as expression saturation, cooperatively, signal 

integration, or the sign of the interactions. These unknown parameters will affect the shape of the 

response, but will not affect its dimensionality. This would allow us to determine if transcription factors 

which co-regulate each other have a coupled transcriptional response. It also informs us if we are able to 

reach more than just two transcriptional responses corresponding to growth and starvation, or if 

transcriptional programs are more nuanced. By incorporating these transcriptional programs with 

phenotypic data on our strains, we can then infer how variations in our transcription patterns correspond 

with variations in our phenotypes. 

In the first chapter, we begin with a review of the transcriptional network of E. coli. We then 

discuss the global transcriptional regulators and their known roles in the cell, which we will later perturb 

to observe the transcriptional response. We present mathematical and computation models for analysing 
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the transcriptional regulatory network. These techniques help us with the interpretation of our data. We 

then present a review of CRISPR-Cas techniques for genetic control, to be published in Seminars in Cell 

and Development Biology this winter. This describes the various techniques with which CRISPR can be 

used for genetic perturbations.  

Our second chapter involves further exploring the epistasis between transcription factors in 

different regulatory clusters. We found that (1) each global regulator is strongly connected to a cluster of 

regulators that mutually regulate each other, (2) these clusters have hierarchical relations associated with 

physiological tasks (oxidation, starvation…) and (3) all regulators are downstream combinations of these 

few clusters. Hierarchy in transcriptional cascades has been shown to cause sign epistasis [25], which can 

restrict the evolutionary paths that a cell may take. We quantify two fitness measurements for single and 

pairwise perturbations for transcription factors in different clusters in the regulatory network to 

determine if there is sign epistasis between regulators and if so, is it related to the structure of the 

network. We observe that similar to the effect of variable environments on sign epistasis [26], variable 

selection pressure (from multiple fitness metrics) may provide additional evolutionary paths with which 

to escape reciprocal sign epistasis. 

Our third chapter involves using CRISPR-Cas to perturb the global regulatory transcription factors. 

We first quantify the effectiveness of the CRISPR-Cas system to knock-down gene expression using single 

perturbations. We then discuss a method for creating multiplexed perturbations, of libraries with a size 

of 2^N. The perturbation set consists of 32 different combinations of 5 knock-down targets, covering the 

genes: arcA, crp, fis, fnr, hns.  These global regulators known to interact together from specific gene 

studies [27], but we lack general rules for the logic of this regulation. Existing studies have focused either 

on a single master regulator, some on a pair [28], or have analyzed aggregated microarray datasets [29]. 

We therefore create a systematic data set around a set of conditions, consisting of the fitness and 

transcriptional profiles for all 32 strains, in three growth media. This allows us to determine the higher 

order epistasis between global transcriptional regulators, the dimensionality of the genetic response, the 

different genetic programs and the regulatory logic for each of those programs. 

Our fourth chapter explains how we can use microfluidics and molecular barcoding to measure 

epistasis between multiple environments in a high-throughput manner. Specifically, we check for epistasis 

between antibiotic drug combinations by associating each environment (antibiotic concentration) with a 

unique DNA barcode. These barcodes are then covalently linked in droplets to associate which 

combination of antibiotics was contained in each droplet. After selection of droplets that display bacterial 

growth, the drug combinations that led to that phenotype can be recovered by sequencing barcode pairs 

from each population of droplets. The epistasis between drug combinations can be determined by the 

shape of the threshold between combinations where growth occurs and where it does not. This chapter 

is Matthew Deyell’s contribution to the thesis of Angga Perima entitled Combinatorial Antibiotic Screening 

Using Droplet Based Microfluidics. 

Finally, our fifth chapter demonstrates the adaption of droplet-based single cell RNA-seq 

approaches for use with bacteria. Each droplet contains a clonal population of unique DNA bar-codes 

carried on a hydrogel bead. These bar-codes are appended to the genetic material of interest during RT-

PCR inside the droplet.  Genetic perturbations can be identified a posteriori by sequencing of DNA codes 

contained within the perturbation vector of the cell and gene expression can be quantified by RNA-seq. 

After all the genetic material present in a same droplet has been attached to a specific bar-code, one can 
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break the emulsion and pool the material for a single Next Generation Sequencing (NGS) run. The 

perturbation and corresponding gene expression measured in each droplet are then retrieved by 

bioinformatics sorting of the bar-codes. When coupled to the CRISPR perturbation strategy in Chapter 2, 

this would allow for RNA-sequencing of a large perturbation library, which can easily be expanded. 

 Taken together, these results indicate that the structure of the regulatory network increases the 

dimensionality of the gene expression response rather than reduce it. This may have implications in how 

transcriptional regulatory networks evolve, as increasing the dimensions may provide indirect paths for 

evolution [30]. However, first we must replicate our RNA-sequencing data and do so in multiple growth 

media. Also, if we wish to make a mechanistic claim, we should demonstrate it in a minimal model as well. 

We expect replicates and experiments for chapters 2, 3, and 4 to be completed soon, however these 

replicates are needed to exclude potential experimental artifacts. Regardless, these initial results are 

consistent with the many observations that changes in global regulation through global transcriptional 

regulators are some of the earliest and most common mutations when cells adapt to a new environment 

[31] [32] [33] [34] [35].  
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1.1 E. coli Transcriptional Regulatory Network 
Since François Jacob and Jacques Monod described regulation of the lac operon [36], the standard 

model for transcriptional control in bacteria has been that special DNA binding proteins called 

transcription factors control when genes are expressed. These transcription factors are able to respond 

to the environment of the cell and adjust which genes are turned on as a result, to produce the necessary 

proteins required for that environment. However, transcription factors don’t just control the expression 

of genes linked to a specific cellular function, but can also control the expression of other transcription 

factors. The interactions between these transcription factors form the transcriptional regulatory network 

of E. coli.  
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Figure 1: Transcriptional regulatory network in E. coli in 2004.Yellow ovals demonstrate regulated genes, green ovals represent 
transcription factors, and blue ovals are global regulators. Lines represent activation (green), repression (red), or both (dark blue). 
[37] 

By representing the system of transcription factors regulating other transcription factors as a network or graph, we can analyse 
the characteristics of the system. These include identifying network motifs such as feed forward loops, single input modules, and 
dense overlapping regulons [38]. A feed forward loop can cause transcription to only occur to a persistent stimuli. Single input 
modules are associated with protein complexes, where all components must be expressed together for the protein complex to 
function. These two motifs are usually connected to the output of the third motif, dense overlapping regulons, which represents 
the core regulatory system dominated by global transcription factors. Many of these network motifs can be combined into 
modules, which could drive a specific cellular process [32]. However the regulatory network is highly interconnected, with few 
truly distinct modules identified. Originally, the transcriptional regulatory network of E. coli was reported to exist in a hierarchical 
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structure, with no strongly connected components [39]. These strongly connected components are groups of transcription factors, 
in which each member can regulate the expression of every other transcription factor within the group. This resulted in a 
transcriptional network in which the global transcriptional regulators occur on the top level, with other transcription factors below 
them, and finally operons on the bottom level ( 

 

 

 

 

 

 

 

 

 

Figure 1) [37]. 
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Figure 2: Functional regulatory modules in E. coli transcriptional regulatory network. The size of each rectangle is proportional to 
the number of genes regulated by each transcription factor, although overlap is not shown [40]. 
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This model has recently been updated to describe ten functional regulatory modules [40]. These 

regulatory modules correspond to distinct cellular processes ( 

 

élément sous droit, diffusion non autorisée 

 

 

 

 

 

Figure 2). This has improved the prediction of differentially expressed genes from distinct 

perturbations, (23% average compared to 15%) although the results make it clear that there are additional 

cellular processes that influence gene expression beyond just the transcriptional regulatory network. 

Our ability to predict the controllability of the regulatory network of the cell on gene expression 

is confounded by its relation to another hierarchical organization in the form of chromosomal structures 

which has been shown to be implicated in cell cycle coordination, transition to virulence, transitions 

between growth phases, and stress, thermal and osmotic responses [41]. Genes recently acquired by 

horizontal transfer are exclusively regulated by nucleoid associated proteins (NAPs), furthermore 

suggesting that this is the default mode of regulation. More generally in E. coli most genes are not 

specifically regulated by transcription factors (TF) and many of the master regulators are NAPs [13]. The 

latter are known to bend, wrap, bridge or coat DNA to modulate transcription at all scales of the nucleoid 

[21]. However, direct evidence of the impact of nucleoid organization on gene expression remains limited 

to a few genomic locations and we lack a consistent picture of the genome-wide scale at which this 

regulation operates. 

One possible explanation for how nucleoid structures contribute to gene regulation is via 

facilitated co-transcription, the transcription of an operon is facilitated by the transcription of the operon 

located immediately upstream.  This includes transcriptional read through which is known to be a major 

source of transcripts in bacteria.  Additionally the torsional stress induced by transcribing RNA 

polymerases is known to enhance or repress the transcription of nearby genes.  Due to their role in 

defining supercoiling domains, this is another mechanism in which global transcription factors may 

regulate gene expression in a sub-optimal manner.  It is also possible for transcription factors to extend 

their influence from effects observed in synteny segments [42]; that is the conservation of relative 

distances between orthologous genes in different species is indicative of co-expression of those genes 

which is not explained purely by operons or common sigma factors or transcription factors.  Genes which 

have no transcription factor of their own are significantly more likely to be co-expressed when they have 

exactly the same transcription factors acting on other genes in their synteny segment, indicating that a 

transcription factor can indirectly regulate the transcription of genes structurally associated with genes 

that are directly regulated. 
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The connection between structure and function remains elusive, as exemplified by the low 

overlap between genetic and protein interaction networks obtained in micro-organisms [9]. Despite 

sophisticated statistical methods, it remains highly challenging to infer functional relations from currently 

available genetic screens.  Beyond the problem of measurement errors, large screens may actually suffer 

from methodological limitations that are not primarily related to inference methods: (i) there is little if no 

back and forth validations between measurements and models; (ii) perturbations are in large majority 

limited to pair-wise interactions, which predictive power is poorly understood in the context of cellular 

networks; (iii) most screens consist of measuring one or a few parameters for many strains [10], or the 

other way round, full gene expression for a handful of strains [14]. Increasing the measurement 

throughput and the level of multiplexing of genetic perturbations and read-outs would fundamentally 

modify the view of a problem of such complexity.   
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1.2 Global Transcriptional Regulators 
The degree distribution for transcription factors in the regulatory network of E. coli is not uniform. 

There are hubs in the network, consisting of transcription factors with a large number of targets. Seven 

transcription factors are sufficient to directly modulate 51% of the genes in E. coli [37].  These genes are 

CRP, FNR, IHF, Fis, ArcA, NarL, and Lrp.  Additionally, 49% of genes are regulated by multiple transcription 

factors, with global regulators working alongside more specific regulators or other global regulators. The 

high level of cooperativity between global regulators grants the cell flexibility to tune transitions between 

groups of co-regulated genes between conditions [37]. Here we summarize the global transcription 

factors as defined by Martinez-Antonio and Collado-Vides, based on a previous definition by Gottesman 

[43]. Global regulators are defined by their pleiotropic phenotype and ability to regulate operons 

belonging to multiple different metabolic pathways. They must also not be part of essential cellular 

machinery. This list includes the following 7 transcription factors: CRP, FNR, ArcA, Fis, H-NS, IHF, and LRP. 

CRP 

The cAMP receptor protein (CRP) is a transcriptional dual regulator that controls over 521 genes 

in E. coli, many of which are involved in the catabolism of secondary carbon sources.  CRP is able to sense 

the energetic status of the cell by cAMP levels [37]. CRP is also involved in processes such as 

osmoregulation, stringent response, biofilm formation, virulence, nitrogen assimilation, iron uptake, 

competence, and multi-drug resistance.  CRP is positively and negatively auto regulated and repressed by 

Fis.    CRP is activated by binding of cAMP [44]. 

 CRP is a member of the CRP-FNR superfamily of transcription factors (Figure 3).  It is a homodimer 

and consists of two domains attached by a hinge.  CRP binds to a 22-bp symmetrical site and induces a 

severe bend of approximately 80 degrees in DNA.  Two regions of CRP are known to interact with RNA 

polymerase.  Promoters activated by cAMP-CRP are grouped into three classes.  Classes I and II have a 

single binding site for cAMP-CRP located upstream (Class I) or overlapping (Class II) the RNA polymerase 

binding site.  Class III promoters require multiple activator molecules, either as multiple copies of CRP or 

in synergy with other transcription factors.  CRP can act as a repressor by promoter exclusion, exclusion 

of another activator, in an antiactivation mechanism with a repressor or by hindering promoter clearance.   

Due to autoregulation, CRP levels are highly correlated with cAMP levels in the cell.  In the absence 

of a rapidly metabolized carbon source such as glucose, glucose-specific enzyme IIA becomes 

phosphorylated and activates adenylate cyclase resulting in elevated levels of cAMP.  In the presence of 

glucose, enzyme IIA is dephosphorylated and cAMP levels drop [44]. 

FNR 

FNR (fumarate and nitrate reductase) mediates the transition from aerobic to anaerobic growth.  

It activates genes involved in anaerobic metabolism and represses genes involved in aerobic metabolism.  

It is also involved in functions such as acid resistance, chemotaxis, cell structure, and molecular 

biosynthesis.  The cellular concentration of FNR is similar under both anaerobic and aerobic growth 

however its activity is regulated directly by oxygen.  FNR requires a 4Fe-4S cluster for dimerization and 

activation of the transcription factor.  In the presence of oxygen this cluster is oxidized into a 2Fe-2S cluster 

and the FNR dimer disassembles and the monomer is able to be degraded by ClpXP protease.  Activated 

FNR is able to bind the consensus sequence TTGATNNNNATCAA.  This exposes three activating regions on 

FNR which are able to interact with RNA polymerase [44]. Under anaerobic growth conditions FNR is 
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negatively autoregulated.  It is also negatively regulated by phosphorylated ArcA, and Fur while being 

positively regulated by IHF. 
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Figure 3: Transcription factors in their evolutionary families based on PFAM, CDD, and superfamily annotations. CRP and FNR exist 
in the same family (right). ArcA exists in the OmpR family (left). Fis exists in its own family (right). LRP is in the AsnC family (upper 
right). IHF and HNS are not mapped [45].  
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ArcA 

ArcA (aerobic respiration control) is a dual transcriptional regulator for anoxic redox control.  It is 

primarily a negative transcriptional regulator under anaerobic conditions.  ArcA represses operons 

involved in respiratory metabolism as well as rpoS.  ArcA activates operons involved in fermentative 

metabolism.  There is a large overlap between the Arc and FNR regulatory systems.  It is suggested that 

the most significant fole of ArcA is under microaerobic conditions, while that of FNR is under more strictly 

anaerobic conditions [44].  

 ArcA is activated by phosphorylation by the cognate sensor kinase ArcB under anaerobic 

conditions.  ArcB is simulated by effectors such as lactate, pyruvate and acetate, while under aerobic 

conditions it is inhibited by quinone electron carriers.  ArcA is a member of the OmpR/PhoB subfamily of 

response regulators.  ArcA represses transcription by directly binding to the promoter or by binding to 

sites overlapping an activator-binding site [44].    

Fis 

Fis (factor for inversion stimulation) is involved in the organization and maintenance of the 

nucleoid structure through direct DNA binding and modulating gyrase and topoisomerase I production, as 

well as regulation of other proteins that modulate nucleoid structure such as CRP, HNS and HU.  Fis directly 

modulates several cellular processes such as transcription, chromosomal replication, DNA inversion, 

phage integration/excision, and DNA transposition.  It is involved in the regulation of genes involved in 

translation (rRNA and tRNA genes), virulence, biofilm formation, energy metabolism, stress response, 

central intermediary metabolism, amino acid biosynthesis, transport, cell structure, carbon compound 

metabolism, amino acid metabolism, nucleotide metabolism, motility, and chemotaxis [44]. 

 Fis is one of the largest components of the nucleoid.  Fis binds to 894 regions in the genome 

resulting in two Fis sites per supercoiling domain.  Under optimal growth conditions Fis is the dominant 

DNA binding protein in the cell.  Fis can vary from up to 60, 000 copies per cell in log phase to less than 

100 in stationary phase.  Fis bends DNA at an angle between 40 and 90 degrees.  This bending promotes 

DNA compaction and stabilizes DNA looping to regulate transcription [44].   

 Fis is regulated by several processes at different levels of control.  Transcriptionally, Fis is auto-

regulated and induced by high supercoiling.  Transcription is regulated by the availability of CTP, which 

has its highest concentration during log phase.  DksA increases the inhibitory effects of ppGpp, decreasing 

the half-life of the RNA-polymerase complex and increasing sensitivity to CTP.  Fis binds to a degenerated 

consensus sequence of 15 bp with only four highly conserved nucleotides, a G in the first position, a 

pyrimidine in the 5th position, a purine in the 11th position, and a C in the 15th position.  The central region 

commonly presents as an AT-rich sequence [44]. 

H-NS 

H-NS (Histone-like nucleoid structuring protein) is a nucleoid associated protein that is capable of 

condensing and supercoiling DNA.  It also acts as a silencer of genes with high AT rich content and as such 

has a strong preference for horizontally acquired genes.  It functions almost exclusively as a transcriptional 

repressor.  H-NS induces severe bends in DNA and is able to form DNA-HNS-DNA bridges forming 

multimers.  DNA binding is similar to StpA and these proteins have similar functions.  StpA seems to be a 

back up for H-NS and can complement an H-NS mutant when highly expressed from a plasmid.  H-NS 
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interacts with StpA to prevent degradation of StpA in a Lon protease dependant manner.  H-NS may also 

form heterotrimeric complexes with Hha and YdgT.  It is proposed that Hha enhances the oligomerization 

of H-NS/StpA.  H-NS is capable of controlling its own expression and plays an important role in the cellular 

response to environmental changes and stress [44]. 

IHF 

Integration host factor (IHF) is a global regulatory protein that maintains DNA architecture.  It 

binds and bends DNA at specific sites and plays a role in DNA supercoiling and DNA duplex destabilization.  

IHF acts mostly as an accessory factor, stabilizing the nucleoprotein complex.  In the case of lambda phage 

integration, IHF bends DNA to facilitate binding of the integrase.  It also stimulates σ54 dependant 

promoters by facilitating the DNA loop between the upstream activator and the σ54 holoenzyme. Similar 

to HU, IHF plays a role in DNA condensation.  This is done by binding of low affinity sites and introducing 

sharp bends of approximately 160 degrees to promote the formation of rod like structures in 

chromosomal DNA [44]. 

 IHF is a heterodimer consisting of two subunits, IhfA and IhfB.  It binds to a 40bp region containing 

a 13bp consensus sequence with an AT rich element upstream.  Because IHF makes no contacts with the 

major groove of DNA and only a few contacts with the minor groove, it is believed that specificity is a 

result of the sequence specific structural characteristics of the DNA [44].    

LRP 

LRP (Leucine-responsive regulatory protein) is a dual transcriptional regulator for genes involved 

in amino acid biosynthesis and catabolism, nutrient transport, pili synthesis and carbon metabolism.  It is 

able to sense the nutritional state of the cell through the leucine concentration and adjusts the cellular 

metabolism accordingly [37]. LRP may also play a role in dynamic DNA packaging.  LRP can act as either 

an activator or repressor and the binding of leucine can affect these activities either positively, negatively 

or not at all.  It is believed that LRP positively regulates genes that function during starvation and 

negatively regulates genes functional during feasting.  LRP-regulated genes commonly contain multiple 

binding sites for LRP with low sequence specificity.  The consensus sequence is a central AT rich sequence 

with flanking CAG/CTG triplets.  The binding of Leucine results in a decrease in binding affinity but an 

increase in cooperatively to multiple binding sites [44]. 

LRP forms a mixture of octamers and hexadecamers.  In the presence of leucine the octamer 

configuration is favored.  It is believed that the switching between these two forms is how leucine 

modulates LRP binding.  In the octamer form LRP forms a ring structure with DNA wrapping around the 

octamer in a nucleosome-like structure [44]. 
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1.3 Mathematical and Computation Methods for modeling Regulatory Networks 
 

Explanatory and predictive mathematical models are useful for understanding how 

transcriptional regulatory networks control gene expression patterns and encode different genetic 

programs [46]. Various approaches have been used to attempt to explain gene expression profiles, 

starting from either a structural view of the regulatory network, or from gene expression data in the form 

of micro-array data, or RNA-sequencing. Here we discuss some of these approaches, including structural 

controllability, pareto optimality, principle component analysis (PCA), and logical modelling. 

Mathematical and computational approaches are essential because transcriptional regulatory networks 

are complex systems; they are composed of a large number of non-linear and difficult to predict 

components [47]. 

Structural controllability 

Although control theory is a highly developed branch of mathematics and engineering with many 

diverse applications, questions regarding the controllability of natural complex systems have resisted 

advances.  Control theory states that a dynamic system is controllable if suitable inputs can drive the 

system from any initial state to any desired final state within a finite time [48] [49] [50].  Two factors 

contribute to the difficulty in the application of controllability to natural systems; the system’s 

architecture which can be represented by a network of interacting components and the rules that govern 

the time dependant interactions between components.  With natural systems we often lack information 

in both the architecture and rules and thus progress has mainly been possible in systems which both are 

fairly well mapped such as synchronized networks and small biological circuits [51].  Despite the nonlinear 

processes that drive most real systems, theoretical approaches to the controllability of real networks 

begin with the canonical linear, time invariant dynamics of control theory [24]: 

𝑑𝐱(𝑡)

𝑑𝑡
 ~ 𝐴𝐱(𝑡) +   𝐵𝐮(𝑡) 

In which, in greatly simplified terms, the change of the state of the system x depends on the first term 

which represents the initial state of the system and the second term which represents the input from the 

controller.  The N x N matrix A describes the connections between the nodes in the system while B is an 

N x M (M ≤ N) input matrix that identifies nodes controlled by an outside controller.   The system described 

above can only be driven from any initial state to any desired final state within a finite time if the N x NM 

controllability matrix C = (B,AB,A2B,…,AN-1B) has full rank [24] such that rank(C) = N.    This is referred to as 

Kalman’s controllability rank condition.  

To control a system we first must identify the ‘driver nodes’ which allow full control over the 

network.  The minimum number of nodes required to maintain full control of the network is determined 

by the maximum set of links that do not share start or end nodes.  We can gain full control over a network 

only if we can directly control each node that has no links pointing at it and there are directed paths from 

the input signals to all other nodes [24].  Given that the purpose of the gene regulatory network is to 

control the dynamics of cellular processes, it could reasonably be expected that it would evolve to be 

structurally efficient from a control perspective requiring only a small number of driver nodes.  However 

analysis of the regulatory networks of yeast and E. coli indicate that for complete control of the system 

between 75-96% of nodes must be driver nodes [24].  Given the importance that regulatory hubs have in 
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genetic networks in regard to maintaining structural integrity against failures, spreading phenomena, and 

in synchronization we expect control of hubs to be essential to the control of the network.  However, the 

fraction of driver nodes is significantly higher among nodes with low degrees of connectivity than hubs, 

indicating that hubs tend not to be driver nodes in natural systems [24]. Calculating the controllability 

matrix C when only the global regulators are perturbed generates a rank of only 24 (N=956) for the 

transcription factor - operon network and only 11 (N=174) for the transcription factor – transcription 

factor network as per interactions found on RegulonDB [45].   

The approach used above has been criticized for over-estimating the driver nodes required to give 

complete control over a system because each node is assumed to have an infinite time constant [52].  

Infinite time constants at each node do not generally reflect the dynamics of biological systems.  For 

example, proteins degrade at different rates in transcriptional regulatory networks.  With finite-

dimensional linear dynamics all networks, except a set of parameters of zero measure, are controllable 

with a single input.  Because the model above omits the intrinsic nodal dynamics that arise due to 

processes that have nothing to do with network topology, it requires self-links to be added where 

appropriate.  However, in adding self-links to each node to represent intrinsic dynamics, all nodes in the 

network become matched nodes [52].  This would imply that any network can be controlled with a single 

input effecting the power dominating set of nodes (nodes which do not have an input from another node).  

This raises the issue of how appropriate it is to apply the concept of structural controllability to real 

complex networks. 

Pareto front optimality 

The Pareto front concept from economics and engineering is used to find designs that are the best 

trade-offs between different requirements and has been used to explore bacterial gene expression [22].  

If you consider two phenotypes, A and B, if A is better at all tasks than B then B will be eliminated by 

natural selection.  Repeating this process for all possible phenotypes leaves the Pareto front which is the 

set of phenotypes which cannot be improved at all tasks at once.  The Pareto front can be calculated as 

the line that connects two archetypes in which an archetype is defined as a phenotype which is best at a 

given task.  A phenotype that has more than two tasks will be characterized by a higher dimensional 

geometry, with a line connecting the archetype for each task.  For example, 3 tasks produces a triangle 

and four tasks a tetrahedron.  The activity of 1600 promoters in E. coli during growth indicates two distinct 

clusters of genes with one cluster consisting of mostly growth genes and the other primarily stress and 

survival genes.  Recording the percentage of total promoter activity over time showed that expression 

patterns existed in a one dimensional line, even when recorded over 4 environments. Over time, gene 

expression gradually moves along the line from cluster 1 to 2 [53].  
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Principle Component Analysis 

 

Figure 4: The correlation matrix of microarray data with expression of 4320 genes from 466 experiments. Highly Correlated genes 
appear in red and anti-correlated genes appear in blue. On the left, genes are arranged alphabetically. On the right, genes are 
sorted by their contribution to the first principle component after single value decomposition, revealing two clusters of anti-
correlated genes [42]. 

The finding of distinct clusters of gene expression of stationary or exponential growth genes is 

consistent with singular value decomposition of microarray data (Figure 4) [42].  This reorders genes and 

experimental conditions according to their main axes of variation. The result is two globally anti-

correlated gene clusters in which one cluster is preferentially expressed during exponential growth and 

the other during stationary phase [42].  There is a strong association between sigma 70 and the global 

pattern of anti-correlation. This is not surprising given that most housekeeping genes that are transcribed 

in exponential phase are under sigma 70 promoters. However retaining only operons known to be 

transcribed with sigma 70 is not enough to suppress the anti-correlations. The majority of correlated pairs 

of genes do not share a common transcription or sigma factor and therefore regulation of operons by the 

transcription factor network are not enough to explain the patterns of gene expression observed in micro 

array data. 

Linear Regression for Estimating Epistasis 

 Epistasis occurs when the whole system is not equal to the sum of its parts. Specifically, if there 

are two mutations A and B, the expected fitness of the strain with both mutations AB should be the sum 

of the fitness effects from A and B [54]. 

𝐟𝐀𝐁 =  ∆𝐟𝐀 + ∆𝐟𝐁 + 𝐟𝐰𝐭 

When this is not the case, it is referred to as epistasis. If the fitness is higher than expected, it is 

synergistic epistasis, if it is lower than expected it is antagonistic epistasis. This implies that the fitness 

effects of single mutations are context dependant. That is that the mutation A has a different change in 

fitness (∆f) in the wild-type (wt) context than in a context with mutation B. If the sign of the effect of A 

changes in these two contexts, (for example, in wt, A causes an increase in fitness but in B, A causes a 

decrease in fitness) this is referred to as sign epistasis. 
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With a complete dataset of phenotypes for all combination of genotypes (of size 2n where n is 

the number of genes being perturbed), linear regression can be used to calculate epistasis coefficients 

(β) for all genotypes [55]. In matrix form, this is represented by the following equation: 

𝑦̅ = 𝐗𝛽̅ + 𝜖  ̅

Here y are the 2n measured phenotypes, ε a residual noise term and X is a 2n * 2n matrix that follows a 

recursive form [55]: 

𝑿𝑛+1 =  (
𝑿𝑛 0
𝑿𝑛 𝑿𝑛

)  where 𝑿0 = 1 

As long as we have all 2n measurements for y, we can solve for β [56]: 

𝛽̅ =  𝐗−1𝑦̅ 

We can also approximate data with fewer epistasis coefficients. This is done by reducing X to eliminate 

columns that refer to epistatic orders we wish to exclude. For example if we wish to only consider pairwise 

epistasis r = 2, yet if we wish to consider all epistatic interactions r = n. To reduce X we use the following 

equation [55]: 

𝐗̂ = 𝐗𝐐 

Here Q is an 2n*m identity matrix where m is the number of epistatic terms up to r and is given by [55]: 

m = ∑ (
n

𝑖
)

r

𝑖=0

 

The linear regression is then solved by [55]: 

𝛽̂ = (𝐗̂𝑇𝐗̂)
−1

𝐗̂𝑇𝑦̅ 

We can then use the fewer number of coefficients to recalculate the expected fitness measurements and 

compare them to the observed fitness measurements. This allows us to estimate how much the higher 

order epistasis influences the fitness of the perturbations. Importantly however, it does not account for 

non-linearities in the data. No epistasis can also be defined as multiplicative rather than additive (where 

it can be useful to normalize fitness of the reference strain to 1) [54]. 

𝐟𝐀𝐁 = 𝐟𝐀 ∗ 𝐟𝐁 ∗ 𝐟𝐰𝐭 

When linear regression is performed on non-linear data with high order epistasis two effects will occur on 

the calculated fitness vs observed fitness plot. First, the trend will bend due to the non-linear effects. 

Second the trend will spread or become noisy due to the higher order epistatic effects [56].  
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Figure 5: Patterns of nonadditivity for increasing epistasis and nonlinear scale. Additive-Predicted phenotypes (x-axis) vs observed 
phenotypes (y-axis). Nonlinearity increases from left to right plots, with the leftmost plots being a completely linear scale and the 
rightmost plots being a highly non-linear scale. Epistasis increases from bottom to top rows with the bottom row of plots 
representing no epistasis, and the top row of plots representing high epistasis [57].  

 

 

 

 

Logical Modelling 

 Logical modeling represents regulatory interactions as logic gates and has discrete states for each 

gene. The simplification to discrete instead of continuous states makes it easier to analyse large biological 

networks [58]. These discrete states can be either Boolean or multi-level [59]. State transitions occur at 

each time step [46], which updates the logical network by using the current states to calculate the new 

states of the downstream nodes. The dynamic behavior of the logical network is represented in a state 

transition graph, [59]. Stable states and oscillatory behaviours can then be extracted from the state 

transition graph, as nodes with no outgoing arcs and strongly-connected components respectively. 
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Figure 6: Logical model implemented in GINsim. a) Three nodes representing protein A, B, and the complex AB. A is always on 
unless inhibited by AB. AB is on only if both A and B are on. B can exist in 3 levels, it is at 0 if repressed by AB, 2 if activated by A, 
and 1 if neither of those is true. b) the combination of all trajectories possible by the logic rules creates the state-transition graph. 
Regardless of the starting state, the system will be attracted to one of the highlighted blue states in a strongly connected 
component, where it will begin to oscillate [46]. 

 Logical models are versatile because nodes can represent almost anything [46]. However they rely 

on existing knowledge to construct. This assumes that there is a known structure for a regulatory network 

and that the transcriptional regulatory network depiction is accurate. This can be overcome with various 

network inference techniques, which use experimental evidence to determine the regulatory network 

structure [60]. In the case of E. coli, regulatory network representations currently exist [45] [44], although 

these are continuously being updated with new data and improving techniques [61]. 
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ABSTRACT 

The ability to control and regulate gene-expression in biological as well as synthetic systems has allow the 

better understanding of gene to function relationship. Several systems have been exploited to achieve 

this such as Zinc fingers, TALE (Transcription activator-like effectors), siRNAs (small-interfering RNAs). 

However, recent advances in Clustered Regularly Interspaced Short Palindromic Repeats and Cas9 

(CRISPR-Cas9) have overshadow them due to its high specificity, compatibility with many different 

organisms, and flexibility in targeting multiple gene at once. These features make CRISPR-Cas9 an efficient 

system for large scale gene perturbation studies. In this review we summarize state-of-the art for CRISPR-

Cas9 technology and their use in gene knock-out, knock-down/up screenings. We feature the recent 

studies where CRISPR-Cas9 ability to create large scale perturbation libraries has been combined with 

single-cell sequencing, which show their adaptability and efficiency in addressing biological problems at a 

single-cell level. Additionally, we also highlights the application of CRISPR-Cas9 system in building 

synthetic logic circuits to engineer and program cell for achieving better control and regulation.   

Contents 

1. Introduction 

Increasing, decreasing or abolishing the expression of individual genes and observing the impact of such 

perturbations on various cellular processes is the basis of powerful inference methods for gene function. 

Designing synthetic cells also requires to master the control of gene expression. Up to now, the major 

approach to modifying gene expression has been through homologous recombination, in which a 

selection marker (such as a gene for drug resistance) is flanked by targeted sequence from the genome of 

interest. This construct is then transformed into the cell, and a selective drug selects only cells have 

integrated the desired sequence into their genome. While effective, the site of homologous 

recombination is generally not well controlled, the methodology is time consuming, and extremely 

challenging for cells which do not possess efficient homologous recombination pathways. This limited 

most perturbation studies to a few model organisms such as E. coli and S. cerevisiae.  

Our ability to perform gene perturbation studies in a large diversity of organisms beyond the traditional 

models has been greatly enhanced with the discovery and development of proteins able to bind to DNA 

at specific sequence. Initially, these consisted of Zinc fingers [62] and Transcription activator-like effectors 

(TALE) [63]. These DNA binding domains fused to nuclease domains cause double strand DNA breaks at 

specific sites within the genome. The double strand breaks can then be repaired by the non-homologous 

end joining (NHEJ) pathway, leading to small insertions or deletions. When these occur within a gene, a 

frame shift can occur, making the gene inoperative. This can easily generate homozygous knock-out 

mutants, even in diploids without performing selective breeding, as identical targets are disrupted on 



 

23 
 

each allele within each cell. Additionally, other effector molecules such as the tetrameric Herpes Simplex 

Viral Protein 16 transcription activator (VP64) domain [64] or the Krüppel associated box (KRAB) domain 

can be fused to Zinc Fingers or TALE, instead of nuclease domains, to respectively knock up or knock down 

expression of specific genes rather than knock them out completely. These fusion proteins provide a 

greater flexibility in both the direction (knock up or down) as well as the intensity of the perturbation, and 

function as synthetic transcription factors [65] [66] [67] [68] [69]. 

The discovery of a programmable endonuclease in the form of the CRISPR-Cas9 system [70] has 

overshadowed both Zinc fingers and TALEs because it possesses the same functionalities while facilitating 

the systematic perturbation of entire genomes [71] [72] [73] [74] [75]. This is because the DNA binding 

sequence specificity of CRISPR-Cas9 is determined by a short RNA rather than the protein sequence of 

Zinc fingers and TALEs, which has to be engineered and screened for each new target. Clustered Regularly 

Interspaced Short Palindromic Repeats (CRISPR) were originally identified as an adaptive bacterial defense 

system against phage. This system allows a single protein (Cas9) to target many different phage genomes 

simultaneously while still remaining highly specific. It does this through the help of a short targeting 

CRISPR RNA (crRNA) and an accessory trans-acting RNA (tracrRNA) which recruits the endonuclease Cas9 

to the specific sequence (Figure 1A). The crRNA binds to the host DNA as well as to the tracrRNA, which 

associates with the Cas9 protein. In the most commonly used CRISPR-Cas9 system, from Streptococcus 

pyogenes, the crRNAs come in an array of 30 bp targeting sequences flanked by 36 bp semi-palindromic 

repeats. The crRNA array must be cut into individual units by RNase III to become functional [76]. The 

crRNA-tracrRNA-Cas9 complex is able to bind DNA only when the target sequence is located next to a so-

called Protospacer Adjacent Motif (PAM) sequence [77]. This complex then induces double stranded 

breaks within the target sequence 3 nucleotides from the PAM site [78]. For S. pyogenes Cas9 the PAM 

sequence motif is 5’-NGG-3’, where N stands for any nucleotide. This PAM sequence is crucial as it 

provides self-immunity from CRISPR-Cas9, and notably prevents Cas9 from destroying its own crRNA 

array. 

The complete process of targeting genes using CRISPR-Cas9 has been streamlined by the 

engineering of a small guide RNA (sgRNA) which both mimics the crRNA-tracrRNA complex [79] [80] and 

removes the need for RNase III (Figure 1A). The sgRNA consists of a 20 nt targeting region, a 42 nt Cas9-

binding hairpin structure, and a 40 nt transcription terminator from S. pyogenes [77]. Similar to the crRNA-

tracrRNA complex, programming of the target by the sgRNA depends on complementarity to a 20 nt 

region adjacent to a PAM site. While the crRNA and sgRNA have a targeting sequence length of 30bp and 

20 bp respectively, in both cases the specificity is mostly determined by the PAM sequence and the 12 

‘seed’ nucleotides immediately following it. Since specificity is determined by this limited number of 

nucleotides, off-target effects may occur in large genomes [77]. However, potential off-target sites which 

differ from the target site by up to 3 bp generally show only minimal cleavage unless they have perfect 

complementarity to the terminal 8 bp within the ‘seed’ region [71]. 

2. CRISPR-Cas9 Gene knock-out screening 

A functional CRISPR-Cas9 system, comprising the Cas9 protein, a sgRNA targeting region, and a 

PAM sequence, results in double strand breaks by the endonuclease activity of Cas9 (Figure 1B). If host 

cells contain a NHEJ system, these breaks will be repaired resulting in deletions smaller than 20 bp [71]. 

These deletions lead to frame shifts and loss of function of the targeted protein. However, not all cells will 

display complete loss of function, despite expressing both sgRNA and Cas9. Typically one third of the cells 
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continue to express the targeted gene [81], which is in line with predictions that one third of repairs made 

by the NHEJ system should produce in-frame mutations [81]. While these in-frame mutations may still be 

able to create a full-length protein, they are not necessarily neutral but may also cause partial loss-of-

function or gain-of-function, impacting the overall fitness of the protein [82] [83] [84]. 

The capability of CRISPR-Cas9 to induce knock-out phenotypes in a programmable fashion makes it 

uniquely suited to create genetic knock-out libraries which can be screened using positive or negative 

selection. For mammalian cells, this is accomplished by creating a pool of lentiviruses, each of which 

expresses a sgRNA targeting a specific gene. This has allowed genome-wide knock-out studies in human 

cell lines [75] [71]. The sgRNA is advantageously exploited to act as a barcode; counting the number of 

each barcode with high-throughput sequencing to know the proportion of each sgRNA in the population. 

The change in the frequency of sgRNAs after selection results in a ‘fitness score’ for the gene targeted by 

the sgRNA [71]. Frequencies can also be measured over time to fit growth curves for each knockout-

mutant. Furthermore, targeting the same gene with multiple sgRNAs can increase the robustness of the 

fitness score estimate [85]. Measurements of fitness are not only limited to growth selections. Knockout 

libraries have been stimulated with lipopolysaccharide (LPS) and selected by flow cytometry for cells that 

fail to induce the inflammatory cytokine Tnf [72]. This approach recovered known key regulators, 

validated new regulators, and identified novel distinct regulatory modules [72]. Multiplexed knockout 

libraries are also easily created by delivering multiple sgRNAs to each cell [85].  

Beyond single gene perturbations, genetic interaction scores can be estimated by the difference in fitness 

observed between the single and double sgRNA knock-out cells. Array-based oligonucleotide synthesis 

has been used to create dual sgRNA libraries covering 105 gene pairs [85].  Interestingly, libraries of sgRNA 

containing single genes and all gene-gene combinations can be made at once, by introducing sgRNAs that 

do not target any location within the genome. Indeed, when a non-targeting RNA is paired with a targeting 

sgRNA during pooled cloning, this pair is equivalent to a single perturbation. Using this approach, a total 

of 152 synthetic-lethal (negative) genetic interactions, and 10 positive genetic interactions were identified 

in HeLa, A549, or 293T cells [17]. 
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Figure 7: CRISPR-Cas9 Variants for Controlling Gene Expression. A) When searching for targets for CRISPR-Cas9 applications, PAM 
sequences (5’-NGG-3’) must be identified in the region of interest (yellow). These PAM sequences can be located in either the 
coding strand or the template strand. However, for dCas9 applications blocking transcription elongation, it is recommended to 
find PAM sequences in the template strand for enhanced repression. The 30 nucleotides preceding the PAM sequence become the 
spacer sequence for the crRNA or sgRNA. When using sgRNA, only the first 20 nucleotides preceding the PAM sequence are 
typically used. B) The native Cas9 causes double strand breaks in DNA. This can be useful for knock-out screening as they will 
typically be repaired as small insertion/deletions (Indels) which cause frameshift mutations and abolish gene expression. C) The 
catalytic sites of Cas9 can be inactivated resulting in a dead version of the enzyme which retains its DNA binding capacity. This in 
effect transforms Cas9 into an RNA programmable DNA binding domain. By targeting promoter or protein coding sequence of a 
gene, transcription initiation or elongation can be blocked respectively. D) The dCas9 protein can be fused to transcriptional 
activator domains such as VP64 to activate transcription. E) Similarly the chromatin state of a gene can also be changed by 
localizing effector domains; dCas9 protein can also be fused to KRAB effector domains to methylate histones and block 
transcription. F) Effector domains can be localized to DNA sequence of interest through multiple ways. In addition to fusing them 
directly to the dCas9 protein, they can be fused to MS2 RNA binding domains and localized to the sgRNA instead. MS2 recognition 
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sequences can be added to multiple locations on the sgRNA including on the tetraloop and the stem loop 2 sites. Multiple MS2 
recognition sequences can be added to a single sgRNA to increase the number of effector domains recruited by the CRISPR-Cas9 
system. Finally, the SunTag approach links a chain of multiple repeating peptide recognition sites to the end of dCas9. An effector 
domain fused to a small antibody sequence recognizes and binds to the peptide sequence in the chain, allowing for recruitment 
of upwards of 10 effector domains to a single dCas9. The increased number of effector domains localized to the sequence enhances 
their effect on transcription. 

3. CRISPR-dCas9 Gene Knock Down / Up screening 

Genetic knock-out screening has multiple limitations. Firstly, the NHEJ system often produces short, 

in-frame indels resulting in approximately one-third of the cells that continue to express the gene of 

interest [81]. Secondly, the irreversible nature of frameshift disruptions limits their use in targeting 

essential genes [73]. And thirdly, double strand breaks caused by CRISPR-Cas9 invoke the SOS response 

[86], causing cytotoxicity [73] [87]. To overcome these issues, Cas9 can be rendered catalytically inactive, 

effectively transforming it into an RNA programmable DNA-binding protein. This allows for transcriptional 

regulation of a target sequence by blocking the RNA polymerase, without modifying the genetic sequence 

[80] [88]. The catalytically dead Cas9, termed dCas9, contains two point mutations in the RuvC1 nuclease 

(D10A) and the HNH nuclease domain (H840A) [80] [77] (Figure 1C). This method of gene regulation is 

often referred to as CRISPR interference (CRISPRi) and has numerous advantages over other methods of 

transcriptional regulation. It is functional in many organisms including both bacteria and mammalian cells, 

it requires only a single protein species (dCas9), and can target any gene of interest by customizing the 

small targeting RNA (sgRNA) [77]. Compared to earlier transcriptional regulation methods, such as Zinc 

fingers and TALE, only the 20 nt gene complementary region of the sgRNA must be changed rather than 

an whole additional enzyme [77]. This allows for cost-effective large scale perturbation experiments to be 

performed. These large scale screens are possible with RNAi as well. However, CRISPRi has been shown 

to have little off target effects compared siRNA [77], given that the latter may repress hundreds of 

transcripts due to imperfect matching to mRNA 3’-UTRs (untranslated regions), which may occur 

redundantly across many genes [82] [89] [90] [91] [73].  

Transcriptional silencing with CRISPRi allows up to 1,000-fold repression [80]. Repression strength can 

be tuned by adjusting the targeting location of the sgRNA along the gene. Within a gene, 10 to 300 fold 

repression can be achieved by designing the sgRNA to be complimentary to the coding strand of DNA, 

while a sgRNA complimentary to the template strand results in little to no effect [80]. In contrast, targeting 

the promoter region of a gene will significantly perturb gene expression regardless of which strand is 

targeted, with a maximum of ~100 fold repression at the -35 region of the promoter [80]. Combining two 

sgRNAs which target the same gene shows multiplicative effects as long as their targets do not overlap 

[80]. However, these repression efficiencies are sensitive to mismatches in sgRNAs [77] as even a single 

mismatch at the 3’ end of the sgRNA’s targeting sequence will substantially decrease the CRISPRi activity 

[73].  

Several options are available to temporally control dCas9 activity. Transcriptional repression can be 

made inducible and completely reversible by placing dCas9 under the control of an inducible promoter to 

trigger loss-of-function on demand [80] [77] [81]. Repression was observed within 10 minutes of adding 

an inducer and could be reversed within 50 minutes by washing, likely corresponding the time necessary 

for dilution of dCas9 and the sgRNA during cell growth and division [80]. This technique has allowed 

temporal regulation of transcription factors in induced pluripotent stem cells (iPSC) [81]. The leaky 

expression from inducible promoters can be further controlled by splitting dCas9 and fusing it to FRP-FKBP 
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dimerization domains, which associate upon rapamycin addition [92]. There was no significantly 

detectable dCas9 activity in the absence of rapamycin [93]. Furthermore, the rapamycin induced complex 

was found to have reduced off-target effects compared to a non-split dCas9 protein. Alternatively dCas9 

can be conditionally stabilized by fusion to a DHFR (dihydrofolate reductase) domain, which directs 

proteasomal degradation of the Cas9 fusion protein in the absence of TMP (trimethoprim) [94]. Further 

control can be acquired by combining CRISPR and antisense RNA (asRNA) systems [95]. The de-repression 

of a targeted gene can be achieved by expressing an asRNA which sequesters the sgRNA allowing 

transcription resuming independently of dilution dynamics. The amplitude of de-repression was found to 

be proportional to the strength of RNA-duplex formed between asRNA and sgRNA [95].  

In addition to directly blocking transcription initiation and elongation, dCas9 can be used to localize 

effector domains that either repress or activate transcription [96] [73]. Transcription in mammalian cells 

can be repressed by fusion of dCas9 to KRAB domain [96] (Figure 1D). This has been used to downregulate 

107 individual genes or pair of genes of chromatin-regulation factors in human cells, revealing a functional 

map of chromatin regulation [88]. The relative number of sgRNAs between the induced and uninduced 

samples are quantified by next-generation sequencing (NGS), and used as a proxy for relative cell fitness 

[88]. While more than 75% of the sgRNAs were able to repress the gene expression of targeted genes, 

30% of double knock-downs were able to repress the targeted genes. Additionally the repression 

efficiency was overall lower than RNAi with a median expression of approximately 50% compared to 30% 

with RNAi [88] [97]. However unlike RNAi, this approach can be exploited for gain of function screening 

with CRISPRa. CRISPR activation (CRISPRa) uses a dCas9 fused with a C-terminal tetrameric VP64 domain 

[64] (Figure 1E). Transcriptional induction peaks when targeted between 50-400bp upstream of the 

transcriptional start site [73].  

An alternative to fusing VP64 directly to dCas9 is to engineer the sgRNA as an RNA scaffold for VP64 

recruitment. Indeed, a fusion between VP64 and the MS2 bacteriophage coat protein can be recruited to 

hairpins located on the end on the sgRNA [74] (Figure 1F). Recruiting to the tetraloop or the stem loop 2 

of the sgRNA (Figure 1 A, F) results in a 3 to 5-fold higher expression level than dCas9-VP64 respectively 

[74]. Expression can be enhanced up to 15 fold by recruiting MS-VP64 to both positions on the sgRNA in 

combination with a dCas9-VP64 fusion protein [74]. As the activation strength seems to increase with the 

number of effector domains that can be recruited, atechnique named SunTag [98] has been developed to 

provide up to 10 effector domains (Figure 1 F, rightmost panel) with a 10 to 50 fold increase in gene 

activation compared to a simple dCas9-VP64 fusion [98]. Finally, temporal control of activation can be 

obtained by expressing effector domains as peptides distinct from the dCas9, and only dimerize upon 

addition of a chemical ligand [99]. A note of caution is that the binding of Cas9 may affect nucleosome 

positioning and binding of nearby transcription factors [100]. 

4. Identification of Regulatory Regions with CRISPR-Cas9 

Unlike RNAi techniques, CRISPR-Cas9 is not limited to targeting only transcribed regions of the 

genome. The CRISPR-Cas9 system can alter non coding genomic sequences at a high-throughput [101] to 

identify essential regulatory elements [100]. To map the genomic elements required for expression of a 

single gene, the latter is first replaced with a GFP marker. Here, sgRNAs are designed to target multiple 

regions across the gene locus, including non-coding cis-regions. Cells with low GFP levels are sorted and 

sequenced, such that Cas9 disruption reveals critical regulatory regions [102].  This allowed to discover 

novel promoter and enhancer regions for Nanog, Rpp25, Tdgf1, and Zfp42 [102]. Interestingly, when this 
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approach was applied to POU5F1, nearly 40% of cis-regulatory sequences corresponded to promoters of 

other genes, suggesting long-range chromatin interactions [103].  

Alternatives to fluorescence sorting are proliferation based assays. GATA1 and MYC transcription factors 

were investigated for regulatory regions by creating a total of 98,000 sgRNA for all possible locations 

around the two genes [104]. Cells expressing KRAB-dCas9 were then infected with sgRNA library and the 

quantity of each sgRNA was sequenced before and after the growth. The region with the strongest 

depletion of sgRNA corresponded to the transcriptional start site. Additionally, three distal regulatory 

elements were identified for GATA1.  In MYC, 7 distal regulatory elements were located from sgRNAs 

depletion, while 2 other sites corresponded to sgRNA enrichment [104]. Similar screening of non-coding 

regions can be done by knock-down or knock-up perturbations instead of knock-out. This was done by 

replacing Cas9 with KRAB-dCas9 and P300-dCas9 respectively (P300 being an alternative to the VP-64 

domain) [105]. This enables to test loss and gain of function with the same library of sgRNAs. This may be 

useful because active regulatory elements may not be identified in gain of function screens while 

repressed elements may not be identified in loss of function screens [105]. 

Finally, CRISPR-Cas9 can be used to specifically modify the sequence of regulatory region. Homology 

directed repair (HDR) with the CRISPR-Cas9 system can create a library of precisely determined genotypes 

[100]. Because of the ease of multiplexing and the predictability of HDR genome editing with CRISPR-Cas9, 

it is ideally suited for high-throughput screening of single nucleotide polymorphisms (SNP). High-

throughput single-nucleotide polymorphisms sequencing (SNPs-seq) utilizes CRISPR-Cas9 to characterize 

allele-dependent transcriptional regulation in prostate cancer risk loci [106]. The sgRNA can be designed 

to target specific SNP regions to evaluate their effect on gene expression. This identified allele specific 

effects, in which alleles containing a SNP at a risk loci had different impacts on gene expression with one 

allele no longer acting as a cis-regulatory element. 

5. Transcriptional profile screening with Perturb-Seq 

The development of droplet-based single-cell RNA sequencing (scRNAseq) techniques [17] [18] 

[107] allows for the transcriptional profiling of tens to potentially hundreds of thousands of individual 

cells. This technology has been paired with the CRISPRi system to generate large libraries of genetically 

perturbed cells [108] [20] and analyse the effect of those perturbations on a large set of genes in a highly 

parallel manner (Figure 2). In the scRNAseq protocol, single cells are encapsulated into nano-litre droplets 

containing reagents for reverse transcription and a uniquely barcoded hydrogel bead carrying primers. 

The reverse transcription in droplets generates droplet-specific barcoded cDNAs which are appended with 

sequencing adaptors before analysis by high-throughput sequencing platforms. Cell-specific sequencing 

reads are then de-convoluted during bioinformatics analysis of the bar-codes. As the sgRNA for CRISRPi 

are also associated with a specific bar-code at the level of the lentivirus vector, scRNAseq associates single 

cell transcriptomes with CRISPR perturbations through the droplet bar-code (Figure 2E). This approach is 

currently limited by the sequencing depth rather than the potential size of the CRISPR-Cas9 knock-down 

library or the microfluidic operations. Finally, multiple genes can be perturbed per single cell by controlling 

the multiplicity of infection of the lentivirus carrying the sgRNA [20]. This allows for the identification of 

non-linear effects (epistasis) caused by interactions between multiple genes on transcriptional profiles. 

Perturb-Seq has been used to study the inflammatory response of bone marrow dendritic cells in response 

to lipopolysaccharide (LPS) [20]. In this response, approximately 2000 genes are induced through dozens 
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of transcription factors in an asynchronous response consisting of at least two sub-types, a heterogeneity 

which can only be revealed by a single cell approach. Dixit et al. analyzed 24 transcription factors, grouping 

them into modules with similar regulatory effects. They also grouped genes by their response to 

perturbations into genetic programs, and found that transcription factor modules regulated specific gene 

programs consistent with their known functions [20]. The targets identified for their transcription factors 

was also supported by chromatin immunoprecipitation sequencing (ChIP-seq) from bulk populations, and 

correctly predicted the targets and logic of transcriptional repressors [20]. This demonstrated the ability 

for Perturb-seq to recover at a large scale the genes, processes, and states regulated by transcription 

factors.  

Perturb-Seq has also been used to analyze the mammalian response to unfolded protein [108]. Genes that 

contribute to ER homeostasis were first identified using two genome-wide CRISPRi screens. These screens 

were used to determine a subset of genes to investigate at the single cell level in order to define their 

functional relationships [108]. A single cell approach is crucial here due to subpopulations of cells within 

the cell types identified in bulk approaches [108]. The high-throughput nature of droplet-based single cell 

RNA sequencing also helps to correlate gene expression profiles to infer transcriptional programs [108]. 

Adamson et al. found that three endoplasmic reticulum transmembrane sensor proteins (PERK, ATF6, and 

IRE1) had both distinct and overlapping gene expression programs in the unfolded protein response. 

Additionally, the ability to perform single cell RNA sequencing leads to the identification of distinct 

subpopulations for a same perturbation of the HSPA5 gene. This observation that seemingly identical cells 

would have differential responses would be lost in a bulk RNAseq screen. 
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Figure 8: Massively-Parallel screening of CRISPR-Cas9 perturbation libraries with Perturb-Seq. A) Oligonucleotides containing 
thousands of target sequences for CRISPR-Cas9 can be synthesized in pools on microarray chips. B) These pooled oligonucleotides 
can then be used to create sgRNA sequences contained within lentivirus vectors for CRISPR-Cas9 perturbations. C) The library of 
CRISPR-Cas9 vectors can then be transduced into a cell line. By controlling the multiplicity of infection, it is possible to have single, 
double, and even triple knock-down strains. D) Cells that have been perturbed by CRISPR-Cas9 are encapsulated into nano-litre 
volume droplets, with each droplet containing at most one cell and a hydrogel bead bearing reverse transcription primers with a 
DNA barcode unique to that hydrogel bead. E) Droplets act as reaction chambers to perform reverse transcription. All of the RNA 
from a single cell is converted into cDNA bearing the barcode from the same hydrogel bead, as well as a unique molecular identifier 
(UMI) ( [109]). When the cDNA from all cells is sequenced, the barcode allows all the cDNA from a single cell to be associated with 
a single droplet, and the UMI corrects for any application bias and allows quantification of the original RNA for each gene.  

Careful note must be taken when processing the sgRNA lentiviruses used in Perturb-Seq. Recombination 

between vectors can scramble the association between sgRNA and perturbation barcodes [108]. Two viral 

genomes are packaged in each lentiviral vector and the reverse transcriptase can switch between the two 

templates during provirus synthesis [110]. The larger the sequence length between the sgRNA and its 

associated barcode, the greater the chance for this recombination to shuffle the sgRNA and barcodes. Xie 

et al. found that recombination accounted for up to 50% of all reads [110]. While this did not lead to false 

positive hits, it did reduce the signal to noise ratio. This can compound with the already noisy single cell 

RNA sequencing data. An alternative to having a separate perturbation barcode is to sequence the sgRNA 

directly as barcodes. This approach is taken in so-called CROP-seq [111]. Here, the guide RNA becomes 

part of the puromycin-resistance mRNA and is detectable by RNA-seq protocols which use poly-A 

enrichment. Functional sgRNA are still produced from a hU6 promoter. This approach was validated 
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against T-cell-receptor induction in Jurkat cells and validated against bulk RNA-seq and flow cytometry, 

providing a solution to recombination between sgRNA and separate perturbation barcodes [111].  

While the aforementioned techniques utilize a droplet-based approach to perform single cell RNA 

sequencing, CRISPR perturbation libraries are compatible with other single-cell approaches as well. In 

CRISPR-Seq, the vector carrying the sgRNA also contains a fluorescent selection marker in addition to a 

sgRNA associated DNA barcode [19]. This allows single cells to be sorted by fluorescence activated cell 

sorting (FACS) into 384 well plates [112]. This approach identified the development regulatory genes 

Cebpb and Irf8 as controlling cell differentiation commitment in myeloid lineage. When Cebpb was 

perturbed, cells favored dendritic cell lineages over monocytes and expressed high levels of Irf8 [19]. 

Given the high plasticity of myeloid cells, such an observation would be difficult without a single cell 

approach. 

6. Synthetic logic circuits with CRISPR-Cas 

Well characterized, orthogonal synthetic transcription factors would allow engineering of novel 

regulatory networks to control living cells [113]. Creating NOR or NAND logic gates from orthogonal 

synthetic transcription factors are in principle sufficient to build all possible logic gates [114]. Indeed, 

combinations of these logic gates can be used to express all possible truth tables in Boolean logic [115]. 

Transcription factors have been used to create NOR gates by placing two promoters in series to drive a 

transcriptional repressor [116] [117]. Zinc fingers and TALE have also been used to make synthetic 

transcription factors, however engineering these proteins can be difficult and expensive as each protein 

must be individually design and tested [118]. CRISPR-dCas9 provides an orthogonal DNA binding protein 

which can be programmed to target multiple sequences by changing only a short sequence of targeting 

RNA.  

The programmable nature of CRISPR-dCas9 has allowed it to be used to scale-up the regulatory 

network, and build multiple component circuits by inhibiting initiation or elongation by RNA polymerase 

(Figure 3). Because multiple guide RNAs can direct dCas9 to target multiple sites within a single cell, logic 

gates can be made by having dCas9 target different guide RNA (Figure 3). A single sgRNA targeting the 

promoter of a gene acts directly as a NOT gate (Figure 3 A). This is because the sgRNA must not be 

expressed for expression of the gene of interest to occur. A NOR gate can be constructed by having two 

unique sgRNAs target the promoter of a gene, so that either sgRNA will shut transcription off (Figure 3 B). 

This can be converted into an OR gate by making the two sgRNA repress the expression of a third sgRNA, 

which itself represses the gene of interest. By using up to five NOR gates and seven sgRNAs, NOR, OR, 

AND, NAND, XNOR and XOR gates have all been created (Figure 3 C) [113].  

CRISPR AND logic gates can also be used to drive gene expression only in specific cell lines. For example, 

by placing Cas9 under a bladder-specific promoter hUP II, and a sgRNA under human telomerase reverse 

transcriptase promoter hTERT, specific effectors will only be expressed in bladder cancer cells [119]. Other 

specific effectors used included hRluc to detect cancer cells, hBAX to induce apoptosis, p21 to arrest 

growth, and E-cadherin to reduce cell mobility. Each of these effectors was under the control of a CMV 

promoter with a LacO site to repress transcription. These effectors were coupled to the CRISPR-Cas9 

system by having the sgRNA under hTERT target LacI expression, a lactose responsive transcriptional 
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repressor from E. coli that binds to LacO.  When both Cas9 and the sgRNA are expressed, lacI is repressed 

allowing for transcription of the effector to occur [119]. 

7. Integrated Genetic circuits with CRISPR-Cas 

 Synthetic CRISPR genetic circuits can be 

constructed by combinations of NOT and NOR gates 

to generate distinct transcriptional profiles in 

response to multiple inducers [114] (Figure 3). NOT 

gates are sgRNAs which repress a gene of interest. A 

NOT-NOT gate can be formed by having an inducible 

promotor drive expression of a sgRNA, which 

represses another sgRNA, which in turn represses a 

gene of interest. NOR gates can be created by 

incorporating forward and reverse 5’-NGG-3’ PAM 

sequences between the -35 and -10 regions of a 

promoter, allowing for targeting of either strand of 

DNA. The guide RNAs which target this promoter are 

then driven by two different inducible promoters. 

When either promoter is active, sgRNA will be 

transcribed and repress the expression of the gene 

of interest [114]. This NOR gate will only be active in 

the absence of both inducers. Other logic patterns 

can be formed by the combination of these 

techniques. These expression profiles can then be 

linked to the host regulatory network by designing 

the final sgRNA to target a native transcription 

factor. For example, a NOT[NOR(A,B)] gate was 

integrated to control the MalT expression of E. coli K-

12 in response to arabinose and 2,4-

Diacetylphloroglucinol (DAPG) inducers. MalT is a 

positive regulator of maltose utilization, and one 

consequence of repression of MalT is a decrease in 

LamB, the lambda phage receptor. Without the 

phage receptor, E. coli is much less susceptible to 

lambda phage infection. With the synthetic 

expression profile inserted into E.coli, lambda phage 

produced 2-3 orders of magnitude more plaques in 

the presence of either arabinose or DAPG than in the 

absence of both [114]. 

Intergrated circuits can be further modulated by 

coupling sgRNA processing to ribozymes or a type III 

CRISPR-Cas associated RNA endonuclease Csy4 

which cleaves precursor RNAs. Csy4 recognizes a 28 

nucleotide RNA sequence, cleaves the RNA, and 

Figure 3: Creating Logic Gates with CRISPR-Cas9. A targeting 
sequence can be inserted between an Upstream Activator 
Sequence (UAS) and a promoter that corresponds to a 
specific sgRNA. A) A NOT logic gate targeted by a single 
sgRNA will prevent expression. B) Adding two unique 
targeting sequences creates a NOR gate, in which neither of 
the sgRNA can be expressed for the gene to functional. C) By 
linking together NOT and NOR gates (having them express 
further sgRNA), other logical functions can be created. 
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remains bound to the upstream cleaved fragment. These techniques allow for sgRNA expression to be 

coupled directly to another gene transcript such as a fluorescent marker, or for multiple sgRNA to be 

contained within a single transcript [120]. The control of RNA processing, for example through regulation 

of the expression of Csy4, can change the resulting genetic program that is produced from a single RNA 

transcript. For example, a single RNA transcript which contains two Csy4 recognition sequences flanking 

a sgRNA targeting activation of EYFP was inserted into an intron within a far-red mKate2 fluorescent 

marker. The resulting transcript was able to produce either red fluorescence in the absence of Csy4, or 

yellow fluorescence in the presence of Csy4 [120]. Transcripts can be produced with any combination of 

features including sgRNA, genes, RNA triplex (which stabilize and allow for translation of genes lacking 

poly A tails), Csy4 RNA endonuclease, introns, and ribozymes [120]. These can then be coupled to the host 

transcriptome, for example by expressing Csy4 on a promoter specific for a given cell-type.  

8. Synthetic Transcriptional Profiles   

Reprogramming cells into a different cell type through cellular differentiation requires precise 

changes to gene expression over many genes [118]. CRISPR systems afford the ability to localize these 

regulatory elements to specific genetic loci with pathways orthogonal to native cellular ones, and in a 

multiplexed way. By extending the sgRNA with an RNA domain for specific RNA binding proteins, sgRNA 

acts as a scaffold RNA to localize specific effector modules. In this way, a single guide RNA encodes 

information for both the targeting locus and which regulatory function to perform at that locus [118]. The 

dCas9 then acts as a master regulator for these sgRNA programs, able to perform both activation and 

repression from the same dCas9 protein. As already described, activation is accomplished by sgRNA 

recruitment of VP64 and repression is due to recruitment of KRAB. This method introduced synthetic 

transcriptional programs to redirect the output of the pathway of the natural violet pigment violacein 

between five distinct states. This highly branched metabolic pathway has several potential medical 

applications such as antibacterial and anticancer drugs [121]. A plasmid containing one to three sgRNA 

scaffolds were transformed into yeast.  These sgRNA activated either VioA or VioC, or repressed VioD. 

Different combinations of these sgRNA redirected the flux through the violacein pathway in a controlled 

manner to produce related pigments such as proviolacein, violacein, prodeoxyviolacein, deoxyviolacein, 

or none of the aforementioned products [118]. This was detected as markedly different colored yeast 

cells, the presence or absence of each product being confirmed by high performance liquid 

chromatography.  

9. Perspectives 

CRISPR-Cas9 provides a powerful system to modify and regulate genetic sequences because it 

combines the efficiency and specificity of a protein based DNA-binding enzyme with the ease in target 

synthesis and transformation of small RNA. This lead to the explosion of CRISPR-Cas9 techniques over the 

past 5 years. As a result, the current limitation in perturbation experiments is generally no longer the 

CRISPR-Cas9. Rather, bottlenecks have become the screening and delivery methods. Even with modern 

ultra-high throughput screening methods such as droplet microfluidics, sequencing depth remains a 

bottleneck. Additionally, transformation of human cell lines with CRISPR-Cas9 is still primarily done either 

through transfection of the Cas9 enzyme and sgRNA directly, or with a lentiviral vector. The lentiviral 

vectors continue to have issues with non-specific integration and recombination between vectors which 

can confound results. Nevertheless, alternatives to CRISPR-Cas9 are being developed such as the Cpf1 

system. It has several potential advantages over Cas9 systems. Firstly, it uses a single targeting RNA, rather 
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than a crRNA/tracrRNA duplex that Cas9 uses [93]. This means that Cpf1 crRNA arrays can be used in vivo 

in organisms (such as mammals) which lack the RNAse III required to process the crRNA for Cas9 as it only 

requires Cpf1 for crRNA processing [122]. This makes it much easier to multiplex in mammalian cells as 

multiple guide RNAs can be transcribed from a single promoter. Secondly, the PAM sequence for Cpf1 is 

T rich (5’-TTN-3’) opposed to the G rich PAM in Cas9, allowing Cpf1 to directly target AT rich regulatory 

sequences that may not be available to Cas9. And finally Cpf1 produces staggered DNA breaks with a 4-5 

nt 5’ overhang, potentially allowing for ligation based repair mechanisms in addition to recombination 

and non-recombination end joining pathways available to Cas9 [93]. Similarly to Cas9, Cpf1 can be used 

for CRISPRi and CRISPRa techniques. It can be rendered catalytically inactive by the mutating the RuvC-

like domain, which ends cleavage of both strands of DNA and turns it into a DNA binding protein similar 

to dCas9 [93]. As CRISPR methods continue to mature, it is clear that the ability to rapidly generate large 

libraries of genetic perturbations, or engineer a near limitless number of synthetic transcription factors, 

will continue to make CRISPR a staple technique in exploring and controlling gene expression in a wide 

range of organisms. 
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2   Interaction between Transcription Factors in 

Different Regulatory Clusters 
 

 

  

 

The evolution of an organism is highly dependent on its adaptive landscape [123]. This landscape 

is the shape that occurs when mutations increase or decrease the fitness of an organism. The adaptive 

landscape could be smooth with a single peak representing an optimal phenotype, which the organism 

will tend to drift toward through the gradual accumulation of beneficial mutations. However the 

landscape could also be rugged, with many peaks and valleys. In these cases the directions in which an 

organism can move within the landscape is restricted, as drifting into a valley is less fit and therefore 

selected against. Organisms will tend to get stuck on a local peak and may never reach the ‘true’ optimal 

phenotype. Multiple peaks in the landscape are only possible with a specific form of epistasis referred to 

as reciprocal sign epistasis [124] [125]. Reciprocal sign epistasis occurs when two mutations both reduce 

fitness individually, but increase fitness in combination (or vice versa). However sign epistasis can vary 

across variable environments [26]. This provides a potential escape from these valleys. 

 Reciprocal sign epistasis can emerge from the structure of the regulatory system. Transcription 

factors in a hierarchy, or transcriptional cascade, where one transcription factor regulates the expression 

of another transcription factor has the potential to form reciprocal sign epistasis [25]. Because the 

components of the transcriptional regulatory network in E. coli are organized in a hierarchy, we 

investigated instances of reciprocal sign epistasis between different components. We perturb 4 genes 

located in a strongly connected component corresponding to the energy state of the cell and 4 genes in a 

strongly connected component corresponding to mobility. We then do the pairwise perturbations for 

each pair of genes across the two components. These components are considered strongly connected 

because there is a path for each transcription factor within them to regulate any other transcription factor 

in the same component, either directly or indirectly. We then record fitness measurements for all of these 

perturbations, using growth competition and swimming radius as two metrics for swimming to see if the 

natural transcriptional regulatory network showed the same reciprocal sign epistasis as a synthetic model 

[25]. Similar to the synthetic transcriptional cascade, we found that most sign epistasis was downstream, 

and we also found instances of reciprocal sign epistasis. We also confirmed that the sign epistasis was 

dependant on the growth media used [26]. Additionally we found that sign epistasis was not conserved 

across both fitness measurements. This means that variable selection pressures, like variable 

environments, could provide a means for the cell to escape valleys in the adaptive landscape. This also 

implies that as we increase the dimensionality of the system, for example by increasing the number of 

variable environments or selection pressures, we increase the potential evolutionary paths that the cell 

can take through the adaptive landscape.  
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2.1 Transcriptional regulatory network of E. coli consists of hierarchical strongly 

connected components 
With Claire Seydoux 

We have compared the transcription factor network from RegulonDB [45]  and compared it to 

one we have derived from bioinformatics analysis of the global feedback structures from Ecocyc database 

[44] and found that (1) each global regulator is strongly connected to a cluster of regulators that mutually 

regulate each other, (2) these clusters have hierarchical relations associated with physiological tasks 

(oxidation, starvation…) and (3) all regulators are downstream combinations of these few clusters (Figure 

9). This is contradictory to previous depictions of the transcriptional regulatory network, which showed it 

as a purely hierarchical structure [39]. We also depict the sigma factors to be at the bottom output layer 

of this network. Here, the two most dominate sigma factors in E. coli rpoD and rpoS show very different 

positions. The first strongly connected component is the only one which regulates rpoD, while rpoS is 

regulated by all of the strongly connected components except the MarRA/Rob cluster. This may reflect 

their roles in house-keeping and stress responses respectfully. It may be appropriate to put the sigma 

factors at the top of the hierarchy, however this would result in the entire network becoming one strongly 

connected component. 

 

Figure 9: Transcriptional Regulatory Network of E. coli. Transcription factors which regulate the expression level of at least one 
other transcription factor are shown in purple, small regulatory RNA are shown in yellow, effector molecules are shown in green, 
sigma factors are shown in pink and other regulatory proteins are shown in orange. Transcriptional activation is indicated by 
green arrows, repression by red lines and interactions which can be either as blue arrows. Strongly connected components are 
grouped and highlighted by a colored box. These strongly connected components correspond to physiological functions of the cell. 
The Energy cluster (green) contains regulators which respond directly to the energy status of the cell through ppGpp and cAMP. 
The Redox cluster (orange) contains transcription factors which all directly respond to the redox potential of the cell through 
various mechanisms. The Acid Response/Movement cluster (red) contains genes that regulate cellular mobility and respond to 
acid stress. The Antibiotic Resistance cluster (yellow) controls efflux pathways and provides innate defenses to antibiotics. 
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2.2 Interactions between Strongly Connected Components 
Interactions between interacting components of the regulatory network may constrain the 

evolutionary trajectories of cells. This can occur when the fitness effects of mutations in one component 

are affected by the presence of another mutation (epistasis). If the mutation is beneficial in one instance 

and deleterious in another, or vice versa, this is referred to as sign epistasis. When this occurs in a 

component involved in adaption, it constrains the possible evolutionary trajectories, avoiding the 

deleterious mutation [26]. It is possible for two mutations to individually be deleterious but together are 

beneficial, referred to as reciprocal sign epistasis. Reciprocal sign epistasis is necessary for multiple peaks 

within a fitness landscape, and cells can become stuck on these peaks, unable to evolve towards a higher 

maximum fitness because any single mutation would be selected against. However these epistatic 

interactions are dependent on the environment, and changes in the environmental conditions provide an 

escape from fitness peaks within these rugged fitness landscapes [26]. If changes to environment provide 

additional evolutionary trajectories, it is possible that changes to selection pressures might as well. It is 

not clear if epistatic traits between genes would hold across multiple fitness measurements, such as 

growth or mobility, and if not could competing selection pressures overcome restrictions from reciprocal 

sign epistasis? 

Within the transcriptional regulatory network of E. coli, there are multiple strongly connected 

components.  These are groups of transcription factors which are able to directly or indirectly regulate all 

other transcription factors within that group.  The members of a strongly connected component appear 

to be functionally related.  For example FNR, ArcA, Fur, SoxR, and SoxS are all in a single strongly connected 

component and all 5 transcription factors directly sense the oxidative state of the cell, which modulates 

their functionality. Sign epistasis has recently been shown within transcriptional cascades [25]. This 

motivated us to explore how perturbations in one strongly connected component would influence 

phenotypes that structurally we associate with another strongly connected component, and how the 

hierarchy between strongly connected components influences the epistasis of between genes in different 

strongly connected components. To this end, we chose to study the influence between the strongly 

connected component associated with the energy state of the cell and the strongly connected component 

associated with cellular mobility. In this context, we can quantify the proportion of upstream sign epistasis 

(that is within the energy cluster), downstream sign epistasis (within the mobility cluster), and reciprocal 

sign epistasis. We can also see if there is a tendency for sign epistasis to be coupled between fitness 

measurements, and if so, correspond to the regulatory network structure? 
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Figure 10: Fitness landscapes between two genes can be flat (additive, no epistasis) or bent (epistasis). If the bend simply increases 
or decreases the slope of the landscape, but does not change its direction it is referred to as magnitude epistasis. However in some 
cases the effect of a gene will decrease fitness in one instance and increase fitness in another (or vice versa), referred to as sign 
epistasis.  This can occur for either or both genes. If the direction of both genes change, it is specifically referred to as reciprocal 
sign epistasis and causes a trench to form in the fitness landscape. The trench  is difficult to evolve past as each initial mutation 
will cause a fitness decrease and be selected for. Hierarchy in transcriptional cascades has previously been shown to cause sign 
epistasis, therefore we look for sign epistasis between two hierarchical clusters of transcriptional regulators in E. coli. We measure 
fitness by two different fitness metrics, one associated primarily (though not exclusively) with each cluster. We then look for fitness 
trajectories in both fitness metrics for single and double perturbations of genes within these clusters. The pair of genes may show 
reciprocal sign epistasis in one fitness but not the other (above: growth reciprocal sign epistasis, swimming magnitude epistasis).  

 The energy state component contains the transcription factors IHF, CRP, and Fis, and directly 

responds to the cofactors cAMP which is a signal for the quality of carbon source in the growth media, 

and ppGpp which is an alarmone signaling stalls in protein synthesis, due to starvation or stress conditions 

triggering the stringent response. This is the first strongly connected component in the transcriptional 

regulatory network and is upstream of most other transcription factors as well as all the additional 

strongly connected components. The component associated with cellular mobility contains the master 

regulator for the flagella pathway FliZ, as well as CsgD and FlhDC, which act as a toggle switch between 

twitching and swimming mobility.  In addition to mobility, this component also has transcription factors 

responsible for the acid response pathway such as GadE, GadX and GadW, as well as Response regulators 

RcsB and the regulator for horizontally acquired genes HNS.  
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We use a growth fitness and a swimming fitness as two easily quantifiable measurements related 

to the IHF, CRP, Fis and the FliZ, GadE, HNS, RcsB strongly connected components respectively. The growth 

fitness is quantified by performing a competition assay between a non-perturbed reference strain and a 

genetically perturbed strain, in which one or two genes are repressed using the CRIPSR-dCas9 system. The 

relative proportion of each strain is measured using a fluorescent marker (either EGFP, mCherry, or 

mCerulean) and the Optical Denstity (OD) of the entire culture is recorded. We are interested in the 

change in the relative fluorescence between the two strains as a function of the change in OD.  This is 

normalized against a competition assay containing two reference strains to account for differences in 

maturation or fitness costs of the different fluorescent markers, and forces the slope of the reference 

strain to zero. Perturbed strains which are out competing the reference strain will have a positive slope 

and strains which are being out competed will have a negative slope.  This slope can be used as an 

exponent to determine the fitness, where fgrowth = 2^Slope.  This sets the reference strain fitness to 1. 

Swimming fitness is quantified by the distance that strains can swim in a soft agar plate, where the percent 

agar is 0.3% or lower. A cell culture is spotted onto the center of a soft agar plate and incubated for 16-

24 hours. This can also be done in competition with a reference strain using two different fluorescent 

markers. With a perturbed strain tagged with EGFP and a reference strain tagged with mCherry, a 

competition swimming assay should result in two observable circles.  Firstly, an interior yellow circle will 

be the distance covered by both strains. Second, either a green or red outer ring will indicate which strain 

out competes the other.  If the ring is green, the perturbed strain was able to swim farther than the 

reference strain and if the ring is red, the opposite is true. The radius of these rings can be determined by 

image analysis and again normalized by the swimming of a reference strain against another reference 

strain, to account for differences caused by the fluorescent markers. 

To perform these experiments we modified pCRRNA vector supplied by Lun Cui and David Bikard 

from Institut Pasteur. We inserted either EGFP, mCherry, or mCerulean between the crRNA array and the 

origin of replication. The fluorescent marker was under the control of a strong constitutive promoter 

(J23119) and terminated with a bidirectional rho independent terminator (B0014). The fluorescent marker 

was the opposite direction to the crRNA promoter, such that there should be no transcriptional read-

through, nor should transcription of the marker reduce crRNA expression due to supercoiling effects. 

Single and double spacers were then inserted into the crRNA array using golden gate assembly to generate 

vectors. These knocked down transcription of either crp, fis, ihfA, ihfB, fliZ, gadE, hns, or rcsB individually 

or in combinations of one of the first four with one of the last four aforementioned genes. This resulted 

in 24 pCRRNA vectors. We also inserted non-targeting spacers into fluorescent pCRRNA vectors to act as 

reference strains. The fluorescent pCRRNA vectors were transformed into LC-E24 :: dcas9 2tetO HK022 

attB and MG1655 pdCas9 host strains which have dCas9 either integrated into the chromosome or on a 

separate plasmid respectively. All vectors were sequenced to ensure the corrected targeting spacer was 

inserted, and all strains were tested with qRT-PCR to ensure that the CRISPR-dCas9 was repressing the 

gene of interest. 
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2.3 Growth Competition and Swimming Competition fitness 
With Marine Lombard 

Genome integrated dCas9 demonstrated inhibited swimming from a cloning artifact. 

Initially we performed growth and swimming assays by inserting our fluorescent pCRRNA vectors 

into LC-E24 :: dcas9 2tetO HK022 attB. We performed Growth assays on LB media, and M63 media 

containing either Glucose or Lactose as a Carbon Source. In LB media, all the perturbations reduced the 

fitness of strain in competition assays. In our earlier tests with pCKDL vectors, the single crp, fis, and hns 

perturbations did not show significant differences in maximum growth rate to the reference strain. We 

saw much stronger negative fitness measurements when crp, fis, and hns were perturbed in competition 

assays. This is expected due to the much higher sensitivity of competition assays compared to growth 

curves.  The biological replicates are separated on the Y axis, which indicates variations in the starting 

ratios of the perturbation strains and the reference strains on separate days. However this does not 

change the direction of the slope of the curves. We found that the competition fitness was media 

dependent. When we changed to a defined media M63, certain perturbations were advantageous. This 

further depended on the carbon source available. In M63 with Glucose as a carbon source, gadE 

perturbation became advantageous. We also observed sign epistasis between some pairs of genes, 

specifically crp-fliZ, ihfB-hns, and ihfB-rcsB, because these pairs of perturbations had a fitness advantage 

although all of the individual perturbations caused a fitness disadvantage. We also saw higher than 

expected fitness advantage for fis-gadE, and ihfB-gadE. In M63 with Glucose we do have cases when the 

slope was not reproduced in separated experiments, namely crp-gadE and fis-rcsB showed different 

fitness in different replicates.  This could be due to individual mutants escaping the CRISPR-dCas9 system. 

When the carbon source was changed to lactose, we found even more perturbations which gave a fitness 

advantage. Here, 12 strains had a fitness advantage over the reference strain.  Additionally, reproducibility 

was decreased, with 5 strains showing inconsistent phenotypes. Overall, the diversity of the growth 

competition phenotypes increases as we increased competitive stress by decreasing the richness of the 

growth media. 

 When we examined swimming phenotypes with these strains, we found that the reference strain 

with mCherry was not reproducibly swimming. Additionally, strains seemed to swim from one or more 

blooms from the centre culture where the plate was inoculated with the cell mixture. We tested MG1655 

and LC-E24 :: dcas9 2tetO HK022 attB and found that even without any pCRRNA vector, and LC-E24 :: 

dcas9 2tetO HK022 attB showed this same inconsistent and asymmetrical swimming pattern. We 

transformed pdCas9 into MG1655 and found that it showed a symmetrical and reproducible swimming 

pattern similar to that of MG1655, although with a decreased radius. We also tested a cloning strain 

(Top10) and found that like LC-E24 it had difficulty swimming.  We concluded that the observed swimming 

phenotype in LC-E24 was likely a cloning artifact.  

Growth Fitness by competition assays using pdCas9 reference strain shows sign epistasis. 

We therefore repeated our experiments using MG1655 pdCas9 as a host strain (Figure 11). We 

found similar growth results to our LC-E24 strain experiments however they did have some differences. 

Notably, the results were less reproducible in MG1655 pdCas9.  This could be due to the increased burden 

of an additional plasmid pdCas9 [126].  Not only does the additional plasmid and antibiotic increase the 

metabolic load on the cells, but the additional dCas9 produced increases the likelihood of off-target  
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Figure 11: Competition assays between MG1655 pdCas9 pCRRNA :: EGFP and MG1655 pdCas9 pCRRNA :: mCherry in LB media. 
Strains harboring pCRRNA :: EGFP carried on of 24 targeting spacers or a non-targeting control (indicated at the top of the plots). 
The strain harboring pCRRNA :: mCherry contained a non-targeting control spacer and used as a reference strain. All EGFP strains 
were grown in competition with the reference strain, at a starting ratio of 1:1 made from dilution of 1/100 from overnight cultures. 
The change in the ratio of GFP to RFP signal with the change in optical density (OD) indicates the relative change in proportion of 
each strain as cultures grew. A slope was fitted to the data between the 25-75% of OD to avoid changes in the lag phase (which 
may be instrument noise) and stationary phase. A slope (m) of 0 indicates no change in relative proportions of each strain. A 
fitness score (f) was determined for each strain by computing 2^m. Data represents 3 biological replicates with 3 technical 
replicates each. 
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effects. Additionally, the uniform over performance of perturbations in M63 + Lactose, along with a few 

extremely high fitness scores (4.94 * 104 in the most extreme case) indicates a systematic artifact in those 

samples. We found 4 incidents which indicated sign epistasis in LB, three downstream and one upstream, 

and 3 of the incidents of sign epistasis involved pairs with FliZ perturbations. We had expected FliZ to have 

a large impact on swimming mobility, but did not expect much effect in competition assays as it is not 

highly expressed in our qRT-PCRs and is abundant after exponential growth [44]. However FliZ is known 

to act as an antagonist to sigma-S and therefore its disruption maybe effecting the transition from 

exponential to stationary phase. In M63 media with 0.4% Glucose, we found 6 incidents of sign epistasis 

(3 reciprocal, 2 downstream, 1 upstream). Here again, two genes showed sign epistasis in 3 of their 4 

pairwise perturbations. These were Fis and GadE. In cases were sign epistasis was not reciprocal, both 

genes were the gene in the pairwise strain to show sign epistasis (upstream for Fis and downstream for 

GadE). Changing Glucose for Lactose resulted in 7 cases of sign epistasis (3 reciprocal, 3 downstream, 1 

upstream). Again there was one gene (in this case RcsB) which showed epistasis in 3 out of 4 interactions, 

and was consistently reciprocal or downstream. While these results shouldn’t be over interpreted, they 

are consistent with the previous finding that downstream sign epistasis is more common in transcriptional 

cascades than upstream sign epistasis [25], and specific regulators tend to consistently demonstrate sign 

epistasis more than other regulators in terms of growth fitness. 

Sign epistasis in swimming fitness with pdCas9 reference strain 

 To examine if these trends held with another fitness measurement, we performed swimming 

experiments with MG1655 pdCas9 pCRRNA :: EGFP. We imaged our plates with a fixed camera and used 

edge detection in matlab to locate the boundaries of swimming (Figure 12). Fortunately, the reference 

strains generally had an expected swimming phenotype. However we found that the swimming 

phenotype was dependent on both the aTc concentration and on the % agar in the soft agar plates. We 

also found that the blooming phenotype still occurred in many cases. In these cases we took the radius of 

the cells not including any blooms. Again we found incidents of sign epistasis (Figure 13); in LB we found 

5 cases (3 downstream, 1 upstream, 1 reciprocal), in M63 with 0.4% Glucose we found only 1 case of 

reciprocal sign epistasis, and in M63 with 0.4% Lactose we found 6 cases (3 downstream, 3 upstream). 

While overall we found more downstream sign epistasis than upstream, it was not as strong as in growth 

cultures. We only found 2 strains that showed sign epistasis in 3 out of 4 of their gene pairs, fis and rcsB 

grown in M63 with Lactose. Unfortunately, in this case these perturbations were not consistent, with 2 

downstream and 1 upstream sign epistasis for each. We found that outside of LB media, perturbation of 

FliZ generally suppressed any swimming phenotype. This is consistent with FliZ regulating genes within 

the mobility pathway [44].  
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Figure 12: Detection of swimming radius using matlab edge detection. Soft agar plates were imaged using a fixed camera (left). 
Images were then analysed in matlab using edge detection to determine the radius of the swimming bacteria (right).  

 It is possible that the difficulty in producing consistent results in both the swimming and growth 

assays is due to the high cellular burden being imposed on the cell.  We see a consistent reduction in both 

growth rate and swimming mobility with the induction of pdCas9 alone, which gets progressively worse 

with the addition of pCRRNA. Excessive expression of additional proteins has long been known to 

adversely affect the growth rate and health of the cell, and can lead to break down and loss of rRNAs, 

ribosomes, and protein synthesis capacity [127]. While we can adjust the expression of dCas9 by titrating 

anhydrotetracycline (aTc), our fluorescent markers are on strong constitutive promoters for visualization 

during swimming assays. Additionally, none of our proteins have been codon optimized for E. coli, which 

when paired with high expression levels could lead to depletion of rare tRNAs or reduced mRNA stability 

[128]. These costs may have a strong impact on the cellular decision to swim, as the flagella is a very costly 

structure to create and maintain for the cell [129] [130]. We may have more reproducible and reliable 

results by running dCas9, crRNA, and tracrRNA from a single plasmid, without fluorescence. This will 

prevent competition assays from being performed, but they could be replaced with growth curves. 

 

 



 

44 
 

 

Figure 13: Swimming mobility of single and double knockdown MG1655 pdCas9 pCRRNA :: EGFP strains. Strains were spotted onto 
growth media containing 0.25% agar. The radius of swimming bacteria was recorded after 16 or 20 hours for LB and M63 
respectively. The radius of each strain was normalized to the radius of the reference strain with a non-targeting (NT) spacer. Data 
represents 3-4 independent replicates for each strain. 
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2.4 Fitness Landscape of interactions between ‘Energy’ and ‘Mobility’ Regulatory 

Clusters 
Shapes on the fitness trajectories represent different types of epistasis 

For each pair of perturbations we plotted the growth and swimming fitness measurements for the 

reference strain, the individual perturbations and the combination of perturbations for LB media, M63 

with Glucose and M6 with Lactose. Since we have normalized the fitness of the reference strain to 1, the 

predicted fitness of the double perturbation strain (AB) with no epistasis is fAB = fref * fA * fB. This 

prevents negative fitness from being possible, as it would be impossible to have a negative swimming 

diameter or a negative growth rate. With this we calculated all interactions that would have an expected 

fitness with no epistasis. We plotted the fitness measurements for each pair of genes against each other 

in each media (Figure 14). The direction and the shape of the trajectories indicates the type of epistasis 

between the two genes. If the trajectories for a given gene are in the opposite direction in relation to one 

or two axis, they indicate sign epistasis for that gene in the corresponding fitness. If the arrows have a 

different length but the same direction, they indicate magnitude epistasis. We identified 6 basic shapes 

within our data. Parallelogram, Obtuse, Acute, Triangles, Concave, and Hourglasses. Parallelograms 

always indicate no epistasis. Obtuse quadrilaterals indicate magnitude epistasis. Acute quadrilaterals will 

indicate sign epistasis on the two side edges with acute angles with the long edge as long as neither edge 

is parallel with one of the axis, these sometimes occur as Acute Trapezoids (for example CRP + RcsB in LB). 

Triangles have two strains with the same fitness measurements resulting in one edge length near zero, 

when it is a single and double mutant it indicates that one perturbation is completely masking the 

influence of the other perturbation. When it is the reference strain and a single mutant, it indicates that 

one perturbation has no influence without the second perturbation. Concave shapes indicate reciprocal 

sign epistasis for at least one fitness measurement, and depending on the orientation, possibly both. 

Finally, Hourglass shapes have fitness that cross over. The base of the hourglass will have sign epistasis in 

both fitness metrics unless the parallel with one axis in which case it will only be sign epistasis in one 

fitness.  Depending on the rotation of the hourglass, it may also have sign epistasis for the other gene, 

resulting in reciprocal sign epistasis, however it can only have reciprocal sign epistasis for one fitness. It is 

important to note that the shape alone does not determine the epistasis, but the rotation of the shape 

must also be taken into account.  

 

Table 1: Summary of epistatic interaction in swimming and growth fitness metrics for LB and M63 media. Columns represent 
upstream knock-downs while rows represent downstream knock-downs using CRISPR-dCas9 system. Interactions include: Additive 
– No epistasis (A), Magnitude (M), Downstream Sign (S (Dn)), Upstream Sign (S (Up)), and Reciprocal Sign (R). There are 6 
measurements for each pair of knock-downs, three media (LB, M63 + Glucose, M63 + Lactose) and 2 Fitness metrics (Growth and 
Swimming). 
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Figure 14: Fitness trajectories for MG1655 pdCas9 pCRRNA :: EGFP strains in LB media. Fitness measurements for each crRNA 
spacer were normalized to the reference strain (non-targeting spacer) such that the reference strain had a fitness of 1. Single and 
double knock-down mutants were then plotted for each combination of strains. Blue arrows indicate the fitness trajectory with 
the addition of the upstream (columns) gene while yellow arrows indicate the trajectory with the downstream (rows) genes. 
Trajectories with opposite directions in one or two axis represent sign epistasis for the respective fitness. 
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Sign epistasis is dependent on both environment and selection pressure 

We found that, similar to previously reported studies [26], the epistasis depended on the 

environment of the cells, and changing the growth media changed the observed epistasis (Table 1). We 

also had many instances where fitness trajectories moved along the diagonal. This implies that the fitness 

metrics may be coupled, although it warrants further investigation. Additionally, while we did find 

reciprocal epistasis, we didn’t find any instances where perturbations had reciprocal epistasis in both 

fitness metrics. We did find some examples where sign epistasis was found in both fitness metrics but in 

all four cases it was downstream sign epistasis. This implies that multiple selective pressures, or 

alternating selective pressures, could lead to additional evolutionary paths with which to avoid reciprocal 

epistasis. For example, a colony of bacteria face fierce competitive fitness during growth, with cells that 

are able to divide faster outcompeting cells which divide slower. If these slower dividing cells have an 

advantage in other areas, such as mobility, they may reach nutrient sources that faster dividing cells 

cannot. Further mutations may occur at these new nutrient sources which then decrease mobility but 

increase cell division, again providing a competitive advantage in a new environment. In the cases of 

Concave and Hourglass shapes in the fitness landscape, this could allow cells to reach new spaces on the 

Pareto front which would otherwise not be accessible through only one fitness selection due to reciprocal 

sign epistasis. The Pareto front is a frontier in the fitness landscape in which no other phenotypes exist 

which are better at all fitnesses [131]. Natural selection is thought to push phenotypes towards this 

frontier. Gene expression in E. coli has previously been demonstrated to fall along a line with one end 

repressing growth and the other representing stress, using this Pareto technique [53].   
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2.5 Methodology  
Creation of vectors 

pCRRNA mCherry and pCRRNA EGFP were made by Gibson Assembly.  PCR was performed on 

pMD019 (pGFP) and pMD024 (pmCherry) with primers oMD546 and oMD547, and on pCRRNA with 

primers oMD545 and oMD548. PCR products were purified with PCR clean up kit from Macherey-Nagel.  

Equal molar concentrations of PCR product were mixed (one from either pMD019 or pMD024 and one 

from pCRRNA) and 5 µL of mix was added to 15 µL of Gibson Master mix to create pCRRNA Green and 

pCRRNA Red respectively. Golden Gate Assembly was used to replace the TrrnB terminator from pMD019 

and pMD024 with B0014 as the TrrnB terminator contained 2 BsaI sites.  PCR was done on pCRRNA Green 

and pCRRNA Red with primers oMD609 and oMD610, and on pCKDL with primers oMD607 and oMD608.  

PCR products where joined with Golden Gate Assembly using BsmBI enzyme to create pCRRNA EGFP and 

pCRRNA mCherry. pCRRNA mCerulean was created by Gibson Assembly. PCR was performed on pMD027 

(pCerulean) with primers oMD704 and oMD705, and on pCRRNA mCherry with primers oMD706 and 

oMD707). PCR products were purified with PCR clean up kit from Macherey-Nagel.  Equal molar 

concentrations of PCR product were mixed and 5 µL of mix was added to 15 µL of Gibson Master mix.  All 

vectors were sequenced by GATC Biotech prior to use. 

Growth Conditions of Cultures 

The host strain for all pCRRNA vectors is MG1655 with the pdCas9 vector from Stanley Qi 

(provided by Lun Cui and David Bikard). Glyercol stocks of each culture were streaked onto individual 

Lysogeny Broth (LB) agar plates containing 34 µg/mL of Chloramphenicol and 50 µg/mL of Kanamycin.  

Single colonies were inoculated into 2 mL of selected media (either LB or M63 supplemented with 0.4% 

Glucose or Lactose) containing 34 µg/mL Chloramphenicol and 50 µg/mL Kanamycin.  Cultures were 

placed in a 37°C incubator for either overnight for 16 hours for LB cultures or for 24 hours for M63 

cultures. 

Growth Competition Assays 

Assays were performed by diluting 220 µL pCRRNA mCherry NT pre-culture into 22 mL of selected 

media containing 34 µg/mL Chloramphenicol, 50 µg/mL Kanamycin, and 250 ng/mL anhydrotetracycline. 

A Greiner, 96 Well, PS, F-Bottom, µCLEAR, Black microplate was filled with 198 µL of diluted culture per 

well. For each pCRRNA EGFP knockdown vector, 2 µL of pre-culture was inoculated into 3 individual wells.  

For the Non-targeting Control strain, 2 µL of pre-culture was inoculated into 15 individual wells. A volume 

of 60 µL of mineral oil was added to each well of the microplate.  The Absorbance at 595 nm, as well as 

fluorescence at 480/510 nm and 580/610 nm (excitation/emission) were recorded every 10 minutes for 

20 hours with a SpectraMax i3x.  Microplates were incubated at 37°C and shook for 90 seconds before 

and after each measurement.  To determine the fitness measurement of each knockdown, the ratio of 

the green and red fluorescence of the strain was divided by the median ratio of the green and red 

fluorescence of the 12 additional wells for the non-targeting control. Fitness measurements for each 

knockdown were made for LB media, and M63 media containing 0.4% of either glucose or lactose. 

Swimming Fitness Assays 

For each knockdown, 10 µL of pre-culture was spotted into the middle of 15 mL of selected media 

soft agar (0.3%) plates.  Plates where then incubated at 37°C for either 16 hours for LB plates or 24 hours 
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for M63 plates.  Plates where then imaged using a USB Camera and python viewer. An image of a non-

inoculated plate was subtracted from each image.  The fitness was determined by the ratio of the 

swimming area of each knockdown strain to that of the non-targeting control strain. 
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2.6 Supplementary Figures 

 

Figure 15: Competition assays between LC-E24 :: dcas9 2tetO HK022 attB pCRRNA :: EGFP and LC-E24 :: dcas9 2tetO HK022 attB 
pCRRNA :: mCherry in LB media. Strains harboring pCRRNA :: EGFP carried on of 24 targeting spacers or a non-targeting control 
(indicated at the top of the plots). The strain harboring pCRRNA :: mCherry contained a non-targeting control spacer and used as 
a reference strain. All EGFP strains were grown in competition with the reference strain, at a starting ratio of 1:1 made from 
dilution of 1/100 from overnight cultures. The change in the ratio of GFP to RFP signal with the change in optical density (OD) 
indicates the relative change in proportion of each strain as cultures grew. A slope was fitted to the data between the 25-75% of 
OD to avoid changes in the lag phase (which may be instrument noise) and stationary phase. A slope (m) of 0 indicates no change 
in relative proportions of each strain. A fitness score (f) was determined for each strain by computing 2^m. Data represents 2 
biological replicates with 3 technical replicates each. 



 

51 
 

 

Figure 16: Competition assays between LC-E24 :: dcas9 2tetO HK022 attB pCRRNA :: EGFP and LC-E24 :: dcas9 2tetO HK022 attB 
pCRRNA :: mCherry in M9 media with 0.4% Glucose. Strains harboring pCRRNA :: EGFP carried on of 24 targeting spacers or a non-
targeting control (indicated at the top of the plots). The strain harboring pCRRNA :: mCherry contained a non-targeting control 
spacer and used as a reference strain. All EGFP strains were grown in competition with the reference strain, at a starting ratio of 
1:1 made from dilution of 1/100 from overnight cultures. The change in the ratio of GFP to RFP signal with the change in optical 
density (OD) indicates the relative change in proportion of each strain as cultures grew. A slope was fitted to the data between 
the 25-75% of OD to avoid changes in the lag phase (which may be instrument noise) and stationary phase. A slope (m) of 0 
indicates no change in relative proportions of each strain. A fitness score (f) was determined for each strain by computing 2^m. 
Data represents 2 biological replicates with 3 technical replicates each. 
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Figure 17: Competition assays between LC-E24 :: dcas9 2tetO HK022 attB pCRRNA :: EGFP and LC-E24 :: dcas9 2tetO HK022 attB 
pCRRNA :: mCherry in M9 media with 0.4% Lactose. Strains harboring pCRRNA :: EGFP carried on of 24 targeting spacers or a non-
targeting control (indicated at the top of the plots). The strain harboring pCRRNA :: mCherry contained a non-targeting control 
spacer and used as a reference strain. All EGFP strains were grown in competition with the reference strain, at a starting ratio of 
1:1 made from dilution of 1/100 from overnight cultures. The change in the ratio of GFP to RFP signal with the change in optical 
density (OD) indicates the relative change in proportion of each strain as cultures grew. A slope was fitted to the data between 
the 25-75% of OD to avoid changes in the lag phase (which may be instrument noise) and stationary phase. A slope (m) of 0 
indicates no change in relative proportions of each strain. A fitness score (f) was determined for each strain by computing 2^m. 
Data represents 2 biological replicates with 3 technical replicates each. 
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Figure 18: Swimming assays of LC-E24 :: dcas9 2tetO HK022 attB pCRRNA :: EGFP and LC-E24 :: dcas9 2tetO HK022 attB pCRRNA 
:: mCherry in 0.3% LB soft agar. pCRRNA :: EGFP vectors contained one of 24 targeting spacers (corresponding to rows and 
columns) or a non-targeting control (uppermost left corner). The strain containing pCRRNA :: mCherry always contained a non-
targeting vector for use as a reference strain. A bright center dot indicates cells that were unable to penetrate the agar due to a 
lack of any swimming ability. 
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Figure 19: Competition assays between MG1655 pdCas9 pCRRNA :: EGFP and MG1655 pdCas9 pCRRNA :: mCherry in M63 media 
with 0.4% glucose. Strains harboring pCRRNA :: EGFP carried on of 24 targeting spacers or a non-targeting control (indicated at 
the top of the plots). The strain harboring pCRRNA :: mCherry contained a non-targeting control spacer and used as a reference 
strain. All EGFP strains were grown in competition with the reference strain, at a starting ratio of 1:1 made from dilution of 1/100 
from overnight cultures. The change in the ratio of GFP to RFP signal with the change in optical density (OD) indicates the relative 
change in proportion of each strain as cultures grew. A slope was fitted to the data between the 25-75% of OD to avoid changes 
in the lag phase (which may be instrument noise) and stationary phase. A slope (m) of 0 indicates no change in relative proportions 
of each strain. A fitness score (f) was determined for each strain by computing 2^m. Data represents 3 biological replicates with 
3 technical replicates each. 
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Figure 20: Competition assays between MG1655 pdCas9 pCRRNA :: EGFP and MG1655 pdCas9 pCRRNA :: mCherry in M63 media 
with 0.4% lactose. Strains harboring pCRRNA :: EGFP carried on of 24 targeting spacers or a non-targeting control (indicated at 
the top of the plots). The strain harboring pCRRNA :: mCherry contained a non-targeting control spacer and used as a reference 
strain. All EGFP strains were grown in competition with the reference strain, at a starting ratio of 1:1 made from dilution of 1/100 
from overnight cultures. The change in the ratio of GFP to RFP signal with the change in optical density (OD) indicates the relative 
change in proportion of each strain as cultures grew. A slope was fitted to the data between the 25-75% of OD to avoid changes 
in the lag phase (which may be instrument noise) and stationary phase. A slope (m) of 0 indicates no change in relative proportions 
of each strain. A fitness score (f) was determined for each strain by computing 2^m. Data represents 3 biological replicates with 
3 technical replicates each. 
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Figure 21: Fitness trajectories for MG1655 pdCas9 pCRRNA :: EGFP strains in M63 media with 0.4% glucose. Fitness measurements 
for each crRNA spacer were normalized to the reference strain (non-targeting spacer) such that the reference strain had a fitness 
of 1. Single and double knock-down mutants were then plotted for each combination of strains. Blue arrows indicate the fitness 
trajectory with the addition of the upstream (columns) gene while yellow arrows indicate the trajectory with the downstream 
(rows) genes. Trajectories with opposite directions in one or two axis represent sign epistasis for the respective fitness. 
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Figure 22: Fitness trajectories for MG1655 pdCas9 pCRRNA :: EGFP strains in M63 media with 0.4% lactose. Fitness measurements 
for each crRNA spacer were normalized to the reference strain (non-targeting spacer) such that the reference strain had a fitness 
of 1. Single and double knock-down mutants were then plotted for each combination of strains. Blue arrows indicate the fitness 
trajectory with the addition of the upstream (columns) gene while yellow arrows indicate the trajectory with the downstream 
(rows) genes. Trajectories with opposite directions in one or two axis represent sign epistasis for the respective fitness. 
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3   Multiplexed Knockdowns of Global 

Transcription Regulators  
 

A small number of transcription factors drive expression for most of the genes in E. coli. The 

transcriptional regulatory network follows a power-law distribution, where a few nodes have many 

connections and most nodes only have a few connections [37]. Additionally, these transcription factors 

group into functional modules [40]. How can we reconcile this complex regulatory structure with the 

observations of a two state response [42] [53]? Functional regulatory modules do not appear to be highly 

conserved, nor can transcriptional units be unambiguously linked to their direct regulators [40]. This 

brings us back to the question, is there a relationship between the connections in transcriptional 

regulatory network and the response of the system to perturbations? 

To understand how global regulators work in concert to alter gene expression at a genome wide 

scale, we perturb all possible combinations of 5 global transcriptional regulators arcA, crp, fis, fnr, and 

hns. We first record fitness measurements for all of the resulting 32 strains in 3 different growth media. 

Two important observations are that i) the fitness trajectories are not monotonous. That is to say that 

changes in fitness occur in both directions as we increase the number of perturbations within a strain. 

And ii) the fitness profiles of the strains are media dependant. We then calculated the epistasis between 

these five global regulators and find that there are higher order epistasis in both fitness measurements 

we use, and the order of epistasis (that is the number of epistasis terms required to explain the data) is 

consistent across growth media. These high-order interactions are significant as they shape the accessible 

evolutionary paths of the genes [56]. 

We recorded the transcriptional profile of all of our strains in both the exponential and stationary 

phases of growth. We performed principle component analysis to analyse the dimensionality of the 

genetic response. These principle components attempt to explain the variance of the expression data by 

reducing correlated genes into a new ‘component’ to represent that variance. This effectively reduces a 

highly correlated, high dimensional data set such as RNA-sequencing data into a smaller number of 

uncorrelated ‘principle components’. Here we can compare the dimensionality of the inputs to the system 

(the number of perturbed genes) to the dimensionality of the output of the system (the number of 

principle components which represent most of the data) similar to an IN-OUT system in engineering. 

Consistent with previous results [42] [53], we find that the growth phase is the largest contributor to the 

variance in gene expression. We also find that each individual perturbation is strongly associated with one 

of the first 7 principle components. However these 7 components only account for 59% of the variance in 

the data, and we need 22 components to account for over 75% of the variance.  

We also performed cluster analysis on the transcriptional data to identify common genetic 

programs, and attempt to dissect the logic which governs which sets of perturbations lead to these 

programs. Finally, we discuss a logical model [59] for the transcriptional network, here we also see that 

perturbations increase the dimensionality of the system, and how logical data from our transcriptional 

data could be fed into this model.  
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3.1 CRISPR-Cas9 Knockdowns  
With Marie Baumont 

Single CRISPR spacers target E. coli genome while non-targeting control spacer does not 

We designed, cloned and tested CRISPR targeting sequences for the global transcriptional 

regulators arcA, crp, fis, fnr, and hns.  CRISPR targeting sequences are designed by first identifying all PAM 

(NGG) sequences in the promoter region of each gene for each strand of DNA.  The 30 nt flanking the PAM 

sequence is then labelled as a potential CRISPR Spacer.  The Spacers are then checked for potential off 

targeting by searching all other instances of the last 10 nt on the 3’ end of the spacer within the genome 

of MG1655.  Only the 3’ end of the spacer is considered as mutations are tolerated much more on the 5’ 

end of the spacer than the 3’ end [71] [80] [77].  Each matching 10 nt sequences is then checked for a 

flanking PAM sequence and if one is found, that spacer is labelled with potential off target effects.  CRISPR 

targeting spacers with no predicted off target effects that are located on the bottom template strand near 

the σ70 start site are preferentially selected for cloning into pCRISPR.   

Single CRISPR Knockdown Vectors were transformed into strains MG1655 :: pTet Cas9 and 

MG1655 :: pTet dCas9.   Growth curves were performed on each strain with induction by aTc to determine 

if CRISPR targeting spacers were functional as functional Spacers should be lethal in MG1655:: pTet Cas9 

but not dCas9 (Figure 23).  Critically, no difference in growth rate was observed between Cas9 and dCas9 

with the non-targeting control strain, while differences were observed in all the targeting strains.  Next 

qRT-PCRs were performed on MG1655 :: dcas9 strains with pCRISPR vectors for each single knock down 

to determine the level on inhibition of each gene (Figure 24).  We reliably see a shift in gene expression 

for each spacer, even those that did not have a clear phenotype in the growth curve assays. 

  

 

Figure 23: Growth Curves of Cas9 and dCas9 strains containing crRNA with targeting sequences for arcA, crp, fis, fnr, and hns. The 
double strand DNA breaks caused by Cas9 result in a strong fitness decrease of each of the targeting spacers.  The non-targeting 
control does not have any known targets in E. coli MG1655. 
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Figure 24: qPCR on 7 strains of E. coli expressing dCas9. Five strains carry a targeting crRNA for either arcA, crp, fis, fnr, or hns. A 
sixth strain carries a non-targeting spacer, and a seventh has no crRNA. The cDNA generated for the global regulators was 
amplified after RT-PCR by qPCR. The highlighted red curve indicates the strain which carries the perturbation for that gene.  

Quantification of CRISPR perturbations on gene expression with qRT-PCR 

We initially used a panel of genes as reporters for quantitative reverse transcription polymerase 

chain reaction (qRT-PCR).  This allows us to quantify the relative number of transcripts in each strain. The 

gene panel consisted of genes within the transcriptional regulatory network of E. coli which were directly 

regulated by our targeted genes. This list consisted of arcA, crp, fis, fnr, hns, hupa, hupb, ihfA, ihfB, lrp, 

marRA, gadX, ompR, oxyR, fur, gadE, csgD, and flhDC. We extracted RNA from strains containing each of 

our perturbations as well as 3 control strains (no crRNA and non-targeting crRNA as negative controls, and 

a genetic knock-out of hns as a positive control). RNA was extracted at multiple growth stages as 

determined by the optical density. Once RNA was extracted, we performed our qRT-PCR reactions to 

determine the number of transcripts for each gene in each sample. We then performed dimensionality 

reduction with the qPCR data using principle component analysis (PCA). This allowed us to reduce the 

dimensionality of our data from 18 (the number of genes measured). This allowed us to apply the same 

techniques that were used a microarray dataset [132] and in our larger screens with a smaller set of data. 

When we colored our data by the optical density of the sample in the first three principle 

components, we found that the first component corresponded to the optical density, with samples in 

exponential phase had positive principle component scores for the first component, while samples in early 

stationary phase had negative scores (Figure 25). This was consistent with the finding with microarray 

data that the first principle component was strongly associated with growth stage [42] [132]. We then 

colored the samples by their perturbations caused by the crRNA (Figure 26). We found that samples with 
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the same perturbations were close to each other in the first three principle components.  Additionally, 

the two negative controls were both close to each other as well, indicating that the non-targeting crRNA 

wasn’t having an effect on gene expression. The samples with the strongest negative scores for the second 

principle component were all perturbed for hns. This was slightly surprising as all of the other 

perturbations are higher in the regulatory network hierarchy than hns, and thus regulate the expression 

of more of the genes in our panel, however hns is known to have a strong effect on over-all fitness effect 

as it represses many stress response genes [133]. Additionally, more of our samples had hns perturbed 

than the other crRNA perturbations given the positive control for hns. In the third component, we saw 

that strains with fnr perturbed had strong scores compared to the rest of the samples.  These results 

indicate that at least two of the perturbations seem to be acting independently in our qRT-PCR data set.  

 

 

Figure 25: Principle Components of qRT-PCR data from perturbed cells, Colored by the Optical Density (OD) of the Cell Culture. 
Transcription Factors directly regulated by perturbed genes were quantified by qRT-PCR for cells perturbed with CRISPR-dCas9 at 
various ODs. 
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Figure 26: Principle Components of qRT-PCR data from perturbed cells, Colored by the perturbation of the Cell Culture. 
Transcription Factors directly regulated by perturbed genes were quantified by qRT-PCR for cells perturbed with CRISPR-dCas9 at 
various ODs. A non-targeting crRNA strain and a dCas9 strain without a crRNA were taken as negative controls, while a strain 
with HNS knocked out from the KIEO collection was taken as a positive control (dHNS). 

CRISPR spacers repression is optimal when targeting the coding strand at the transcriptional start site 

Initially, we chose targeting spacers close to the promoters for all genes except fis, which was 

targeting at the beginning of the open reading frame (ORF).  This was due to the presence of dusB between 

fis and its transcriptional start site. However, we noted lower fis repression than with other targeting 

spacers. Part of the cause of this is that fis expression lowers rapidly after early stationary phase but 

determine if there were other targeting site that could result in a more consistent repression, we designed 

four targeting spacers for each gene, two which annealed to the coding strand and two which annealed 

to the template strand. Two of these targeted the promoter regions and two targeted the beginning of 

the open reading frame. We then extracted RNA from strains expressing these crRNA and performed qRT-

PCR to quantify the strength of the gene repression (Figure 27). Consistent with published results, we 

found that crRNA complementary to the coding strand repressed expression better than crRNA that 

targeted the template strand [80] [77] [16]. In genes with the promoter directly in front of the ORF, there 

was little difference between the spacers complementary to the coding strand, regardless of whether they 

targeted the promoter or the ORF.  However in the case of fis, we found that repression was significantly 

worse when targeting the ORF. Even though it may confound our results due to the repression of dusB, 
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we decided to change our targeting crRNA for fis to target the promoter region to have a stronger and 

more reliable repression of the fis gene. This is likely to have little impact on the cell phenotype, as DusB 

is redundant with DusA and DusC. Additionally, DusB is synthesized at very low levels compared to Fis, 

despite being located within the same operon, with less than 0.5% of the protein levels of Fis [44]. 

 

 

Figure 27: Multiple spacers were designed for each gene on that annealed to either the coding strand (orange) or the template 
strand (Blue). The black dot on the side of a spacer indicates the NGG PAM sequence. The position of each spacer was mapped to 
the genetic sequence with open reading frames annotated as dark blue arrows, transcriptional start sites in green, and 
transcription factor binding sites in red. Relative gene expression was determined by qRT-PCR by comparing the Cq of perturbed 
cell lines with the Cq of a non-perturbed control. 
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3.2 CKDL Vector for Multiplexed Knockdowns  
Multiplexing CRISPR perturbations with pCKDL vector 

Our approach to perturb the genetic regulatory network of E. coli relies on the programmable 

nature of the CRISPR-Cas9 system.  Here, a catalytically deactivated Cas9 enzyme (dcas9) is used as a DNA 

binding protein, which is able to act as a transcriptional repressor when it binds to the promoter region 

of a gene.  The binding location of dCas9 is determined by a small guide RNA called crRNA which naturally 

exists in an array of many targeting spacers.  We take advantage of this programmable nature by building 

all possible combinations of targeting RNA so that we can fully explore the interactions between nodes 

within a network (Figure 28).  The crRNA is naturally able to target multiple sequences to provide 

protection from a variety of phages with some natural CRISPR locus containing hundreds of spacers [134]. 

We can take advantage of this feature by putting multiple targeting spacers in each CRISPR locus to 

multiplex perturbations of a genetic network. We can consider the perturbations as a Boolean function, 

with zero and one being non-perturbed and perturbed respectively. We then create a CRISPR array with 

a number of spacers equal to the number of genes we wish to investigate, with each corresponding to a 

specific gene.  

 

Figure 28: Combinatorial Knockdown strategy using CRISPR-Cas9.  To explore a genetic network, a program for targeting all 
possible combinations of genes can be created using CRISPR-Cas9. Each gene is represented in the CRISPR array as zeros and ones, 
as either a non-targeting spacer or a targeting spacer respectively. 
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Figure 29: Cloning with pCKDL system. The pCKDL vector is derived from pCRRNAcos and contains a tracrRNA, part of a crRNA, a 
cloning site, B0014 Terminator and the Kanamycin resistance marker (A). The pCKDL vector contains 2 BsaI cut sites next to a 
crRNA repeat sequence with no leader sequence or promoter(B).  The BsaI sites allow for golden gate assembly with dsDNA 
fragments containing a DNA barcode, a BsmBI cloning site, a crRNA repeat, and either a spacer targeting a gene of interest or a 
non-targeting spacer.  Golden gate assembly with these dsDNA fragments extends the crRNA array in the vector with either spacer 
and changes the cloning site to BsmBI(C).  This allows golden gate assembly to be repeated with another set of dsDNA fragments, 
again with either a targeting or non-targeting spacer, but with a BsaI cloning site within them.  This returns the vector to the initial 
cloning configuration, allowing the process to be cycled for the desired number of total targets (D). When the desired number of 
targets have been inserted, the crRNA lead sequence, as well an PCR handle or a promoter to drive expression of the barcode (for 
scRNAseq) can be inserted with golden gate assembly as well(E). The completed library of vectors (F) contain all possible 
combinations of all spacers, without any redundancies. 

We use a modified pCRRNA [135] vector for perturbing multiple genes in E. coli (called pCKDL).  

This vector has been modified to remove half of the crRNA and replace it with a terminator and RT binding 

site.  The CRISPR array is then built up through subsequent rounds of cloning with gBlocks inserted into a 

cloning site within the CRISPR array.  Each gBlock contains a CRISPR Spacer, a Repeat, a new cloning site, 

and a DNA barcode.   In each round, there will be a targeting spacer for a specific gene, or a non-targeting 

spacer added to each vector.  This allows us to build a library of CRISPR knock-down mutants at a size of 

2^n, where n is the number of targeted genes.  As such, the library avoids redundant mutants that typically 

occur when all possible genes are cloned at each cloning step [136].  The cloning site with the vector 

alternates between a BsaI site and an Esp3I site with each round, allowing for a cycling golden-gate-like 

assembly method (Figure 29). We have constructed a library of 32, with 5 perturbation targets: ArcA, CRP, 

Fis, FNR, and HNS.  
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Figure 30: Comparison of Gene Repression between pCRRNA and pCKDL with a single targeting spacer or multiple targeting 
spacers. E. coli strain LC-E24 harboring either pCRRNA with a single spacer or pCKDL with 5 spacers, colors correspond to targets 
of the spacers (green: arcA, blue: crp, pink: fis, orange: fnr, yellow: hns).  pCKDL vectors contain either a single targeting spacer 
and 4 non-targeting spacers, or a targeting spacer for all 5 targets (dark grey).  Vectors with only non-targeting spacers used as 
controls (light grey). qRT-PCR was preformed on RNA extracted from strains during exponential growth phase and an RNA spike 
was added to detect differences in RT efficiency. 

Assembly of pCKDL vectors and validation they function as efficiently as single targeting vectors 

We began by inserting a spacer targeting ArcA or a non-targeting crRNA spacer into pCKDL using 

GoldenGate Assembly and the BsaI enzyme (Figure 16). This resulted in two nearly identical plasmids 

pCKDL 0 and pCKDL 1 where the only difference is in the content of the single crRNA spacer and the 5nt 

DNA barcode. It is useful to visualize a library as a binary number with each digit representing a spacer in 

the crRNA array. If the crRNA contains a spacer that targets a gene, the digit corresponding to that spacer 

is a 1, and if it does not target a gene the digit is a 0. In this way all the binary numbers from 0 to 2N can 

represent all the plasmids we construct with pCKDL. With each of the plasmids constructed from round 

one, we then inserted a spacer targeting CRP or a different non-targeting spacer; using GoldenGate 

Assembly and the BsmBI enzyme.  This results in 4 unique plasmids; pCKDL 00, 01, 10, and 11.  Importantly, 

while all of these plasmids have unique combinations of spacers and DNA barcodes, they all have identical 

BsaI cloning sites. At this point round 1 and round 2 cloning steps can be alternated until a desired library 

size is reached, each time simply replacing the targeting spacer with a new gene.  For our library of 32 
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constructs we kept each plasmid separated in each step so that bulk experiments could be performed.  

However for high-throughput experiments, it is possible to pool the resulting plasmids after each round 

to prevent the number of parallel cloning reactions from becoming overwhelming.  Sequencing the DNA 

barcode can then be used to determine what combination of spacers is contained in each vector. 

When the CRISPR array has been constructed, the fragment of pCRRNA that was removed to make 

pCKDL is reintroduced, and a promoter can be added with it to express the DNA barcode as RNA for 

detection during reverse transcription.  When we finished construction of our 32 plasmids, we performed 

qRT-PCR on a subset of them to ensure that the modifications we made to pCRRNA when making pCKDL 

hadn’t interfered with expression of the crRNA or the tracrRNA, and that when using multiple spacers in 

a single crRNA, we were not titrating out the dcas9 protein or the tracrRNA and reducing the strength of 

our repression.  As such we compared pcrRNA with spacers for ArcaA, CRP, Fis, FNR, and HNS to pCKDL 

10000, 01000, 00100, 00010, and 00001 respectively, along with pcrRNA with a non-targeting spacer and 

pCKDL 00000, and 11111 (Figure 30).  We found expression of targeted genes to be comparable between 

pCRRNA and pCKDL with no loss of repression.  We sequenced our entire 32 plasmid library to ensure 

there were no errors or mutations, finding only that pCKDL 11110 had spontaneously lost its non-targeting 

spacer.  We also noted that expression of the DNA barcode as a small RNA had a noticeable fitness cost, 

and such for our bulk experiments with fitness and RNA sequencing we created our final pCKDL without 

a promoter for the barcode, although this will be required for droplet based single cell RNA sequencing. 

  

  



 

68 
 

3.3 Fitness and Epistasis of pCKDL Perturbations  
Growth curves of pCKDL show patterns of growth effects corresponding to perturbations 

Once we finished construction of our pCKDL strains, we determined the fitness measurement of 

each strain by 20H growth curves in 96 microtitre plates. Strains were grown in either LB or M9 media, 

with M9 media supplemented with either 0.4% Glucose or Lactose as a carbon source. The Cas9 enzyme 

was induced at the beginning of each growth curve. We chose two fitness metrics to quantify differences 

in the growth curves between strains (Figure 31).  First, a growth rate fitness, is the slope of growth curve 

during exponential growth. The location where the slope is measured corresponds to the maximum  

 

Figure 31: Fitness Determination from Growth Curves.  Growth curves for two strains (phenotype extremes) of LC-E24 bearing 
pCKDL 6 (orange) and 25 (blue) grown in 200 µL of M9 Media supplemented with 0.4% Glucose. Fitness is determined by taking 

the derivative of the log2 of the growth curves to find the exponential growth phase.  A linear fit is made to the growth curve ±20 

minutes of the maximum derivative (Bold section of curve).  The slope of this linear fit is taken as the Growth Rate Fitness.  The 
second phenotype measured is the maximum OD reached after 20 hours.  Each strain has these two fitness measurements in three 
media: LB, M9 + Glucose, and M9 + Lactose.  There are 3 biological replicates (taken from independent single colonies), and three 
technical replicates for each biological replicate.  
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derivative of the growth curve.  Second, a maximum Optic Density (OD) fitness, refers to the maximum 

OD595nm that is reached after 20 hours of growth.  These fitness measurements were measured for all 32 

strains, in 3 different media, with 3 biological replicates and 3 technical replicates for each biological 

replicate.  All 32 strains were able to grow well in LB (Figure 49). Due to the difficulty in visualizing 

individual growth curves among 32 strains, we also represented the growth curves as parallel rows in a 

heatmap, with the intensity corresponding to the Optic Density (Figure 50). From this perspective there is 

a clear striped pattern in which the OD alternates up and down with each strain in stationary phase. This 

pattern corresponds to the absence or presence of the hns spacer in the pCKDL vector respectively. There 

also seems to be a pattern of every 8 strains where the time the OD shifts from an OD of 0.35 to 0.4 shifts 

from sooner to later corresponding to the presence or absence of the crp spacer in the pCKDL vector 

respectively.  

Fitness landscapes of pCDKL strains show that fitness effects are non-monotonous 

To explore this further we plotted the two fitness measurements for each strain (Figure 32). We 

colored each point by the spacers that were contained in the pCKDL for a given vector (with grey 

representing the pCKDL with no targeting spacers).  Strains which vary by a single spacer in pCKDL are 

connected with an arrow, in the direction of the additional targeting spacer and colored by which spacer 

is added (green for arcA, blue for crp, pink for fis, orange for fnr, and yellow for hns).  If there is a significant 

difference between the fitness of the two strains (as determined by Welch’s t-test) the arrow is a solid 

line, and if not the arrow is dashed. Firstly, while the non-targeted reference strain pCKDL 0 has a high 

fitness for both growth rate and maximum OD, there are other strains with higher measurements for both 

fitness measurements.  Some of these high performing strains include 4 targeting spacers.  Additionally, 

the strain with all 5 targeting spacers, pCKDL 31, has a fitness very similar to the reference strain.  The 

perturbations are non-monotonic, in that in general, the fitness initially decreases with the addition of 

targeting spacers, but then begins to increase the number of targeting spacers increases. Generally, most 

of the strains with low maximum OD fitness contain an HNS targeting spacer, and most of the strains with 

a low growth rate fitness contain an FNR targeting spacer. 

To further visualize the effects of individual spacers on fitness, this data was decomposed into 

individual figures for each fitness measurement: Growth rate fitness (Figure 51) and Maximum OD fitness 

(Figure 52) where the fitness measurements were normalized to the references strain such that pCKDL 0 

has a fitness of 1, and then plotted against the number of targeting spacers contained in the pCKDL vector. 

For both figures, connections between strains are colored and annotated as before. With the maximum 

growth rate, when FNR has been knocked down it significantly reduces the growth rate of the cell.  This is 

also true for knock downs of fis and hns, though less common than fnr (3 and 4 incidents respectively 

compared to 6 for fnr).  This contrasts with knock downs of crp and arcA, which increased growth rate in 

3 cases each.  There is only one pCKDL where the direction of the effect of spacers changed, which is 

pCKDL 23 containing spacers for arcA, fis, fnr, and hns.  In this strain, the addition of fnr and fis spacers 

actually increased rather than decreasing the growth rate of the strain. The maximum OD fitness is 

dominated by hns which consistently reduces the fitness when the hns targeting spacer is present (in 

14/16 cases). Targeting spacers for arcA, crp, fis, and fnr all increase the fitness (8/16, 10/16, 9/16, 3/16 

respectively) when there is more than one targeting spacer present, while individually they all reduce 

fitness, although of the four only arcA is a significant reduction.  In particular, the combination of arcA, 

crp and fis targeting spacers seems to have a large increase in fitness when in combination. 
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Figure 32: The fitness landscape of pCKDL vectors grown in LB media. The non-targeting pseudo wildtype is in dark grey. Arrows 
represent fitness trajectories when one additional targeting spacer is added (green: arcA, blue: crp, pink: fis, orange: fnr, yellow: 
hns, solid: p<0.05, dashed: p>0.05). Circles are located at the median fitness measurement for each pCKDL strain, with colours 
representing the knockdowns present in that strain (corresponding to same colours as above).  

The fitness patterns for targeting spacers is dependent on the growth media.  We performed the 

same growth curves with a defined media M9 which was supplemented with 0.4% Glucose as a carbon 

source (Figure 53). The striped pattern observed in the maximum OD reached in the LB growth curves 

seems to have shifted to the transition between exponential and stationary phase. We quantified the 

fitness measurements from these growth curves and plotted the fitness measurements and the fitness 

trajectories between strains which only differed by a single spacer (Figure 33). Unlike LB media, the fitness 

in M9 + Glucose tends to cover less of the fitness landscape, with a more linear path.  It is also dominated 

by three extreme phenotypes, pCKDL 7 (fis, fnr, and hns spacers) and pCKDL 23 (arcA, fis, fnr, and hns 

spacers) have very high fitness scores while pCKDL 25 (arcA, crp, and hns spacers) has very low fitness 

scores. Similarly to fitness in LB media, the perturbations are non-monotonic, and many instances of cells 

fitness gains or losses being reversed with the addition of further targeting spacers. We decomposed the 

fitness for M9 media into individual figures to assess the impact of specific spacers on each fitness 

measurement. For growth rate fitness (Figure 54) there is a trend for fis and fnr spacers to increase the 

growth rate, while spacers for arcA, crp, and hns decrease the growth rate. Unlike with LB, there are no 

significant exceptions to these patterns. For maximum OD fitness (Figure 55), targeting spacers for fnr and 

fis tend to increase the maximum OD cultures reached, while targeting spacers for crp decreased the 
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maximum OD. Spacers for arcA and hns on the other hand where mixed, with arcA increasing maximum 

OD fitness once and decreasing it twice, while hns decreased maximum OD fitness once and increased it 

twice. We had assumed a priori that CRP would not have a strong impact in M9 with Glucose, as the 

presence of glucose should limit cAMP availability, a necessary co-factor for CRP activity, however we 

observed the opposite, with a strong negative effect when crp expression was knocked down. 

 

Figure 33: The fitness landscape of pCKDL vectors grown in M9 media supplemented with 0.4% glucose. The non-targeting pseudo 
wildtype is in dark grey. Arrows represent fitness trajectories when one additional targeting spacer is added (green: arcA, blue: 
crp, pink: fis, orange: fnr, yellow: hns, solid: p<0.05, dashed: p>0.05). Circles are located at the median fitness measurement for 
each pCKDL strain, with colours representing the knockdowns present in that strain (corresponding to same colours as above). 

Finally, we measured growth curves in M9 media supplemented with 0.4% Lactose as a less 

preferred carbon source (Figure 56).  Unlike LB or M9 with Glucose, there are no obvious patterns from 

the comparisons of growth curves directly, although combinations of fis and fnr (pCKDL 6, 7, 14, 15, 22, 

23, 30, 31) and combinations of fis and arcA (pCKDL 20,21,22,23,28,29,30,31) all tend to grow faster and 

to a higher maximum OD. We quantified the fitness metrics and plotted them along with the trajectories 

between strains (Figure 34) as before with LB and M9 + Glucose. Unlike LB or M9 + Glucose, when grown 

with Lactose as a carbon source strains with a high fitness for one measure tended to have a lower fitness 
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for the other (such as pCKDL 6 and pCKDL 23). Examining the individual fitness scores, for exponential 

growth rate (Figure 57) only the fis spacer increased growth rate.  While arcA, crp and hns spacers 

decreased growth rate, this was only significant in twice, once and once respectively.  Additionally fnr had 

one significant increase in growth rate and one significant decrease in growth rate. The maximum OD 

fitness (Figure 58) showed significant increases with the addition of fnr or hns targeting spacers, and while 

crp also increased the maximum OD fitness, it did so only once significantly. The arcA targeting spacer was 

the only spacer to consistently decrease maximum OD fitness in lactose media, although it only did so in 

2 cases.  Finally, the fis targeting spacer increased fitness increased fitness in 3 cases and decreased fitness 

in 2 cases. Again, we were surprised that in lactose media crp didn’t have a stronger effect, as canonically 

crp is required for expression of the lac operon and therefore import and metabolism of lactose.  This may 

be a consequence of our perturbation system, in which sufficient levels of crp or lacY are present from 

pre-induction to maintain lactose import and metabolism. 

 

Figure 34: The fitness landscape of pCKDL vectors grown in M9 media supplemented with 0.4% glucose. The non-targeting pseudo 
wildtype is in dark grey. Arrows represent fitness trajectories when one additional targeting spacer is added (green: arcA, blue: 
crp, pink: fis, orange: fnr, yellow: hns, solid: p<0.05, dashed: p>0.05). Circles are located at the median fitness measurement for 
each pCKDL strain, with colours representing the knockdowns present in that strain (corresponding to same colours as above). 
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High order epistasis is present in the fitness landscapes 

Given that the fitness trajectories were non-monotonic and implied epistasis we compared the 

fitness measurements of the double perturbations to the single perturbations to see if this was the case. 

Due to the combinatorial nature of our perturbation library, there are 8 different backgrounds for every 

pair of perturbations. For each pair of perturbations in each background, we normalized the fitness such 

that the fitness of the reference strain (the 8 strains not containing either of the pair of targeting spacers) 

had a fitness of 1. We then calculated the predicted fitness of the double perturbation assuming no 

epistasis by multiplying the fitness of each of the single perturbations.  We then calculated the difference 

between the expected (no epistasis) and the observed fitness for each pair of perturbations.  We found 

that this was not consistent between all 8 backgrounds. We tested if the epistasis we observed was 

influenced by the presence or absence of another targeting spacer in the reference strain, or if this was 

just a result of experimental noise. For each of our 10 pairs of genes, we split the references strains 

depending on either they had a targeting or non-targeting spacer for each of the 3 remaining genes, for 

all 6 fitness measurements.  This resulted in 180 samples, in which 42 showed significantly different 

epistasis between reference strains with or without an additional targeting spacer (Figure 59). While some 

of the p values are only slightly below the threshold for significance and maybe the result of false positives, 

others show very strong effects. Strikingly there are cases when the presence of a third perturbation 

inverts the sign of the epistasis interaction between two perturbations. For example, the maximum OD 

fitness in LB media for hns and fnr has positive epistasis in the absence of an arcA spacer, but negative 

epistasis in its presence (p = 6.7*10-11). Likewise the growth rate fitness in M9 + Glucose fitness for fis and 

crp shows negative epistasis in the absence of a hns spacer, but positive epistasis in its presence (p = 

0.0019).  These interactions were graphed with nodes representing the targeting spacers and edges 

representing the epistasis (in absence of a third targeting spacer).  Arrows from the nodes to the edges 

indicate how the presence of that targeting spacer changes the observed epistasis (Figure 60). In many 

cases, when a third spacer influenced the epistasis of a pair of perturbations, the inverse would also be 

true, in that each spacer in that pair would influence the epistasis between the remaining two spacers.  In 

cases when 3 genes all influenced the interaction between each other in all combinations, those three 

genes are grouped in a dashed line.  We found 8 of these groups in total, indicating that these influences 

are internally consistent. 

To explore the possibility of higher order interactions more thoroughly, we applied linear regression 

to our fitness measurements to calculate the epistatic coefficients, up to and including for all 5 

perturbations combined (n = 5) [55]. We then sought to systematically eliminate higher order coefficients, 

and recalculated the epistatic terms (r = 1 to 5). This was still done with all the fitness measurements for 

all 32 strains, but calculated a reduced number of coefficients. For example, when r = 1 only coefficients 

for the reference strain and the single perturbations are calculated,   and when r = 2 the coefficients for 

all pairwise perturbations are calculated in addition to the coefficients for r = 1.  The coefficients for r = 1 

to 5 are then used to calculate an expected fitness for each strain and this fitness was normalized by the 

observed fitness for each strain (Figure 35). Regression coefficients up to the 4th order (r = 4) were needed 

to accurately predict the fitness for growth rate for all conditions, and coefficients up to the 5th order (r = 

5) were need for maximum OD fitness, indicating that there are higher order epistasis interactions 

between the master transcriptional regulators. We plotted the regression coefficients (r = 1 to 4) against 

the regression coefficients (r = 5) for both growth rate (Figure 61) and maximum OD fitness (Figure 62). 

As expected, when r = 4 the regression coefficients for growth rate fitness collapse into a line.  This 
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however does not occur with maximum OD fitness, and the correlation between regression coefficients 

actually decreases when r is increased from 3 to 4. We can also see that in every case except r = 4 for 

growth rate, there are instances when coefficients are found within the blue squares. This is important as 

it changes the interpretation of the epistasis between two genes. 

 

 

Figure 35: Predictability of fitness from regression coefficients corresponding to rth order epistasis. Regression coefficients are 
computed using observed fitness measurements for all 32 CKDL strains. Coefficients computed are limited to the rth order, such 
that 1st order represents only coefficients for unperturbed and single gene perturbations, 2nd order additionally includes 
coefficients for pairwise perturbations, 3rd order additionally includes triple perturbation coefficients, etc. These regression 
coefficients are then used to predict the fitness of all 32 CKDL strains. Box plots represent the predicted fitness divided by the 
observed fitness for all strains.  Boxes represent the 25th and 75th percentile, the orange line representing the median of the data, 
and whiskers represent the limits of the data not considered outliers.  Outliers are plotted individually as orange ‘+’.  

In this case, we have a clear reference strain in the non-targeting pCKDL 0 vector. However there 

is also the opportunity to compute the epistasis in terms of [-1 1] instead of [0 1]. This could allow us to 

calculate a background-averaged epistasis and compare if it is able to fit the data with fewer higher order 

terms [55]. Additionally, while we have compared the predicted fitness to the observed fitness with 

different orders of epistasis removed, we could also measure the prediction error in terms of the total 

number of epistatic coefficiences required [137]. This involves removing coefficients that weakly 

contribute to predictive power one by one regardless of their order. Epistatic coefficients can 

systematically be set to zero with each step reducing the smallest non-zero coefficient. This analysis is still 

on-going while we seek to find the most appropriate method for calculating epistasis. 
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3.4 Transcriptional Profiles of pCKDL Perturbations 
RNAtag-Seq allows multiplexed RNA profiling comparable to traditional RNA-Seq 

To investigate the effect of perturbing global transcriptional regulators has on gene expression, we 

performed RNAseq on our pCKDL vectors. Our target genes are responsible for directly regulating a large 

number of genes. We use a technique called RNAtag-Seq to multiplex our samples.  This involves ligating 

an RNA tag with a specific barcode to RNA for each sample.  As a result, all the RNA from a single sample 

will carry a unique barcode.  The samples can then be pooled for ribosomal RNA depletion, reverse 

transcription, and amplification.  To ensure that RNAtag-Seq provided similar results to previously 

published experiments, we performed the RNAtag-Seq protocol on RNA from MG1655 grown in log phase 

(to an OD of 0.15) in M9 + Glucose media. After sequencing the cDNA, we aligned reads from our RNAtag-

Seq experiment as well as GEO database series GSE61327, GSE65711, GSE66481, GSE48324, and 

GSE48829 to the MG1655 genome using RockHopper. We then plotted the gene expression for each GSE 

experiment against our RNAtag-Seq data and calculated the correlation between experiments (Figure 36). 

All the GSE experiments we used were exponential phase MG1655 grown in M9 + Glucose.  The RNAtag-

Seq was highly correlated with all of the GSE experiments except GSE66481, which had a similar 

correlation to our data as to the other GSE experiments. A key difference with GSE66481 is that RNA was 

extracted in acid conditions with a pH of 5. The RNAtag-Seq protocol gave comparable results to 

previously published bulk RNAseq results. 

 

 

Figure 36: Comparison of RNAtag-Seq results against bulk RNASeq experiments from GEO database. RNAtag-Seq was performed 
on RNA extracted from MG1655 grown in M9 medium + 0.4% Glucose until an OD of 0.15.  Fastq files from the RNAtag-Seq and 
series GSE61327, GSE65711, GSE66481, GSE48324, and GSE48829 were aligned to E. coli MG1655 genome.  The correlation 
between experiments is shown. 
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RNA sequencing shows perturbations correspond to distinct principle components 

We began by preparing RNA for all 32 pCKDL grown in LB media for 1.5 hours or 3.5 hours, these 

correspond to mid exponential phase (OD ~0.3) and early stationary phase (OD ~1.3) respectively.  We 

extracted RNA using Qiagen RNAProtect and RNeasy Kits and performed qRT-PCR on the samples to 

ensure that the pCKDL vectors were functioning (Figure 63).  We saw a noticeable shift in the Cq for each 

gene in samples which contained a targeting spacer for that gene, despite all RNA samples having a similar 

Cq for a Spiked RNA of a known concentration. Before proceeding with RNAtag-Seq, we quantified the 

quality of the RNA sample extracted (Figure 64) using an Agilent TapeStation. The majority of samples had 

an RNA integrity number (RIN) above 8, although any samples with an RIN below 7 were repeated. We 

also recorded the OD of each sample before RNA extraction using 200 µL of culture in a microtitre plate 

(Figure 65). While the OD of samples from 1.5 hours have a fairly tight distribution, this begins to spread 

by 3.5 hours, as expected by the different growth rates observed for the various pCKDL strains. RNAtag-

Seq was done on all 64 RNA samples and sequenced using an Illumina NextSeq.  Sequencing Reads were 

aligned to the MG1655 genome using RockHopper which converts them into reads per kilobase per million 

mapped reads, although it is normalized by the upper quartile of gene expression rather than by total 

mapped reads to improve robustness. We compared the number of detected reads for strains with the 

targeting spacer or the non-targeting spacer for each of our targeted genes (Figure 66). We found that 

gene expression of our targeted genes was nearly abolished by the CRISPR-dCas9.  Additionally, we did 

not detect any strains which managed to successfully escape repression from the CRISPR-dCas9. 

We performed Principle Component Analysis (PCA) on our gene expression data and found that the 

first 10 Principle Components (PC) account for only 58.94% of the variance in the data. The first 22 

Principle Components explain 75.54% of the Data and the first 48 Principle Components are needed to 

explain 95.33% of the variance in the Data (Figure 67). We then plotted the principle component scores 

for the first 8 principle components and colored each point by various qualities of the sample to determine 

if the certain principle components were associated with specific features.  Since the first principle 

component is often reported to be associated with growth phase, we began with OD (Figure 68). We 

clearly have a separation in the first principle component between samples taken in exponential phase 

and those taken in early stationary phase. We also see a clustering of the exponential phase strains in the 

center of the 3rd and 4th principle components, with the stationary phase strains comprising 4 protrusions 

in opposite directions. We then checked the principle component scores against each of our 5 

perturbations: arcA (Figure 69), crp (Figure 70), fis (Figure 71), fnr (Figure 72), and hns (Figure 73). ArcA 

spacers strongly separate out on the 5th principle component, but they also form clusters of 16 in the 1st 

and 2nd principle components, and clusters of 4 in the 3rd and 4th PCs. Strains containing a crp targeting 

spacer cleanly separate on the 3rd principle component, though they also tend to be separated on the 

positive side of the 1st principle component for each separate growth phase group. Fis spacers cleanly 

separate on the 6th PC and weakly on the 7th PC while FNR is the opposite in strongly separating on the 7th 

PC and weakly on the 6th. Finally hns spacers separate distinctively in the 4th principle component.  We 

also check against batch effects (Figure 74) as they are known to have a strong impact on expression data. 

We clearly see individual batches clustering in the first two principle components, which also helps to 

explain the clustering of arcA strains in the first two principle components as well, as all 16 strains in each 

batch contain the same spacer for the arcA position as a consequence of how strains are ordered. With 

the identification of batches clustering in the 1st and 2nd PCs, we decided to see if the second principle 
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component could be related to biases from amplification.  As all pooled batches began with approximately 

the same quantity of RNA, differences in RNA cycles required to reach a concentration sufficient for 

sequencing would indicate biases in the expression data introduced from either PCR amplification, RT-

efficiency, or Ligation Efficiency. We are unable to disentangle those three sources of error, but we clearly 

see that the 2nd principle component does correspond to the number of PCR cycles used (Figure 75), 

indicating that these likely have a strong effect on the data. We summarized the principle components 

dominated by a particular perturbation (Figure 37). PC3 is associated with crp, PC4 is associated with hns, 

PC5 with arcA, PC6 with fis and PC7 with fnr.  This ranking does not seem to correspond with either their 

hierarchy in the regulatory network, nor their total number of regulatees either direct or indirect.  

 

Figure 37: Association of targeting spacers to specific principle components. The principle component scores for pCKDL strains 
that contain either a targeting spacer (coloured boxes; green: arcA, blue: crp, pink: fis, orange: fnr, yellow: hns) or a non-targeting 
(NT) spacer (grey boxes). The principle component (PC) associated with each perturbation is indicated above the box plot. Boxes 
represent the 25th and 75th percentile, the white line representing the median of the data, and whiskers represent the limits of 
the data not considered outliers.  Outliers are plotted individually as grey ‘+’. 
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Principle components are consistent with regulatees for each perturbation  

We mapped genes which are directly or indirectly regulated by our global transcription factors to 

the gene’s contribution to the associated principle component. We observed a strong enrichment of the 

location of genes directly or indirectly regulated by ArcA (Figure 38) to genes strongly contributing to the 

5th principle component, CRP (Figure 76) to genes strongly contributing to the 3rd principle component, 

Fis (Figure 77) to genes strongly contributing to the 6th principle component, and FNR (Figure 78) to genes 

strongly contributing to the 7th principle component. There also seemed to be enrichment of genes 

directly regulated by HNS (Figure 79) to genes contribution to the 4th principle component, but it was not 

as distinct as the other transcription factors, nor did it seem to extent to indirectly regulated genes.  

 

Figure 38: Mapping of direct and indirect regulatees of ArcA onto genes sorted by their contribution to the 5th Principle Component. 
Top: Genes’ contribution to the 5th principle component.  Genes highlighted in yellow are directly regulated by ArcA. The star on 
the curve represents contributions above 1% of the maximum. Insert is an expanded view of all the genes above this threshold. 
Bottom: Genes are separated into 50 equal sized bins. The number of genes in each bin which are directly regulated by ArcA 
(Geodesic Distance of 1) are shown in yellow. The number of genes in each bin which are indirectly regulated by ArcA (Geodesic 
Distance 2 to 6) are also shown. 

The first principle component corresponds to sigma factors and growth state 

To determine if the proportion of all sigma factor reads corresponded to a principle component, 

we tested if the sigma factor proportion was correlated to principle components (Figure 80).  We saw a 

significant correlation between RpoD, FecI, RpoE, RpoH, and RpoN, and a significant anti-correlation of 
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RpoS, with the first principle component.  We also saw a weak anti-correlation of RpoD and RpoN with 

the 5th principle component. This leads us to believe that changes in sigma factor ratios are largely driving 

the first principle component and therefore growth phase, while the activity of the global regulators 

seems to be largely independent from sigma factors. 

 As our sequencing data indicated that the first principle component corresponded to growth state 

(by the OD of the sample when RNA was extracted), we tested to see if our genes would form two distinct 

anti-correlated clusters when sorted by the first principle component, similar to the many microbe 

microarray dataset [42] [132]. We found the same pattern occurred in our RNA-sequencing data, however 

it was mirrored compared to the micro array data (Figure 39). We then checked the correlation between 

the first principle component scores and the optical density of the samples, and found that in our principle 

component analysis, they were anti-correlated while in microarray data they are correlated.  This results 

in the mirrored effect that we observe. We checked to see if the same genes were found in each cluster, 

and had a fairly good overlap between data sets (Figure 81). Given that microarray and RNA-seq do not 

strongly correlate [138] [139] [140] [141] we were satisfied with this consistency. 

 

Figure 39: Comparison of pCKDL data with Many Microbe Microarrays Database. Correlation of gene expression is shown in pCKDL 
and Many Micro Microarray Database (M3D) with genes in their default order, either by genomic position or alphabetically 
respectively. Genes are then sorted by their contribution to the first principle component resulting in two anti-correlated clusters 
of highly correlated genes. The correlation between each datasets first principle component and the optical density of the samples 
is also plotted. 
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Maximum growth but not growth rate maps to principle components 

 Finally, we checked to see if any of our principle components corresponded with our fitness 

measurements (Figure 82). We found that the maximum OD strongly correlated with the 4th principle 

component (r = 0.7086 p = 5.6 x 10-6), the same component that was associated with hns.  This is consistent 

with the striped pattern in the LB growth curves (Figure 50). As such it is likely that this association will 

not hold true with the sequencing results from M9 media, as this pattern is not observed in their growth 

curves. The maximum OD fitness was only weakly correlated with the 6th and 8th components after the 4th 

component. We didn’t find the maximum growth rate fitness to significantly correlate with any of our first 

7 principle components, and only found weak correlations with the 18th and 19th principle components. 

This likely indicates that the growth rate fitness is not captured by our transcriptome analysis which may 

be more closely tied to ribosome synthesis and proteome demands [142] [143]. 

High order epistasis is consistent across clusters of gene expression 

 

Figure 40: Clustergram of pCKDL RNA-seq data from LB culures. The Z-score of the transcriptional data was clustered using a 
clustergram algorithm in Matlab. This clusters both the experiments (pCKDL samples) and the measurements (Gene Z-scores). The 
perturbations in each pCKDL corresponds to the 5-bit binary vector of the sample number. The data is clustered into log phase on 
the left, and exponential phase on the right. Within each of these, wild-type (WT) arcA (0-15) is on the left and knock-down (KD) 
arcA (16-31) is on the right. These can further be decomposed, for example within the left most cluster of 16, the first 8 correspond 
to WT fis (0,1,2,3,8,9,10,11), while the second 8 correspond to KD fis (4,5,6,7,12,13,14,15). Within these, the first four correspond 
to WT hns (0,2,8,10) and the second four to KD hns (1,3,9,11). Within those are WT crp (0,2) and KD crp (8,10), and finally within 
those is WT fnr (0) and KD fnr (2). It is important to note that this order is not conserved for all branches. 

 Our principle component analysis indicates that the primary effects of each of the global 

transcriptional regulators on gene expression are independent. However this only explains less than 60% 

of the variance in our data, and is contrary to the higher order epistasis we observed in our fitness 

measurements. We therefore attempted to examine the RNA-sequencing data with cluster analysis. We 
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first filtered all genes with low variance, low absolute expression levels, and low entropy [144], however 

this only eliminated approximately ¼ of the genes. We used the GAP method [145] to determine the 

optimal number of clusters with both Linkage and Kmeans methods. We found that 5 clusters would have 

the optimal trade-off between having a few number of clusters for both hierarchical and K-means 

methods of clustering (Figure 83). We then clustered the genes using both a Hierarchical algorithm and K-

means [146], as well as producing a clustergram which performs hierarchical clustering on our expression 

data and displays a dendrogram and heatmap (Figure 40). The hierarchical tree is generated using the 

Euclidean distance metric and average linkage. We found (4/25/15/1271/1979) genes in each hierarchical 

cluster and (1118/403/670/520/583) genes in each K-means cluster. 

 

Figure 41: Prediction of gene expression using r-th order epistasis coefficients. Epistasis coefficients are determined by linear 
regression, where r = 6 calculates all possible epistasis coefficients and therefore perfectly matches the observed data. As r 
decreases, fewer coefficients are calculated. All gene counts are scaled to a range between 0-100 for comparison.  

We found clear patterns in the clustergram which corresponded to our growth state and the 

genetic perturbations. The growth state was clearly separated between exponential phase samples and 

stationary phase samples. This also corresponded to our first principle component in the PCA analysis. 

The second layer for each of these separated by arcA perturbations. This separation is harder to attribute 

completely to arcA perturbations, as our PCA revealed that the second component was associated with 

each RNA-seq batch, and specifically PCR amplification. These batches also happen to split along arcA 

perturbations. Within these layers, the next separation observed was to be fis within the non-perturbed 

(0) arcA and hns within the perturbed (1) arcA during exponential phase but crp during both stationary 

phase groups. We calculated the epistatic coefficients of each gene as we had done previously for our 
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fitness measurements [55]. Again, we attempted to calculate only the coefficients for r order terms (such 

that r = 1 is no epistasis, r = 2 is pair-wise epistasis and so forth) (Figure 41). Here, we included growth 

state as another term, with exponential phase as 0, and stationary phase as 1. We can clearly see the 

predicted gene count spreads as we reduce the number of epistatic coefficients. Additionally, when r is < 

4, the trend begins to curve downward, underestimating the gene count. This is likely due to nonlinearities 

in our data that are not accounted for in our linear regression model. As the nonlinearities increase, the 

data will progressively bend [57]. However the increasing spread in the expected gene count is the result 

of increasing epistasis. We separated the genes by their cluster and repeated the linear regression, but 

we did not find any significant change in this pattern, with all clusters converging at approximately the 

same rate. 

Gene clusters show patterns of multi-level complex logic 

 Plotting the K-mean centroids showed some regular patterns (Figure 42). For example in the first 

cluster, the left-side have higher centroids than the right half. These genes are expressed in exponential 

phase but not stationary phase. The inverse is true for the fourth cluster. Perturbations also follow a 

distinct pattern. HNS perturbations are every other strain and result in a very jagged pattern (such as 

cluster 2). FNR perturbations are every two strains. Fis perturbations are every 4 strains. CRP 

perturbations are every 8 strains (such as cluster 5). ArcA perturbations are every 16 strains. We can see 

both patterns involving the perturbations in the clusters, but also that the amplitude of the peaks varies 

in different conditions.  

 

Figure 42: K-mean centroids of pCKDL strains. Strains are ordered pCKDL 0 to 31 in exponential phase and then 0 to 31 in stationary 
phase. The pattern represents the mean expression for all genes within the cluster, with peaks indicating a higher expression and 
valleys representing lower expression. 
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Figure 43: Multi level logic of K-mean centroids. Strains are sorted by their centroid. Plateaus are fitted by finding local maxima of 
the derivative of the curve, after smoothing. These local maxima are the locations of the steps. The perturbation code (x-axis) 
gives the logic which corresponds to each level of gene expression in each K-means cluster. 

We turned to a logical model to attempt to explain the higher order epistasis. We therefore sorted 

the K-mean centroids to see if they appeared to have Boolean step functions (with genes either on or off). 

Instead, it appeared to have multiple steps, with genes capable of being expressed at a variety of levels. 

To determine these levels, we smoothed the sorted K-mean Centroids and took the derivate.  We again 

smoothed this line and identified the local maxima.  The smoothing was done to minimize the number of 

steps. A single step is between 2 local maxima in this smoothed derivate. We then looked at the 

perturbation sequence for the sorted K-Mean plots.  This gives us a multi-level truth table to decipher the 

regulatory logic within the clusters. While some logic functions can be deduced directly from the graphs, 

we are still working the best way to find the minimal logic expression to describe the clusters. 
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Removing principle components for growth and batch effects affects clustering but not epistasis 

 

Figure 44: Clustergram of pCKDL RNA-seq data from LB culures after the first 2 principle components from principle component 
analysis are removed from the data. The Z-score of the transcriptional data was clustered using a clustergram algorithm in Matlab. 
This clusters both the experiments (pCKDL samples) and the measurements (Gene Z-scores). The perturbations in each pCKDL 
corresponds to the 5-bit binary vector of the sample number. The first two principle components were found to be associated with 
growth state (OD595nm) and batch effects respectively. Their removal leads to a much more nuanced clustering of genes compared 
to the full data set. 

 We are primarily interested in the interactions between the global transcriptional regulators, 

however both our PCA analysis and our clustering showed that the growth phase and biases from sample 

preparation had a strong effect on our gene expression patterns. To minimize the variance from these 

two sources, we reconstructed our data set after removing the first two principle components [147]. We 

then repeated our clustering analysis with this adjusted data set. Instead of finding 5 clusters as the 

optimal K value we found 7 clusters was optimal for both Hierarchical and K-means clustering (Figure 83). 

These clusters contained (25/934/286/83/429/483/1055) genes in each hierarchical cluster and 

(557/654/437/340/522/424/361) genes in each K-means cluster. When we generated a clustergram for 

our adjusted data set, we found that the large clusters of correlated genes were replaced with smaller 

groups of correlated genes (Figure 44). Additionally, while most of the exponential and stationary phase 

samples are still close in the clustergram, they are no longer clearly separated. It is perhaps unsurprising 

that many of the global regulators have different genetic programs for different growth states, given that 

fis and hns are expressed at different points during growth for example [148]. Additionally, the 

dendrogram has a much more asymmetrical pattern than with the full data set. Much of the regular 

patterning in the clustering of experiments was likely due to the strong impact of growth state and batch 

effects on the expression profiles, and the clustering of the effects of just the transcription factors is much 

more complex. 
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Figure 45: Prediction of gene expression using r-th order epistasis coefficients after the first 2 principle components were removed 
from the data. Epistasis coefficients are determined by linear regression, where r = 6 calculates all possible epistasis coefficients 
and therefore perfectly matches the observed data. As r decreases, fewer coefficients are calculated. All gene counts are scaled 
to a range between 0-100 for comparison. The first two principle components were found to be associated with growth state 
(OD595nm) and batch effects respectively. Their removal leads to a much more nuanced clustering of genes compared to the full 
data set. Despite the removal of these two components, the data shows the same characteristics as the full data set. 

We repeated our epistasis analysis using linear regression with this processed data set (Figure 45). 

The data showed the same epistasis pattern as will the full data set. This indicates that despite removing 

the component corresponding to growth state, we do not reduce the impact of the single coefficient 

corresponding to the combination of all perturbations and changing growth state (r = 5). Additionally, the 

variance in our data corresponding to growth state and batch effects do not seems to impact the higher 

order epistasis pattern in our data. The next step will be to individually remove coefficients independent 

from their order, to find the minimum number of coefficients to explain most of the data. By removing 

the smallest coefficients one at a time, we may find which higher order interactions are the most 

impactful.  
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Plotting the K-mean centroids showed much stronger patterns than the original data set Figure 

46. We can see HNS perturbation patterns (where the oscillation is every other strain) in the first and third 

clusters. The FNR pattern in (every 2 strains) is in the seventh cluster. The Fis pattern (every 4 strains) is 

in the third and fifth clusters. The CRP pattern (every 8 strains) is in the fourth and sixth cluster. The ArcA 

pattern (every 16 strains) is in the first, second, fourth, and seventh clusters. We can also still see some 

responses that are conditional on the growth phase, despite the first principle component being removed. 

 

 

Figure 46: K-mean centroids of pCKDL strains. Strains are ordered pCKDL 0 to 31 in exponential phase and then 0 to 31 in stationary 
phase. The pattern represents the mean expression for all genes within the cluster, with peaks indicating a higher expression and 
valleys representing lower expression. 
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Our logic analysis of the genes clusters was also similar to the full data set, although here we 

found 7 main clusters of gene expression instead of 5. Generally, there are also more levels fitted to these 

clusters than with the full data set (Figure 47). While some of the plateaus seem to have simple logic (for 

example: the top plateau of the first cluster is !ArcA ∧ !HNS ∧ Stationary) however most still contain 

complex logic. We are currently working on a method to derive the disjunctive normal form from the truth 

tables that we have formed from the sorted graphs.  

 

Figure 47: Multi level logic of K-mean centroids after the first 2 principle components were removed from the data. Strains are 
sorted by their centroid. Plateaus are fitted by finding local maxima of the derivative of the curve, after smoothing. These local 
maxima are the locations of the steps. The perturbation code (x-axis) gives the logic which corresponds to each level of gene 
expression in each K-means cluster. The first two principle components were found to be associated with growth state (OD595nm) 
and batch effects respectively. With these components removed, there are 2 more clusters identified, and typically clusters have 
more levels than the full data set. 

 These results can already address one of our initial questions. How many dimensions Dout are 

needed to represent most (ex: 90%) of the expression pattern of OUT genes? We observed that 22 

dimensions were necessary to explain 75% of the variance in our data. Despite global regulators being 

coupled in strongly connected components within the transcriptional regulatory network, the majority of 

their impact on gene expression programs seems to be orthogonal. The coregulation of fis and crp for 

example, does not reduce the dimensionality of their response. In contrast, the interactions between 

global regulators increases the dimensionality of the response, rather than limiting it. This is because the 

epistatic interactions cause variance in the data that is not explained by their independent effects. 

Additionally, the expression of the global transcription factors is also a multi-level logic function. With 

different combinations of perturbations influencing the expression levels of the non-perturbed regulators. 

As a result, we still require a formalism to explain the complex gene expression programs we observe with 

a minimal system.  
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3.5 Logical Modelling of E. coli Regulatory Network  
With Milan Lacassin 

Modeling of genetic regulatory networks often takes one of three forms: Thermodynamic, 

Differential equation-based, or Boolean models [58]. Thermodynamic models seek to explain how a gene 

will be activated or repressed, given a promoter and well-characterized transcription factors. It makes a 

key assumption that gene expression will be proportional to the number of transcriptional activators 

bound and inversely proportional to the number of repressors bound. This approach enables a detailed 

analysis of cis-element regulation, however it is highly dependent on functional binding sites and can have 

difficulty with context specific effects [58]. In contrast, Differential equation-based models generally do 

not consider the extreme detail thermodynamic approaches but in exchange are able to capture the 

dynamic nature of biological systems. They have successfully been used to model individual regulatory 

pathways such as regulation of the lack operon, however the large number of parameters makes 

computation prohibitive for larger systems containing hundreds of molecules [58]. This problem is 

addressed with Boolean or logical modeling [59].  These models represent regulatory interactions as logic 

gates with discrete states for each item. This simplification makes logical models easier to analyze and 

extend to large biological networks. This framework allows for the study of how a given state evolves 

through a network, which states of the network are stable, and the location of cyclic attractors.  It can 

also be used to study perturbations, as nodes in the network can be fixed to a given state [58].  

Implementation of the E. coli transcriptional regulatory network in GINsim 

We used GINSim [59], with assistance from Denis Thieffry at ENS to make a logical model of the 

transcriptional network of E. coli. We focused on the dimensionality of the stable states space. This is done 

by comparing the dimensions of the stable state space for different perturbations to the unperturbed 

network. Combinations of perturbations can be characterized by the number of states they allow. We 

defined default logical rules for nodes of the network. Transcriptional inhibitors suppress activators, such 

that Inhibitors always set the node to 0, while activators will only set a node to 1 in the absence of any 

inhibitor. For a node to be turned on, it requires at least one activator and no repressors. In the absence 

of any activators or repressors, we tested two scenarios: the nodes are free (such that both states are 

possible) or the nodes are set to a basal value of 0. Finally, any complexes such at heterodimers or 

transcription factors requiring a co-factor, would only be functional in the presence of all required 

components. The logical functions are written as follows: 

• Default function for complexes (without basal value): 

𝑁(𝑡 + 1) = 𝑐1(𝑡) ∧ ⋯ ∧ 𝑐𝑛𝑐
(𝑡) ∧ (𝑁(𝑡) ∨ 𝑎1(𝑡) ∨ ⋯ ∨ 𝑎𝑛𝑎

(𝑡)) ∧ ! 𝑖1(𝑡) ∧ ⋯ ∧ ! 𝑖𝑛𝑖
(𝑡) 

• Default function for complexes (with basal value): 

𝑁(𝑡 + 1) = 𝑐1(𝑡) ∧ ⋯ ∧ 𝑐𝑛𝑐
(𝑡) ∧ (𝑎1(𝑡) ∨ ⋯ ∨ 𝑎𝑛𝑎

(𝑡)) ∧ ! 𝑖1(𝑡) ∧ ⋯ ∧ ! 𝑖𝑛𝑖
(𝑡) 

• Default function for normal nodes (without basal value): 

𝑁(𝑡 + 1) = (𝑁(𝑡) ∨ 𝑎1(𝑡) ∨ ⋯ ∨ 𝑎𝑛𝑎
(𝑡)) ∧ ! 𝑖1(𝑡) ∧ ⋯ ∧ ! 𝑖𝑛𝑖

(𝑡) 

• Default function for normal nodes (with basal value): 
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𝑁(𝑡 + 1) = (𝑎1(𝑡) ∨ ⋯ ∨ 𝑎𝑛𝑎
(𝑡)) ∧ ! 𝑖1(𝑡) ∧ ⋯ ∧ ! 𝑖𝑛𝑖

(𝑡) 

Here ❑∧❑ denotes the logical operator AND, ❑∨❑ denotes the logical operator OR, ! denotes 

the logical operator NOT, 𝑁(𝑡 + 1) denotes the state of node N at time t+1, 𝑁(𝑡) denotes the state of 

node N at time t, 𝑐𝑛(𝑡) is the state of the n-th component of the complex N at time t, 𝑎𝑛(𝑡) is the state 

of the n-th activator of node N at time t, 𝑖𝑛(𝑡) is the state of the n-th inhibitor of node N at time t, 𝑛𝑐 is 

the number of components of the complex N, 𝑛𝑎 is the number of activators of the node N, and 𝑛𝑖 is the 

number of inhibitors of the node N. 

 

Figure 48: Hypercube representing all reachable stable states of the energy cluster in E. coli transcriptional regulatory network. 
Possible steady states are highlighted, with the Boolean state indicated. Each bit corresponds to one transcription factor or small 
regulatory molecule such as ppGpp or cAMP. 

Due to the hierarchy of the strongly connected components in the transcriptional regulatory 

network of E. coli, we are able to model the upstream cluster first, and use the outputs as inputs for 

modeling the downstream clusters. This allows us to assemble the stable states of the complete system 

by taking all combinations of the stable states where common nodes have the same values.  When we 

consider N genes of interest, the state space exists within a hypercube of N dimensions. Due to the smaller 

size of several clusters this can be represented on a hypercube projection (Figure 48), allowing us to 

visualize the impact of perturbations and their dimensionality compared to the reference system. We are 

also able to compute the number of states forbidden, and the number of new states allowed by each 

perturbation. We found that perturbing the genes within a strongly connected component increased the 

dimensionality of the possible state spaces. It is possible for us to expand this model into multi-level logic 

using the transcriptional data we have obtained, however this has not yet been implemented. 
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3.6 Methodology  
Creation of Vectors 

 Lun Cui and David Bikard provided us with pCRRNA. We removed the upstream promoter region 

of pCRRNA by PCR with primers from the crRNA spacer to the origin of replication, excluding the sequence 

we wished to remove. A bidirectional terminator and 3’ priming sequence was synthesized as a gBlock 

and added to the PCR fragment using Gibson assembly. This resulted in pCKDL, which contains a single 

CRISPR repeat and a dual BsaI cloning site. Spacers were synthesized as gBlocks, which also contained a 

CRISPR repeat, another cloning site (either BsaI or BsmBI), and a DNA barcode. These gBlocks were flanked 

with either BsaI cut sites or BsmBI sites (the opposite of their cloning site). Each gBlock was cloned into 

pJET1.2 cloning vector with blunt ligation and sequenced before use.  They were then extracted from 

pJET1.2 with PCR, and cloned into pCDKL using golden gate assembly. This mix contained 1 µL of fast digest 

buffer, 1 µL of ATP (10 mM), 1 µL of either Eco31I (BsaI) or Esp3I (BsmBI), 1 µL of T4 Ligase (30 Weiss U), 

3 µL of pCKDL and 3 µL of PCR insert. Golden gate solution was incubated for 25 cycles of 4 minutes at 37 

°C and 3 minutes at 16 °C, before heat inactivation. Clones were transformed into chemically competent 

Oneshot Top10 E. coli cells. Plasmids were extracted using NucleoSpin Plasmid Miniprep kits from 

Macherey-Nagel and sequenced by GATC-biotech.  

 

Growth Conditions of Cultures 

The host strain for all pCKDL strains is LC-E24 :: dcas9 2tetO HK022 attB, which was provided by 

Lun Cui and David Bikard at Institute Pasteur. This strain is derived from MG1655 and has dcas9 under a 

tetracycline inducible promoter (derived from pdCas9 with an extra tetO site) integrated into the genome. 

Glyercol stocks of each culture were streaked onto individual Lysogeny Broth (LB) agar plates containing 

50 µg/mL of Kanamycin.  Single colonies were inoculated into 2 mL of selected media (either LB or M9 

supplemented with 0.4% Glucose or Lactose) containing 50 µg/mL Kanamycin.  Cultures were placed in a 

37°C incubator for either overnight for 16 hours for LB cultures or for 24 hours for M9 cultures. 

 

Quantification of Growth Fitness 

Assays were performed by filling each well of a Greiner, 96 Well, F-Bottom, clear microplate with 

198 µL of growth media supplemented with 50 µg/mL Kanamycin and 250 ng/mL anhydrotetracycline. For 

each pCKDL knockdown strain, 2 µL of pre-culture was inoculated into 3 individual wells. A volume of 50 

µL of mineral oil was added to each well of the microplate.  The Absorbance at 595 nm was recorded every 

10 minutes for 20 hours with a SpectraMax i3x.  Microplates were incubated at 37°C and shook for 300 

seconds after each measurement.  To determine the fitness measurement of each knockdown, the 

maximum derivative of the log2 of the OD was determined to locate the middle of exponential growth 

(omitting the first 5 measurements to reduce noise from measurements taken below the detection 

threshold). The slope of the growth curve was then fit to ±20 minutes of this point to determine the 

Exponential growth rate fitness.  The maximum OD after 20H of growth was taken as the second fitness 

measurement. Fitness measurements for each knockdown were made for LB media, and M9 media 

containing 0.4% of either glucose or lactose. 
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Transcription quantification with RNAtag-Seq 

 Cultures were made by diluting 20 µL of pre culture into 2 mL of selected media (LB or M9 with 

0.4% Glucose or Lactose). Cultures were then grown to mid-exponential phase and early stationary phase.  

One milliliter of culture was pipetted into a microcentrifuge tube and centrifuged for 1 minute at 8,000 

RCF.  Five hundred microliters of supernatant was removed from each tube and the cells were 

resuspended. One milliliter of RNAprotect Bacteria from Qiagen was added to each tube, mixed well by 

inversion, and incubated at room temperature for 5 minutes.  Tubes were then centrifuged at 8000 RCF 

for 10 minutes.  The supernatant was removed and replaced with 100 µL of TE buffer with 15 mg/mL of 

Lysozyme and 10 µL of Proteinase K.  Cultures were incubated at room temperature for 10 minutes, after 

which 350 µL of RLT Buffer with β-Mercaptoethanol was added.  Each tube was vortexed before adding 

250 µL of Ethanol.  Each tube was mixed by inversion and the solution was loaded onto an RNeasy Column. 

Columns were centrifuged for 15 seconds at 8000 RCF and the flow through was discarded. For each 

column, 700 µL of Buffer RW1 was added, and then centrifuged for 15 seconds at 8000 RCF and the flow 

through was discarded. Columns were then washed twice by adding 500 µL of Buffer RPE and centrifuging 

for 15 seconds at 8000 RCF before discarding the flow through.  Columns were spun for an additional 1 

minute to dry the membrane before discarding the collection tube and putting the column into a new 1.5 

mL micro centrifuge tube.  RNA was eluted by adding 30 µL of Nuclease Free water onto the membrane 

and spinning for 1 minute at 8000 RCF. RNA yield and quality were quantified with a NanoDrop and Agilent 

Tapestation 4200; 600 ng of RNA was aliquoted into a tube before increasing the volume to 15 µL with 

Nuclease free water and the RNA integrity number was recorded for each sample. For each tube, 1 µL of 

SUPERase-IN was added and samples were frozen overnight at -80°C.  The next day, samples were thawed 

and 4 µL of FastAP buffer was added.  Samples were incubated on pre-heated thermal cycler for 3 minutes 

at 92°C to fragment the RNA.  DNase and FastAP treatment was then performed by adding 1 µL of RNase 

Inhibitor, Murine, 4 µL of Turbo DNase, 10 µL of FastAP, and 5 µL of Nuclease free water to each sample, 

mixing and incubating for 30 minutes at 37°C.  Samples were then cleaned by adding 40 µL of Nuclease 

free water and 160 µL of Agencourt RNAClean XP beads. Samples were incubated at room temperature 

for 15 minutes to allow the RNA to bind to the beads before placing on a magnet for 5 minutes.  The 

solution was then removed and replaced with 200 µL of fresh 70% EtOH.  The wash was then removed 

and replaced with another 200 µL of fresh 70% EtOH.  The second wash was removed and the beads were 

allowed to air dry for 10 minutes. 12 µL of Nuclease free water was added to the beads and they were 

removed from the magnet. Random samples were checked for their fragmentation profile in each batch 

on the Agilent Tapestation 4200; 5 µL of each sample was carried forward to the adapter ligation while 1 

µL of SUPERase-IN was added to the remaining sample and it was frozen at -80°C.  For adapter ligation, 1 

µL of barcoded adapater was added to each 5 µL sample of RNA and heated to 70°C for 2 minutes before 

being placed back onto ice.  Ligation mix was made by mixing 80 µL of 10x T4 RNA Ligase Buffer, 72 µL 

DMSO, 8 µL ATP, 320 µL PEG 8000, 12 µL RNAse inhibitor, Murine, and 72 µL T4 RNA Ligase 1.  For each 

sample, 14.1 µL of ligation mix was added and mixed very well.  Each sample was incubated at 22°C for 

1.5 hours. Samples were then pooled by adding 60 µL of RLT buffer and 160 µL of 1:1 binding buffer:EtOH 

to each sample and mixed in a 5 mL Eppendorf tube.  Samples were loaded onto Zymo Clean & 

Concentrator columns with a vacuum manifold.  RNA was eluted by adding 14 µL of Nuclease free water 

twice for a total volume of 28 µL. Ribosomal RNA was removed using Ribo-Zero Magnetic Kit (Bacteria) 

from Illumina.  Magnetic beads were prepared by adding 225 µL of Magnetic beads to micro centrifuge 

tube and placing on a magnetic rack for 1 minute.  Beads were then washed twice with 225 µL of Nuclease 
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free water before being resuspended in 65 µL of Resuspension Solution and 1 µL of RiboGuard RNase 

Inhibitor. Pooled RNA was treated by mixing 26 µL of RNA solution with 10 µL of rRNA Removal Solution 

and 4 µL of Reaction Buffer, before incubating at 65°C for 10 minutes and then 5 minutes at room 

temperature.  Washed Magnetic beads were then added to the RNA solution, vortexed, and incubated at 

room temperature for 5 minutes before increasing the temperature to 50°C and incubating for a further 

5 minutes.  Samples were then placed on a magnetic rack and the supernatant was transferred to a new 

RNase-free tube.  The rRNA free supernatant was then cleaned using AMPure XP beads by adding 160 µL 

of beads to the RNA solution.  The Solution was incubated for 15 minutes at room temperature and placed 

on a magnetic rack for 5 minutes. The supernatant was removed and replaced with 200 µL of fresh 80% 

EtOH. The EtOH was removed and replaced with another 200 µL of 80% EtOH.  All EtOH was removed and 

the beads were allowed to air dry.  Beads were removed from the magnet and 14 µL of Nuclease free 

water was added and mixed well to Elute RNA.  The solution was placed back on the magnetic rack and 

supernatant containing the RNA was removed and transferred to a fresh tube. First strand cDNA synthesis 

was performed by adding 2 µL of AR2 Primer (oMD667) to the RNA sample, mixing, and heating to 70°C 

for 2 minutes before placing immediately back onto ice. The RT mix was made by adding 2 µL 10x Affinity 

Script RT Buffer, 2 µL DTT, 0.8 µL dNTP mix, 0.4 µL RNase inhibitor, murine, and 0.8 µL AffinityScript RT 

Enzyme to the RNA sample.  Samples were mixed well and quickly centrifuged for 5 seconds before being 

placed into a preheated thermocycler at 55°C for 55 minutes.  RNA was degraded from cDNA by adding 2 

µL of fresh 1M NaOH to each sample and incubating at 70°C for 12 minutes.  Samples were neutralized 

with 4 µL of 0.5M Acetic Acid.  Sample volume was increased to 40 µL by adding 14 µL of Nuclease free 

water and transferring to a new tube.  Samples were cleaned by adding 80 µL of RNAClean XP beads to 

each sample, mixing, and incubating at room temperature for 15 minutes.  Samples were placed on a 

magnetic rack for 5 minutes and supernatant was discarded.  Beads were then washed with 200 µL of 

fresh 70% EtOH. The EtOH was removed and replaced with another 200 µL of 70% EtOH.  All EtOH was 

removed and the beads were allowed to air dry for 10 minutes. The second adaptor ligation was done by 

adding 5 µL of Nuclease free water to the beads to elute the DNA, and then adding 2 µL of 3Tr3 Adaptor 

(oMD668) to the cDNA and magnetic bead solution.  The solution was then heated for 3 minutes at 75°C 

and then mixed before adding ligation mix consisting of 2 µL of 10x T4 Ligase Buffer, 0.8 µL DMSO, 0.2 µL 

ATP, 8.5 µL PEG8000, and 1.5 µL T4 RNA Ligase 1. The Solution was mixed well and incubated overnight 

at 22°C. Ligations were cleaned by adding 80 µL of fresh RNAClean XP beads to each sample, mixing, and 

incubating at room temperature for 15 minutes.  Samples were placed on a magnetic rack for 5 minutes 

and supernatant was discarded.  Beads were then washed with 200 µL of fresh 70% EtOH. The EtOH was 

removed and replaced with another 200 µL of 70% EtOH.  All EtOH was removed and the beads were 

allowed to air dry for 10 minutes.  DNA was eluted by adding 25 µL of Nuclease free water, mixing well, 

and placing sample on a magnetic rack.  The supernatant containing the cDNA was then transferred to a 

new tube and cleaned again by adding 37.5 µL of fresh RNAClean XP beads to each sample, mixing, and 

incubating at room temperature for 15 minutes.  Samples were placed on a magnetic rack for 5 minutes 

and supernatant was discarded.  Beads were then washed with 200 µL of fresh 70% EtOH. The EtOH was 

removed and replaced with another 200 µL of 70% EtOH.  All EtOH was removed and the beads were 

allowed to air dry for 3 minutes. DNA was eluted by adding 25 µL of Nuclease free water, mixing well, and 

placing sample on a magnetic rack; the supernatant containing the cDNA was then transferred to a new 

tube.  The number of PCR cycles needed to enrich the sample sufficiently for sequencing was determined 

by Phusion PCR with 2P_univP5 (oMD669) and 2P_bacrode (oMD700) for 9, 12, and 15 cycles. PCRs were 
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performed with a Tm of 55°C and an extension time of 60 seconds. PCRs were purified by increasing the 

volume to 25 µL with Nuclease free water, adding 37.5 µL AMPure beads, mixing, and incubating at room 

temperature for 15 minutes.  The PCR solution was then placed on a magnetic rack for 5 minutes and the 

supernatant removed.  The beads were washed with 200 µL of fresh 70% EtOH twice and then allowed to 

air dry for 10 minutes before being eluted with 10 µL of low TE (10 mM Tris, 0.1M EDTA).  PCR products 

were then quantified on the Agilent TapeStation 4200 to determine the minimum required number of 

PCR cycles.  PCR was then performed on 10 µL of cDNA using 2P_univP5 (oMD669, oMD687-oMD693) and 

2P_bacrode (oMD670, oMD672-oMD686) with Phusion Master Mix with the determined minimum 

number of cycles, a Tm of 55°C, and an extension time of 60 seconds.  PCRs were purified by adding 75 µL 

AMPure beads, mixing, and incubating at room temperature for 15 minutes.  The PCR solution was then 

placed on a magnetic rack for 5 minutes and the supernatant removed.  The beads were washed with 200 

µL of fresh 70% EtOH twice and then allowed to air dry for 10 minutes before being eluted with 25 µL of 

Nuclease free water.  DNA was cleaned again by adding 17.5 µL of AMPure beads, mixing, and incubating 

at room temperature for 15 minutes.  The PCR solution was then placed on a magnetic rack for 5 minutes 

and the supernatant removed.  The beads were washed with 200 µL of fresh 70% EtOH twice and then 

allowed to air dry for 10 minutes before being eluted with 10 µL of low TE (10 mM Tris, 0.1M EDTA). DNA 

was then quantified on the Agilent TapeStation 4200, and Qubit 3 Fluorometer, and diluted to 10 nM 

concentration. 
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3.7 Supplementary Figures 

 

Figure 49: Growth Curves for all 32 pCKDL strains grown in LB. E. coli strains bearing pCKDL vectors were grown 20 hours in 200 
µL of LB media while recording the optical density.  There are three biological replicates taken from individual single colonies each 
with their own three technical replicates for a total of nine.  The median OD is plotted with error bars representing the standard 
deviation. 
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Figure 50: Growth Curves for all 32 pCKDL strains in LB.  Rows represent different pCKDL strains median OD over 20 hours of 
growth.  
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Figure 51: Fitness of exponential growth rate for pCKDL in LB media by number of Knockdowns. pCKDL strains are arranged by the 
number targeting spacers in the CRISPR array. Circles indicate the median fitness measurement of a pCKDL strain, normalized by 
dividing the fitness of the pseudo-wild-type pCKDL 0.  Error bars represent standard deviation. Solid lines are significantly (p < 
0.05) different according to Welch’s t-test. Lines are colored by the targeting spacer which differs between the two pCKDL strains 
(green: arcA, blue: crp, pink: fis, orange: fnr, yellow: hns). Data represents 3 biological replicates for each pCKDL strain and three 
technical replicates for each biological replicate (n = 9), error bars represent standard error of the median. 
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Figure 52: Fitness of Maximum OD reached after 20 hours for pCKDL in LB media by number of Knockdowns. pCKDL strains are 
arranged by the number targeting spacers in the CRISPR array. Circles indicate the median fitness measurement of a pCKDL strain, 
normalized by dividing the fitness of the pseudo-wild-type pCKDL 0.  Error bars represent standard deviation. Solid lines are 
significantly (p < 0.05) different according to Welch’s t-test. Lines are colored by the targeting spacer which differs between the 
two pCKDL strains (green: arcA, blue: crp, pink: fis, orange: fnr, yellow: hns). Data represents 3 biological replicates for each pCKDL 
strain and three technical replicates for each biological replicate (n = 9), error bars represent standard error of the median. 
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Figure 53: Growth Curves for all 32 pCKDL strains in M9 media supplemented with 0.4% glucose.  Rows represent different pCKDL 
strains median OD over 20 hours of growth. 
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Figure 54: Fitness of exponential growth rate for pCKDL in M9 media supplemented with 0.4% glucose by number of Knockdowns. 
pCKDL strains are arranged by the number targeting spacers in the CRISPR array. Circles indicate the median fitness measurement 
of a pCKDL strain, normalized by dividing the fitness of the pseudo-wild-type pCKDL 0.  Error bars represent standard deviation. 
Solid lines are significantly (p < 0.05) different according to Welch’s t-test. Lines are colored by the targeting spacer which differs 
between the two pCKDL strains (green: arcA, blue: crp, pink: fis, orange: fnr, yellow: hns). Data represents 3 biological replicates 
for each pCKDL strain and three technical replicates for each biological replicate (n = 9). 
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Figure 55: Fitness of Maximum OD reached after 20 hours for pCKDL in M9 media supplemented with 0.4% glucose by number of 
Knockdowns. pCKDL strains are arranged by the number targeting spacers in the CRISPR array. Circles indicate the median fitness 
measurement of a pCKDL strain, normalized by dividing the fitness of the pseudo-wild-type pCKDL 0.  Error bars represent standard 
deviation. Solid lines are significantly (p < 0.05) different according to Welch’s t-test. Lines are colored by the targeting spacer 
which differs between the two pCKDL strains (green: arcA, blue: crp, pink: fis, orange: fnr, yellow: hns). Data represents 3 biological 
replicates for each pCKDL strain and three technical replicates for each biological replicate (n = 9). 
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Figure 56: Growth Curves for all 32 pCKDL strains in M9 media supplemented with 0.4% lactose.  Rows represent different pCKDL 
strains median OD over 20 hours of growth. 
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Figure 57: Fitness of exponential growth rate for pCKDL in M9 media supplemented with 0.4% lactose by number of Knockdowns. 
pCKDL strains are arranged by the number targeting spacers in the CRISPR array. Circles indicate the median fitness measurement 
of a pCKDL strain, normalized by dividing the fitness of the pseudo-wild-type pCKDL 0.  Error bars represent standard deviation. 
Solid lines are significantly (p < 0.05) different according to Welch’s t-test. Lines are colored by the targeting spacer which differs 
between the two pCKDL strains (green: arcA, blue: crp, pink: fis, orange: fnr, yellow: hns). Data represents 3 biological replicates 
for each pCKDL strain and three technical replicates for each biological replicate (n = 9). 
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Figure 58 Fitness of Maximum OD reached after 20 hours for pCKDL in M9 media supplemented with 0.4% lactose by number of 
Knockdowns. pCKDL strains are arranged by the number targeting spacers in the CRISPR array. Circles indicate the median fitness 
measurement of a pCKDL strain, normalized by dividing the fitness of the pseudo-wild-type pCKDL 0.  Error bars represent standard 
deviation. Solid lines are significantly (p < 0.05) different according to Welch’s t-test. Lines are colored by the targeting spacer 
which differs between the two pCKDL strains (green: arcA, blue: crp, pink: fis, orange: fnr, yellow: hns). Data represents 3 biological 
replicates for each pCKDL strain and three technical replicates for each biological replicate (n = 9). 
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Figure 59: Second order epistatic interactions in observed fitness phenotypes. For each pair of genes, the normalized fitness of the 
pCKDL strain with both genes perturbed is expected to be the product of the normalized fitness of the single perturbations. Each 
pair of genetic perturbations can be found in 8 backgrounds containing all possible combinations of the remaining 3 perturbations. 
The difference between the expected fitness and the observed fitness (y-axis) for the double perturbation (x-axis) is plotted for all 
8 backgrounds, split between backgrounds with a third targeting spacer (coloured boxes; green: arcA, blue: crp, pink: fis, orange: 
fnr, yellow: hns) and a non-targeting spacer (dark grey boxes).  Only interactions with a significant difference between the 
backgrounds with or without a third genetic perturbation are shown (p < 0.05) for a total of 42/180 possible conditions. Boxes 
represent the 25th and 75th percentile, the white line representing the median of the data, and whiskers represent the limits of the 
data not considered outliers.  Outliers are plotted individually as grey ‘+’. The blue line indicates no epistasis.  
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Figure 60: Second order epistatic interactions between global transcription factors. Straight lines between coloured boxes 
represent the first order epistasis observed between two transcription factors.  Grey indicates no epistasis, green indicates positive 
epistasis and red indicates negative epistasis. Curved arrows indicate when the presence of a transcription factor changes the 
epistasis of between two other transcription factors, with the color of the arrow reflecting the new epistasis status. 
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Figure 61: Correlation between Regression Coefficients r = n and r < n for exponential growth rate fitness. The correlation (r) and 

its significance (p) between Regression Coefficients β when r = n and r < n. When points are in the green, red, or blue squares, 

both coefficients indicate positive epistasis, negative epistasis, or have opposite signs respectively.  
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Figure 62: Correlation between Regression Coefficients r = n and r < n for maximum OD after 20 hours fitness. The correlation (r) 

and its significance (p) between Regression Coefficients β when r = n and r < n. When points are in the green, red, or blue squares, 

both coefficients indicate positive epistasis, negative epistasis, or have opposite signs respectively. 
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Figure 63: Comparison of Genetic knock down strength in pCKDL strains using qRT-PCR. RNA was extracted from pCKDL strains at 
an OD of 0.3.  An RNA spike was added to each RNA sample and qRT-PCR was performed for each gene targeted by the CRISPR 
system. The Cq was determined by regression and is down for strains containing either a targeting spacer for a given gene 
(coloured boxes; green: arcA, blue: crp, pink: fis, orange: fnr, yellow: hns) or a non-targeting spacer (grey boxes). Boxes represent 
the 25th and 75th percentile, the white line representing the median of the data, and whiskers represent the limits of the data not 
considered outliers.  Outliers are plotted individually as grey ‘+’. 
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Figure 64: RNA integrity of pCKDL samples for RNAtag-Seq. RNA was extracted for pCKDL strains grown in LB for 1.5 or 3.5 hours.  
RNA integrity (RIN) was recorded with Agilent TapeStation.  Distribution of RIN is shown. Any samples with an RIN less than 7 were 
repeated.  
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Figure 65: Optical Density of pCKDL samples for RNAtag-Seq. Optical Density (OD) was measured at 595nm for pCKDL strains 
grown in LB for 1.5 or 3.5 hours.  OD was measured on 200 µL of sample in 96 well plate. An OD of 0.1 ≈ 0.3 and 0.35 ≈ 1.3 when 
measure with a 1 cm cuvette.  These correspond to mid exponential growth phase and early stationary phase respectively. 
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Figure 66: CRISPR-Cas9 eliminates gene expression in perturbed strains. The quantity of RNA detected by RNAtag-seq for pCKDL 
strains that contain either a targeting spacer (coloured boxes; green: arcA, blue: crp, pink: fis, orange: fnr, yellow: hns) or a non-
targeting spacer (grey boxes). Boxes represent the 25th and 75th percentile, the white line representing the median of the data, 
and whiskers represent the limits of the data not considered outliers.  Outliers are plotted individually as red ‘+’. 
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Figure 67: Variance explained from each of the first 10 principle components in RNAtag-seq data. Each box represents the 
percentage of variance explained a given principle component in RNAtag-seq data from pCKDL strains grown in LB media. The 
orange line represents the cumulative variance explained by the principle components. 
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Figure 68: Principle Components association to Optical Density. Transcription of pCKDL strains projected onto the first 8 principle 
components. Each circle represents the Principle component scores for a given pCKDL sample, coloured by the Optical Density of 
the strain when RNA was extracted. 
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Figure 69: Principle Components association to ArcA targeting spacer. Transcription of pCKDL strains projected onto the first 8 
principle components. Each circle represents the Principle component scores for a given pCKDL sample, coloured by the presence 
(green) or absence (grey) of a ArcA targeting spacer. 
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Figure 70: Principle Components association to CRP targeting spacer. Transcription of pCKDL strains projected onto the first 8 
principle components. Each circle represents the Principle component scores for a given pCKDL sample, coloured by the presence 
(blue) or absence (grey) of a CRP targeting spacer. 



 

116 
 

 

Figure 71: Principle Components association to Fis targeting spacer. Transcription of pCKDL strains projected onto the first 8 
principle components. Each circle represents the Principle component scores for a given pCKDL sample, coloured by the presence 
(pink) or absence (grey) of a Fis targeting spacer. 
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Figure 72: Principle Components association to FNR targeting spacer. Transcription of pCKDL strains projected onto the first 8 
principle components. Each circle represents the Principle component scores for a given pCKDL sample, coloured by the presence 
(orange) or absence (grey) of a FNR targeting spacer. 



 

118 
 

 

Figure 73: Principle Components association to HNS targeting spacer. Transcription of pCKDL strains projected onto the first 8 
principle components. Each circle represents the Principle component scores for a given pCKDL sample, coloured by the presence 
(yellow) or absence (grey) of a HNS targeting spacer. 
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Figure 74 Principle Components association to RNAtag-seq Batch. Transcription of pCKDL strains projected onto the first 8 principle 
components. Each circle represents the Principle component scores for a given pCKDL sample, coloured by the batch (pooled 
samples of RNA) they were contained in from RNAtag-seq protocol. Indicates any experimental biases. 
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Figure 75: Principle Components association to number of PCR cycles required before sequencing. Transcription of pCKDL strains 
projected onto the first 8 principle components. Each circle represents the Principle component scores for a given pCKDL sample, 
coloured by number of PCR cycles the sample underwent before sequencing. Indicates biases from RT efficiency, single strand DNA 
ligation efficiency, and PCR amplification biases. 
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Figure 76: Mapping of direct and indirect regulatees of CRP onto genes sorted by their contribution to the 3rd Principle Component. 
Top: Genes’ contribution to the 3rd principle component.  Genes highlighted in yellow are directly regulated by CRP. The star on 
the curve represents contributions above 1% of the maximum. Insert is expanded view of all the genes above this threshold. 
Bottom: Genes are separated into 50 equal sized bins. The number of genes in each bin which are directly regulated by CRP 
(Geodesic Distance of 1) are shown in yellow. The number of genes in each bin which are indirectly regulated by CRP (Geodesic 
Distance 2 to 6) are also shown. 
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Figure 77: Mapping of direct and indirect regulatees of Fis onto genes sorted by their contribution to the 6th Principle Component. 
Top: Genes’ contribution to the 6th principle component.  Genes highlighted in yellow are directly regulated by Fis. The star on the 
curve represents contributions above 1% of the maximum. Insert is expanded view of all the genes above this threshold. Bottom: 
Genes are separated into 50 equal sized bins. The number of genes in each bin which are directly regulated by Fis (Geodesic 
Distance of 1) are shown in yellow. The number of genes in each bin which are indirectly regulated by Fis (Geodesic Distance 2 to 
6) are also shown. 
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Figure 78: Mapping of direct and indirect regulatees of FNR onto genes sorted by their contribution to the 7th Principle Component. 
Top: Genes’ contribution to the 7th principle component.  Genes highlighted in yellow are directly regulated by FNR. The star on 
the curve represents contributions above 1% of the maximum. Insert is expanded view of all the genes above this threshold. 
Bottom: Genes are separated into 50 equal sized bins. The number of genes in each bin which are directly regulated by FNR 
(Geodesic Distance of 1) are shown in yellow. The number of genes in each bin which are indirectly regulated by FNR (Geodesic 
Distance 2 to 6) are also shown. 
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Figure 79: Mapping of direct and indirect regulatees of HNS onto genes sorted by their contribution to the 4th Principle Component. 
Top: Genes’ contribution to the 4th principle component.  Genes highlighted in yellow are directly regulated by HNS. The star on 
the curve represents contributions above 1% of the maximum. Insert is expanded view of all the genes above this threshold. 
Bottom: Genes are separated into 50 equal sized bins. The number of genes in each bin which are directly regulated by HNS 
(Geodesic Distance of 1) are shown in yellow. The number of genes in each bin which are indirectly regulated by HNS (Geodesic 
Distance 2 to 6) are also shown. 
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Figure 80: Association of Sigma Factors to Principle Components.  The proportion RNA detected from a given sigma factors from 
the total RNA detected for all sigma factors is plotted against the principle component scores for significantly (p < 0.05) correlated 
principle components. The correlation (r) and the significance (p) are shown for each plot. 
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Figure 81: Overlap of genes in each cluster from the first principle component between pCKDL and Many Microbe Microarrays 
Database. The number of genes unique to either RNAseq from pCKDL strains, or from Microarray data in the Many Microbe 
Microarray Database (M3D), are shown for each cluster of genes found in the first principle component. Since pCKDL data is anti-
correlated with optical density and M3D is positively correlated, the clusters from opposite sides (right to left) of the first principle 
component are compared. 
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Figure 82: Association of Fitness scores with principle components.  The Growth Rate Fitness is plotted against the Principle 
Component scores for the pCKDL samples taken in exponential phase.  The Maximum OD fitness is plotted against the Principle 
Component scores for the pCKDL samples taken in early stationary phase. Maximum OD fitness is strongly correlated with the 4th 
principle component (associated with HNS) and weakly anti-correlated with the 6th principle component (associated with Fis) and 
the 8th Principle component. Growth Rate fitness does not have any significant correlations to any principle components until the 
18th and 19th. 
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Figure 83: Determination of optimal number of clusters using GAP method. GAP score was determined for various numbers of 
clusters (K) using both Linkage (Blue) and K-means (Yellow) clustering methods. This was done with the full data set (Top) and the 
data set reconstructed without the first two principle components (Bottom). The vertical black line represents the selected K value 
for each data set. 
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4   Molecular Barcoding for Screening of 

Antibiotic Combinations 
 

With Angga Perima 

 

 

 

 

 

A current limitation with combinatorial screening is the rapidly increasing sample number. This 

can make experiments with a large number of conditions difficult to screen with traditional microtitre 

plates due to the costs and time required. Droplet-based microfluidics addresses this problem by using 

picolitre droplets which act as individual reaction chambers [149]. This allows upwards of a million 

samples to be analysed within a single hour. However challenges remain in tracking the contents of each 

individual droplet through various microfluidic processes. 

Here, we describe a method for associating specific environmental conditions (here antibiotic 

concentrations) to a unique barcode. Environmental conditions can then be randomly combined to 

observe their combinatorial effect on cell fitness. In terms of antibiotic resistance, this allows us to identify 

drugs that demonstrate a synergistic or antagonistic response when used in combination. This would have 

immediate implications in treatments for multiple-drug resistant bacteria. The barcodes we have 

developed are DNA oligomers, which when in combination become covalently linked by the DNA 

polymerase Klenow fragment. Droplets can then be split into separate populations by a selection criteria, 

which for our purposes is bacterial growth. These linked barcodes can be recovered from the droplets and 

sequenced to reconstruct the combination of antibiotics contained in each group of droplets.  

We first demonstrate that this technique is compatible with droplet-based microfluidics. We then 

demonstrate that we can insert an artificial selection marker with specific barcodes and recover these 

markers with next-generation sequencing. This approach can be generalized beyond antibiotics to track 

any combination of environments effect on a fluorescence-linked selection criteria.  

The design, characterization and optimization of the microfluidics for combinatorial antibiotic 

screening using droplet based microfluidics was performed by Angga Perima. Further details regarding 

microfluidic details are available in his doctoral thesis entitled Combinatorial Antibiotic Screening using 

Droplet Microfluidics (2017). Please note that the information in this chapter is confidential pending an 

ongoing patent application. 
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4.1 Tracking Droplet Combinations with DNA barcodes 
Antibiotic resistance has become a severe issue to global health. Multi-drug resistant bacteria 

threaten to return us to a world where currently minor infections become life threatening. The WHO has 

identified pathogens in which resistance to antibiotics has become a critical threat, including common 

hospital acquired infections such as Pseudomonas aeruginosa and methicillin-resistant Staphylococcus 

aureus (MRSA) [150]. Despite this pending threat there have only been two new classes of antibiotics 

developed and approved in the last 20 years, lipopeptides and oxazolidionones. One approach to tackling 

this problem is discovering new antibiotics, perhaps through new methods of culturing previously 

unculturable bacteria. This has shown some success in finding new classes of antibiotics [151] [152] 

however discovery is only the initial barrier. The net present value, or sum of all investment costs and 

expected future revenues of antibacterial drugs is -42.61 million dollars [153]. This is because it can cost 

up to 2.6 billion dollars to develop a new drug [154] and any new antibiotic drugs which are developed 

are immediately restricted to drugs of last resort. This restricts the use and therefore market of new 

antibiotics specifically because of this very problem of spreading multiple drug resistance. An alternative 

approach involves systematically screening combinations of antibiotics for drugs with synergistic effects, 

or which can kill bacteria in combination that would otherwise survive either drug alone [155].  

The high throughput nature of droplet-based microfluidics has recently been used to tackle the high 

sample numbers produced when approaching drug combination screening and overcome the cost and 

time limitations to screening using robotics and microtiter plates [156] [157]. However the difficulty in 

droplet based microfluidics is tracking the contents of each droplet. The approach employed by Eduati et 

al uses microfluidic valves to control the quantity of each compound for each droplet [157], this inherently 

limits the number of compounds that can be screened in a single experiment to the complexity of the 

microfluidic device. Additionally, the order in which droplets are produced must be maintained to identify 

droplets with their contents, and thus they must be incubated in long microfluidic tubing to maintain the 

correct order. The approach taken by Kulesa et al on the other hand associates each antibiotic to a 

fluorescent dye [156]. While this simplifies handling, the method of droplet pairing and fusion is again 

limited in through-put by the design of the microfluidic chip, and the limited number of well separated 

fluorophores again limits the number of compounds that can be used in a single experiment. An 

alternative to fluorescent barcodes are molecular barcodes, which take advantage of modern high-

throughput sequencing techniques to encode a specific barcode onto a DNA oligomer.  

Molecular barcoding allows us to associate a condition, in this case a specific antibiotic 

concentration, with a short sequence of DNA. This approach has several advantages over optical 

barcoding.  First, fluorophores are prone to optical leakage, and as such the peak excitation and emissions 

for optical dyes must be well separated to prevent false detection.  This limits the number of samples that 

can be analyzed at a time.  In contrast, DNA barcodes allows for 4n unique sequence combinations, where 

n is the number of nucleotide bases in the barcode. As such even a short 10 nucleotide barcode allow for 

tracking of potentially a million unique conditions. Secondly, DNA barcodes are compatible with optical 

labelling, allowing for optical dyes to be used to quantify and manipulate droplets such as with fluorescent 

activated droplet sorting (FADS) [149]. And finally, the cost to synthesize DNA barcodes is inexpensive, at 

only 0.25 EUR per base for 250nmol, with the cost of synthesizing and sequencing DNA regularly beating 

Moore’s Law with the cost of sequencing per raw megabase of DNA decreasing by 105 from 2001 to 2015 

[158]. 
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Figure 84: Schematic of molecular barcoding technique for tracking antibiotic combinations in picolitre droplets. Antibiotics 
concentrations can be tracked by associating them with a short (<60 nt) DNA oligo that contains a 16 nt barcode unique for that 
antibiotic concentration. This is repeated for both a forward and reverse set of barcoded oligos for each antibiotic and range of 
concentrations desired. The antibiotic/barcode mixtures are then encapsulated into ~10 pL droplets. Two of these droplets are 
then paired with an ~40 pL droplet containing bacterial cells and Klenow enzyme. When the two droplets containing antibiotics / 
barcode oligos are complementary forward / reverse, they will anneal and the Klenow enzyme will covalently link them through 
primer extension. Droplets can then be sorted by bacterial growth, and the barcodes recovered by DNA purification. Only correctly 
paired barcodes will be sequenceable (approximately 50% with random pairing). This allows detection of which combinations of 
antibiotics (and their doses) allow bacterial growth, and can be generalized to track the effect of any combination of environments 
(here antibiotic concentrations) on any selection that can be coupled to fluorescent detection (here bacterial growth). 

Our molecular barcoding strategy involves directly associating DNA oligos to specific concentrations 

of antibiotics. We currently have 96 unique forward barcodes and 96 unique reverse barcodes.  This allows 

us to test up to 96 antibiotic concentrations in a single experiment. Solutions are prepared in a microtitre 

plate containing the barcode and antibiotic, which is used with a 96 parallel droplet maker to create an 

emulsion where each droplet contains one DNA barcode and one antibiotic.  This is then repeated with 

the reverse barcodes.  Next, droplets containing bacterial cells and Klenow enzyme are formed, and these 

droplets are fused with 1-2 droplets containing either forward or reverse barcodes.  In the droplets with 

one forward barcoded oligo and one reverse barcoded oligo, a complementary linker region will allow the 

two oligos to anneal, and the Klenow enzyme will perform primer extension to fill in the remaining 

sequence, covalently linking the two barcoded oligos. As such, only droplets with at least one forward and 

one reverse barcoded oligo will be suitable for amplification and sequencing, and droplets with only one 

oligo or two oligos in the same orientation will have no reaction. Droplets can then be sorted by the 
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number of bacteria in each droplet, and droplets where bacteria were able to grow in the presence of 

antibiotics can be sequenced separately from droplets in which bacteria were unable to grow.  DNA oligos 

from each pool of droplets can then be isolated, purified, amplified and sequenced to determine the 

antibiotic combinations that resulted in each phenotype. 

 Our DNA barcodes are designed to follow specific criteria.  They are all exactly 16 nucleotides 

long.  This allows each barcode to be well separated in sequence to prevent any PCR errors or sequencing 

errors from changing one barcode to another.  Barcodes are made by a python script in which a random 

number generator is used to determine a random 16 nucleotide sequence.  This sequence is tested to 

ensure that it has at least 3 nucleotide differences between any previously generated barcodes. The linker 

sequence and the illumina primer sequences (Rd1 with forward barcodes and Rd2 with reverse) are then 

joined to the barcode sequence and the oligo is checked to ensure that it does not form any false priming 

sites, hairpins, primer-dimers, and have a similar %GC content. If any of these criteria are not met, the 

barcode sequence is rejected. This was done to create 96 unique forward barcodes and 96 unique reverse 

barcodes, although this can continue to be scaled up if required.  When two DNA barcodes are linked, the 

resulting sequence is 96 nucleotides long, and contains the two DNA barcodes connected by the linker, 

and flanked by the Rd1 and Rd2 illumina sequences.  The Rd1 and Rd2 sequences can then be used as 

primers to add the P5 and P7 sequences, as well as any illumina indexes desired to further multiplex 

experiments. 
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4.2 Quantification of barcode efficiency 
Fluorescent dyes, growth media, and encapsulation do not inhibit Klenow reactions 

We first tested that our barcodes were able to efficiently be linked by primer extension with Klenow 

enzyme.  We did this by mixing forward and reverse barcodes in a klenow reaction for one hour.  We then 

purified the reaction and amplified the product with PCR using primers containing 5’ extensions of the P5 

and P7 illumina sequences.  This PCR product was again purified and the product was amplified finally 

with P5 and P7 illumina primers. We then ran each product (including the annealed but not extended 

initial DNA oligos) on an agarose gel to visual the DNA. As expected, the size of the DNA band 

corresponded to what was expected, and the size of the DNA extending with the subsequent PCRs.  

Additionally, we sequenced the DNA product, which matched the expected sequence. We repeated the 

same protocol, however with the Klenow Reaction performed in droplets with the addition of growth 

media, bacteria and antibiotics. We found the same expected products as in the earlier bulk test. 

To ensure that the fluorescent dyes used in the microfluidics were compatible with the Klenow 

reaction, we tested the Klenow reaction with a variety of fluorescent dyes. After purifying the Klenow 

reaction, samples were amplified by qPCR to quantify the quantity of template produced in each reaction.  

We found no noticeable difference in qPCR quantity between any of the dyes and the control without any 

dye (Figure 85). We also tested to see if the addition of growth media effected the Klenow reaction due 

to the extra salts introduced.  We added LB media, M9 Media, and M63 Media to Klenow reactions, as 

well as testing Klenow reactions with the aforementioned media replacing Klenow buffer rather than 

supplementing it (with an additional dosage of MgCl2). We found that none of the media reduced the 

Klenow efficiency when supplementing Klenow reactions, however the Klenow buffer was necessary for 

efficient reactions to occur as MgCl2 was not sufficient to replace it. Finally, we confirmed that 

confinement in droplets was not abolishing Klenow efficiency by creating a solution with all the 

components expected in our experiments final droplets, at the expected concentrations.  We then used 

some of the solution to create droplets, and the remaining solution was incubated in bulk. We also made 

the same solution without any Klenow enzyme as a negative control.  We found that the droplet solution 

had a reduced efficiency than the bulk solution, however we still had a strong detectable product. 

Mungbean Endonuclease prevents unused barcodes from contaminating downstream PCR 

 Once the DNA barcodes have been joined by primer extension, they are purified from non-joined 

oligos using Mung Bean Nuclease.  This digests only single stranded DNA.  Any oligos that did not undergo 

primer extension are destroyed.  Unused oligos are further reduced from size exclusion during DNA 

purification, where the exclusion limit is 100 bp, and individual oligos are less than 60 nucleotides. It is 

important that unused oligos are removed to prevent them from acting as primers in the subsequent 

downstream PCR reactions.  This would result in incorrect barcode combinations. We tested the frequency 

of mismatching barcodes by performing separate Klenow Reactions for different pairs of barcodes.  Each 

pair of barcodes were purified with Mung Bean Nuclease, then pooled and amplified by PCR.  We 

sequenced the amplified DNA and tested how many reads contained the correct combinations and how 

many contained combinations between barcodes in different Klenow Reactions.  We found that we had 

96% and 98% of reads containing with the correct combination of the first and second forward barcodes 

paired with the first and second reverse barcodes respectively.  We found only 0.2% of the incorrect 

combination of the first forward barcode paired with the second reverse barcode and no incidents of the 
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second forward barcode pairing with the first reverse barcode. One of the two barcodes within remaining 

reads we were unable to be successfully mapped. 

 

Figure 85: Quantification of the impact of various additives to primer extension efficiency with Klenow by qPCR. We tested the 
impact of fluorescent marker dyes (A), growth media (B), and droplet encapsulation (C) on Klenow efficiency. Yellow represents a 
standard Klenow reaction as a positive control, blue represents a negative control with no Klenow enzyme and orange represent 
test samples. Dyes were added to standard Klenow reactions at 5x working concentrations. Media was used to replace water in a 
standard Klenow reaction, with 1x Klenow buffer or only 1x MgCl2. Droplet encapsulation was done with the same solution used 
for both a bulk incubation and incubation done within ~60 pL droplets. This solution had the equivalent concentrations of a true 
experiment for all necessary reagents. 

Specific antibiotic concentrations can be tracked through droplet microfluidics with DNA barcodes 

We have performed a cell-free proof of concept experiment to demonstrate the technology, in 

which selection is dependent on the presence of a selection dye rather than the concentration of bacteria.  

Here, we used a reduced number of barcodes (48 forward and 48 reverse).  In which half of the reverse 

barcodes are tagged for positive selection (Figure 86).  This demonstrates that any assay that can be linked 
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to a fluorescent readout (and thus can be sorted with FADS), would be compatible with our system. We 

created 10 pL droplets with a 96 parallel droplet maker containing barcoded oligos and merged them with 

40 pL leader droplets containing Klenow enzyme.  All of the 10 pL droplets contained the fluorescent dye 

DY-405, which allows us to quantify how many 10 pL droplets fuse with each 40 pL droplet.  Half of the 

reverse barcoded oligo droplets also contained dye DY-647 which was our selection criteria.  We detected 

fluorescence in each droplet for each of the corresponding dyes, and when plotting the distribution of 

each of these signals before droplets were sorted, we can see clouds of droplets that correspond to fused 

droplets containing 1, 2, or 3 oligo containing droplets, and 1, or 2 oligo droplets containing selection dye. 

We sort droplets containing 2 oligo droplets, 1 of which contains the selection dye.  The rest of the 

droplets were unsorted.  After positive sorting of >40,000 droplets, we broke the emulsion of the sorted 

and unsorted droplet populations, as well as the remaining droplets that had not been used to represent 

the initial droplet population. These three samples were purified as described above and amplified by PCR 

to add the P5 and P7 regions, as well as an illumina index for each population to demultiplex them in the 

sequencing data. We only recovered a small quantity of DNA barcodes after purification but we were able 

to see a clear enrichment of the intended barcodes in the sorted droplet population. We noticed the dNTP  

 

Figure 86: Droplet populations for fluorescence activated droplet sorting. PMT1 corresponds to droplets containing 0, 1, 2, or 3 
small barcode containing droplets (from bottom to top). Populations from left to right (PMT4) corresponds to droplets containing 
0, 1, or 2, selection criteria. The desired droplet population is selected as the droplet population corresponding to 2 small droplet 
barcode containing droplets and 1 selection criteria droplets (PMT1 0.1-0.125, PMT4 0.3-0.5). 
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concentration used in our solution was insufficient for primer extension with all of our oligos within a 

droplet.  Increasing the dNTP concentration resulted in 15 fewer cycles required during PCR for sufficient 

product for sequencing. It is currently pending sequencing. 

 

Figure 87: Sequencing reads for each barcode pair in a logarithmic scale. The left-hand side was spiked with dye for selection with 
fluorescence activated droplet sorting. 

 This method of molecular barcoding provides several advantages over the methods previously 

described using microfluidic valves [157] or optical barcoding [156]. Multiple 96-well parallel droplet 

makers can be used in a single experiment to increase throughput. This limits the number of compounds 

which can be tested in a single experiment to those which are compatible with fluorinated oil and droplet 

microfluidics in general, as the number of unique barcodes can easily be expanded for additional samples. 

Secondly, it is possible to combine more than 2 conditions with DNA barcodes, as primer extension could 

be done with greater than 2 DNA oligos. Thirdly, there is no limit on the number of droplets that can be 

processed in a single experiment, and this is currently only determined by the frequency of droplet sorting 

and the amount of time dedicated to each step, rather than any design features. Finally, as each part of 

our microfluidic pipe-line is modular, effectiveness improves with new designs for droplet generation, 

droplet fusion-pairing, and droplet sorting. The design of the molecular barcodes is compatible with 

multiple approaches for each of these.  
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4.3 Methodology 
Barcode design 

 Barcodes were created with a custom python script. A random number generator is used to create 

a random sequence of 16 nucleotides. A 20 nucleotide linker region and a 20/22 nucleotide region of 

either Rd1 or Rd2 was then added to the random barcode sequence. Primer3 binaries were then used to 

quantify any primer dimers or hairpins, and the Tm and %GC content of the 16 nt barcode sequence. 

Barcodes that passed all selection criteria were then checked for Levenshtein distance against already 

existing barcodes. As long as they had a distance of > 3 with all other barcodes, the barcodes were 

accepted. Barcodes were synthesized in 96 wells at 6 nmol scale by IDT. We added 1 mL of nuclease-free 

water to each oligo to rehydrate them at a concentration of 6 mM. 

qPCR quantification 

 Klenow control reactions were done with 2 µL Klenow buffer, 1 µL dNTPs (10 mM), 1 µL Klenow 

enzyme, 1 µL Forward Barcode (6 mM), 1 µL Reverse Barcode (6 mM), 14 µL nuclease-free water. To 

quantify the effect of fluorescent dyes, 4 µL of Dye (100mM) was added to the Klenow reaction (reducing 

water to 10 µL). To quantify the effect of growth media, nuclease-free water was replaced with either LB, 

M9 or M63 media. To quantify the effect of droplet encapsulation, a solution containing 5 µL of Forward 

Barcode, 5 µL Reverse Barcode, 5 µL dNTPs (10 mM), 5 µL Klenow Enzyme, 10 µL of Dye-405, 10 µL Klenow 

Enzyme and 60 µL of LB media was made, split in 2 and kept on ice. Half was used to make ~60 pL droplets. 

Droplets and the remaining solution were incubated at 37 °C for 1 hour. qPCR was performed using Agilent 

Brilliant III qPCR master mix. 

Droplet-Based Primer extension 

 96 wells within a 384 well microtiter plate were filled with 5 µL Dye-405 (100 mM), 1 µL either 

Forward or Reverse Barcode (6 mM), 10 µL dNTP (10 mM), 5 µL Klenow Buffer, 5 µL of Antibiotic 

(concentration dependant on MIC) and 24 µL of LB media. This plate was used to create ~10 pL droplets 

using a ‘hedgehog’ design previously described by Angga Perima. A solution containing 20 µL Dye-647 (1 

mM), 2 µL E. coli culture grown overnight in LB, 10 µL Klenow Enzyme, 20 µL Klenow Buffer, 40 µL dNTP 

(10 mM), and 108 µL of LB media was made and used to create ~40 pL droplets. Large 40 pL droplets were 

merged with smaller 10 pL droplets at a ratio of 1:2. Droplets were inclubated at 37 °C for 3 hours and 

then pico injected with syto9 dye. Droplets were sorted by their fluorescent from Dye-405 (the number 

of small droplets), and Syto9 (the number of bacteria). Emulsions were broken by removing excess oil and 

adding equal volume of Perfluoro-Octanol. Details regarding microfluidics can be found in the thesis of 

Angga Perima. 

Barcode Clean-Up and Purification 

 DNA was extracted from droplets (or bulk Klenow reactions) using a Macherey-Nagel PCR Clean-

up kit, with 200 µL of NTI buffer and 100 µL of Barcode solution (solutions increased to 100 µL if not 

already). This results in size exclusion cut off of ~100 bp. DNA was eluted in 44 µL of water and added to 

5 µL mung bean endonuclease buffer, and 1 µL of mung bean endonuclease. Solution was incubated for 

30 minutes to destroy any non-extended barcodes. Solution was increased to a volume of 100 µL and 

purified again with a Macherey-Nagel PCR Clean-up kit. 
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5   Single Cell Transcriptional Analysis 

 of E. coli  
 

 

 

 

 

 

 

 

 

 

Droplet-based single cell RNA sequencing has recently been developed for mammalian cells [17] 

[18]. This allows for the transcriptional analysis of thousands of individual cells in parallel. As a result, 

phenotypically distinct (though potentially genetically identical) subpopulations can be identified within 

a sample. In traditional RNA sequencing or microarray techniques the distinct transcriptional profiles of 

these subpopulations would be lost by being combined together. This also allows for the potential to 

screen high-throughput perturbation libraries such as those generated with CRISPR-Cas [20]. 

Here we describe adapting droplet-based single cell RNA sequencing to bacterial samples. This 

would allow us to greatly increase the number of genes that we could perturb to cover all global 

transcription factors, and potentially all sigma factors as well. However there are key challenges in working 

with bacterial cells. These include the bacterial cell wall, which makes cell lysis more difficult; the lack of 

poly-A tails on mRNA, which require using gene specific primers for the reverse transcriptase; and the 

contamination of genomic DNA, which appears identical to cDNA due to a lack of introns and poly- 

adenylylation. While all of these are easily addressed in bulk RNA-sequencing, with droplets we are unable 

to purify samples after encapsulation until all the RNA has been tagged with a droplet specific barcode. 

This means that cell lysis, reverse transcription, and removal of genomic DNA must all be compatible. 

After successfully sequencing RNA from single bacteria, we found that the transcriptional data is 

very sparse, even more so than the notoriously noisy single cell data from mammalian cells [110]. Finally 

we discuss a collaboration with Institut Pasteur to apply this technique to the study of antibiotic persister 

cells, a distinct subpopulation in bacteria cultures which are able to survive short-term exposure to 

antibiotics despite not carrying any genetic antibiotic resistance. 
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5.1 Microfluidic Design for Single Cell Transcriptional Analysis  
Recently there has been considerable development of single cell analysis and sequencing 

technologies [17] [18] [107] [159]. Single cell level analysis opens up the possibility to disentangle complex 

biological samples and analyze large sample libraries while remaining cost efficient. Microfluidics plays a 

central role in these developments as it allows to highly parallelize the manipulation of cellular material 

in ~10 to 100 pL compartments, which function as the equivalent of miniaturized reaction wells. The scale 

of the droplets is ideally suited for single-cell analysis. Two main microfluidic approaches have prevailed. 

The first relies on miniaturized hydro-pneumatic valves, allowing sequences of fluidic operations to be 

performed in micro chambers. This technology led to the first commercial microfluidic system for single 

cell sequencing, the C1 from Fluidigm, which allows the analysis of at most several hundred cells [160]. 

However, despite recent improvements, cell loading remains unreliable and even impossible for many 

cells types including bacteria, as they do not fit within a specific range of sizes, morphologies and adhesion 

properties. Given these limitations, single-cell protocols in multi-well plates, where the number of cells 

that can be sequenced is similar, tend to be favored in practice [161]. The second approach is droplet-

based microfluidics, combined with molecular barcoding. In droplet-based microfluidic systems pL to nL 

volume droplets in an inert carrier oil are used as independent micro reactors compartmentalizing single 

cells. Here, throughput can easily reach millions of single cells per hour, and is currently only limited by 

downstream sequencing capacities. Three commercial droplet-based microfluidics systems for single-cell 

RNA-seq (3’-end sequencing of poly(A) mRNA) are now available. In 2016, 10x Genomics launched the 

Chromium System and 1CellBio introduced the inDrop system, both capable of analysing up to 48,000 

cells per experiment. In 2017, Illumina and Bio-Rad launched the Illumina Bio-Rad Single-Cell Sequencing 

Solution, capable of analyzing from 100 to 10,000 cells per experiment.  However, there currently does 

not exist any technological option for RNA-seq of single pathogenic organisms, including bacteria, viruses 

and unicellular eukaryotic parasites. A number of challenges need to be overcome. Taking the example of 

transcriptomic analysis of bacteria, a droplet-based microfluidics system would need to: 

1. lyze bacteria in droplets  
2. perform RT in droplets on mRNA lacking polyA tails; 
3. remove background signal from genomic DNA (as mRNA lacks poly(A) tails and introns); 

 
Overcoming these challenges requires the molecular biology of DropSeq [17] [18] to be 

significantly altered.  We use a PEG/Acrylamide Hydrogel Bead to carry our molecular barcodes, which 

have been redesigned to be optimized for use with Eubacteria, Archaea, Human, Mouse and Many model 

organisms.  Each barcode is 16nt long with a minimum annealing temperature of 40°C, there are at 

minimum 3 degrees of error between all barcodes, and barcodes are blasted [162] against the 

Representative Genomes Database (containing Eubacteria and Archaea genomes), ESS database, and the 

Human and Mouse Transcriptome databases to reduce the probability that they will act as false primers.  

These barcodes are ligated onto our Hydrogel beads using a split/pool method (Figure 88A) in which the 

beads are equally distributed among a microtitre plate of 96 barcodes.  All of the ligation sites on a given 

bead then receive exactly the same barcode.  After ligation of one index of barcodes, the beads are pooled 

and washed to remove any non-ligated barcodes.  We then repeat the bead distribution and ligation with 

the second, third, and fourth indexes of barcodes.  This strategy ensures that all primers on a given 

hydrogel bead have exactly the same primer, yet there are 96^4 (~85 million) possible paths for each  
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Figure 88: Overview of single cell RNA-seq with Droplet based Microfluidics. A) Split-and-pool synthesis of barcode libraries. Each 
16 bp DNA index is represented by a color. Polyethylene Diacrylate (PEG-DA) hydrogel beads (HgBs) decorated with double-
stranded DNAs coupled to the beads via a 5’ acrylate are distributed into wells of a 96-well microtitre plate, each containing a 
different first index (index A) and index A is added by ligation. The HgBs are then pooled, washed and re-distributed into the wells 
of a second microtitre plate, each containing a different Index B, which is ligated to Index A. Repeating this splitting and pooling 
process 3 times in total (adding 3 indexes) results in 963 combinations, which generates ~106 different barcodes. If further diversity 
is required, a fourth index can be added resulting in 964 combinations, which generates ~108 different barcodes. B) After adding 
the last index, the beads are pooled once again, and a cocktail of DNA molecules, each containing a unique molecular identifier 
(UMI) sequence and primer regions are ligated to the barcodes on the beads. This primer region depends on the application; either 
a polyd(T)VN for 3’-end total RNA-seq, or a mix of Gene Specific Primers (GSPs) for targeted RNA-seq. The second strand of the 
primer is then removed by alkaline treatment and a short DNA oligo complementary to the region containing the restriction re-
annealed. Each HgB ends up with a total of 109 primers carrying the same bead-specific barcode. C) Microfluidic co-
compartmentalization of single cells and single barcoded hydrogel beads in droplets with RT and lysis reagents. D) Process in 
droplets. Cells are lysed to release RNA and barcoded primers are released from hydrogel beads by UV cleavage of a photosensitive 
linker to prime cDNA synthesis. As each bead carries primers with a unique barcode, the cDNAs from each droplet carry a unique 
barcode, allowing them to be identified after sequencing. 

hydrogel bead to take through all four indexes; the barcode for every hydrogel bead is unique.  Once the 

Hydrogel beads are barcoded, we can attach an adapter to them (Figure 88B).  In the case of current single 

cell RNA sequencing with mammalian cells, a poly d(T) primer is used, however this is not suitable for 

bacterial cells so we replace it with a gene specific primer.  Once our Hydrogel beads are complete, we 

encapsulate single bacteria cells into droplets along with hydrogel beads bearing our primers, and lysis 

and reverse transcription reagents (Figure 88C).  This is done in a flow focusing droplet maker, where the 

three aqueous phases (containing cells, RT/Lysis, and Hydrogel beads) mix before the oil phase pinches 

off droplets.  The deformable nature of the hydrogel beads means that they are able to beat Poisson 
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distribution and one hydrogel bead is contained in each droplet.  Reverse transcription then occurs within 

droplets containing cells (Figure 88D) with primers released from the hydrogel bead.  As a result, all the 

cDNA produced from a single cell will have exactly the same DNA barcode incorporated.  Thus when we 

break our emulsion and proceed with sequencing, we can trace each cDNA back to its cell of origin. 

Bacteria encapsulation in microfluidic droplets follows a Poisson distribution 

 

Figure 89: Cumulative Poisson Distribution Function of Bacteria in droplets in bDrop-Seq protocol. The cumulative distribution 
function for the number of Bacteria in each droplet at 5 different ODs is shown with the corresponding lambda from a Poisson 
distribution. The encapsulation of MG1655 E. coli cells follows a Poisson distribution similar to that reported for mammalian cells, 
with an initial OD of 0.07 corresponding to a lambda of ~1. 

We tested if bacteria cells are encapsulated into droplets following the same Poisson distribution 

as mammalian cells. We did this by counting the number of bacterial cells per droplet at different starting 

ODs (Figure 89).  This is important because it is not obvious that bacterial cells will not adhere to each 

other or the microfluidic chips walls.  We also use this data to create a calibration curve (Figure 90) to 

determine what OD we should use to have a given lambda.  We need a lambda of ~0.1 to ensure that cells 

we process are single cells and not encapsulated with additional cells.  
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Figure 90: Calibration curve for determining necessary OD for a desired lambda.  The OD of samples prior to processing for bDrop-
Seq is plotted against the resulting lambda for bacteria per droplet. To ensure that droplets contain at most 1 bacteria per droplet, 
a lambda of 0.1 is desired, corresponding to an OD of ~0.02. 
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RNA-Later but not RNA-Protect is suitable for single-cell droplet-based RNA-sequencing 

DropSeq for mammalian cells currently published recommends that any cell types used should 

have stable mRNA levels for at least 30 minutes so that mRNA is not degraded prior to reverse 

transcription in droplets.  Since the half-life of mRNA in bacteria is significantly shorter at approximately 

4 minutes, we take steps to stabilize the mRNA before the experiment proceeds by treatment with 

RNALater (Figure 91).  We tested both RNAProtect and RNALater as mRNA stabilization reagents, however 

we found that RNAProtect was resulting in premature cell lysis and thus was not suitable for single cell 

analysis. 

 

 

Figure 91: Effect of different RNA-stabilization reagents on cell integrity.  E. coli cells expression EGFP were viewed under a 
fluorescent microscope after being treated with Tris solution, RNA-Protect from Qiagen, or RNA-Later from Ambion.  Cells 
remained intact with RNA-Later but not with RNA-Protect. 
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Microfluidic device for single cell droplet-based RNA-sequencing is a 3 inlet flow focusing device 

 

Figure 92: Microfluidic Device for Bacterial single cell RNA-seq.  The microfluidic device contains 3 aqueous phase inlets for the cell 
solution, the RT/Lysis solution, and the Hydrogel Beads (HgB). These aqeous phases co-flow until they intersect with a flow focusing 
droplet maker, which are then collected for incubation off chip. 

 Finally, we had to modify the microfluidic chip design (Figure 92). Specifically, we noticed lysis was 

possible immediately upon contact between the lysis solution and cells within the cell solution, so the 

distance from when these two inlets create a co-flow to droplet formation was greatly reduced. 

Additionally, we added a notch at the hydrogel bead inlet to try to limit back-flow which could occur with 

polydispersity in the size of the hydrogel beads. 

  



 

145 
 

5.2 Cell lysis and Isolation of cDNA 
Bacterial cells are lysed with Lysozyme and Proteinase K 

The lysis of bacteria cells in droplets is significantly more difficult than mammalian cells due to the 

bacterial cell wall.  Currently, we lyse bacteria cells with a combination of lysozyme and polymyxin B.   A 

challenge with this approach is that lysozyme is sensitive to cation concentration and pH [163], preferring 

solutions with a low ionic strength and a low pH.  This is in contrast to reverse transcriptase which prefers 

a high ionic strength and a high pH.  In particular magnesium, which is required for reverse transcription, 

denatures and precipitates lysozyme.  As such we have spent a significant amount of time creating custom 

buffers that allow lysis and reverse transcription to occur in the same reaction (Figure 93).  Critically, 

lysozyme is kept separated from salts until droplet formation  

 

Figure 93: Effects of Proteinase K and Lysozyme on RT efficiency.  Left: qRT-PCRs were performed on RNA samples with various 
concentrations of Proteinase K added to the reaction.  We see that RT efficiency begins to exponientially decay at Proteinase K 
concentraions above 3.75% (v/v).  The red dashed line indicates the concentration of Proteinase K we use in our experiments.  
Right: qRT-PCRs were performed on RNA samples with the addition of Lysozyme, or lysozyme and proteinase K.  The addition of 
Lysozyme alone to RT reactions results in no cDNA being generated, as the Lysozyme denatures and precipitates.  The addition of 
proteinase K recovers cDNA synthesis as it is able to digest denatured Lysozyme. 

occurs, to prevent premature denaturation.  Additionally, Proteinase K is added to our reaction solution 

to degrade lysozyme during the RT reaction, as lysozyme will also denature when the solution is heated 

to 50°C for reverse transcription.  The proteinase K prevents lysozyme from precipitating and killing the 

RT reaction, but must be at a low enough concentration itself so as not to prevent the RT reaction directly.  

We stained cells with syto9 and then tested lysis of cells with only lysozyme in TE buffer as a positive 

control, our RT/Lysis Buffer as a test sample, and no lysozyme as a negative control to ensure that our 

RT/Lysis buffer was lysing bacterial cells (Figure 94).  We found a similar pattern of cellular debris 

aggregating only in our test sample and positive control.  We also tested our lysis buffer using E. coli cells 

expressing mCherry on a plasmid as we had previously found that mCherry was not aggregating, and we 

found that in our Lysis/RT solution mCherry had visibly diffused throughout the droplet, while in our 

negative control it had not (Figure 95).  However we still see whole cells in our Lysis/RT solution in this 

test, which indicates that we do not have complete lysis.  However, due to the throughput of this 

technique, any non lysed cells will not appear in the down-stream sequencing data and will simply act as 

empty droplets, and as the sequencing depth is currently limiting, a lysis rate of ~60-80% is acceptable.  

Determining a precise lysis rate is difficult as the size of the droplets is much larger than the size of the 

bacterial cells, and thus not all cells can be in focus at a single time. 
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Figure 94: Testing Cell Lysis effectiveness with Syto9 Reporter. MG1655 cells were stained with Syto9 and encapsulated into 
droplets containing and no lysozyme (left), lysozyme in TE buffer (centre), or RT/Lysis solution used in our Drop-Seq protocol (right). 
We find that lysed cells aggregate in the positive lysozyme TE buffer test and in our Drop-Seq protocol, but not in the negative no 
lysozyme control. 

 

Figure 95: Testing Cell Lysis efficiency with mCherry reporter. E. coli cells expressing mCherry on a plasmid were encapsulated with 
Drop-Seq protocol (left) or with the Drop-Seq Protocol without Lysozyme (right). We used a very high lambda to ensure that cells 
would be visible. When lysozyme is present, lysed cells release mCherry into the droplet and the droplet is clearly visible. It is noted 
that not all cells are currently lysed. 
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Bacterial cDNA is purified from unused primers and genomic DNA with biotinylated dCTP 

 

 

Figure 96: Removal of excess RT primers with AMPure and Dynabeads. qRT-PCR was performed on RNA-spikes, with a biotin-14-
dCTP integrated into the cDNA during synthesis. The RT-PCR was spiked with a DNA oligo that was the same size as primers used 
for droplet-based RT-PCR, and at approximately the same concentration. The cDNA was then purified with their size exclusion, 
using AMPure beads, with streptavidin coated magnetic Dynabeads, or both. The concentration of the cDNA and the concentration 
of the spiked primer-like oligo were quantified by qPCR. 

Because we cannot amplify our cDNA across exon junctions, or purify our RNA in droplets prior to 

RT, we need to separate our genomic DNA from our cDNA after RT in droplets is complete to prevent 

contamination.  Therefore we perform our RT reaction using a biotinylated dCTP.  This results in all of our 

cDNA generated to become biotinylated, but not our RT primers.  We found that for effective 

incorporation of biotinylated dCTP we needed to use a dNTP mix with a reduced concentration of dCTP 

(0.2 mM instead of 0.5 mM) and biotinylated dCTP at a concentration of 0.1 mM.  Additionally, we found 

the use of an 11 carbon linker had much higher incorporation rates than a 14 carbon linker.  cDNA 

purification is performed by breaking RT emulsions with perfluoro-octanol.  The aqueous phase is 

removed and ran on a PCR clean up column to remove non-incorporated nucleotides.  25uL of Streptavidin 

coated magnetic beads are added to the RT solution and incubated at room temperature for 3 hours.  The 

magnetic beads are then washed and the cDNA is freed from the beads with 0.1% SDS solution at 99°C for 

15 minutes.  We found that we were able to recover approximately all of the cDNA in this technique, 

though we also had significant non-specific binding to the magnetic beads (Figure 96).  Non-specific 

binding can be improved with addition of BSA (5 ug/mL) to binding buffer and addition of Urea (2M) to 

the washing buffer. 
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Figure 97:  Recovery of biotinylated cDNA with hydrogel beads.  qRT-PCR was performed with biotinylated dCTP (Biotin-11-dCTP), 
without biotin (No Biotin Control), and without reverse transcriptase (No RT Control).  After RT-PCR, cDNA was split into 2 equal 
volumes, one was used directly for qPCR (RT) and one was purified using Streptavidin coated magnetic beads (Recovered).  Washes 
from magnetic beads were saved and tested for qPCR to determine if any cDNA was not captured (Wash).  Biotinylated dCTP was 
successfully recovered using Streptavidin coated magnetic beads as indicated by the RT and Wash qPCRs having the same 
quantitative cycle.  The cDNA recovered in the no biotin control indicates the level of non-specific binding. 
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5.3 Single Cell RNA sequencing of MG1655 
Only one gene makes up the majority of unique UMIs for each cell 

To test the effectiveness of RNA capture in droplets using our protocol, we tested it on MG1655 

E. coli cells.  We designed a panel of genes that would give us an idea of which genes we could detect by 

taking 12 bulk RNA-seq experiments, normalizing them to have the same median count, and then taking 

the mean read count for each gene from all 12 experiments.  Figure 100 shows that most genes had a 

mean read count of approximately 300.  We then took the gene with the smallest standard deviation from 

each bin of our histogram as a reporter gene for that expression level.  We also took all 5 genes in the 

second largest bin to ensure that we would be able to detect something if the system was working.  We 

then designed gene specific primers for all 20 of these genes to determine how sensitive the protocol was 

(Figure 101).  Our first sequencing experiment focused on only the 5 highest bins of expression levels to 

limit the possibility of primer dimers occurring in downstream PCR reactions.  We grew E. coli strain 

MG1655 to an OD of 0.05 in M9 Media supplemented with 0.4% glucose, and performed our modified 

inDrop single cell RNA sequencing.  The resulting barcoded cDNA was sequenced on a HiSeq with ~200 

million clusters. 

 

Figure 98: Sequencing Results after relaxed filtering.  (A) The total number of UMI detected for each gene. (B) The distribution of 
the number of UMIs detected for each barcode. (C) The number of UMIs for each pair of genes for each barcode. 
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 When we plotted a histogram of the reads per UMI of our data (weighted by the number of reads) 

we obtained the expected distribution (Figure 102A). However the scale was different than what we had 

expected from mammalian cell analysis by a few orders of magnitude. We therefore used a log scale to 

see if there were other populations of barcodes hidden in the histogram by the weighting technique used, 

and found that we had 3 populations of UMIs (Figure 102B). The left-most tail, with a few reads per UMI 

is likely PCR and sequencing errors creating new UMIs. However we have not identified the middle 

population. We filtered out the left most reads and plotted the combined unique UMIs for each gene in 

all barcodes (Figure 98A). The panel of genes followed our bulk expectation with the exception that the 

position for ssrA and pgk were switched. We plotted a histogram for the number of UMIs per barcode and 

found that we still had a left sided tail with many barcodes only having a few UMIs, but then a wide normal 

distribution centered at ~70 UMI per barcode (Figure 98B). Finally, we plotted the number of unique UMIs 

of each gene (in pairs of genes) for each barcode (Figure 98C). Rather than having genes being correlated 

between cells, which would indicate primarily variation in RNA capture, we found that cells where a 

reasonable number of RNA were detected (>20 UMI/Barcode), the RNA detected were almost all from 

the same gene. The scatter plots reveal 6 distinct populations in 5 dimensional space, one population 

corresponding to each gene, and a central population of barcodes with very few UMIs in total. To 

investigate if this was due to where we threshold our data, we made the same data plot with no threshold 

(Figure 103) and with a threshold just for the UMIs with the highest number of reads (Figure 104). In the 

raw data, the same pattern of gene expression was observed, but was exaggerated.  Each individual 

cluster of barcodes was highly correlated in its own dimension. The pattern of the sum of all the genes 

detected was also similar to the initial, relaxed filtering.  When we looked at the distribution of UMIs per 

barcode, again it had a left-handed tail in addition to a normal distribution, this time centered around 225 

UMIs per barcode. Here though the left sided tail was enhanced compared to filtered data. Within the 

stringent filtering, we only observed 1 or 2 UMI per barcode. The sum of all UMIs per gene followed the 

same pattern, but the tiny number of UMI per barcode made the other analysis uninformative.  

PCR and sequencing errors are unlikely to explain highly patterned results 

This leaves us with a few possibilities. Firstly, the right hand population of a very high number of 

reads per UMI are the only true UMIs, and the other UMIs are all artifacts. It’s possible that the large 

number of PCR cycles and that the PCR extends the sequence length during each step could contribute to 

strong PCR bias or artifacts. The long 5’ extensions during the PCR do result in significantly different Tm 

(melting temperatures) for original and new templates.  That is to say, it is much more likely to amplify a 

UMI which has already been amplified. Also the large number of cycles increases the chances of PCR errors 

being introduced. To check if the additional barcodes found with a more relaxed filter could be explained 

by PCR errors, we looked at the Levenshtein distance between barcodes found in the relaxed filtered 

(Figure 99A) and stringent filtered sets (Figure 99B). The levenshtein distance is the minimum number of 

changes required to change one sequence into another. The distribution of levenshtein distances shows 

peaks that are centered on multiples of 10, up to 40, with increasing proportions of the total barcodes.  

This is consistent with the data occurring from a random subpopulation of all possible barcodes. Each 

peak represents barcodes which are separated by a different number of barcodes, with the average 

distance between barcodes in each index approximately 10. Therefore the large population of barcodes 

which are ~40 levenshtein distance apart do not share any indexes, while those ~30 distance apart share 

at least one index. This largely excludes the possibility of PCR errors accounting for the additional 

barcodes. There is also the possibility of template switching during the PCR, in which recombination occurs   
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Figure 99: Levenshtein distance between barcodes under different sequencing thresholds.  The levenshtien distance between each 
pair of barcodes detected in scRNA sequencing is compared using a relaxed (A,C) and stringent (B,D) threshold for the minimum 
numbers of reads per UMI to be considered.  If extra barcodes detected on relaxed threshold were due to sequencing errors, we 
expect a large enrichment of barcodes with very small Levenshtien distances (the number of changes required to make the two 
barcodes identical). In both cases, the majority of pairs have a large levenshtein distance, which is not explained by sequencing or 
PCR errors, but does not eliminate errors from template switching in PCR, or gene specific primer biases on hydrogel beads. 

between two unique sequences to give a new, apparently unique barcode. While this is usually considered 

a feature of reverse transcriptases but is known to happen in PCR as well [164]. We checked to see how 

many unique indexes there were in each population of the sequencing data, and we found sequences for 

all 4 indexes in the relaxed filtered set that were not found in the stringent filtered set. These barcodes 

could not arise from PCR recombination. Additionally, the short template size, low template number and 

long extension times used should severely limit the incidents of PCR recombination. Finally, carry over RT 

primers from the droplet RT-PCR could amplify in downstream PCRs. These can be limited through our 

stringent purification, or treatment with exonuclease I after RT-PCR to digest any remaining primers [159] 

however they can never be completely eliminated. These types of artifacts likely explain the left-sided tail 

on our distribution of the number of UMI per barcode, as we expect random primer carry over to have a 

few unique UMI and gene combinations, as there are hundreds of thousands to a million unique barcoded 

HgB per experiment, the probability that multiple carry over primers with the same barcode would amplify 
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in the PCR is low. In the relaxed filtered set it is important to note that individual barcodes (cells) do move 

off the axis, indicating that while they primarily have mRNA for a single read, they also have small amounts 

detectable for the other genes as well. This is not something we would expect from carry over primers 

with such a large diversity of barcodes. Finally, there is the possibility that our hydrogel beads are biased 

towards individual gene specific primers. If the majority of primers on a Hydrogel bead only bind to one 

gene, it would give the observed results. This is something that would not be observed with polyT primers 

for mammalian cells. We do premix our gene specific primers before they are added to the ligation mix 

and hydrogel beads, to reduce this possibility, though we cannot rule it out. 

 There is also a biological explanation for the observed single cell gene expression pattern. 

Bacterial mRNA only has a half-life of approximately 4 minutes, compared to upwards of 30 minutes with 

mammalian cells. This would result in a much stronger signal from transcriptional bursts. This is the 

observation that transcription occurs in short bursts of activity [165], and that the total relative number 

of transcripts in bulk sequencing assays is primarily driven by differences in frequencies of bursts rather 

than differences in maximum expression levels. Real-time monitoring of transcriptional bursts revealed 

they have duration of only 300-500 seconds in E. coli. This could be demonstrated with RNA-spikes as a 

control, as is done with single-cell qRT-PCR, however RNA-spikes are generally not compatible with 

droplet based single cell RNA sequencing, as the poisson distribution of 0.1 for cells means that the spikes 

will quickly consume sequencing reads, as they are present in all droplets while cells are present in only a 

few. We are therefore currently working on alternative controls, to identify the source of the signal, 

biological or technical, as well as optimize our barcoded hydrogel beads. 
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5.4 Single Cell analysis of Antibiotic Persister Cells 
As the development of single-cell transcriptomics with bacterial cells is alone a complex and 

valuable technological development, we would like to demonstrate and validate this method 

independently from using it for high-throughput screening with CRISPR-Cas mutants.  Therefore we will 

perform initial experiments for droplet based single bacterial RNA-seq to investigate variations in 

transcription patterns in E. coli sub-populations and how they contribute to Antibiotic Persistence.  This 

is an ideal system for initial experiments as: (1) it does not require any cloning ; (2) it is clinically significant; 

(3) it is necessary to go to the single cell level to disentangle the phenotypic heterogeneity underlying 

persistence. 

The growing prevalence of antibiotic resistance is a major problem confronting modern medicine. 

There are 400 000 infections caused by multidrug-resistant bacteria in Europe each year, and 25 000 of 

these cases are fatal [166]. Numerous national and international programs have been launched in 

response, often targeting resistance surveillance and the mechanisms of resistance propagation (e.g. 

EvoTAR: www.evotar.eu). This prevalence is due both to overuse of antibiotics and from exposure to lower 

sub-MIC concentrations in different, usually man-made, environments. Yet the acquisition of antibiotic 

resistance genes is not the only method that bacteria have to survive antibiotic treatments.  Within a given 

bacterial population there exists a sub-population of dormant cells that are able to survive antibiotic 

treatments because the cellular processes that are typically corrupted by antibiotics are not active.  

Termed ‘persisters’, this sub-population is able to resume growth after the removal of antibiotics and are 

distinct from antibiotic resistant mutants as their progeny are just as sensitive to the antibiotic as the 

original population.  As a result, antibiotic treatments must extend well past the alleviation of symptoms 

to prevent recurrent infections from these dormant cells.  To complicate matters, low concentrations of 

antibiotics were shown to induce ‘persister’ cell formation, which then resist high, cytotoxic, 

concentrations of antibiotics [8]. Persistence, is a phenotypic switch that does not involve genotypic 

change, but has dramatic consequences in chronic infections [167] and favors the development of 

genetically acquired resistance itself. This mechanism is regulated by multi-factorial and incompletely 

understood regulatory pathways involving the stringent and SOS responses.  As a result, antibiotic 

resistance and persistence are distinct but intertwined processes with significant clinical consequences. 

The phenotypic heterogeneity that exists even within small cell populations prevents 

measurements based on the averages of bacterial populations to account for the small but sometimes 

critical changes rarely occurring in individual bacteria and leading to antibiotic persistence.  Studying 

populations of bacteria at a single-cell level is thus essential to fully understand the physiological basis of 

antibiotic persistence. Indeed, individual cells can differ dramatically in size, protein levels, and expressed 

RNA transcripts. The crucial role of RNAs relies both in the fact that they reflect genome expression and 

in the evidence showing that they are also likely to impact genome function as well.  Therefore, to answer 

previously irresolvable questions biologists would ideally like to map changes in RNA levels from single 

bacteria within a population. This would allow interactions between multiple redundant proposed 

pathways to be deciphered and to quantify to what extent different pathways contribute to the overall 

population structure. Our approach for performing RNA-sequencing on single bacterial cells in microfluidic 

drops has immediate applications to this problem.  We thus aim to use this technique for bacterial 

transcriptomics analysis, first using E.coli and then the clinically relevant pathogen, Vibrio cholerae, 

selected following the use of commonly used antibiotic treatments. This powerful technology will lead, 
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for the first time, to high throughput investigation of bacterial persistence analysis that heretofore have 

been impossible to perform. 

Over sixty years after its discovery [168], persistence has been thoroughly investigated to uncover 

the general mechanisms and associated genes, however almost all studies have been performed on bulk 

bacterial cultures [169] [170]. Variation of the response extent at single cell level is almost unknown and 

has made it difficult to disentangle the multiple pathways that can lead to persister phenotypes. Given 

the random, transient and heterogeneous character of persistence, it is absolutely necessary to qualify 

the underlying gene expression pattern at the single cell level [171].  Bacterial pathogens such as V. 

cholerae, or Klebsiella pneumoniae, when incubated in presence of all classes of antibiotics at sub-

inhibitory concentrations varying from 1 to 10% of the MIC, trigger an SOS response and enter a mutagenic 

state [172] [173]. Preliminary RNA-Seq data suggests that these concentrations also trigger the stringent 

response in V. cholerae, which can explain the formation of persisters observed after sub-MIC 

aminoglycoside or ciprofloxacine treatments. 

Next generation sequencing (NGS) generates massive amounts of data and has the potential to 

provide large amounts of gene expression analysis at the single cell level. Currently hundreds of strains 

can be analyzed in a single run and transcriptomics [RNA-Seq], which produces millions of reads that are 

used to quantify cellular gene expression. In parallel, single-cell equipment (e.g. Fluidigm C1) has been 

recently developed and commercialized to facilitate access to analyses at the level of single cells. However 

these machines are primarily well suited for eukaryotic cells and the application to small and potentially 

motile bacteria remains problematic. Furthermore, costs and total throughput remain outstanding issues.  

Droplet-based microfluidics coupled to NGS has been recently used to overcome these limitations, 

allowing single cell transcriptomics of embryonic stem cells [17] and genome wide expression profiling of 

mammalian cells [18], of several thousands of cells in a single run.  The combination of droplet 

microfluidics and Next Generation Sequencing still needs to be adapted and applied to prokaryotes. This 

will offer a new powerful tool to understand antibiotic persistence phenotypes and open other new 

avenues of research. 

The existing knowledge regarding antibiotic persistence makes it an ideal candidate for initial 

experiments.  Many molecular pathways have been implicated in E. coli and genetic targets to reduce 

persistence have already been identified.  Activation of Toxin Antitoxin modules leads to growth arrest by 

interfering with translation.  However there is current disagreement as to the upstream pathways which 

activate these Toxin-Antitoxin modules, or if upstream pathways are required at all.  Current 

methodologies are largely limited to bulk measurements, and it remains unknown how much each 

potential pathway contributes to the overall persister phenotype, and how these pathways interact.  We 

have identified 23 key genes to screen for persister phenotypes, these include the aforementioned toxin 

genes, genes involved in the stringent response and implicated in the degradation of the antitoxins, genes 

involved in both the early and late stage SOS response, and genes recently identified in the flagella and 

serine biosynthesis pathways indicated to reduce persistence phenotype when deleted. 

 The fraction of E. coli cells that exist in a persister phenotype is correlated with the growth phase 

of the culture, therefore we plan to analyze single cells taken from both exponential growth phase (low 

persisters) and stationary phase (high persisters).  Additionally, as persisters are a rare phenotype, we 

plan to enrich a culture for persister cells.  Persister cells can be enriched in a population by treating with 

ampicillin as demonstrated by Lewis previously for transcriptional analysis of E. coli persister cells with 
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microarrays.  Due to the lysis of non-persister cells by ampicillin, E. coli cultures treated with ampicillin 

can be centrifuged to recovered unlysed persister cells [174]. An alternative approach to enrichment of 

persister cells is to pre-screen them with FACS.  As dormant cells are expected to have a low rate of protein 

synthesis, a strain that carries an unstable variant of GFP under the control of the ribosomal rrnB P1 

promoter can be used to sort cells with a low fluorescence and thus a low rate of protein synthesis.  After 

sorting Lewis reported a 5 fold increase in the percentage of cells that were persistent to ofloxacin [175]. 

 In parallel, all cultures screened with microfluidics will also be subjected to CFU (colony forming 

unit) assays with a set of commonly used antibiotics (ampicillin, ciprofloxacin, and gentamycin) to 

classically determine the fraction of persister cells in each sample.  Multiple antibiotics will be utilized as 

it has previously been demonstrated that persisters for one class of antibiotic are not necessarily 

persistent for all antibiotics, and to determine if persisters for specific classes of antibiotics correspond to 

specific molecular pathways. The well characterized nature of the molecular pathways in E. coli allows us 

the opportunity to explore how pathways implicated in persistence in Vibrio cholerae interact with other 

potential persister pathways.  Because exposure of sub-MIC levels of antibiotics can induce persister 

formation through activation of the SOS response and the Toxin higB, we will also screen E. coli cultures 

that have been stressed with sub-MIC levels of ampicillin, ciprofloxacin and gentamycin to observe how 

the other implicated persistence pathways respond to antibiotic treatments, as initial results from our 

Partners at Institute Pasteur shows that this is of critical importance in Vibrio cholerae. 
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5.5 Methodology  
Photolithography and Soft Lithography for creation of microfluidic devices 

Photolithography was used to create silicon wafers with the desired microfluidic design on the 

surface.  Wafers were heated at 200°C for 2 minutes to remove any vapor from the surface before adding 

a layer of Resin SU-8 at the desired thickness using a spin coater. For the Bacterial InDrop single cell 

RNAseq device, the channel height was approximately 40 µM.  For this thickness, the spin coater was set 

to 2000 rpm for 30 seconds, soft baked for 3 minutes at 65°C and then for 5 minutes at 95°C.  The wafer 

was then exposed to UV light (385nm negative photoresist) for 50 seconds using a Manual mask aligner 

MJB4, and baked again for 2 minutes at 65°C and for 5 minutes at 95°C.  The wafer was then developed 

for 3 minutes. 

Softlithography was performed by mixing Sylgard 184 polydimethylsiloxane (PDMS) base with the 

curing agent in a ratio of 9:1, consisting of 45g of base and 5g of curing agent for each microfluidic device. 

The mixture was then poured over the silicon wafer master mold, and placed in a vacuum chamber for 30 

minutes to remove dissolved gases from the PDMS mixture. The PDMS was then baked at 70°C for 2 hours.  

After hardening, the PDMS was removed from the silicon wafer and trimmed to the appropriate size with 

a scalpel, and holes for the inlets and outlets were punched using a WellTech Rapid-Core 0.75 biopsy 

punch. The PDMS and a Corning plain glass micro slide were cleaned using scotch tape to remove any 

dust.  The clean glass slide and PDMS were then placed into a Diener Zepto Plasma Cleaner with the 

microfluidic channels facing upward on the PDMS.  The slide and PMDS were then treated with oxygen 

plasma at ~35 W for ~30 seconds.  The PMDS and slide were removed from the plasma cleaner and the 

two exposed surfaces joined together to covalently bond the PDMS to the glass slide.  The microfluidic 

device was allowed to rest for 15 minutes for the bonding to occur, afterwards the device was silanated 

by flowing 1% 1H,1H,2H,2H-Perfluorooctyltriethoxysilane in HFE-7500 oil through the microfluidic device.  

Excess oil and silane solution was removed with nitrogen gas, and then rinsed with HFE-7500 oil, which 

again was removed with nitrogen gas.  

Preparation of Hydrogel Beads (LBC PEG-DA Bead protocol) 

Hydrogel beads are created from a polyethylene glycol diacrylate solution containing an 

oligonucleotide with an acrydite 5’ modification.  This modification allows for the DNA to be covalently 

incorporated into the hydrogel bead. A solution containing 100 µL of 400 µM Acrydite dsRandomA, 93 µL 

10% (w/w) PEG-DA-6000, 769 µL Tris 0.1 mM pH 8, 8.9 µL 1% (w/w) PEG-DA-700, 20 µL 2 µM FITC, 9 µL 

1% (v/v) photo-initiator (2-hdyroxy-2-methylpropiophenone) was created in a microcentrifuge tube 

protected from light with an aluminum foil covering.  Mixture was vortexed and centrifuged for 5 minutes 

at 11,000 RCF.  Solution was loaded into a 1 mL glass syringe covered with black tape to protect the 

solution from light.  A 5 mL glass syringe was loaded with HFE 7500 fluorinated oil containing 2% (w/v) 

Krytox surfactant.  Syringes were loaded into separate Harvard syringe pumps and connected to a 

microfluidic droplet maker with tubing containing an interior diameter of 0.34 µM.  Tubing was covered 

in black tape for the hydrogel solution to protect from light.  Initial flow rates were 150 µL/h for the 

hydrogel solution, and 500 µL/h for the oil solution.  Microfluidic device was placed within a microfluidic 

station to record the droplet volume.  Hydrogel and Oil solution flow rates were adjusted until droplet 

volume was approximately 9 pL. Droplets were collected in tubing that past repeatedly (3x) under a UV 

lamp (360 mW, 365 nm) to initiate polymerization before being collected in a 5 mL eppendorf tube. 

Critically, the microfluidic chip must be protected from UV light during droplet production. Approximately 
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70 million hydrogel beads were generated for each 1 mL of hydrogel solution. After Bead production, 

hydrogel beads were washed by brief centrifugation at 800 RCF and removal of oil solution.  Beads were 

washed with fresh HFE 7500 oil, briefly centrifuged at 800 RCF and the oil was removed again. Hexane 

was added to hydrogel beads up to a total volume of 5 mL.  Hydrogels were mixed in hexane by pipetting 

until pellet was completely broken.  Hydrogel beads were centrifuged for 10 seconds at 800 RCF to 

separate hexane from hydrogel beads and the hexane was removed.  Hydrogel beads were then rinsed 

by adding washing buffer consisting of 0.1 M Tris-HCl and 0.1% Tween20 and mixing by pipetting.  

Hydrogel beads were then centrifuged for 3 minutes at 2500 RCF and the washing buffer was removed.  

The rinse with washing buffer was repeated 3 times.  The beads were filtered by mixing approximately 20 

million hydrogel beads (800 µL) with 15 mL of Binding and Washing buffer (20 mM Tris-HCl pH 7.5, 50 mM 

NaCl, 0.1% Tween20) and filtering through a 20 µm Millipore filter.  An additional 15 mL of Binding and 

Washing buffer was added to wash filters.  Filtered beads were centrifuged for 3 minutes at 2500 RCF, the 

supernatant was removed, and beads were re-pooled in a 5 mL eppendorf tube.  Binding and Washing 

buffer was added to beads in a volume up to 5 mL.  Beads were stored at 4°C.  

Generation of DNA Barcode Library 

Critically the split-pool process used to add DNA barcodes was done within a laminar hood to 

minimize contamination and low retention filtered tips were used to avoid loss of hydrogel beads.  

Approximately 10 million of filtered hydrogel beads (250 µL) were washed 3 times with 4 mL of Binding 

and Washing buffer (20 mM Tris-HCl pH 7.5, 50 mM NaCl, 0.1% Tween20).  Each washing step consisted 

of adding 4 mL of Binding and Washing buffer, mixing well with a pipette, centrifuging for 2 minutes at 

3000 RCF, and finally discarding the supernatant.  The volume of hydrogel beads was then marked on the 

tube to make it easier to find the height of the hydrogel beads in downstream steps. The first adaptor was 

ligated to the hydrogel beads by making a solution of 1000 µL 2x T7 DNA Ligase Buffer, 20 µL of T7 DNA 

Ligase, 160 µL of 50 µM ds 5Pi0t-Photo-Rd1-iA (oMD381, oMD418, oMD419), and 570 µL Nuclease free 

water.  The ds 5Pi0t-Photo-Rd1-iA contains a photo cleavable linker which allows it to detach from the 

Hydrogel Beads when exposed to UV light, but as a result, requires all further steps to be done in red light, 

and samples to be covered whenever possible to prevent premature cleavage of the linker.  The Ligation 

solution is added to the washed Hydrogel Beads, mixed, and incubated for 30 minutes at room 

temperature in a tube rotator.  After incubation, Hydrogel Beads were centrifuged for 2 minutes at 3000 

RCF and the solution was removed from the beads.  The beads were then washed as above, with the 

exception of the final wash, which contained only 750 µL of Binding and Washing buffer instead of 4 mL, 

and a 4 µL aliquot was taken before centrifugation during this final washing step and saved for later quality 

control.  The first barcode oligonucleotide was ligated by making a ligation solution containing 1000 µL of 

2x T7 DNA Ligase Buffer, 20 µL T7 DNA Ligase, and 340 µL of Nuclease free water and adding it to the 

hydrogel beads.  The hydrogel beads were then mixed, and aliquoted into 12 wells of a PCR strip, of 

approximately 132 µL of Hydrogel Bead and Ligation solution each. The beads are then aliquoted into a 

96 deep well DNA LoBind plate which is prefilled with 4 µL of 20 µM ds index A barcode oligonucleotides. 

A multichannel pipette was used to add 16 µL of Hydrogel Bead and Ligation solution to each well.  The 

microtiter plate was covered and incubated for 15 minutes at 25°C while shaking at 600 rpm.  The plate 

was removed from agitation and incubated for a further 10 minutes at room temperature before heat 

inactivation at 65°C for 10 minutes.  After being allowed to return to room temperature, the plate was 

placed on ice and 200 µL of cold Binding and Washing buffer was added to each well.  The solution from 

each well was transferred into 4 cold 5 mL DNA LoBind Eppendorf tubes and centrifuged at 4°C for 2 
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minutes at 3000 RCF. The supernatant was discarded and a fresh 2 mL of cold Binding and Washing buffer 

was added to each tube.  The solution from two of the tubes was then pooled with one of the remaining 

two tubes.  The two tubes containing solution were then centrifuged at 4°C for 2 minutes at 3000 RCF, 

and the supernatant was removed. For each tube, 375 µL of cold Binding and Washing buffer was added 

and then the two solutions were pooled together.  A ligation control was taken by removing 4 µL of 

solution and saving it for quality control.  This process of split-ligation-pooling was repeated for indexes 

B, C, and D. Gene specific primers were ligated to the hydrogel beads by making a solution of 1000 µL 2x 

T7 DNA Ligase Buffer, 20 µL of T7 DNA Ligase, 160 µL of 50 µM double stranded gene specific 

oligonucleotides (oMD588, oMD590, oMD592, oMD594, oMD596), and 570 µL Nuclease free water.  The 

gene specific oligonucleotides are first made double stranded by annealing with oMD428, pooling, and 

mixing well.  The Ligation solution is added to the washed Hydrogel Beads, mixed, and incubated for 30 

minutes at room temperature in a tube rotator.  After incubation, Hydrogel Beads were centrifuged for 2 

minutes at 3000 RCF and the solution was removed from the beads.  The beads were then washed as with 

the first oligonucleotide linker, and again a 4 µL aliquot was taken before centrifugation during the final 

washing step and saved for later quality control.  The 4 µL aliquots for quality control were then exposed 

to UV light for 3 minutes, and 6 µL of Nuclease free water and 2 µL of 6x Loading Dye was added to each 

aliquot.  Each aliquot was then loaded onto a 2% agarose gel stained with 1X GelRed.  The final ligation 

control was also diluted 1/10 and ran on a Agilent 4200 Tapestation HS DNA 1000 to quantify the 

proportion of full length barcoded RT primers. 

Single cell droplet-based RNA Sequencing of Bacteria 

E. coli MG1655 cells were grown overnight in M9 Media + 0.4% Glucose.  The next morning, cells were 

diluted 1/5 in fresh M9 media + 0.4% Glucose and grown for 3 hours to an OD (600nm) of 0.05. Cells were 

pelleted by taking 1 mL of culture and centrifuging for 2 minutes at 11,000 RCF. Cells were then 

resuspended in 50 µL of RNA Later and incubated at room temperature for 5 minutes.  Lysis RT solution 

was made by mixing 10 µL of Superscript III Reverse Transcriptase, 5 µL of RNaseOUT Recombinant 

Ribonuclease inhibitor, 10 µL Lysozyme in TE buffer at a concentration of 150 mg/mL, 5 µL of Polymyxin 

B solution, 5 µL of 0.5M Trizma (pH 7.5), and 15 µL H2O. Cells were diluted by mixing 5 µL of Cells, 11.875 

µL of 1M Tris-HCl (pH 8.4), and 8.125 µL H2O.  The Cell solution was then made by mixing 10 µL of diluted 

cells, 2.5 µL of SUPERase in RNase Inhibitor, 2.5 µL Qiagen Proteinase K, 10 µL dNTP mix (10 mM dATP, 10 

mM dGTP, 10 mM dTTP, 2 mM dCTP), 5 µL Biotin-14-dCTP (1 mM), 7.5 µL 1M KCl, 1 µL 270 mM MgCl2, 5 

µL 0.1M DTT, and 6.5 µL H2O.  Hydrogel bead loading solution was made by mixing 500 µL of 1M Tris-HCl 

(pH 8.4), 750 µL 1M KCl, 28 µL 1M MgCl2 7.71265 mg DTT, 500 µL 10% IPEGAL, and 8.222 mL H2O.  This 

solution was used to wash 50 µL of Barcoded hydrogel beads 3 times by centrifuging hydrogel beads for 

1 minute at 4000 RCF, removing supernatant, adding 200 µL of Hydrogel bead loading solution, mixing 

well, and repeating. Three omnifit syringes were filled with HFE-7500 oil. Approximately 1m of tubing was 

attached to each syringe and filled with HFE-7500 oil by pushing on the syringes. 50uL of each solution 

above (Lysis RT, Cell and Hydrogel Beads) were loaded into the tubing of a syringe. Flow rates used were 

200 uL/h for each solution, and 300 uL/h for HFE-7500 with 2% Surfactant. This resulted in drops with a 

volume of ~100 pL. Droplets were collected until solutions were consumed. Droplets were then incubated 

at 50°C for 3 hours. The emulsion was then broken and treated with exonuclease I to remove excess 

primers. Dynabeads M280 were washed with binding washing buffer (5 mM Tris-HCl pH 7.5, 0.5 mM EDTA, 

1 M NaCl) supplemented with BSA. Dynabeads were used to bind to cDNA with incorporated biotin-14-

dCTP. DNA bound Dynabeads were washed with binding washing buffer supplemented with 2 M urea. 
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DNA was freed from Dynabeads by incubating the beads in 95% formamide + 10mM EDTA, pH 8.2 for 2 

minutes at 90°C. Illumina adaptors were added to cDNA with primer extension. Sequencing was 

performed by Institute Pasteur. 

5.6 Supplementary Figures 

 

Figure 100: Mean gene expression from 12 RNA-Seq experiments. RNA-Seq experiments were normalized to have the same median 
gene expression, and then the mean of each gene was taken. These were distributed into 20 bins determined by a logarithmic 
scale. The distribution of the mean expression for each gene indicates that most genes have between 150 to 350 reads per 
experiment. 
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Figure 31: 

 

Figure 101: Determining sensitivity of Drop-Seq using a panel of genes with a range of expression levels. Using the distribution of 
gene expression from Figure 30, one gene from each bin was chosen by the gene with the smallest standard deviation of expression 
within each bin. These 16 genes were chosen to be reporter genes to determine what the minimum level of expression we can 
expect to detect with single cell droplet based RNA-sequencing. We additionally included the remaining 4 genes from the second 
largest bin to ensure we had good detection of highly expressed genes for troubleshooting purposes. The mean number of reads 
expected from bulk RNA sequencing for each reporter is shown. 

 

Figure 102: Histogram of the number of reads per UMI. The histogram of the number of reads per UMI is weighted by the number 
of reads.  In a linear scale (A) this gives the expected distribution based on previous experiments with mammalian inDrop 
techniques. In a log scale (B) there are three distributions detected. 
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Figure 103: Raw Sequencing Results.  (A) The total number of UMI detected for each gene. (B) The distribution of the number of 
UMIs detected for each barcode. (C) The number of UMIs for each pair of genes for each barcode. 
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Figure 104 Sequencing Results after stringent filtering.  (A) The total number of UMI detected for each gene. (B) The distribution 
of the number of UMIs detected for each barcode. (C) The number of UMIs for each pair of genes for each barcode. 
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6   Perspectives 
 

Here we demonstrate a method for using CRISPR-Cas to generate high-dimensional perturbation 

libraries, and a potential method for screening them with droplet based microfluidics similar to recent 

methods for mammalian cells [19] [20]. There are two key differences between these approaches and the 

one detailed here. Firstly, the application for droplet-based single-cell RNA sequencing has not yet been 

demonstrated, and poses significant difficulties over mammalian cells. Secondly, CRISPR perturbations 

with pCKDL are uniform, cover all possible combinations of perturbations, and contain no redundancies 

in the perturbation library. This has significant advantages over relying on rare and random multiple 

infections with lentiviruses. Primarily, with a low multiplicity of infection used in Perturb-Seq, the 

proportion of double and triple perturbations is low compared to the number of single perturbations, 

even though this represents a much larger proportion of the total possible perturbations. Additionally, 

increasing the multiplicity of infection would result in increased instances of recombination between 

perturbations and barcodes, thus confounding the results. Finally, there are no perturbation combinations 

above triples, limiting the ability to detect higher order epistasis.  

This technique was applied to the global transcription regulators of E. coli. We found significant 

higher order epistasis between these regulators. While much of the variance in gene expression can be 

attributed to the independent action of the global regulators, the dimensionality needed to explain most 

of the variance is very high. High order epistasis has been found previously with genotype to phenotype 

maps, and consisted of 2.2% to 31% of the variance in the data. We have additionally found that sign 

epistasis, which may restrict evolutionary trajectories, is dependent on both the selection pressure and 

the environment. By varying either of these, it is possible to project an otherwise rugged adaptive 

landscape into more dimensions, which can allow the organism to evolve around or out of otherwise 

prohibited fitness valleys. Taken together, the additionally dimensionality in the genetic response 

provided by higher order epistasis may provide the same benefits. 

This would help to explain changings in regulation in terms of evolution. Despite global regulators 

acting as highly connected hubs in the transcriptional network, they tend to be highly evolvable. 

Traditionally network hubs are thought to provide critical roles, and as such should be highly conserved. 

Yet there are many observations that changes in global regulation through global transcriptional 

regulators are some of the earliest and most common mutations when cells adapt to a new environment 

[31] [32] [33] [34] [35]. We are currently developing a framework which predicts that these global 

regulators and the network structure itself act as a tuning device for gene expression. Two analogies could 

be a fitting function, or an artificial neural network. In the analogy of a fitting function, each global 

regulator acts like a parameter in the function, and such a large number of parameters allows the function 

to fit nearly any desired trajectories. Similarly, in the analogy of an artificial neural network, each 

transcription factor acts as a neuron and each strongly connected component in the transcriptional 

regulatory network acts like a layer of the artificial neural network. This allows the network to take on 

nearly any desired function. As such, we can view our perturbation library as each having a distinct 

trajectory through the potential genotype space. Individual trajectories come closer or farther to some 

idealized phenotype as they pass through this space.  
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There is still much work that needs to be done to confirm such claims however. First and foremost, 

RNA-sequencing data must be reproduced and must be done for additional growth media. We expect this 

to be completed this fall, but it is necessary to both estimate the noise in our experiments and to identify 

potential outliers or artifacts. Secondly, Competition and Swimming fitness measurements from chapter 

two must be replicated in a less burdensome system, to see if it improves reproducibility. At the moment 

the data is too noisy and not reproducible enough to draw conclusions from. If the plasmid burden is 

indeed causing the reproducibility issues it opens a further avenue of interest, how does the cell decide 

when to switch off costly functions for the cell? This is unlikely to be something that we will address 

immediately but how and why certain biological replicates, and even specific cells within an experiment, 

switch between swimming phenotypes despite being clonal is potentially very rewarding. 

In terms of the microfluidic aspects, initial single-cell RNA sequencing data raises the question of 

whether there is enough RNA in a single bacterial cell, and if it is stable enough, to extract any meaningful 

data for high-throughput screening or detection of distinct subpopulations. Single-cell RNA sequencing in 

mammalian cells is already notoriously noisy data. Mammalian cells contain approximately 360,000 mRNA 

per cell [176] while bacterial cells only contain ~3000 [177]. The low number of mRNAs and their short 

half-life may make it difficult to reconstruct an accurate representation of the state of the cell and will 

correlate very poorly with the protein content of the cell.  

Finally, our molecular barcoding for antibiotic combinations is not limited to antibiotics. We could 

imagine screening combinations of environmental factors such as carbon sources and pH, or combinations 

of environments with genetic perturbations. This opens up further avenues for large environment, 

genotype, phenotype mapping, and the modular nature of the microfluidics means that improvements in 

microfluidic designs can quickly be incorporated into our system.  
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