I. R. Adams and J. V. Kilmartin, Spindle pole body duplication: a model for centrosome duplication?, Trends Cell Biol, vol.10, pp.329-335, 2000.

M. Almonacid, S. Celton-morizur, J. L. Jakubowski, F. Dingli, D. Loew et al., Temporal control of contractile ring assembly by Plo1 regulation of myosin II recruitment by Mid1/anillin, Curr. Biol, vol.21, pp.473-479, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02379069

V. E. Anderson, J. Prudden, S. Prochnik, T. H. Giddings, . Jr et al., Novel sfi1 alleles uncover additional functions for Sfi1p in bipolar spindle assembly and function, Mol. Biol. Cell, vol.18, pp.2047-2056, 2007.

Y. Araki, L. Gombos, S. P. Migueleti, L. Sivashanmugam, C. Antony et al., N-terminal regions of Mps1 kinase determine functional bifurcation, J. Cell Biol, vol.189, pp.41-56, 2010.

P. Avasthi, J. F. Scheel, G. Ying, J. M. Frederick, W. Baehr et al., Germline deletion of Cetn1 causes infertility in male mice, J. Cell Sci, vol.126, pp.3204-3213, 2013.

J. S. Avena, S. Burns, Z. Yu, C. C. Ebmeier, W. M. Old et al., Licensing of yeast centrosome duplication requires phosphoregulation of sfi1, PLoS Genet, vol.10, 2014.

J. Azimzadeh, P. Hergert, A. Delouvé-e, U. Euteneuer, E. Formstecher et al., hPOC5 is a centrin-binding protein required for assembly of full-length centrioles, J. Cell Biol, vol.185, pp.101-114, 2009.

J. Azimzadeh, M. L. Wong, D. M. Downhour, A. Sá-nchez-alvarado, and W. F. Marshall, Centrosome loss in the evolution of planarians, Science, vol.335, pp.461-463, 2012.

J. Bä-hler, J. Q. Wu, M. S. Longtine, N. G. Shah, A. Mckenzie et al., Heterologous modules for efficient and versatile PCR-based gene targeting in Schizosaccharomyces pombe, Yeast, vol.14, pp.943-951, 1998.

F. R. Balestra, P. Strnad, I. Flü-ckiger, and P. Gö-nczy, Discovering regulators of centriole biogenesis through siRNA-based functional genomics in human cells, Dev. Cell, vol.25, pp.555-571, 2013.

R. Basto, K. Brunk, T. Vinadogrova, N. Peel, A. Franz et al., Centrosome amplification can initiate tumorigenesis in flies, Cell, vol.133, pp.1032-1042, 2008.

R. Basto, J. Lau, T. Vinogradova, A. Gardiol, C. G. Woods et al., Flies without centrioles, vol.125, pp.1375-1386, 2006.

P. Baum, C. Furlong, and B. Byers, Yeast gene required for spindle pole body duplication: homology of its product with Ca2+-binding proteins, Proc. Natl. Acad. Sci. USA, vol.83, pp.5512-5516, 1986.

G. Cabral, S. S. Sans, C. R. Cowan, and A. Dammermann, Multiple mechanisms contribute to centriole separation in C. elegans, Curr. Biol, vol.23, pp.1380-1387, 2013.

N. Cueille, E. Salimova, V. Esteban, M. Blanco, S. Moreno et al., Flp1, a fission yeast orthologue of the s. cerevisiae CDC14 gene, is not required for cyclin degradation or rum1p stabilisation at the end of mitosis, J. Cell Sci, vol.114, pp.2649-2664, 2001.

A. B. D'assoro, W. L. Lingle, and J. L. Salisbury, Centrosome amplification and the development of cancer, Oncogene, vol.21, pp.6146-6153, 2002.

T. J. Dantas, O. M. Daly, and C. G. Morrison, Such small hands: the roles of centrins/caltractins in the centriole and in genome maintenance, Cell. Mol. Life Sci, vol.69, pp.2979-2997, 2012.

B. Delaval, L. Covassin, N. D. Lawson, and S. Doxsey, Centrin depletion causes cyst formation and other ciliopathy-related phenotypes in zebrafish, Cell Cycle, vol.10, pp.3964-3972, 2011.

R. Ding, R. R. West, D. M. Morphew, B. R. Oakley, and J. R. Mcintosh, The spindle pole body of Schizosaccharomyces pombe enters and leaves the nuclear envelope as the cell cycle proceeds, Mol. Biol. Cell, vol.8, pp.1461-1479, 1997.

M. Elserafy, M. Neuner, A. Lin, T. C. Zhang, W. Seybold et al., Molecular mechanisms that restrict yeast centrosome duplication to one event per cell cycle, Curr. Biol, vol.24, pp.1456-1466, 2014.

P. A. Fantes and P. Nurse, Control of the timing of cell division in fission yeast. Cell size mutants reveal a second control pathway, Exp. Cell Res, vol.115, pp.317-329, 1978.

M. R. Flory, M. Morphew, J. D. Joseph, A. R. Means, and T. N. Davis, , 2002.

, Pcp1p, an Spc110p-related calmodulin target at the centrosome of the fission yeast Schizosaccharomyces pombe, Cell Growth Differ, vol.13, pp.47-58

C. S. Fong, M. Sato, and T. Toda, Fission yeast Pcp1 links polo kinasemediated mitotic entry to gamma-tubulin-dependent spindle formation, EMBO J, vol.29, pp.120-130, 2010.

D. Gogendeau, J. Beisson, N. G. De-loubresse, J. P. Le-caer, F. Ruiz et al., An Sfi1p-like centrinbinding protein mediates centrin-based Ca2+ -dependent contractility in Paramecium tetraurelia, Eukaryot. Cell, vol.6, 1992.
URL : https://hal.archives-ouvertes.fr/hal-00265958

D. Gogendeau, C. Klotz, O. Arnaiz, A. Malinowska, M. Dadlez et al., Functional diversification of centrins and cell morphological complexity, J. Cell Sci, vol.121, pp.65-74, 2008.

I. Hagan and M. Yanagida, Kinesin-related cut7 protein associates with mitotic and meiotic spindles in fission yeast, Nature, vol.356, pp.74-76, 1992.

I. Hagan and M. Yanagida, The product of the spindle formation gene sad1+ associates with the fission yeast spindle pole body and is essential for viability, J. Cell Biol, vol.129, pp.1033-1047, 1995.

J. L. Hö-Ö-g, S. M. Huisman, D. Brunner, and C. Antony, Electron tomography reveals novel microtubule lattice and microtubule organizing centre defects in +TIP mutants, PLoS ONE, vol.8, 2013.

S. L. Jaspersen and S. Ghosh, Nuclear envelope insertion of spindle pole bodies and nuclear pore complexes, Nucleus, vol.3, pp.226-236, 2012.

S. L. Jaspersen and M. Winey, The budding yeast spindle pole body: structure, duplication, and function, Annu. Rev. Cell Dev. Biol, vol.20, pp.1-28, 2004.

M. Jerka-dziadosz, F. Koll, D. W?oga, D. Gogendeau, N. Garreau-de-loubresse et al., A Centrin3-dependent, transient, appendage of the mother basal body guides the positioning of the daughter basal body in Paramecium, Protist, vol.164, pp.352-368, 2013.

J. B. Keeney and J. D. Boeke, Efficient targeted integration at leu1-32 and ura4-294 in Schizosaccharomyces pombe, Genetics, vol.136, pp.849-856, 1994.

A. Khodjakov, R. W. Cole, B. R. Oakley, and C. L. Rieder, , 2000.

, Centrosome-independent mitotic spindle formation in vertebrates, Curr. Biol, vol.10, pp.59-67

J. V. Kilmartin, Sfi1p has conserved centrin-binding sites and an essential function in budding yeast spindle pole body duplication, J. Cell Biol, vol.162, pp.1211-1221, 2003.

I. J. Lee, N. Wang, W. Hu, K. Schott, J. Bä-hler et al., Regulation of spindle pole body assembly and cytokinesis by the centrin-binding protein Sfi1 in fission yeast, Mol. Biol. Cell, vol.25, pp.2735-2749, 2014.

S. Li, A. M. Sandercock, P. Conduit, C. V. Robinson, R. L. Williams et al., Structural role of Sfi1p-centrin filaments in budding yeast spindle pole body duplication, J. Cell Biol, vol.173, pp.867-877, 2006.

H. H. Lim, T. Zhang, and U. Surana, Regulation of centrosome separation in yeast and vertebrates: common threads, Trends Cell Biol, vol.19, pp.325-333, 2009.

W. Lutz, W. L. Lingle, D. Mccormick, T. M. Greenwood, and J. L. Salisbury, Phosphorylation of centrin during the cell cycle and its role in centriole separation preceding centrosome duplication, J. Biol. Chem, vol.276, pp.20774-20780, 2001.

V. Marthiens, M. A. Rujano, C. Pennetier, S. Tessier, P. Paul-gilloteaux et al., Centrosome amplification causes microcephaly, Nat. Cell Biol, vol.15, pp.731-740, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01712239

M. J. Moser, M. R. Flory, and T. N. Davis, Calmodulin localizes to the spindle pole body of Schizosaccharomyces pombe and performs an essential function in chromosome segregation, J. Cell Sci, vol.110, pp.1805-1812, 1997.

D. P. Mulvihill, J. Petersen, H. Ohkura, D. M. Glover, and I. M. Hagan, Plo1 kinase recruitment to the spindle pole body and its role in cell division in Schizosaccharomyces pombe, Mol. Biol. Cell, vol.10, pp.2771-2785, 1999.

M. Ohta, M. Sato, and M. Yamamoto, Spindle pole body components are reorganized during fission yeast meiosis, Mol. Biol. Cell, vol.23, pp.1799-1811, 2012.

A. Paoletti, N. Bordes, R. Haddad, C. L. Schwartz, F. Chang et al., Fission yeast cdc31p is a component of the half-bridge and controls SPB duplication, Mol. Biol. Cell, vol.14, pp.2793-2808, 2003.

V. Racine, A. Hertzog, J. Jouanneau, J. Salamero, C. Kervrann et al., Multiple-target tracking of 3D fluorescent objects based on simulated annealing, Proceedings of the IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp.1020-1023, 2006.

J. A. Rosenberg, G. C. Tomlin, W. H. Mcdonald, B. E. Snydsman, E. G. Muller et al., Ppc89 links multiple proteins, including the septation initiation network, to the core of the fission yeast spindlepole body, Mol. Biol. Cell, vol.17, pp.3793-3805, 2006.

M. Sato, M. Toya, and T. Toda, Visualization of fluorescence-tagged proteins in fission yeast: the analysis of mitotic spindle dynamics using GFPtubulin under the native promoter, Methods Mol. Biol, vol.545, pp.185-203, 2009.

A. Spang, I. Courtney, U. Fackler, M. Matzner, and E. Schiebel, The calcium-binding protein cell division cycle 31 of Saccharomyces cerevisiae is a component of the half bridge of the spindle pole body, J. Cell Biol, vol.123, pp.405-416, 1993.

C. A. Sparks, M. Morphew, and D. Mccollum, Sid2p, a spindle pole body kinase that regulates the onset of cytokinesis, J. Cell Biol, vol.146, pp.777-790, 1999.

A. J. Stemm-wolf, J. B. Meehl, and M. Winey, Sfr13, a member of a large family of asymmetrically localized Sfi1-repeat proteins, is important for basal body separation and stability in Tetrahymena thermophila, J. Cell Sci, vol.126, pp.1659-1671, 2013.

N. R. Stevens, A. A. Raposo, R. Basto, D. St-johnston, and J. W. Raff, From stem cell to embryo without centrioles, Curr. Biol, vol.17, pp.1498-1503, 2007.

A. Sveiczer, B. Novak, and J. M. Mitchison, The size control of fission yeast revisited, J. Cell Sci, vol.109, pp.2947-2957, 1996.

Y. D. Tay, A. Patel, D. F. Kaemena, and I. M. Hagan, Mutation of a conserved residue enhances the sensitivity of analogue-sensitised kinases to generate a novel approach to the study of mitosis in fission yeast, J. Cell Sci, vol.126, pp.5052-5061, 2013.

M. Thé-ry, V. Racine, M. Piel, A. Pé-pin, A. Dimitrov et al., Anisotropy of cell adhesive microenvironment governs cell internal organization and orientation of polarity, Proc. Natl. Acad. Sci. USA, vol.103, pp.19771-19776, 2006.

P. T. Tran, A. Paoletti, and F. Chang, Imaging green fluorescent protein fusions in living fission yeast cells, Methods, vol.33, pp.220-225, 2004.

S. Trautmann, B. A. Wolfe, P. Jorgensen, M. Tyers, K. L. Gould et al., Fission yeast Clp1p phosphatase regulates G2/M transition and coordination of cytokinesis with cell cycle progression, Curr. Biol, vol.11, pp.931-940, 2001.

S. Uzawa, F. Li, Y. Jin, K. L. Mcdonald, M. B. Braunfeld et al., Spindle pole body duplication in fission yeast occurs at the G1/S boundary but maturation is blocked until exit from S by an event downstream of cdc10+, Mol. Biol. Cell, vol.15, pp.5219-5230, 2004.

G. Velve-casquillas, M. Le-berre, M. Piel, and P. T. Tran, Microfluidic tools for cell biological research, Nano Today, vol.5, pp.28-47, 2010.

G. Velve-casquillas, C. Fu, M. Le-berre, J. Cramer, S. Meance et al., Fast microfluidic temperature control for high resolution live cell imaging, Lab Chip, vol.11, pp.484-489, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00679141

Y. Wei, H. Hu, Z. R. Lun, and Z. Li, Centrin3 in trypanosomes maintains the stability of a flagellar inner-arm dynein for cell motility, Nat. Commun, vol.5, p.4060, 2014.

E. Weiss and M. Winey, The Saccharomyces cerevisiae spindle pole body duplication gene MPS1 is part of a mitotic checkpoint, J. Cell Biol, vol.132, pp.111-123, 1996.

C. H. Yang, C. Kasbek, S. Majumder, A. M. Yusof, and H. A. Fisk, Mps1 phosphorylation sites regulate the function of centrin 2 in centriole assembly, Mol. Biol. Cell, vol.21, pp.4361-4372, 2010.

Y. Zhang and C. Y. He, Centrins in unicellular organisms: functional diversity and specialization, Protoplasma, vol.249, pp.459-467, 2012.

, Article 2: Human Sfi1 controls Centrin association with centrioles and regulates ciliogenesis and cell cycle progression, RESULTS, vol.2

B. Imène, Bouhlel 1, 2, Juliette Azimzadeh, vol.3, p.2

I. Curie and C. Psl-research-university, , p.75005

U. Institut-jacques-monod, P. Cnrs/université, S. P. Diderot, . Cité, F. Paris et al., Centrosome protein centrin 2/caltractin 1 is part of the xeroderma pigmentosum group C complex that initiates global genome nucleotide excision repair, J Biol Chem, vol.276, pp.18665-18672, 2001.

C. Arquint, A. M. Gabryjonczyk, S. Imseng, R. Bohm, E. Sauer et al., STIL binding to Polo-box 3 of PLK4 regulates centriole duplication, 2015.

C. Arquint and E. A. Nigg, The PLK4-STIL-SAS-6 module at the core of centriole duplication, Biochem Soc Trans, vol.44, pp.1253-1263, 2016.

J. S. Avena, S. Burns, Z. Yu, C. C. Ebmeier, W. M. Old et al., Licensing of yeast centrosome duplication requires phosphoregulation of sfi1, PLoS Genet, vol.10, p.1004666, 2014.

J. Azimzadeh, P. Hergert, A. Delouvee, U. Euteneuer, E. Formstecher et al., hPOC5 is a centrin-binding protein required for assembly of full-length centrioles, J Cell Biol, vol.185, pp.101-114, 2009.

F. R. Balestra, P. Strnad, I. Fluckiger, and P. Gonczy, Discovering regulators of centriole biogenesis through siRNA-based functional genomics in human cells, Dev Cell, vol.25, pp.555-571, 2013.

R. Basto, J. Lau, T. Vinogradova, A. Gardiol, C. G. Woods et al., Flies without centrioles. Cell, vol.125, pp.1375-1386, 2006.

P. Baum, C. Furlong, and B. Byers, Yeast gene required for spindle pole body duplication: homology of its product with Ca2+-binding proteins, Proc Natl Acad Sci U S A, vol.83, pp.5512-5516, 1986.

A. J. Bestul, Z. Yu, J. R. Unruh, and S. L. Jaspersen, Molecular model of fission yeast centrosome assembly determined by superresolution imaging, J Cell Biol, vol.216, pp.2409-2424, 2017.

I. B. Bouhlel, M. Ohta, A. Mayeux, N. Bordes, F. Dingli et al., Cell cycle control of spindle pole body duplication and splitting by Sfi1 and Cdc31 in fission yeast, J Cell Sci, vol.128, pp.1481-1493, 2015.

A. M. Cavanaugh and S. L. Jaspersen, Big Lessons from Little Yeast: Budding and Fission Yeast Centrosome Structure, Duplication, and Function, Annu Rev Genet, 2017.

J. E. Celis and P. Madsen, Increased nuclear cyclin/PCNA antigen staining of non S-phase transformed human amnion cells engaged in nucleotide excision DNA repair, FEBS Lett, vol.209, pp.277-283, 1986.

D. Comartin, G. D. Gupta, E. Fussner, E. Coyaud, M. Hasegan et al.,

A. Khodjakov and C. L. Rieder, Centrosomes enhance the fidelity of cytokinesis in vertebrates and are required for cell cycle progression, J Cell Biol, vol.153, pp.237-242, 2001.

J. V. Kilmartin, Sfi1p has conserved centrin-binding sites and an essential function in budding yeast spindle pole body duplication, J Cell Biol, vol.162, pp.1211-1221, 2003.

T. S. Kim, J. E. Park, A. Shukla, S. Choi, R. N. Murugan et al., Hierarchical recruitment of Plk4 and regulation of centriole biogenesis by two centrosomal scaffolds, Cep192 and Cep152, Proc Natl Acad Sci U S A, vol.110, pp.4849-4857, 2013.

J. E. Klebba, D. W. Buster, T. A. Mclamarrah, N. M. Rusan, and G. C. Rogers, Autoinhibition and relief mechanism for Polo-like kinase 4, Proc Natl Acad Sci U S A, vol.112, pp.657-666, 2015.

J. Kleylein-sohn, J. Westendorf, M. L. Clech, R. Habedanck, Y. D. Stierhof et al., Plk4-induced centriole biogenesis in human cells, Dev Cell, vol.13, pp.190-202, 2007.

A. S. Kratz, F. Barenz, K. T. Richter, and I. Hoffmann, Plk4-dependent phosphorylation of STIL is required for centriole duplication, Biol Open, vol.4, pp.370-377, 2015.

B. G. Lambrus, V. Daggubati, Y. Uetake, P. M. Scott, K. M. Clutario et al., A USP28-53BP1-p53-p21 signaling axis arrests growth after centrosome loss or prolonged mitosis, J Cell Biol, vol.214, pp.143-153, 2016.

J. Laoukili, E. Perret, S. Middendorp, O. Houcine, C. Guennou et al., Differential expression and cellular distribution of centrin isoforms during human ciliated cell differentiation in vitro, J Cell Sci, vol.113, pp.1355-1364, 2000.

I. J. Lee, N. Wang, W. Hu, K. Schott, J. Bahler et al., Regulation of spindle pole body assembly and cytokinesis by the centrin-binding protein Sfi1 in fission yeast, Mol Biol Cell, vol.25, pp.2735-2749, 2014.

S. Li, A. M. Sandercock, P. Conduit, C. V. Robinson, R. L. Williams et al., Structural role of Sfi1p-centrin filaments in budding yeast spindle pole body duplication, J Cell Biol, vol.173, pp.867-877, 2006.

Y. N. Lin, C. T. Wu, Y. C. Lin, W. B. Hsu, C. J. Tang et al., CEP120 interacts with CPAP and positively regulates centriole elongation, J Cell Biol, vol.202, pp.211-219, 2013.

F. Meitinger, J. V. Anzola, M. Kaulich, A. Richardson, J. D. Stender et al., 53BP1 and USP28 mediate p53 activation and G1 arrest after centrosome loss or extended mitotic duration, J Cell Biol, vol.214, pp.155-166, 2016.

S. Middendorp, T. Kuntziger, Y. Abraham, S. Holmes, N. Bordes et al., A role for centrin 3 in centrosome reproduction, J Cell Biol, vol.148, pp.405-416, 2000.

S. Middendorp, A. Paoletti, E. Schiebel, and M. Bornens, Identification of a new mammalian centrin gene, more closely related to Saccharomyces cerevisiae CDC31 gene, Proc Natl Acad Sci U S A, vol.94, pp.9141-9146, 1997.

T. C. Moyer, K. M. Clutario, B. G. Lambrus, V. Daggubati, and A. J. Holland, Binding of STIL to Plk4 activates kinase activity to promote centriole assembly, J Cell Biol, vol.209, pp.863-878, 2015.

M. Nano and R. Basto, Consequences of Centrosome Dysfunction During Brain Development, Adv Exp Med Biol, vol.1002, pp.19-45, 2017.

E. A. Nigg and T. Stearns, The centrosome cycle: Centriole biogenesis, duplication and inherent asymmetries, Nat Cell Biol, vol.13, pp.1154-1160, 2011.

M. Ohta, T. Ashikawa, Y. Nozaki, H. Kozuka-hata, H. Goto et al., Direct interaction of Plk4 with STIL ensures formation of a single procentriole per parental centriole, Nat Commun, vol.5, p.5267, 2014.

M. Panic, S. Hata, A. Neuner, and E. Schiebel, The centrosomal linker and microtubules provide dual levels of spatial coordination of centrosomes, PLoS Genet, vol.11, p.1005243, 2015.

A. Paoletti, N. Bordes, R. Haddad, C. L. Schwartz, F. Chang et al., Fission yeast cdc31p is a component of the half-bridge and controls SPB duplication, Mol Biol Cell, vol.14, pp.2793-2808, 2003.

A. Paoletti and M. Bornens, Organisation and functional regulation of the centrosome in animal cells, Prog Cell Cycle Res, vol.3, pp.285-299, 1997.

A. Paoletti, M. Moudjou, M. Paintrand, J. L. Salisbury, and M. Bornens, Most of centrin in animal cells is not centrosome-associated and centrosomal centrin is confined to the distal lumen of centrioles, J Cell Sci, vol.109, pp.3089-3102, 1996.

S. Y. Park, J. E. Park, T. S. Kim, J. H. Kim, M. J. Kwak et al., Molecular basis for unidirectional scaffold switching of human Plk4 in centriole biogenesis, Nat Struct Mol Biol, vol.21, pp.696-703, 2014.

G. Piperno, M. Ledizet, and X. J. Chang, Microtubules containing acetylated alpha-tubulin in mammalian cells in culture, J Cell Biol, vol.104, pp.289-302, 1987.

K. K. Resendes, B. A. Rasala, and D. J. Forbes, Centrin 2 localizes to the vertebrate nuclear pore and plays a role in mRNA and protein export, Mol Cell Biol, vol.28, pp.1755-1769, 2008.

A. D. Rhys and S. A. Godinho, Dividing with Extra Centrosomes: A Double Edged Sword for Cancer Cells, Adv Exp Med Biol, vol.1002, pp.47-67, 2017.

D. Ruthnick, A. Neuner, F. Dietrich, D. Kirrmaier, U. Engel et al., Characterization of spindle pole body duplication reveals a regulatory role for nuclear pore complexes, J Cell Biol, vol.216, pp.2425-2442, 2017.

A. Sakaue-sawano, T. Kobayashi, K. Ohtawa, and A. Miyawaki, Drug-induced cell cycle modulation leading to cell-cycle arrest, nuclear mis-segregation, or endoreplication, BMC Cell Biol, vol.12, issue.2, 2011.

M. A. Sanders and J. L. Salisbury, Centrin plays an essential role in microtubule severing during flagellar excision in Chlamydomonas reinhardtii, J Cell Biol, vol.124, pp.795-805, 1994.

T. I. Schmidt, J. Kleylein-sohn, J. Westendorf, M. L. Clech, S. B. Lavoie et al., Control of centriole length by CPAP and CP110, Curr Biol, vol.19, pp.1005-1011, 2009.

C. Seybold, M. Elserafy, D. Ruthnick, M. Ozboyaci, A. Neuner et al., Kar1 binding to Sfi1 C-terminal regions anchors the SPB bridge to the nuclear envelope, J Cell Biol, vol.209, pp.843-861, 2015.

J. E. Sillibourne, F. Tack, N. Vloemans, A. Boeckx, S. Thambirajah et al., Autophosphorylation of polo-like kinase 4 and its role in centriole duplication, Mol Biol Cell, vol.21, pp.547-561, 2010.

V. Singla, M. Romaguera-ros, J. M. Garcia-verdugo, and J. F. Reiter, Ofd1, a human disease gene, regulates the length and distal structure of centrioles, Dev Cell, vol.18, pp.410-424, 2010.

A. Spang, K. Courtney, M. Grein, E. Matzner, and . Schiebel, The Cdc31p-binding protein Kar1p is a component of the half bridge of the yeast spindle pole body, J Cell Biol, vol.128, pp.863-877, 1995.

A. Spektor, W. Y. Tsang, D. Khoo, and B. D. Dynlacht, Cep97 and CP110 suppress a cilia assembly program, Cell, vol.130, pp.678-690, 2007.

A. J. Stemm-wolf, J. B. Meehl, and M. Winey, Sfr13, a member of a large family of asymmetrically localized Sfi1-repeat proteins, is important for basal body separation and stability in Tetrahymena thermophila, J Cell Sci, vol.126, pp.1659-1671, 2013.

N. R. Stevens, A. A. Raposo, R. Basto, D. St-johnston, and J. W. Raff, From stem cell to embryo without centrioles, Curr Biol, vol.17, pp.1498-1503, 2007.

N. R. Stevens, H. Roque, and J. W. Raff, DSas-6 and Ana2 coassemble into tubules to promote centriole duplication and engagement, Dev Cell, vol.19, pp.913-919, 2010.

P. Strnad, S. Leidel, T. Vinogradova, U. Euteneuer, A. Khodjakov et al., Regulated HsSAS-6 levels ensure formation of a single procentriole per centriole during the centrosome duplication cycle, Dev Cell, vol.13, pp.203-213, 2007.

E. A. Vallen, W. Ho, M. Winey, and M. D. Rose, Genetic interactions between CDC31 and KAR1, two genes required for duplication of the microtubule organizing center in Saccharomyces cerevisiae, Genetics, vol.137, pp.407-422, 1994.

Y. L. Wong, J. V. Anzola, R. L. Davis, M. Yoon, A. Motamedi et al., Reversible centriole depletion with an inhibitor of Polo-like kinase 4, Science, vol.348, pp.1155-1160, 2015.

I. R. Adams and J. V. Kilmartin, Localization of core spindle pole body (SPB) components during SPB duplication in Saccharomyces cerevisiae, J Cell Biol, vol.145, pp.809-823, 1999.

A. Akhmanova and M. O. Steinmetz, Control of microtubule organization and dynamics: two ends in the limelight, Nat Rev Mol Cell Biol, vol.16, pp.711-726, 2015.

A. Jord, A. , A. I. Lemaitre, N. Delgehyr, M. Faucourt et al., Centriole amplification by mother and daughter centrioles differs in multiciliated cells, Nature, vol.516, pp.104-107, 2014.

R. Alfaro-aco and S. Petry, Building the Microtubule Cytoskeleton Piece by Piece, J Biol Chem, vol.290, pp.17154-17162, 2015.

M. Alvarez-fernandez, R. Sanchez-martinez, B. Sanz-castillo, P. P. Gan, M. Sanz-flores et al., , 2013.

, Proc Natl Acad Sci U S A, vol.110, pp.17374-17379

A. Anders and K. E. Sawin, Microtubule stabilization in vivo by nucleation-incompetent gamma-tubulin complex, J Cell Sci, vol.124, pp.1207-1213, 2011.

J. S. Andersen, C. J. Wilkinson, T. Mayor, P. Mortensen, E. A. Nigg et al., Proteomic characterization of the human centrosome by protein correlation profiling, Nature, vol.426, pp.570-574, 2003.

R. G. Anderson, The three-dimensional structure of the basal body from the rhesus monkey oviduct, J Cell Biol, vol.54, pp.246-265, 1972.

V. E. Anderson, J. Prudden, S. Prochnik, T. H. Giddings, J. et al., Novel sfi1 alleles uncover additional functions for Sfi1p in bipolar spindle assembly and function, 2007.

, Mol Biol Cell, vol.18, pp.2047-2056

M. Araki, C. Masutani, M. Takemura, A. Uchida, K. Sugasawa et al.,

. Hanaoka, Centrosome protein centrin 2/caltractin 1 is part of the xeroderma pigmentosum group C complex that initiates global genome nucleotide excision repair, 2001.

, J Biol Chem, vol.276, pp.18665-18672

Y. Araki, C. K. Lau, H. Maekawa, S. L. Jaspersen, T. H. Giddings et al., The Saccharomyces cerevisiae spindle pole body (SPB) component Nbp1p is required for SPB membrane insertion and interacts with the integral membrane proteins Ndc1p and Mps2p, Mol Biol Cell, vol.17, pp.1959-1970, 2006.

C. Arquint, A. M. Gabryjonczyk, S. Imseng, R. Bohm, E. Sauer et al., , 2015.

A. Aubusson-fleury, G. Balavoine, M. Lemullois, K. Bouhouche, J. Beisson et al., Centrin diversity and basal body patterning across evolution: new insights from Paramecium, vol.6, pp.765-776, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02185220

C. Aumeier, L. Schaedel, J. Gaillard, K. John, L. Blanchoin et al., Self-repair promotes microtubule rescue, Nat Cell Biol, vol.18, pp.1054-1064, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01416168

P. Avasthi, J. F. Scheel, G. Ying, J. M. Frederick, W. Baehr et al., Germline deletion of Cetn1 causes infertility in male mice, J Cell Sci, vol.126, pp.3204-3213, 2013.

J. S. Avena, S. Burns, Z. Yu, C. C. Ebmeier, W. M. Old et al., Licensing of yeast centrosome duplication requires phosphoregulation of sfi1, PLoS Genet, vol.10, p.1004666, 2014.

J. Azimzadeh and M. Bornens, Structure and duplication of the centrosome, J Cell Sci, vol.120, pp.2139-2142, 2007.

J. Azimzadeh, P. Hergert, A. Delouvee, U. Euteneuer, E. Formstecher et al.,

. Bornens, hPOC5 is a centrin-binding protein required for assembly of full-length centrioles, J Cell Biol, vol.185, pp.101-114, 2009.

J. Azimzadeh, M. L. Wong, D. M. Downhour, A. Sanchez-alvarado, and W. F. Marshall, Centrosome loss in the evolution of planarians, Science, vol.335, pp.461-463, 2012.

E. Bailly, M. Doree, P. Nurse, and M. Bornens, p34cdc2 is located in both nucleus and cytoplasm, 1989.

, EMBO J, vol.8, pp.3985-3995

M. K. Balasubramanian, E. Bi, and M. Glotzer, Comparative analysis of cytokinesis in budding yeast, fission yeast and animal cells, Curr Biol, vol.14, pp.806-818, 2004.

T. P. Barros, K. Kinoshita, A. A. Hyman, and J. W. Raff, Aurora A activates D-TACC-Msps complexes exclusively at centrosomes to stabilize centrosomal microtubules, J Cell Biol, vol.170, pp.1039-1046, 2005.

J. Bartek and J. Lukas, Mammalian G1-and S-phase checkpoints in response to DNA damage, Curr Opin Cell Biol, vol.13, pp.738-747, 2001.

F. Bartolini and G. G. Gundersen, Generation of noncentrosomal microtubule arrays, J Cell Sci, vol.119, pp.4155-4163, 2006.

R. Basto, J. Lau, T. Vinogradova, A. Gardiol, C. G. Woods et al., Flies without centrioles. Cell, vol.125, pp.1375-1386, 2006.

M. Bauer, F. Cubizolles, A. Schmidt, and E. A. Nigg, Quantitative analysis of human centrosome architecture by targeted proteomics and fluorescence imaging, EMBO J, vol.35, pp.2152-2166, 2016.

P. Baum, C. Furlong, and B. Byers, Yeast gene required for spindle pole body duplication: homology of its product with Ca2+-binding proteins, Proc Natl Acad Sci U S A, vol.83, pp.5512-5516, 1986.

W. Bernhard and E. De-harven, Electron microscopic study of the ultrastructure of centrioles in vertebra, Z Zellforsch Mikrosk Anat, vol.45, pp.378-398, 1956.

M. Berriman, E. Ghedin, C. Hertz-fowler, G. Blandin, H. Renauld et al.,

A. Hostetler, K. Ivens, D. Jagels, J. Johnson, K. Johnson et al.,

D. M. Moule, G. W. Martin, K. Morgan, H. Mungall, D. Norbertczak et al.,

J. Peacock, M. A. Peterson, E. Quail, M. A. Rabbinowitsch, C. Rajandream et al.,

M. Salzberg, S. Sanders, S. Schobel, M. Sharp, A. J. Simmonds et al.,

A. Turner, A. R. Tait, S. Tivey, D. Van-aken, D. Walker et al.,

S. White, J. Whitehead, J. Woodward, M. D. Wortman, T. M. Adams et al.,

J. D. Ullu, A. H. Barry, F. Fairlamb, B. G. Opperdoes, J. E. Barrell et al.,

. Fraser, The genome of the African trypanosome Trypanosoma brucei, Science, vol.309, pp.416-422, 2005.

A. J. Bestul, Z. Yu, J. R. Unruh, and S. L. Jaspersen, Molecular model of fission yeast centrosome assembly determined by superresolution imaging, J Cell Biol, vol.216, pp.2409-2424, 2017.

M. Bettencourt-dias, A. Rodrigues-martins, L. Carpenter, M. Riparbelli, L. Lehmann et al., SAK/PLK4 is required for centriole duplication and flagella development, Curr Biol, vol.15, pp.2199-2207, 2005.

S. Biggins and M. D. Rose, Direct interaction between yeast spindle pole body components: Kar1p is required for Cdc31p localization to the spindle pole body, J Cell Biol, vol.125, pp.843-852, 1994.

Y. Bobinnec, A. Khodjakov, L. M. Mir, C. L. Rieder, B. Edde et al., Centriole disassembly in vivo and its effect on centrosome structure and function in vertebrate cells, J Cell Biol, vol.143, pp.1575-1589, 1998.

M. Bornens, Centrosome composition and microtubule anchoring mechanisms, Curr Opin Cell Biol, vol.14, pp.25-34, 2002.

M. Bornens and J. Azimzadeh, Origin and evolution of the centrosome, Adv Exp Med Biol, vol.607, pp.119-129, 2007.

I. B. Bouhlel, M. Ohta, A. Mayeux, N. Bordes, F. Dingli et al., Cell cycle control of spindle pole body duplication and splitting by Sfi1 and Cdc31 in fission yeast, J Cell Sci, vol.128, pp.1481-1493, 2015.

A. Bouissou, C. Verollet, A. Sousa, P. Sampaio, M. Wright et al., {gamma}-Tubulin ring complexes regulate microtubule plus end dynamics, J Cell Biol, vol.187, pp.327-334, 2009.

T. Boveri, Ueber den Antheil des Spermatzoon an der Teilung des Eies, Sitzungsber Ges. Morph. Physio. München, vol.3, pp.151-164, 1887.

T. Boveri, Concerning the origin of malignant tumours by Theodor Boveri. Translated and annotated by Henry Harris, J Cell Sci, vol.121, pp.1-84, 2008.

G. J. Brouhard, J. H. Stear, T. L. Noetzel, J. Al-bassam, K. Kinoshita et al., XMAP215 is a processive microtubule polymerase, vol.132, pp.79-88, 2008.

E. Bullitt, M. P. Rout, J. V. Kilmartin, and C. W. Akey, The yeast spindle pole body is assembled around a central crystal of Spc42p, Cell, vol.89, pp.1077-1086, 1997.

R. G. Burns, Alpha-, beta-, and gamma-tubulins: sequence comparisons and structural constraints, Cell Motil Cytoskeleton, vol.20, pp.181-189, 1991.

B. Byers and L. Goetsch, Electron microscopic observations on the meiotic karyotype of diploid and tetraploid Saccharomyces cerevisiae, Proc Natl Acad Sci, vol.72, pp.5056-5060, 1975.

G. Cabral, S. S. Sans, C. R. Cowan, and A. Dammermann, Multiple mechanisms contribute to centriole separation in C. elegans, Curr Biol, vol.23, pp.1380-1387, 2013.

L. Cajanek and E. A. Nigg, Cep164 triggers ciliogenesis by recruiting Tau tubulin kinase 2 to the mother centriole, Proc Natl Acad Sci U S A, vol.111, pp.2841-2850, 2014.

T. Cavalier-smith, Basal body and flagellar development during the vegetative cell cycle and the sexual cycle of Chlamydomonas reinhardii, J Cell Sci, vol.16, pp.529-556, 1974.

A. M. Cavanaugh and S. L. Jaspersen, Big Lessons from Little Yeast: Budding and Fission Yeast Centrosome Structure, Duplication, and Function, Annu Rev Genet, 2017.

J. Chang-jie and S. Sonobe, Identification and preliminary characterization of a 65 kDa higher-plant microtubule-associated protein, J Cell Sci, vol.105, pp.891-901, 1993.

J. Chang, O. Cizmecioglu, I. Hoffmann, and K. Rhee, PLK2 phosphorylation is critical for CPAP function in procentriole formation during the centrosome cycle, EMBO J, vol.29, pp.2395-2406, 2010.

D. Chen, A. Purohit, E. Halilovic, S. J. Doxsey, and A. C. Newton, Centrosomal anchoring of protein kinase C betaII by pericentrin controls microtubule organization, spindle function, and cytokinesis, J Biol Chem, vol.279, pp.4829-4839, 2004.

J. Chen, C. J. Smoyer, B. D. Slaughter, J. R. Unruh, and S. L. Jaspersen, The SUN protein Mps3 controls Ndc1 distribution and function on the nuclear membrane, J Cell Biol, vol.204, pp.523-539, 2014.

X. P. Chen, H. Yin, and T. C. Huffaker, The yeast spindle pole body component Spc72p interacts with Stu2p and is required for proper microtubule assembly, J Cell Biol, vol.141, pp.1169-1179, 1998.

H. J. Chial, M. P. Rout, T. H. Giddings, and M. Winey, Saccharomyces cerevisiae Ndc1p is a shared component of nuclear pore complexes and spindle pole bodies, J Cell Biol, vol.143, pp.1789-1800, 1998.

D. Comartin, G. D. Gupta, E. Fussner, E. Coyaud, M. Hasegan et al., CEP120 and SPICE1 cooperate with CPAP in centriole elongation, Curr Biol, vol.23, pp.1360-1366, 2013.

P. T. Conduit, K. Brunk, J. Dobbelaere, C. I. Dix, E. P. Lucas et al., Centrioles regulate centrosome size by controlling the rate of Cnn incorporation into the PCM, 2010.

, Curr Biol, vol.20, pp.2178-2186

P. T. Conduit, J. H. Richens, A. Wainman, J. Holder, C. C. Vicente et al., A molecular mechanism of mitotic centrosome assembly in Drosophila, p.3399, 2014.

M. A. Cottee, J. W. Raff, S. M. Lea, and H. Roque, SAS-6 oligomerization: the key to the centriole?, Nat Chem Biol, vol.7, pp.650-653, 2011.

T. Courtheoux, G. Gay, Y. Gachet, and S. Tournier, Ase1/Prc1-dependent spindle elongation corrects merotely during anaphase in fission yeast, J Cell Biol, vol.187, pp.399-412, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02381183

C. Couwenbergs, J. C. Labbe, M. Goulding, T. Marty, B. Bowerman et al., , 2007.

, Heterotrimeric G protein signaling functions with dynein to promote spindle positioning in C. elegans, J Cell Biol, vol.179, pp.15-22

J. Creanor and J. M. Mitchison, Continued DNA synthesis after a mitotic block in the double mutant cut1 cdc11 of the fission yeast Schizosaccharomyces pombe, J Cell Sci, vol.96, pp.435-438, 1990.

R. Cuella-martin, C. Oliveira, H. E. Lockstone, S. Snellenberg, N. Grolmusova et al.,

. Chapman, 53BP1 Integrates DNA Repair and p53-Dependent Cell Fate Decisions via Distinct Mechanisms, Mol Cell, vol.64, pp.51-64, 2016.

A. Dammermann, T. Muller-reichert, L. Pelletier, B. Habermann, A. Desai et al., Centriole assembly requires both centriolar and pericentriolar material proteins, 2004.

, Dev Cell, vol.7, pp.815-829

T. J. Dantas, O. M. Daly, and C. G. Morrison, Such small hands: the roles of centrins/caltractins in the centriole and in genome maintenance, Cell Mol Life Sci, vol.69, pp.2979-2997, 2012.

T. J. Dantas, Y. Wang, P. Lalor, P. Dockery, and C. G. Morrison, Defective nucleotide excision repair with normal centrosome structures and functions in the absence of all vertebrate centrins, J Cell Biol, vol.193, pp.307-318, 2011.

E. Davie and J. Petersen, Environmental control of cell size at division, Curr Opin Cell Biol, vol.24, pp.838-844, 2012.

H. De-forges, A. Bouissou, and F. Perez, Interplay between microtubule dynamics and intracellular organization, Int J Biochem Cell Biol, vol.44, pp.266-274, 2012.

A. Debec and C. Montmory, Cyclin B is associated with centrosomes in Drosophila mitotic cells, Biol Cell, vol.75, pp.121-126, 1992.

M. Delattre, C. Canard, and P. Gonczy, Sequential protein recruitment in C. elegans centriole formation, Curr Biol, vol.16, pp.1844-1849, 2006.

B. Delaval, L. Covassin, N. D. Lawson, and S. Doxsey, Centrin depletion causes cyst formation and other ciliopathy-related phenotypes in zebrafish, Cell Cycle, vol.10, pp.3964-3972, 2011.

N. Delgehyr, J. Sillibourne, and M. Bornens, Microtubule nucleation and anchoring at the centrosome are independent processes linked by ninein function, J Cell Sci, vol.118, pp.1565-1575, 2005.

A. Desai and T. J. Mitchison, Microtubule polymerization dynamics, Annu Rev Cell Dev Biol, vol.13, pp.83-117, 1997.

A. Dimitrov, M. Quesnoit, S. Moutel, I. Cantaloube, C. Pous et al., Detection of GTP-tubulin conformation in vivo reveals a role for GTP remnants in microtubule rescues, Science, vol.322, pp.1353-1356, 2008.

R. Ding, R. R. West, D. M. Morphew, B. R. Oakley, and J. R. Mcintosh, The spindle pole body of Schizosaccharomyces pombe enters and leaves the nuclear envelope as the cell cycle proceeds, Mol Biol Cell, vol.8, pp.1461-1479, 1997.

R. V. Dippell, The development of basal bodies in paramecium, Proc Natl Acad Sci U S A, vol.61, pp.461-468, 1968.

J. P. Dompierre, J. D. Godin, B. C. Charrin, F. P. Cordelieres, S. J. King et al., , 2007.

, Huntington's disease by increasing tubulin acetylation, J Neurosci, vol.27, pp.3571-3583

S. J. Doxsey, P. Stein, L. Evans, P. D. Calarco, and M. Kirschner, Pericentrin, a highly conserved centrosome protein involved in microtubule organization, Cell, vol.76, pp.639-650, 1994.

D. N. Drechsel and M. W. Kirschner, The minimum GTP cap required to stabilize microtubules, Curr Biol, vol.4, pp.1053-1061, 1994.

D. R. Drummond and R. A. Cross, Dynamics of interphase microtubules in Schizosaccharomyces pombe, Curr Biol, vol.10, pp.766-775, 2000.

S. Dutertre, S. Descamps, and C. Prigent, On the role of aurora-A in centrosome function, Oncogene, vol.21, pp.6175-6183, 2002.
URL : https://hal.archives-ouvertes.fr/inserm-00966247

N. S. Dzhindzhev, Q. D. Yu, K. Weiskopf, G. Tzolovsky, I. Cunha-ferreira et al., Asterless is a scaffold for the onset of centriole assembly, Nature, vol.467, pp.714-718, 2010.

S. Elliott, M. Knop, G. Schlenstedt, and E. Schiebel, Spc29p is a component of the Spc110p subcomplex and is essential for spindle pole body duplication, Proc Natl Acad Sci U S A, vol.96, pp.6205-6210, 1999.

M. Elserafy, M. Saric, A. Neuner, T. C. Lin, W. Zhang et al.,

. Schiebel, Molecular mechanisms that restrict yeast centrosome duplication to one event per cell cycle, Curr Biol, vol.24, pp.1456-1466, 2014.

R. Errabolu, M. A. Sanders, and J. L. Salisbury, Cloning of a cDNA encoding human centrin, an EF-hand protein of centrosomes and mitotic spindle poles, J Cell Sci, vol.107, pp.9-16, 1994.

L. Evans, T. Mitchison, and M. Kirschner, Influence of the centrosome on the structure of nucleated microtubules, J Cell Biol, vol.100, pp.1185-1191, 1985.

C. Fankhauser, J. Marks, A. Reymond, and V. Simanis, The S. pombe cdc16 gene is required both for maintenance of p34cdc2 kinase activity and regulation of septum formation: a link between mitosis and cytokinesis?, EMBO J, vol.12, pp.2697-2704, 1993.

C. Fankhauser and V. Simanis, The cdc7 protein kinase is a dosage dependent regulator of septum formation in fission yeast, EMBO J, vol.13, pp.3011-3019, 1994.

T. Fischer, S. Rodriguez-navarro, G. Pereira, A. Racz, E. Schiebel et al., Yeast centrin Cdc31 is linked to the nuclear mRNA export machinery, Nat Cell Biol, vol.6, pp.840-848, 2004.

M. R. Flory, M. Morphew, J. D. Joseph, A. R. Means, and T. N. Davis, Pcp1p, an Spc110p-related calmodulin target at the centrosome of the fission yeast Schizosaccharomyces pombe, Cell Growth Differ, vol.13, pp.47-58, 2002.

C. S. Fong, G. Mazo, T. Das, J. Goodman, M. Kim et al., 53BP1 and USP28 mediate p53-dependent cell cycle arrest in response to centrosome loss and prolonged mitosis, 2016.

J. Frankel, Cell biology of Tetrahymena thermophila, Methods Cell Biol, vol.62, pp.27-125, 2000.

J. M. Friederichs, S. Ghosh, C. J. Smoyer, S. Mccroskey, B. D. Miller et al.,

J. Delventhal, B. D. Unruh, S. L. Slaughter, and . Jaspersen, The SUN protein Mps3 is required for spindle pole body insertion into the nuclear membrane and nuclear envelope homeostasis, PLoS Genet, vol.7, p.1002365, 2011.

A. M. Fry, M. J. Leaper, and R. Bayliss, The primary cilium: guardian of organ development and homeostasis, Organogenesis, vol.10, pp.62-68, 2014.

J. Fu and D. M. Glover, Structured illumination of the interface between centriole and peri-centriolar material, Open Biol, vol.2, p.120104, 2012.

C. Funaya, S. Samarasinghe, S. Pruggnaller, M. Ohta, Y. Connolly et al., Transient structure associated with the spindle pole body directs meiotic microtubule reorganization in S. pombe, Curr Biol, vol.22, pp.562-574, 2012.

S. Gadadhar, S. Bodakuntla, K. Natarajan, and C. Janke, The tubulin code at a glance, J Cell Sci, vol.130, pp.1347-1353, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02376271

O. Gavet, C. Alvarez, P. Gaspar, and M. Bornens, Centrin4p, a novel mammalian centrin specifically expressed in ciliated cells, Mol Biol Cell, vol.14, pp.1818-1834, 2003.

O. Gavet and J. Pines, Progressive activation of CyclinB1-Cdk1 coordinates entry to mitosis, Dev Cell, vol.18, pp.533-543, 2010.

J. R. Geiser, H. A. Sundberg, B. H. Chang, E. G. Muller, and T. N. Davis, The essential mitotic target of calmodulin is the 110-kilodalton component of the spindle pole body in Saccharomyces cerevisiae, Mol Cell Biol, vol.13, pp.7913-7924, 1993.

J. R. Geiser, D. Van-tuinen, S. E. Brockerhoff, M. M. Neff, and T. N. Davis, Can calmodulin function without binding calcium?, Cell, vol.65, pp.949-959, 1991.

J. M. Gerdes, E. E. Davis, and N. Katsanis, The vertebrate primary cilium in development, homeostasis, and disease, Cell, vol.137, pp.32-45, 2009.

A. Gharbi-ayachi, J. C. Labbe, A. Burgess, S. Vigneron, J. M. Strub et al., The substrate of Greatwall kinase, Arpp19, controls mitosis by inhibiting protein phosphatase 2A, Science, vol.330, pp.1673-1677, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00556511

L. Gheghiani and O. Gavet, Deciphering the spatio-temporal regulation of entry and progression through mitosis, Biotechnol J, vol.9, pp.213-223, 2014.

L. Gheghiani, D. Loew, B. Lombard, J. Mansfeld, and O. Gavet, PLK1 Activation in Late G2 Sets Up Commitment to Mitosis, Cell Rep, vol.19, pp.2060-2073, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01541611

T. H. Giddings, E. T. Jr, M. O'toole, D. N. Morphew, J. R. Mastronarde et al., Using rapid freeze and freeze-substitution for the preparation of yeast cells for electron microscopy and three-dimensional analysis, Methods Cell Biol, vol.67, pp.27-42, 2001.

M. Glotzer, Cytokinesis in Metazoa and Fungi, Cold Spring Harb Perspect Biol, vol.9, 2017.

M. Glotzer, A. W. Murray, and M. W. Kirschner, Cyclin is degraded by the ubiquitin pathway, Nature, vol.349, pp.132-138, 1991.

S. C. Goetz, K. F. Liem, J. , and K. V. Anderson, The spinocerebellar ataxia-associated gene Tau tubulin kinase 2 controls the initiation of ciliogenesis, Cell, vol.151, pp.847-858, 2012.

D. Gogendeau, J. Beisson, N. G. De-loubresse, J. P. Le-caer, F. Ruiz et al., An Sfi1p-like centrin-binding protein mediates centrin-based Ca2+ -dependent contractility in Paramecium tetraurelia, Eukaryot Cell, vol.6, 1992.
URL : https://hal.archives-ouvertes.fr/hal-00265958

D. Gogendeau, C. Klotz, O. Arnaiz, A. Malinowska, M. Dadlez et al.,

J. Koll and . Beisson, Functional diversification of centrins and cell morphological complexity, J Cell Sci, vol.121, pp.65-74, 2008.

R. M. Golsteyn, K. E. Mundt, A. M. Fry, and E. A. Nigg, Cell cycle regulation of the activity and subcellular localization of Plk1, a human protein kinase implicated in mitotic spindle function, J Cell Biol, vol.129, pp.1617-1628, 1995.

M. A. Gomez-ferreria, U. Rath, D. W. Buster, S. K. Chanda, J. S. Caldwell et al., Human Cep192 is required for mitotic centrosome and spindle assembly, 2007.

, Curr Biol, vol.17, pp.1960-1966

G. Gopalan, C. S. Chan, and P. J. Donovan, A novel mammalian, mitotic spindle-associated kinase is related to yeast and fly chromosome segregation regulators, J Cell Biol, vol.138, pp.643-656, 1997.

G. Goshima, M. Mayer, N. Zhang, N. Stuurman, and R. D. Vale, Augmin: a protein complex required for centrosome-independent microtubule generation within the spindle, J Cell Biol, vol.181, pp.421-429, 2008.

K. L. Gould and P. Nurse, Tyrosine phosphorylation of the fission yeast cdc2+ protein kinase regulates entry into mitosis, Nature, vol.342, pp.39-45, 1989.

R. R. Gould and G. G. Borisy, The pericentriolar material in Chinese hamster ovary cells nucleates microtubule formation, J Cell Biol, vol.73, pp.601-615, 1977.

A. Grallert, E. Boke, A. Hagting, B. Hodgson, Y. Connolly et al., A PP1-PP2A phosphatase relay controls mitotic progression, Nature, vol.517, pp.94-98, 2015.

A. Grallert, K. Y. Chan, M. L. Alonso-nunez, M. Madrid, A. Biswas et al.,

K. Connolly, A. Tanaka, J. M. Robertson, D. L. Ortiz, I. M. Smith et al., Removal of centrosomal PP1 by NIMA kinase unlocks the MPF feedback loop to promote mitotic commitment in S. pombe, Curr Biol, vol.23, pp.213-222, 2013.

A. Grallert, Y. Connolly, D. L. Smith, V. Simanis, and I. M. Hagan, The S. pombe cytokinesis NDR kinase Sid2 activates Fin1 NIMA kinase to control mitotic commitment through Pom1/Wee1, Nat Cell Biol, vol.14, pp.738-745, 2012.

S. Graser, Y. D. Stierhof, S. B. Lavoie, O. S. Gassner, S. Lamla et al., , 2007.

, Cep164, a novel centriole appendage protein required for primary cilium formation, J Cell Biol, vol.179, pp.321-330

U. Gruneberg, K. Campbell, C. Simpson, J. Grindlay, and E. Schiebel, Nud1p links astral microtubule organization and the control of exit from mitosis, EMBO J, vol.19, pp.6475-6488, 2000.

R. Gudi, C. J. Haycraft, P. D. Bell, Z. Li, and C. Vasu, Centrobin-mediated regulation of the centrosomal protein 4.1-associated protein (CPAP) level limits centriole length during elongation stage, J Biol Chem, vol.290, pp.6890-6902, 2015.

R. Gudi, C. Zou, J. Dhar, Q. Gao, and C. Vasu, Centrobin-centrosomal protein 4.1-associated protein (CPAP) interaction promotes CPAP localization to the centrioles during centriole duplication, J Biol Chem, vol.289, pp.15166-15178, 2014.

C. Guerra, Y. Wada, V. Leick, A. Bell, and P. Satir, Cloning, localization, and axonemal function of Tetrahymena centrin, Mol Biol Cell, vol.14, pp.251-261, 2003.

D. A. Guertin, L. Chang, F. Irshad, K. L. Gould, and D. Mccollum, The role of the sid1p kinase and cdc14p in regulating the onset of cytokinesis in fission yeast, EMBO J, vol.19, pp.1803-1815, 2000.

P. Guichard, A. Desfosses, A. Maheshwari, V. Hachet, C. Dietrich et al., Cartwheel architecture of Trichonympha basal body, Science, vol.337, p.553, 2012.

P. Guichard, V. Hachet, N. Majubu, A. Neves, D. Demurtas et al., Native architecture of the centriole proximal region reveals features underlying its 9-fold radial symmetry, Curr Biol, vol.23, pp.1620-1628, 2013.

R. Habedanck, Y. D. Stierhof, C. J. Wilkinson, and E. A. Nigg, The Polo kinase Plk4 functions in centriole duplication, Nat Cell Biol, vol.7, pp.1140-1146, 2005.

I. Hagan and M. Yanagida, Kinesin-related cut7 protein associates with mitotic and meiotic spindles in fission yeast, Nature, vol.356, pp.74-76, 1992.

I. M. Hagan, The fission yeast microtubule cytoskeleton, J Cell Sci, vol.111, pp.1603-1612, 1998.

I. M. Hagan and J. S. Hyams, The use of cell division cycle mutants to investigate the control of microtubule distribution in the fission yeast Schizosaccharomyces pombe, J Cell Sci, vol.89, pp.343-357, 1988.

D. R. Hamill, A. F. Severson, J. C. Carter, and B. Bowerman, Centrosome maturation and mitotic spindle assembly in C. elegans require SPD-5, a protein with multiple coiled-coil domains, Dev Cell, vol.3, pp.673-684, 2002.

E. Hannak, M. Kirkham, A. A. Hyman, and K. Oegema, Aurora-A kinase is required for centrosome maturation in Caenorhabditis elegans, J Cell Biol, vol.155, pp.1109-1116, 2001.

D. S. Harburger, M. Bouaouina, and D. A. Calderwood, Kindlin-1 and -2 directly bind the C-terminal region of beta integrin cytoplasmic tails and exert integrin-specific activation effects, J Biol Chem, vol.284, pp.11485-11497, 2009.

J. V. Harper and G. Brooks, The mammalian cell cycle: an overview, Methods Mol Biol, vol.296, pp.113-153, 2005.

P. E. Hart, J. N. Glantz, J. D. Orth, G. M. Poynter, and J. L. Salisbury, Testis-specific murine centrin, Cetn1: genomic characterization and evidence for retroposition of a gene encoding a centrosome protein, Genomics, vol.60, pp.111-120, 1999.

L. H. Hartwell, J. Culotti, J. R. Pringle, and B. J. Reid, Genetic control of the cell division cycle in yeast, Science, vol.183, pp.46-51, 1974.

T. Hatano and G. Sluder, The interrelationship between APC/C and Plk1 activities in centriole disengagement, Biol Open, vol.1, pp.1153-1160, 2012.

D. Hayward, J. Metz, C. Pellacani, and J. G. Wakefield, Synergy between multiple microtubule-generating pathways confers robustness to centrosome-driven mitotic spindle formation, Dev Cell, vol.28, pp.81-93, 2014.

A. Hergovich and B. A. Hemmings, Hippo signalling in the G2/M cell cycle phase: lessons learned from the yeast MEN and SIN pathways, Semin Cell Dev Biol, vol.23, pp.794-802, 2012.

W. Heydeck, A. J. Stemm-wolf, J. Knop, C. C. Poh, and M. Winey, Sfr1, a Tetrahymena thermophila Sfi1 Repeat Protein, Modulates the Production of Cortical Row Basal Bodies, 2016.

E. H. Hinchcliffe, F. J. Miller, M. Cham, A. Khodjakov, and G. Sluder, Requirement of a centrosomal activity for cell cycle progression through G1 into S phase, Science, vol.291, pp.1547-1550, 2001.

M. Hirono, Cartwheel assembly, Philos Trans R Soc Lond B Biol Sci, vol.369, 2014.

P. J. Hollenbeck and W. M. Saxton, The axonal transport of mitochondria, J Cell Sci, vol.118, pp.5411-5419, 2005.

J. L. Hoog, S. M. Huisman, D. Brunner, and C. Antony, Electron tomography reveals novel microtubule lattice and microtubule organizing centre defects in +TIP mutants, PLoS One, vol.8, p.61698, 2013.

T. Hotta, Z. Kong, C. M. Ho, C. J. Zeng, T. Horio et al., Characterization of the Arabidopsis augmin complex uncovers its critical function in the assembly of the acentrosomal spindle and phragmoplast microtubule arrays, Plant Cell, vol.24, pp.1494-1509, 2012.

J. Howard and A. A. Hyman, Microtubule polymerases and depolymerases, Curr Opin Cell Biol, vol.19, pp.31-35, 2007.

H. Hu and W. J. Chazin, Unique features in the C-terminal domain provide caltractin with target specificity, J Mol Biol, vol.330, pp.473-484, 2003.

B. Huang, A. Mengersen, and V. D. Lee, Molecular cloning of cDNA for caltractin, a basal body-associated Ca2+-binding protein: homology in its protein sequence with calmodulin and the yeast CDC31 gene product, J Cell Biol, vol.107, pp.133-140, 1988.

T. Humphrey and A. Pearce, Cell cycle molecules and mechanisms of the budding and fission yeasts, Methods Mol Biol, vol.296, pp.3-29, 2005.

J. R. Hutchins, Y. Toyoda, B. Hegemann, I. Poser, J. K. Heriche et al.,

A. A. Mechtler, J. M. Hyman, and . Peters, Systematic analysis of human protein complexes identifies chromosome segregation proteins, Science, vol.328, pp.593-599, 2010.

H. Ishikawa, A. Kubo, and S. Tsukita, Odf2-deficient mother centrioles lack distal/subdistal appendages and the ability to generate primary cilia, Nat Cell Biol, vol.7, pp.517-524, 2005.

I. Ivanovska and M. D. Rose, Fine structure analysis of the yeast centrin, Cdc31p, identifies residues specific for cell morphology and spindle pole body duplication, Genetics, vol.157, pp.503-518, 2001.

D. Izquierdo, W. J. Wang, K. Uryu, and M. F. Tsou, Stabilization of cartwheel-less centrioles for duplication requires CEP295-mediated centriole-to-centrosome conversion, Cell Rep, vol.8, pp.957-965, 2014.

M. Jackman, C. Lindon, E. A. Nigg, and J. Pines, Active cyclin B1-Cdk1 first appears on centrosomes in prophase, Nat Cell Biol, vol.5, pp.143-148, 2003.

L. Jakobsen, K. Vanselow, M. Skogs, Y. Toyoda, E. Lundberg et al., Novel asymmetrically localizing components of human centrosomes identified by complementary proteomics methods, EMBO J, vol.30, pp.1520-1535, 2011.

C. Janke, The tubulin code: molecular components, readout mechanisms, and functions, J Cell Biol, vol.206, pp.461-472, 2014.

M. E. Janson, T. G. Setty, A. Paoletti, and P. T. Tran, Efficient formation of bipolar microtubule bundles requires microtubule-bound gamma-tubulin complexes, J Cell Biol, vol.169, pp.297-308, 2005.

S. L. Jaspersen and S. Ghosh, Nuclear envelope insertion of spindle pole bodies and nuclear pore complexes, Nucleus, vol.3, pp.226-236, 2012.

S. L. Jaspersen, T. H. Giddings, J. , and M. Winey, Mps3p is a novel component of the yeast spindle pole body that interacts with the yeast centrin homologue Cdc31p, J Cell Biol, vol.159, pp.945-956, 2002.

J. Jimenez and J. Oballe, Ethanol-hypersensitive and ethanol-dependent cdc-mutants in Schizosaccharomyces pombe, Mol Gen Genet, vol.245, pp.86-95, 1994.

A. E. Johnson, S. E. Collier, M. D. Ohi, and K. L. Gould, Fission yeast Dma1 requires RING domain dimerization for its ubiquitin ligase activity and mitotic checkpoint function, J Biol Chem, vol.287, pp.25741-25748, 2012.

V. Joukov, J. C. Walter, and A. De-nicolo, The Cep192-organized aurora A-Plk1 cascade is essential for centrosome cycle and bipolar spindle assembly, Mol Cell, vol.55, pp.578-591, 2014.

S. S. Katta, J. Chen, J. M. Gardner, J. M. Friederichs, S. E. Smith et al., Sec66-Dependent Regulation of Yeast Spindle-Pole Body Duplication Through Pom152, Genetics, vol.201, pp.1479-1495, 2015.

D. Keller, M. Orpinell, N. Olivier, M. Wachsmuth, R. Mahen et al., Mechanisms of HsSAS-6 assembly promoting centriole formation in human cells, J Cell Biol, vol.204, pp.697-712, 2014.

L. C. Keller, S. Geimer, E. Romijn, J. Yates, I. Zamora et al., Molecular architecture of the centriole proteome: the conserved WD40 domain protein POC1 is required for centriole duplication and length control, Mol Biol Cell, vol.20, pp.1150-1166, 2009.

L. C. Keller, E. P. Romijn, I. Zamora, J. R. Yates, and W. F. Marshall, Proteomic analysis of isolated chlamydomonas centrioles reveals orthologs of ciliary-disease genes, Curr Biol, vol.15, pp.1090-1098, 2005.

C. A. Kemp, K. R. Kopish, P. Zipperlen, J. Ahringer, and K. F. O'connell, Centrosome maturation and duplication in C. elegans require the coiled-coil protein SPD-2, Dev Cell, vol.6, pp.511-523, 2004.

A. Khodjakov and C. L. Rieder, The sudden recruitment of gamma-tubulin to the centrosome at the onset of mitosis and its dynamic exchange throughout the cell cycle, do not require microtubules, J Cell Biol, vol.146, pp.585-596, 1999.

A. Khodjakov and C. L. Rieder, Centrosomes enhance the fidelity of cytokinesis in vertebrates and are required for cell cycle progression, J Cell Biol, vol.153, pp.237-242, 2001.

A. Khodjakov, C. L. Rieder, G. Sluder, G. Cassels, O. Sibon et al., De novo formation of centrosomes in vertebrate cells arrested during S phase, J Cell Biol, vol.158, pp.1171-1181, 2002.

J. V. Kilmartin, Sfi1p has conserved centrin-binding sites and an essential function in budding yeast spindle pole body duplication, J Cell Biol, vol.162, pp.1211-1221, 2003.

J. V. Kilmartin, S. L. Dyos, D. Kershaw, and J. T. Finch, A spacer protein in the Saccharomyces cerevisiae spindle poly body whose transcript is cell cycle-regulated, J Cell Biol, vol.123, pp.1175-1184, 1993.

J. V. Kilmartin and P. Y. Goh, Spc110p: assembly properties and role in the connection of nuclear microtubules to the yeast spindle pole body, EMBO J, vol.15, pp.4592-4602, 1996.

S. Kim and K. Rhee, Importance of the CEP215-pericentrin interaction for centrosome maturation during mitosis, PLoS One, vol.9, p.87016, 2014.

T. S. Kim, J. E. Park, A. Shukla, S. Choi, R. N. Murugan et al.,

J. Kim, R. L. Loncarek, K. S. Erikson, and . Lee, Hierarchical recruitment of Plk4 and regulation of centriole biogenesis by two centrosomal scaffolds, Cep192 and Cep152, 2013.

, Proc Natl Acad Sci U S A, vol.110, pp.4849-4857

M. Kimura, S. Kotani, T. Hattori, N. Sumi, T. Yoshioka et al., Cell cycle-dependent expression and spindle pole localization of a novel human protein kinase, Aik, related to Aurora of Drosophila and yeast Ipl1, J Biol Chem, vol.272, pp.13766-13771, 1997.

M. Kirkham, T. Muller-reichert, K. Oegema, S. Grill, and A. A. Hyman, SAS-4 is a C. elegans centriolar protein that controls centrosome size, Cell, vol.112, pp.575-587, 2003.

D. Kitagawa, I. Vakonakis, N. Olieric, M. Hilbert, D. Keller et al., Structural basis of the 9-fold symmetry of centrioles, Cell, vol.144, pp.364-375, 2011.

T. Kiyomitsu, Analyzing Spindle Positioning Dynamics in Cultured Cells, Methods Mol Biol, vol.1413, pp.239-252, 2016.

J. E. Klebba, D. W. Buster, T. A. Mclamarrah, N. M. Rusan, and G. C. Rogers, Autoinhibition and relief mechanism for Polo-like kinase 4, Proc Natl Acad Sci U S A, vol.112, pp.657-666, 2015.

H. C. Klein, P. Guichard, V. Hamel, P. Gonczy, and U. S. Schwarz, Computational support for a scaffolding mechanism of centriole assembly, Sci Rep, vol.6, p.27075, 2016.

J. Kleylein-sohn, J. Westendorf, M. L. Clech, R. Habedanck, Y. D. Stierhof et al., Plk4-induced centriole biogenesis in human cells, Dev Cell, vol.13, pp.190-202, 2007.

S. L. Kline-smith and C. E. Walczak, The microtubule-destabilizing kinesin XKCM1 regulates microtubule dynamic instability in cells, Mol Biol Cell, vol.13, pp.2718-2731, 2002.

C. Klotz, M. C. Dabauvalle, M. Paintrand, T. Weber, M. Bornens et al., Parthenogenesis in Xenopus eggs requires centrosomal integrity, J Cell Biol, vol.110, pp.405-415, 1990.

J. A. Knoblich, Asymmetric cell division: recent developments and their implications for tumour biology, Nat Rev Mol Cell Biol, vol.11, pp.849-860, 2010.

M. Knop and E. Schiebel, Spc98p and Spc97p of the yeast gamma-tubulin complex mediate binding to the spindle pole body via their interaction with Spc110p, EMBO J, vol.16, pp.6985-6995, 1997.

T. Kobayashi, W. Y. Tsang, J. Li, W. Lane, and B. D. Dynlacht, Centriolar kinesin Kif24 interacts with CP110 to remodel microtubules and regulate ciliogenesis, Cell, vol.145, pp.914-925, 2011.

B. Koblenz, J. Schoppmeier, A. Grunow, and K. F. Lechtreck, Centrin deficiency in Chlamydomonas causes defects in basal body replication, segregation and maturation, J Cell Sci, vol.116, pp.2635-2646, 2003.

G. Kohlmaier, J. Loncarek, X. Meng, B. F. Mcewen, M. M. Mogensen et al., Overly long centrioles and defective cell division upon excess of the SAS-4-related protein CPAP, Curr Biol, vol.19, pp.1012-1018, 2009.

J. M. Kollman, A. Merdes, L. Mourey, and D. A. Agard, Microtubule nucleation by gammatubulin complexes, Nat Rev Mol Cell Biol, vol.12, pp.709-721, 2011.

J. M. Kollman, J. K. Polka, A. Zelter, T. N. Davis, and D. A. Agard, Microtubule nucleating gamma-TuSC assembles structures with 13-fold microtubule-like symmetry, Nature, vol.466, pp.879-882, 2010.

J. M. Kollman, A. Zelter, E. G. Muller, B. Fox, L. M. Rice et al., The structure of the gamma-tubulin small complex: implications of its architecture and flexibility for microtubule nucleation, Mol Biol Cell, vol.19, pp.207-215, 2008.

D. Kong, V. Farmer, A. Shukla, J. James, R. Gruskin et al., Centriole maturation requires regulated Plk1 activity during two consecutive cell cycles, J Cell Biol, vol.206, pp.855-865, 2014.

C. V. Kotwaliwale, S. B. Frei, B. M. Stern, and S. Biggins, A pathway containing the Ipl1/aurora protein kinase and the spindle midzone protein Ase1 regulates yeast spindle assembly, Dev Cell, vol.13, pp.433-445, 2007.

A. Krapp, M. P. Gulli, and V. Simanis, SIN and the art of splitting the fission yeast cell, 2004.

, Curr Biol, vol.14, pp.722-730

A. Krapp and V. Simanis, An overview of the fission yeast septation initiation network (SIN), Biochem Soc Trans, vol.36, pp.411-415, 2008.

A. S. Kratz, F. Barenz, K. T. Richter, and I. Hoffmann, Plk4-dependent phosphorylation of STIL is required for centriole duplication, Biol Open, vol.4, pp.370-377, 2015.

T. Kupke, L. D. Cecco, H. M. Muller, A. Neuner, F. Adolf et al., Targeting of Nbp1 to the inner nuclear membrane is essential for spindle pole body duplication, EMBO J, vol.30, pp.3337-3352, 2011.

T. Kupke, J. Malsam, and E. Schiebel, A ternary membrane protein complex anchors the spindle pole body in the nuclear envelope in budding yeast, J Biol Chem, vol.292, pp.8447-8458, 2017.

R. Kuriyama and G. G. Borisy, Centriole cycle in Chinese hamster ovary cells as determined by whole-mount electron microscopy, J Cell Biol, vol.91, pp.814-821, 1981.

B. G. Lambrus, V. Daggubati, Y. Uetake, P. M. Scott, K. M. Clutario et al., A USP28-53BP1-p53-p21 signaling axis arrests growth after centrosome loss or prolonged mitosis, J Cell Biol, vol.214, pp.143-153, 2016.

R. Lattao, L. Kovacs, and D. M. Glover, The Centrioles, Centrosomes, Basal Bodies, and Cilia of Drosophila melanogaster, Genetics, vol.206, pp.33-53, 2017.

S. Lawo, M. Hasegan, G. D. Gupta, and L. Pelletier, Subdiffraction imaging of centrosomes reveals higher-order organizational features of pericentriolar material, Nat Cell Biol, vol.14, pp.1148-1158, 2012.

M. Ledizet, J. C. Beck, and W. E. Finkbeiner, Differential regulation of centrin genes during ciliogenesis in human tracheal epithelial cells, Am J Physiol, vol.275, pp.1145-1156, 1998.

I. J. Lee, N. Wang, W. Hu, K. Schott, J. Bahler et al., Regulation of spindle pole body assembly and cytokinesis by the centrinbinding protein Sfi1 in fission yeast, Mol Biol Cell, vol.25, pp.2735-2749, 2014.

K. Lee and K. Rhee, PLK1 phosphorylation of pericentrin initiates centrosome maturation at the onset of mitosis, J Cell Biol, vol.195, pp.1093-1101, 2011.

V. D. Lee and B. Huang, Molecular cloning and centrosomal localization of human caltractin, Proc Natl Acad Sci U S A, vol.90, pp.11039-11043, 1993.

S. Leidel, M. Delattre, L. Cerutti, K. Baumer, and P. Gonczy, SAS-6 defines a protein family required for centrosome duplication in C. elegans and in human cells, Nat Cell Biol, vol.7, pp.115-125, 2005.

M. Lemullois, G. Fryd-versavel, and A. Fleury-aubusson, Localization of centrins in the hypotrich ciliate Paraurostyla weissei, Protist, vol.155, pp.331-346, 2004.

S. Li, A. M. Sandercock, P. Conduit, C. V. Robinson, R. L. Williams et al., Structural role of Sfi1p-centrin filaments in budding yeast spindle pole body duplication, 2006.

, J Cell Biol, vol.173, pp.867-877

Y. N. Lin, C. T. Wu, Y. C. Lin, W. B. Hsu, C. J. Tang et al., CEP120 interacts with CPAP and positively regulates centriole elongation, J Cell Biol, vol.202, pp.211-219, 2013.

A. Lindqvist, H. Kallstrom, A. Lundgren, E. Barsoum, and C. K. Rosenthal, Cdc25B cooperates with Cdc25A to induce mitosis but has a unique role in activating cyclin B1-Cdk1 at the centrosome, J Cell Biol, vol.171, pp.35-45, 2005.

V. Lobjois, C. Froment, E. Braud, F. Grimal, O. Burlet-schiltz et al., Study of the docking-dependent PLK1 phosphorylation of the CDC25B phosphatase, Biochem Biophys Res Commun, vol.410, pp.87-90, 2011.

I. Loiodice, J. Staub, T. G. Setty, N. P. Nguyen, A. Paoletti et al., Ase1p organizes antiparallel microtubule arrays during interphase and mitosis in fission yeast, Mol Biol Cell, vol.16, pp.1756-1768, 2005.

J. Loncarek, P. Hergert, and A. Khodjakov, Centriole reduplication during prolonged interphase requires procentriole maturation governed by Plk1, Curr Biol, vol.20, pp.1277-1282, 2010.

J. Loncarek, P. Hergert, V. Magidson, and A. Khodjakov, Control of daughter centriole formation by the pericentriolar material, Nat Cell Biol, vol.10, pp.322-328, 2008.

C. A. Lopes, S. C. Jana, I. Cunha-ferreira, S. Zitouni, I. Bento et al., PLK4 trans-Autoactivation Controls Centriole Biogenesis in Space, vol.35, pp.222-235, 2015.

K. B. Lukasiewicz, T. M. Greenwood, V. C. Negron, A. K. Bruzek, J. L. Salisbury et al., Control of centrin stability by Aurora A, PLoS One, vol.6, p.21291, 2011.

P. Ma, J. Winderickx, D. Nauwelaers, F. Dumortier, A. De-doncker et al., Deletion of SFI1, a novel suppressor of partial Ras-cAMP pathway deficiency in the yeast Saccharomyces cerevisiae, causes G(2) arrest, Yeast, vol.15, pp.1097-1109, 1999.

S. Ma, S. Vigneron, P. Robert, J. M. Strub, S. Cianferani et al., Greatwall dephosphorylation and inactivation upon mitotic exit is triggered by PP1, J Cell Sci, vol.129, pp.1329-1339, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01878020

V. Magidson, F. Chang, and A. Khodjakov, Regulation of cytokinesis by spindle-pole bodies, Nat Cell Biol, vol.8, pp.891-893, 2006.

M. R. Mahjoub, Z. Xie, and T. Stearns, Cep120 is asymmetrically localized to the daughter centriole and is essential for centriole assembly, J Cell Biol, vol.191, pp.331-346, 2010.

A. Maniotis and M. Schliwa, Microsurgical removal of centrosomes blocks cell reproduction and centriole generation in BSC-1 cells, Cell, vol.67, pp.495-504, 1991.

B. R. Mardin and E. Schiebel, Breaking the ties that bind: new advances in centrosome biology, J Cell Biol, vol.197, pp.11-18, 2012.

W. F. Marshall, Centriole evolution, Curr Opin Cell Biol, vol.21, pp.14-19, 2009.

E. Matei, S. Miron, Y. Blouquit, P. Duchambon, I. Durussel et al., C-terminal half of human centrin 2 behaves like a regulatory EF-hand domain, Biochemistry, vol.42, pp.1439-1450, 2003.

K. Matsuo, K. Ohsumi, M. Iwabuchi, T. Kawamata, Y. Ono et al., Kendrin is a novel substrate for separase involved in the licensing of centriole duplication, Curr Biol, vol.22, pp.915-921, 2012.

R. J. Mckenney, W. Huynh, R. D. Vale, and M. Sirajuddin, Tyrosination of alpha-tubulin controls the initiation of processive dynein-dynactin motility, EMBO J, vol.35, pp.1175-1185, 2016.

K. L. Mckinley and I. M. Cheeseman, Large-Scale Analysis of CRISPR/Cas9 Cell-Cycle Knockouts Reveals the Diversity of p53-Dependent Responses to Cell-Cycle Defects, Dev Cell, vol.40, pp.405-420, 2017.

J. C. Meadows and J. Millar, Latrunculin A delays anaphase onset in fission yeast by disrupting an Ase1-independent pathway controlling mitotic spindle stability, Mol Biol Cell, vol.19, pp.3713-3723, 2008.

F. Meitinger, J. V. Anzola, M. Kaulich, A. Richardson, J. D. Stender et al., 53BP1 and USP28 mediate p53 activation and G1 arrest after centrosome loss or extended mitotic duration, J Cell Biol, vol.214, pp.155-166, 2016.

V. Mennella, B. Keszthelyi, K. L. Mcdonald, B. Chhun, F. Kan et al., Subdiffraction-resolution fluorescence microscopy reveals a domain of the centrosome critical for pericentriolar material organization, Nat Cell Biol, vol.14, pp.1159-1168, 2012.

A. Merdes, K. Ramyar, J. D. Vechio, and D. W. Cleveland, A complex of NuMA and cytoplasmic dynein is essential for mitotic spindle assembly, Cell, vol.87, pp.447-458, 1996.
URL : https://hal.archives-ouvertes.fr/hal-00091112

S. Middendorp, T. Kuntziger, Y. Abraham, S. Holmes, N. Bordes et al., A role for centrin 3 in centrosome reproduction, J Cell Biol, vol.148, pp.405-416, 2000.

S. Middendorp, A. Paoletti, E. Schiebel, and M. Bornens, Identification of a new mammalian centrin gene, more closely related to Saccharomyces cerevisiae CDC31 gene, 1997.

, Proc Natl Acad Sci U S A, vol.94, pp.9141-9146

K. Mikule, B. Delaval, P. Kaldis, A. Jurcyzk, P. Hergert et al., Loss of centrosome integrity induces p38-p53-p21-dependent G1-S arrest, Nat Cell Biol, vol.9, pp.160-170, 2007.

M. Minet, P. Nurse, P. Thuriaux, and J. M. Mitchison, Uncontrolled septation in a cell division cycle mutant of the fission yeast Schizosaccharomyces pombe, J Bacteriol, vol.137, pp.440-446, 1979.

D. R. Mitchell, The evolution of eukaryotic cilia and flagella as motile and sensory organelles, Adv Exp Med Biol, vol.607, pp.130-140, 2007.

S. Mochida, S. L. Maslen, M. Skehel, and T. Hunt, Greatwall phosphorylates an inhibitor of protein phosphatase 2A that is essential for mitosis, Science, vol.330, pp.1670-1673, 2010.

M. M. Mogensen, A. Malik, M. Piel, V. Bouckson-castaing, and M. Bornens, Microtubule minus-end anchorage at centrosomal and non-centrosomal sites: the role of ninein, J Cell Sci, vol.113, pp.3013-3023, 2000.

X. Morin and Y. Bellaiche, Mitotic spindle orientation in asymmetric and symmetric cell divisions during animal development, Dev Cell, vol.21, pp.102-119, 2011.

M. Moritz, M. B. Braunfeld, J. W. Sedat, B. Alberts, and D. A. Agard, Microtubule nucleation by gamma-tubulin-containing rings in the centrosome, Nature, vol.378, pp.638-640, 1995.

J. L. Morrell, G. C. Tomlin, S. Rajagopalan, S. Venkatram, A. S. Feoktistova et al., Sid4p-Cdc11p assembles the septation initiation network and its regulators at the S. pombe SPB, Curr Biol, vol.14, pp.579-584, 2004.

M. Moudjou, N. Bordes, M. Paintrand, and M. Bornens, gamma-Tubulin in mammalian cells: the centrosomal and the cytosolic forms, J Cell Sci, vol.109, pp.875-887, 1996.

T. C. Moyer, K. M. Clutario, B. G. Lambrus, V. Daggubati, and A. J. Holland, Binding of STIL to Plk4 activates kinase activity to promote centriole assembly, J Cell Biol, vol.209, pp.863-878, 2015.

S. M. Murphy, A. M. Preble, U. K. Patel, K. L. O'connell, D. P. Dias et al., GCP5 and GCP6: two new members of the human gamma-tubulin complex, Mol Biol Cell, vol.12, pp.3340-3352, 2001.

A. W. Murray, Cyclin synthesis and degradation and the embryonic cell cycle, J Cell Sci Suppl, vol.12, pp.65-76, 1989.

H. Nakajima, F. Toyoshima-morimoto, E. Taniguchi, and E. Nishida, Identification of a consensus motif for Plk (Polo-like kinase) phosphorylation reveals Myt1 as a Plk1 substrate, J Biol Chem, vol.278, pp.25277-25280, 2003.

N. Nemoto, T. Udagawa, T. Ohira, L. Jiang, K. Hirota et al., The roles of stress-activated Sty1 and Gcn2 kinases and of the protooncoprotein homologue Int6/eIF3e in responses to endogenous oxidative stress during histidine starvation, J Mol Biol, vol.404, pp.183-201, 2010.

T. Nguyen-ngoc, K. Afshar, and P. Gonczy, Coupling of cortical dynein and G alpha proteins mediates spindle positioning in Caenorhabditis elegans, Nat Cell Biol, vol.9, pp.1294-1302, 2007.

T. Nguyen, D. B. Vinh, D. K. Crawford, and T. N. Davis, A genetic analysis of interactions with Spc110p reveals distinct functions of Spc97p and Spc98p, components of the yeast gamma-tubulin complex, Mol Biol Cell, vol.9, pp.2201-2216, 1998.

E. A. Nigg and J. W. Raff, Centrioles, centrosomes, and cilia in health and disease, Cell, vol.139, pp.663-678, 2009.

E. A. Nigg and T. Stearns, The centrosome cycle: Centriole biogenesis, duplication and inherent asymmetries, Nat Cell Biol, vol.13, pp.1154-1160, 2011.

M. Nishita, T. Satake, Y. Minami, and A. Suzuki, Regulatory mechanisms and cellular functions of non-centrosomal microtubules, J Biochem, vol.162, pp.1-10, 2017.

E. Nogales, S. G. Wolf, and K. H. Downing, Structure of the alpha beta tubulin dimer by electron crystallography, Nature, vol.391, pp.199-203, 1998.

P. Nurse, Universal control mechanism regulating onset of M-phase, Nature, vol.344, pp.503-508, 1990.

P. Nurse, P. Thuriaux, and K. Nasmyth, Genetic control of the cell division cycle in the fission yeast Schizosaccharomyces pombe, Mol Gen Genet, vol.146, pp.167-178, 1976.

K. F. O'connell, C. Caron, K. R. Kopish, D. D. Hurd, K. J. Kemphues et al., The C. elegans zyg-1 gene encodes a regulator of centrosome duplication with distinct maternal and paternal roles in the embryo, Cell, vol.105, pp.547-558, 2001.

E. T. O'toole, M. Winey, and J. R. Mcintosh, High-voltage electron tomography of spindle pole bodies and early mitotic spindles in the yeast Saccharomyces cerevisiae, Mol Biol Cell, vol.10, pp.2017-2031, 1999.

S. Oliferenko, T. G. Chew, and M. K. Balasubramanian, Positioning cytokinesis, Genes Dev, vol.23, pp.660-674, 2009.

R. A. Oliveira and K. Nasmyth, Cohesin cleavage is insufficient for centriole disengagement in Drosophila, Curr Biol, vol.23, pp.601-603, 2013.

S. Panier and S. J. Boulton, Double-strand break repair: 53BP1 comes into focus, Nat Rev Mol Cell Biol, vol.15, pp.7-18, 2014.

A. Paoletti, N. Bordes, R. Haddad, C. L. Schwartz, F. Chang et al., Fission yeast cdc31p is a component of the half-bridge and controls SPB duplication, Mol Biol Cell, vol.14, pp.2793-2808, 2003.

A. Paoletti, M. Moudjou, M. Paintrand, J. L. Salisbury, and M. Bornens, Most of centrin in animal cells is not centrosome-associated and centrosomal centrin is confined to the distal lumen of centrioles, J Cell Sci, vol.109, pp.3089-3102, 1996.

S. Y. Park, J. E. Park, T. S. Kim, J. H. Kim, M. J. Kwak et al.,

W. Oh, K. S. Yang, and . Lee, Molecular basis for unidirectional scaffold switching of human Plk4 in centriole biogenesis, Nat Struct Mol Biol, vol.21, pp.696-703, 2014.

L. L. Parker and H. Piwnica-worms, Inactivation of the p34cdc2-cyclin B complex by the human WEE1 tyrosine kinase, Science, vol.257, pp.1955-1957, 1992.

H. Patel, I. Stavrou, R. L. Shrestha, V. Draviam, M. C. Frame et al., Kindlin1 regulates microtubule function to ensure normal mitosis, J Mol Cell Biol, vol.8, pp.338-348, 2016.

H. Patel, J. Zich, B. Serrels, C. Rickman, K. G. Hardwick et al., Kindlin-1 regulates mitotic spindle formation by interacting with integrins and Plk-1, 2013.

, Nat Commun, vol.4, p.2056

S. A. Patten, P. Margaritte-jeannin, J. C. Bernard, E. Alix, A. Labalme et al.,

J. Sanlaville, G. A. Berard, F. Rouleau, P. Clerget-darpoux, F. Drapeau et al.,

. Edery, Functional variants of POC5 identified in patients with idiopathic scoliosis, 2015.

, J Clin Invest, vol.125, pp.1124-1128

L. Pelletier, N. Ozlu, E. Hannak, C. Cowan, B. Habermann et al., The Caenorhabditis elegans centrosomal protein SPD-2 is required for both pericentriolar material recruitment and centriole duplication, Curr Biol, vol.14, pp.863-873, 2004.

L. Peris, M. Wagenbach, L. Lafanechere, J. Brocard, A. T. Moore et al., Motor-dependent microtubule disassembly driven by tubulin tyrosination, J Cell Biol, vol.185, pp.1159-1166, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00410220

J. Petersen, TOR signalling regulates mitotic commitment through stress-activated MAPK and Polo kinase in response to nutrient stress, Biochem Soc Trans, vol.37, pp.273-277, 2009.

J. Petersen and I. M. Hagan, Polo kinase links the stress pathway to cell cycle control and tip growth in fission yeast, Nature, vol.435, pp.507-512, 2005.

J. Petersen and P. Nurse, TOR signalling regulates mitotic commitment through the stress MAP kinase pathway and the Polo and Cdc2 kinases, Nat Cell Biol, vol.9, pp.1263-1272, 2007.

A. Picard, E. Karsenti, M. C. Dabauvalle, and M. Doree, Release of mature starfish oocytes from interphase arrest by microinjection of human centrosomes, Nature, vol.327, pp.170-172, 1987.

M. Piel, P. Meyer, A. Khodjakov, C. L. Rieder, and M. Bornens, The respective contributions of the mother and daughter centrioles to centrosome activity and behavior in vertebrate cells, J Cell Biol, vol.149, pp.317-330, 2000.

M. Piel, J. Nordberg, U. Euteneuer, and M. Bornens, Centrosome-dependent exit of cytokinesis in animal cells, Science, vol.291, pp.1550-1553, 2001.

A. Pitaval, F. Senger, G. Letort, X. Gidrol, L. Guyon et al., Microtubule stabilization drives 3D centrosome migration to initiate primary ciliogenesis, J Cell Biol, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01666743

T. D. Pollard, Nine unanswered questions about cytokinesis, J Cell Biol, vol.216, pp.3007-3016, 2017.

D. Portran, L. Schaedel, Z. Xu, M. Thery, and M. V. Nachury, Tubulin acetylation protects long-lived microtubules against mechanical ageing, Nat Cell Biol, vol.19, pp.391-398, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01515539

S. L. Prosser and C. G. Morrison, Centrin2 regulates CP110 removal in primary cilium formation, J Cell Biol, vol.208, pp.693-701, 2015.

S. L. Prosser, M. D. Samant, J. E. Baxter, C. G. Morrison, and A. M. Fry, Oscillation of APC/C activity during cell cycle arrest promotes centrosome amplification, J Cell Sci, vol.125, pp.5353-5368, 2012.

E. N. Pugacheva, S. A. Jablonski, T. R. Hartman, E. P. Henske, and E. A. Golemis, HEF1-dependent Aurora A activation induces disassembly of the primary cilium, Cell, vol.129, pp.1351-1363, 2007.

A. Purohit, S. H. Tynan, R. Vallee, and S. J. Doxsey, Direct interaction of pericentrin with cytoplasmic dynein light intermediate chain contributes to mitotic spindle organization, 1999.

, J Cell Biol, vol.147, pp.481-492

S. Reber and A. A. Hyman, Emergent Properties of the Metaphase Spindle, Cold Spring Harb Perspect Biol, vol.7, p.15784, 2015.

N. A. Reed, D. Cai, T. L. Blasius, G. T. Jih, E. Meyhofer et al., Microtubule acetylation promotes kinesin-1 binding and transport, Curr Biol, vol.16, pp.2166-2172, 2006.

N. Rhind and P. Russell, Signaling pathways that regulate cell division, Cold Spring Harb Perspect Biol, vol.4, 2012.

A. D. Rhys and S. A. Godinho, Dividing with Extra Centrosomes: A Double Edged Sword for Cancer Cells, Adv Exp Med Biol, vol.1002, pp.47-67, 2017.

S. A. Rincon, M. Estravis, F. Dingli, D. Loew, P. T. Tran et al., SIN-Dependent Dissociation of the SAD Kinase Cdr2 from the Cell Cortex Resets the Division Plane, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01484289

, Curr Biol, vol.27, pp.534-542

S. A. Rincon, A. Lamson, R. Blackwell, V. Syrovatkina, V. Fraisier et al., Kinesin-5-independent mitotic spindle assembly requires the antiparallel microtubule crosslinker Ase1 in fission yeast, Nat Commun, vol.8, p.15286, 2017.

M. G. Riparbelli, R. Dallai, and G. Callaini, The insect centriole: A land of discovery, Tissue Cell, vol.42, pp.69-80, 2010.

E. Robbins, G. Jentzsch, and A. Micali, The centriole cycle in synchronized HeLa cells, J Cell Biol, vol.36, pp.329-339, 1968.

R. H. Roberts-galbraith and K. L. Gould, Stepping into the ring: the SIN takes on contractile ring assembly, Genes Dev, vol.22, pp.3082-3088, 2008.

A. Rodrigues-martins, M. Riparbelli, G. Callaini, D. M. Glover, and M. Bettencourt-dias, Revisiting the role of the mother centriole in centriole biogenesis, Science, vol.316, pp.1046-1050, 2007.

C. Roghi, R. Giet, R. Uzbekov, N. Morin, I. Chartrain et al., The Xenopus protein kinase pEg2 associates with the centrosome in a cell cycle-dependent manner, binds to the spindle microtubules and is involved in bipolar mitotic spindle assembly, J Cell Sci, vol.111, pp.557-572, 1998.
URL : https://hal.archives-ouvertes.fr/inserm-00966036

M. D. Rose and G. R. Fink, KAR1, a gene required for function of both intranuclear and extranuclear microtubules in yeast, Cell, vol.48, pp.1047-1060, 1987.

J. A. Rosenberg, G. C. Tomlin, W. H. Mcdonald, B. E. Snydsman, E. G. Muller et al., Ppc89 links multiple proteins, including the septation initiation network, to the core of the fission yeast spindle-pole body, Mol Biol Cell, vol.17, pp.3793-3805, 2006.

A. K. Roshak, E. A. Capper, C. Imburgia, J. Fornwald, G. Scott et al., The human polo-like kinase, PLK, regulates cdc2/cyclin B through phosphorylation and activation of the cdc25C phosphatase, Cell Signal, vol.12, pp.405-411, 2000.

F. Ruiz, N. Garreau-de-loubresse, C. Klotz, J. Beisson, and F. Koll, Centrin deficiency in Paramecium affects the geometry of basal-body duplication, Curr Biol, vol.15, pp.2097-2106, 2005.

D. Ruthnick, A. Neuner, F. Dietrich, D. Kirrmaier, U. Engel et al., Characterization of spindle pole body duplication reveals a regulatory role for nuclear pore complexes, J Cell Biol, vol.216, pp.2425-2442, 2017.

E. Salimova, M. Sohrmann, N. Fournier, and V. Simanis, The S. pombe orthologue of the S. cerevisiae mob1 gene is essential and functions in signalling the onset of septum formation, J Cell Sci, vol.113, pp.1695-1704, 2000.

J. L. Salisbury, A. Baron, B. Surek, and M. Melkonian, Striated flagellar roots: isolation and partial characterization of a calcium-modulated contractile organelle, J Cell Biol, vol.99, pp.962-970, 1984.

J. L. Salisbury, A. T. Baron, and M. A. Sanders, The centrin-based cytoskeleton of Chlamydomonas reinhardtii: distribution in interphase and mitotic cells, J Cell Biol, vol.107, pp.635-641, 1988.

J. L. Salisbury, K. M. Suino, R. Busby, and M. Springett, Centrin-2 is required for centriole duplication in mammalian cells, Curr Biol, vol.12, pp.1287-1292, 2002.

I. Samejima, V. J. Miller, L. M. Groocock, and K. E. Sawin, Two distinct regions of Mto1 are required for normal microtubule nucleation and efficient association with the gammatubulin complex in vivo, J Cell Sci, vol.121, pp.3971-3980, 2008.

I. Samejima, V. J. Miller, S. A. Rincon, and K. E. Sawin, Fission yeast Mto1 regulates diversity of cytoplasmic microtubule organizing centers, Curr Biol, vol.20, pp.1959-1965, 2010.

A. D. Sanchez and J. L. Feldman, Microtubule-organizing centers: from the centrosome to non-centrosomal sites, Curr Opin Cell Biol, vol.44, pp.93-101, 2017.

M. A. Sanders and J. L. Salisbury, Centrin-mediated microtubule severing during flagellar excision in Chlamydomonas reinhardtii, J Cell Biol, vol.108, pp.1751-1760, 1989.

M. A. Sanders and J. L. Salisbury, Centrin plays an essential role in microtubule severing during flagellar excision in Chlamydomonas reinhardtii, J Cell Biol, vol.124, pp.795-805, 1994.

K. E. Sawin and P. T. Tran, Cytoplasmic microtubule organization in fission yeast, Yeast, vol.23, pp.1001-1014, 2006.

F. Schaerer, G. Morgan, M. Winey, and P. Philippsen, Cnm67p is a spacer protein of the Saccharomyces cerevisiae spindle pole body outer plaque, Mol Biol Cell, vol.12, pp.2519-2533, 2001.

K. N. Schmidt, S. Kuhns, A. Neuner, B. Hub, H. Zentgraf et al., Cep164 mediates vesicular docking to the mother centriole during early steps of ciliogenesis, J Cell Biol, vol.199, pp.1083-1101, 2012.

S. Schmidt, M. Sohrmann, K. Hofmann, A. Woollard, and V. Simanis, The Spg1p GTPase is an essential, dosage-dependent inducer of septum formation in Schizosaccharomyces pombe, Genes Dev, vol.11, pp.1519-1534, 1997.

T. I. Schmidt, J. Kleylein-sohn, J. Westendorf, M. L. Clech, S. B. Lavoie et al., Control of centriole length by CPAP and CP110, Curr Biol, vol.19, pp.1005-1011, 2009.

L. Schockel, M. Mockel, B. Mayer, D. Boos, and O. Stemmann, Cleavage of cohesin rings coordinates the separation of centrioles and chromatids, Nat Cell Biol, vol.13, pp.966-972, 2011.

C. Schramm, S. Elliott, A. Shevchenko, and E. Schiebel, The Bbp1p-Mps2p complex connects the SPB to the nuclear envelope and is essential for SPB duplication, EMBO J, vol.19, pp.421-433, 2000.

S. C. Schuyler, J. Y. Liu, and D. Pellman, The molecular function of Ase1p: evidence for a MAP-dependent midzone-specific spindle matrix. Microtubule-associated proteins, J Cell Biol, vol.160, pp.517-528, 2003.

S. C. Schuyler and D. Pellman, Microtubule "plus-end-tracking proteins": The end is just the beginning, Cell, vol.105, pp.421-424, 2001.

C. Seybold, M. Elserafy, D. Ruthnick, M. Ozboyaci, A. Neuner et al., Kar1 binding to Sfi1 C-terminal regions anchors the SPB bridge to the nuclear envelope, J Cell Biol, vol.209, pp.843-861, 2015.

J. Shi, Y. Zhao, T. Vonderfecht, M. Winey, and M. W. Klymkowsky, Centrin-2 (Cetn2) mediated regulation of FGF/FGFR gene expression in, Xenopus. Sci Rep, vol.5, p.10283, 2015.

J. E. Sillibourne, F. Tack, N. Vloemans, A. Boeckx, S. Thambirajah et al., Autophosphorylation of polo-like kinase 4 and its role in centriole duplication, Mol Biol Cell, vol.21, pp.547-561, 2010.

V. Simanis, Pombe's thirteen -control of fission yeast cell division by the septation initiation network, J Cell Sci, vol.128, pp.1465-1474, 2015.

V. Singla, M. Romaguera-ros, J. M. Garcia-verdugo, and J. F. Reiter, Ofd1, a human disease gene, regulates the length and distal structure of centrioles, Dev Cell, vol.18, pp.410-424, 2010.

J. H. Sir, M. Putz, O. Daly, C. G. Morrison, M. Dunning et al., Loss of centrioles causes chromosomal instability in vertebrate somatic cells, J Cell Biol, vol.203, pp.747-756, 2013.

M. Sohrmann, S. Schmidt, I. Hagan, and V. Simanis, Asymmetric segregation on spindle poles of the Schizosaccharomyces pombe septum-inducing protein kinase Cdc7p, Genes Dev, vol.12, pp.84-94, 1998.

K. Song, K. E. Mach, C. Y. Chen, T. Reynolds, and C. F. Albright, A novel suppressor of ras1 in fission yeast, byr4, is a dosage-dependent inhibitor of cytokinesis, J Cell Biol, vol.133, pp.1307-1319, 1996.

K. F. Sonnen, A. M. Gabryjonczyk, E. Anselm, Y. D. Stierhof, and E. A. Nigg, Human Cep192 and Cep152 cooperate in Plk4 recruitment and centriole duplication, J Cell Sci, vol.126, pp.3223-3233, 2013.

S. P. Sorokin, Reconstructions of centriole formation and ciliogenesis in mammalian lungs, J Cell Sci, vol.3, pp.207-230, 1968.

W. S. Sossin and L. Desgroseillers, Intracellular trafficking of RNA in neurons, Traffic, vol.7, pp.1581-1589, 2006.

A. Spang, U. Courtney, M. Fackler, E. Matzner, and . Schiebel, The calcium-binding protein cell division cycle 31 of Saccharomyces cerevisiae is a component of the half bridge of the spindle pole body, J Cell Biol, vol.123, pp.405-416, 1993.

A. Spang, K. Courtney, M. Grein, E. Matzner, and . Schiebel, The Cdc31p-binding protein Kar1p is a component of the half bridge of the yeast spindle pole body, J Cell Biol, vol.128, pp.863-877, 1995.

A. Spang, S. Geissler, K. Grein, and E. Schiebel, gamma-Tubulin-like Tub4p of Saccharomyces cerevisiae is associated with the spindle pole body substructures that organize microtubules and is required for mitotic spindle formation, J Cell Biol, vol.134, pp.429-441, 1996.

C. A. Sparks, M. Morphew, and D. Mccollum, Sid2p, a spindle pole body kinase that regulates the onset of cytokinesis, J Cell Biol, vol.146, pp.777-790, 1999.

A. Spektor, W. Y. Tsang, D. Khoo, and B. D. Dynlacht, Cep97 and CP110 suppress a cilia assembly program, Cell, vol.130, pp.678-690, 2007.

T. Stearns and M. Kirschner, In vitro reconstitution of centrosome assembly and function: the central role of gamma-tubulin, Cell, vol.76, pp.623-637, 1994.

A. J. Stemm-wolf, J. B. Meehl, and M. Winey, Sfr13, a member of a large family of asymmetrically localized Sfi1-repeat proteins, is important for basal body separation and stability in Tetrahymena thermophila, J Cell Sci, vol.126, pp.1659-1671, 2013.

A. J. Stemm-wolf, G. Morgan, T. H. Giddings, E. A. White, R. Marchione et al., Basal body duplication and maintenance require one member of the Tetrahymena thermophila centrin gene family, Mol Biol Cell, vol.16, pp.3606-3619, 2005.

N. R. Stevens, A. A. Raposo, R. Basto, D. St-johnston, and J. W. Raff, From stem cell to embryo without centrioles, Curr Biol, vol.17, pp.1498-1503, 2007.

N. R. Stevens, H. Roque, and J. W. Raff, DSas-6 and Ana2 coassemble into tubules to promote centriole duplication and engagement, Dev Cell, vol.19, pp.913-919, 2010.

D. A. Stirling, K. A. Welch, and M. J. Stark, Interaction with calmodulin is required for the function of Spc110p, an essential component of the yeast spindle pole body, EMBO J, vol.13, pp.4329-4342, 1994.

P. Strnad, S. Leidel, T. Vinogradova, U. Euteneuer, A. Khodjakov et al., Regulated HsSAS-6 levels ensure formation of a single procentriole per centriole during the centrosome duplication cycle, Dev Cell, vol.13, pp.203-213, 2007.

V. Sulimenko, Z. Hajkova, A. Klebanovych, and P. Draber, Regulation of microtubule nucleation mediated by gamma-tubulin complexes, Protoplasma, vol.254, pp.1187-1199, 2017.

H. A. Sundberg and T. N. Davis, A mutational analysis identifies three functional regions of the spindle pole component Spc110p in Saccharomyces cerevisiae, Mol Biol Cell, vol.8, pp.2575-2590, 1997.

H. A. Sundberg, L. Goetsch, B. Byers, and T. N. Davis, Role of calmodulin and Spc110p interaction in the proper assembly of spindle pole body compenents, J Cell Biol, vol.133, pp.111-124, 1996.

M. Takahashi, A. Yamagiwa, T. Nishimura, H. Mukai, and Y. Ono, Centrosomal proteins CG-NAP and kendrin provide microtubule nucleation sites by anchoring gammatubulin ring complex, Mol Biol Cell, vol.13, pp.3235-3245, 2002.

T. Tamm, A. Grallert, E. P. Grossman, I. Alvarez-tabares, F. E. Stevens et al., Brr6 drives the Schizosaccharomyces pombe spindle pole body nuclear envelope insertion/extrusion cycle, J Cell Biol, vol.195, pp.467-484, 2011.

K. Tanaka and T. Kanbe, Mitosis in the fission yeast Schizosaccharomyces pombe as revealed by freeze-substitution electron microscopy, J Cell Sci, vol.80, pp.253-268, 1986.

K. Tanaka, J. Petersen, F. Maciver, D. P. Mulvihill, D. M. Glover et al., The role of Plo1 kinase in mitotic commitment and septation in Schizosaccharomyces pombe, 2001.

, EMBO J, vol.20, pp.1259-1270

C. J. Tang, R. H. Fu, K. S. Wu, W. B. Hsu, and T. K. Tang, CPAP is a cell-cycle regulated protein that controls centriole length, Nat Cell Biol, vol.11, pp.825-831, 2009.

Y. Terada, Y. Uetake, and R. Kuriyama, Interaction of Aurora-A and centrosomin at the microtubule-nucleating site in Drosophila and mammalian cells, J Cell Biol, vol.162, pp.757-763, 2003.

J. R. Thompson, Z. C. Ryan, J. L. Salisbury, and R. Kumar, The structure of the human centrin 2-xeroderma pigmentosum group C protein complex, J Biol Chem, vol.281, pp.18746-18752, 2006.

G. C. Tomlin, J. L. Morrell, and K. L. Gould, The spindle pole body protein Cdc11p links Sid4p to the fission yeast septation initiation network, Mol Biol Cell, vol.13, pp.1203-1214, 2002.

W. Y. Tsang, A. Spektor, D. J. Luciano, V. B. Indjeian, Z. Chen et al.,

. Dynlacht, CP110 cooperates with two calcium-binding proteins to regulate cytokinesis and genome stability, Mol Biol Cell, vol.17, pp.3423-3434, 2006.

M. F. Tsou and T. Stearns, Mechanism limiting centrosome duplication to once per cell cycle, Nature, vol.442, pp.947-951, 2006.

M. F. Tsou, W. J. Wang, K. A. George, K. Uryu, T. Stearns et al., Polo kinase and separase regulate the mitotic licensing of centriole duplication in human cells, Dev Cell, vol.17, pp.344-354, 2009.

S. Uzawa, F. Li, Y. Jin, K. L. Mcdonald, M. B. Braunfeld et al., Spindle pole body duplication in fission yeast occurs at the G1/S boundary but maturation is blocked until exit from S by an event downstream of cdc10+, Mol Biol Cell, vol.15, pp.5219-5230, 2004.

E. A. Vallen, W. Ho, M. Winey, and M. D. Rose, Genetic interactions between CDC31 and KAR1, two genes required for duplication of the microtubule organizing center in Saccharomyces cerevisiae, Genetics, vol.137, pp.407-422, 1994.

É. Van-beneden, Nouvelles recherches sur la fécondation et la division mitosique chez l'Ascaride mégalocéphale, 1887.

M. Van-breugel, M. Hirono, A. Andreeva, H. A. Yanagisawa, S. Yamaguchi et al.,

M. Morgner, I. O. Petrovich, C. V. Ebong, C. M. Robinson, D. Johnson et al.,

. Zuber, Structures of SAS-6 suggest its organization in centrioles, Science, vol.331, pp.1196-1199, 2011.

S. Veeraraghavan, P. A. Fagan, H. Hu, V. Lee, J. F. Harper et al., Structural independence of the two EF-hand domains of caltractin, J Biol Chem, vol.277, pp.28564-28571, 2002.

S. Vigneron, E. Brioudes, A. Burgess, J. C. Labbe, T. Lorca et al., Greatwall maintains mitosis through regulation of PP2A, EMBO J, vol.28, pp.2786-2793, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00422203

D. B. Vinh, J. W. Kern, W. O. Hancock, J. Howard, and T. N. Davis, Reconstitution and characterization of budding yeast gamma-tubulin complex, Mol Biol Cell, vol.13, pp.1144-1157, 2002.

C. E. Walczak and S. L. Shaw, A MAP for bundling microtubules, Cell, vol.142, pp.364-367, 2010.

R. A. Walker, E. T. O'brien, N. K. Pryer, M. F. Soboeiro, W. A. Voter et al., Dynamic instability of individual microtubules analyzed by video light microscopy: rate constants and transition frequencies, J Cell Biol, vol.107, pp.1437-1448, 1988.

G. Wang, Q. Chen, X. Zhang, B. Zhang, X. Zhuo et al., PCM1 recruits Plk1 to the pericentriolar matrix to promote primary cilia disassembly before mitotic entry, J Cell Sci, vol.126, pp.1355-1365, 2013.

L. Wang and A. Brown, Rapid movement of microtubules in axons, Curr Biol, vol.12, pp.1496-1501, 2002.

S. Wang and Y. Zheng, Identification of a novel dynein binding domain in nudel essential for spindle pole organization in Xenopus egg extract, J Biol Chem, vol.286, pp.587-593, 2011.

X. Wang, Y. Yang, Q. Duan, N. Jiang, Y. Huang et al., sSgo1, a major splice variant of Sgo1, 2008.

, Dev Cell, vol.14, pp.331-341

Y. L. Wang, H. Chen, Y. Q. Zhan, R. H. Yin, C. Y. Li et al., EWSR1 regulates mitosis by dynamically influencing microtubule acetylation, Cell Cycle, vol.15, pp.2202-2215, 2016.

N. Watanabe, H. Arai, J. Iwasaki, M. Shiina, K. Ogata et al., Cyclindependent kinase (CDK) phosphorylation destabilizes somatic Wee1 via multiple pathways, Proc Natl Acad Sci U S A, vol.102, pp.11663-11668, 2005.

R. R. West, E. V. Vaisberg, R. Ding, P. Nurse, and J. R. Mcintosh, cut11(+): A gene required for cell cycle-dependent spindle pole body anchoring in the nuclear envelope and bipolar spindle formation in Schizosaccharomyces pombe, Mol Biol Cell, vol.9, pp.2839-2855, 1998.

S. Westermann and K. Weber, Post-translational modifications regulate microtubule function, Nat Rev Mol Cell Biol, vol.4, pp.938-947, 2003.

R. A. White, Z. Pan, and J. L. Salisbury, GFP-centrin as a marker for centriole dynamics in living cells, Microsc Res Tech, vol.49, pp.451-457, 2000.

C. Wiese and Y. Zheng, A new function for the gamma-tubulin ring complex as a microtubule minus-end cap, Nat Cell Biol, vol.2, pp.358-364, 2000.

P. A. Wigge, O. N. Jensen, S. Holmes, S. Soues, M. Mann et al., Analysis of the Saccharomyces spindle pole by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry, J Cell Biol, vol.141, pp.967-977, 1998.

M. Winey, L. Goetsch, P. Baum, and B. Byers, MPS1 and MPS2: novel yeast genes defining distinct steps of spindle pole body duplication, J Cell Biol, vol.114, pp.745-754, 1991.

T. Wittmann, A. Hyman, and A. Desai, The spindle: a dynamic assembly of microtubules and motors, Nat Cell Biol, vol.3, pp.28-34, 2001.

D. Wloga and J. Frankel, From molecules to morphology: cellular organization of Tetrahymena thermophila, Methods Cell Biol, vol.109, pp.83-140, 2012.

B. A. Wolfe and K. L. Gould, Split decisions: coordinating cytokinesis in yeast, Trends Cell Biol, vol.15, pp.10-18, 2005.

Y. L. Wong, J. V. Anzola, R. L. Davis, M. Yoon, A. Motamedi et al., Reversible centriole depletion with an inhibitor of Polo-like kinase 4, Science, vol.348, pp.1155-1160, 2015.

R. L. Wright, J. Salisbury, and J. W. Jarvik, A nucleus-basal body connector in Chlamydomonas reinhardtii that may function in basal body localization or segregation, 1985.

, J Cell Biol, vol.101, pp.1903-1912

Z. Xu, L. Schaedel, D. Portran, A. Aguilar, J. Gaillard et al., Microtubules acquire resistance from mechanical breakage through intralumenal acetylation, Science, vol.356, pp.328-332, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01581091

A. Yamashita, M. Sato, A. Fujita, M. Yamamoto, and T. Toda, The roles of fission yeast ase1 in mitotic cell division, meiotic nuclear oscillation, and cytokinesis checkpoint signaling, Mol Biol Cell, vol.16, pp.1378-1395, 2005.

H. Yim, S. B. Shin, S. U. Woo, P. C. Lee, and R. L. Erikson, Plk1-mediated stabilization of 53BP1 through USP7 regulates centrosome positioning to maintain bipolarity, 2017.

, Oncogene, vol.36, pp.966-978

Y. Zhang and C. Y. He, Centrins in unicellular organisms: functional diversity and specialization, Protoplasma, vol.249, pp.459-467, 2012.

B. Imè-ne, *. Bouhlel, K. Scheffler, *. , P. T. Tran et al., , p.1

I. *centre-de-recherche and . Curie, 1 Corresponding author: E-mail: Anne.paoletti@curie

, Monitoring SPB Duplication in Fixed SPB-Labeled Strains

C. Growth and . .. Fixation,

, Quantitative Analysis of SPB Biogenesis in Live Cells

. .. Conclusion,

. .. Acknowledgments,

. .. References, Imaging is performed on methanol-fixed cells, which preserves the fluorescence of SPB components best, in order to block microtubule-dependent SPB oscillations that would blurry the fluorescent signal and lower the resolution. Imaging can be performed on any classical epifluorescence microscope or on a spinning disc confocal microscope equipped with a high aperture 100Â objective, an automated z control and a high resolution CCD camera. We typically use a DM 5000 B upright microscope (Leica Microsystems), equipped with a 100Â/1.4NA oil immersion PlanApo objective, Coolsnap HQ CCD camera (Photometrics), 2010.

I. R. Adams and J. V. Kilmartin, Spindle pole body duplication: a model for centrosome duplication?, Trends in Cell Biology, vol.10, pp.329-335, 2000.

I. B. Bouhlel, M. Ohta, A. Mayeux, N. Bordes, F. Dingli et al., Cell cycle control of spindle poles bodies duplication and splitting by Sfi1 and Cdc31in fission yeast, Journal of Cell Science

L. Chang and K. L. Gould, Sid4p is required to localize components of the septation initiation pathway to the spindle pole body in fission yeast, Proceedings of the National Academy of Sciences of the United States of America, vol.97, pp.5249-5254, 2000.

R. Ding, R. R. West, D. M. Morphew, B. R. Oakley, and J. R. Mcintosh, The spindle pole body of Schizosaccharomyces pombe enters and leaves the nuclear envelope as the cell cycle proceeds, Molecular Biology of the Cell, vol.8, pp.1461-1479, 1997.

M. Elserafy, M. Saric, A. Neuner, T. C. Lin, W. Zhang et al., Molecular mechanisms that restrict yeast centrosome duplication to one event per cell cycle, Current Biology, p.24, 2014.

M. R. Flory, M. Morphew, J. D. Joseph, A. R. Means, and T. N. Davis, Pcp1p, an Spc110p-related calmodulin target at the centrosome of the fission yeast Schizosaccharomyces pombe, Cell Growth & Differentiation, vol.13, pp.47-58, 2002.

C. S. Fong, M. Sato, and T. Toda, Fission yeast Pcp1 links polo kinase-mediated mitotic entry to gamma-tubulin-dependent spindle formation, EMBO Journal, vol.29, pp.120-130, 2010.

S. L. Jaspersen and S. Ghosh, Nuclear envelope insertion of spindle pole bodies and nuclear pore complexes, Nucleus, vol.3, pp.226-236, 2012.

S. L. Jaspersen and M. Winey, The budding yeast spindle pole body: structure, duplication, and function, Annual Review of Cell and Developmental Biology, vol.20, pp.1-28, 2004.

J. V. Kilmartin, Sfi1p has conserved centrin-binding sites and an essential function in budding yeast spindle pole body duplication, Journal of Cell Biology, vol.162, pp.1211-1221, 2003.

I. J. Lee, N. Wang, W. Hu, K. Schott, J. Bahler et al., Regulation of spindle pole body assembly and cytokinesis by the centrin-binding protein Sfi1 in fission yeast, Molecular Biology of the Cell, vol.25, pp.2735-2749, 2014.

H. H. Lim, T. Zhang, and U. Surana, Regulation of centrosome separation in yeast and vertebrates: common threads, Trends in Cell Biology, vol.19, pp.325-333, 2009.

S. Li, A. M. Sandercock, P. Conduit, C. V. Robinson, R. L. Williams et al., Structural role of Sfi1p-centrin filaments in budding yeast spindle pole body duplication, Journal of Cell Biology, vol.173, pp.867-877, 2006.

M. Ohta, M. Sato, and M. Yamamoto, Spindle pole body components are reorganized during fission yeast meiosis, Molecular Biology of the Cell, vol.23, pp.1799-1811, 2012.

A. Paoletti, N. Bordes, R. Haddad, C. L. Schwartz, F. Chang et al., Fission yeast cdc31p is a component of the half-bridge and controls SPB duplication, Molecular Biology of the Cell, vol.14, 2003.

V. Racine, A. Hertzog, J. Jouanneau, J. Salamero, C. Kervrann et al., Multiple-target tracking of 3D fluorescent objects based on simulated annealing, ISBI (pp. 1020e1023), 2006.

J. A. Rosenberg, G. C. Tomlin, W. H. Mcdonald, B. E. Snydsman, E. G. Muller et al., Ppc89 links multiple proteins, including the septation initiation network, to the core of the fission yeast spindle-pole body, Molecular Biology of the Cell, vol.17, pp.777-790, 1999.

C. R. Terenna, T. Makushok, G. Velve-casquillas, D. Baigl, Y. Chen et al., Physical mechanisms redirecting cell polarity and cell shape in fission yeast, Current Biology, vol.18, pp.1748-1753, 2008.

P. T. Tran, A. Paoletti, and F. Chang, Imaging green fluorescent protein fusions in living fission yeast cells, pp.220-225, 2004.

S. Uzawa, F. Li, Y. Jin, K. L. Mcdonald, M. B. Braunfeld et al., Spindle pole body duplication in fission yeast occurs at the G1/S boundary but maturation is of the Cell, 15, 5219e5230. Velve-Casquillas, Nano Today, vol.5, pp.28-47, 2004.

S. K. Vogel, I. Raabe, A. Dereli, N. Maghelli, and I. Toli-c-nørrelykke, Interphase microtubules determine the initial alignment of the mitotic spindle, Current Biology, vol.17, pp.438-444, 2007.

S. Walde and M. C. King, The KASH protein Kms2 coordinates mitotic remodeling of the spindle pole body, Journal of Cell Science, vol.127, pp.3625-3640, 2014.