, 130 5.2 Cell-centered finite volume discretization

. .. Adaptive-linear-solver, , p.136

, 137 5.5.2 Unsteady problem: Heterogeneous media and uniform mesh refinement, p.139

.. .. Conclusion,

, How to use EISPACK, pp.5-76, 1977.

Y. Achdou and F. Nataf, Low frequency tangential filtering decomposition, Numerical Linear Algebra with Applications, vol.14, issue.2, pp.129-147
URL : https://hal.archives-ouvertes.fr/hal-00194096

M. Ainsworth, A synthesis of a posteriori error estimation techniques for conforming, non-conforming and discontinuous Galerkin finite element methods, Recent advances in adaptive computation, vol.383, pp.1-14, 2005.

M. Ainsworth and J. T. Oden, A posteriori error estimation in finite element analysis, Comput. Methods Appl. Mech. Engrg, vol.142, issue.1-2, pp.1-88, 1997.

G. Allaire and S. M. Kaber, Numerical Linear Algebra, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00784064

G. Alleon, M. Benzi, and L. Giraud, Sparse approximate inverse preconditioning for dense linear systems arising in computational electromagnetics, Numer. Algorithms, vol.16, 1997.

A. Anciaux-sedrakian, J. Eaton, J. Gratien, T. Guignon, P. Havé et al., Will GPGPUs be finally a credible solution for industrial reservoir simulators?, SPE Reservoir Simulation Symposium, vol.1, 2015.

A. Anciaux-sedrakian, P. Gottschling, J. Gratien, and T. Guignon, Survey on efficient linear solvers for porous media flow models on recent hardware architectures, Oil Gas Sci. Technol. -Rev. IFP Energies nouvelles, vol.69, issue.4, pp.753-766, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01067895

M. Arioli, E. H. Georgoulis, and D. Loghin, Stopping criteria for adaptive finite element solvers. SIAM, J. Sci. Comput, vol.35, issue.3, pp.1537-1559, 2013.

M. Arioli, J. Liesen, A. Miedlar, and Z. Strako?, Interplay between discretization and algebraic computation in adaptive numerical solutionof elliptic pde problems, vol.36, pp.102-129, 2013.

M. Arioli, D. Loghin, and A. J. Wathen, Stopping criteria for iterations in finite element methods, Numer. Math, vol.99, issue.3, pp.381-410, 2005.

O. Axelsson, Iterative Solution Methods, 1994.

O. Axelsson and I. Kaporin, Optimizing two-level preconditionings for the conjugate gradient method, Large-Scale Scientific Computing, pp.3-21, 2001.

I. Babu?ka and W. C. Rheinboldt, Error estimates for adaptive finite element computations, SIAM J. Numer. Anal, vol.15, issue.4, pp.736-754, 1978.

D. Bai and A. Brandt, Local mesh refinement multilevel techniques, SIAM J. Sci. Statist. Comput, vol.8, issue.2, pp.109-134, 1987.

S. Balay, S. Abhyankar, M. Adams, J. Brown, P. Brune et al., Petsc users manual revision 3.8, Argonne National Lab.(ANL), 2017.

R. E. Bank and A. H. Sherman, An adaptive, multilevel method for elliptic boundary value problems, Computing, vol.26, issue.2, pp.91-105, 1981.

R. E. Bank and R. K. Smith, A posteriori error estimates based on hierarchical bases, SIAM J. Numer. Anal, vol.30, issue.4, pp.921-935, 1993.

R. Becker, C. Johnson, and R. Rannacher, Adaptive error control for multigrid finite element methods. Computing, vol.55, pp.271-288, 1995.

M. W. Benson, Iterative solution of large sparse linear systems arising in certain multidimensional approximation problems, Util. Math, vol.22, pp.127-140, 1982.

M. Benzi and M. T?ma, A comparative study of sparse approximate inverse preconditioners, Applied Numerical Mathematics, vol.30, issue.2-3, pp.305-340, 1999.

N. Biggs, Algebraic graph theory, vol.67, 1993.

E. G. Boman and M. M. Wolf, A nested dissection approach to sparse matrix partitioning for parallel computations, 2007.

C. F. Borges and W. B. Gragg, A parallel divide and conquer algorithm for the generalized real symmetric definite tridiagonal eigenproblem, Numerical Linear Algebra and Scientific Computing, pp.10-28, 1993.

A. Brandt, Multi-level adaptive solutions to boundary-value problems, Math. Comp, vol.31, issue.138, pp.333-390, 1977.

W. L. Briggs, H. Van-emden, and S. F. Mccormick, A Multigrid Tutorial. Society for Industrial and Applied Mathematics, 2000.

X. C. Cai and M. Sarkis, A restricted additive Schwarz preconditioner for general sparse linear systems, SIAM Journal on Scientific Computing, vol.21, issue.2, pp.792-797, 1999.

J. J. Camata, A. L. Coutinho, A. M. Valli, L. Catabriga, and G. F. Carey, Block ILU preconditioners for parallel AMR/C simulations, Proceedings of 30th CILAMCE, 2009.

H. Cao, H. A. Tchelepi, J. R. Wallis, and H. E. Yardumian, Parallel scalable unstructured CPR-type linear solver for reservoir simulation, 2005.

C. Carstensen, A posteriori error estimate for the mixed finite element method, Math. Comp, vol.66, issue.218, pp.465-476, 1997.

M. J. Castro-díaz, F. Hecht, B. Mohammadi, and O. Pironneau, Anisotropic unstructured mesh adaption for flow simulations, Internat. J. Numer. Methods Fluids, vol.25, issue.4, pp.475-491, 1997.

T. F. Chan and T. P. Mathew, Domain decomposition algorithms, Acta Numerica, pp.61-143, 1994.

Z. Chen, G. Huan, and Y. Ma, Computational Methods for Multiphase Flows in Porous Media (Computational Science and Engineering 2), Society for Industrial and Applied Mathematics, 2006.

E. W. Cheney and D. R. Kincaid, Numerical Mathematics and Computing, 2007.

A. Cholesky, Sur la résolution numérique des systèmes d'équations linéaires. Bulletin de la Sabix, 2005.

E. Chow and A. Patel, Fine-grained parallel incomplete lu factorization, SIAM Journal on Scientific Computing, vol.37, issue.2, pp.169-193, 2015.

E. Chow and Y. Saad, Approximate inverse preconditioners via sparse-sparse iterations, SIAM Journal on Scientific Computing, vol.19, issue.3, pp.995-1023, 1998.

M. A. Christie and M. J. Blunt, Tenth SPE comparative solution project : A comparison of upscaling techniques, SPE Reservoir Evaluation & Engineering, vol.4, issue.4, pp.308-317, 2001.

E. S. Coakley and V. Rokhlin, A fast divide-and-conquer algorithm for computing the spectra of real symmetric tridiagonal matrices, Applied and Computational Harmonic Analysis, vol.34, issue.3, pp.379-414, 2013.

D. Coppersmith and S. Winograd, Matrix multiplication via arithmetic progressions, J. Symb. Comput, vol.9, issue.3, pp.251-280, 1990.

J. D. Cosgrove, J. C. Diaz, and A. Griewank, Approximate inverse preconditionings for sparse linear systems, International journal of computer mathematics, vol.44, issue.1-4, pp.91-110, 1992.

J. J. Cuppen, A divide and conquer method for the symmetric tridiagonal eigenproblem, Numerische Mathematik, vol.36, issue.2, pp.177-195, 1980.

Y. Dai and J. Yuan, Study on semi-conjugate direction methods for non-symmetric systems, International Journal For Numerical Methods In Engineering, vol.60, pp.1383-1399, 2004.

P. Destuynder and B. Métivet, Explicit error bounds in a conforming finite element method, Math. Comp, vol.68, issue.228, pp.1379-1396, 1999.

D. A. Di-pietro, E. Flauraud, M. Vohralík, and S. Yousef, A posteriori error estimates, stopping criteria, and adaptivity for multiphase compositional Darcy flows in porous media, J. Comput. Phys, vol.276, pp.163-187, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00839487

D. A. Di-pietro, M. Vohralík, and S. Yousef, Adaptive regularization, linearization, and discretization and a posteriori error control for the two-phase Stefan problem, Math. Comp, vol.84, issue.291, pp.153-186, 2015.
URL : https://hal.archives-ouvertes.fr/hal-00690862

V. Dolean, P. Jolivet, and F. Nataf, An Introduction to Domain Decomposition Methods: Algorithms, Theory, and Parallel Implementation, 2015.
URL : https://hal.archives-ouvertes.fr/cel-01100932

X. Dong and G. Cooperman, A bit-compatible parallelization for ilu (k) preconditioning, European Conference on Parallel Processing, pp.66-77, 2011.

W. Dörfler, A convergent adaptive algorithm for Poisson's equation, SIAM J. Numer. Anal, vol.33, issue.3, pp.1106-1124, 1996.

V. Eijkhout, Overview of iterative linear system solver packages, 1998.

T. Eirola and O. Nevanlinna, Accelerating with rank-one updates, Linear Algebra and its Applications, vol.121, pp.511-520, 1989.

M. Embree, The tortoise and the hare restart GMRES, SIAM Review, vol.45, pp.259-266, 2003.

C. Erath and D. Praetorius, Adaptive vertex-centered finite volume methods with convergence rates, SIAM Journal on Numerical Analysis, vol.54, issue.4, pp.2228-2255, 2016.

T. Ericsson and A. Ruhe, The spectral transformation lanczos method for the numerical solution of large sparse generalized symmetric eigenvalue problems, Mathematics of Computation, vol.35, issue.152, pp.1251-1268, 1980.

A. Ern and M. Vohralík, Adaptive inexact Newton methods with a posteriori stopping criteria for nonlinear diffusion PDEs, SIAM J. Sci. Comput, vol.35, issue.4, pp.1761-1791, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00681422

R. Eymard, T. Gallouët, and R. Herbin, Finite volume methods, Handbook of numerical analysis, vol.7, pp.713-1018, 2000.
URL : https://hal.archives-ouvertes.fr/hal-02100732

P. O. Frederickson, Fast approximate inversion of large sparse linear systems, Math. Report, vol.7, 1975.

P. J. Frey and F. Alauzet, Anisotropic mesh adaptation for CFD computations, Comput. Methods Appl. Mech. Engrg, vol.194, issue.48, pp.5068-5082, 2005.

F. Gibou and C. Min, On the performance of a simple parallel implementation of the ilu-pcg for the poisson equation on irregular domains, Journal of Computational Physics, vol.231, issue.14, pp.4531-4536, 2012.

G. H. Golub, Numerical methods for solving linear least squares problems, Numer. Math, vol.39, pp.206-216, 1965.

G. H. Golub and Z. Strako?, Estimates in quadratic formulas, Numerical Algorithms, vol.8, issue.2, pp.241-268, 1994.

G. H. Golub and C. F. Van-loan, Matrix computations, p.3, 1996.

N. I. Gould and J. A. Scott, Sparse approximate-inverse preconditioners using normminimization techniques, SIAM Journal on Scientific Computing, vol.19, issue.2, pp.605-625, 1998.

J. Gratien, T. Guignon, J. Magras, P. Quandalle, and O. Ricois, How to improve the scalability of an industrial parallel reservoir simulator, Proceedings of the IASTED International Conference on Parallel and Distributed Computing and Systems, pp.114-121, 2006.

L. Grigori, S. Cayrols, and J. W. Demmel, Low Rank Approximation of a Sparse Matrix Based on LU Factorization with Column and Row Tournament Pivoting, SIAM Journal on Scientific Computing, vol.40, issue.2, pp.181-209, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01967901

L. Grigori, P. Y. David, J. Demmel, and S. Peyronnet, Brief Announcement: Lower bounds on communication for sparse Cholesky factorization of a model problem, SPAA 2010: Proceedings of the 22nd Annual ACM Symposium on Parallelism in Algorithms and Architectures, pp.79-81, 2010.

L. Grigori, F. Nataf, and S. Yousef, Robust algebraic Schur complement preconditioners based on low rank corrections, INRIA, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01017448

R. Grimes, J. Lewis, and H. Simon, A shifted block lanczos algorithm for solving sparse symmetric generalized eigenproblems, SIAM Journal on Matrix Analysis and Applications, vol.15, issue.1, pp.228-272, 1994.

W. D. Gropp and D. E. Keyes, Domain Decomposition on Parallel Computers, Proceedings of the 2nd International Conference on Domain Decomposition Methods, pp.260-268, 1989.

M. J. Grote and T. Huckle, Parallel Preconditioning with Sparse Approximate Inverses, SIAM J. of Scient. Comput, vol.18, issue.3, pp.838-853, 1997.

M. Gu and S. Eisenstat, A divide-and-conquer algorithm for the symmetric tridiagonal eigenproblem, SIAM Journal on Matrix Analysis and Applications, vol.16, issue.1, pp.172-191, 1995.

G. Guennebaud and B. Jacob, Eigen v3, 2010.

W. Hackbusch, A sparse matrix arithmetic based on H-matrices. part i: Introduction to H-matrices, Computing, vol.62, issue.2, pp.89-108, 1999.

P. Havé, R. Masson, F. Nataf, M. Szydlarski, H. Xiang et al., Algebraic domain decomposition methods for highly heterogeneous problems, SIAM J. Scientific Computing, p.35, 2013.

B. Hendrickson and T. G. Kolda, Partitioning rectangular and structurally nonsymmetric sparse matrices for parallel computation, SIAM Journal on Scientific Computing, vol.21, issue.6, pp.2048-2072, 2000.

M. R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear systems, Journal of Research of the National Bureau of Standards, vol.49, issue.6, p.1952

N. Higham, Accuracy and Stability of Numerical Algorithms, Society for Industrial and Applied Mathematics, 2002.

T. Huckle, Approximate sparsity patterns for the inverse of a matrix and preconditioning, Applied numerical mathematics, vol.30, issue.2-3, pp.291-303, 1999.

P. Jiránek, Z. Strako?, and M. Vohralík, A posteriori error estimates including algebraic error and stopping criteria for iterative solvers, SIAM J. Sci. Comput, vol.32, issue.3, pp.1567-1590, 2010.

P. Jolivet, V. Dolean, F. Hecht, F. Nataf, C. Prud'homme et al., High performance domain decomposition methods on massively parallel architectures with freefem++, Journal of Numerical Mathematics, vol.20, pp.287-302, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00835298

W. A. Joubert, On the convergence behavior of the restarted GMRES algorithm for solving nonsymmetric linear systems, Numer. Linear Algebra Appl, vol.1, pp.427-447, 1994.

I. E. Kaporin, New convergence results and preconditioning strategies for the conjugate gradient method, Numerical Linear Algebra with Applications, vol.1, issue.2, pp.179-210, 1994.

G. Karypis, METIS A Software Package for Partitioning Unstructured Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderings of Sparse Matrices, 2013.

G. Karypis and V. Kumar, Multilevel k-way partitioning scheme for irregular graphs, Journal of Parallel and Distributed Computing, vol.48, issue.1, pp.96-129, 1998.

G. Karypis and V. Kumar, A fast and high quality multilevel scheme for partitioning irregular graphs, SIAM Journal on Scientific Computing, vol.20, issue.1, pp.359-392, 1999.

C. T. Kelley, Iterative Methods for Linear and Nonlinear Equations, Society for Industrial and Applied Mathematics, 1995.

D. E. Keyes and W. D. Gropp, A comparison of domain decomposition techniques for elliptic partial differential equations and their parallel implementation, SIAM Journal on Scientific and Statistical Computing, vol.8, issue.2, pp.166-202, 1987.

S. A. Kharchenko, A. Yu, and . Yeremin, Eigenvalue translation based preconditioners for the gmres(k) method. Numerical Linear Algebra with Applications, vol.2, pp.51-77

L. Yu and . Kolotilina, Bounds for eigenvalues of symmetric block jacobi scaled matrices, Journal of Mathematical Sciences, vol.79, issue.3, pp.1043-1047, 1996.

A. N. Krylov, On the numerical solution of the equation by which in technical questions frequencies of small oscillations of material systems are determined. Izvestiya Akademii Nauk SSSR, Otdelenie Matematicheskikh i Estestvennykh Nauk, vol.7, issue.4, pp.491-539, 1931.

S. Lacroix, Y. Vassilevski, and M. F. Wheeler, Decoupling preconditioners in the implicit parallel accurate reservoir simulator (ipars), Numer. Linear Algebra with Applications, vol.8, pp.537-549, 2001.

P. Ladevèze and D. Leguillon, Error estimate procedure in the finite element method and applications, SIAM J. Numer. Anal, vol.20, issue.3, pp.485-509, 1983.

C. Lanczos, Solution of systems of linear equations by minimized iterations, J. Res. Nat. Bur. Standards, vol.49, issue.1, pp.33-53, 1952.

F. and L. Gall, Powers of tensors and fast matrix multiplication, Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation, ISSAC '14, pp.296-303, 2014.

R. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK Users' Guide. Society for Industrial and Applied Mathematics, 1998.

R. Li, Y. Xi, and Y. Saad, Schur complement-based domain decomposition preconditioners with low-rank corrections, Numerical Linear Algebra with Applications, vol.23, issue.4, pp.706-729, 2016.

Z. Li, Y. Saad, and M. Sosonkina, parms: a parallel version of the algebraic recursive multilevel solver, Numerical Linear Algebra with Applications, vol.10, issue.5-6, pp.485-509, 2003.

Y. Liang, The Use of Parallel Polynomial Preconditioners in the Solution of Systems of Linear Equations, 2005.

J. Liesen and P. Tichý, Convergence analysis of krylov subspace methods. GAMM-Mitteilungen, vol.27, pp.153-173, 2004.

J. Liu and A. L. Marsden, A robust and efficient iterative method for hyper-elastodynamics with nested block preconditioning, Journal of Computational Physics, vol.383, pp.72-93, 2019.

R. Luce and B. I. Wohlmuth, A local a posteriori error estimator based on equilibrated fluxes, SIAM J. Numer. Anal, vol.42, issue.4, pp.1394-1414, 2004.
URL : https://hal.archives-ouvertes.fr/inria-00343040

G. Mallik, M. Vohralík, and S. Yousef, Goal-oriented a posteriori error estimation for conforming and nonconforming approximations with inexact solvers, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01964733

J. Mandel, On block diagonal and schur complement preconditioning, Numerische Mathematik, vol.58, issue.1, pp.79-93, 1990.

P. J. Matuszyk and K. Boryczko, A Parallel Preconditioning for the Nonlinear Stokes Problem, Parallel Processing and Applied Mathematics PPAM, 2005.

D. Meidner, R. Rannacher, and J. Vihharev, Goal-oriented error control of the iterative solution of finite element equations, J. Numer. Math, vol.17, issue.2, pp.143-172, 2009.

A. Miraçi, J. Pape?, and M. Vohralík, A multilevel algebraic error estimator and the corresponding iterative solver with p-robust behavior, 2019.

S. Moufawad, Enlarged Krylov Subspace Methods and Preconditioners for Avoiding Communication, 2014.
URL : https://hal.archives-ouvertes.fr/tel-01165960

P. Neittaanmäki and S. Repin, Reliable methods for computer simulation, Studies in Mathematics and its Applications. Elsevier Science B.V, vol.33, 2004.

Y. Notay, Optimal v-cycle algebraic multilevel preconditioning, Numerical Linear Algebra with Applications, vol.5, issue.5, pp.441-459

A. S. Odeh, Comparison of solutions to a three-dimensional black-oil reservoir simulation problem (includes associated paper 9741), Journal of Petroleum Technology, vol.33, issue.01, pp.13-25, 1981.

P. Oswald, Multilevel Finite Element Approximation: Theory & Applications. Teubner Skripten zur Numerik. Teubner, 1994.

J. Pape?, J. Liesen, and Z. Strako?, Distribution of the discretization and algebraic error in numerical solution of partial differential equations, Linear Algebra and its Applications, vol.449, pp.89-114, 2014.

J. Pape?, U. Rüde, M. Vohralík, and B. Wohlmuth, Sharp algebraic and total a posteriori error bounds for h and p finite elements via a multilevel approach, 2017.

J. Pape?, Z. Strako?, and M. Vohralík, Estimating and localizing the algebraic and total numerical errors using flux reconstructions, Numerische Mathematik, vol.138, issue.3, pp.681-721, 2018.

W. Prager and J. L. Synge, Approximations in elasticity based on the concept of function space, Quart. Appl. Math, vol.5, pp.241-269, 1947.

A. Quarteroni and A. Valli, Domain Decomposition Methods for Partial Differential Equations, 1999.

S. Repin, A posteriori estimates for partial differential equations, Radon Series on Computational and Applied Mathematics, vol.4, 2008.

U. Rüde, Fully adaptive multigrid methods, SIAM J. Numer. Anal, vol.30, issue.1, pp.230-248, 1993.

U. Rüde, Mathematical and computational techniques for multilevel adaptive methods, Frontiers in Applied Mathematics. Society for Industrial and Applied Mathematics, vol.13, 1993.

U. Rüde, Error estimates based on stable splittings, Domain decomposition methods in scientific and engineering computing, vol.180, pp.111-118, 1993.

J. W. Ruge and K. Stüben, Algebraic Multigrid, vol.4, pp.73-130

Y. Saad, Numerical solution of large nonsymmetric eigenvalue problems, Computer Physics Communications, vol.53, issue.1, pp.71-90, 1989.

Y. Saad, Iterative Methods for Sparse Linear Systems. SIAM, 2000.

Y. Saad, Numerical Methods for Large Eigenvalue Problems, Society for Industrial and Applied Mathematics, 2011.

Y. Saad and M. H. Schultz, GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems, SIAM J. Sci. Statist. Comput, vol.7, issue.3, pp.856-869, 1986.

Y. Saad and M. Sosonkina, Distributed schur complement techniques for general sparse linear systems, SIAM Journal on Scientific Computing, vol.21, issue.4, pp.1337-1356, 1999.

R. Scheichl, R. Masson, and J. Wendebourg, Decoupling and block preconditioning for sedimentary basin simulations, Computational Geosciences, vol.7, pp.295-318, 2003.

J. Scott and M. T?ma, The importance of structure in incomplete factorization preconditioners, BIT Numerical Mathematics, vol.51, issue.2, pp.385-404, 2011.

Y. Shapira, Model case analysis of an algebraic multilevel method, Numerical Linear Algebra with Applications, vol.6, issue.8, pp.655-685

P. Sonneveld, Cgs, a fast lanczos-type solver for nonsymmetric linear systems, SIAM journal on scientific and statistical computing, vol.10, issue.1, pp.36-52, 1989.

D. C. Sorensen, Implicitly restarted arnoldi/lanczos methods for large scale eigenvalue calculations, Parallel Numerical Algorithms, pp.119-165, 1997.

G. W. Stewart, A krylov-schur algorithm for large eigenproblems, SIAM J. Matrix Anal. Appl, vol.23, issue.3, pp.601-614, 2001.

V. Strassen, Gaussian elimination is not optimal, Numer. Math, vol.13, issue.4, pp.354-356, 1969.

K. Stüben, Algebraic multigrid (amg): Experiences and comparisons, Appl. Math. Comput, vol.13, issue.3-4, pp.419-451, 1983.

K. Stüben, C. T. , H. Klie, B. Lou, and M. F. Wheeler, Algebraic multigrid methods (AMG) for the efficient solution of fully implicit formulations in reservoir simulation, 2007.

A. Toselli and O. Widlund, Domains Decomposition Methods: algorithms and theory, 2005.

L. N. Trefethen and D. Bau, Numerical linear algebra, vol.50, 1997.

A. M. Turing, Rounding-off errors in matrix processes, The Quarterly Journal of Mechanics and Applied Mathematics, vol.1, issue.1, p.287, 1948.

R. R. Underwood, An approximate factorization procedure based on the block Cholesky decomposition and its use with the conjugate gradient method, General Electric Co, 1976.

H. A. Van-der and . Vorst, Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems, SIAM J. Sci. Statist. Comput, vol.13, issue.2, pp.631-644, 1992.

R. Verfürth, A review of a posteriori error estimation and adaptive mesh-refinement techniques, 1996.

P. K. Vinsome, ORTHOMIN, an iterative method for solving sparse sets of simultaneous linear equations, Proceedings of the Fourth Symposium on Resevoir Simulation, pp.149-159, 1976.

M. Vohralík, Residual flux-based a posteriori error estimates for finite volume and related locally conservative methods, Numerische Mathematik, vol.111, issue.1, pp.121-158, 2008.

M. Vohralík and S. Yousef, A simple a posteriori estimate on general polytopal meshes with applications to complex porous media flows, Computer Methods in Applied Mechanics and Engineering, vol.331, pp.728-760, 2018.

J. R. Wallis, R. P. Kendall, and T. E. Little, Constrained residual acceleration of conjugate residual methods, 1985.

A. Y. Yeremin and L. Y. Kolotilina, Factorized sparse approximate inverse preconditionings I: Theory. SIAM, J. Matrix Anal. Appl, vol.14, pp.45-58, 1993.

F. Zhang, The Schur complement and its applications, vol.4, 2006.

O. C. Zienkiewicz and J. Z. Zhu, A simple error estimator and adaptive procedure for practical engineering analysis, Internat. J. Numer. Methods Engrg, vol.24, issue.2, pp.337-357, 1987.