L. Van-oudenhove and B. Devreese, A review on recent developments in mass spectrometry instrumentation and quantitative tools advancing bacterial proteomics, Appl. Microbiol. Biotechnol, vol.97, issue.11, pp.4749-4762, 2013.

C. Wynne, C. Fenselau, P. A. Demirev, and N. Edwards, Top-down identification of protein biomarkers in bacteria with unsequenced genomes, Anal. Chem, vol.81, issue.23, pp.9633-9642, 2009.

F. P. Brennan, J. Grant, C. H. Botting, V. O'flaherty, K. G. Richards et al., Insights into the low-temperature adaptation and nutritional flexibility of a soil-persistent Escherichia coli, FEMS Microbiol. Ecol, vol.84, issue.1, pp.75-85, 2013.

G. Cacace, M. F. Mazzeo, A. Sorrentino, V. Spada, A. Malorni et al., Proteomics for the elucidation of cold adaptation mechanisms in Listeria monocytogenes, J. Proteome, vol.73, issue.10, pp.2021-2030, 2010.

P. Carranza, A. Grunau, T. Schneider, I. Hartmann, A. Lehner et al., A gel-free quantitative proteomics approach to investigate temperature adaptation of the food-borne pathogen Cronobacter turicensis 3032, Proteomics, vol.10, issue.18, pp.3248-3261, 2010.

K. Riedel and A. Lehner, Identification of proteins involved in osmotic stress response in Enterobacter sakazakii by proteomics, Proteomics, vol.7, issue.8, pp.1217-1231, 2007.

B. Sanchez, M. L. Cabo, A. Margolles, and J. J. Herrera, A proteomic approach to cold acclimation of Staphylococcus aureus CECT 976 grown at room and human body temperatures, Int. J. Food Microbiol, vol.144, issue.1, pp.160-168, 2010.

D. C. Suyal, A. Yadav, Y. Shouche, and R. Goel, Differential proteomics in response to low temperature diazotrophy of Himalayan psychrophilic nitrogen fixing Pseudomonas migulae S10724 strain, Curr. Microbiol, vol.68, issue.4, pp.543-550, 2014.

C. Wu, G. He, and J. Zhang, Physiological and proteomic analysis of Lactobacillus casei in response to acid adaptation, J. Ind. Microbiol. Biotechnol, vol.41, issue.10, pp.1533-1540, 2014.

B. Voigt, C. X. Hieu, K. Hempel, D. Becher, R. Schluter et al., Cell surface proteome of the marine planctomycete Rhodopirellula baltica, Proteomics, vol.12, issue.11, pp.1781-1791, 2012.

E. Espino, K. Koskenniemi, L. Mato-rodriguez, T. A. Nyman, J. Reunanen et al., Uncovering surface-exposed antigens of Lactobacillus rhamnosus by cell shaving proteomics and two-dimensional immunoblotting, J. Proteome Res, vol.14, issue.2, pp.1010-1024, 2015.

Y. Cao and C. R. Bazemore-walker, Proteomic profiling of the surface-exposed cell envelope proteins of Caulobacter crescentus, J. Proteome, vol.97, pp.187-194, 2014.

M. J. Rodriguez-ortega, Shaving" live bacterial cells with proteases for proteomic analysis of surface proteins, Methods Mol. Biol, vol.1722, pp.21-29, 2018.

S. J. Walker, P. Archer, and J. G. Banks, Growth of Listeria monocytogenes at refrigeration temperatures, J. Appl. Bacteriol, vol.68, issue.2, pp.157-162, 1990.

M. B. Cole, M. V. Jones, and C. Holyoak, The effect of pH, salt concentration and temperature on the survival and growth of Listeria monocytogenes, J. Appl. Bacteriol, vol.69, issue.1, pp.63-72, 1990.

P. Chavant, B. Martinie, T. Meylheuc, M. N. Bellon-fontaine, and M. Hebraud, Listeria monocytogenes LO28: surface physicochemical properties and ability to form biofilms at different temperatures and growth phases, Appl. Environ. Microbiol, vol.68, issue.2, pp.728-737, 2002.

S. Renier, M. Hebraud, and M. Desvaux, Molecular biology of surface colonization by Listeria monocytogenes: an additional facet of an opportunistic gram-positive foodborne pathogen, Environ. Microbiol, vol.13, issue.4, pp.835-850, 2011.

T. Møretrø and S. Langsrud, Listeria monocytogenes: biofilm formation and persistence in food-processing environments, Biofilms, vol.1, issue.2, pp.107-121, 2004.

B. F. Vogel, L. T. Hansen, H. Mordhorst, and L. Gram, The survival of Listeria monocytogenes during long term desiccation is facilitated by sodium chloride and organic material, Int. J. Food Microbiol, vol.140, issue.2-3, pp.192-200, 2010.

L. T. Hansen and B. F. Vogel, Desiccation of adhering and biofilm Listeria monocytogenes on stainless steel: survival and transfer to salmon products, Int. J. Food Microbiol, vol.146, issue.1, pp.88-93, 2011.

J. Esbelin, T. Santos, and M. Hebraud, Desiccation: An environmental and food industry stress that bacteria commonly face, Food Microbiol, vol.69, pp.82-88, 2018.

E. Giaouris, E. Heir, M. Hebraud, N. Chorianopoulos, S. Langsrud et al., Attachment and biofilm formation by foodborne bacteria in meat processing environments: causes, implications, role of bacterial interactions and control by alternative novel methods, Meat Sci, vol.97, issue.3, pp.298-309, 2014.

L. Theron, D. Centeno, C. Coudy-gandilhon, E. Pujos-guillot, T. Astruc et al., A proof of concept to bridge the gap between mass spectrometry imaging, protein identification and relative quantitation: MSI~LC-MS/MS-LF, Proteomes, vol.4, issue.4, 2016.

K. A. Floyd, J. L. Moore, A. R. Eberly, J. A. Good, C. L. Shaffer et al., Adhesive fiber stratification in uropathogenic Escherichia coli biofilms unveils oxygen-mediated control of type 1 pili, PLoS Pathog, vol.11, issue.3, p.1004697, 2015.

T. M. Mb, B. Aydin, R. P. Carlson, and L. Hanley, Identification and imaging of peptides and proteins on Enterococcus faecalis biofilms by matrix assisted laser desorption ionization mass spectrometry, The Analyst, vol.137, issue.21, pp.5018-5025, 2012.

T. Alexandrov, M. Becker, S. O. Deininger, G. Ernst, L. Wehder et al., Spatial segmentation of imaging mass spectrometry data with edge-preserving image denoising and clustering, J. Proteome Res, vol.9, issue.12, pp.6535-6546, 2010.

J. A. Vizcaino, A. Csordas, N. Del-toro, J. A. Dianes, J. Griss et al., update of the PRIDE database and its related tools, Nucleic Acids Res, vol.44, issue.22, p.11033, 2016.

R. M. Donlan, Biofilm formation: a clinically relevant microbiological process, Clin. Infect. Dis, vol.33, issue.8, pp.1387-1392, 2001.

T. Santos, J. L. Capelo, H. M. Santos, I. Oliveira, C. Marinho et al., Use of MALDI-TOF mass spectrometry fingerprinting to characterize Enterococcus spp. and Escherichia coli isolates, J. Proteom, vol.127, pp.321-331, 2015.

M. V. Ugarov, T. Egan, D. V. Khabashesku, J. A. Schultz, H. Peng et al., MALDI matrices for biomolecular analysis based on functionalized carbon nanomaterials, Anal. Chem, vol.76, issue.22, pp.6734-6742, 2004.

M. Guilbaud, P. Piveteau, M. Desvaux, S. Brisse, and R. Briandet, Exploring the diversity of Listeria monocytogenes biofilm architecture by high-throughput confocal laser scanning microscopy and the predominance of the honeycomb-like morphotype, Appl. Environ. Microbiol, vol.81, issue.5, pp.1813-1819, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01204409

S. K. Maier, H. Hahne, A. M. Gholami, B. Balluff, S. Meding et al., Comprehensive identification of proteins from MALDI imaging, Mol. Cell. Proteom.: MCP, vol.12, issue.10, pp.2901-2910, 2013.

V. Ryzhov and C. Fenselau, Characterization of the protein subset desorbed by MALDI from whole bacterial cells, Anal. Chem, vol.73, issue.4, pp.746-750, 2001.

K. Hunger, C. L. Beckering, F. Wiegeshoff, P. L. Graumann, and M. A. Marahiel, Cold-induced putative DEAD box RNA helicases CshA and CshB are essential for cold adaptation and interact with cold shock protein B in Bacillus subtilis, J. Bacteriol, vol.188, issue.1, pp.240-248, 2006.

A. Markkula, M. Mattila, M. Lindstrom, and H. Korkeala, Genes encoding putative DEAD-box RNA helicases in Listeria monocytogenes EGD-e are needed for growth and motility at 3 degrees C, Environ. Microbiol, vol.14, issue.8, pp.2223-2232, 2012.

T. Haslberger, B. Bukau, and A. Mogk, Towards a unifying mechanism for ClpB/Hsp104-mediated protein disaggregation and prion propagation, Biochem. Cell Biol, vol.88, issue.1, pp.63-75, 2010.

T. Hanawa, M. Fukuda, H. Kawakami, H. Hirano, S. Kamiya et al., The Listeria monocytogenes DnaK chaperone is required for stress tolerance and efficient phagocytosis with macrophages, Cell Stress Chaperones, vol.4, issue.2, pp.118-128, 1999.

K. Liberek, J. Marszalek, D. Ang, C. Georgopoulos, and M. Zylicz, Escherichia coli DnaJ and GrpE heat shock proteins jointly stimulate ATPase activity of DnaK, Proc. Natl. Acad. Sci. U. S. A, vol.88, issue.7, pp.2874-2878, 1991.

T. P. Burke and D. A. Portnoy, SpoVG is a conserved RNA-binding protein that regulates Listeria monocytogenes lysozyme resistance, Virulence Swarming Motil. mBio, vol.7, issue.2, p.240, 2016.

K. Nicaogain and C. P. O'byrne, The role of stress and stress adaptations in determining the fate of the bacterial pathogen Listeria monocytogenes in the food chain, Front. Microbiol, vol.7, p.1865, 2016.

M. Avila-perez, J. Vreede, Y. Tang, O. Bende, A. Losi et al., In vivo mutational analysis of YtvA from Bacillus subtilis: mechanism of light activation of the general stress response, J. Biol. Chem, vol.284, issue.37, pp.24958-24964, 2009.

S. M. Moorhead and G. A. Dykes, The role of the sigB gene in the general stress response of Listeria monocytogenes varies between a strain of serotype 1/2a and a strain of serotype 4c, Curr. Microbiol, vol.46, issue.6, pp.461-466, 2003.

Y. C. Chan, K. J. Boor, and M. Wiedmann, SigmaB-dependent and sigmaB-independent mechanisms contribute to transcription of Listeria monocytogenes cold stress genes during cold shock and cold growth, Appl. Environ. Microbiol, vol.73, issue.19, pp.6019-6029, 2007.

M. Utratna, I. Shaw, E. Starr, and C. P. O'byrne, Rapid, transient, and proportional activation of sigma(B) in response to osmotic stress in Listeria monocytogenes, Appl. Environ. Microbiol, vol.77, issue.21, pp.7841-7845, 2011.

S. Meding, B. Balluff, M. Elsner, C. Schone, S. Rauser et al., Tissue-based proteomics reveals FXYD3, S100A11 and GSTM3 as novel markers for regional lymph node metastasis in colon cancer, J. Pathol, vol.228, issue.4, pp.459-470, 2012.

A. K. Eshwar, C. Guldimann, A. Oevermann, and T. Tasara, Cold-shock domain family proteins (Csps) are involved in regulation of virulence, cellular aggregation, and flagella-based motility in Listeria monocytogenes, Front. Cell. Infect. Microbiol, vol.7, issue.453, 2017.

B. Schmid, J. Klumpp, E. Raimann, M. J. Loessner, R. Stephan et al., Role of cold shock proteins in growth of Listeria monocytogenes under cold and osmotic stress conditions, Appl. Environ. Microbiol, vol.75, issue.6, pp.1621-1627, 2009.

H. H. Wemekamp-kamphuis, A. K. Karatzas, J. A. Wouters, and T. Abee, Enhanced levels of cold shock proteins in Listeria monocytogenes LO28 upon exposure to low temperature and high hydrostatic pressure, Appl. Environ. Microbiol, vol.68, issue.2, pp.456-463, 2002.

E. Abachin, C. Poyart, E. Pellegrini, E. Milohanic, F. Fiedler et al., Formation of D-alanyl-lipoteichoic acid is required for adhesion and virulence of Listeria monocytogenes, Mol. Microbiol, vol.43, issue.1, pp.1-14, 2002.

S. B. Barbuddhe, T. Maier, G. Schwarz, M. Kostrzewa, H. Hof et al., Rapid identification and typing of listeria species by matrix-assisted laser desorption ionization-time of flight mass spectrometry, Appl. Environ. Microbiol, vol.74, issue.17, pp.5402-5407, 2008.

S. Jadhav, D. Sevior, M. Bhave, and E. A. Palombo, Detection of Listeria monocytogenes from selective enrichment broth using MALDI-TOF mass spectrometry, J. Proteome, vol.97, pp.100-106, 2014.

J. L. Norris and R. M. Caprioli, Imaging mass spectrometry: a new tool for pathology in a molecular age, Proteomics Clin. Appl, vol.7, issue.11, pp.733-738, 2013.

J. Azeredo, N. F. Azevedo, R. Briandet, N. Cerca, T. Coenye et al., Critical review on biofilm methods, vol.43, issue.3, pp.313-351, 2017.

T. Santos, Seek and destroy process: Listeria monocytogenes process controls in the ready-to-eat meat and poultry industry, J Food Prot, vol.78, pp.436-481, 2015.

S. Renier, M. Hebraud, and M. Desvaux, Molecular biology of surface colonization by Listeria monocytogenes: an additional facet of an opportunistic Gram-positive foodborne pathogen, Environ Microbiol, vol.13, pp.835-50, 2011.

A. Ricci, A. Allende, D. Bolton, M. Chemaly, R. Davies et al., Listeria Monocytogenes Contamination of Ready-to-Eat Foods and the Risk for Human Health in the EU, European Food Safety Authority, 2018.

. Efsa and . Multi, Country Outbreak of Listeria monocytogenes Serogroup IVb, Multi-Locus Sequence Type 6, Infections Linked to Frozen Corn and Possibly to Other Frozen Vegetables -First Update, European Food Safety Authority, 2018.

C. M. De-noordhout, B. Devleesschauwer, F. J. Angulo, G. Verbeke, J. Haagsma et al., The global burden of listeriosis: a systematic review and meta-analysis, Lancet Infect Dis, vol.14, pp.1073-82, 2014.

F. Allerberger and M. Wagner, Listeriosis: a resurgent foodborne infection, Clin Microbiol Infect, vol.16, pp.16-23, 2010.

A. L. Vivant, D. Garmyn, and P. Piveteau, Listeria monocytogenes, a down-to-earth pathogen, Front Cell Infect Microbiol, vol.3, p.87, 2013.

P. Vogeleer, Y. D. Tremblay, A. A. Mafu, M. Jacques, and J. Harel, Life on the outside: role of biofilms in environmental persistence of Shigatoxin producing Escherichia coli, Front Microbiol, vol.5, p.317, 2014.

J. Esbelin, T. Santos, and M. Hebraud, Desiccation: an environmental and food industry stress that bacteria commonly face, Food Microbiol, vol.69, pp.82-90, 2018.

S. J. Cordwell, Technologies for bacterial surface proteomics, Curr Opin Microbiol, vol.9, pp.320-329, 2006.

D. Cabanes, P. Dehoux, O. Dussurget, L. Frangeul, and P. Cossart, Surface proteins and the pathogenic potential of Listeria monocytogenes, Trends Microbiol, vol.10, pp.238-283, 2002.

T. Rabilloud, Membrane proteins and proteomics: love is possible, but so difficult, Electrophoresis, pp.174-80, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00394615

F. Carvalho, S. Sousa, and D. Cabanes, How Listeria monocytogenes organizes its surface for virulence, Front Cell Infect Microbiol, vol.4, p.48, 2014.

E. Giaouris, E. Heir, M. Hebraud, N. Chorianopoulos, S. Langsrud et al., Attachment and biofilm formation by foodborne bacteria in meat processing environments: causes, implications, role of bacterial interactions and control by alternative novel methods, Meat Sci, vol.97, pp.298-309, 2014.

K. Hempel, J. Pane-farre, A. Otto, S. Sievers, M. Hecker et al., Quantitative cell surface proteome profiling for SigB-dependent protein expression in the human pathogen Staphylococcus aureus via biotinylation approach, J Proteome Res, vol.9, pp.1579-90, 2010.

H. K. Tiong, S. Hartson, and P. M. Muriana, Comparison of five methods for direct extraction of surface proteins from Listeria monocytogenes for proteomic analysis by orbitrap mass spectrometry, J Microbiol Methods, vol.110, pp.54-60, 2015.

M. B. Cole, M. V. Jones, and C. Holyoak, The effect of pH, salt concentration and temperature on the survival and growth of Listeria monocytogenes, J Appl Bacteriol, vol.69, pp.63-72, 1990.

M. J. Davis, P. J. Coote, and O. Cp, Acid tolerance in Listeria monocytogenes: the adaptive acid tolerance response (ATR) and growth-phasedependent acid resistance, Microbiology, pp.2975-82, 1996.

B. F. Vogel, L. T. Hansen, H. Mordhorst, and L. Gram, The survival of Listeria monocytogenes during long term desiccation is facilitated by sodium chloride and organic material, Int J Food Microbiol, vol.140, pp.192-200, 2010.

T. Santos, L. Theron, C. Chambon, D. Viala, D. Centeno et al., MALDI mass spectrometry imaging and in situ microproteomics of Listeria monocytogenes biofilms, J Proteomics, vol.187, pp.152-60, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01901452

S. J. Walker, P. Archer, and J. G. Banks, Growth of Listeria monocytogenes at refrigeration temperatures, J Appl Bacteriol, vol.68, pp.157-62, 1990.

J. R. Junttila, S. I. Niemela, and J. Hirn, Minimum growth temperatures of Listeria monocytogenes and non-haemolytic Listeria, J Appl Bacteriol, vol.65, pp.321-328, 1988.

J. Johansson, P. Mandin, A. Renzoni, C. Chiaruttini, M. Springer et al., An RNA thermosensor controls expression of virulence genes in Listeria monocytogenes, Cell, vol.110, pp.551-61, 2002.

I. Giovannacci, G. Ermel, G. Salvat, J. L. Vendeuvre, and M. N. Bellon-fontaine, Physicochemical surface properties of five Listeria monocytogenes strains from a pork-processing environment in relation to serotypes, genotypes and growth temperature, J Appl Microbiol, vol.88, pp.992-1000, 2000.

A. S. Angelidis and G. M. Smith, Role of the glycine betaine and carnitine transporters in adaptation of Listeria monocytogenes to chill stress in defined medium, Appl Environ Microbiol, vol.69, pp.7492-7500, 2003.

Y. C. Chan, Y. Hu, S. Chaturongakul, K. D. Files, B. M. Bowen et al., Contributions of two-component regulatory systems, alternative sigma factors, and negative regulators to Listeria monocytogenes cold adaptation and cold growth, J Food Prot, vol.71, pp.420-425, 2008.

M. M. Hayman, R. C. Anantheswaran, and S. J. Knabel, Heat shock induces barotolerance in Listeria monocytogenes, J Food Prot, vol.71, pp.426-456, 2008.

A. Pontinen, A. Markkula, M. Lindstrom, and H. Korkeala, Two-componentsystem histidine kinases involved in growth of Listeria monocytogenes EGD-e at low temperatures, Appl Environ Microbiol, vol.81, pp.3994-4004, 2015.

B. Lee, M. Hébraud, and T. Bernardi, Increased adhesion of Listeria monocytogenes strains to abiotic surfaces under cold stress. Front Microbiol, vol.8, p.2221, 2017.

T. Tasara and R. Stephan, Evaluation of housekeeping genes in Listeria monocytogenes as potential internal control references for normalizing mRNA expression levels in stress adaptation models using real-time PCR, FEMS Microbiol Lett, vol.269, pp.265-72, 2007.

B. Schmid, J. Klumpp, E. Raimann, M. J. Loessner, R. Stephan et al., Role of cold shock proteins in growth of Listeria monocytogenes under cold and osmotic stress conditions, Appl Environ Microbiol, vol.75, pp.1621-1628, 2009.

C. Arguedas-villa, R. Stephan, and T. Tasara, Evaluation of cold growth and related gene transcription responses associated with Listeria monocytogenes strains of different origins, Food Microbiol, vol.27, pp.653-60, 2010.

R. A. Ivy, M. Wiedmann, and K. J. Boor, Grown at 7 ? C shows reduced acid survival and an altered transcriptional response to acid shock compared to L. monocytogenes grown at 37 ? C, Appl Environ Microbiol, vol.78, pp.3824-3860, 2012.

M. Mattila, P. Somervuo, T. Rattei, H. Korkeala, R. Stephan et al., Phenotypic and transcriptomic analyses of Sigma L-dependent characteristics in Listeria monocytogenes EGD-e, Food Microbiol, vol.32, pp.152-64, 2012.

J. Durack, T. Ross, and J. P. Bowman, Characterisation of the transcriptomes of genetically diverse Listeria monocytogenes exposed to hyperosmotic and low temperature conditions reveal global stress-adaptation mechanisms, PLoS ONE, vol.8, p.73603, 2013.

D. Kaspar, F. Auer, J. Schardt, F. Schindele, A. Ospina et al., Temperature-and nitrogen source-dependent regulation of GlnR target genes in Listeria monocytogenes, FEMS Microbiol Lett, vol.355, pp.131-172, 2014.

P. Cabrita, M. J. Trigo, R. B. Ferreira, and L. Brito, Differences in the expression of cold stress-related genes and in the swarming motility among persistent and sporadic strains of Listeria monocytogenes, Foodborne Pathog Dis, vol.12, pp.576-84, 2015.

N. Cordero, F. Maza, H. Navea-perez, A. Aravena, B. Marquez-fontt et al., Different transcriptional responses from slow and fast growth rate strains of Listeria monocytogenes adapted to low temperature, Front Microbiol, vol.7, p.229, 2016.

D. O. Bayles, B. A. Annous, and B. J. Wilkinson, Cold stress proteins induced in Listeria monocytogenes in response to temperature downshock and growth at low temperatures, Appl Environ Microbiol, vol.62, pp.1116-1125, 1996.

H. H. Wemekamp-kamphuis, A. K. Karatzas, J. A. Wouters, and T. Abee, Enhanced levels of cold shock proteins in Listeria monocytogenes LO28 upon exposure to low temperature and high hydrostatic pressure, Appl Environ Microbiol, vol.68, pp.456-63, 2002.

G. Cacace, M. F. Mazzeo, A. Sorrentino, V. Spada, A. Malorni et al., Proteomics for the elucidation of cold adaptation mechanisms in Listeria monocytogenes, J Proteomics, vol.73, pp.2021-2051, 2010.

A. K. Singh, A. V. Ulanov, Z. Li, R. K. Jayaswal, and B. J. Wilkinson, Metabolomes of the psychrotolerant bacterium Listeria monocytogenes 10403S grown at 37 degrees C and 8 degrees C, Int J Food Microbiol, vol.148, pp.107-121, 2011.

P. Cabrita, S. Batista, H. Machado, S. Moes, P. Jeno et al., Comparative analysis of the exoproteomes of Listeria monocytogenes strains grown at low temperatures, Foodborne Pathog Dis, vol.10, pp.428-462, 2013.

L. He, Q. L. Deng, M. T. Chen, Q. P. Wu, and Y. J. Lu, Proteomics analysis of Listeria monocytogenes ATCC 19115 in response to simultaneous triple stresses, Arch Microbiol, vol.197, pp.833-874, 2015.

T. Tasara and R. Stephan, Cold stress tolerance of Listeria monocytogenes: a review of molecular adaptive mechanisms and food safety implications, J Food Prot, vol.69, pp.1473-84, 2006.

J. Nowak, C. D. Cruz, J. Palmer, G. C. Fletcher, and S. Flint, Biofilm formation of the L. monocytogenes strain 15G01 is influenced by changes in environmental conditions, J Microbiol Methods, vol.119, pp.189-95, 2015.

K. Nicaogain and O. Cp, The role of stress and stress adaptations in determining the fate of the bacterial pathogen Listeria monocytogenes in the food chain, Front Microbiol, vol.7, p.1865, 2016.

H. Miladi, H. Elabed, B. Slama, R. Rhim, A. Bakhrouf et al., Molecular analysis of the role of osmolyte transporters opuCA and betL in Listeria monocytogenes after cold and freezing stress, Arch Microbiol, vol.199, pp.259-65, 2017.

H. H. Wemekamp-kamphuis, R. D. Sleator, J. A. Wouters, C. Hill, and T. Abee, Molecular and physiological analysis of the role of osmolyte transporters BetL, Gbu, and OpuC in growth of Listeria monocytogenes at low temperatures, Appl Environ Microbiol, vol.70, pp.2912-2920, 2004.

M. S. Cetin, C. Zhang, R. W. Hutkins, and A. K. Benson, Regulation of transcription of compatible solute transporters by the general stress sigma factor, sigmaB, in Listeria monocytogenes, J Bacteriol, vol.186, pp.794-802, 2004.

Y. E. Kim, M. S. Hipp, A. Bracher, M. Hayer-hartl, and F. U. Hartl, Molecular chaperone functions in protein folding and proteostasis, Annu Rev Biochem, vol.82, pp.323-55, 2013.

Y. C. Chan and M. Wiedmann, Physiology and genetics of Listeria monocytogenes survival and growth at cold temperatures, Crit Rev Food Sci Nutr, vol.49, pp.237-53, 2009.

P. Cossart, Molecular and cellular basis of the infection by Listeria monocytogenes: an overview, Int J Med Microbiol, vol.291, pp.401-410, 2002.

Y. C. Chan, K. J. Boor, and M. Wiedmann, SigmaB-dependent and sigmaBindependent mechanisms contribute to transcription of Listeria monocytogenes cold stress genes during cold shock and cold growth

, Appl Environ Microbiol, vol.73, pp.6019-6048, 2007.

M. Hebraud and J. Guzzo, The main cold shock protein of Listeria monocytogenes belongs to the family of ferritin-like proteins, FEMS Microbiol Lett, vol.190, pp.29-34, 2000.

K. A. Soni, R. Nannapaneni, and T. Tasara, The contribution of transcriptomic and proteomic analysis in elucidating stress adaptation responses of Listeria monocytogenes, Foodborne Pathog Dis, vol.8, pp.843-52, 2011.

P. Glaser, L. Frangeul, C. Buchrieser, C. Rusniok, A. Amend et al., Comparative genomics of Listeria species, Science, vol.294, pp.849-52, 2001.

J. Esbelin, T. Santos, C. Ribiére, M. Desvaux, D. Viala et al., Comparison of three methods for cell surface proteome extraction of Listeria monocytogenes biofilms, OMICS J Integr Biol, vol.22, pp.779-87, 2018.

S. Renier, I. Chafsey, C. Chambon, N. Caccia, A. Charbit et al., Contribution of the multiple Type I signal peptidases to the secretome of Listeria monocytogenes: deciphering their specificity for secreted exoproteins by exoproteomic analysis, J Proteomics, vol.117, pp.95-105, 2015.

S. Renier, P. Micheau, R. Talon, M. Hebraud, and M. Desvaux, Subcellular localization of extracytoplasmic proteins in monoderm bacteria: rational secretomics-based strategy for genomic and proteomic analyses, PLoS ONE, vol.7, p.42982, 2012.

P. Bardou, J. Mariette, F. Escudie, C. Djemiel, and C. Klopp, jvenn: an interactive Venn diagram viewer, BMC Bioinformatics, vol.15, p.293, 2014.

J. Huerta-cepas, D. Szklarczyk, K. Forslund, H. Cook, D. Heller et al., 5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences, Nucleic Acids Res, vol.44, pp.286-93, 2016.

D. Szklarczyk, J. H. Morris, H. Cook, M. Kuhn, S. Wyder et al., The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible, Nucleic Acids Res, vol.45, pp.362-370, 2017.

H. Wickham, Elegant Graphics for Data Analysis, 2009.

M. J. Kazmierczak, S. C. Mithoe, K. J. Boor, and M. Wiedmann, Listeria monocytogenes sigma B regulates stress response and virulence functions, J Bacteriol, vol.185, pp.5722-5756, 2003.

S. Nair, C. Frehel, L. Nguyen, V. Escuyer, and P. Berche, ClpE, a novel member of the HSP100 family, is involved in cell division and virulence of Listeria monocytogenes, Mol Microbiol, vol.31, pp.185-96, 1999.

T. Hain, R. Ghai, A. Billion, C. T. Kuenne, C. Steinweg et al., Comparative genomics and transcriptomics of lineages I, II, and III strains of Listeria monocytogenes, BMC Genomics, vol.13, p.144, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-00724699

B. M. Forster, J. Zemansky, D. A. Portnoy, and H. Marquis, Posttranslocation chaperone PrsA2 regulates the maturation and secretion of Listeria monocytogenes protein virulence factors, J Bacteriol, vol.193, pp.5961-70, 2011.

K. Ito and Y. Akiyama, Cellular functions, mechanisms of action, and regulation of FtsH protease, Annu Rev Microbiol, vol.59, pp.211-242, 2005.

J. Matsunaga, Y. Sanchez, X. Xu, and D. A. Haake, Osmolarity, a key environmental signal controlling expression of leptospiral proteins LigA and LigB and the extracellular release of LigA, Infect Immun, vol.73, pp.70-78, 2005.

K. Brehm, A. Haas, W. Goebel, and J. Kreft, A gene encoding a Superoxide dismutase of the facultative intracellular bacterium Listeria monocytogenes, Gene, vol.118, pp.121-126, 1992.

K. Hunger, C. L. Beckering, F. Wiegeshoff, P. L. Graumann, and M. A. Marahiel, Coldinduced putative DEAD box RNA helicases CshA and CshB are essential for cold adaptation and interact with cold shock protein B in Bacillus subtilis, J Bacteriol, vol.188, pp.240-248, 2006.

M. E. Feder and G. E. Hofmann, Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology, Annu Rev Physiol, vol.61, pp.243-82, 1999.

H. Bierne, C. Sabet, N. Personnic, and P. Cossart, Internalins: a complex family of leucine-rich repeat-containing proteins in Listeria monocytogenes, vol.9, pp.1156-66, 2007.

L. Dons, E. Eriksson, Y. Jin, M. E. Rottenberg, K. Kristensson et al., Role of flagellin and the two-component CheA/CheY system of Listeria monocytogenes in host cell invasion and virulence, Infect Immun, vol.72, pp.3237-3281, 2004.

R. O. Azizoglu and S. Kathariou, Temperature-dependent requirement for catalase in aerobic growth of Listeria monocytogenes F2365, Appl Environ Microbiol, vol.76, pp.6998-7003, 2010.

A. Hernandez-milian and A. Payeras-cifre, What is new in listeriosis?, Biomed Res Int, p.358051, 2014.

. Ecdc, The European Union Summary Report on Trends and Sources of Zoonoses, Zoonotic Agents and Foodborne Outbreaks, 2013.

P. J. Mcclure, T. M. Kelly, and T. A. Roberts, The effects of temperature, pH, sodium chloride and sodium nitrite on the growth of Listeria monocytogenes

, Int J Food Microbiol, vol.14, p.90039, 1991.

M. Gandhi and M. L. Chikindas, Listeria: a foodborne pathogen that knows how to survive, Int J Food Microbiol, vol.113, pp.1-15, 2007.

J. Szczawinski, E. Szczawinska, M. Lobacz, A. Tracz, M. Jackowska-tracz et al., Modelling the growth rate of Listeria monocytogenes in cooked ham stored at different temperatures, J Vet Res, vol.61, pp.45-51, 2017.

S. Liu, J. E. Graham, L. Bigelow, P. D. Morse, . Ii et al., Identification of Listeria monocytogenes genes expressed in response to growth at low temperature, Appl Environ Microbiol, vol.68, pp.1697-705, 2002.

J. R. Pittman, J. O. Buntyn, G. Posadas, B. Nanduri, K. Pendarvis et al., Proteomic analysis of cross protection provided between cold and osmotic stress in Listeria monocytogenes, J Proteome Res, vol.13, pp.1896-904, 2014.

S. Zhang, J. M. Scott, and W. G. Haldenwang, Loss of ribosomal protein L11 blocks stress activation of the Bacillus subtilis transcription factor sigma(B), J Bacteriol, vol.183, pp.2316-2337, 2001.

O. Duche, F. Tremoulet, A. Namane, J. Labadie, E. Listeria-genome et al., A proteomic analysis of the salt stress response of Listeria monocytogenes, FEMS Microbiol Lett, vol.215, pp.183-191, 2002.

R. D. Sleator, D. Watson, C. Hill, and C. Gahan, The interaction between Listeria monocytogenes and the host gastrointestinal tract, vol.155, pp.2463-75, 2009.

J. H. Shin, M. S. Brody, and C. W. Price, Physical and antibiotic stresses require activation of the RsbU phosphatase to induce the general stress response in Listeria monocytogenes, Microbiology, vol.156, pp.2660-2669, 2010.

L. A. Becker, S. N. Evans, R. W. Hutkins, and A. K. Benson, Role of ? B in adaptation of Listeria monocytogenes to growth at low temperature, J Bacteriol, vol.182, pp.7083-7090, 2000.

M. Utratna, E. Cosgrave, C. Baustian, R. H. Ceredig, and C. P. Byrne, Effects of growth phase and temperature on activity within a Listeria monocytogenes population: evidence for RsbV-independent activation of at refrigeration temperatures, Biomed Res Int, p.641647, 2014.

J. J. Lee, G. Lee, and J. H. Shin, sigma(B) affects biofilm formation under the dual stress conditions imposed by adding salt and low temperature in Listeria monocytogenes, J Microbiol, vol.52, pp.849-55, 2014.

Y. C. Chan, S. Raengpradub, K. J. Boor, and M. Wiedmann, Microarray-based characterization of the Listeria monocytogenes cold regulon in logand stationary-phase cells, Appl Environ Microbiol, vol.73, pp.6484-98, 2007.

L. A. Cahoon and N. E. Freitag, Listeria monocytogenes virulence factor secretion: don't leave the cell without a chaperone, Front Cell Infect Microbiol, vol.4, p.13, 2014.

D. Bonaventura, G. Piccolomini, R. Paludi, D. , D. 'orio et al., Influence of temperature on biofilm formation by Listeria monocytogenes on various food-contact surfaces: relationship with motility and cell surface hydrophobicity, J Appl Microbiol, vol.104, pp.1552-61, 2008.

M. Desvaux and M. Hébraud, The protein secretion systems in Listeria: inside out bacterial virulence, FEMS Microbiol Rev, vol.30, pp.774-805, 2006.

A. M. Griffin and M. L. Robbins, The flagellation of Listeria monocytogenes, J Bacteriol, vol.48, pp.114-119, 1944.

S. S. Way, L. J. Thompson, J. E. Lopes, A. M. Hajjar, T. R. Kollmann et al., Characterization of flagellin expression and its role in Listeria monocytogenes infection and immunity, Cell Microbiol, vol.6, pp.235-277, 2004.

Y. Chang, W. Gu, N. Fischer, and L. Mclandsborough, Identification of genes involved in Listeria monocytogenes biofilm formation by mariner-based transposon mutagenesis, Appl Microbiol Biotechnol, vol.93, pp.2051-62, 2012.

T. Todhanakasem and G. M. Young, Loss of flagellum-based motility by Listeria monocytogenes results in formation of hyperbiofilms, J Bacteriol, vol.190, pp.6030-6034, 2008.

M. Mattila, M. Lindstrom, P. Somervuo, A. Markkula, and H. Korkeala, Role of flhA and motA in growth of Listeria monocytogenes at low temperatures, Int J Food Microbiol, vol.148, pp.177-83, 2011.

Y. M. Zhang and R. Co, Membrane lipid homeostasis in bacteria, Nat Rev Microbiol, vol.6, pp.222-255, 2008.

A. K. Singh, Y. Zhang, K. Zhu, C. Subramanian, Z. Li et al., FabH selectivity for anteiso branched-chain fatty acid precursors in lowtemperature adaptation in Listeria monocytogenes, FEMS Microbiol Lett, vol.301, pp.188-92, 2009.

K. Lippert and E. A. Galinski, Enzyme stabilization be ectoine-type compatible solutes: protection against heating, freezing and drying, Appl Microbiol Biotechnol, p.37, 1992.

O. Dussurget, E. Dumas, C. Archambaud, I. Chafsey, C. Chambon et al., Listeria monocytogenes ferritin protects against multiple stresses and is required for virulence, FEMS Microbiol Lett, vol.250, pp.253-61, 2005.

C. Ayala-castro, A. Saini, and F. W. Outten, Fe-S cluster assembly pathways in bacteria, Microbiol Mol Biol Rev, vol.72, pp.110-135, 2008.

A. Markkula, M. Mattila, M. Lindstrom, and H. Korkeala, Genes encoding putative DEAD-box RNA helicases in Listeria monocytogenes EGD-e are needed for growth and motility at 3 degrees C, Environ Microbiol, vol.14, pp.2223-2255, 2012.

C. Bareclev, K. Vaitkevicius, S. Netterling, and J. Johansson, DExDbox RNA-helicases in Listeria monocytogenes are important for growth, ribosomal maturation, rRNA processing and virulence factor expression, RNA Biol, vol.11, pp.1457-66, 2014.

P. Folio, P. Chavant, I. Chafsey, A. Belkorchia, C. Chambon et al., Two-dimensional electrophoresis database of Listeria monocytogenes EGDe proteome and proteomic analysis of mid-log and stationary growth phase cells, Proteomics, vol.4, pp.3187-201, 2004.

E. Dumas, B. Meunier, J. L. Berdague, C. Chambon, M. Desvaux et al., The origin of Listeria monocytogenes 4b isolates is signified by subproteomic profiling, Biochim Biophys Acta, vol.1794, pp.1530-1536, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00529969

C. Bécavin, C. Bouchier, P. Lechat, C. Archambaud, S. Creno et al., Comparison of widely used Listeria monocytogenes strains EGD, 10403S, and EGD-e highlights genomic variations underlying differences in pathogenicity, MBio, vol.5, pp.969-983, 2014.

P. Mcgann, R. Ivanek, M. Wiedmann, and K. J. Boor, Temperature-dependent expression of Listeria monocytogenes internalin and internalin-like genes suggests functional diversity of these proteins among the listeriae

, Appl Environ Microbiol, vol.73, pp.2806-2820, 2007.

S. Dramsi, C. Kocks, C. Forestier, and P. Cossart, Internalin-mediated invasion of epithelial cells by Listeria monocytogenes is regulated by the bacterial growth state, temperature and the pleiotropic activator prfA, Mol Microbiol, vol.9, pp.931-972, 1993.

N. Autret, C. Raynaud, I. Dubail, P. Berche, and A. Charbit, Identification of the agr locus of Listeria monocytogenes: role in bacterial virulence, Infect Immun, vol.71, pp.4463-71, 2003.

, References 154

T. Abee and J. A. Wouters, Microbial stress response in minimal processing, International Journal of Food Microbiology, vol.50, pp.65-91, 1999.

E. Ahrne, M. Muller, and F. Lisacek, Unrestricted identification of modified proteins using MS/MS, Proteomics, vol.10, pp.671-686, 2010.

T. Alexandrov, MALDI imaging mass spectrometry: statistical data analysis and current computational challenges, BMC Bioinformatics, vol.13, p.11, 2012.

T. Alexandrov, M. Becker, S. O. Deininger, G. Ernst, L. Wehder et al., Spatial segmentation of imaging mass spectrometry data with edge-preserving image denoising and clustering, J Proteome Res, vol.9, pp.6535-6546, 2010.

F. Allerberger and M. Wagner, Listeriosis: a resurgent foodborne infection, Clin Microbiol Infect, vol.16, pp.16-23, 2010.

S. D. Allison, B. Chang, T. W. Randolph, and J. F. Carpenter, Hydrogen bonding between sugar and protein is responsible for inhibition of dehydrationinduced protein unfolding, Arch Biochem Biophys, vol.365, pp.289-298, 1999.

D. Anderson, E. Ferreras, M. Trindade, and D. Cowan, A novel bacterial Water Hypersensitivity-like protein shows in vivo protection against cold and freeze damage, FEMS Microbiol Lett, vol.362, 2015.

D. M. Anderson, V. A. Carolan, S. Crosland, K. R. Sharples, and M. R. Clench, Examination of the distribution of nicosulfuron in sunflower plants by matrixassisted laser desorption/ionisation mass spectrometry imaging, Rapid Commun Mass Spectrom, vol.23, pp.1321-1327, 2009.

C. Andrea, M. , F. J. Céline, N. Davendra, S. Yvonne et al., Multi-Province Listeriosis Outbreak Linked to Contaminated Deli Meat Consumed Primarily in Institutional Settings, Foodborne Pathogens and Disease, vol.12, pp.645-652, 2008.

A. S. Angelidis and G. M. Smith, Role of the glycine betaine and carnitine transporters in adaptation of Listeria monocytogenes to chill stress in defined medium, Appl Environ Microbiol, vol.69, pp.7492-7498, 2003.

K. M. Angelo, A. R. Conrad, A. Saupe, H. Dragoo, N. West et al., Multistate outbreak of Listeria monocytogenes infections linked to whole apples used in commercially produced, prepackaged caramel apples: United States, Epidemiology and Infection, vol.145, pp.848-856, 2014.

J. P. Anhalt and C. Fenselau, Identification of bacteria using mass spectrometry, Analytical Chemistry, vol.47, pp.219-225, 1975.

A. Ricci, A. Allende, D. Bolton, M. Chemaly, R. Davies et al., Listeria monocytogenes contamination of ready-to-eat foods and the risk for human health in the EU, European Food Safety Authority), 2018.

C. Archambaud, M. A. Nahori, J. Pizarro-cerda, P. Cossart, and O. Dussurget, Control of Listeria superoxide dismutase by phosphorylation, J Biol Chem, vol.281, pp.31812-31822, 2006.

C. Arguedas-villa, R. Stephan, and T. Tasara, Evaluation of cold growth and related gene transcription responses associated with Listeria monocytogenes strains of different origins, Food Microbiol, vol.27, pp.653-660, 2010.

J. Armengaud, Microbiology and proteomics, getting the best of both worlds!, Environmental Microbiology, vol.15, pp.12-23, 2013.

J. Azeredo, N. F. Azevedo, R. Briandet, N. Cerca, T. Coenye et al., Critical review on biofilm methods, Crit Rev Microbiol, pp.1-39, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01548680

R. O. Azizoglu and S. Kathariou, Inactivation of a cold-induced putative rna helicase gene of Listeria monocytogenes is accompanied by failure to grow at low temperatures but does not affect freeze-thaw tolerance, J Food Prot, vol.73, pp.1474-1479, 2010.

R. O. Azizoglu and S. Kathariou, Temperature-dependent requirement for catalase in aerobic growth of Listeria monocytogenes F2365, Appl Environ Microbiol, vol.76, pp.6998-7003, 2010.

T. C. Baker, J. Han, and C. H. Borchers, Recent advancements in matrixassisted laser desorption/ionization mass spectrometry imaging, Curr Opin Biotechnol, vol.43, pp.62-69, 2017.

M. J. Bale, P. M. Bennett, J. E. Beringer, and M. Hinton, The survival of bacteria exposed to desiccation on surfaces associated with farm buildings, J Appl Bacteriol, vol.75, pp.519-528, 1993.

P. Ball, Water as an active constituent in cell biology, Chem Rev, vol.108, pp.74-108, 2008.

P. Bardou, J. Mariette, F. Escudie, C. Djemiel, and C. Klopp, jvenn: an interactive Venn diagram viewer, BMC Bioinformatics, vol.15, p.293, 2014.

C. Bareclev, K. Vaitkevicius, S. Netterling, J. , and J. , DExD-box RNA-helicases in Listeria monocytogenes are important for growth, ribosomal maturation, rRNA processing and virulence factor expression, RNA Biol, vol.11, pp.1457-1466, 2014.

D. O. Bayles, B. A. Annous, and B. J. Wilkinson, Cold stress proteins induced in Listeria monocytogenes in response to temperature downshock and growth at low temperatures, Appl Environ Microbiol, vol.62, pp.1116-1119, 1996.

D. O. Bayles and B. J. Wilkinson, Osmoprotectants and cryoprotectants for Listeria monocytogenes, Lett Appl Microbiol, vol.30, pp.23-27, 2000.

K. Bazaka, R. J. Crawford, E. L. Nazarenko, and E. P. Ivanova, Bacterial extracellular polysaccharides, Adv Exp Med Biol, vol.715, pp.213-226, 2011.

D. Becher, K. Hempel, S. Sievers, D. Zuhlke, J. Pane-farre et al., A proteomic view of an important human pathogen-towards the quantification of the entire Staphylococcus aureus proteome, PLoS One, vol.4, p.8176, 2009.

M. Begley, C. G. Gahan, and C. Hill, Bile stress response in Listeria monocytogenes LO28: adaptation, cross-protection, and identification of genetic loci involved in bile resistance, Appl Environ Microbiol, vol.68, pp.6005-6012, 2002.

M. S. Bereman, J. D. Egertson, and M. J. Maccoss, Comparison between procedures using SDS for shotgun proteomic analyses of complex samples, PROTEOMICS, vol.11, pp.2931-2935, 2011.

L. R. Beuchat, E. Komitopoulou, H. Beckers, R. P. Betts, F. Bourdichon et al., Low Water Activity Foods: Increased Concern as Vehicles of Foodborne Pathogens, Journal of Food Protection, vol.76, pp.150-172, 2013.

H. Bierne and P. Cossart, Listeria monocytogenes surface proteins: from genome predictions to function, Microbiology and molecular biology reviews : MMBR, vol.71, pp.377-397, 2007.

H. Bierne, C. Sabet, N. Personnic, and P. Cossart, Internalins: a complex family of leucine-rich repeat-containing proteins in Listeria monocytogenes, Microbes and Infection, vol.9, pp.1156-1166, 2007.

A. Bigot, H. Pagniez, E. Botton, C. Fréhel, I. Dubail et al., Role of FliF and FliI of Listeria monocytogenes in flagellar assembly and pathogenicity, Infection and immunity, vol.73, pp.5530-5539, 2005.

J. Bille, D. S. Blanc, H. Schmid, K. Boubaker, A. Baumgartner et al., Outbreak of human listeriosis associated with tomme cheese in northwest Switzerland, vol.11, pp.11-12, 2005.

D. Billi and M. Potts, Life and death of dried prokaryotes, Res Microbiol, vol.153, pp.7-12, 2002.

D. L. Black, Protein diversity from alternative splicing: a challenge for bioinformatics and post-genome biology, Cell, vol.103, pp.367-370, 2000.

M. Blasius, S. Sommer, and U. Hubscher, Deinococcus radiodurans: what belongs to the survival kit?, Crit Rev Biochem Mol Biol, vol.43, pp.221-238, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00297146

M. Blaze, B. Aydin, R. P. Carlson, and L. Hanley, Identification and imaging of peptides and proteins on Enterococcus faecalis biofilms by matrix assisted laser desorption ionization mass spectrometry, Analyst, vol.137, pp.5018-5025, 2012.

P. Bogino, A. Abod, F. Nievas, G. , and W. , Water-limiting conditions alter the structure and biofilm-forming ability of bacterial multispecies communities in the alfalfa rhizosphere, PLoS One, vol.8, p.79614, 2013.

E. Borezee, E. Pellegrini, and P. Berche, OppA of Listeria monocytogenes, an oligopeptide-binding protein required for bacterial growth at low temperature and involved in intracellular survival, Infect Immun, vol.68, pp.7069-7077, 2000.

M. K. Borucki, C. C. Gay, J. Reynolds, K. L. Mcelwain, S. H. Kim et al., Genetic diversity of Listeria monocytogenes strains from a high-prevalence dairy farm, Appl Environ Microbiol, vol.71, pp.5893-5899, 2005.

M. Boumahdi, P. Mary, and J. P. Hornez, Changes in fatty acid composition and degree of unsaturation of (brady)rhizobia as a response to phases of growth, reduced water activities and mild desiccation, Antonie Van Leeuwenhoek, vol.79, pp.73-79, 2001.

J. P. Bowman, L. Chang, K. J. Pinfold, T. , R. et al., Transcriptomic and phenotypic responses of Listeria monocytogenes strains possessing different growth efficiencies under acidic conditions, Appl Environ Microbiol, vol.76, pp.4836-4850, 2010.

P. C. Boya, H. Fernandez-marin, L. C. Mejia, C. Spadafora, P. C. Dorrestein et al., Imaging mass spectrometry and MS/MS molecular networking reveals chemical interactions among cuticular bacteria and pathogenic fungi associated with fungus-growing ants, Sci Rep, vol.7, p.5604, 2017.

M. T. Brandl, Fitness of Human Enteric Pathogens on Plants and Implications for Food Safety, Annual Review of Phytopathology, vol.44, pp.367-392, 2006.

G. Bratbak and I. Dundas, Bacterial dry matter content and biomass estimations, Appl Environ Microbiol, vol.48, pp.755-757, 1984.

T. Brauge, G. Midelet-bourdin, I. Sadovskaya, C. Faille, T. Benezech et al., Teichoic acid is the major polysaccharide present in the Listeria monocytogenes biofilm matrix, FEMS Microbiology Letters, vol.363, 2015.

A. Bridier, F. Dubois-brissonnet, A. Boubetra, V. Thomas, and R. Briandet, The biofilm architecture of sixty opportunistic pathogens deciphered using a high throughput CLSM method, Journal of Microbiological Methods, vol.82, pp.64-70, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01204254

F. I. Bucur, L. Grigore-gurgu, P. Crauwels, C. U. Riedel, and A. I. Nicolau, Resistance of Listeria monocytogenes to Stress Conditions Encountered in Food and Food Processing Environments, p.2700, 2018.

C. M. Burgess, A. Gianotti, N. Gruzdev, J. Holah, S. Knochel et al., The response of foodborne pathogens to osmotic and desiccation stresses in the food chain, Int J Food Microbiol, vol.221, pp.37-53, 2016.

N. Caballero-gomez, H. Abriouel, S. Ennahar, and A. Galvez, Comparative proteomic analysis of Listeria monocytogenes exposed to enterocin AS-48 in planktonic and sessile states, Int J Food Microbiol, vol.167, pp.202-207, 2013.

D. Cabanes, P. Dehoux, O. Dussurget, L. Frangeul, and P. Cossart, Surface proteins and the pathogenic potential of Listeria monocytogenes, Trends in Microbiology, vol.10, pp.238-245, 2002.

P. Cabrita, S. Batista, H. Machado, S. Moes, P. Jeno et al., Comparative analysis of the exoproteomes of Listeria monocytogenes strains grown at low temperatures, Foodborne Pathog Dis, vol.10, pp.428-434, 2013.

P. Cabrita, M. J. Trigo, R. B. Ferreira, and L. Brito, Is the Exoproteome Important for Bacterial Pathogenesis? Lessons Learned from Interstrain Exoprotein Diversity in Listeria monocytogenes Grown at Different Temperatures, OMICS: A Journal of Integrative Biology, vol.18, pp.553-569, 2014.

G. Cacace, M. F. Mazzeo, A. Sorrentino, V. Spada, A. Malorni et al., Proteomics for the elucidation of cold adaptation mechanisms in Listeria monocytogenes, J Proteomics, vol.73, pp.2021-2030, 2010.

D. Calligaris, C. Villard, and D. Lafitte, Advances in top-down proteomics for disease biomarker discovery, J Proteomics, vol.74, pp.920-934, 2011.

J. L. Capelo, R. J. Carreira, L. Fernandes, C. Lodeiro, H. M. Santos et al., Latest developments in sample treatment for 18 O-isotopic labeling for proteomics mass spectrometry-based approaches: a critical review, Talanta, vol.80, pp.1476-1486, 2010.

R. M. Caprioli, T. B. Farmer, and J. Gile, Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS, Anal Chem, vol.69, pp.4751-4760, 1997.

B. Carpentier and O. Cerf, Biofilms and their consequences, with particular reference to hygiene in the food industry, J Appl Bacteriol, vol.75, pp.499-511, 1993.

F. Carvalho, S. Sousa, and D. Cabanes, How Listeria monocytogenes organizes its surface for virulence, Frontiers in Cellular and Infection Microbiology, vol.4, p.48, 2014.

H. Castro, A. Jaakkonen, M. Hakkinen, H. Korkeala, and M. Lindström, Occurrence, Persistence, and Contamination Routes of Listeria monocytogenes Genotypes on Three Finnish Dairy Cattle Farms: a Longitudinal Study, Applied and environmental microbiology, vol.84, pp.2000-02017, 2018.

D. Centeno, A. Venien, E. Pujos-guillot, T. Astruc, C. Chambon et al., Myofiber metabolic type determination by mass spectrometry imaging, J Mass Spectrom, vol.52, pp.493-496, 2017.

M. S. Cetin, C. Zhang, R. W. Hutkins, and A. K. Benson, Regulation of transcription of compatible solute transporters by the general stress sigma factor, sigmaB, in Listeria monocytogenes, J Bacteriol, vol.186, pp.794-802, 2004.

M. S. Chae, H. Schraft, L. Truelstrup-hansen, and R. Mackereth, Effects of physicochemical surface characteristics of Listeria monocytogenes strains on attachment to glass, Food Microbiol, vol.23, pp.250-259, 2006.

P. Chaibenjawong and S. J. Foster, Desiccation tolerance in Staphylococcus aureus, Arch Microbiol, vol.193, pp.125-135, 2011.

B. T. Chait, Mass Spectrometry: Bottom-Up or Top-Down?, Science, vol.314, p.65, 2006.

Y. C. Chan, K. J. Boor, and M. Wiedmann, SigmaB-dependent and sigmaBindependent mechanisms contribute to transcription of Listeria monocytogenes cold stress genes during cold shock and cold growth, Appl Environ Microbiol, vol.73, pp.6019-6029, 2007.

Y. C. Chan, S. Raengpradub, K. J. Boor, and M. Wiedmann, Microarraybased characterization of the Listeria monocytogenes cold regulon in log-and stationary-phase cells, Appl Environ Microbiol, vol.73, pp.6484-6498, 2007.

Y. C. Chan and M. Wiedmann, Physiology and genetics of Listeria monocytogenes survival and growth at cold temperatures, Crit Rev Food Sci Nutr, vol.49, pp.237-253, 2009.

Y. Chang, W. Gu, N. Fischer, and L. Mclandsborough, Identification of genes involved in Listeria monocytogenes biofilm formation by mariner-based transposon mutagenesis, Appl Microbiol Biotechnol, vol.93, pp.2051-2062, 2012.

Y. Chang, W. Gu, F. Zhang, and L. Mclandsborough, Disruption of lmo1386, a putative DNA translocase gene, affects biofilm formation of Listeria monocytogenes on abiotic surfaces, Int J Food Microbiol, vol.161, pp.158-163, 2013.

T. C. Chao and N. Hansmeier, The current state of microbial proteomics: where we are and where we want to go, Proteomics, vol.12, pp.638-650, 2012.

P. Chaurand, S. A. Schwartz, and R. M. Caprioli, Imaging mass spectrometry: a new tool to investigate the spatial organization of peptides and proteins in mammalian tissue sections, Curr Opin Chem Biol, vol.6, pp.676-681, 2002.

P. Chavant, B. Gaillard-martinie, and M. Hebraud, Antimicrobial effects of sanitizers against planktonic and sessile Listeria monocytogenes cells according to the growth phase, FEMS Microbiol Lett, vol.236, pp.241-248, 2004.

P. Chavant, B. Martinie, T. Meylheuc, M. N. Bellon-fontaine, and M. Hebraud, Listeria monocytogenes LO28: surface physicochemical properties and ability to form biofilms at different temperatures and growth phases, Appl Environ Microbiol, vol.68, pp.728-737, 2002.

A. E. Clark, E. J. Kaleta, A. Arora, and D. M. Wolk, Matrix-assisted laser desorption ionization-time of flight mass spectrometry: a fundamental shift in the routine practice of clinical microbiology, Clinical microbiology reviews, vol.26, pp.547-603, 2013.

A. Colagiorgi, I. Bruini, P. A. Di-ciccio, E. Zanardi, S. Ghidini et al., Listeria monocytogenes Biofilms in the Wonderland of Food Industry, 2017.

M. B. Cole, M. V. Jones, and C. Holyoak, The effect of pH, salt concentration and temperature on the survival and growth of Listeria monocytogenes, J Appl Bacteriol, vol.69, pp.63-72, 1990.

M. D. Collins, S. Wallbanks, D. J. Lane, J. Shah, R. Nietupski et al., Phylogenetic analysis of the genus Listeria based on reverse transcriptase sequencing of 16S rRNA, Int J Syst Bacteriol, vol.41, pp.240-246, 1991.

C. Colomer-winter, A. L. Flores-mireles, S. P. Baker, K. L. Frank, A. J. Lynch et al., Manganese acquisition is essential for virulence of Enterococcus faecalis, PLoS pathogens, vol.14, pp.1007102-1007102, 2018.

T. Combrouse, I. Sadovskaya, C. Faille, O. Kol, Y. Guérardel et al., Quantification of the extracellular matrix of the Listeria monocytogenes biofilms of different phylogenic lineages with optimization of culture conditions, Journal of Applied Microbiology, vol.114, pp.1120-1131, 2013.

A. M. Cordano and J. Rocourt, Occurrence of Listeria monocytogenes in food in Chile, International Journal of Food Microbiology, vol.70, pp.175-178, 2001.

N. Cordero, F. Maza, H. Navea-perez, A. Aravena, B. Marquez-fontt et al., , 2016.

, Different Transcriptional Responses from Slow and Fast Growth Rate Strains of Listeria monocytogenes Adapted to Low Temperature, Front Microbiol, vol.7, p.229

S. J. Cordwell, Technologies for bacterial surface proteomics, Curr Opin Microbiol, vol.9, pp.320-329, 2006.

D. S. Cornett, J. A. Mobley, E. C. Dias, M. Andersson, C. L. Arteaga et al., A Novel Histology-directed Strategy for MALDI-MS Tissue Profiling That Improves Throughput and Cellular Specificity in Human Breast Cancer, Molecular & Cellular Proteomics, vol.5, 1975.

D. S. Cornett, M. L. Reyzer, P. Chaurand, and R. M. Caprioli, MALDI imaging mass spectrometry: molecular snapshots of biochemical systems, Nat Methods, vol.4, pp.828-833, 2007.

P. Cossart, Molecular and cellular basis of the infection by Listeria monocytogenes: an overview, Int J Med Microbiol, vol.291, pp.401-409, 2002.

P. Cossart and H. , A. Endocytosis of viruses and bacteria. Cold Spring Harbor perspectives in biology 6, p.16972, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00661174

P. Cossart and A. Toledo-arana, Listeria monocytogenes, a unique model in infection biology: an overview, Microbes Infect, vol.10, pp.1041-1050, 2008.

J. W. Costerton, K. J. Cheng, G. G. Geesey, T. I. Ladd, J. C. Nickel et al., Bacterial biofilms in nature and disease, Annu Rev Microbiol, vol.41, pp.435-464, 1987.

J. W. Costerton, P. S. Stewart, and E. P. Greenberg, Bacterial Biofilms: A Common Cause of Persistent Infections, Science, vol.284, p.1318, 1999.

L. Cotoni, A propos des bactéries dénommées Listerella rappel d'une observation ancienne de méningite chez l'homme, Ann. Inst. Pasteur, vol.68, p.92, 1942.

N. Crespo-tapia, H. M. Den-besten, A. , and T. , Glycerol metabolism induces Listeria monocytogenes biofilm formation at the air-liquid interface, Int J Food Microbiol, vol.273, pp.20-27, 2018.

L. N. Csonka, Physiological and genetic responses of bacteria to osmotic stress, Microbiol Rev, vol.53, pp.121-147, 1989.

P. A. Cullen, X. Xu, J. Matsunaga, Y. Sanchez, A. I. Ko et al., Surfaceome of Leptospira spp, Infect Immun, vol.73, pp.4853-4863, 2005.

M. Da-silva-fernandes, D. Y. Kabuki, and A. Y. Kuaye, Behavior of Listeria monocytogenes in a multi-species biofilm with Enterococcus faecalis and Enterococcus faecium and control through sanitation procedures, International Journal of Food Microbiology, vol.200, pp.5-12, 2015.

M. E. Davey, O. 'toole, G. , and A. , Microbial biofilms: from ecology to molecular genetics, Microbiol Mol Biol Rev, vol.64, pp.847-867, 2000.

J. R. Davies, G. Svensäter, and M. C. Herzberg, Identification of novel LPXTG-linked surface proteins from Streptococcus gordonii, Microbiology, vol.155, pp.1977-1988, 2009.

M. J. Davis, P. J. Coote, O. 'byrne, and C. P. , Acid tolerance in Listeria monocytogenes: the adaptive acid tolerance response (ATR) and growthphase-dependent acid resistance, Microbiology, vol.142, pp.2975-2982, 1996.

I. De-bruijn, X. Cheng, V. De-jager, R. G. Expósito, J. Watrous et al., Comparative genomics and metabolic profiling of the genus Lysobacter, BMC Genomics, vol.16, p.991, 2015.

C. M. De-noordhout, B. Devleesschauwer, F. J. Angulo, G. Verbeke, J. Haagsma et al., The global burden of listeriosis: a systematic review and meta-analysis, Lancet Infect Dis, vol.14, pp.1073-1082, 2014.

D. Debois, E. Jourdan, N. Smargiasso, P. Thonart, E. De-pauw et al., Spatiotemporal monitoring of the antibiome secreted by Bacillus biofilms on plant roots using MALDI mass spectrometry imaging, Anal Chem, vol.86, pp.4431-4438, 2014.

J. Delves-broughton, P. Blackburn, R. J. Evans, and J. Hugenholtz, Applications of the bacteriocin, nisin, Antonie van Leeuwenhoek, vol.69, pp.193-202, 1996.

D. Bakker, H. C. Warchocki, S. Wright, E. M. Allred, A. F. Ahlstrom et al., Listeria floridensis sp. nov., Listeria aquatica sp. nov., Listeria cornellensis sp. nov., Listeria riparia sp. nov. and Listeria grandensis sp. nov., from agricultural and natural environments, International Journal of Systematic and Evolutionary Microbiology, vol.64, pp.1882-1889, 2014.

M. Desvaux, T. Candela, and P. Serror, Surfaceome and Proteosurfaceome in Parietal Monoderm Bacteria: Focus on Protein Cell-Surface Display, Front Microbiol, vol.9, p.100, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01727158

M. Desvaux, E. Dumas, I. Chafsey, and M. Hebraud, Protein cell surface display in Gram-positive bacteria: from single protein to macromolecular protein structure, FEMS Microbiol Lett, vol.256, pp.1-15, 2006.

M. Desvaux and M. Hebraud, Analysis of cell envelope proteins, Handbook of Listeria, pp.359-393, 2008.

M. Desvaux and M. Hébraud, The protein secretion systems in Listeria: inside out bacterial virulence, FEMS Microbiology Reviews, vol.30, pp.774-805, 2006.

D. Bonaventura, G. Piccolomini, R. Paludi, D. D'orio, V. Vergara et al., Influence of temperature on biofilm formation by Listeria monocytogenes on various food-contact surfaces: relationship with motility and cell surface hydrophobicity, J Appl Microbiol, vol.104, pp.1552-1561, 2008.

T. Ding, Y. Y. Yu, C. A. Hwang, Q. L. Dong, S. G. Chen et al., Modeling the Effect of Water Activity, pH, and Temperature on the Probability of Enterotoxin A Production by Staphylococcus aureus, J Food Prot, vol.79, pp.148-152, 2016.

T. C. Dingle and S. M. Butler-wu, MALDI-TOF mass spectrometry for microorganism identification, Clin Lab Med, vol.33, pp.589-609, 2013.

M. C. Djidja, E. Claude, M. F. Snel, S. Francese, P. Scriven et al., Novel molecular tumour classification using MALDI-mass spectrometry imaging of tissue micro-array, Anal Bioanal Chem, vol.397, pp.587-601, 2010.

J. R. Donaldson, K. Hercik, A. N. Rai, S. Reddy, M. L. Lawrence et al., Chapter 8 -Listeria and -Omics Approaches for Understanding its Biology, pp.135-158, 2015.

J. R. Donaldson, B. Nanduri, S. C. Burgess, and M. L. Lawrence, Comparative proteomic analysis of Listeria monocytogenes strains F2365 and EGD, Appl Environ Microbiol, vol.75, pp.366-373, 2009.

A. Dorey, C. Marinho, P. Piveteau, O. 'byrne, and C. , Role and regulation of the stress activated sigma factor sigma B in the saprophytic and hostassociated life stages of Listeria monocytogenes, Adv Appl Microbiol, vol.106, pp.1-48, 2019.

D. Santos, P. T. Menendez-gil, P. Sabharwal, D. Christensen, J. H. Brunhede et al., The Small Regulatory RNAs LhrC1-5 Contribute to the Response of Listeria monocytogenes to Heme Toxicity, p.599, 2018.

A. Dotsch, D. Eckweiler, M. Schniederjans, A. Zimmermann, V. Jensen et al., The Pseudomonas aeruginosa transcriptome in planktonic cultures and static biofilms using RNA sequencing, PLoS One, vol.7, p.31092, 2012.

S. Dramsi, C. Kocks, C. Forestier, and P. Cossart, Internalin-mediated invasion of epithelial cells by Listeria monocytogenes is regulated by the bacterial growth state, temperature and the pleiotropic activator prfA, Mol Microbiol, vol.9, pp.931-941, 1993.

S. Dramsi, M. Lebrun, and P. Cossart, Molecular and genetic determinants involved in invasion of mammalian cells by Listeria monocytogenes, Curr Top Microbiol Immunol, vol.209, pp.61-77, 1996.

A. Dreisbach, K. Hempel, G. Buist, M. Hecker, D. Becher et al., Profiling the surfacome of Staphylococcus aureus, Proteomics, vol.10, pp.3082-3096, 2010.

A. Dreisbach, J. M. Van-dijl, and G. Buist, The cell surface proteome of Staphylococcus aureus, Proteomics, vol.11, pp.3154-3168, 2011.

F. Dubois-brissonnet, E. Trotier, and R. Briandet, The Biofilm Lifestyle Involves an Increase in Bacterial Membrane Saturated Fatty Acids, Front Microbiol, vol.7, p.1673, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01608805

O. Duche, F. Tremoulet, A. Namane, J. Labadie, E. Listeria-genome et al., A proteomic analysis of the salt stress response of Listeria monocytogenes, FEMS Microbiol Lett, vol.215, pp.183-188, 2002.

E. Dumas, B. Meunier, J. L. Berdague, C. Chambon, M. Desvaux et al., Comparative analysis of extracellular and intracellular proteomes of Listeria monocytogenes strains reveals a correlation between protein expression and serovar, Appl Environ Microbiol, vol.74, pp.7399-7409, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00529954

E. Dumas, B. Meunier, J. L. Berdague, C. Chambon, M. Desvaux et al., The origin of Listeria monocytogenes 4b isolates is signified by subproteomic profiling, Biochim Biophys Acta, vol.1794, pp.1530-1536, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00529969

S. Dupont, A. Rapoport, P. Gervais, and L. Beney, Survival kit of Saccharomyces cerevisiae for anhydrobiosis, Appl Microbiol Biotechnol, vol.98, pp.8821-8834, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02290078

J. Durack, T. Ross, and J. P. Bowman, Characterisation of the transcriptomes of genetically diverse Listeria monocytogenes exposed to hyperosmotic and low temperature conditions reveal global stress-adaptation mechanisms, PLoS One, vol.8, p.73603, 2013.

O. Dussurget, E. Dumas, C. Archambaud, I. Chafsey, C. Chambon et al., Listeria monocytogenes ferritin protects against multiple stresses and is required for virulence, FEMS Microbiol Lett, vol.250, pp.253-261, 2005.

. Ecdc, The European Union Summary Report on Trends and Sources of Zoonoses, Zoonotic Agents and Foodborne Outbreaks in, 2013.

. Efsa, Multi-country outbreak of Listeria monocytogenes serogroup IVb, multilocus sequence type 6, infections linked to frozen corn and possibly to other frozen vegetables -first update, European Food Safety Authority), 2018.

E. Endarko, M. Maclean, I. V. Timoshkin, S. J. Macgregor, A. et al., High-Intensity 405 nm Light Inactivation of Listeria monocytogenes, Photochemistry and Photobiology, vol.88, pp.1280-1286, 2012.

B. Enthaler, T. Bussmann, J. K. Pruns, C. Rapp, M. Fischer et al., Influence of various on-tissue washing procedures on the entire protein quantity and the quality of matrix-assisted laser desorption/ionization spectra, Rapid Communications in Mass Spectrometry, vol.27, pp.878-884, 2013.

W. Epstein, The roles and regulation of potassium in bacteria, Prog Nucleic Acid Res Mol Biol, vol.75, pp.293-320, 2003.

J. Esbelin, T. Santos, and M. Hebraud, Desiccation: An environmental and food industry stress that bacteria commonly face, Food Microbiol, vol.69, pp.82-88, 2018.

J. Esbelin, T. Santos, C. Ribière, M. Desvaux, D. Viala et al., Comparison of three methods for cell surface proteome extraction of Listeria monocytogenes biofilms, OMICS: A Journal of Integrative Biology, 2018.

E. Esquenazi, C. Coates, L. Simmons, D. Gonzalez, W. H. Gerwick et al., Visualizing the spatial distribution of secondary metabolites produced by marine cyanobacteria and sponges via MALDI-TOF imaging, Mol Biosyst, vol.4, pp.562-570, 2008.

J. Falardeau, K. Walji, M. Haure, K. Fong, G. Taylor et al., Native bacterial communities and Listeria monocytogenes survival in soils collected from the Lower Mainland of British Columbia, Canada. Canadian Journal of Microbiology, vol.64, pp.695-705, 2018.

D. R. Fenlon, J. Wilson, and W. Donachie, The incidence and level of Listeria monocytogenes contamination of food sources at primary production and initial processing, Journal of Applied Bacteriology, vol.81, pp.641-650, 1996.

J. B. Fenn, M. Mann, C. K. Meng, S. F. Wong, and C. M. Whitehouse, , 1989.

, Electrospray ionization for mass spectrometry of large biomolecules, Science, vol.246, pp.64-71

J. Fernandez-de-cossio, J. Gonzalez, L. Betancourt, V. Besada, G. Padron et al., Automated interpretation of high-energy collision-induced dissociation spectra of singly protonated peptides by 'SeqMS', a software aid for de novo sequencing by tandem mass spectrometry, Rapid Commun Mass Spectrom, vol.12, pp.1867-1878, 1998.

V. Ferreira, M. Wiedmann, P. Teixeira, and M. J. Stasiewicz, Listeria monocytogenes persistence in food-associated environments: epidemiology, strain characteristics, and implications for public health, J Food Prot, vol.77, pp.150-170, 2014.

D. W. Fleming, S. L. Cochi, K. L. Macdonald, J. Brondum, P. S. Hayes et al., , 1985.

, Pasteurized Milk as a Vehicle of Infection in an Outbreak of Listeriosis, New England Journal of Medicine, vol.312, pp.404-407

K. A. Floyd, J. L. Moore, A. R. Eberly, J. A. Good, C. L. Shaffer et al., Adhesive fiber stratification in uropathogenic Escherichia coli biofilms unveils oxygenmediated control of type 1 pili, PLoS Pathog, vol.11, 2015.

P. Folio, P. Chavant, I. Chafsey, A. Belkorchia, C. Chambon et al., Two-dimensional electrophoresis database of Listeria monocytogenes EGDe proteome and proteomic analysis of mid-log and stationary growth phase cells, Proteomics, vol.4, pp.3187-3201, 2004.

M. B. Franca, A. D. Panek, and E. C. Eleutherio, Oxidative stress and its effects during dehydration, Comp Biochem Physiol A Mol Integr Physiol, vol.146, pp.621-631, 2007.

J. K. Fredrickson, S. M. Li, E. K. Gaidamakova, V. Y. Matrosova, M. Zhai et al., Protein oxidation: key to bacterial desiccation resistance, ISME J, vol.2, pp.393-403, 2008.

R. Fretz, U. Sagel, W. Ruppitsch, A. T. Pietzka, A. Stöger et al., Listeriosis outbreak caused by acid curd cheese 'Quargel, Eurosurveillance, vol.15, 2009.

C. Frydenlund-michelsen, S. M. Hossein-khademi, H. Krogh-johansen, H. Ingmer, P. C. Dorrestein et al., Evolution of metabolic divergence in Pseudomonas aeruginosa during long-term infection facilitates a protocooperative interspecies interaction, ISME J, vol.10, pp.1323-1336, 2016.

C. G. Gahan, J. O'mahony, and C. Hill, Characterization of the groESL operon in Listeria monocytogenes: utilization of two reporter systems (gfp and hly) for evaluating in vivo expression, Infection and immunity, vol.69, pp.3924-3932, 2001.

M. Gandhi and M. L. Chikindas, Listeria: A foodborne pathogen that knows how to survive, Int J Food Microbiol, vol.113, pp.1-15, 2007.

C. García-fontana, J. J. Narváez-reinaldo, F. Castillo, J. González-lópez, I. Luque et al., A New Physiological Role for the DNA Molecule as a Protector against Drying Stress in Desiccation-Tolerant Microorganisms, Frontiers in Microbiology, vol.7, 2016.

P. Garmiri, K. E. Coles, T. J. Humphrey, and T. A. Cogan, Role of outer membrane lipopolysaccharides in the protection of Salmonella enterica serovar Typhimurium from desiccation damage, FEMS Microbiol Lett, vol.281, pp.155-159, 2008.

S. A. Gerber, J. Rush, O. Stemman, M. W. Kirschner, and S. P. Gygi, , 2003.

, Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS, Proc Natl Acad Sci U S A, vol.100, pp.6940-6945

P. Gerner-smidt, S. Ethelberg, P. Schiellerup, J. J. Christensen, J. Engberg et al., , 2005.

, Invasive listeriosis in Denmark 1994-2003: a review of 299 cases with special emphasis on risk factors for mortality, Clin Microbiol Infect, vol.11, pp.618-624

B. K. Ghosh and K. K. Carroll, Isolation, composition, and structure of membrane of Listeria monocytogenes, Journal of bacteriology, vol.95, pp.688-699, 1968.

E. Giaouris, E. Heir, M. Desvaux, M. Hébraud, T. Møretrø et al., Intra-and inter-species interactions within biofilms of important foodborne bacterial pathogens, Frontiers in Microbiology, vol.6, 2015.

E. Giaouris, E. Heir, M. Hebraud, N. Chorianopoulos, S. Langsrud et al., Attachment and biofilm formation by foodborne bacteria in meat processing environments: causes, implications, role of bacterial interactions and control by alternative novel methods, Meat Sci, vol.97, pp.298-309, 2014.

D. L. Gibson, A. P. White, S. D. Snyder, S. Martin, C. Heiss et al., Salmonella produces an O-antigen capsule regulated by AgfD and important for environmental persistence, J Bacteriol, vol.188, pp.7722-7730, 2006.

S. Gillesberg-lassen, S. Ethelberg, J. T. Björkman, T. Jensen, G. Sørensen et al., Two listeria outbreaks caused by smoked fish consumption-using whole-genome sequencing for outbreak investigations, Clinical Microbiology and Infection, vol.22, pp.620-624, 2016.

J. M. Gilmore and M. P. Washburn, Advances in shotgun proteomics and the analysis of membrane proteomes, J Proteomics, vol.73, pp.2078-2091, 2010.

I. Giovannacci, G. Ermel, G. Salvat, J. L. Vendeuvre, and M. N. Bellon-fontaine, Physicochemical surface properties of five Listeria monocytogenes strains from a pork-processing environment in relation to serotypes, genotypes and growth temperature, Journal of Applied Microbiology, vol.88, pp.992-1000, 2000.

P. Glaser, L. Frangeul, C. Buchrieser, C. Rusniok, A. Amend et al., Comparative genomics of Listeria species, Science, vol.294, pp.849-852, 2001.

J. Goldstein, N. S. Pollitt, and M. Inouye, Major cold shock protein of Escherichia coli, Proceedings of the National Academy of Sciences of the United States of America, vol.87, pp.283-287, 1990.

D. J. Gonzalez, Y. Xu, Y. Yang, E. Esquenazi, W. Liu et al., Observing the invisible through imaging mass spectrometry, a window into the metabolic exchange patterns of microbes, Journal of Proteomics, vol.75, pp.5069-5076, 2012.

G. Grandi, Genomics and proteomics in reverse vaccines, Methods Biochem Anal, vol.49, pp.379-393, 2006.

V. Granholm and L. Kall, Quality assessments of peptide-spectrum matches in shotgun proteomics, Proteomics, vol.11, pp.1086-1093, 2011.

W. D. Grant, Life at low water activity, Philos Trans R Soc Lond B Biol Sci, vol.359, pp.1266-1247, 2004.

P. Graumann, T. M. Wendrich, M. H. Weber, K. Schröder, and M. A. Marahiel, A family of cold shock proteins in Bacillus subtilis is essential for cellular growth and for efficient protein synthesis at optimal and low temperatures, Molecular Microbiology, vol.25, pp.741-756, 1997.

J. A. Gray, P. S. Chandry, M. Kaur, C. Kocharunchitt, J. P. Bowman et al., Novel Biocontrol Methods for Listeria monocytogenes Biofilms in Food Production Facilities, p.605, 2018.

M. L. Gray and A. H. Killinger, Listeria monocytogenes and listeric infections, Bacteriological reviews, vol.30, pp.309-382, 1966.

S. L. Greene and N. E. Freitag, Negative regulation of PrfA, the key activator of Listeria monocytogenes virulence gene expression, is dispensable for bacterial pathogenesis, Microbiology, vol.149, pp.111-120, 2003.

A. M. Griffin and M. L. Robbins, The Flagellation of Listeria Monocytogenes, Journal of bacteriology, vol.48, pp.114-115, 1944.

P. R. Griffin, J. A. Coffman, L. E. Hood, and J. R. Yates, Structural analysis of proteins by capillary HPLC electrospray tandem mass spectrometry, International Journal of Mass Spectrometry and Ion Processes, vol.111, pp.131-149, 1991.

M. R. Groseclose, M. Andersson, W. M. Hardesty, and R. M. Caprioli, Identification of proteins directly from tissue: in situ tryptic digestions coupled with imaging mass spectrometry, J Mass Spectrom, vol.42, pp.254-262, 2007.

M. Gross, S. E. Cramton, F. Gotz, and A. Peschel, Key role of teichoic acid net charge in Staphylococcus aureus colonization of artificial surfaces, Infect Immun, vol.69, pp.3423-3426, 2001.

K. B. Gudmundsdottir, V. Svansson, E. Gunnarsson, S. Sigurdarson, A. et al., Listeria monocytogenes in horses in Iceland, Veterinary Record, vol.155, p.456, 2004.

M. Guilbaud, P. Piveteau, M. Desvaux, S. Brisse, and R. Briandet, Exploring the diversity of Listeria monocytogenes biofilm architecture by high-throughput confocal laser scanning microscopy and the predominance of the honeycomblike morphotype, Appl Environ Microbiol, vol.81, pp.1813-1819, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01204409

G. Gulez, A. Dechesne, C. T. Workman, and B. F. Smets, Transcriptome dynamics of Pseudomonas putida KT2440 under water stress, Appl Environ Microbiol, vol.78, pp.676-683, 2012.

H. Hächler, G. Marti, P. Giannini, A. Lehner, M. Jost et al., Outbreak of listerosis due to imported cooked ham, vol.18, p.20469, 2011.

M. Hackett, Science, marketing and wishful thinking in quantitative proteomics, Proteomics, vol.8, pp.4618-4623, 2008.

T. Hain, H. Hossain, S. S. Chatterjee, S. Machata, U. Volk et al., Temporal transcriptomic analysis of the Listeria monocytogenes EGD-e sigmaB regulon, BMC microbiology, vol.8, pp.20-20, 2008.

T. Hanawa, S. Yamanishi, S. Murayama, T. Yamamoto, and S. Kamiya, Participation of DnaK in expression of genes involved in virulence of Listeria monocytogenes, FEMS Microbiology Letters, vol.214, pp.69-75, 2002.

S. E. Hanna and H. H. Wang, Biofilm Development by Listeria monocytogenes, Biofilms in the Food Environment, 2006.

L. T. Hansen and B. F. Vogel, Desiccation of adhering and biofilm Listeria monocytogenes on stainless steel: Survival and transfer to salmon products, Int J Food Microbiol, vol.146, pp.88-93, 2011.

M. Hardman and A. A. Makarov, Interfacing the Orbitrap Mass Analyzer to an Electrospray Ion Source, Analytical Chemistry, vol.75, pp.1699-1705, 2003.

C. W. Harland, D. Rabuka, C. R. Bertozzi, and R. Parthasarathy, The Mycobacterium tuberculosis virulence factor trehalose dimycolate imparts desiccation resistance to model mycobacterial membranes, Biophys J, vol.94, pp.4718-4724, 2008.

M. Harmsen, M. Lappann, S. Knochel, and S. Molin, Role of extracellular DNA during biofilm formation by Listeria monocytogenes, Appl Environ Microbiol, vol.76, pp.2271-2279, 2010.

T. Haslberger, B. Bukau, and A. Mogk, Towards a unifying mechanism for ClpB/Hsp104-mediated protein disaggregation and prion propagation, Biochem Cell Biol, vol.88, pp.63-75, 2010.

M. M. Hayman, R. C. Anantheswaran, and S. J. Knabel, Heat shock induces barotolerance in Listeria monocytogenes, J Food Prot, vol.71, pp.426-430, 2008.

L. He, Q. L. Deng, M. T. Chen, Q. P. Wu, and Y. J. Lu, Proteomics analysis of Listeria monocytogenes ATCC 19115 in response to simultaneous triple stresses, Arch Microbiol, vol.197, pp.833-841, 2015.

M. Hebraud, Analysis of Listeria monocytogenes subproteomes, Methods Mol Biol, vol.1157, pp.109-128, 2014.

M. Hebraud and J. Guzzo, The main cold shock protein of Listeria monocytogenes belongs to the family of ferritin-like proteins, FEMS Microbiol Lett, vol.190, pp.29-34, 2000.

M. Hebraud and P. Potier, Cold shock response and low temperature adaptation in psychrotrophic bacteria, J Mol Microbiol Biotechnol, vol.1, pp.211-219, 1999.

M. Hebraud and P. Potier, Cold acclimation and cold-shock response in psychrotrophic bacteria, Cold shock response and adaptation, 2000.

K. E. Heiman, V. B. Garalde, M. Gronostaj, K. A. Jackson, S. Beam et al., Multistate outbreak of listeriosis caused by imported cheese and evidence of cross-contamination of other cheeses, Epidemiology and Infection, vol.144, pp.2698-2708, 2012.

K. Hempel, F. A. Herbst, M. Moche, M. Hecker, and D. Becher, Quantitative proteomic view on secreted, cell surface-associated, and cytoplasmic proteins of the methicillin-resistant human pathogen Staphylococcus aureus under ironlimited conditions, J Proteome Res, vol.10, pp.1657-1666, 2011.

K. Hempel, J. Pane-farre, A. Otto, S. Sievers, M. Hecker et al., Quantitative cell surface proteome profiling for SigB-dependent protein expression in the human pathogen Staphylococcus aureus via biotinylation approach, J Proteome Res, vol.9, pp.1579-1590, 2010.

A. Hernandez-milian and A. Payeras-cifre, What Is New in Listeriosis? BioMed Research International, vol.7, 2014.

N. Hershkovitz, A. Oren, and Y. Cohen, Accumulation of trehalose and sucrose in cyanobacteria exposed to matric water stress, Appl Environ Microbiol, vol.57, pp.645-648, 1991.

P. A. Hingston, E. C. Stea, S. Knochel, and T. Hansen, Role of initial contamination levels, biofilm maturity and presence of salt and fat on desiccation survival of Listeria monocytogenes on stainless steel surfaces, Food Microbiol, vol.36, pp.46-56, 2013.

R. Hiramatsu, M. Matsumoto, K. Sakae, and Y. Miyazaki, Ability of Shiga toxin-producing Escherichia coli and Salmonella spp. to survive in a desiccation model system and in dry foods, Appl Environ Microbiol, vol.71, pp.6657-6663, 2005.

S. S. Hirano and C. D. Upper, Bacteria in the leaf ecosystem with emphasis on Pseudomonas syringae-a pathogen, ice nucleus, and epiphyte, Microbiol Mol Biol Rev, vol.64, pp.624-653, 2000.

T. Hoffmann and P. C. Dorrestein, Homogeneous matrix deposition on dried agar for MALDI imaging mass spectrometry of microbial cultures, J Am Soc Mass Spectrom, vol.26, pp.1959-1962, 2015.

P. C. Houtsma, J. C. De-wit, and F. M. Rombouts, Minimum inhibitory concentration (MIC) of sodium lactate for pathogens and spoilage organisms occurring in meat products, Int J Food Microbiol, vol.20, pp.247-257, 1993.

Q. Hu, R. J. Noll, H. Li, A. Makarov, M. Hardman et al., The Orbitrap: a new mass spectrometer, Journal of Mass Spectrometry, vol.40, pp.430-443, 2005.

Y. Hu, H. F. Oliver, S. Raengpradub, M. E. Palmer, R. H. Orsi et al., Transcriptomic and phenotypic analyses suggest a network between the transcriptional regulators HrcA and sigmaB in Listeria monocytogenes, Appl Environ Microbiol, vol.73, pp.7981-7991, 2007.

C. Huber and L. Huber, Special focus on top-down proteomics, Proteomics, vol.10, pp.3564-3565, 2010.

J. Huerta-cepas, D. Szklarczyk, K. Forslund, H. Cook, D. Heller et al., 5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences, Nucleic Acids Research, vol.44, pp.286-293, 2016.

K. Hunger, C. L. Beckering, F. Wiegeshoff, P. L. Graumann, and M. A. Marahiel, Cold-induced putative DEAD box RNA helicases CshA and CshB are essential for cold adaptation and interact with cold shock protein B in Bacillus subtilis, J Bacteriol, vol.188, pp.240-248, 2006.

M. L. Hutchison, L. D. Walters, S. M. Avery, B. A. Synge, M. et al., Levels of zoonotic agents in British livestock manures, Lett Appl Microbiol, vol.39, pp.207-214, 2004.

C. A. Hwang, A. C. Porto-fett, V. K. Juneja, S. C. Ingham, B. H. Ingham et al., Modeling the survival of Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella Typhimurium during fermentation, drying, and storage of soudjouk-style fermented sausage, Int J Food Microbiol, vol.129, pp.244-252, 2009.

F. Impens, N. Rolhion, L. Radoshevich, C. Becavin, M. Duval et al., Nterminomics identifies Prli42 as a membrane miniprotein conserved in Firmicutes and critical for stressosome activation in Listeria monocytogenes, Nat Microbiol, vol.2, p.17005, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-01574963

K. Ireton, Entry of the bacterial pathogen Listeria monocytogenes into mammalian cells, Cellular Microbiology, vol.9, pp.1365-1375, 2007.

R. Ivanek, Y. T. Grohn, L. W. Tauer, and M. Wiedmann, The cost and benefit of Listeria monocytogenes food safety measures, Crit Rev Food Sci Nutr, vol.44, pp.513-523, 2004.

A. Jacks, A. Pihlajasaari, M. Vahe, A. Myntti, S. S. Kaukoranta et al., Outbreak of hospital-acquired gastroenteritis and invasive infection caused by Listeria monocytogenes, Epidemiology and Infection, vol.144, pp.2732-2742, 2012.

H. Jiang, H. Zou, H. Wang, Q. Zhang, J. Ni et al., Combination of MALDI-TOF mass spectrometry with immobilized enzyme microreactor for peptide mapping, Science in China Series B: Chemistry, vol.43, pp.625-633, 2000.

J. Johansson, P. Mandin, A. Renzoni, C. Chiaruttini, M. Springer et al., An RNA thermosensor controls expression of virulence genes in Listeria monocytogenes, Cell, vol.110, pp.551-561, 2002.

L. R. Johnson, Microcolony and biofilm formation as a survival strategy for bacteria, J Theor Biol, vol.251, pp.24-34, 2008.

E. Karatan and P. Watnick, Signals, regulatory networks, and materials that build and break bacterial biofilms, Microbiol Mol Biol Rev, vol.73, pp.310-347, 2009.

S. Kaspar, M. Peukert, A. Svatos, A. Matros, and H. P. Mock, MALDIimaging mass spectrometry -An emerging technique in plant biology, Proteomics, vol.11, pp.1840-1850, 2011.

V. G. Kastbjerg and L. Gram, Industrial disinfectants do not select for resistance in Listeria monocytogenes following long term exposure, International Journal of Food Microbiology, vol.160, pp.11-15, 2012.

S. Kathariou, Listeria monocytogenes virulence and pathogenicity, a food safety perspective, J Food Prot, vol.65, pp.1811-1829, 2002.

G. Kaur, T. P. Singh, and R. K. Malik, Antibacterial efficacy of Nisin, Pediocin 34 and Enterocin FH99 against Listeria monocytogenes and cross resistance of its bacteriocin resistant variants to common food preservatives. Brazilian journal of microbiology, vol.44, pp.63-71, 2013.

T. Kawaguchi and A. W. Decho, Biochemical characterization of cyanobacterial extracellular polymers (EPS) from modern marine stromatolites (Bahamas), Prep Biochem Biotechnol, vol.30, pp.321-330, 2000.

M. J. Kazmierczak, S. C. Mithoe, K. J. Boor, and M. Wiedmann, Listeria monocytogenes sigma B regulates stress response and virulence functions, J Bacteriol, vol.185, pp.5722-5734, 2003.

A. Khemiri, T. Jouenne, C. , and P. , Proteomics dedicated to biofilmology: What have we learned from a decade of research?, Med Microbiol Immunol, vol.205, pp.1-19, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02326370

Y. E. Kim, M. S. Hipp, A. Bracher, M. Hayer-hartl, and F. U. Hartl, Molecular chaperone functions in protein folding and proteostasis, Annu Rev Biochem, vol.82, pp.323-355, 2013.

M. A. Kingsley, L. K. Gaul, N. H. Farag, T. Shim, B. J. Silk et al., Hospital-Acquired Listeriosis Outbreak Caused by Contaminated Diced Celery-Texas, Clinical Infectious Diseases, vol.56, pp.20-26, 2010.

M. D. Kirk, S. M. Pires, R. E. Black, M. Caipo, J. A. Crump et al., World Health Organization Estimates of the Global and Regional Disease Burden of 22 Foodborne Bacterial, Protozoal, and Viral Diseases, 2010: A Data Synthesis, PLoS Med, vol.12, 2015.

J. Koch, R. Dworak, R. Prager, B. Becker, S. Brockmann et al., Large Listeriosis Outbreak Linked to Cheese Made from Pasteurized Milk, Foodborne Pathogens and Disease, vol.7, pp.1581-1584, 2006.

S. L. Koeniger, N. Talaty, Y. Luo, D. Ready, M. Voorbach et al., A quantitation method for mass spectrometry imaging, Rapid Communications in Mass Spectrometry, vol.25, pp.503-510, 2011.

R. Kolter and E. P. Greenberg, Microbial sciences: the superficial life of microbes, Nature, vol.441, pp.300-302, 2006.

D. Korsak, Z. Markiewicz, G. O. Gutkind, and J. A. Ayala, Identification of the full set of Listeria monocytogenes penicillin-binding proteins and characterization of, BMC Microbiol, vol.10, p.239, 2010.

D. Korsak and M. Szuplewska, Characterization of nonpathogenic Listeria species isolated from food and food processing environment, Int J Food Microbiol, vol.238, pp.274-280, 2016.

M. Kortebi, E. Milohanic, G. Mitchell, C. Pechoux, M. C. Prevost et al., Listeria monocytogenes switches from dissemination to persistence by adopting a vacuolar lifestyle in epithelial cells, PLoS Pathog, vol.13, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-01740291

M. Kostaki, N. Chorianopoulos, E. Braxou, G. J. Nychas, and E. Giaouris, Differential biofilm formation and chemical disinfection resistance of sessile cells of Listeria monocytogenes strains under monospecies and dual-species (with Salmonella enterica) conditions, Appl Environ Microbiol, vol.78, pp.2586-2595, 2012.

K. Koyama, H. Hokunan, M. Hasegawa, S. Kawamura, and S. Koseki, Modeling stochastic variability in number of surviving cells of Salmonella enterica, enterohemorrhagic Escherichia coli, and Listeria monocytogenes at the single-cell level in a desiccation environment, Appl Environ Microbiol, 2016.

A. Krisko, Z. Smole, G. Debret, N. Nikolic, and M. Radman, Unstructured hydrophilic sequences in prokaryotic proteomes correlate with dehydration tolerance and host association, J Mol Biol, vol.402, pp.775-782, 2010.

T. Kuda, G. Shibata, H. Takahashi, and B. Kimura, Effect of quantity of food residues on resistance to desiccation of food-related pathogens adhered to a stainless steel surface, Food Microbiol, vol.46, pp.234-238, 2015.

A. Kumar, A. Alam, M. Rani, N. Z. Ehtesham, and S. E. Hasnain, Biofilms: Survival and defense strategy for pathogens, International Journal of Medical Microbiology, vol.307, pp.481-489, 2017.

M. Kurazono, K. Nakamura, M. Yamada, T. Yonemaru, and T. Sakoda, Pathology of Listerial Encephalitis in Chickens in Japan, Avian Diseases, vol.47, pp.1496-1502, 2003.

E. S. Lander, L. M. Linton, B. Birren, C. Nusbaum, M. C. Zody et al., Initial sequencing and analysis of the human genome, Nature, vol.409, pp.860-921, 2001.

I. Lasa and J. R. Penadés, Bap: A family of surface proteins involved in biofilm formation, Research in Microbiology, vol.157, pp.99-107, 2006.

J. C. Leblanc, E. R. Goncalves, and W. W. Mohn, Global response to desiccation stress in the soil actinomycete Rhodococcus jostii RHA1, Appl Environ Microbiol, vol.74, pp.2627-2636, 2008.

L. Leblanc, C. Leboeuf, F. Leroi, A. Hartke, A. et al., Comparison between NaCl tolerance response and acclimation to cold temperature in Shewanella putrefaciens, Curr Microbiol, vol.46, pp.157-162, 2003.
URL : https://hal.archives-ouvertes.fr/hal-02182300

N. Ledala, M. Sengupta, A. Muthaiyan, B. J. Wilkinson, and R. K. Jayaswal, Transcriptomic response of Listeria monocytogenes to iron limitation and Fur mutation, Appl Environ Microbiol, vol.76, pp.406-416, 2010.

B. Lee, M. Hébraud, and T. Bernardi, Increased Adhesion of Listeria monocytogenes Strains to Abiotic Surfaces under Cold Stress, Frontiers in Microbiology, vol.8, 2017.

J. J. Lee, G. Lee, and J. H. Shin, sigma(B) affects biofilm formation under the dual stress conditions imposed by adding salt and low temperature in Listeria monocytogenes, J Microbiol, vol.52, pp.849-855, 2014.

K. C. Lee, W. S. Yeo, and J. H. Roe, Oxidant-responsive induction of the suf operon, encoding a Fe-S assembly system, through Fur and IscR in Escherichia coli, J Bacteriol, vol.190, pp.8244-8247, 2008.

R. Lemaire, A. Desmons, J. C. Tabet, R. Day, M. Salzet et al., Direct Analysis and MALDI Imaging of Formalin-Fixed, Paraffin-Embedded Tissue Sections, Journal of Proteome Research, vol.6, pp.1295-1305, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00167250

K. P. Lemon, N. E. Freitag, and R. Kolter, The virulence regulator PrfA promotes biofilm formation by Listeria monocytogenes, J Bacteriol, vol.192, pp.3969-3976, 2010.

K. P. Lemon, D. E. Higgins, and R. Kolter, Flagellar motility is critical for Listeria monocytogenes biofilm formation, Journal of bacteriology, vol.189, pp.4418-4424, 2007.

Y. Lequette, G. Boels, M. Clarisse, and C. Faille, Using enzymes to remove biofilms of bacterial isolates sampled in the food-industry, Biofouling, vol.26, pp.421-431, 2010.

H. Li, J. Han, J. Pan, T. Liu, C. E. Parker et al., Current trends in quantitative proteomics -an update, Journal of Mass Spectrometry, vol.52, pp.319-341, 2017.

P. Liao, A. , and J. , Dissecting matrix-assisted laser desorption/ionization mass spectra, Journal of Mass Spectrometry, vol.30, pp.763-766, 1995.

K. Liberek, J. Marszalek, D. Ang, C. Georgopoulos, and M. Zylicz, Escherichia coli DnaJ and GrpE heat shock proteins jointly stimulate ATPase activity of DnaK, Proc Natl Acad Sci U S A, vol.88, pp.2874-2878, 1991.

K. H. Lim, C. E. Jones, R. N. Vanden-hoven, J. L. Edwards, M. L. Falsetta et al., Metal binding specificity of the MntABC permease of Neisseria gonorrhoeae and its influence on bacterial growth and interaction with cervical epithelial cells, Infect Immun, vol.76, pp.3569-3576, 2008.

S. Y. Lim, C. S. Teh, and K. L. Thong, Biofilm-Related Diseases and Omics: Global Transcriptional Profiling of Enterococcus faecium Reveals Different Gene Expression Patterns in the Biofilm and Planktonic Cells, OMICS, vol.21, pp.592-602, 2017.

D. H. Limoli, C. J. Jones, and D. J. Wozniak, Bacterial Extracellular Polysaccharides in Biofilm Formation and Function, Microbiol Spectr, vol.3, 2015.

K. Linke, I. Ruckerl, K. Brugger, R. Karpiskova, J. Walland et al., Reservoirs of listeria species in three environmental ecosystems, Appl Environ Microbiol, vol.80, pp.5583-5592, 2014.

M. J. Linnan, L. Mascola, X. D. Lou, V. Goulet, S. May et al., Epidemic Listeriosis Associated with Mexican-Style Cheese, New England Journal of Medicine, vol.319, pp.823-828, 1988.

D. Liu, Molecular approaches to the identification of pathogenic and nonpathogenic listeriae, Microbiol Insights, vol.6, pp.59-69, 2013.

H. Liu, R. G. Sadygov, and J. R. Yates, A model for random sampling and estimation of relative protein abundance in shotgun proteomics, Anal Chem, vol.76, pp.4193-4201, 2004.

S. Liu, J. E. Graham, L. Bigelow, P. D. Morse, and B. J. Wilkinson, Identification of Listeria monocytogenes genes expressed in response to growth at low temperature, Appl Environ Microbiol, vol.68, pp.1697-1705, 2002.

S. Lomonaco, D. Nucera, and V. Filipello, The evolution and epidemiology of Listeria monocytogenes in Europe and the United States. Infection, Genetics and Evolution, vol.35, pp.172-183, 2015.

L. Lotfollahi, A. Chaharbalesh, M. Ahangarzadeh-rezaee, and A. Hasani, Prevalence, antimicrobial susceptibility and multiplex PCR-serotyping of Listeria monocytogenes isolated from humans, foods and livestock in Iran, Microbial Pathogenesis, vol.107, pp.425-429, 2017.

L. Luque-sastre, E. M. Fox, K. Jordan, and S. Fanning, A Comparative Study of the Susceptibility of Listeria Species to Sanitizer Treatments When Grown under Planktonic and Biofilm Conditions, J Food Prot, vol.81, pp.1481-1490, 2018.

G. B. Mackaness, Cellular resistance to infection, The Journal of experimental medicine, vol.116, pp.381-406, 1962.

R. Magalhães, G. Almeida, V. Ferreira, I. Santos, J. Silva et al., Cheese-related listeriosis outbreak, vol.20, p.21104, 2009.

S. K. Maier, H. Hahne, A. M. Gholami, B. Balluff, S. Meding et al., Comprehensive identification of proteins from MALDI imaging, Mol Cell Proteomics, vol.12, pp.2901-2910, 2013.

A. Makarov, Electrostatic axially harmonic orbital trapping: a high-performance technique of mass analysis, Anal Chem, vol.72, pp.1156-1162, 2000.

K. S. Makarova, L. Aravind, Y. I. Wolf, R. L. Tatusov, K. W. Minton et al., Genome of the extremely radiation-resistant bacterium Deinococcus radiodurans viewed from the perspective of comparative genomics, Microbiol Mol Biol Rev, vol.65, pp.44-79, 2001.

H. Malen, F. S. Berven, K. E. Fladmark, and H. G. Wiker, Comprehensive analysis of exported proteins from Mycobacterium tuberculosis H37Rv, Proteomics, vol.7, pp.1702-1718, 2007.

L. Malmstrom, J. Malmstrom, A. , and R. , Quantitative proteomics of microbes: Principles and applications to virulence, Proteomics, vol.11, pp.2947-2956, 2011.

M. Marchetti-deschmann, A. , and G. , Mass spectrometry -One of the pillars of proteomics, J Proteomics, vol.74, pp.915-919, 2011.

A. Markkula, M. Mattila, M. Lindstrom, and H. Korkeala, Genes encoding putative DEAD-box RNA helicases in Listeria monocytogenes EGD-e are needed for growth and motility at 3 degrees C, Environ Microbiol, vol.14, pp.2223-2232, 2012.

J. Marles-wright and R. J. Lewis, The stressosome: molecular architecture of a signalling hub, Biochemical Society Transactions, vol.38, p.928, 2010.

M. Martin-lorenzo, G. Alvarez-llamas, L. A. Mcdonnell, and F. Vivanco, Molecular histology of arteries: mass spectrometry imaging as a novel ex vivo tool to investigate atherosclerosis, Expert Rev Proteomics, vol.13, pp.69-81, 2016.

M. M. Mata, W. P. Da-silva, R. Wilson, E. Lowe, and J. P. Bowman, Attached and planktonic Listeria monocytogenes global proteomic responses and associated influence of strain genetics and temperature, J Proteome Res, vol.14, pp.1161-1173, 2015.

K. L. Mattick, F. Jorgensen, J. D. Legan, M. B. Cole, J. Porter et al., Survival and filamentation of Salmonella enterica serovar enteritidis PT4 and Salmonella enterica serovar typhimurium DT104 at low water activity, Appl Environ Microbiol, vol.66, pp.1274-1279, 2000.

M. Mattila, M. Lindstrom, P. Somervuo, A. Markkula, and H. Korkeala, Role of flhA and motA in growth of Listeria monocytogenes at low temperatures, Int J Food Microbiol, vol.148, pp.177-183, 2011.

M. Mattila, P. Somervuo, T. Rattei, H. Korkeala, R. Stephan et al., Phenotypic and transcriptomic analyses of Sigma L-dependent characteristics in Listeria monocytogenes EGD-e, Food Microbiol, vol.32, pp.152-164, 2012.

J. T. Mccollum, A. B. Cronquist, B. J. Silk, K. A. Jackson, K. A. O'connor et al., Multistate Outbreak of Listeriosis Associated with Cantaloupe, New England Journal of Medicine, vol.369, pp.944-953, 2013.

P. S. Mead, L. Slutsker, V. Dietz, L. F. Mccaig, J. S. Bresee et al., Food-related illness and death in the United States, Emerg Infect Dis, vol.5, pp.607-625, 1999.

M. Meyrand, A. Guillot, M. Goin, S. Furlan, J. Armalyte et al., Surface proteome analysis of a natural isolate of Lactococcus lactis reveals the presence of pili able to bind human intestinal epithelial cells, Mol Cell Proteomics, vol.12, pp.3935-3947, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00859731

E. Mhatre, A. Troszok, R. Gallegos-monterrosa, S. Lindstadt, T. Holscher et al., The impact of manganese on biofilm development of Bacillus subtilis, Microbiology, vol.162, pp.1468-1478, 2016.

J. Mikkola, P. Ruutu, O. Lyytikäinen, A. Siitonen, H. Korkeala et al., An Outbreak of Listeria Monocytogenes Serotype 3a Infections from Butter in Finland, The Journal of Infectious Diseases, vol.181, pp.1838-1841, 2000.

H. Miladi, H. Elabed, R. Ben-slama, A. Rhim, and A. Bakhrouf, Molecular analysis of the role of osmolyte transporters opuCA and betL in Listeria monocytogenes after cold and freezing stress, Arch Microbiol, vol.199, pp.259-265, 2017.

A. P. Minton, The influence of macromolecular crowding and macromolecular confinement on biochemical reactions in physiological media, J Biol Chem, vol.276, pp.10577-10580, 2001.

K. W. Minton, Repair of ionizing-radiation damage in the radiation resistant bacterium Deinococcus radiodurans, Mutat Res, vol.363, pp.1-7, 1996.

C. Moissl-eichinger, C. Cockell, and P. Rettberg, Venturing into new realms? Microorganisms in space, FEMS Microbiol Rev, vol.40, pp.722-737, 2016.

K. Mølbak, L. Müller, T. G. Krause, S. Ethelberg, A. Kvistholm-jensen et al., Whole-genome Sequencing Used to Investigate a Nationwide Outbreak of Listeriosis Caused by Ready-to-eat Delicatessen Meat, Clinical Infectious Diseases, vol.63, pp.64-70, 2014.

A. G. Moltz and S. E. Martin, Formation of biofilms by Listeria monocytogenes under various growth conditions, J Food Prot, vol.68, pp.92-97, 2005.

R. Monteiro, I. Chafsey, S. Leroy, C. Chambon, M. Hébraud et al., Differential biotin labelling of the cell envelope proteins in lipopolysaccharidic diderm bacteria: Exploring the proteosurfaceome of Escherichia coli using sulfo-NHS-SS-biotin and sulfo-NHS-PEG4-bismannose-SS-biotin, Journal of Proteomics, vol.181, pp.16-23, 2018.

R. Monteiro, M. Hebraud, I. Chafsey, C. Chambon, D. Viala et al., Surfaceome and exoproteome of a clinical sequence type 398 methicillin resistant Staphylococcus aureus strain, Biochem Biophys Rep, vol.3, pp.7-13, 2015.

W. J. Moree, V. V. Phelan, C. H. Wu, N. Bandeira, D. S. Cornett et al., Interkingdom metabolic transformations captured by microbial imaging mass spectrometry, Proc Natl Acad Sci U S A, vol.109, pp.13811-13816, 2012.

T. Møretrø, B. C. Schirmer, E. Heir, A. Fagerlund, P. Hjemli et al., Tolerance to quaternary ammonium compound disinfectants may enhance growth of Listeria monocytogenes in the food industry, International Journal of Food Microbiology, vol.241, pp.215-224, 2017.

E. G. Murray, R. A. Webb, and M. B. Swann, A disease of rabbits characterised by a large mononuclear leucocytosis, caused by a hitherto undescribed bacillus Bacterium monocytogenes (n.sp.), The Journal of Pathology and Bacteriology, vol.29, pp.407-439, 1926.

N. Nagaraj, N. A. Kulak, J. Cox, N. Neuhauser, K. Mayr et al., System-wide perturbation analysis with nearly complete coverage of the yeast proteome by single-shot ultra HPLC runs on a bench top Orbitrap, Molecular & cellular proteomics : MCP, vol.11, 2012.

K. A. Neilson, N. A. Ali, S. Muralidharan, M. Mirzaei, M. Mariani et al., Less label, more free: approaches in label-free quantitative mass spectrometry, Proteomics, vol.11, pp.535-553, 2011.

M. R. Neunlist, M. Federighi, M. Laroche, D. Sohier, G. Delattre et al., Cellular lipid fatty acid pattern heterogeneity between reference and recent food isolates of Listeria monocytogenes as a response to cold stress, Antonie Van Leeuwenhoek, vol.88, pp.199-206, 2005.

K. Nicaogain, O. 'byrne, and C. P. , The Role of Stress and Stress Adaptations in Determining the Fate of the Bacterial Pathogen Listeria monocytogenes in the Food Chain, Front Microbiol, vol.7, p.1865, 2016.

K. K. Nightingale, Y. H. Schukken, C. R. Nightingale, E. D. Fortes, A. J. Ho et al., Ecology and transmission of Listeria monocytogenes infecting ruminants and in the farm environment, Appl Environ Microbiol, vol.70, pp.4458-4467, 2004.

U. Nirenberg, Reversed-phase HPLC. Analytical procedure, Methods Mol Biol, vol.36, pp.23-35, 1994.

D. Nocera, E. Bannerman, J. Rocourt, K. Jaton-ogay, and J. Bille, Characterization by DNA restriction endonuclease analysis of Listeria monocytogenes strains related to the Swiss epidemic of listeriosis, Journal of clinical microbiology, vol.28, pp.2259-2263, 1990.

J. Nowak, C. D. Cruz, J. Palmer, G. C. Fletcher, and S. Flint, Biofilm formation of the L. monocytogenes strain 15G01 is influenced by changes in environmental conditions, Journal of Microbiological Methods, vol.119, pp.189-195, 2015.

A. Nyfeldt, Etiologie de la mononucleose infecteuse, Compt. Rend. Soc. Biol, vol.101, p.509, 1929.

S. Oie and A. Kamiya, Survival of methicillin-resistant Staphylococcus aureus (MRSA) on naturally contaminated dry mops, J Hosp Infect, vol.34, pp.145-149, 1996.

A. Olaya-abril, I. Jiménez-munguía, L. Gómez-gascón, and M. J. Rodríguez-ortega, Surfomics: Shaving live organisms for a fast proteomic identification of surface proteins, Journal of Proteomics, vol.97, pp.164-176, 2014.

S. J. Olsen, M. Patrick, S. B. Hunter, V. Reddy, L. Kornstein et al., Multistate outbreak of Listeria monocytogenes infection linked to delicatessen turkey meat, Clin Infect Dis, vol.40, pp.962-967, 2005.

N. Ondrusch and J. Kreft, Blue and red light modulates SigB-dependent gene transcription, swimming motility and invasiveness in Listeria monocytogenes, PloS one, vol.6, pp.16151-16151, 2011.

S. E. Ong and M. Mann, Mass spectrometry-based proteomics turns quantitative, Nat Chem Biol, vol.1, pp.252-262, 2005.

S. Ortiz, V. López, D. Villatoro, P. López, J. C. Dávila et al., A 3-Year Surveillance of the Genetic Diversity and Persistence of Listeria monocytogenes in an Iberian Pig Slaughterhouse and Processing Plant, Foodborne Pathogens and Disease, vol.7, pp.1177-1184, 2010.

A. Otto, D. Becher, and F. Schmidt, Quantitative proteomics in the field of microbiology, Proteomics, vol.14, pp.547-565, 2014.

S. C. Park, Y. Park, and K. S. Hahm, The role of antimicrobial peptides in preventing multidrug-resistant bacterial infections and biofilm formation, Int J Mol Sci, vol.12, pp.5971-5992, 2011.

D. Penque, T. Simoes, A. , and F. , Proteomics advances in the last decade: What is next?, J Proteomics, vol.75, pp.1-3, 2011.

J. Petrak, R. Ivanek, O. Toman, R. Cmejla, J. Cmejlova et al., Deja vu in proteomics. A hit parade of repeatedly identified differentially expressed proteins, Proteomics, vol.8, pp.1744-1749, 2008.

S. Phadtare, J. Alsina, and M. Inouye, Cold-shock response and cold-shock proteins, Curr Opin Microbiol, vol.2, pp.175-180, 1999.

V. V. Phelan, J. Fang, and P. C. Dorrestein, Mass Spectrometry Analysis of Pseudomonas aeruginosa Treated with Azithromycin, J Am Soc Mass Spectrom, vol.26, pp.873-877, 2015.

V. V. Phelan, W. J. Moree, J. Aguilar, D. S. Cornett, A. Koumoutsi et al., Impact of a transposon insertion in phzF2 on the specialized metabolite production and interkingdom interactions of Pseudomonas aeruginosa, J Bacteriol, vol.196, pp.1683-1693, 2014.

M. J. Piercey, P. A. Hingston, T. Hansen, and L. , Genes involved in Listeria monocytogenes biofilm formation at a simulated food processing plant temperature of 15 degrees C, Int J Food Microbiol, vol.223, pp.63-74, 2016.

J. H. Pirie, Listeria: Change of Name for a Genus Bacteria, Nature, vol.145, p.264, 1940.

J. R. Pittman, J. O. Buntyn, G. Posadas, B. Nanduri, K. Pendarvis et al., Proteomic analysis of cross protection provided between cold and osmotic stress in Listeria monocytogenes, Journal of proteome research, vol.13, pp.1896-1904, 2014.

J. Pizarro-cerda and P. Cossart, Listeria monocytogenes: cell biology of invasion and intracellular growth, Microbiol Spectr, vol.6, 2018.

R. Podolak, E. Enache, W. Stone, D. G. Black, and P. H. Elliott, Sources and risk factors for contamination, survival, persistence, and heat resistance of Salmonella in low-moisture foods, J Food Prot, vol.73, pp.1919-1936, 2010.

K. Podwojski, M. Eisenacher, M. Kohl, M. Turewicz, H. E. Meyer et al., Peek a peak: a glance at statistics for quantitative label-free proteomics, Expert Review of Proteomics, vol.7, pp.249-261, 2010.

S. V. Poimenidou, D. N. Chatzithoma, G. J. Nychas, and P. N. Skandamis, , 2016.

, Adaptive Response of Listeria monocytogenes to Heat, Salinity and Low pH, after Habituation on Cherry Tomatoes and Lettuce Leaves, PLoS One, vol.11, 165746.

M. Popowska, Analysis of the peptidoglycan hydrolases of Listeria monocytogenes: multiple enzymes with multiple functions, Pol J Microbiol, vol.53, 2004.

M. Potts, Desiccation tolerance of prokaryotes, Microbiol Rev, vol.58, pp.755-805, 1994.

M. Potts, Desiccation tolerance: a simple process?, Trends Microbiol, vol.9, pp.553-559, 2001.

R. Pouillot, K. C. Klontz, Y. Chen, L. S. Burall, D. Macarisin et al., Infectious Dose of Listeria monocytogenes in Outbreak Linked to Ice Cream, Emerging infectious diseases, vol.22, pp.2113-2119, 2015.

L. A. Pratt and R. Kolter, Genetic analyses of bacterial biofilm formation, Current Opinion in Microbiology, vol.2, pp.598-603, 1999.

T. Pribyl, M. Moche, A. Dreisbach, J. J. Bijlsma, M. Saleh et al., Influence of impaired lipoprotein biogenesis on surface and exoproteome of Streptococcus pneumoniae, J Proteome Res, vol.13, pp.650-667, 2014.

B. Prideaux, V. Dartois, D. Staab, D. M. Weiner, A. Goh et al., High-Sensitivity MALDI-MRM-MS Imaging of Moxifloxacin Distribution in Tuberculosis-Infected Rabbit Lungs and Granulomatous Lesions, Analytical Chemistry, vol.83, pp.2112-2118, 2011.

C. Prigent-combaret, O. Vidal, C. Dorel, and P. Lejeune, Abiotic surface sensing and biofilm-dependent regulation of gene expression in Escherichia coli, J Bacteriol, vol.181, pp.5993-6002, 1999.

M. G. Pucciarelli, E. Calvo, C. Sabet, H. Bierne, P. Cossart et al., Identification of substrates of the Listeria monocytogenes sortases A and B by a non-gel proteomic analysis, Proteomics, vol.5, pp.4808-4817, 2005.

S. Qayyum, D. Sharma, D. Bisht, and A. U. Khan, Protein translation machinery holds a key for transition of planktonic cells to biofilm state in Enterococcus faecalis: A proteomic approach, Biochem Biophys Res Commun, vol.474, pp.652-659, 2016.

H. Qiu, X. Liang, M. Sun, and S. Jiang, Development of silica-based stationary phases for high-performance liquid chromatography, Anal Bioanal Chem, vol.399, pp.3307-3322, 2011.

S. Quan, A. Hiniker, J. F. Collet, and J. C. Bardwell, Isolation of bacteria envelope proteins, Methods Mol Biol, vol.966, pp.359-366, 2013.

T. Rabilloud, Solubilization of proteins in 2DE: an outline, Methods Mol Biol, vol.519, pp.19-30, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00377755

T. Rabilloud and C. Lelong, Two-dimensional gel electrophoresis in proteomics: a tutorial, J Proteomics, vol.74, pp.1829-1841, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00623443

L. Radoshevich and P. Cossart, Listeria monocytogenes: towards a complete picture of its physiology and pathogenesis, Nat Rev Microbiol, vol.16, pp.32-46, 2018.
URL : https://hal.archives-ouvertes.fr/pasteur-01740276

S. Raengpradub, M. Wiedmann, and K. J. Boor, Comparative analysis of the sigma B-dependent stress responses in Listeria monocytogenes and Listeria innocua strains exposed to selected stress conditions, Applied and environmental microbiology, vol.74, pp.158-171, 2008.

J. L. Ramos, M. T. Gallegos, S. Marques, M. I. Ramos-gonzalez, M. Espinosa-urgel et al., Responses of Gram-negative bacteria to certain environmental stressors, Curr Opin Microbiol, vol.4, pp.166-171, 2001.

E. C. Randall, J. Bunch, and H. J. Cooper, Direct analysis of intact proteins from Escherichia coli colonies by liquid extraction surface analysis mass spectrometry, Anal Chem, vol.86, pp.10504-10510, 2014.

A. Rani and S. Babu, Environmental proteomic studies: closer step to understand bacterial biofilms, World J Microbiol Biotechnol, vol.34, p.120, 2018.

D. B. Rawool, S. P. Doijad, K. V. Poharkar, M. Negi, S. B. Kale et al., A multiplex PCR for detection of Listeria monocytogenes and its lineages, J Microbiol Methods, vol.130, pp.144-147, 2016.

S. Renier, I. Chafsey, C. Chambon, N. Caccia, A. Charbit et al., Contribution of the multiple Type I signal peptidases to the secretome of Listeria monocytogenes: deciphering their specificity for secreted exoproteins by exoproteomic analysis, J Proteomics, vol.117, pp.95-105, 2015.

S. Renier, C. Chambon, D. Viala, C. Chagnot, M. Hebraud et al., Exoproteomic analysis of the SecA2-dependent secretion in Listeria monocytogenes EGD-e, J Proteomics, vol.80, pp.183-195, 2013.

S. Renier, M. Hebraud, and M. Desvaux, Molecular biology of surface colonization by Listeria monocytogenes: an additional facet of an opportunistic Gram-positive foodborne pathogen, Environ Microbiol, vol.13, pp.835-850, 2011.

S. Renier, P. Micheau, R. Talon, M. Hebraud, and M. Desvaux, Subcellular localization of extracytoplasmic proteins in monoderm bacteria: rational secretomics-based strategy for genomic and proteomic analyses, PLoS One, vol.7, p.42982, 2012.

A. Resch, S. Leicht, M. Saric, L. Pasztor, A. Jakob et al., Comparative proteome analysis of Staphylococcus aureus biofilm and planktonic cells and correlation with transcriptome profiling, Proteomics, vol.6, pp.1867-1877, 2006.

K. A. Resing and N. G. Ahn, Proteomics strategies for protein identification, FEBS Lett, vol.579, pp.885-889, 2005.

M. Risch, D. Radjenovic, J. N. Han, M. Wydler, U. Nydegger et al., Comparison of MALDI TOF with conventional identification of clinically relevant bacteria, Swiss medical weekly, vol.140, 2010.

E. B. Roberson and M. K. Firestone, Relationship between Desiccation and Exopolysaccharide Production in a Soil Pseudomonas sp, Appl Environ Microbiol, vol.58, pp.1284-1291, 1992.

M. J. Rodriguez-ortega, N. Norais, G. Bensi, S. Liberatori, S. Capo et al., Characterization and identification of vaccine candidate proteins through analysis of the group A Streptococcus surface proteome, Nat Biotechnol, vol.24, pp.191-197, 2006.

S. J. Rose and L. E. Bermudez, Identification of Bicarbonate as a Trigger and Genes Involved with Extracellular DNA Export in Mycobacterial Biofilms, vol.7, pp.1597-01516, 2016.

P. L. Ross, Y. N. Huang, J. N. Marchese, B. Williamson, K. Parker et al., , 2004.

, Multiplexed Protein Quantitation in Saccharomyces cerevisiae Using Aminereactive Isobaric Tagging Reagents, Molecular & Cellular Proteomics, vol.3, p.1154

A. Ruiz, S. K. Williams, N. Djeri, A. Hinton, R. Jr et al., Nisin, rosemary, and ethylenediaminetetraacetic acid affect the growth of Listeria monocytogenes on ready-to-eat turkey ham stored at four degrees Celsius for sixty-three days, Poult Sci, vol.88, pp.1765-1772, 2009.

S. Rumbo-feal, M. J. Gomez, C. Gayoso, L. Alvarez-fraga, M. P. Cabral et al., Whole transcriptome analysis of Acinetobacter baumannii assessed by RNA-sequencing reveals different mRNA expression profiles in biofilm compared to planktonic cells, PLoS One, vol.8, 2013.

V. Ryzhov and C. Fenselau, Characterization of the protein subset desorbed by MALDI from whole bacterial cells, Anal Chem, vol.73, pp.746-750, 2001.

T. R. Sandrin and P. A. Demirev, Characterization of microbial mixtures by mass spectrometry, Mass Spectrom Rev, 2017.

S. M. Santillana-farakos and J. F. Frank, Challenges in the Control of Foodborne Pathogens in Low-Water Activity Foods and Spices, The Microbiological Safety of Low Water Activity Foods and Spices, pp.15-34, 2014.

H. M. Santos, C. Lodeiro, and J. L. Capelo, Analytical proteomics: an emerging field?, J Proteomics, vol.73, pp.1411-1414, 2010.

T. Santos, J. L. Capelo, H. M. Santos, I. Oliveira, C. Marinho et al., Use of MALDI-TOF mass spectrometry fingerprinting to characterize Enterococcus spp. and Escherichia coli isolates, J Proteomics, 2015.

T. Santos, L. Theron, C. Chambon, D. Viala, D. Centeno et al., MALDI mass spectrometry imaging and in situ microproteomics of Listeria monocytogenes biofilms, J Proteomics, vol.187, pp.152-160, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01901452

K. Sauer, The genomics and proteomics of biofilm formation, Genome Biol, vol.4, p.219, 2003.

J. Schardt, G. Jones, S. Müller-herbst, K. Schauer, S. E. Fuchs et al., Comparison between Listeria sensu stricto and Listeria sensu lato strains identifies novel determinants involved in infection, Scientific Reports, vol.7, p.17821, 2017.

R. L. Scharff, Economic Burden from Health Losses Due to Foodborne Illness in the United States, Journal of Food Protection, vol.75, pp.123-131, 2012.

J. Schaumburg, O. Diekmann, P. Hagendorff, S. Bergmann, M. Rohde et al., The cell wall subproteome of Listeria monocytogenes, Proteomics, vol.4, pp.2991-3006, 2004.

S. Schjørring, S. Gillesberg-lassen, T. Jensen, A. Moura, J. S. Kjeldgaard et al., Cross-border outbreak of listeriosis caused by cold-smoked salmon, revealed by integrated surveillance and whole genome sequencing (WGS), European communicable disease bulletin, vol.22, pp.17-00762, 2015.

W. F. Schlech, P. M. Lavigne, R. A. Bortolussi, A. C. Allen, E. V. Haldane et al., Epidemic listeriosis--evidence for transmission by food, N Engl J Med, vol.308, pp.203-206, 1983.

B. Schmid, J. Klumpp, E. Raimann, M. J. Loessner, R. Stephan et al., Role of cold shock proteins in growth of Listeria monocytogenes under cold and osmotic stress conditions, Appl Environ Microbiol, vol.75, pp.1621-1627, 2009.

U. Schnider-keel, K. B. Lejbolle, E. Baehler, D. Haas, and C. Keel, The sigma factor AlgU (AlgT) controls exopolysaccharide production and tolerance towards desiccation and osmotic stress in the biocontrol agent Pseudomonas fluorescens CHA0, Appl Environ Microbiol, vol.67, pp.5683-5693, 2001.

U. Schwab, Y. Hu, M. Wiedmann, and K. J. Boor, Alternative sigma factor sigmaB is not essential for Listeria monocytogenes surface attachment, J Food Prot, vol.68, pp.311-317, 2005.

S. A. Schwartz and R. M. Caprioli, Imaging mass spectrometry: viewing the future, Methods Mol Biol, vol.656, pp.3-19, 2010.

S. A. Schwartz, R. J. Weil, R. C. Thompson, Y. Shyr, J. H. Moore et al., Proteomic-Based Prognosis of Brain Tumor Patients Using Direct-Tissue Matrix-Assisted Laser Desorption Ionization Mass Spectrometry, Cancer Research, vol.65, p.7674, 2005.

E. H. Seeley and R. M. Caprioli, 3D imaging by mass spectrometry: a new frontier, Analytical chemistry, vol.84, pp.2105-2110, 2012.

G. N. Selasi, A. Nicholas, H. Jeon, S. H. Na, H. I. Kwon et al., Differences in Biofilm Mass, Expression of Biofilm-Associated Genes, and Resistance to Desiccation between Epidemic and Sporadic Clones of Carbapenem-Resistant Acinetobacter baumannii Sequence Type 191, PLoS One, vol.11, 2016.

A. Severin, E. Nickbarg, J. Wooters, S. A. Quazi, Y. V. Matsuka et al., Proteomic analysis and identification of Streptococcus pyogenes surface-associated proteins, J Bacteriol, vol.189, pp.1514-1522, 2007.

C. Shao, W. Shang, Z. Yang, Z. Sun, Y. Li et al., LuxS-dependent AI-2 regulates versatile functions in Enterococcus faecalis V583, J Proteome Res, vol.11, pp.4465-4475, 2012.

Y. Shimojima, M. Ida, A. Nakama, Y. Nishino, R. Fukui et al., Prevalence and contamination levels of Listeria monocytogenes in ready-to-eat foods in, The Journal of veterinary medical science, vol.78, pp.1183-1187, 2016.

A. K. Singh, A. V. Ulanov, Z. Li, R. K. Jayaswal, and B. J. Wilkinson, Metabolomes of the psychrotolerant bacterium Listeria monocytogenes 10403S grown at 37 degrees C and 8 degrees C, Int J Food Microbiol, vol.148, pp.107-114, 2011.

N. Skovgaard, M. , and C. , Detection of Listeria spp. in faeces from animals, in feeds, and in raw foods of animal origin, International Journal of Food Microbiology, vol.6, pp.229-242, 1988.

R. D. Sleator, C. G. Gahan, and C. Hill, A postgenomic appraisal of osmotolerance in Listeria monocytogenes, Appl Environ Microbiol, vol.69, pp.1-9, 2003.

B. Smith, J. T. Larsson, M. Lisby, L. Müller, S. B. Madsen et al., Outbreak of listeriosis caused by infected beef meat from a meals-on-wheels delivery in Denmark, Clinical Microbiology and Infection, vol.17, pp.50-52, 2009.

R. D. Smith, C. J. Barinaga, and H. R. Udseth, Improved electrospray ionization interface for capillary zone electrophoresis-mass spectrometry, Analytical Chemistry, vol.60, pp.1948-1952, 1988.

N. Solis, M. R. Larsen, and S. J. Cordwell, Improved accuracy of cell surface shaving proteomics in Staphylococcus aureus using a false-positive control, Proteomics, vol.10, pp.2037-2049, 2010.

E. B. Somers, L. Wong, and A. C. , Efficacy of Two Cleaning and Sanitizing Combinations on Listeria monocytogenes Biofilms Formed at Low Temperature on a Variety of Materials in the Presence of Ready-to-Eat Meat Residue, Journal of Food Protection, vol.67, pp.2218-2229, 2004.

K. A. Soni, R. Nannapaneni, and T. Tasara, The contribution of transcriptomic and proteomic analysis in elucidating stress adaptation responses of Listeria monocytogenes, Foodborne Pathog Dis, vol.8, pp.843-852, 2011.

R. R. Stackhouse, N. G. Faith, C. W. Kaspar, C. J. Czuprynski, and A. C. Wong, Survival and virulence of Salmonella enterica serovar enteritidis filaments induced by reduced water activity, Appl Environ Microbiol, vol.78, pp.2213-2220, 2012.

N. M. Stasulli and E. A. Shank, Profiling the metabolic signals involved in chemical communication between microbes using imaging mass spectrometry, FEMS Microbiol Rev, vol.40, pp.807-813, 2016.

J. Stauber, L. Macaleese, J. Franck, E. Claude, M. Snel et al., On-tissue protein identification and imaging by MALDI-ion mobility mass spectrometry, J Am Soc Mass Spectrom, vol.21, pp.338-347, 2010.

F. Stavru, C. Archambaud, and P. Cossart, Cell biology and immunology of Listeria monocytogenes infections: novel insights, Immunological Reviews, vol.240, pp.160-184, 2011.

R. E. Steinberger and P. A. Holden, Extracellular DNA in single-and multiplespecies unsaturated biofilms, Appl Environ Microbiol, vol.71, pp.5404-5410, 2005.

W. Stone, O. Kroukamp, D. R. Korber, J. Mckelvie, and G. M. Wolfaardt, Microbes at Surface-Air Interfaces: The Metabolic Harnessing of Relative Humidity, Surface Hygroscopicity, and Oligotrophy for Resilience, 2016.

J. D. Storey and R. Tibshirani, Statistical significance for genomewide studies, Proc Natl Acad Sci U S A, vol.100, pp.9440-9445, 2003.

X. Sun, H. L. Jia, C. L. Xiao, X. F. Yin, X. Y. Yang et al., Bacterial proteome of Streptococcus pneumoniae through multidimensional separations coupled with LC-MS/MS, OMICS, vol.15, pp.477-482, 2011.

I. Sutherland, Biofilm exopolysaccharides: a strong and sticky framework, Microbiology, vol.147, pp.3-9, 2001.

I. W. Sutherland, The biofilm matrix--an immobilized but dynamic microbial environment, Trends Microbiol, vol.9, pp.222-227, 2001.

B. Swaminathan and P. Gerner-smidt, The epidemiology of human listeriosis, Microbes and Infection, vol.9, pp.1236-1243, 2007.

D. Szklarczyk, J. H. Morris, H. Cook, M. Kuhn, S. Wyder et al., , 2017.

, The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible, Nucleic Acids Res, vol.45, pp.362-368

H. Takahashi, S. Kuramoto, S. Miya, and B. Kimura, Desiccation survival of Listeria monocytogenes and other potential foodborne pathogens on stainless steel surfaces is affected by different food soils, Food Control, vol.22, pp.633-637, 2011.

P. Takhistov, G. , and B. , Linearized kinetic model of Listeria monocytogenes biofilm growth, Bioprocess Biosyst Eng, vol.26, pp.259-270, 2004.

S. K. Tamminga, R. R. Beumer, E. H. Kampelmacher, and F. M. Van-leusden, Survival of Salmonella east bourne and Salmonella typhimurium in chocolate, J Hyg, vol.76, pp.41-47, 1976.

K. Tanaka, H. Waki, Y. Ido, S. Akita, Y. Yoshida et al., Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry, Rapid Communications in Mass Spectrometry, vol.2, pp.151-153, 1988.

M. Tarek and D. J. Tobias, Role of protein-water hydrogen bond dynamics in the protein dynamical transition, Phys Rev Lett, vol.88, p.138101, 2002.

T. Tasara, S. , and R. , Cold stress tolerance of Listeria monocytogenes: A review of molecular adaptive mechanisms and food safety implications, J Food Prot, vol.69, pp.1473-1484, 2006.

C. M. Taylor, M. Beresford, H. A. Epton, D. C. Sigee, G. Shama et al., Listeria monocytogenes relA and hpt mutants are impaired in surface-attached growth and virulence, J Bacteriol, vol.184, pp.621-628, 2002.

T. Geoffrey and I. , Disintegration of water drops in an electric field, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, vol.280, pp.383-397, 1964.

U. Tezel and S. G. Pavlostathis, Quaternary ammonium disinfectants: microbial adaptation, degradation and ecology, Current Opinion in Biotechnology, vol.33, pp.296-304, 2015.

L. Theron, D. Centeno, C. Coudy-gandilhon, E. Pujos-guillot, T. Astruc et al., A Proof of Concept to Bridge the Gap between Mass Spectrometry Imaging, Protein Identification and Relative Quantitation: MSI~LC-MS/MS-LF, 2016.

M. K. Thomas, R. Vriezen, J. M. Farber, A. Currie, W. Schlech et al., Economic Cost of a Listeria monocytogenes Outbreak in Canada, Foodborne pathogens and disease, vol.12, pp.966-971, 2008.

H. K. Tiong, S. Hartson, and P. M. Muriana, Comparison of five methods for direct extraction of surface proteins from Listeria monocytogenes for proteomic analysis by orbitrap mass spectrometry, J Microbiol Methods, vol.110, pp.54-60, 2015.

H. K. Tiong, S. D. Hartson, and P. M. Muriana, Comparison of Surface Proteomes of Adherence Variants of Listeria monocytogenes Using LC-MS/MS for Identification of Potential Surface Adhesins, 2016.

H. Tjalsma, A. Bolhuis, J. D. Jongbloed, S. Bron, and J. M. Van-dijl, Signal peptide-dependent protein transport in Bacillus subtilis: a genome-based survey of the secretome, Microbiol Mol Biol Rev, vol.64, pp.515-547, 2000.

L. Travier and M. Lecuit, Listeria monocytogenes ActA: a new function for a 'classic' virulence factor, Current Opinion in Microbiology, vol.17, pp.53-60, 2014.

F. Tremoulet, O. Duche, A. Namane, B. Martinie, J. C. Labadie et al., Comparison of protein patterns of Listeria monocytogenes grown in biofilm or in planktonic mode by proteomic analysis, FEMS Microbiol Lett, vol.210, pp.25-31, 2002.

M. Trost, D. Wehmhöner, U. Kärst, G. Dieterich, J. Wehland et al., Comparative proteome analysis of secretory proteins from pathogenic and nonpathogenic Listeria species, PROTEOMICS, vol.5, pp.1544-1557, 2005.

R. Troxler, A. Von-graevenitz, G. Funke, B. Wiedemann, and I. Stock, Natural antibiotic susceptibility of Listeria species: L. grayi, L. innocua, L. ivanovii, L. monocytogenes, L. seeligeri and L. welshimeri strains, Clin Microbiol Infect, vol.6, pp.525-535, 2000.

Y. L. Tzeng, L. E. Martin, and D. S. Stephens, Environmental survival of Neisseria meningitidis, Epidemiol Infect, vol.142, pp.187-190, 2014.

M. Van-de-mortel and L. J. Halverson, Cell envelope components contributing to biofilm growth and survival of Pseudomonas putida in low-water-content habitats, Mol Microbiol, vol.52, pp.735-750, 2004.

S. Van-der-veen, A. , and T. , Importance of SigB for Listeria monocytogenes static and continuous-flow biofilm formation and disinfectant resistance, Appl Environ Microbiol, vol.76, pp.7854-7860, 2010.

L. Van-oudenhove and B. Devreese, A review on recent developments in mass spectrometry instrumentation and quantitative tools advancing bacterial proteomics, Appl Microbiol Biotechnol, vol.97, pp.4749-4762, 2013.

R. A. Vanbogelen and F. C. Neidhardt, Ribosomes as sensors of heat and cold shock in Escherichia coli, Proceedings of the National Academy of Sciences of the United States of America, vol.87, pp.5589-5593, 1990.

E. M. Vanderlinde, J. J. Harrison, A. Muszynski, R. W. Carlson, R. J. Turner et al., Identification of a novel ABC transporter required for desiccation tolerance, and biofilm formation in Rhizobium leguminosarum bv. viciae 3841, FEMS Microbiol Ecol, vol.71, pp.327-340, 2010.

J. C. Venter, H. O. Smith, A. , and M. D. , The Sequence of the Human Genome, Clin Chem, vol.61, pp.1207-1208, 2015.
URL : https://hal.archives-ouvertes.fr/hal-00465088

C. L. Ventura, N. Malachowa, C. H. Hammer, G. A. Nardone, M. A. Robinson et al., Identification of a Novel Staphylococcus aureus Two-Component Leukotoxin Using Cell Surface Proteomics, PLoS ONE, vol.5, 2010.

A. Vertes, V. Hitchins, and K. S. Phillips, Analytical Challenges of Microbial Biofilms on Medical Devices, Analytical Chemistry, vol.84, pp.3858-3866, 2012.

J. E. Vidal, K. E. Howery, H. P. Ludewick, P. Nava, and K. P. Klugman, Quorum-sensing systems LuxS/autoinducer 2 and Com regulate Streptococcus pneumoniae biofilms in a bioreactor with living cultures of human respiratory cells, Infect Immun, vol.81, pp.1341-1353, 2013.

B. F. Vogel, L. T. Hansen, H. Mordhorst, and L. Gram, The survival of Listeria monocytogenes during long term desiccation is facilitated by sodium chloride and organic material, Int J Food Microbiol, vol.140, pp.192-200, 2010.

P. Vogeleer, Y. D. Tremblay, A. A. Mafu, M. Jacques, and J. Harel, Life on the outside: role of biofilms in environmental persistence of Shiga-toxin producing Escherichia coli, Front Microbiol, vol.5, p.317, 2014.

M. Wagner and M. J. , Handbook of Listeria monocytogenes, 2008.

S. J. Walker, P. Archer, and J. G. Banks, Growth of Listeria monocytogenes at refrigeration temperatures, Journal of Applied Bacteriology, vol.68, pp.157-162, 1990.

J. Walland, J. Lauper, J. Frey, R. Imhof, R. Stephan et al., Listeria monocytogenes infection in ruminants: Is there a link to the environment, food and human health? A review, SAT ASMV, pp.319-328, 2015.

Z. Wang, M. Gerstein, and M. Snyder, RNA-Seq: a revolutionary tool for transcriptomics, Nature Reviews Genetics, vol.10, p.57, 2009.

T. J. Ward, T. F. Ducey, T. Usgaard, K. A. Dunn, and J. P. Bielawski, Multilocus genotyping assays for single nucleotide polymorphism-based subtyping of Listeria monocytogenes isolates, Applied and environmental microbiology, vol.74, pp.7629-7642, 2008.

D. D. Wardrope and N. S. Macleod, Outbreak of Listeria meningoencephalitis in young lambs, Veterinary Record, vol.113, p.213, 1983.

J. Watkins and K. P. Sleath, Isolation and Enumeration of Listeria monocytogenes from Sewage, Sewage Sludge and River Water, Journal of Applied Bacteriology, vol.50, pp.1-9, 1981.

J. Watrous, N. Hendricks, M. Meehan, and P. C. Dorrestein, Capturing bacterial metabolic exchange using thin film desorption electrospray ionizationimaging mass spectrometry, Analytical chemistry, vol.82, pp.1598-1600, 2010.

J. D. Watrous, T. Alexandrov, and P. C. Dorrestein, The evolving field of imaging mass spectrometry and its impact on future biological research, Journal of mass spectrometry : JMS, vol.46, pp.209-222, 2011.

J. D. Watrous and P. C. Dorrestein, Imaging mass spectrometry in microbiology, Nature reviews. Microbiology, vol.9, pp.683-694, 2011.

J. D. Watson and F. H. Crick, Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid, Nature, vol.171, pp.737-738, 1953.

L. Weaver, J. B. Webber, A. C. Hickson, P. M. Abraham, and M. E. Close, Biofilm resilience to desiccation in groundwater aquifers: a laboratory and field study, Sci Total Environ, vol.514, pp.281-289, 2015.

D. T. Welsh and R. A. Herbert, Osmotically induced intracellular trehalose, but not glycine betaine accumulation promotes desiccation tolerance in Escherichia coli, FEMS Microbiol Lett, vol.174, pp.57-63, 1999.

H. J. Welshimer and J. Donker-voet, Listeria monocytogenes in nature, Applied microbiology, vol.21, pp.516-519, 1971.

H. H. Wemekamp-kamphuis, A. K. Karatzas, J. A. Wouters, A. , and T. , Enhanced levels of cold shock proteins in Listeria monocytogenes LO28 upon exposure to low temperature and high hydrostatic pressure, Appl Environ Microbiol, vol.68, pp.456-463, 2002.

H. H. Wemekamp-kamphuis, R. D. Sleator, J. A. Wouters, C. Hill, A. et al., Molecular and physiological analysis of the role of osmolyte transporters BetL, Gbu, and OpuC in growth of Listeria monocytogenes at low temperatures, Appl Environ Microbiol, vol.70, pp.2912-2918, 2004.

J. D. Wenger, B. Swaminathan, P. S. Hayes, S. S. Green, M. Pratt et al., Listeria monocytogenes Contamination of Turkey Franks: Evaluation of a Production Facility, Journal of Food Protection, vol.53, pp.1015-1019, 1990.

H. Wickham, ggplot2: Elegant Graphics for Data Analysis, 2009.

M. R. Wilkins, J. C. Sanchez, A. A. Gooley, R. D. Appel, I. Humphery-smith et al., Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it, Biotechnol Genet Eng Rev, vol.13, pp.19-50, 1996.

L. Wohlbrand, K. Trautwein, and R. Rabus, Proteomic tools for environmental microbiology--a roadmap from sample preparation to protein identification and quantification, Proteomics, vol.13, pp.2700-2730, 2013.

W. F. Wolkers, F. Tablin, and J. H. Crowe, From anhydrobiosis to freezedrying of eukaryotic cells, Comp Biochem Physiol A Mol Integr Physiol, vol.131, pp.535-543, 2002.

C. Wynne, C. Fenselau, P. A. Demirev, and N. Edwards, Top-down identification of protein biomarkers in bacteria with unsequenced genomes, Anal Chem, vol.81, pp.9633-9642, 2009.

K. Yanagisawa, Y. Shyr, B. J. Xu, P. P. Massion, P. H. Larsen et al., Proteomic patterns of tumour subsets in non-small-cell lung cancer, Lancet, vol.362, pp.433-439, 2003.

J. R. Yates, C. I. Ruse, and A. Nakorchevsky, Proteomics by mass spectrometry: approaches, advances, and applications, Annu Rev Biomed Eng, vol.11, pp.49-79, 2009.

S. Zhang, J. M. Scott, and W. G. Haldenwang, Loss of ribosomal protein L11 blocks stress activation of the Bacillus subtilis transcription factor sigma(B), J Bacteriol, vol.183, pp.2316-2321, 2001.

Y. M. Zhang and C. O. Rock, Membrane lipid homeostasis in bacteria, Nat Rev Microbiol, vol.6, pp.222-233, 2008.

F. Zoz, C. Iaconelli, E. Lang, H. Iddir, S. Guyot et al., Control of Relative Air Humidity as a Potential Means to Improve Hygiene on Surfaces: A Preliminary Approach with Listeria monocytogenes, PLOS ONE, vol.11, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01466198

T. Santos and M. Hebraud, Extraction and preparation of Listeria monocytogenes subproteomes for mass spectrometry analysis, Methods in Molecular Biology, 2019.

T. Santos, D. Viala, C. Chambon, J. Esbelin, and M. Hebraud, Listeria monocytogenes planktonic vs biofilm realm: are there any advantages detected by bottom-up proteomics?, 2019.

T. Santos, D. Viala, C. Chambon, J. Esbelin, and M. Hebraud, Listeria monocytogenes biofilms adaptation to different temperatures seen through shotgun proteomics, Frontiers in Nutrition, 2019.

J. Esbelin, T. Santos, C. Ribiere, M. Desvaux, D. Viala et al., Comparison of three methods for cell surface proteome extraction of Listeria monocytogenes biofilms, OMICS: A Journal of Integrative Biology, vol.22, pp.779-787, 2018.

T. Santos, L. Theron, C. Chambon, D. Viala, D. Centeno et al., MALDI mass spectrometry imaging and in situ microproteomics of Listeria monocytogenes biofilms exposed to air dehumidification, Journal of Proteomics, vol.187, pp.152-160, 2018.

*. J. Esbelin, *. T. Santos, and M. Hebraud, Desiccation: a common environmental and food industry stress to which bacteria have to face, Review. * shared first authorship II, vol.69, pp.82-88, 2018.

T. Santos, L. Theron, C. Chambon, D. Viala, D. Centeno et al., MALDI mass spectrometry imaging and in situ microproteomics of Listeria monocytogenes biofilms. 35 ème SFEAP Congress, joint with the SEProt, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01901452

T. Santos, C. Chambon, D. Viala, J. Esbelin, and M. Hebraud, Listeria monocytogenes planktonic and sessile cells adaptation to different temperatures seen through shotgun proteomics. XII EuPA, 1920.

T. Santos, L. Theron, C. Chambon, D. Viala, D. Centeno et al., Développement d'une approche d'imagerie par spectrométrie de masse pour explorer des biofilms de Listeria monocytogenes exposés à un stress de déshumidification, 2018.

T. Santos, C. Chambon, D. Viala, J. Esbelin, and M. Hebraud, Listeria monocytogenes planktonic and sessile cells adaptation to temperatures seen through shotgun proteomics. Foodborne pathogens; from farm to pharmacy! List-MAPS symposium, 2018.

T. Santos, D. Viala, C. Chambon, J. Esbelin, and M. Hebraud, Human Invasive Pathogen Listeria monocytogenes Proficient Temperature Adaptation Seen Through Shotgun Proteomics, ASM Microbe, 2019.

T. Santos, L. Theron, C. Chambon, D. Viala, D. Centeno et al., MALDI Mass Spectrometry Imaging and in situ Microproteomics of Listeria monocytogenes Biofilms. ASM Microbe, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01901452

T. Santos, C. Chambon, D. Viala, J. Esbelin, and M. Hebraud, Listeria monocytogenes planktonic and sessile cells adaptation to different temperatures seen through shotgun proteomics. 35 ème SFEAP Congress, joint with the SEProt, 2018.

T. Santos, L. Theron, D. Centeno, D. Viala, C. Chambon et al., A new insight into Listeria monocytogenes biofilm adaptation to air relative dehumidification through MALDI mass spectrometry imaging. Microbial stress: from systems to molecules and back, European Federation of Biotechnology, 2018.

T. Santos, D. Centeno, D. Viala, C. Chambon, and M. Hebraud, Development of a MALDI imaging mass spectrometry (IMS) approach to bacterial proteomics: first application to Listeria monocytogenes biofilms exposed to a desiccation, vol.7, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01901465

T. Santos, L. Theron, C. Chambon, D. Viala, D. Centeno et al., Développement d'une approche d'imagerie par spectrométrie de masse pour explorer des biofilms de Listeria monocytogenes exposés à un stress de déshumidification. 8 ème Colloque du Réseau National Biofilms, 2006.

T. Santos, C. Chambon, D. Viala, J. Esbelin, and M. Hebraud, Approche protéomique pour explorer les mécanismes d'adaptation de Listeria monocytogenes à son environnement. 8 ème Colloque du Réseau National Biofilms, 2006.

T. Santos, L. Theron, C. Chambon, D. Viala, D. Centeno et al., MALDI imaging and profiling mass spectrometry approach for the analysis of Listeria monocytogenes biofilms exposed to a desiccation, Métabolomique et Analyse Protéomique, 2005.
URL : https://hal.archives-ouvertes.fr/hal-01901460

T. Santos, C. Chambon, D. Viala, J. Esbelin, and M. Hebraud, Adaptation of Listeria monocytogenes to temperature: exploration of intracellular subproteome through shotgun proteomics, Métabolomique et Analyse Protéomique, 2017.

, Public dissemination

T. Santos, L. Theron, C. Chambon, D. Viala, D. Centeno et al., L'imagerie par spectrométrie de masse pour l'exploration moléculaire de biofilms, Faits marquants Dpt MICA, 2018.

. Iv and . Workshops, Summer schools and Secondments 1. Workshop "Outreach, course Level A1 (44h), pp.13-14, 2015.

, Next generation sequencing, pp.4-6, 2016.

. Workshop, Introduction to statistical analysis of expression data with R, pp.10-14, 2016.

, Online joint syllabus on a business plan (52h), 2017.

, Quantitative proteomics, 2017.

, Use of model to optimize experimental design and extract biological knowledge, pp.9-11, 2017.

, Invasion capability assays with Listeria monocytogenes mutants in Caco-2 cells, 2017.

, Career and job opportunities, 2018.

, Listeria monocytogenes infection capability assays in larvae of Galleria mellonella, pp.4-22, 2018.