W. S. Price, Annu. Re

C. H. Tseng, G. P. Hoffmann, and R. E. Sto-walsworth, Phys. Rev

G. Walker and W. Hap,

M. P. Augustine, A. M. Tonthat, and J. Cl,

Y. Song and B. M. Goods,

.. S. Ya and . Greenberg,

H. C. Seton and J. M. Supercond, , vol.7, p.1

S. Kumar, R. Matthew-rozen, and S. L. Brown,

F. Ludwig, E. Drung, H. Koch, and N. , , 14181995.

T. S. Lee and E. Dantsker,

D. Drung, R. Cantor, and . Lett, , vol.57, p.1990

K. Schlenga, R. E. De, and J. Clarke,

R. E. Souza, K. Sch, and J. Clarke, J. Brazilian

M. Packard and R. Va,

A. Mohori? and J. Stepi?n,

K. Jain, Fundamentals Jersey, 1989.

F. Ludwig, E. Nemeth, J. Clarke, and D. Supercond, , p.1

D. Drung, F. Ludwig, W. B. Jensen, P. Vase, and T. , , vol.68, 14211996.

A. Abragam and P. York, , 1989.

G. I. Ogbole, A. O. Adeyomoye, A. Badu-peprah, Y. Mensah, and D. A. Nzeh, Survey of magnetic resonance imaging availability in west africa, Pan African Medical Journal, vol.30, issue.240, 2018.

B. Detournay and L. Courouve, Les insuffisances en matiere d'equipements d'imagerie medicale en france : Etude sur les delais d'attente pour un rendez-vous irm en 2017, CEMKA-EVAL, pp.7-9, 2017.

S. H. Koenig and R. D. Brown, Determinants of proton relaxation rates in tissue, Magnetic Resonance in Medicine, vol.1, issue.4, pp.437-449, 1984.

A. Macovski and S. Conolly, Novel approaches to low-cost MRI, Magnetic Resonance in Medicine, vol.30, issue.2, pp.221-230, 1993.

F. Noack, NMR field-cycling spectroscopy : principles and applications, Progress in Nuclear Magnetic Resonance Spectroscopy, vol.18, issue.3, pp.171-276, 1986.

E. Anoardo, G. Galli, and G. Ferrante, Fast-field-cycling NMR : Applications and instrumentation, Applied Magnetic Resonance, vol.20, issue.3, pp.365-404, 2001.

G. Ferrante and S. Sykora, Technical aspects of fast field cycling, Advances in Inorganic Chemistry, vol.57, pp.405-470, 2005.

D. J. Lurie, S. Aime, S. Baroni, N. A. Booth, L. M. Broche et al., Fast field-cycling magnetic resonance imaging, Comptes Rendus Physique, vol.11, issue.2, pp.136-148, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02156851

R. Kimmich, Field-cycling NMR Relaxometry, ser. New Developments in NMR, 2018.

N. Matter, G. Scott, T. Grafendorfer, A. Macovski, and S. Conolly, Rapid polarizing field cycling in magnetic resonance imaging, IEEE Transactions on Medical Imaging, vol.25, issue.1, pp.84-93, 2006.

N. I. Matter, G. C. Scott, R. D. Venook, S. E. Ungersma, T. Grafendorfer et al., Three-dimensional prepolarized magnetic resonance imaging using rapid acquisition with relaxation enhancement, Magnetic Resonance in Medicine, vol.56, issue.5, pp.1085-1095, 2006.

A. Macovski, MRI : A charmed past and an exciting future, Journal of Magnetic Resonance Imaging, vol.30, issue.5, pp.919-923, 2009.

R. D. Venook, N. I. Matter, M. Ramachandran, S. E. Ungersma, G. E. Gold et al., Prepolarized magnetic resonance imaging around metal orthopedic implants, Magnetic Resonance in Medicine, vol.56, issue.1, pp.177-186, 2006.

C. Kegler, H. Seton, and J. Hutchison, Prepolarized fast spin-echo pulse sequence for low-field MRI, Magnetic Resonance in Medicine, vol.57, issue.6, pp.1180-1184, 2007.

H. Mehier, M. Maurice, J. P. Bonche, G. Jacquemod, C. Desuzinges et al., Imagerie par resonance magnetique nucleaire en champ tres faible, J. Biophys. Biomed, vol.9, p.198, 1985.

B. Favre, J. P. Bonche, H. Mehier, and J. O. Peyrin, Environmental optimization and shielding for nmr experiments and imaging in the earth's magnetic field, Magnetic Resonance in Medicine, vol.13, issue.2, pp.299-304, 1990.

J. Stepi?nik, V. Er?en, and M. Kos, NMR imaging in the earth's magnetic field, Magnetic Resonance in Medicine, vol.15, pp.386-391, 1990.

A. Mohori?, J. Stepi?nik, M. Kos, and G. Planin?i?, Self-diffusion imaging by spin echo in Earth's magnetic field, Journal of Magnetic Resonance, vol.136, issue.1, pp.22-26, 1999.

A. Mohori?, G. Planin?i?, M. Kos, A. Duh, and J. Stepi?nik, Magnetic resonance imaging system based on Earth's magnetic field, Instrumentation Science & Technology, vol.32, issue.6, pp.655-667, 2004.

M. E. Halse, A. Coy, R. Dykstra, C. Eccles, M. Hunter et al., A practical and flexible implementation of 3D MRI in the Earth's magnetic field, Journal of Magnetic Resonance, vol.182, issue.1, pp.75-83, 2006.

, Guidelines for limiting exposure to time-varying electric and magnetic fields (1hz to 100 Khz) : Erratum, Health Physics, vol.99, issue.6, pp.818-836, 2010.

, safety-guidelines-for-magnetic-resonance-imaging-equipment-in-clinical-use, pp.10-15, 2015.

E. B. Adamson, K. D. Ludwig, D. G. Mummy, and S. B. Fain, Magnetic resonance imaging with hyperpolarized agents : methods and applications, Physics in Medicine and Biology, vol.62, issue.13, pp.81-123, 2017.

T. R. Gentile, P. J. Nacher, B. Saam, and T. G. Walker, Optically polarized 3 He, Reviews of Modern Physics, vol.89, issue.4, p.45004, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01662204

K. Mentore, D. K. Froh, E. E. De-lange, J. R. Brookeman, A. O. Paget-brown et al., Hyperpolarized HHe 3 MRI of the lung in cystic fibrosis : Assessment at baseline and after bronchodilator and airway clearance treatment, Academic Radiology, vol.12, issue.11, pp.1423-1429, 2005.

K. Mosbah, V. Stupar, Y. Berthezène, N. Beckmann, and Y. Crémillieux, Spatially resolved assessment of serotonin-induced bronchoconstrictive responses in the rat lung using 3 He ventilation MRI under spontaneous breathing conditions, Magnetic Resonance in Medicine, vol.63, issue.6, pp.1669-1674, 2010.

S. J. Kruger, D. J. Niles, B. Dardzinski, A. Harman, N. N. Jarjour et al., Hyperpolarized helium-3 MRI of exercise-induced bronchoconstriction during challenge and therapy, Journal of Magnetic Resonance Imaging, vol.39, issue.5, pp.1230-1237, 2014.

B. Driehuys, H. E. Möller, Z. I. Cleveland, J. Pollaro, and L. W. Hedlund, Pulmonary perfusion and xenon gas exchange in rats : MR imaging with intravenous injection of hyperpolarized 129 Xe, Radiology, vol.252, issue.2, pp.386-93, 2009.

S. S. Kaushik, Z. I. Cleveland, G. P. Cofer, G. Metz, D. Beaver et al., Diffusion-weighted hyperpolarized 129 Xe MRI in healthy volunteers and subjects with chronic obstructive pulmonary disease, Magnetic Resonance in Medicine, vol.65, issue.4, pp.1154-1165, 2011.

A. Abragam and M. Goldman, Principles of dynamic nuclear polarisation, Reports on Progress in Physics, vol.41, issue.3, pp.395-467, 1978.

T. Maly, G. T. Debelouchina, V. S. Bajaj, K. Hu, C. Joo et al., Dynamic nuclear polarization at high magnetic fields, The Journal of Chemical Physics, vol.128, issue.5, p.52211, 2008.

J. H. Ardenkjaer-larsen, B. Fridlund, A. Gram, G. Hansson, L. Hansson et al., Increase in signal-to-noise ratio of > 10,000 times in liquid-state NMR, Proceedings of the National Academy of Sciences of the United States of America, vol.100, issue.18, pp.10-158, 2003.

J. H. Ardenkjaer-larsen, On the present and future of dissolution-dnp, Journal of Magnetic Resonance, vol.264, pp.3-12, 2016.

S. Siddiqui, S. Kadlecek, M. Pourfathi, Y. Xin, W. Mannherz et al., The use of hyperpolarized carbon-13 magnetic resonance for molecular imaging, Advanced Drug Delivery Reviews, vol.113, pp.3-23, 2017.

C. Laustsen, J. A. Østergaard, M. H. Lauritzen, R. Nørregaard, S. Bowen et al., Assessment of early diabetic renal changes with hyperpolarized [1-13 c]pyruvate, Diabetes/Metabolism Research and Reviews, vol.29, issue.2, pp.125-129, 2013.

J. J. Miller, A. Z. Lau, I. Teh, J. E. Schneider, P. Kinchesh et al., Robust and high resolution hyperpolarized metabolic imaging of the rat heart at 7 T with 3d spectral-spatial EPI, Magnetic Resonance in Medicine, vol.75, issue.4, pp.1515-1524, 2016.

C. Von-morze, R. A. Bok, G. D. Reed, J. H. Ardenkjaer-larsen, J. Kurhanewicz et al., Simultaneous multiagent hyperpolarized 13 c perfusion imaging, Magnetic Resonance in Medicine, vol.72, issue.6, pp.1599-1609, 2014.

D. M. Wilson and J. Kurhanewicz, Hyperpolarized 13c mr for molecular imaging of prostate cancer, Society of Nuclear Medicine, vol.55, issue.10, pp.1567-72, 2014.

J. Natterer and J. Bargon, Parahydrogen induced polarization, Progress in Nuclear Magnetic Resonance Spectroscopy, vol.31, issue.4, pp.293-315, 1997.

R. A. Green, R. W. Adams, S. B. Duckett, R. E. Mewis, D. C. Williamson et al., The theory and practice of hyperpolarization in magnetic resonance using parahydrogen, Progress in Nuclear Magnetic Resonance Spectroscopy, vol.67, pp.1-48, 2012.

M. L. Hirsch, N. Kalechofsky, A. Belzer, M. Rosay, and J. G. Kempf, Brute-force hyperpolarization for NMR and MRI, Journal of the American Chemical Society, vol.137, issue.26, pp.8428-8434, 2015.

N. Koonjoo, E. Parzy, P. Massot, M. Lepetit-coiffé, S. R. Marque et al., In vivo overhauser-enhanced MRI of proteolytic activity, Contrast Media & Molecular Imaging, vol.9, issue.5, pp.363-371, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01460523

S. Matsumoto, H. Yasui, S. Batra, Y. Kinoshita, M. Bernardo et al., Simultaneous imaging of tumor oxygenation and microvascular permeability using overhauser enhanced MRI, Proceedings of the National Academy of Sciences of the United States of America, vol.106, issue.42, pp.17-898, 2009.

D. I. Potapenko, M. A. Foster, D. J. Lurie, I. A. Kirilyuk, J. M. Hutchison et al., Real-time monitoring of drug-induced changes in the stomach acidity of living rats using improved ph-sensitive nitroxides and low-field epr techniques, Journal of Magnetic Resonance, vol.182, issue.1, pp.1-11, 2006.

O. V. Efimova, Z. Sun, S. Petryakov, E. Kesselring, G. L. Caia et al., Variable radio frequency proton-electron double-resonance imaging : Application to ph mapping of aqueous samples, Journal of Magnetic Resonance, vol.209, issue.2, pp.227-232, 2011.

W. Takahashi, A. A. Bobko, I. Dhimitruka, H. Hirata, J. L. Zweier et al., Proton-electron double-resonance imaging of ph using phosphonated trityl probe, Applied Magnetic Resonance, vol.45, issue.9, pp.817-826, 2014.

K. Golman, J. S. Petersson, J. Ardenkjaer-larsen, I. Leunbach, L. Wistrand et al., Dynamic in vivo oxymetry using overhauser enhanced MR imaging, Journal of Magnetic Resonance Imaging, vol.12, issue.6, pp.929-938, 2000.

V. S. Zotev, T. Owens, A. N. Matlashov, I. M. Savukov, J. J. Gomez et al., Microtesla MRI with dynamic nuclear polarization, Journal of Magnetic Resonance, vol.207, issue.1, pp.78-88, 2010.

E. Parzy, V. Bouchaud, P. Massot, P. Voisin, N. Koonjoo et al., Overhauser-enhanced MRI of elastase activity from in vitro human neutrophil degranulation, PLoS ONE, vol.8, issue.2, p.57946, 2013.

P. Massot, E. Parzy, L. Pourtau, P. Mellet, G. Madelin et al., In vivo high-resolution 3D overhauser-enhanced MRI in mice at 0.2 t, Contrast Media & Molecular Imaging, vol.7, issue.1, pp.45-50, 2012.

D. I. Hoult and R. E. Richards, The signal-to-noise ratio of the nuclear magnetic resonance experiment, Journal of Magnetic Resonance, vol.24, issue.1, pp.71-85, 1969.

C. Fermon and M. Pannetier-lecoeur, Électronique de spin et capteurs magnétiques, pp.8-11, 2010.

O. Mukhanov, G. Prokopenko, and R. Romanofsky, Quantum sensitivity : Superconducting quantum interference filter-based microwave receivers, IEEE Microwave Magazine, vol.15, issue.6, pp.57-65, 2014.

, Barkhausenweg 11, pp.20-30, 2018.

M. I. Faley, U. Poppe, R. E. Dunin-borkowski, M. Schiek, F. Boers et al., High-T c DC SQUIDs for magnetoencephalography, IEEE Transactions on Applied Superconductivity, vol.23, issue.3, p.1600705, 2013.

L. Darrasse and J. C. Ginefri, Perspectives with cryogenic RF probes in biomedical MRI, Biochimie, vol.85, issue.9, pp.915-937, 2003.

, 34, rue de l'industrie, 67166 Wissembourg Cédex, pp.26-28

R. D. Black, P. B. Roemer, A. Mogro-campero, L. G. Turner, and K. W. Rohling, High temperature superconducting resonator for use in nuclear magnetic resonance microscopy, Applied Physics Letters, vol.62, issue.7, p.771, 1993.

R. Withers, G. Liang, B. Cole, and M. Johansson, Thin-film HTS probe coils for magneticresonance imaging, IEEE Transactions on Applied Superconductivity, vol.3, issue.1, pp.2450-2453, 1993.

A. S. Hall, B. Barnard, P. Mcarthur, D. J. Gilderdale, I. R. Young et al., Investigation of a whole-body receiver coil operating at liquid nitrogen temperatures, Magnetic Resonance in Medicine, vol.7, issue.2, pp.230-235, 1988.

A. S. Hall, N. M. Alford, T. W. Button, D. J. Gilderdale, K. A. Gehring et al., Use of high temperature superconductor in a receiver coil for magnetic resonance imaging, Magnetic Resonance in Medicine, vol.20, issue.2, pp.340-343, 1991.

P. Styles, N. F. Soffe, and C. A. Scott, An improved cryogenically cooled probe for high-resolution NMR, Journal of Magnetic Resonance, vol.84, issue.2, pp.376-378, 1969.

J. G. Bednorz and K. A. Müller, Possible high T c superconductivity in the Ba-La-Cu-O system, Zeitschrift für Physik B Condensed Matter, vol.64, issue.2, pp.189-193, 1986.

A. T. De-waele, Basic operation of cryocoolers and related thermal machines, Journal of Low Temperature Physics, vol.164, issue.5-6, pp.179-236, 2011.

, 113 Falso Drive, pp.28-30

, RICOR -Cryogenic & Vacuum Systems, pp.8-11

R. L. Fagaly, Superconducting quantum interference device instruments and applications, Review of scientific instruments, vol.77, issue.10, p.101101, 2006.

B. D. Josephson, Possible new effects in superconductive tunnelling, Physics Letters, vol.1, issue.7, pp.251-253, 1962.

, The SQUID Handbook : Vol. I Fundamentals and Technology of SQUIDs and SQUID Systems, 2004.

, An der Lehmgrube 11,07751 Jena Allemagne, pp.28-30

Y. S. Greenberg, Application of superconducting quantum interference devices to nuclear magnetic resonance, Reviews of Modern Physics, vol.70, issue.1, pp.175-222, 1998.

R. Mcdermott, A. H. Trabesinger, M. Muck, E. L. Hahn, A. Pines et al., Liquid-state NMR and scalar couplings in microtesla magnetic fields, Science, vol.295, issue.5563, pp.2247-2256, 2002.

A. N. Matlachov, P. L. Volegov, M. A. Espy, J. S. George, and R. H. Kraus, SQUID detected NMR in microtesla magnetic fields, Journal of Magnetic Resonance, vol.170, issue.1, pp.1-7, 2004.

M. Mössle, W. Myers, S. Lee, N. Kelso, M. Hatridge et al., SQUID-detected in vivo MRI at microtesla magnetic fields, IEEE Transactions on Applied Superconductivity, vol.15, issue.2, pp.757-760, 2005.

V. S. Zotev, A. N. Matlashov, P. L. Volegov, A. V. Urbaitis, M. A. Espy et al., SQUID-based instrumentation for ultralow-field MRI, Superconductor Science and Technology, vol.20, issue.11, pp.367-373, 2007.

M. Espy, M. Flynn, J. Gomez, C. Hanson, R. Kraus et al., Ultra-low-field MRI for the detection of liquid explosives, Superconductor Science and Technology, vol.23, issue.3, p.34023, 2010.

M. Espy, A. Matlashov, and P. Volegov, SQUID-detected ultra-low field MRI, Journal of Magnetic Resonance, vol.229, pp.127-141, 2013.

A. Matlashov, E. Burmistrov, P. Magnelind, L. Schultz, A. Urbaitis et al., SQUID-based systems for co-registration of ultra-low field nuclear magnetic resonance images and magnetoencephalography, Physica C : Superconductivity and its Applications, vol.482, pp.19-26, 2012.

H. C. Seton, J. M. Hutchison, and D. M. Bussell, A 4.2 K receiver coil and SQUID amplifier used to improve the SNR of low-field magnetic resonance images of the human arm, Measurement Science and Technology, vol.8, issue.2, pp.198-207, 1997.

R. Mcdermott, S. Lee, B. Haken, A. H. Trabesinger, A. Pines et al., Microtesla MRI with a superconducting quantum interference device, Proceedings of the National Academy of Sciences of the United States of America, vol.101, issue.21, pp.7857-61, 2004.

R. Mcdermott, N. Kelso, S. Lee, M. Mössle, M. Mück et al., SQUID-detected magnetic resonance imaging in microtesla magnetic fields, Journal of Low Temperature Physics, vol.135, issue.5-6, pp.793-821, 2004.

V. S. Zotev, A. N. Matlashov, P. L. Volegov, I. M. Savukov, M. A. Espy et al., Microtesla MRI of the human brain combined with meg, Journal of magnetic resonance, vol.194, issue.1, pp.115-135, 1997.

P. T. Vesanen, J. O. Nieminen, K. C. Zevenhoven, J. Dabek, L. T. Parkkonen et al., Hybrid ultra-low-field MRI and magnetoencephalography system based on a commercial wholehead neuromagnetometer, Magnetic Resonance in Medicine, vol.69, issue.6, pp.1795-1804, 2013.

D. Drung, C. Assmann, J. Beyer, M. Peters, F. Ruede et al., dc SQUID readout electronics with up to 100 MHz closed-loop bandwidth, IEEE Transactions on Applied Superconductivity, vol.15, issue.2, pp.777-780, 2005.

S. Henry, E. Di-borgo, and A. Cavaillou, Tracking geomagnetic fluctuations to picotesla accuracy using two superconducting quantum interference device vector magnetometers, Review of Scientific Instruments, vol.84, issue.2, p.24501, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01317675

M. Schneider, S. Linzen, M. Schiffler, E. Pohl, B. Ahrens et al., Inversion of geo-magnetic SQUID gradiometer prospection data using polyhedral model interpretation of elongated anomalies, IEEE Transactions on Magnetics, vol.50, issue.11, pp.1-4, 2014.

H. Meyer, R. Stolz, A. Chwala, and M. Schulz, SQUID technology for geophysical exploration, physica status solidi (c), vol.2, issue.5, pp.1504-1509, 2005.

A. Chwala, J. P. Smit, R. Stolz, V. Zakosarenko, M. Schmelz et al., Low temperature SQUID magnetometer systems for geophysical exploration with transient electromagnetics, Superconductor Science and Technology, vol.24, issue.12, p.125006, 2011.

M. I. Faley, J. Dammers, Y. V. Maslennikov, J. F. Schneiderman, D. Winkler et al., High-T c SQUID biomagnetometers, Superconductor Science and Technology, vol.30, issue.8, p.83001, 2017.

H. Koch, R. Cantor, D. Drung, S. Erne, K. Matthies et al., A 37 channel DC SQUID magnetometer system, IEEE Transactions on Magnetics, vol.27, issue.2, pp.2793-2796, 1991.

H. Koch, SQUID magnetocardiography : status and perspectives, IEEE Transactions on Applied Superconductivity, vol.11, issue.1, pp.49-59, 2001.

Y. Lee and K. Kim, Instrumentation for measuring meg signals, Magnetoencephalography : From Signals to Dynamic Cortical Networks, pp.3-33, 2014.

, The SQUID Handbook : Vol. II Applications of SQUIDs and SQUID Systems, 2006.

J. Clarke, M. Hatridge, and M. Mössle, SQUID-detected magnetic resonance imaging in microtesla fields, Annual Review of Biomedical Engineering, vol.9, issue.1, pp.389-413, 2007.

L. Trahms and M. Burghoff, NMR at very low fields, Magnetic Resonance Imaging, vol.28, issue.8, pp.1244-1250, 2010.

, RUAG Holding AG, Stauffacherstrasse 65, vol.3000, pp.10-15

W. P. Halperin, The impact of helium shortages on basic research, Nature Physics, vol.10, issue.7, pp.467-470, 2014.

K. Schlenga, R. Mcdermott, J. Clarke, R. E. Souza, A. Wong-foy et al., Low-field magnetic resonance imaging with a high-T c dc superconducting quantum interference device, Applied Physics Letters, vol.75, issue.23, pp.3695-3697, 1999.

S. Kumar, R. Matthews, S. G. Haupt, D. K. Lathrop, M. Takigawa et al., Nuclear magnetic resonance using a high temperature superconducting quantum interference device, Applied Physics Letters, vol.70, issue.8, pp.1037-1039, 1997.

H. Chen, H. Yang, H. Horng, S. Liao, S. Yueh et al., A compact SQUIDdetected magnetic resonance imaging system under microtesla field in a magnetically unshielded environment, Journal of Applied Physics, vol.110, issue.9, p.93903, 2011.

J. Oppenländer, C. Häussler, and N. Schopohl, Non-? 0 -periodic macroscopic quantum interference in one-dimensional parallel Josephson junction arrays with unconventional grating structure, Physical Review B, vol.63, issue.2, p.24511, 2000.

C. Häussler, J. Oppenländer, and N. Schopohl, Nonperiodic flux to voltage conversion of series arrays of dc superconducting quantum interference devices, Journal of Applied Physics, vol.89, issue.3, pp.1875-1879, 2001.

C. Häussler, T. Träuble, J. Oppenländer, and N. Schopohl, LC-Resonant voltage response of superconducting quantum interference filters, IEEE Transactions on Applied Superconductivity, vol.11, issue.1, pp.1275-1278, 2001.

J. Oppenländer, T. Träuble, C. Häussler, and N. Schopohl, Superconducting multiple loop quantum interferometers, IEEE Transactions on Applied Superconductivity, vol.11, issue.1, pp.1271-1274, 2001.

J. Oppenländer, C. Häussler, T. Träuble, and N. Schopohl, Highly sensitive magnetometers for absolute magnetic field measurements based on quantum interference filters, Physica C : Superconductivity, vol.368, issue.1-4, pp.119-124, 2002.

J. Oppenländer, P. Caputo, C. Häussler, T. Träuble, J. Tomes et al., Effects of magnetic field on two-dimensional superconducting quantum interference filters, Applied Physics Letters, vol.83, issue.5, pp.969-971, 2003.

P. Carelli, M. G. Castellano, K. Flacco, R. Leoni, and G. Torrioli, An absolute magnetometer based on dc superconducting quantum interference devices, Europhysics Letters, vol.39, issue.5, p.569, 1997.

V. Schultze, R. Ijsselsteijn, H. Meyer, J. Oppenländer, C. Häussler et al., High-T c superconducting quantum interference filters for sensitive magnetometers, IEEE Transactions on Applied Superconductivity, vol.13, issue.2, pp.775-778, 2003.

P. Caputo, J. Oppenländer, C. Häussler, J. Tomes, A. Friesch et al., Highperformance magnetic field sensor based on superconducting quantum interference filters, Applied Physics Letters, vol.85, issue.8, pp.1389-1391, 2004.

P. Caputo, J. Tomes, J. Oppenländer, C. Häussler, A. Friesch et al., Superconducting quantum interference filters as absolute magnetic field sensors, IEEE Transactions on Applied Superconductivity, vol.15, issue.2, pp.1044-1047, 2005.

V. Schultze, R. Ijsselsteijn, and H. Meyer, How to puzzle out a good high-T c superconducting quantum interference filter, Superconductor Science and Technology, vol.19, issue.5, pp.411-415, 2006.

Y. A. Polyakov, V. K. Semenov, and S. K. Tolpygo, 3D active demagnetization of cold magnetic shields, IEEE Transactions on Applied Superconductivity, vol.21, issue.3, pp.724-727, 2011.

P. Caputo, J. Tomes, J. Oppenländer, C. Häussler, A. Friesch et al., Quadratic mixing of radio frequency signals using superconducting quantum interference filters, Applied Physics Letters, vol.89, issue.6, p.62507, 2006.

, Two-tone response of radiofrequency signals using the voltage output of a superconducting quantum interference filter, Journal of Superconductivity and Novel Magnetism, vol.20, issue.1, pp.25-30, 2007.

A. V. Shadrin, K. Y. Constantinian, and G. A. Ovsyannikov, Quantum interference filters based on oxide superconductor junctions for microwave applications, Technical Physics Letters, vol.33, issue.3, pp.192-195, 2007.

A. K. Kalabukhov, M. L. Chukharkin, A. A. Deleniv, D. Winkler, I. A. Volkov et al., Analysis of the possibility to amplify an RF signal with a superconducting quantum interference filter, Journal of Communications Technology and Electronics, vol.53, issue.8, pp.934-940, 2008.

P. Caputo, J. Tomes, J. Oppenländer, C. Häussler, A. Friesch et al., Twotone response in superconducting quantum interference filters, IEEE Transactions on Applied Superconductivity, vol.17, issue.2, pp.722-725, 2007.

V. K. Kornev, I. I. Soloviev, N. V. Klenov, T. V. Filippov, H. Engseth et al., Performance advantages and design issues of SQIFs for microwave applications, IEEE Transactions on Applied Superconductivity, vol.19, issue.3, pp.916-919, 2009.

V. K. Kornev, I. I. Soloviev, N. V. Klenov, A. V. Sharafiev, and O. A. Mukhanov, Linear bi-SQUID arrays for electrically small antennas, IEEE Transactions on Applied Superconductivity, vol.21, issue.3, pp.713-716, 2011.

J. Oppenländer, C. Häussler, T. Träuble, P. Caputo, J. Tomes et al., Two dimensional superconducting quantum interference filters, IEEE Transactions on Applied Superconductivity, vol.13, issue.2, pp.771-774, 2003.

S. Ouanani, J. Kermorvant, C. Ulysse, M. Malnou, Y. Lemaître et al., High-T c superconducting quantum interference filters (SQIFs) made by ion irradiation, Superconductor science and technology, vol.29, p.94002, 2016.

S. A. Cybart, E. Y. Cho, T. J. Wong, V. N. Glyantsev, J. U. Huh et al., Large voltage modulation in magnetic field sensors from two-dimensional arrays of YBa 2 Cu 3 O 7-? nano Josephson junctions, Applied Physics Letters, vol.104, issue.6, p.62601, 2014.

E. E. Mitchell, K. E. Hannam, J. Lazar, K. E. Leslie, C. J. Lewis et al., 2D SQIF arrays using 20 000 YBCO high R n Josephson junctions, Superconductor Science and Technology, vol.29, issue.6, pp.6-7, 2016.

V. K. Kornev, I. I. Soloviev, N. V. Klenov, and O. A. Mukhanov, Synthesis of high-linearity array structures, Superconductor Science and Technology, vol.20, issue.11, pp.362-366, 2007.

V. Kornev, I. Soloviev, N. Klenov, and O. Mukhanov, High linearity SQIF-like Josephson-junction structures, IEEE Transactions on Applied Superconductivity, vol.19, issue.3, pp.741-744, 2009.

V. K. Kornev, I. I. Soloviev, N. V. Klenov, and O. A. Mukhanov, Bi-SQUID : a novel linearization method for dc SQUID voltage response, Superconductor Science and Technology, vol.22, issue.11, p.114011, 2009.

J. Oppenländer, C. Häussler, A. Friesch, J. Tomes, P. Caputo et al., Superconducting quantum interference filters operated in commercial miniature cryocoolers, IEEE Transactions on Applied Superconductivity, vol.15, issue.2, pp.936-939, 2005.

P. W. Anderson and J. M. Rowell, Probable observation of the Josephson superconducting tunneling effect, Physical Review Letters, vol.10, issue.6, p.230, 1963.

M. Tinkham, Introduction to Superconductivity, 2004.

H. Weinstock, SQUID Sensors : Fundamentals, Fabrication and Applications, vol.329, 1996.

A. Barone and G. Paterno, Physics and applications of the Josephson effect, 1982.

R. De-bruyn and . Ouboter, Heike Kamerlingh onnes's discovery of superconductivity, Scientific American, vol.276, issue.3, pp.98-103, 1997.

H. K. Onnes, The resistance of pure mercury at helium temperatures, Communications from the Physical Laboratory at the University of Leiden Supplement, vol.120, p.29, 1911.

I. Giaever, A dc transformer, IEEE Spectrum, vol.3, issue.9, pp.117-122, 1966.

H. F. Hess, R. B. Robinson, R. C. Dynes, J. M. Valles, and J. V. Waszczak, Scanning-tunnelingmicroscope observation of the Abrikosov flux lattice and the density of states near and inside a fluxoid, Physical Review Letters, vol.62, issue.2, pp.214-216, 1989.

E. Zeldov, A. I. Larkin, V. B. Geshkenbein, M. Konczykowski, D. Majer et al., Geometrical barriers in high-temperature superconductors, Physical Review Letters, vol.73, issue.10, p.1428, 1994.

K. H. Kuit, J. R. Kirtley, W. Van-der-veur, C. G. Molenaar, F. J. Roesthuis et al., Vortex trapping and expulsion in thinfilm YBa 2 Cu 3 O 7-? strips, Physical Review B, vol.77, issue.13, p.134504, 2008.

D. E. Mccumber, Effect of ac impedance on dc voltage-current characteristics of superconductor weak-link junctions, Journal of Applied Physics, vol.39, issue.7, pp.3113-3118, 1968.

R. C. Jaklevic, J. Lambe, A. H. Silver, and J. E. Mercereau, Quantum interference effects in Josephson tunneling, Physical Review Letters, vol.12, issue.7, pp.159-160, 1964.

A. De-waele, R. De-bruyn, and . Ouboter, On the critical current through a symmetrical double contact between two superconductors as a function of the applied magnetic field, Physica, vol.42, issue.4, pp.626-632, 1969.

J. Clarke and R. H. Koch, The impact of high-temperature superconductivity on SQUID magnetometers, Science, vol.242, issue.4876, pp.217-223, 1988.

E. Dantsker, S. Tanaka, P. Nilsson, R. Kleiner, and J. Clarke, Reduction of 1/f noise in high-T c dc superconducting quantum interference devices cooled in an ambient magnetic field, Applied Physics Letters, vol.69, issue.26, p.4099, 1996.

E. Dantsker, S. Tanaka, and J. Clarke, High-T c super conducting quantum interference devices with slots or holes : Low 1/f noise in ambient magnetic fields, Applied Physics Letters, vol.70, issue.15, p.2037, 1997.

M. Ketchen, DC SQUIDs 1980 : The state of the art, IEEE Transactions on Magnetics, vol.17, issue.1, pp.387-394, 1981.

, Integrated thin-film dc SQUID sensors, IEEE Transactions on Magnetics, vol.23, issue.2, pp.1650-1657, 1987.

, Design considerations for DC SQUIDs fabricated in deep sub-micron technology, IEEE Transactions on Magnetics, vol.27, issue.2, pp.2916-2919, 1991.

D. Koelle, R. Kleiner, F. Ludwig, E. Dantsker, and J. Clarke, High-transition-temperature superconducting quantum interference devices, Reviews of Modern Physics, vol.71, issue.3, pp.631-686, 1999.

D. Drung, High-T c and low-T c dc SQUID electronics, Superconductor Science and Technology, vol.16, issue.12, pp.1320-1336, 2003.

K. Stawiasz and M. Ketchen, Noise measurements of series SQUID arrays, IEEE Transactions on Applied Superconductivity, vol.3, issue.1, pp.1808-1811, 1993.

V. Schultze, R. Ijsselsteijn, T. May, and H. Meyer, Highly balanced single-layer hightemperature superconductor SQUID gradiometer freely movable within the Earth's magnetic field, Superconductor Science and Technology, vol.16, issue.7, pp.773-777, 2003.

V. K. Kornev, I. I. Soloviev, A. V. Sharafiev, N. V. Klenov, and O. A. Mukhanov, Active electrically small antenna based on superconducting quantum array, IEEE Transactions on Applied Superconductivity, vol.23, issue.3, p.1800405, 2013.

V. K. Kornev, I. I. Soloviev, N. V. Klenov, and O. A. Mukhanov, Design and experimental evaluation of SQIF arrays with linear voltage response, IEEE Transactions on Applied Superconductivity, vol.21, issue.3, pp.394-398, 2011.

G. V. Prokopenko, O. A. Mukhanov, A. L. De-escobar, B. Taylor, M. C. De-andrade et al., DC and RF measurements of serial bi-SQUID arrays, IEEE Transactions on Applied Superconductivity, vol.23, issue.3, p.1400607, 2013.

S. Berggren, P. Longhini, A. L. De-escobar, A. Palacios, O. Mukhanov et al., Modeling the effects of fabrication spreads and noise on series coupled arrays of bi-SQUIDs, 2013 IEEE 14th International Superconductive Electronics Conference (ISEC), pp.1-3, 2013.

V. K. Kornev, A. V. Sharafiev, I. I. Soloviev, N. V. Kolotinskiy, V. A. Scripka et al., Superconducting quantum arrays, IEEE Transactions on Applied Superconductivity, vol.24, issue.4, p.1800606, 2014.

V. K. Kornev, N. V. Kolotinskiy, A. V. Sharafiev, I. I. Soloviev, and O. A. Mukhanov, Broadband active electrically small superconductor antennas, Superconductor Science and Technology, vol.30, issue.10, p.103001, 2017.

M. Gurvitch, M. A. Washington, and H. A. Huggins, High quality refractory Josephson tunnel junctions utilizing thin aluminum layers, Applied Physics Letters, vol.42, issue.5, pp.472-474, 1983.

R. Welty and J. Martinis, A series array of DC SQUIDs, IEEE Transactions on Magnetics, vol.27, issue.2, pp.2924-2926, 1991.

Y. Nakamura, Y. A. Pashkin, and J. S. Tsai, Coherent control of macroscopic quantum states in a single-cooper-pair box, Nature, vol.398, issue.6730, pp.786-788, 1999.

K. K. Likharev, O. A. Mukhanov, and V. K. Semenov, Resistive single flux quantum logic for the Josephson-junction digital technology, SQUID '85, pp.1103-1108, 1985.

D. Dimos, P. Chaudhari, J. Mannhart, and F. K. Legoues, Orientation dependence of grainboundary critical currents in YBa 2 Cu 3 O 7-? bicrystals, Physical Review Letters, vol.61, issue.2, pp.219-222, 1988.

P. Chaudhari, J. Mannhart, D. Dimos, C. C. Tsuei, J. Chi et al., Direct measurement of the superconducting properties of single grain boundaries in YBa 2 Cu 3 O 7-?, Physical Review Letters, vol.60, issue.16, pp.1653-1656, 1988.

J. Mannhart, P. Chaudhari, D. Dimos, C. C. Tsuei, and T. R. Mcguire, Critical currents in [001] grains and across their tilt boundaries in YBa 2 Cu 3 O 7-? films, Physical Review Letters, vol.61, issue.21, pp.2476-2479, 1988.

T. Minotani, S. Kawakami, T. Kiss, Y. Kuroki, and K. Enpuku, High performance DC superconducting quantum interference device utilizing a bicrystal junction with a 30°misorientation angle, Japanese Journal of Applied Physics, vol.36, issue.8B, pp.1092-1095, 1997.

J. Beyer, D. Drung, F. Ludwig, T. Minotani, and K. Enpuku, Low-noise YBa 2 Cu 3 O 7-? single layer dc superconducting quantum interference device (SQUID) magnetometer based on bicrystal junctions with 30°misorientation angle, Applied Physics Letters, vol.72, issue.2, pp.203-205, 1998.

I. Gundareva and Y. Divin, YBa 2 Cu 3 O 7-x bicrystal Josephson junctions with high icrn-products and wide-ranging resistances for THz applications, IEEE Transactions on Applied Superconductivity, vol.26, issue.3, p.1100204, 2016.

Y. Tarutani, H. Hasegawa, T. Fukazawa, and K. Takagi, Measurement of the critical current distribution for the resistively shunted junctions, Journal of Applied Physics, vol.83, issue.9, pp.5000-5002, 1998.

H. Burkhardt, O. Brugmann, A. Rauther, F. Schnell, and M. Schilling, Very large YBa 2 Cu 3 O 7-? -Josephson-junction-arrays, IEEE Transactions on Applied Superconductivity, vol.9, issue.2, pp.3153-3156, 1999.

B. Chesca, D. John, and C. J. Mellor, Flux-coherent series SQUID array magnetometers operating above 77 K with superior white flux noise than single-SQUIDs at 4.2 K, Applied Physics Letters, vol.107, issue.16, p.162602, 2015.

R. Simon, J. Bulman, J. Burch, S. Coons, K. Daly et al., Engineered HTS microbridges, IEEE Transactions on Magnetics, vol.27, issue.2, pp.3209-3214, 1991.

H. R. Yi, M. Gustafsson, D. Winkler, E. Olsson, and T. Claeson, Electromagnetic and microstructural characterization of YBa 2 Cu 3 O 7-? step edge junctions on (001) LaAlO 3 substrates, Journal of Applied Physics, vol.79, issue.12, pp.9213-9220, 1996.

J. Du, S. K. Lam, and D. L. Tilbrook, Metallization and interconnection of HTS YBCO thin film devices and circuits, Superconductor Science and Technology, vol.14, issue.10, pp.820-825, 2001.

S. A. Cybart, S. M. Wu, S. M. Anton, I. Siddiqi, J. Clarke et al., Series array of incommensurate superconducting quantum interference devices from YBa 2 Cu 3 O 7-? ion damage Josephson junctions, Applied Physics Letters, vol.93, issue.18, p.182502, 2008.

S. A. Cybart, S. M. Anton, S. M. Wu, J. Clarke, and R. C. Dynes, Very large scale integration of nanopatterned YBa 2 Cu 3 O 7-? Josephson junctions in a two-dimensional array, Nano Letters, vol.9, issue.10, pp.3581-3585, 2009.

J. Du, J. Y. Lazar, S. K. Lam, E. E. Mitchell, and C. P. Foley, Fabrication and characterisation of series YBCO step-edge Josephson junction arrays, Superconductor Science and Technology, 2014.

S. S. Tinchev, Investigation of RF SQUIDs made from epitaxial YBCO films, Superconductor Science and Technology, vol.3, issue.10, pp.500-503, 1990.

, Low-frequency noise in high-tc rf superconducting quantum interference devices made by oxygen-ion irradiation, Journal of Applied Physics, vol.77, issue.7, pp.3563-3565, 1995.

, Properties of YBCO weak links prepared by local oxygen-ion induced modification, Physica C : Superconductivity, vol.256, issue.1-2, pp.191-198, 1996.

A. S. Katz, A. G. Sun, S. I. Woods, and R. C. Dynes, Planar thin film YBa 2 Cu 3 O 7-? Josephson junctions via nanolithography and ion damage, Applied Physics Letters, vol.72, issue.16, pp.2032-2034, 1998.

K. Chen, S. A. Cybart, and R. C. Dynes, Planar thin film YBa 2 Cu 3 O 7-? Josephson junction pairs and arrays via nanolithography and ion damage, Applied physics letters, vol.85, issue.14, pp.2863-2865, 2004.

N. Bergeal, Effet Josephson pour l'étude des supraconducteurs à haute température critique, 2005.

N. Bergeal, X. Grison, J. Lesueur, G. Faini, M. Aprili et al., High-quality planar high-T c Josephson junctions, Applied Physics Letters, vol.87, issue.10, p.102502, 2005.
URL : https://hal.archives-ouvertes.fr/in2p3-00024675

N. Bergeal, J. Lesueur, G. Faini, M. Aprili, and J. P. Contour, High-T c superconducting quantum interference devices made by ion irradiation, Applied Physics Letters, vol.89, issue.11, p.112515, 2006.

N. Bergeal, J. Lesueur, M. Sirena, G. Faini, M. Aprili et al., Using ion irradiation to make high-T c Josephson junctions, Journal of Applied Physics, vol.102, issue.8, p.83903, 2007.

S. Ouanani-sakhri, Étude de réseaux de jonctions Josephson à haute température critique, 2015.

&. Comsol-multiphysics, , pp.22-27

A. Labbé, E. Parzy, E. Thiaudière, P. Massot, J. Franconi et al., Effects of flux pinning on the DC characteristics of meander-shaped superconducting quantum interference filters with flux concentrator, Journal of Applied Physics, vol.124, issue.21, p.214503, 2018.

E. D. Marquardt, J. P. Le, and R. Radebaugh, Cryogenic Material Properties Database, pp.681-687, 2002.

G. A. Slack, R. Tanzilli, R. Pohl, and J. Vandersande, The intrinsic thermal conductivity of ain, Journal of Physics and Chemistry of Solids, vol.48, issue.7, pp.641-647, 1987.

E. R. Pawlowski, J. Kermorvant, D. Crété, Y. Lemaître, B. Marcilhac et al., Static and radio frequency magnetic response of high t c superconducting quantum interference filters made by ion irradiation, Superconductor Science and Technology, vol.31, issue.9, p.95005, 2018.

E. R. Pawlowsk, Réseaux de SQUID HTS pour applications dans le domaine de récepteurs hyperfréquence, 2019.

J. Jaycox and M. Ketchen, Planar coupling scheme for ultra low noise DC SQUIDs, IEEE Transactions on Magnetics, vol.17, issue.1, pp.400-403, 1981.

D. Crété, A. Sene, A. Labbé, E. Pawlowski, J. Kermorvant et al., Evaluation of Josephson junction parameter dispersion effects in arrays of HTS SQUIDs, IEEE Transactions on Applied Superconductivity, vol.28, issue.7, pp.1-6, 2018.

J. Oppenländer, Advances Solid State Physics, pp.731-746, 2003.

J. Oppenländer, C. Häussler, and N. Schopohl, Phys. Rev. B, vol.63, p.24511, 2000.

P. Carelli, M. G. Castellano, K. Flacco, R. Leoni, and G. Torrioli, Europhys. Lett, vol.39, p.569, 1997.

J. Clarke and A. I. Braginski, The SQUID Handbook: Applications of SQUIDs and SQUID Systems, 2006.

R. L. Fagaly, Rev. Sci. Instrum, vol.77, p.101101, 2006.

D. Drung, Supercond. Sci. Technol, vol.16, p.1320, 2003.

, Barkhausenweg, vol.11, 2018.

D. Drung, C. Aszligmann, J. Beyer, M. Peters, F. Ruede et al., IEEE Trans. Appl. Supercond, vol.15, p.777, 2005.

C. Häussler, J. Oppenländer, and N. Schopohl, J. Appl. Phys, vol.89, p.1875, 2001.

O. Mukhanov, G. Prokopenko, R. Romanofsky, and . Microw, Mag, vol.15, pp.57-65, 2014.

J. Oppenländer, T. Träuble, C. Häussler, and N. Schopohl, IEEE Trans. Appl. Supercond, vol.11, p.1271, 2001.

J. Oppenländer, C. Häussler, T. Träuble, N. Schopohl, and P. Supercond, , vol.368, p.119, 2002.

J. Oppenländer, C. Häussler, T. Träuble, P. Caputo, J. Tomes et al., IEEE Trans. Appl. Supercond, vol.13, p.771, 2003.

V. K. Kornev, I. I. Soloviev, J. Oppenländer, C. Häussler, and N. Schopohl, Supercond. Sci. Technol, vol.17, p.406, 2004.

J. Oppenländer, C. Häussler, A. Friesch, J. Tomes, P. Caputo et al., IEEE Trans. Appl. Supercond, vol.15, p.936, 2005.

V. K. Kornev, I. I. Soloviev, N. V. Klenov, and O. A. Mukhanov, IEEE Trans. Appl. Supercond, vol.19, p.741, 2009.

V. Schultze, R. Ijsselsteijn, H. Meyer, J. Oppenländer, C. Häussler et al., IEEE Trans. Appl. Supercond, vol.13, p.775, 2003.

J. Oppenländer, P. Caputo, C. Häussler, T. Träuble, J. Tomes et al., Appl. Phys. Lett, vol.83, p.969, 2003.

P. Caputo, J. Oppenländer, C. Häussler, J. Tomes, A. Friesch et al., Appl. Phys. Lett, vol.85, p.1389, 2004.

P. Caputo, J. Tomes, J. Oppenländer, C. Häussler, A. Friesch et al., IEEE Trans. Appl. Supercond, vol.15, p.1044, 2005.

V. Schultze, R. Ijsselsteijn, and H. Meyer, Supercond. Sci. Technol, vol.19, p.411, 2006.

Y. A. Polyakov, V. K. Semenov, and S. K. Tolpygo, IEEE Trans. Appl. Supercond, vol.21, p.724, 2011.

P. Caputo, J. Tomes, J. Oppenländer, C. Häussler, A. Friesch et al., Appl. Phys. Lett, vol.89, p.62507, 2006.

P. Caputo, J. Tomes, J. Oppenländer, C. Häussler, A. Friesch et al., Nov. Magn, vol.20, p.25, 2007.

A. V. Shadrin, K. Y. Constantinian, and G. A. Ovsyannikov, Tech. Phys. Lett, vol.33, p.192, 2007.

P. Caputo, J. Tomes, J. Oppenländer, C. Häussler, A. Friesch et al., IEEE Trans. Appl. Supercond, vol.17, p.722, 2007.

A. K. Kalabukhov, M. L. Chukharkin, A. A. Deleniv, D. Winkler, I. A. Volkov et al., J. Commun. Technol. Electron, vol.53, p.934, 2008.

V. K. Kornev, I. I. Soloviev, N. V. Klenov, T. V. Filippov, H. Engseth et al., IEEE Trans. Appl. Supercond, vol.19, p.916, 2009.

V. K. Kornev, I. I. Soloviev, N. V. Klenov, A. V. Sharafiev, and O. A. Mukhanov, IEEE Trans. Appl. Supercond, vol.21, p.713, 2011.

V. K. Kornev, I. I. Soloviev, N. V. Klenov, and O. A. Mukhanov, Supercond. Sci. Technol, vol.22, p.114011, 2009.

, HYPRES, 175 Clear. Road, 2018.

G. V. Prokopenko, O. A. Mukhanov, A. Leese-de-escobar, B. Taylor, M. C. De-andrade et al., IEEE Trans. Appl. Supercond, vol.23, p.1400607, 2013.

H. Hilgenkamp and J. Mannhart, Rev. Mod. Phys, vol.74, p.485, 2002.

E. E. Mitchell, K. E. Hannam, J. Lazar, K. E. Leslie, C. J. Lewis et al., Supercond. Sci. Technol, vol.29, pp.6-7, 2016.

A. S. Katz, A. G. Sun, S. I. Woods, and R. C. Dynes, Appl. Phys. Lett, vol.72, pp.2032-2034, 1998.

K. Chen, S. A. Cybart, and R. C. Dynes, Appl. Phys. Lett, vol.85, p.2863, 2004.

N. Bergeal, X. Grison, J. Lesueur, G. Faini, M. Aprili et al., Appl. Phys. Lett, vol.87, p.102502, 2005.

N. Bergeal, J. Lesueur, G. Faini, M. Aprili, and J. P. Contour, Appl. Phys. Lett, vol.89, p.112515, 2006.

S. A. Cybart, E. Y. Cho, T. J. Wong, V. N. Glyantsev, J. U. Huh et al., Appl. Phys. Lett, vol.104, p.62601, 2014.

V. K. Kornev, I. I. Soloviev, A. V. Sharafiev, N. V. Klenov, and O. A. Mukhanov, IEEE Trans. Appl. Supercond, vol.23, p.1800405, 2013.

V. Schultze, R. Ijsselsteijn, R. Boucher, H. Meyer, J. Oppenländer et al., Supercond. Sci. Technol, vol.16, p.1356, 2003.

M. Pannetier, C. Fermon, G. Legoff, J. Simola, E. Kerr et al., IEEE Trans. Appl. Supercond, vol.15, pp.892-895, 2005.

K. H. Kuit, W. Van-de-camp, S. Waanders, H. Rogalla, and J. Flokstra, Supercond. Sci. Technol, vol.22, p.114006, 2009.

K. H. Kuit, J. R. Kirtley, W. Van-der-veur, C. G. Molenaar, F. J. Roesthuis et al., Phys. Rev. B, vol.77, p.134504, 2008.

S. A. Cybart, S. M. Wu, S. M. Anton, I. Siddiqi, J. Clarke et al., Appl. Phys. Lett, vol.93, p.182502, 2008.

, Rote-Kreuz-Str. 8, 85737 Ismaning, Ceraco ceramic coating GmbH, 2018.

N. Bergeal, J. Lesueur, M. Sirena, G. Faini, M. Aprili et al., J. Appl. Phys, vol.102, p.83903, 2007.

M. Malnou, C. Feuillet-palma, C. Ulysse, G. Faini, P. Febvre et al., J. Appl. Phys, vol.116, p.74505, 2014.

M. Malnou, A. Luo, T. Wolf, Y. Wang, C. Feuillet-palma et al., Appl. Phys. Lett, vol.101, p.233505, 2012.

S. Ouanani-sakhri, , 2015.

S. Ouanani, J. Kermorvant, C. Ulysse, M. Malnou, Y. Lemaître et al., Supercond. Sci. Technol, vol.29, p.94002, 2016.

D. Crété, A. Sene, A. Labbé, E. Pawlowski, J. Kermorvant et al., IEEE Trans. Appl. Supercond, vol.28, p.1, 2018.

. Labbé, Agence Nationale de la Recherche" under PRCE contract "SuperQIF" ANR 15-CE19-0015-01. E. Recoba Pawlowski thanks A.N.R.T. for CIFRE contract, J. Appl. Phys, vol.124, p.214503, 2018.

, Julien Kermorvant is with THALES Com. and Security

, Christian Ulysse is with Labo. Photonique & Nanostructures, CNRS

K. Kazami, J. Kawai, G. Uehara, and H. Kado, A 35-series superconducting quantum interference device array for high-dynamicrange magnetic measurements, Jpn. J. Appl. Phys, vol.35, pp.4322-4326, 1996.

J. Oppenländer, C. Häussler, and N. Schopohl, Non-?0-periodic macroscopic quantum interference in one-dimensional parallel Josephson junction arrays with unconventional grating structure, Phys. Rev. B, vol.63, p.24511, 2000.

M. E. Huber, P. A. Neil, R. G. Benson, D. A. Burns, A. M. Corey et al., DC SQUID Series Array Amplifiers with 120 MHz Bandwidth, vol.11, p.1251, 2001.

V. K. Kornev, I. I. Soloviev, N. V. Klenov, and O. A. Mukhanov, High Linearity SQIF-Like Josephson-Junction Structures

, Appl. Supercond, vol.19, issue.3, p.741, 2009.

J. H. Miller, G. H. Gunaratne, J. Huang, T. D. Golding, and ¸. , Enhanced quantum interference effects in parallel Josephson junction arrays, Appl. Phys. Lett, vol.59, p.3330, 1991.

E. E. Mitchell, K. E. Hannam, J. Lazar, K. E. Leslie, C. J. Lewis et al., 2D SQIF arrays using 20000 YBCO high Rn Josephson junctions, vol.29, pp.6-7, 2016.

S. Berggren and A. Escobar, Effects of Spread in Critical Currents for Series-and Parallel-Coupled Arrays of SQUIDs and Bi-SQUIDs, IEEE Trans. Appl. Superc, vol.25, issue.3, p.1600304, 2015.

J. Beyer and D. Drung, A SQUID series array dc current sensor, Supercond. Sci. Technol, vol.21, p.95012, 2008.

P. Carelli, M. G. Castellano, K. Flacco, R. Leoni, and G. Torrioli, An absolute magnetometer based on dc Superconducting QUantum Interference Devices, EPL (Europhysics Lett, vol.39, p.569, 1997.

J. Oppenländer, T. Trauble, C. Häussler, and N. Schopohl, Superconducting Multiple Loop Quantum Interferometers, IEEE Trans. Appl. Supercond, vol.11, issue.1, p.1271, 2001.

B. Chesca, R. Kleiner, and D. Koelle, SQUID Handbook, vol.1, pp.67-68, 2004.

N. Bergeal, X. Grison, J. Lesueur, G. Faini, M. Aprili et al., High-Quality Planar High-Tc Josephson Junctions, vol.87, p.102502, 2005.

P. De-gennes and ;. E. Guyon, Rev. Mod. Phys, vol.36, pp.168-169, 1963.

M. B. Ketchen, Integrated Thin-Film dc SQUID Sensors, IEEE Trans. Magn, vol.23, p.1650, 1987.

K. Enpuku, G. Tokita, T. Maruo, and T. Minotani, Parameter dependencies of characteristics of a high-Tc dc superconducting quantum interference device, J. Appl. Phys, vol.78, pp.3498-3503, 1995.

S. Ouanani, , 2015.

A. S. Katz, S. I. Woods, and R. C. Dynes, Transport properties of high-Tc planar Josephson junctions fabricated by nanolithography and ion implantation, J. Appl. Phys, vol.87, p.2978, 2000.