E. C. Keeley, B. Mehrad, and R. M. Strieter, CXC Chemokines in Cancer Angiogenesis and Metastases, Advances

R. M. Strieter, M. D. Burdick, J. Mestas, B. Gomperts, M. P. Keane et al., Cancer CXC Chemokine Networks and Tumour Angiogenesis, Eur. J. Cancer, vol.42, issue.6, pp.768-778, 2006.

T. E. Maione, G. S. Gray, J. Petro, A. J. Hunt, A. L. Donner et al., Inhibition of Angiogenesis by Recombinant Human Platelet Factor-4 and Related Peptides, Science, issue.4938, pp.77-79, 1990.

T. D. Shellenberger, M. Wang, M. Gujrati, A. Jayakumar, R. M. Strieter et al., BRAK/CXCL14 Is a Potent Inhibitor of Angiogenesis and a Chemotactic Factor for Immature Dendritic Cells, Cancer Res, vol.64, issue.22, pp.8262-8270, 2004.

V. Bagheri, G. Hassanshahi, V. Mirzaee, and H. Khorramdelazad, CXC Chemokine CXCL12 Tissue Expression and Circulating Levels in Peptic Ulcer Patients with Helicobacter Pylori Infection, Cytokine, vol.85, pp.1-4, 2016.

E. A. Berger, P. M. Murphy, and J. M. Farber, Chemokine Receptors as HIV-1 Coreceptors: Roles in Viral Entry, Tropism, and Disease, Annu. Rev. Immunol, vol.17, issue.1, pp.657-700, 1999.

J. Zhang, E. Noguchi, O. Migita, Y. Yokouchi, J. Nakayama et al., Association of a Haplotype Block Spanning SDAD1 Gene and CXC Chemokine Genes with Allergic Rhinitis, J. Allergy Clin. Immunol, vol.115, issue.3, pp.548-554, 2005.

S. Rivas-fuentes, A. Salgado-aguayo, S. Pertuz-belloso, P. Gorocica-rosete, N. Alvarado-vásquez et al., Role of Chemokines in Non-Small Cell Lung Cancer: Angiogenesis and Inflammation, J. Cancer, vol.6, issue.10, pp.938-952, 2015.

J. Folkman, Tumor Angiogenesis Factor, Cancer Res, vol.34, issue.8, pp.2109-2113, 1974.

J. Folkman, E. Merler, C. Abernathy, and G. Williams, Isolation of a Tumor Factor Responsible for Angiogenesis, J. Exp. Med, vol.133, issue.2, pp.275-288, 1971.

R. P. Maslianko, V. F. Shekel, and . Tumor-angiogenesis, ???????? ?????? ??????????? ????????????? ???????????? ???????????? ???????? ?? ????????????? ????? ?? ?????????, vol.16, 2014.

J. D. Owen, R. Strieter, M. Burdick, H. Haghnegahdar, L. Nanney et al., Enhanced Tumor-Forming Capacity for Immortalized Melanocytes Expressing Melanoma Growth Stimulatory Activity/Growth-Regulated Cytokine ? and ? Proteins, Int. J. Cancer, vol.73, issue.1, pp.94-103, 1997.

H. Takamori, Z. G. Oades, R. C. Hoch, M. Burger, and I. U. Schraufstatter, Autocrine Growth Effect of IL-8 and GRO? on a Human Pancreatic Cancer Cell Line, Capan-1, Pancreas, vol.21, issue.1, pp.52-56, 2000.

J. Yoneda, H. Kuniyasu, J. E. Price, C. D. Bucana, I. J. Fidler et al., Expression of Angiogenesis-Related Genes and Progression of Human Ovarian Carcinomas in Nude Mice, JNCI J. Natl. Cancer Inst, vol.90, issue.6, pp.447-454, 1998.

M. W. Hollmann, D. Strumper, S. Herroeder, and M. E. Durieux, Receptors, G Proteins, and Their Interactions, Anesthesiol. J. Am. Soc. Anesthesiol, vol.103, issue.5, pp.1066-1078, 2005.

S. J. Allen, S. E. Crown, T. M. Handel, and . Chemokine, Receptor Structure, Interactions, and Antagonism, vol.25, pp.787-820, 2007.

I. Clark-lewis, I. Mattioli, J. Gong, and P. Loetscher, Structure-Function Relationship between the Human Chemokine Receptor CXCR3 and Its Ligands, J. Biol. Chem, vol.278, issue.1, pp.289-295, 2003.

S. Lacotte, S. Brun, S. Muller, H. Dumortier, and . Cxcr3, Inflammation, and Autoimmune Diseases, Ann. N. Y. Acad. Sci, vol.1173, issue.1, pp.310-317, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00425653

C. Cxc-chemokine, Platelet Factor-4 Variant) Are Mediated by CXCR3, Blood, vol.117, issue.2, pp.480-488, 2011.

D. D. Patel, J. P. Zachariah, and L. P. Whichard, CXCR3 and CCR5 Ligands in Rheumatoid Arthritis Synovium, Clin. Immunol, vol.98, issue.1, pp.39-45, 2001.

A. Szczuci?ski and J. Losy, Chemokines and Chemokine Receptors in Multiple Sclerosis. Potential Targets for New Therapies, Acta Neurol. Scand, vol.115, issue.3, pp.137-146, 2007.

W. W. Hancock, B. Lu, W. Gao, V. Csizmadia, K. Faia et al., Requirement of the Chemokine Receptor CXCR3 for Acute Allograft Rejection, J. Exp. Med, vol.192, issue.10, pp.1515-1520, 2000.

B. Ma, A. Khazali, and A. Wells, CXCR3 in Carcinoma Progression, Histol. Histopathol, vol.30, issue.7, pp.781-792, 2015.

D. S. Kumar, Epigenetic Regulation of Alternative Splicing in Cancer, 2013.

X. Ma, K. Norsworthy, N. Kundu, W. H. Rodgers, P. A. Gimotty et al., CXCR3 Expression Is Associated with Poor Survival in Breast Cancer and Promotes Metastasis in a Murine Model, Mol. Cancer Ther, vol.8, issue.3, pp.490-498, 2009.

K. Kawada, H. Hosogi, M. Sonoshita, H. Sakashita, T. Manabe et al., Chemokine Receptor CXCR3 Promotes Colon Cancer Metastasis to Lymph Nodes, Oncogene, vol.26, issue.32, p.4679, 2007.

Y. Pu, S. Li, C. Zhang, Z. Bao, Z. Yang et al., High Expression of CXCR3 Is an Independent Prognostic Factor in Glioblastoma Patients That Promotes an Invasive Phenotype, J. Neurooncol, vol.122, issue.1, pp.43-51, 2015.

D. Datta, P. Banerjee, M. Gasser, A. M. Waaga-gasser, S. Pal et al., Can Mediate Growth-Inhibitory Signals in Human Renal Cancer Cells by Down-Regulating the Expression of Heme Oxygenase-1, J. Biol. Chem, issue.47, pp.36842-36848, 2010.

M. Furuya, T. Yoneyama, E. Miyagi, R. Tanaka, K. Nagahama et al., Differential Expression Patterns of CXCR3 Variants and Corresponding CXC Chemokines in Clear Cell Ovarian Cancers and Endometriosis, Gynecol. Oncol, vol.122, issue.3, pp.648-655, 2011.

D. Datta, J. A. Flaxenburg, S. Laxmanan, C. Geehan, M. Grimm et al., Ras-Induced Modulation of CXCL10 and Its Receptor Splice Variant CXCR3-B in MDA-MB-435 and MCF-7 Cells: Relevance for the Development of Human Breast Cancer, Cancer Res, vol.66, issue.19, pp.9509-9518, 2006.

H. Bronger, A. Karge, T. Dreyer, D. Zech, S. Kraeft et al., Induction of Cathepsin B by the CXCR3 Chemokines CXCL9 and CXCL10 in Human Breast Cancer Cells, Oncol. Lett, 2017.

A. Korniejewska, A. J. Mcknight, Z. Johnson, M. L. Watson, and S. G. Ward, Expression and Agonist Responsiveness of CXCR3 Variants in Human T Lymphocytes, Immunology, vol.132, issue.4, pp.503-515, 2011.

W. Zhang, J. Navenot, B. Haribabu, H. Tamamura, K. Hiramatu et al., A Point Mutation That Confers Constitutive Activity to CXCR4 Reveals That T140 Is an Inverse Agonist and That AMD3100 and ALX40-4C Are Weak Partial Agonists, J. Biol. Chem, issue.27, pp.24515-24521, 2002.

A. D. Soyza, I. Pavord, J. S. Elborn, D. Smith, H. Wray et al., Placebo-Controlled Study of the CXCR2 Antagonist AZD5069 in Bronchiectasis, Eur. Respir. J, vol.46, issue.4, pp.1021-1032, 2015.

E. J. Wanrooij and . Van,

S. C. Jager, T. Es, and . Van,

P. Vos, H. L. Birch, D. A. Owen, R. J. Watson, E. A. Biessen et al.,

J. Ai, E. Biazar, M. Jafarpour, M. Montazeri, A. Majdi et al., Nanotoxicology and Nanoparticle Safety in Biomedical Designs, Int. J. Nanomedicine, vol.6, pp.1117-1127, 2011.

C. H. Choi, C. A. Alabi, P. Webster, and M. E. Davis, Mechanism of Active Targeting in Solid Tumors with Transferrin-Containing Gold Nanoparticles, Proc. Natl. Acad. Sci, vol.107, pp.1235-1240, 2010.

H. Li, P. Wang, Y. Deng, M. Zeng, Y. Tang et al., Combination of Active Targeting, Enzyme-Triggered Release and Fluorescent Dye into Gold Nanoclusters for Endomicroscopy-Guided Photothermal/Photodynamic Therapy to Pancreatic Ductal Adenocarcinoma, Biomaterials, vol.139, pp.30-38, 2017.

M. R. Kano, Y. Bae, C. Iwata, Y. Morishita, M. Yashiro et al., Improvement of Cancer-Targeting Therapy, Using Nanocarriers for Intractable Solid Tumors by Inhibition of TGF-? Signaling, Proc. Natl. Acad. Sci, vol.104, pp.3460-3465, 2007.

W. Zhang, Y. Shi, Y. Chen, J. Ye, X. Sha et al., Multifunctional Pluronic P123/F127 Mixed Polymeric Micelles Loaded with Paclitaxel for the Treatment of Multidrug Resistant Tumors, Biomaterials, vol.32, issue.11, pp.2894-2906, 2011.

L. Li, C. A. Wartchow, S. N. Danthi, Z. Shen, N. Dechene et al., A Novel Antiangiogenesis Therapy Using an Integrin Antagonist or Anti-Flk, issue.1

, Antibody Coated 90Y-Labeled Nanoparticles, Int. J. Radiat. Oncol. Biol. Phys, vol.58, issue.4, pp.1215-1227, 2004.

R. Van-der-meel, L. J. Vehmeijer, R. J. Kok, G. Storm, and E. V. Van-gaal, Ligand-Targeted Particulate Nanomedicines Undergoing Clinical Evaluation: Current Status

M. E. Davis, The First Targeted Delivery of SiRNA in Humans via a Self-Assembling, Cyclodextrin Polymer-Based Nanoparticle: From Concept to Clinic, Mol. Pharm, vol.6, issue.3, pp.659-668, 2009.

L. S. Nair and C. T. Laurencin, Biodegradable Polymers as Biomaterials. Prog. Polym. Sci, vol.32, issue.8-9, pp.762-798, 2007.

Z. Zhang, R. Kuijer, S. K. Bulstra, D. W. Grijpma, and J. Feijen, The in Vivo and in Vitro Degradation Behavior of Poly(Trimethylene Carbonate), Biomaterials, vol.27, issue.9, pp.1741-1748, 2006.

K. J. Zhu, R. W. Hendren, K. Jensen, and C. G. Pitt, Synthesis, Properties, and Biodegradation of Poly(1,3-Trimethylene Carbonate), Macromolecules, vol.24, issue.8, pp.1736-1740, 1991.

C. Sanson, J. L. Meins, C. Schatz, A. Soum, and S. Lecommandoux, Temperature Responsive Poly(Trimethylene Carbonate)-Block -Poly( l -Glutamic Acid) Copolymer : Polymersomes Fusion and Fission, Soft Matter, vol.6, issue.8, pp.1722-1730, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00653000

Y. Fang, W. Yang, L. Cheng, F. Meng, J. Zhang et al., EGFR-Targeted Multifunctional Polymersomal Doxorubicin Induces Selective and Potent Suppression of Orthotopic Human Liver Cancer in Vivo, Acta Biomater, vol.64, pp.323-333, 2017.

Y. Zou, F. Meng, C. Deng, and . Zhong, Tumor-Homing and Redox-Sensitive Polymersomal Doxorubicin: A Superior Alternative to Doxil and Caelyx?, J. Controlled Release, vol.239, pp.149-158, 2016.

X. Wang, Y. Yang, H. Jia, W. Jia, S. Miller et al., Peptide Decoration of Nanovehicles to Achieve Active Targeting and Pathology-Responsive Cellular Uptake for Bone Metastasis Chemotherapy, Biomater. Sci, vol.2014, issue.7, pp.961-971

X. Jiang, X. Sha, H. Xin, L. Chen, X. Gao et al., Self-Aggregated Pegylated Poly (Trimethylene Carbonate) Nanoparticles Decorated with c(RGDyK) Peptide for Targeted Paclitaxel Delivery to Integrin-Rich Tumors, Biomaterials, vol.32, issue.35, pp.9457-9469, 2011.

. Références,

F. Nederberg, B. G. Lohmeijer, F. Leibfarth, R. C. Pratt, J. Choi et al., Organocatalytic Ring Opening Polymerization of Trimethylene Carbonate, Biomacromolecules, vol.8, issue.1, pp.153-160, 2007.

M. Dionzou, A. Morère, C. Roux, B. Lonetti, J. Marty et al., Comparison of Methods for the Fabrication and the Characterization of Polymer Self-Assemblies: What Are the Important Parameters?, Soft Matter, vol.12, issue.7, pp.2166-2176, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01314955

D. E. Discher, F. Ahmed, and . Polymersomes, Annu. Rev. Biomed. Eng, vol.8, issue.1, pp.323-341, 2006.

C. Drappier, Auto-Assemblages Biofonctionnels à Base de Conjugués Polymère-b-Peptide, 2013.

J. M. Chan, X. Zhang, M. K. Brennan, H. Sardon, A. C. Engler et al., Organocatalytic Ring-Opening Polymerization of Trimethylene Carbonate To Yield a Biodegradable Polycarbonate, J. Chem. Educ, vol.92, issue.4, pp.708-713, 2015.

D. Delcroix, B. Martín-vaca, D. Bourissou, and C. Navarro, Ring-Opening Polymerization of Trimethylene Carbonate Catalyzed by Methanesulfonic Acid: Activated Monomer versus Active Chain End Mechanisms, Macromolecules, issue.21, pp.8828-8835, 2010.

S. H. Kim, G. N. Anilkumar, L. G. Zawacki, Q. Zeng, D. Yang et al., Identification of Novel CXCR3 Chemokine Receptor Antagonists with a Pyrazinyl-piperazinyl-piperidine Scaffold, Bioorg. Med. Chem. Lett, vol.21, issue.23, pp.6982-6986, 2011.

C. Jenh, M. A. Cox, L. Cui, E. Reich, L. Sullivan et al., A Selective and Potent CXCR3 Antagonist SCH 546738 Attenuates the Development of Autoimmune Diseases and Delays Graft Rejection, BMC Immunol, vol.2012, issue.1, pp.1-14

Y. Shao, G. N. Anilkumar, C. D. Carroll, G. Dong, J. W. Hall et al., SAR Studies of Pyridyl-piperazinyl-Piperidine Derivatives as CXCR3 Chemokine Antagonists, Bioorg. Med. Chem. Lett, vol.21, issue.5, pp.1527-1531, 2011.

Y. Ding, S. Fan, S. Li, B. Feng, N. Gao et al., Increasing the Depth of Mass-Spectrometry-Based Structural Analysis of Protein Complexes through the Use of Multiple Cross-Linkers, Anal. Chem, vol.88, issue.8, pp.4461-4469, 2016.

A. G. Montalbetti, C. Falque, and V. , Amide Bond Formation and Peptide Coupling, Tetrahedron, vol.61, pp.10827-10852, 2005.

A. Amine-to,

S. Han and Y. Kim, Recent Development of Peptide Coupling Reagents in Organic Synthesis, Tetrahedron, p.60, 2004.

D. L. Boger, S. Miyazaki, S. H. Kim, J. H. Wu, S. L. Castle et al., Total Synthesis of the Vancomycin Aglycon, J. Am. Chem. Soc, vol.121, issue.43, pp.10004-10011, 1999.

J. Nierengarten, J. Iehl, V. Oerthel, M. Holler, B. M. Illescas et al., Fullerene Sugar Balls. Chem. Commun, vol.46, issue.22, pp.3860-3862, 2010.

N. Alkayal, G. Zapsas, P. Bilalis, and N. Hadjichristidis, Self-Assembly Behavior of Well-Defined Polymethylene-Block -Poly(Ethylene Glycol) Copolymers in Aqueous Solution, Polymer, vol.107, pp.415-421, 2016.

. Références,

D. E. Discher and A. Eisenberg, Polymer Vesicles, Science, vol.297, issue.5583, pp.967-973, 2002.

D. E. Discher, F. Ahmed, and . Polymersomes, Annu. Rev. Biomed. Eng, vol.8, issue.1, pp.323-341, 2006.

Z. Li, D. Yuan, X. Fan, B. H. Tan, C. He et al., Ethylene Glycol) Conjugated Poly(Lactide)-Based Polyelectrolytes: Synthesis and Formation of Stable Self-Assemblies Induced by Stereocomplexation, Langmuir, issue.8, pp.2321-2333, 2015.

H. Shen and A. Eisenberg, Morphological Phase Diagram for a Ternary System of Block Copolymer PS 310 -b -PAA 52 /Dioxane/H 2 O, J. Phys. Chem. B, issue.44, pp.9473-9487, 1999.

S. Schubert, . Delaney, J. T. Jr, and U. S. Schubert, Nanoprecipitation and Nanoformulation of Polymers: From History to Powerful Possibilities beyond Poly(Lactic Acid), Soft Matter, vol.7, pp.1581-1588, 2011.

W. Burchard, Static and Dynamic Light Scattering from Branched Polymers and Biopolymers, Light Scattering from Polymers

H. Springer-berlin, , vol.48, pp.1-124, 1983.

J. Pánek, L. Loukotová, M. Hrubý, and P. ?t?pánek, Distribution of Diffusion Times Determined by Fluorescence (Lifetime) Correlation Spectroscopy, Macromolecules, vol.51, issue.8, pp.2796-2804, 2018.

+. Guinier, , 1955.

K. Letchford and H. Burt, A Review of the Formation and Classification of Amphiphilic Block Copolymer Nanoparticulate Structures: Micelles, Nanospheres, Nanocapsules and Polymersomes, Eur. J. Pharm. Biopharm, vol.65, issue.3, pp.259-269, 2007.

M. Dionzou, A. Morère, C. Roux, B. Lonetti, J. Marty et al., Comparison of Methods for the Fabrication and the Characterization of Polymer Self-Assemblies: What Are the Important Parameters?, Soft Matter, vol.12, issue.7, pp.2166-2176, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01314955

H. Bermudez, A. K. Brannan, D. A. Hammer, F. S. Bates, and D. E. Discher, Molecular Weight Dependence of Polymersome Membrane Structure, Elasticity, and Stability, Macromolecules, vol.35, issue.21, pp.8203-8208, 2002.

,. Le-meins, O. Sandre, and S. Lecommandoux, Recent Trends in the Tuning of Polymersomes' Membrane Properties, Eur. Phys. J. E, issue.2, p.34, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00677762

C. Sanson, C. Schatz, J. Le-meins, A. Brûlet, A. Soum et al., Trimethylene Carbonate)-b -Poly( L -Glutamic Acid) Polymersomes: Size Control and Stability, Langmuir, vol.2010, issue.4, pp.2751-2760
URL : https://hal.archives-ouvertes.fr/hal-00652991

K. Boyé, C. Billottet, N. Pujol, I. D. Alves, and A. Bikfalvi, Ligand Activation Induces Different Conformational Changes in CXCR3 Receptor Isoforms as Evidenced by Plasmon Waveguide Resonance (PWR), Sci. Rep, vol.2017, issue.1

A. Papagiannopoulos, Bovine Serum Albumin Interactions with Cationic Surfactant Vesicles Decorated by a Low-Molar-Mass Polysaccharide, Colloids Surf. Physicochem. Eng. Asp, vol.537, pp.495-501, 2018.

K. Nakai, K. Ishihara, M. Kappl, S. Fujii, Y. Nakamura et al., Polyion Complex Vesicles with Solvated Phosphobetaine Shells Formed from Oppositely Charged Diblock Copolymers, Polymers, vol.2017, issue.2, p.49

N. Alkayal, G. Zapsas, P. Bilalis, and N. Hadjichristidis, Self-Assembly Behavior of Well-Defined Polymethylene-Block -Poly(Ethylene Glycol) Copolymers in Aqueous Solution, Polymer, vol.107, pp.415-421, 2016.

, Matériel Les cellules HEK-293 et U87 ont été achetées chez American Type Culture Collection. Les anticorps primaires ont été commandés chez Cell Signaling. Les anticorps secondaires et le tampon de blocage (Odyssey ® Blocking Buffer (PBS)) ont été commandé chez Li-Cor ®

. Odyssey, PS372424) a été commandé chez Calbiochem. La Glycine, l'EDTA, l'acrylamide et le TRIS base ont été commandés chez EUROMEDEX

L. Le and S. , Dulbecco's Modified Eagle's Medium) viennent de chez Gibco ® . La Zeocin (100mg/mL) vient de chez Invitrogen et le G418 Disulfate Biochemica vient de chez PanReac AppliChem. Le kit de Flux calcique (Calcium Assay Kit -N°640176) a été acheté chez BD Biosciences. Le Glycerol, l'Accutase, le Triton X-100, le NaCl, le 2-mercaptoethanol, le TWEEN 20 ont été commandés chez SIGMA

. Biosolve, Les inhibiteurs de protéases (cOmplete Tablets, Mini) et de phosphatases (phosSTOP) ont été commandés chez Roche

. L. Vient-de-chez-chemcruz, B. Bradford-a-Été-commandé-chez, C. Basic, and . Inc, Le marqueur de masse moléculaire pour les électrophorèses (PageRuler -#26616) vient de chez ThermoScientific, Les membranes PVDF (Immobilon ® -P, 0,45 µm) viennent de chez Merck, et celles en nitrocellulose (BioTrace TM NT) viennent de chez PALL

, Les différentes lignées cellulaires (HEK-293 et U87) sont placées en culture dans du milieu complet (DMEM 4,5 g/L supplémenté par 10% de sérum de veau foetal

, HCl pH 7,4, 150 mM NaCl, 0,5% NP-40, 1% TritonX-100, 1mM EDTA, inhibiteurs de protéase et phosphatase) sont ajoutés. La concentration protéique est mesurée par un dosage de Bradford. Ensuite, 50 µg de protéines sont suspendues dans un tampon de

. Laemmli, 10% glycerol, 2,5% SDS, 2,5% ?-mercapto-ethanol) et placés à 100°C pendant 5 minutes. Les différents échantillons et le marqueur de taille sont déposés dans les puits d'un gel d'électrophorèse à 10% d'acrylamide, contenant du SDS. Après migration dans un présence de tampon de migration, vol.62, p.250

. Mm-glycine, Les gels sont transférés sur une membrane de PVDF ou nitrocellulose par électrotransfert à 100 Volts pendant 1h30, en présence de tampon de transfert (25 mM TRIS base, 250 mM Glycine, 0,1% SDS à 20%, 1L eau distillée). La membrane est ensuite saturée avec du tampon de blocage pendant 1

, Tween (1000 ième ), anticorps primaire Phospho-p44/42 MAPK (ERK1/2) (Mouse -1000 ième ) pour pERK ou p44-42 MAPK (ERK1/2) (Rabbit -250 ième ) pour TOTAL ERK) toute la nuit à 4°C. Après rinçages au TBS Tween, la solution contenant l'anticorps secondaire (tampon de blocage, heure, puis incubée avec la solution contenant l'anticorps primaire d'intérêt (Tampon de blocage, 1000.

, au TBS Tween et 2 rinçages au TBS, les membranes sont révélées grâce à l'appareil Odyssey

, LAB-TEK) à une densité de 30 000 cellules/puits. Après le temps souhaité, les puits sont lavés au PBS puis 200 µL de paraformaldéhyde sont ajoutés pendant 10 minutes. Les puits sont à nouveau lavés au PBS, puis la solution de DAPI (dilution au 2000 ième dans du PBS) est ajoutée pendant 10 minutes. Après lavages, les puits sont détachés et une lamelle est collée pour l, Analyse par microscopie confocale : Les cellules sont ensemencées dans des chambres de culture 8 puits posées sur une lame de microscopie en verre

, Sur une plaque 24 puits adaptées, les puits sont remplis de 750 µL de milieu zéro ainsi que 160 nM d'agoniste ou de DMSO pour les contrôles. Les inserts sont ensuite placés au-dessus

J. Vandercappellen, J. Van-damme, and S. Struyf, The Role of CXC Chemokines and Their Receptors in Cancer, Cancer Lett, vol.267, issue.2, pp.226-244, 2008.

C. Billottet, C. Quemener, and A. Bikfalvi, Tumor Progression and Angiogenesis, pp.287-295, 2013.

K. Boyé, N. Pujol, I. Alves, Y. Chen, T. Daubon et al., The Role of CXCR3/LRP1 Cross-Talk in the Invasion of Primary Brain Tumors, Nat. Commun, vol.2017, issue.1

W. N. Burnette, Western Blotting": Electrophoretic Transfer of Proteins from Sodium Dodecyl Sulfate-Polyacrylamide Gels to Unmodified Nitrocellulose and Radiographic Detection with Antibody and Radioiodinated Protein A, Anal. Biochem, vol.112, issue.2, pp.195-203, 1981.

, Techniques/Marquages et dosages : l'immunomarquage, vol.23, 2018.

. Cours-de-cytométrie, Feb, vol.23, 2018.

A. Chang, Technique: Chemotaxis Revisited -the Boyden Chamber Assay. makingbones, 2013.

, Confocal Laser Scanning Microscopy Microscope System Confocal Laser Scanning Microscopy I An Overview Of Principle And Practice In Biomedical Research -Donnasdiscountdeals

K. Boyé, Implication de CXCR3 dans la progression tumorale : une nouvelle cible thérapeutique. phdthesis, 2016.

C. J. Hu, L. Zhang, S. Aryal, C. Cheung, R. H. Fang et al., Erythrocyte Membrane-Camouflaged Polymeric Nanoparticles as a Biomimetic Delivery Platform, Proc. Natl. Acad. Sci, vol.108, pp.10980-10985, 2011.

W. Cho, M. Cho, J. Jeong, M. Choi, H. Cho et al., Acute Toxicity and Pharmacokinetics of 13 Nm-Sized PEG-Coated Gold Nanoparticles, Toxicol. Appl. Pharmacol, vol.236, issue.1, pp.16-24, 2009.