B. Alvarez-s-anchez, F. Priego-capote, and M. D. Luque-de-castro, , 2010.

J. Agabriel, Alimentation des bovins, ovins et caprins. Besoins des animaux-Valeurs des aliments: Tables Inra, 2010.

A. Casanas, M. A. Rangkasenee, N. Krattenmacher, N. Thaller, G. Metges et al., Methyl-coenzyme M reductase A as an indicator to estimate methane production from dairy cows, Journal of Dairy Science, vol.98, issue.6, pp.4074-4083, 2015.

T. W. Alexander and J. C. Plaizier, From the Editors: The importance of microbiota in ruminant production, Animal Frontiers, vol.6, issue.2, pp.4-7, 2016.

M. S. Allen, B. J. Bradford, and K. J. Harvatine, The cow as a model to study food intake regulation. Annual review of nutrition 25, pp.523-547, 2005.

B. Álvarez-sánchez, F. Priego-capote, L. De-castro, and M. D. , Metabolomics analysis I. Selection of biological samples and practical aspects preceding sample preparation, Trends in Analytical Chemistry, vol.29, issue.2, pp.111-119, 2010.

N. J. Andreas, M. J. Hyde, M. Gomez-romero, M. A. Lopez-gonzalvez, A. Villasenor et al., Multiplatform characterization of dynamic changes in breast milk during lactation, Electrophoresis, vol.11, issue.10, 2015.

G. Andreotti, R. Lamanna, E. Trivellone, and A. Motta, 13C NMR spectra of TAG: An easy way to distinguish milks from different animal species, Journal of the American Oil Chemists' Society, vol.79, issue.2, pp.123-127, 2002.

G. Andreotti, E. Trivellone, R. Lamanna, A. Di-luccia, and A. Motta, Milk identification of different species: 13C-NMR spectroscopy of triacylglycerols from cows and buffaloes' milks, Journal of Dairy Science, vol.83, issue.11, pp.75133-75135, 2000.

E. C. Antunes-fernandes, S. Van-gastelen, J. Dijkstra, K. A. Hettinga, and J. Vervoort, Milk metabolome relates enteric methane emission to milk synthesis and energy metabolism pathways, Journal of Dairy Science, vol.99, issue.8, pp.6251-6262, 2016.

M. Arbre, Y. Rochette, J. Guyader, C. Lascoux, L. M. Gomez et al., Repeatability of enteric methane determinations from cattle using either the SF6 tracer technique or the GreenFeed system, Animal Production Science, vol.56, issue.2-3, pp.238-243, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01281835

V. M. Artegoitia, A. P. Foote, R. M. Lewis, and H. C. Freetly, Rumen Fluid Metabolomics Analysis Associated with Feed Efficiency on Crossbred Steers, Scientific Reports, vol.7, issue.1, p.2864, 2017.

J. R. Aschenbach, N. B. Kristensen, S. S. Donkin, H. M. Hammon, and G. B. Penner, Gluconeogenesis in dairy cows: the secret of making sweet milk from sour dough, IUBMB Life, vol.62, issue.12, pp.869-877, 2010.

W. E. Balch, G. E. Fox, L. J. Magrum, C. R. Woese, and R. S. Wolfe, Methanogens: reevaluation of a unique biological group, Microbiol Rev, vol.43, issue.2, pp.260-296, 1979.

R. L. Baldwin, J. France, D. E. Beever, M. Gill, and J. H. Thornley, Metabolism of the lactating cow. III. Properties of mechanistic models suitable for evaluation of energetic Bibliographie Bibliographie relationships and factors involved in the partition of nutrients, The Journal of Dairy Research, vol.54, issue.1, pp.133-145, 1987.

R. L. Baldwin, J. France, and M. Gill, Metabolism of the lactating cow. I. Animal elements of a mechanistic model, The Journal of Dairy Research, vol.54, issue.1, pp.77-105, 1987.

R. Baskaran, R. Cullen, and S. Colombo, Estimating values of environmental impacts of dairy farming in New Zealand, New Zealand Journal of Agricultural Research, vol.52, issue.4, pp.377-389, 2009.

D. E. Bauman and J. M. Griinari, Nutritional regulation of milk fat synthesis. Annual review of nutrition 23, pp.203-227, 2003.

K. A. Beauchemin, T. A. Mcallister, and S. M. Mcginn, Dietary mitigation of enteric methane from cattle. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, vol.4, issue.035, pp.1-18, 2009.

O. Beckonert, H. C. Keun, T. M. Ebbels, J. Bundy, E. Holmes et al., Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts, Nature protocols, vol.2, issue.11, pp.2692-2703, 2007.

M. Bell, R. Eckard, P. J. Moate, Y. , and T. , Modelling the effect of diet composition on enteric methane emissions across sheep, beef cattle and dairy cows, Animals, vol.6, issue.9, p.54, 2016.

S. Bellier, Interprétation et valeurs usuelles des paramètres sanguins en biochimie clinique vétérinaire, pp.70420-70422, 2010.

S. K. Bharti, R. , and R. , Quantitative 1H NMR spectroscopy, Trends in Analytical Chemistry, vol.35, pp.5-26, 2012.

R. J. Block, J. A. Stekol, and J. K. Loosli, Synthesis of sulfur amino acids from inorganic sulfate by ruminants. II. Synthesis of cystine and methionine from sodium sulfate by the goat and by the microorganisms of the rumen of the ewe, Archives of Biochemistry and Biophysics, vol.33, issue.3, pp.90123-90126, 1951.

S. C. Booth, A. M. Weljie, and R. J. Turner, Computational tools for the secondary analysis of metabolomics experiments, Computational and Structural Biotechnology Journal, vol.4, issue.4, p.201301003, 2013.

S. Boudah, A. Roux, J. , and C. , Mise à jour des connaissances-Analyse métabolomique par chromatographie liquide couplée à la spectrométrie de masse à haute résolution: état des lieux et perspectives, Spectra Biologie, vol.31, issue.193, p.22, 2012.

W. Brade and K. Nurnberg, Fatty acids in the milk: Biosynthesis and possible using as specific biomarkers, Zuchtungskunde, vol.88, issue.3, pp.216-232, 2016.

F. Bril, L. Millan, S. Kalavalapalli, M. J. Mcphaul, M. P. Caulfield et al., Use of a metabolomic approach to non-invasively diagnose non-alcoholic fatty liver disease in patients with type 2 diabetes mellitus, Diabetes, obesity & metabolism, vol.12, issue.10, p.13285, 2018.

S. Brul and C. K. Stumm, Symbionts and organelles in ancrobic protozoa and fungi, Trends in ecology & evolution, vol.9, issue.9, pp.90151-90152, 1994.

D. Bu, M. Bionaz, M. Wang, X. Nan, L. Ma et al., Transcriptome difference and potential crosstalk between liver and mammary tissue in mid-lactation primiparous dairy cows, PLoS One, vol.12, issue.3, p.173082, 2017.

J. M. Büscher, D. Czernik, J. C. Ewald, U. Sauer, and N. Zamboni, Cross-Platform Comparison of Methods for Quantitative Metabolomics of Primary Metabolism, Analytical Chemistry, vol.81, issue.6, pp.2135-2143, 2009.

M. Bylesjo, M. Rantalainen, O. Cloarec, J. K. Nicholson, E. Holmes et al., OPLS discriminant analysis: combining the strengths of PLS-DA and SIMCA classification, Journal of Chemometrics, vol.20, issue.8-10, pp.341-351, 2006.

N. J. Cabaton, C. Canlet, P. R. Wadia, M. Tremblay-franco, R. Gautier et al., Effects of low doses of bisphenol A on the metabolome of perinatally exposed CD-1 mice, Environmental health perspectives, vol.121, issue.5, pp.586-593, 2013.

R. Caspi, T. Altman, K. Dreher, C. A. Fulcher, P. Subhraveti et al., The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases, Nucleic acids research, vol.40, 2012.

J. M. Castro-montoya, N. Peiren, J. Veneman, B. De-baets, S. De-campeneere et al., Predictions of methane emission levels and categories based on milk fatty acid profiles from dairy cows, Animal, vol.11, issue.7, pp.1153-1162, 2017.

M. G. Chagunda, Opportunities and challenges in the use of the Laser Methane Detector to monitor enteric methane emissions from ruminants, Animal, vol.7, pp.394-400, 2013.

M. G. Chagunda, D. Ross, J. Rooke, T. Yan, J. L. Douglas et al., Measurement of enteric methane from ruminants using a hand-held laser methane detector. Acta Agriculturae Scandinavica Section a, Animal Science, vol.63, issue.2, pp.68-75, 2013.

M. Chazalviel, C. Frainay, N. Poupin, F. Vinson, B. Merlet et al., MetExploreViz: web component for interactive metabolic network visualization, Bioinformatics, vol.34, issue.2, pp.312-313, 2017.

Y. Chilliard, F. Glasser, A. Ferlay, L. Bernard, J. Rouel et al., Diet, rumen biohydrogenation and nutritional quality of cow and goat milk fat, European Journal of Lipid Science and Technology, vol.109, issue.8, pp.828-855, 2007.

Y. Chilliard, C. Martin, J. Rouel, and M. Doreau, Milk fatty acids in dairy cows fed whole crude linseed, extruded linseed, or linseed oil, and their relationship with methane output, Journal of Dairy Science, vol.92, issue.10, pp.5199-5211, 2009.

K. C. Costa and J. A. Leigh, Metabolic versatility in methanogens, Current opinion in biotechnology, vol.29, pp.70-75, 2014.

L. Cottret, D. Wildridge, F. Vinson, M. P. Barrett, H. Charles et al., MetExplore: a web server to link metabolomic experiments and genome-scale metabolic networks, Nucleic acids research, vol.38, pp.132-137, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00690651

R. V. Curtis, J. J. Kim, J. Doelman, and J. P. Cant, Maintenance of plasma branchedchain amino acid concentrations during glucose infusion directs essential amino acids to extra-mammary tissues in lactating dairy cows, Journal of Dairy Science, vol.101, issue.5, pp.4542-4553, 2018.

R. A. De-graaf, H. Prinsen, C. Giannini, S. Caprio, and R. I. Herzog, Quantification of (1)H NMR Spectra from Human Plasma, Metabolomics, vol.11, issue.6, pp.1702-1707, 2015.

D. Haas, Y. Windig, J. Calus, M. Dijkstra, J. De-haan et al., Genetic parameters for predicted methane production and potential for reducing enteric emissions Bibliographie Bibliographie through genomic selection, Journal of Dairy Science, vol.94, issue.12, pp.6122-6134, 2011.

D. Marco and A. , pH dependence of internal references, Journal of Magnetic Resonance, vol.26, issue.3, pp.527-528, 1969.

O. Deda, A. C. Chatziioannou, S. Fasoula, D. Palachanis, N. Raikos et al., Sample preparation optimization in fecal metabolic profiling, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences, vol.28, issue.16, pp.30445-30447, 2016.

F. Dehareng, C. Delfosse, E. Froidmont, H. Soyeurt, C. Martin et al., Potential use of milk mid-infrared spectra to predict individual methane emission of dairy cows, Animal, vol.6, issue.10, pp.1694-1701, 2012.

B. A. Dehority, Rumen microbiology, 2003.

D. Marzo, L. Barbano, and D. M. , Effect of homogenizer performance on accuracy and repeatability of mid-infrared predicted values for major milk components, Journal of Dairy Science, vol.99, issue.12, pp.9471-9482, 2016.

B. Dieme, S. Mavel, H. Blasco, G. Tripi, F. Bonnet-brilhault et al., Metabolomics Study of Urine in Autism Spectrum Disorders Using a Multiplatform Analytical Methodology, Journal of proteome research, vol.14, issue.12, pp.5273-5282, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01826402

J. Dijkstra, H. Boer, J. Van-bruchem, M. Bruining, and S. Tamminga, Absorption of volatile fatty acids from the rumen of lactating dairy cows as influenced by volatile fatty acid concentration, pH and rumen liquid volume, The British journal of nutrition, vol.69, issue.2, pp.385-396, 1993.

J. Dijkstra, S. M. Van-zijderveld, J. A. Apajalahti, A. Bannink, W. J. Gerrits et al., Relationships between methane production and milk fatty acid profiles in dairy cattle, Animal Feed Science and Technology, issue.0, pp.590-595, 2011.

K. M. Dodd and A. R. Tee, Leucine and mTORC1: a complex relationship, American journal of physiology. Endocrinology and metabolism, vol.302, issue.11, pp.1329-1342, 2012.

J. Dollé, J. Agabriel, J. Peyraud, P. Faverdin, V. Manneville et al., Les gaz à effet de serre en élevage bovin: évaluation et leviers d'action, Productions Animales, vol.24, issue.5, p.415, 2011.

A. C. Dona, M. Kyriakides, F. Scott, E. A. Shephard, D. Varshavi et al., A guide to the identification of metabolites in NMR-based metabonomics/metabolomics experiments, Computational and Structural Biotechnology Journal, vol.14, pp.135-153, 2016.

M. Doreau, M. Arbre, Y. Rochette, C. Lascoux, M. Eugène et al., Comparison of 3 methods for estimating enteric methane and carbon dioxide emission in nonlactating cows, Journal of Animal Science, pp.33-033, 2018.

M. Doreau, A. Ferlay, Y. Rochette, M. , and C. , Effects of dehydrated lucerne and soya bean meal on milk production and composition, nutrient digestion, and methane and nitrogen losses in dairy cows receiving two different forages, Animal, vol.8, issue.3, 2014.

M. Doreau, C. Martin, M. Eugène, M. Popova, and D. P. Morgavi, Leviers d'action pour réduire la production de méthane entérique par les ruminants, Productions Animales, vol.24, issue.5, p.461, 2011.

W. B. Dunn and D. I. Ellis, Metabolomics: Current analytical platforms and methodologies, Trends in Analytical Chemistry, vol.24, issue.4, pp.285-294, 2005.

W. B. Dunn, A. Erban, R. J. Weber, D. J. Creek, M. Brown et al., Mass appeal: metabolite identification in mass spectrometry-focused untargeted metabolomics, Metabolomics, vol.9, issue.1, pp.44-66, 2013.

X. Duportet, R. B. Aggio, S. Carneiro, and S. G. Villas-boas, The biological interpretation of metabolomic data can be misled by the extraction method used, Metabolomics, vol.8, issue.3, pp.410-421, 2012.

J. E. Ellis, P. S. Mcintyre, M. Saleh, A. G. Williams, L. et al., Influence of CO2 and low concentrations of O2 on fermentative metabolism of the ruminal ciliate Polyplastron multivesiculatum, Applied and Environmental Microbiology, vol.57, issue.5, pp.1400-1407, 1991.

C. G. Elsik, R. L. Tellam, K. C. Worley, R. A. Gibbs, D. M. Muzny et al., The genome sequence of taurine cattle: a window to ruminant biology and evolution, Science, vol.324, issue.5926, pp.522-528, 2009.

A. Fardet, C. C. Canlet, G. Gottardi, B. Lyan, R. Llorach et al., Whole-Grain and Refined Wheat Flours Show Distinct Metabolic Profiles in Rats as Assessed by a 1H NMR-Based Metabonomic Approach, The Journal of Nutrition, vol.137, issue.4, pp.923-929, 2007.

A. M. Ferreira, S. L. Bislev, E. Bendixen, and A. M. Almeida, The mammary gland in domestic ruminants: a systems biology perspective, Journal of Proteomics, vol.94, pp.110-123, 2013.

O. Fiehn, Combining genomics, metabolome analysis, and biochemical modelling to understand metabolic networks, Comparative and functional genomics, vol.2, issue.3, pp.155-168, 2001.

J. Folch, M. Lees, S. Stanley, and G. H. , A simple method for the isolation and purification of total lipides from animal tissues, Journal of Biological Chemistry, vol.226, issue.1, pp.497-509, 1957.

G. Gäbel, J. Aschenbach, T. ;-k-sejrsen, . Hvelplund, and . Mo-nielsen, Ruminal SCFA absorption: channelling acids without harm. Ruminant physiology: digestion, metabolism and impact of nutrition on gene expression, immunology and stress, pp.173-195, 2006.

A. B. Galindo, L. R. Aguirre, L. Araya, and J. Geldes, Developing Indicators of Use of Medical Equipment from Variables Obtained and Transported by the HL7 standard in the Intensive Care Unit, Sustainable Technologies for the Health of All, pp.567-570, 2011.

P. C. Garnsworthy, J. Craigon, J. H. Hernandez-medrano, and N. Saunders, On-farm methane measurements during milking correlate with total methane production by individual dairy cows, Journal of Dairy Science, vol.95, issue.6, pp.3166-3180, 2012.

P. C. Garnsworthy, J. Craigon, J. H. Hernandez-medrano, and N. Saunders, Variation among individual dairy cows in methane measurements made on farm during milking, Journal of Dairy Science, vol.95, issue.6, pp.3181-3189, 2012.

P. C. Garnsworthy, L. L. Masson, A. L. Lock, and T. T. Mottram, Variation of milk citrate with stage of lactation and de novo fatty acid synthesis in dairy cows, Journal of Dairy Science, vol.89, issue.5, pp.1604-1612, 2006.

P. J. Gerber, H. Steinfeld, B. Henderson, A. Mottet, C. Opio et al., Tackling climate change through livestock: a global assessment of emissions and mitigation opportunities, 2013.

F. Giacomoni, G. Le-corguille, M. Monsoor, M. Landi, P. Pericard et al., Workflow4Metabolomics: a collaborative research infrastructure for computational metabolomics, Bioinformatics, vol.31, issue.9, pp.1493-1495, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01214152

H. Gidlund, M. Hetta, S. J. Krizsan, S. Lemosquet, and P. Huhtanen, Effects of soybean meal or canola meal on milk production and methane emissions in lactating dairy cows fed grass silage-based diets, Journal of Dairy Science, vol.98, issue.11, pp.8093-8106, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01211061

E. P. Go, Database resources in metabolomics: an overview, Journal of neuroimmune pharmacology, vol.5, issue.1, 2010.

S. A. Goldansaz, A. C. Guo, T. Sajed, M. A. Steele, G. S. Plastow et al., Livestock metabolomics and the livestock metabolome: A systematic review, PLoS One, vol.12, issue.5, p.177675, 2017.

G. A. Gowda, S. Zhang, H. Gu, V. Asiago, N. Shanaiah et al., Metabolomicsbased methods for early disease diagnostics, Expert review of molecular diagnostics, vol.8, issue.5, pp.617-633, 2008.

G. A. Gowda and D. Raftery, Quantitating Metabolites in Protein Precipitated Serum Using NMR Spectroscopy, Analytical Chemistry, vol.86, issue.11, pp.5433-5440, 2014.

C. Grainger, T. Clarke, S. M. Mcginn, M. J. Auldist, K. A. Beauchemin et al., Methane emissions from dairy cows measured using the sulfur hexafluoride (SF6) tracer and chamber techniques, Journal of Dairy Science, vol.90, issue.6, pp.2755-2766, 2007.

D. Grissa, M. Pétéra, M. Brandolini, A. Napoli, B. Comte et al., Feature Selection Methods for Early Predictive Biomarker Discovery Using Untargeted Metabolomic Data, Frontiers in Molecular Biosciences, vol.3, issue.30, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01581591

Y. Guitton, M. Tremblay-franco, G. Le-corguille, J. F. Martin, M. Petera et al., Create, run, share, publish, and reference your LC-MS, FIA-MS, GC-MS, and NMR data analysis workflows with the Workflow4Metabolomics 3.0 Galaxy online infrastructure for metabolomics, The international journal of biochemistry & cell biology, vol.93, pp.89-101, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01574351

J. Guyader, Manipulation of the hydrogen pool available in the rumen to reduce methane emissions from ruminants, 2015.
URL : https://hal.archives-ouvertes.fr/tel-01325219

J. Guyader, M. Doreau, D. P. Morgavi, C. Gerard, C. Loncke et al., Long-term effect of linseed plus nitrate fed to dairy cows on enteric methane emission and nitrate and nitrite residuals in milk, Animal, vol.10, issue.7, pp.1173-1181, 2016.

J. Guyader, M. Eugène, M. Doreau, D. Morgavi, C. Gérard et al., Nitrate but not tea saponin feed additives decreased enteric methane emissions in nonlactating cows, Journal of Animal Science, vol.93, issue.11, pp.5367-5377, 2015.

J. Guyader, M. Eugene, M. Doreau, D. P. Morgavi, C. Gerard et al., Nitrate but not tea saponin feed additives decreased enteric methane emissions in nonlactating cows, Journal of Animal Science, vol.93, issue.11, pp.5367-5377, 2015.

J. Guyader, M. Eugene, B. Meunier, M. Doreau, D. P. Morgavi et al., Additive methane-mitigating effect between linseed oil and nitrate fed to cattle, Journal of Animal Science, vol.93, issue.7, pp.3564-3577, 2015.

K. Hammond, L. A. Crompton, A. Bannink, J. Dijkstra, D. R. Yanez-ruiz et al., Review of current in vivo measurement techniques for quantifying enteric methane emission from ruminants, Animal Feed Science and Technology, vol.219, pp.13-30, 2016.

M. D. Hanigan, H. G. Bateman, J. G. Fadel, and J. P. Mcnamara, Metabolic models of ruminant metabolism: recent improvements and current status, Journal of Dairy Science, vol.89, issue.1, pp.52-64, 2006.

K. J. Hart, J. A. Huntington, R. G. Wilkinson, C. G. Bartram, and L. A. Sinclair, The influence of grass silage-to-maize silage ratio and concentrate composition on methane emissions, performance and milk composition of dairy cows, Animal, vol.24, pp.1-9, 2015.

X. He and C. M. Slupsky, Metabolic fingerprint of dimethyl sulfone (DMSO2) in microbial-mammalian co-metabolism, Journal of proteome research, vol.13, issue.12, pp.5281-5292, 2014.

O. Hernell, Human milk vs. cow's milk and the evolution of infant formulas, Nestle Nutrition Workshop Series. Paediatric Programme, vol.67, pp.17-28, 2011.

J. Hocquette, H. Boudra, I. Cassar-malek, C. Leroux, B. Picard et al., Perspectives offertes par les approches en<< omique>> pour l'amélioration de la durabilité de l'élevage des herbivores, Productions Animales, vol.22, issue.5, p.385, 2009.

A. N. Hristov, T. Ott, J. Tricarico, A. Rotz, G. Waghorn et al., Special Topics-Mitigation of methane and nitrous oxide emissions from animal operations: III. A review of animal management mitigation options, Journal of Animal Science, vol.91, issue.11, pp.5095-5113, 2013.

F. Hu, K. Furihata, Y. Kato, and M. Tanokura, Nondestructive quantification of organic compounds in whole milk without pretreatment by two-dimensional NMR spectroscopy, Journal of Agricultural and Food Chemistry, vol.55, issue.11, pp.4307-4311, 2007.

P. Huhtanen, E. H. Cabezas-garcia, S. Utsumi, and S. Zimmerman, Comparison of methods to determine methane emissions from dairy cows in farm conditions, Journal of Dairy Science, vol.98, issue.5, pp.3394-3409, 2015.

A. Ilves, H. Harzia, K. Ling, M. Ots, U. Soomets et al., Alterations in milk and blood metabolomes during the first months of lactation in dairy cows, Journal of Dairy Science, vol.95, issue.10, pp.5788-5797, 2012.

E. Jami and I. Mizrahi, Composition and similarity of bovine rumen microbiota across individual animals, PLoS One, vol.7, issue.3, p.33306, 2012.

R. Jarrige, Alimentation des bovins ovins et caprins. INRA, 1988.

L. S. Jefferson and S. R. Kimball, Amino acids as regulators of gene expression at the level of mRNA translation, Journal of Nutrition, vol.133, issue.6, pp.2046-2051, 2003.

N. T. Jenkins, G. Pena, C. Risco, C. C. Barbosa, A. Vieira-neto et al., Utility of inline milk fat and protein ratio to diagnose subclinical ketosis and to assign propylene glycol treatment in lactating dairy cows, Canadian Veterinary Journal, vol.56, issue.8, pp.850-854, 2015.

J. Jeyanathan, C. Martin, and D. P. Morgavi, The use of direct-fed microbials for mitigation of ruminant methane emissions: a review, Animal, vol.8, issue.2, pp.250-261, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01137190

K. A. Johnson, J. , and D. E. , Methane emissions from cattle, Journal of Animal Science, vol.73, issue.8, pp.2483-2492, 1995.

M. R. Kaluarachchi, C. L. Boulange, I. Garcia-perez, J. C. Lindon, and E. F. Minet, Multiplatform serum metabolic phenotyping combined with pathway mapping to identify biochemical differences in smokers, Bioanalysis, vol.8, pp.2023-2043, 2016.

M. Kanehisa, M. Furumichi, M. Tanabe, Y. Sato, and K. Morishima, KEGG: new perspectives on genomes, pathways, diseases and drugs, Nucleic acids research, vol.45, issue.D1, pp.353-361, 2017.

M. Kim, T. Park, Y. , and Z. , Metagenomic investigation of gastrointestinal microbiome in cattle -A review, Asian-Australasian Journal of Animal Sciences, vol.22, issue.10, 2017.

A. Klassen, A. T. Faccio, G. A. Canuto, P. L. Da-cruz, H. C. Ribeiro et al., Metabolomics: definitions and significance in systems biology, Metabolomics: From Fundamentals to Clinical Applications, pp.3-17, 2017.

M. S. Klein, M. F. Almstetter, N. Nurnberger, G. Sigl, W. Gronwald et al., Correlations between Milk and Plasma Levels of Amino and Carboxylic Acids in Dairy Cows, Journal of proteome research, vol.12, issue.11, pp.5223-5232, 2013.

M. S. Klein, M. F. Almstetter, G. Schlamberger, N. Nurnberger, K. Dettmer et al., Nuclear magnetic resonance and mass spectrometry-based milk metabolomics in dairy cows during early and late lactation, Journal of Dairy Science, vol.93, issue.4, pp.1539-1550, 2010.

M. S. Klein, N. Buttchereit, S. P. Miemczyk, A. K. Immervoll, C. Louis et al., NMR metabolomic analysis of dairy cows reveals milk glycerophosphocholine to phosphocholine ratio as prognostic biomarker for risk of ketosis, Journal of Proteome Research, vol.11, issue.2, pp.1373-1381, 2012.

A. V. Klieve and R. S. Hegarty, Opportunities for biological control of ruminal methanogenesis, Australian Journal of Agricultural Research, vol.50, issue.8, pp.1315-1319, 1999.

R. A. Kohn, Thermodynamic and kinetic control of methane emissions from ruminants. Livestock production and climate change, CABI, pp.245-262, 2015.

T. Kristensen, L. Mogensen, M. T. Knudsen, and J. E. Hermansen, Effect of production system and farming strategy on greenhouse gas emissions from commercial dairy farms in a life cycle approach, Livestock Science, vol.140, issue.1, pp.136-148, 2011.

C. Kuhl, R. Tautenhahn, C. Bottcher, T. R. Larson, and S. Neumann, CAMERA: an integrated strategy for compound spectra extraction and annotation of liquid chromatography/mass spectrometry data sets, Analytical Chemistry, vol.84, issue.1, pp.283-289, 2012.

S. G. Lamarre, E. E. Edison, E. P. Wijekoon, M. E. Brosnan, and J. T. Brosnan, Suckling Rat Pups Accumulate Creatine Primarily via de Novo Synthesis Rather Than from Dam Milk, Journal of Nutrition, vol.140, issue.9, pp.1570-1573, 2010.

S. Lamichhane, C. C. Yde, M. S. Schmedes, H. M. Jensen, S. Meier et al., Strategy for Nuclear-Magnetic-Resonance-Based Metabolomics of Human Feces, Analytical Chemistry, vol.87, issue.12, pp.5930-5937, 2015.

L. Gall and G. , Sample collection and preparation of biofluids and extracts for NMR spectroscopy, Methods in Molecular Biology, vol.1277, pp.15-28, 2015.

J. Li, H. Zhong, Y. Ramayo-caldas, N. Terrapon, V. Lombard et al., A catalog of microbial genes from the bovine rumen reveals the determinants of herbivory, 2018.

Q. Li, Z. Yu, D. Zhu, X. Meng, X. Pang et al., The application of NMR-based milk metabolite analysis in milk authenticity identification, Journal of the science of food and agriculture, vol.97, issue.9, pp.2875-2882, 2017.

S. Li, Q. Wang, X. Lin, X. Jin, L. Liu et al., The Use of "Omics" in Lactation Research in Dairy Cows, International Journal of Molecular Sciences, vol.18, issue.5, 2017.

J. C. Lindon, E. Holmes, and J. K. Nicholson, Pattern recognition methods and applications in biomedical magnetic resonance, Progress in Nuclear Magnetic Resonance Spectroscopy, vol.39, issue.1, pp.1-40, 2001.

J. C. Lindon and J. K. Nicholson, Spectroscopic and statistical techniques for information recovery in metabonomics and metabolomics, Review of Analytical Chemistry, vol.1, pp.45-69, 2008.

J. L. Linzell, T. B. Mepham, and M. Peaker, The secretion of citrate into milk, The Journal of Physiology, vol.260, issue.3, pp.739-750, 1976.

Y. Liu and W. B. Whitman, Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea, Annals of the New York Academy of Sciences, vol.1125, pp.171-189, 2008.

A. L. Lock and K. J. Shingfield, Optimising Milk Composition, BSAP Occasional Publication, vol.29, pp.107-188, 2004.

J. C. Lopes, L. F. De-matos, M. T. Harper, F. Giallongo, J. Oh et al., Effect of 3-nitrooxypropanol on methane and hydrogen emissions, methane isotopic signature, and ruminal fermentation in dairy cows, Journal of Dairy Science, vol.99, issue.7, pp.5335-5344, 2016.

J. Lu, E. Fernandes, A. E. Paez-cano, J. Vinitwatanakhun, S. Boeren et al., Changes in milk proteome and metabolome associated with dry period length, energy balance, and lactation stage in postparturient dairy cows, Journal of proteome research, vol.12, issue.7, pp.3288-3296, 2013.

J. Lu, S. Boeren, T. Van-hooijdonk, J. Vervoort, and K. Hettinga, Effect of the DGAT1 K232A genotype of dairy cows on the milk metabolome and proteome, Journal of Dairy Science, vol.98, issue.5, pp.3460-3469, 2015.

A. Machmüller, C. R. Soliva, and M. Kreuzer, Methane-suppressing effect of myristic acid in sheep as affected by dietary calcium and forage proportion, British Journal of Nutrition, vol.90, issue.03, p.529, 2007.

A. D. Maher, B. Hayes, B. Cocks, L. Marett, W. J. Wales et al., Latent biochemical relationships in the blood-milk metabolic axis of dairy cows revealed by statistical integration of 1H NMR spectroscopic data, Journal of proteome research, vol.12, issue.3, pp.1428-1435, 2013.

J. L. Markley, R. Bruschweiler, A. S. Edison, H. R. Eghbalnia, R. Powers et al., The future of NMR-based metabolomics, Current Opinion in Biotechnology, vol.43, pp.34-40, 2017.

C. Martin, J. Koolaard, Y. Rochette, H. Clark, J. P. Jouany et al., Effect of release rate of the SF(6) tracer on methane emission estimates based on ruminal and breath gas samples, Animal, vol.6, issue.3, pp.518-525, 2012.

C. Martin, D. P. Morgavi, and M. Doreau, Methane mitigation in ruminants: from microbe to the farm scale, Animal, vol.4, issue.3, pp.351-365, 2010.

E. Martineau, I. Tea, G. Loaec, P. Giraudeau, A. et al., Strategy for choosing extraction procedures for NMR-based metabolomic analysis of mammalian cells, Analytical and Bioanalytical Chemistry, vol.401, issue.7, pp.2133-2142, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02143157

G. Martinez-fernandez, S. E. Denman, C. Yang, J. Cheung, M. Mitsumori et al., Methane Inhibition Alters the Microbial Community, Hydrogen Flow, and Fermentation Response in the Rumen of Cattle, Frontiers in Microbiology, vol.7, p.1122, 2016.

A. Massart-leën and D. Massart, The use of clustering techniques in the elucidation or confirmation of metabolic pathways. Application to the branched-chain fatty acids present in the milk fat of lactating goats, Biochemical journal, vol.196, issue.2, p.611, 1981.

J. M. Mato and S. C. Lu, Role of S-adenosyl-L-methionine in liver health and injury, Hepatology, vol.45, issue.5, pp.1306-1312, 2007.

P. Mclean, Carbohydrate metabolism of mammary tissue III. Factors in the regulation of pathways of glucose catabolism in the mammary gland of the rat, Biochimica et Biophysica Acta, vol.37, issue.2, pp.90237-90244, 1960.

T. B. Mepham, Amino acid utilization by lactating mammary gland, Journal of Dairy Science, vol.65, issue.2, pp.287-298, 1982.

M. I. Mhlongo, L. A. Piater, N. E. Madala, N. Labuschagne, and I. A. Dubery, The Chemistry of Plant-Microbe Interactions in the Rhizosphere and the Potential for Metabolomics to Reveal Signaling Related to Defense Priming and Induced Systemic Resistance, Frontiers in plant science, vol.9, issue.112, p.112, 2018.

D. P. Morgavi, E. Forano, C. Martin, and C. J. Newbold, Microbial ecosystem and methanogenesis in ruminants, Animal, vol.4, issue.7, pp.1024-1036, 2010.

D. P. Morgavi, W. J. Kelly, P. H. Janssen, and G. T. Attwood, Rumen microbial (meta)genomics and its application to ruminant production, Animal, vol.1, pp.184-201, 2013.

P. Mosoni, C. Martin, E. Forano, and D. Morgavi, Long-term defaunation increases the abundance of cellulolytic ruminococci and methanogens but does not affect the bacterial and methanogen diversity in the rumen of sheep, Journal of Animal Science, vol.89, issue.3, pp.783-791, 2011.

R. M. Murray, A. M. Bryant, and R. A. Leng, Rates of production of methane in the rumen and large intestine of sheep, The British journal of nutrition, vol.36, issue.1, pp.1-14, 1976.

N. Gowda, G. A. Gowda, Y. N. Raftery, and D. , Expanding the limits of human blood metabolite quantitation using NMR spectroscopy, Analytical Chemistry, vol.87, issue.1, pp.706-715, 2015.

E. Negussie, Y. De-haas, F. Dehareng, R. J. Dewhurst, J. Dijkstra et al., Invited review: Large-scale indirect measurements for enteric methane emissions in dairy cattle: A review of proxies and their potential for use in management and breeding decisions, Journal of Dairy Science, vol.100, issue.4, pp.2433-2453, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01607237

E. Negussie, J. Lehtinen, P. Mantysaari, A. R. Bayat, A. E. Liinamo et al., Non-invasive individual methane measurement in dairy cows, Animal, vol.11, issue.5, pp.890-899, 2017.

K. Nichols, J. J. Kim, M. Carson, J. A. Metcalf, J. P. Cant et al., Glucose supplementation stimulates peripheral branched-chain amino acid catabolism in lactating dairy cows during essential amino acid infusions, Journal of Dairy Science, vol.99, issue.2, pp.1145-1160, 2016.

J. K. Nicholson, J. C. Lindon, and E. Holmes, Metabonomics': understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data, Xenobiotica, vol.29, issue.11, pp.1181-1189, 1999.

P. Noziere, I. Ortigues-marty, C. Loncke, and D. Sauvant, Carbohydrate quantitative digestion and absorption in ruminants: from feed starch and fibre to nutrients available for tissues, Animal, vol.4, issue.7, pp.1057-1074, 2010.

N. E. Odongo, R. Bagg, G. Vessie, P. Dick, M. M. Or-rashid et al., Longterm effects of feeding monensin on methane production in lactating dairy cows, Journal of Dairy Science, vol.90, issue.4, pp.1781-1788, 2007.

R. Onodera, Methionine and lysine metabolism in the rumen and the possible effects of their metabolites on the nutrition and physiology of ruminants, Amino Acids, vol.5, issue.2, pp.217-232, 1993.

A. K. Patra, Recent Advances in Measurement and Dietary Mitigation of Enteric Methane Emissions in Ruminants. Frontiers in veterinary science, vol.3, p.39, 2016.

R. J. Pennington, The metabolism of short-chain fatty acids in the sheep. I. Fatty acid utilization and ketone body production by rumen epithelium and other tissues, The Biochemical journal, vol.51, issue.2, pp.251-258, 1952.

H. Pereira, J. Martin, C. Joly, J. Sébédio, and E. Pujos-guillot, Development and validation of a UPLC/MS method for a nutritional metabolomic study of human plasma, Metabolomics, vol.6, issue.2, pp.207-218, 2010.

N. K. Pickering, M. G. Chagunda, G. Banos, R. Mrode, J. C. Mcewan et al., Genetic parameters for predicted methane production and laser methane detector measurements, Journal of animal science, vol.93, issue.1, 2015.

N. K. Pickering, V. H. Oddy, J. Basarab, K. Cammack, B. Hayes et al., Animal board invited review: genetic possibilities to reduce enteric methane emissions from ruminants, Animal, vol.9, issue.9, pp.1431-1440, 2015.

C. S. Pinares-patino, S. M. Hickey, E. A. Young, K. G. Dodds, S. Maclean et al., Heritability estimates of methane emissions from sheep, Animal, vol.2, pp.316-321, 2013.

L. Pinotti, A. Baldi, and V. Orto, Comparative mammalian choline metabolism with emphasis on the high-yielding dairy cow, Nutrition research reviews, vol.15, issue.2, pp.315-332, 2002.

J. Pinto, A. S. Barros, M. R. Domingues, B. J. Goodfellow, E. Galhano et al., Following healthy pregnancy by NMR metabolomics of plasma and correlation to urine, Journal of proteome research, vol.14, issue.2, pp.1263-1274, 2015.

J. Pinto, M. R. Domingues, E. Galhano, C. Pita, C. Almeida-mdo et al., Human plasma stability during handling and storage: impact on NMR metabolomics, Analyst, vol.139, issue.5, pp.1168-1177, 2014.

R. C. Pinto, J. Trygg, and J. Gottfries, Advantages of orthogonal inspection in chemometrics, Journal of Chemometrics, vol.26, issue.6, pp.231-235, 2012.

G. Pratico, G. Capuani, A. Tomassini, M. E. Baldassarre, M. Delfini et al., Exploring human breast milk composition by NMR-based metabolomics, Natural Product Research, vol.28, issue.2, pp.95-101, 2014.

E. Pretsch, P. Buehlmann, C. Affolter, E. Pretsch, P. Bhuhlmann et al., Structure determination of organic compounds, 2000.

C. J. Rhodes, The 2015 Paris Climate Change Conference: COP21. Science progress 99, pp.97-104, 2016.

R. Ringseis, J. Keller, and K. Eder, Regulation of carnitine status in ruminants and efficacy of carnitine supplementation on performance and health aspects of ruminant livestock: a review, Archives of animal nutrition, vol.72, issue.1, pp.1-30, 2018.

M. J. Rist, C. Muhle-goll, B. Gorling, A. Bub, S. Heissler et al., Influence of Freezing and Storage Procedure on Human Urine Samples in NMR-Based Metabolomics, Metabolites, vol.3, issue.2, pp.243-258, 2013.

A. Robbins, How to understand the results of the climate change summit, Conference of Parties21 (COP21), 2015.

D. M. Rocke and D. L. Woodruff, Identification of outliers in multivariate data, Journal of the American Statistical Association, vol.91, issue.435, pp.1047-1061, 1996.

J. A. Rogers, U. Krishnamoorthy, and C. J. Sniffen, Plasma amino acids and milk protein production by cows fed rumen-protected methionine and lysine, Journal of Dairy Science, vol.70, issue.4, pp.789-798, 1987.

F. Rohart, A. Paris, B. Laurent, C. Canlet, J. Molina et al., Phenotypic prediction based on metabolomic data for growing pigs from three main European breeds, Journal of Animal Science, vol.90, issue.13, pp.4729-4740, 2012.

M. Ruiz-albarran, O. A. Balocchi, M. Noro, F. Wittwer, and R. G. Pulido, Effect of the type of silage on milk yield, intake and rumen metabolism of dairy cows grazing swards with low herbage mass, Animal science journal, vol.87, issue.7, pp.878-884, 2016.

D. Sauvant and P. Noziere, Quantification of the main digestive processes in ruminants: the equations involved in the renewed energy and protein feed evaluation systems, Animal, vol.10, issue.5, pp.755-770, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01508138

S. Scheller, M. Goenrich, R. K. Thauer, J. , and B. , Methyl-coenzyme M reductase from methanogenic archaea: isotope effects on the formation and anaerobic oxidation of methane, Journal of the American Chemical Society, vol.135, issue.40, pp.14975-14984, 2013.

T. Selmer, J. Kahnt, M. Goubeaud, S. Shima, W. Grabarse et al., The biosynthesis of methylated amino acids in the active site region of methyl-coenzyme M reductase, Journal of Biological Chemistry, vol.275, issue.6, pp.3755-3760, 2000.

R. Seshadri, S. C. Leahy, G. T. Attwood, K. H. Teh, S. C. Lambie et al., Cultivation and sequencing of rumen microbiome members from the Hungate1000 Collection, Nat Biotechnol, vol.36, issue.4, pp.359-367, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02094598

D. B. Shennan and M. Peaker, Transport of milk constituents by the mammary gland, Physiological reviews, vol.80, issue.3, pp.925-951, 2000.

R. M. Silverstein and G. C. Bassler, Spectrometric identification of organic compounds, Journal of Chemical Education, vol.39, issue.11, p.546, 1962.

S. K. Sirohi, N. Pandey, B. Singh, and A. K. Puniya, Rumen methanogens: a review, Indian journal of microbiology, vol.50, issue.3, pp.253-262, 2010.

C. A. Smith, E. J. Want, G. O&apos;maille, R. Abagyan, and G. Siuzdak, XCMS: Processing mass spectrometry data for metabolite profiling using Nonlinear peak alignment, matching, and identification, Analytical Chemistry, vol.78, issue.3, pp.779-787, 2006.

A. J. Stams and C. M. Plugge, The microbiology of methanogenesis. Methane and climate change, pp.14-26, 2010.

H. Steinfeld, P. Gerber, T. Wassenaar, V. Castel, and C. De-haan, Livestock's long shadow: environmental issues and options. Food & Agriculture Org, 2006.

I. M. Storm, A. L. Hellwing, N. I. Nielsen, and J. Madsen, Methods for Measuring and Estimating Methane Emission from Ruminants, Animals, vol.2, issue.2, pp.160-183, 2012.

L. Sumner, A. Amberg, D. Barrett, M. Beale, R. Beger et al., Proposed minimum reporting standards for chemical analysis, Metabolomics, vol.3, issue.3, pp.211-221, 2007.

L. W. Sun, H. Y. Zhang, L. Wu, S. Shu, C. Xia et al., )H-Nuclear magnetic resonance-based plasma metabolic profiling of dairy cows with clinical and subclinical ketosis, Journal of Dairy Science, vol.97, issue.1, pp.1552-1562, 2014.

U. K. Sundekilde, P. D. Frederiksen, M. R. Clausen, L. B. Larsen, and H. C. Bertram, Relationship between the Metabolite Profile and Technological Properties of Bovine Milk from Two Dairy Breeds Elucidated by NMR-Based Metabolomics, Journal of Agricultural and Food Chemistry, vol.59, issue.13, pp.7360-7367, 2011.

U. K. Sundekilde, L. B. Larsen, and H. C. Bertram, NMR-Based Milk Metabolomics, Metabolites, vol.3, issue.2, pp.204-222, 2013.

U. K. Sundekilde, N. A. Poulsen, L. B. Larsen, and H. C. Bertram, Nuclear magnetic resonance metabonomics reveals strong association between milk metabolites and somatic cell count in bovine milk, Journal of Dairy Science, vol.96, issue.1, pp.290-299, 2013.

R. Tautenhahn, C. Bottcher, and S. Neumann, Highly sensitive feature detection for high resolution LC/MS, BMC Bioinformatics, vol.9, p.504, 2008.

H. Tian, W. Wang, N. Zheng, J. Cheng, S. Li et al., Identification of diagnostic biomarkers and metabolic pathway shifts of heat-stressed lactating dairy cows, Journal of Proteomics, vol.125, pp.17-28, 2015.

H. Tian, W. Y. Wang, N. Zheng, J. B. Cheng, S. L. Li et al., Identification of diagnostic biomarkers and metabolic pathway shifts of heat-stressed lactating dairy cows, Journal of Proteomics, vol.125, pp.17-28, 2015.

J. Trygg, E. Holmes, and T. Lundstedt, Chemometrics in metabonomics, Journal of proteome research, vol.6, issue.2, pp.469-479, 2007.

J. Trygg and S. Wold, Orthogonal projections to latent structures (O-PLS), Journal of Chemometrics, vol.16, issue.3, pp.119-128, 2002.

S. Tulipani, R. Llorach, M. Urpi-sarda, A. , and C. , Comparative Analysis of Sample Preparation Methods To Handle the Complexity of the Blood Fluid Metabolome: When Less Is More, Analytical Chemistry, vol.85, issue.1, pp.341-348, 2013.

E. L. Ulrich, H. Akutsu, J. F. Doreleijers, Y. Harano, Y. E. Ioannidis et al., Analytical error reduction using single point calibration for accurate and precise metabolomic phenotyping, BioMagResBank. Nucleic Acids Research, vol.36, issue.11, pp.5132-5141, 2008.

S. Gastelen, E. C. Antunes-fernandes, K. A. Hettinga, and J. Dijkstra, Relationships between methane emission of Holstein Friesian dairy cows and fatty acids, volatile metabolites and non-volatile metabolites in milk, Animal, vol.11, issue.9, pp.1539-1548, 2017.

S. Van-gastelen, E. C. Antunes-fernandes, K. A. Hettinga, and J. Dijkstra, The relationship between milk metabolome and methane emission of Holstein Friesian dairy cows: Metabolic interpretation and prediction potential, Journal of Dairy Science, vol.101, issue.3, pp.2110-2126, 2018.

H. J. Van-lingen, L. A. Crompton, W. H. Hendriks, C. K. Reynolds, and J. Dijkstra, Metaanalysis of relationships between enteric methane yield and milk fatty acid profile in dairy cattle, Journal of Dairy Science, vol.97, issue.11, pp.7115-7132, 2014.

C. S. Van-nevel and D. I. Demeyer, Manipulation of rumen fermentation, The Rumen Microbial Ecosystem, pp.387-443, 1988.

P. Van-soest, A. , and N. , Studies on the Relationships between Rumen Acids and Fat Metabolism of Ruminants Fed on Restricted Roughage Diets, Journal of Dairy Science, vol.42, issue.12, pp.1977-1985, 1959.

M. P. Villeneuve, Y. Lebeuf, R. Gervais, G. F. Tremblay, J. C. Vuillemard et al., Milk volatile organic compounds and fatty acid profile in cows fed timothy as hay, pasture, or silage, Journal of Dairy Science, vol.96, issue.11, pp.7181-7194, 2013.

G. Visentin, M. Penasa, P. Gottardo, M. Cassandro, D. Marchi et al., Predictive ability of mid-infrared spectroscopy for major mineral composition and coagulation traits of bovine milk by using the uninformative variable selection algorithm, Journal of Dairy Science, vol.99, issue.10, pp.8137-8145, 2016.

B. Vlaeminck, C. Dufour, A. M. Van-vuuren, A. R. Cabrita, R. J. Dewhurst et al., Use of odd and branched-chain fatty acids in rumen contents and milk as a potential microbial marker, Journal of Dairy Science, vol.88, issue.3, pp.72771-72776, 2005.

G. D. Vogels, W. F. Hoppe, and C. K. Stumm, Association of methanogenic bacteria with rumen ciliates, Applied and Environmental Microbiology, vol.40, issue.3, pp.608-612, 1980.

D. Vuckovic, Current trends and challenges in sample preparation for global metabolomics using liquid chromatography-mass spectrometry, Analytical and Bioanalytical Chemistry, vol.403, issue.6, pp.1523-1548, 2012.

E. Wall, G. Simm, and D. Moran, Developing breeding schemes to assist mitigation of greenhouse gas emissions, Animal, vol.4, issue.3, pp.366-376, 2010.

R. Wallace, R. Onodera, and M. Cotta, Metabolism of nitrogen-containing compounds, The rumen microbial ecosystem, pp.283-328, 1997.

R. J. Wallace, T. J. Snelling, C. A. Mccartney, I. Tapio, and F. Strozzi, Application of meta-omics techniques to understand greenhouse gas emissions originating from ruminal metabolism, Genetics Selection Evolution, vol.49, issue.1, pp.17-0285, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01479133

M. Z. Wang, Y. J. Jing, S. M. Liu, J. Gao, L. F. Shi et al., Soybean oil suppresses ruminal methane production and reduces content of coenzyme F-420 in vitro fermentation, Animal Production Science, vol.56, issue.2-3, pp.627-633, 2016.

E. J. Want, G. O&apos;maille, C. A. Smith, T. R. Brandon, W. Uritboonthai et al., Solvent-dependent metabolite distribution, clustering, and protein extraction for serum profiling with mass spectrometry, Analytical Chemistry, vol.78, issue.3, pp.743-752, 2006.

D. N. Wedlock, P. H. Janssen, S. C. Leahy, D. Shu, and B. M. Buddle, Progress in the development of vaccines against rumen methanogens, Animal, vol.7, issue.2, pp.244-252, 2013.

J. A. Westerhuis, H. C. Hoefsloot, S. Smit, D. J. Vis, A. K. Smilde et al., Assessment of PLSDA cross validation, Metabolomics, vol.4, issue.1, pp.81-89, 2008.

D. S. Wishart, D. Tzur, C. Knox, R. Eisner, A. C. Guo et al., HMDB: the Human Metabolome Database, Nucleic acids research, vol.35, pp.521-526, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01712873

W. Wojtowicz, A. Zabek, S. Deja, T. Dawiskiba, D. Pawelka et al., Serum and urine (1)H NMR-based metabolomics in the diagnosis of selected thyroid diseases, Scientific Reports, vol.7, issue.1, p.9108, 2017.

S. Wold, H. Antti, F. Lindgren, and J. Öhman, Orthogonal signal correction of nearinfrared spectra, Chemometrics and Intelligent Laboratory Systems, vol.44, issue.1-2, pp.175-185, 1998.

S. Wold, K. Esbensen, and P. Geladi, Principal Component Analysis, Chemometrics and Intelligent Laboratory Systems, vol.2, issue.1-3, pp.80084-80093, 1987.

H. Wu, A. D. Southam, A. Hines, and M. R. Viant, High-throughput tissue extraction protocol for NMR-and MS-based metabolomics, Analytical Biochemistry, vol.372, issue.2, pp.204-212, 2008.

J. Wu, M. Domellof, A. M. Zivkovic, G. Larsson, A. Ohman et al., NMRbased metabolite profiling of human milk: A pilot study of methods for investigating compositional changes during lactation, Biochemical and biophysical research communications, vol.469, issue.3, pp.626-632, 2016.

J. Xia, D. I. Broadhurst, M. Wilson, and D. S. Wishart, Translational biomarker discovery in clinical metabolomics: an introductory tutorial, Metabolomics, vol.9, issue.2, pp.280-299, 2013.

J. G. Xia, I. V. Sinelnikov, B. Han, and D. S. Wishart, MetaboAnalyst 3.0-making metabolomics more meaningful, Nucleic Acids Research, vol.43, issue.W1, pp.251-257, 2015.

Y. Yang, N. Zheng, X. Zhao, Y. Zhang, R. Han et al., Metabolomic biomarkers identify differences in milk produced by Holstein cows and other minor dairy animals, Journal of Proteomics, vol.136, issue.16, pp.174-182, 2016.

M. P. Ye, R. Zhou, Y. R. Shi, H. C. Chen, and Y. Du, Effects of heating on the secondary structure of proteins in milk powders using mid-infrared spectroscopy, Journal of Dairy Science, vol.16, issue.16, pp.30798-30796, 2016.

J. W. Young, Gluconeogenesis in cattle: significance and methodology, Journal of Dairy Science, vol.60, issue.1, pp.83821-83827, 1977.

H. U. Zacharias, J. Hochrein, M. Klein, C. Samol, J. P. Oefner et al., Current Experimental, Bioinformatic and Statistical Methods used in NMR Based Metabolomics, Current Metabolomics, vol.1, issue.3, pp.253-268, 2013.

H. Y. Zhang, L. Wu, C. Xu, C. Xia, L. W. Sun et al., Plasma metabolomic profiling of dairy cows affected with ketosis using gas chromatography/mass spectrometry, Bmc Veterinary Research, vol.9, issue.1, p.186, 2013.

Y. Zhu, Z. Guo, L. Zhang, Y. Zhang, Y. Chen et al., System-wide assembly of pathways and modules hierarchically reveal metabolic mechanism of cerebral ischemia, Scientific Reports, vol.5, 2015.

P. R. Zimmerman, System for measuring metabolic gas emissions from animals, Google Patents), 1993.

S. H. Zinder and T. D. Brock, Methane, Carbon Dioxide, and Hydrogen Sulfide Production from the Terminal Methiol Group of Methionine by Anaerobic Lake Sediments, Applied and Environmental Microbiology, vol.35, issue.2, pp.344-352, 1978.

, MSI= Matière sèche ingérée