S. Rizvi, G. J. Gores, D. Pathogenesis, . Management, and . Cholangiocarcinoma, Gastroenterology, vol.145, pp.1215-1229, 2013.

M. Esteller, Non-coding RNAs in human disease, Nat Rev Genet, vol.12, pp.861-874, 2011.

F. M. Selaru, A. V. Olaru, and T. Kan, MicroRNA-21 is overexpressed in human cholangiocarcinoma and regulates programmed cell death 4 and tissue inhibitor of metalloproteinase 3, Hepatol Baltim Md, vol.49, p.1595, 2009.

F. Meng, R. Henson, and M. Lang, Involvement of Human Micro-RNA in Growth and Response to Chemotherapy in Human Cholangiocarcinoma Cell Lines, Gastroenterology, vol.130, pp.2113-2129, 2006.

C. Correa-gallego, D. Maddalo, and A. Doussot, Circulating Plasma Levels of

, MicroRNA-21 and MicroRNA-221 Are Potential Diagnostic Markers for Primary Intrahepatic Cholangiocarcinoma, PLoS ONE, vol.11, 2016.

K. Takahashi, I. Yan, and H. Haga, Long non-coding RNA in liver diseases, Hepatology, 2014.

Y. He, X. Meng, and C. Huang, Long noncoding RNAs: Novel insights into hepatocelluar carcinoma, Cancer Lett, vol.344, pp.20-27, 2014.

M. Klingenberg, A. Matsuda, and S. Diederichs, Non-coding RNA in hepatocellular carcinoma: Mechanisms, biomarkers and therapeutic targets, J Hepatol, vol.67, pp.603-618, 2017.

M. Wang, L. Zhou, and F. Yu, The functional roles of exosomal long non-coding RNAs in cancer. Cell Mol Life Sci. Epub ahead of print 25, 2019.

L. Salmena, L. Poliseno, and Y. Tay, A ceRNA hypothesis: the Rosetta stone of a hidden RNA language?, Cell, vol.146, pp.353-358, 2011.

L. S. Kristensen, T. B. Hansen, and M. T. Venø, Circular RNAs in cancer: opportunities and challenges in the field, Oncogene, vol.37, pp.555-565, 2018.

M. Parasramka, I. K. Yan, and X. Wang, BAP1 dependent expression of long noncoding RNA NEAT-1 contributes to sensitivity to gemcitabine in cholangiocarcinoma, Mol Cancer, vol.16, p.22, 2017.

C. Zhang, J. Li, and F. Tian, Long Noncoding RNA NEAT1 Promotes Growth and Metastasis of Cholangiocarcinoma Cells. Epub ahead of print, 2018.

C. M. Clemson, J. N. Hutchinson, and S. A. Sara, An Architectural Role for a Nuclear Noncoding RNA: NEAT1 RNA Is Essential for the Structure of Paraspeckles, Mol Cell, vol.33, pp.717-726, 2009.

Y. Yu, M. Zhang, and N. Wang, Epigenetic silencing of tumor suppressor gene CDKN1A by oncogenic long non-coding RNA SNHG1 in cholangiocarcinoma, Cell Death Dis

, Epub, 2018.

Y. Xu, Y. Yao, and X. Jiang, SP1-induced upregulation of lncRNA SPRY4-IT1 exerts oncogenic properties by scaffolding EZH2/LSD1/DNMT1 and sponging miR-101-3p in cholangiocarcinoma, J Exp Clin Cancer Res CR, vol.37, 2018.

W. Qin, P. Kang, and Y. Xu, Long non-coding RNA HOTAIR promotes tumorigenesis and forecasts a poor prognosis in cholangiocarcinoma. Sci Rep; 8. Epub ahead of print 15, 2018.

X. Xia, D. Xue, and T. Xiang, Overexpression of long non-coding RNA CRNDE facilitates epithelial-mesenchymal transition and correlates with poor prognosis in intrahepatic cholangiocarcinoma, Oncol Lett, vol.15, pp.4105-4112, 2018.

Y. Xu, X. Jiang, and Y. Cui, Upregulated long noncoding RNA PANDAR predicts an unfavorable prognosis and promotes tumorigenesis in cholangiocarcinoma, OncoTargets Ther, vol.10, pp.2873-2883, 2017.

Y. Xu, K. Leng, and Z. Li, The prognostic potential and carcinogenesis of long noncoding RNA TUG1 in human cholangiocarcinoma, Oncotarget, vol.8, pp.65823-65835, 2017.

S. Zhang, J. Xiao, and Y. Chai, LncRNA-CCAT1 Promotes Migration, Invasion, and EMT in Intrahepatic Cholangiocarcinoma Through Suppressing miR-152, Dig Dis Sci, vol.62, pp.3050-3058, 2017.

Y. Xu, Y. Yao, and W. Qin, Long non-coding RNA CCAT2 promotes cholangiocarcinoma cells migration and invasion by induction of epithelial-to-mesenchymal transition, Biomed Pharmacother, vol.99, pp.121-127, 2018.

Y. Xu, Y. Yao, and K. Leng, Long non-coding RNA UCA1 indicates an unfavorable prognosis and promotes tumorigenesis via regulating AKT/GSK-3 signaling pathway in cholangiocarcinoma, Oncotarget, vol.8, pp.96203-96214, 2017.

B. Zeng, H. Ye, and J. Chen, LncRNA TUG1 sponges miR-145 to promote cancer progression and regulate glutamine metabolism via Sirt3/GDH axis, Oncotarget, vol.8, pp.113650-113661, 2017.

X. Tan, Z. Huang, and X. Li, Long Non-Coding RNA MALAT1 Interacts With miR-204 to

, Modulate Human Hilar Cholangiocarcinoma Proliferation, Migration, and Invasion by Targeting CXCR4, J Cell Biochem

W. Wang, H. Ye, and P. Wei, LncRNAs H19 and HULC, activated by oxidative stress, promote cell migration and invasion in cholangiocarcinoma through a ceRNA manner, J Hematol OncolJ Hematol Oncol, vol.9, p.117, 2016.

Y. Xu, Z. Wang, and X. Jiang, Overexpression of long noncoding RNA H19 indicates a poor prognosis for cholangiocarcinoma and promotes cell migration and invasion by affecting epithelial-mesenchymal transition, Biomed Pharmacother, vol.92, pp.17-23, 2017.

A. Merdrignac, G. Angenard, and C. Allain, A novel transforming growth factor beta-induced long noncoding RNA promotes an inflammatory microenvironment in human intrahepatic cholangiocarcinoma, Hepatol Commun, vol.2, pp.254-269, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01744444

F. Zhang, M. Wan, and Y. Xu, Long noncoding RNA PCAT1 regulates extrahepatic cholangiocarcinoma progression via the Wnt/ -catenin-signaling pathway, Biomed Pharmacother, vol.94, pp.55-62, 2017.

Y. Yao, Y. Sun, and Y. Jiang, Enhanced expression of lncRNA TP73-AS1 predicts adverse phenotypes for cholangiocarcinoma and exerts oncogenic properties in vitro and in vivo, Biomed Pharmacother, vol.106, pp.260-266, 2018.

C. Wang, Z. P. Mao, and L. Wang, Long non-coding RNA MALAT1 promotes cholangiocarcinoma cell proliferation and invasion by activating PI3K/Akt pathway, Neoplasma, vol.64, pp.725-731, 2017.

C. Wei, H. Wong, and F. Xu, IRF4-induced upregulation of lncRNA SOX2-OT promotes cell proliferation and metastasis in cholangiocarcinoma by regulating SOX2 and PI3K/AKT signaling, Eur Rev Med Pharmacol Sci, vol.22, pp.8169-8178, 2018.

Z. Li, J. Li, and D. Ji, Overexpressed long noncoding RNA Sox2ot predicts poor prognosis for cholangiocarcinoma and promotes cell proliferation and invasion, Gene, vol.645, pp.131-136, 2018.

X. Lu, C. Zhou, and R. Li, Long Noncoding RNA AFAP1-AS1 Promoted Tumor Growth and Invasion in Cholangiocarcinoma, Cell Physiol Biochem, vol.42, pp.222-230, 2017.

X. Shi, H. Zhang, and M. Wang, LncRNA AFAP1-AS1 promotes growth and metastasis of cholangiocarcinoma cells, Oncotarget, vol.8, pp.58394-58404, 2017.

Y. Li, Q. Cai, and W. Li, Long non-coding RNA EPIC1 promotes cholangiocarcinoma cell growth, Biochem Biophys Res Commun. Epub, 2018.

D. Zhang, H. Li, and J. Xie, Long noncoding RNA LINC01296 promotes tumor growth and progression by sponging miR-5095 in human cholangiocarcinoma, Int J Oncol, vol.52, pp.1777-1786, 2018.

A. Fujimoto, M. Furuta, and Y. Totoki, Whole-genome mutational landscape and characterization of noncoding and structural mutations in liver cancer, Nat Genet, vol.48, pp.500-509, 2016.

J. Gong, W. Liu, and J. Zhang, lncRNASNP: a database of SNPs in lncRNAs and their potential functions in human and mouse, Nucleic Acids Res, vol.43, pp.181-186, 2015.

Y. Liu, S. Pan, and L. Liu, A Genetic Variant in Long Non-Coding RNA HULC Contributes to Risk of HBV-Related Hepatocellular Carcinoma in a Chinese Population, PLoS ONE, vol.7, p.35145, 2012.

J. Zhou, Z. Liu, and S. Yang, Identification of microRNAs as biomarkers for cholangiocarcinoma detection: A diagnostic meta-analysis, Clin Res Hepatol Gastroenterol, vol.41, pp.156-162, 2017.

L. Wang, K. Zhang, and N. Zhang, Serum miR-26a as a diagnostic and prognostic biomarker in cholangiocarcinoma, Oncotarget, vol.6, pp.18631-18640, 2015.

B. Zheng, S. Jeong, and Y. Zhu, miRNA and lncRNA as biomarkers in cholangiocarcinoma(CCA), Oncotarget, vol.8, pp.100819-100830, 2017.

X. Wang, J. Song, and G. Liu, Upregulation of gastric adenocarcinoma predictive long intergenic non-coding RNA promotes progression and predicts poor prognosis in perihilar cholangiocarcinoma, Oncol Lett, vol.16, pp.3964-3972, 2018.

X. Jiang, Z. Li, and J. Li, LncRNA CCAT1 as the unfavorable prognostic biomarker for cholangiocarcinoma, Eur Rev Med Pharmacol Sci, vol.21, pp.1242-1247, 2017.

Y. Xu, X. Jiang, and Y. Cui, Upregulated long noncoding RNA PANDAR predicts an unfavorable prognosis and promotes tumorigenesis in cholangiocarcinoma. OncoTargets and Therapy. Epub ahead of print 6, 2017.

S. Ma, A. Li, and Z. Hu, Co-expression of the carbamoyl-phosphate synthase 1 gene and its long non-coding RNA correlates with poor prognosis of patients with intrahepatic cholangiocarcinoma, Mol Med Rep, vol.12, pp.7915-7926, 2015.

C. Zheng, H. Hao, and L. Chen, Long noncoding RNAs as novel serum biomarkers for the diagnosis of hepatocellular carcinoma: a systematic review and meta-analysis, Clin Transl Oncol, vol.19, pp.961-968, 2017.

J. Shi, X. Li, and F. Zhang, The Plasma LncRNA Acting as Fingerprint in Hilar Cholangiocarcinoma, Cell Physiol Biochem, vol.49, pp.1694-1702, 2018.

S. Tang, G. Tan, and X. Jiang, An artificial lncRNA targeting multiple miRNAs overcomes sorafenib resistance in hepatocellular carcinoma cells, Oncotarget, vol.7, pp.73257-73269, 2016.

X. Pan and K. Xiong, PredcircRNA: computational classification of circular RNA from other long non-coding RNA using hybrid features, Mol Biosyst, vol.11, pp.2219-2226, 2015.

L. Chen and Y. L. , Regulation of circRNA biogenesis, RNA Biol, vol.12, pp.381-388, 2015.

X. Jiang, Z. Li, and J. Li, A novel prognostic biomarker for cholangiocarcinoma: circRNA Cdr1as, Eur Rev Med Pharmacol Sci, vol.22, pp.365-371, 2018.

Y. Xu, Y. Yao, and X. Zhong, Downregulated circular RNA hsa_circ_0001649 regulates proliferation, migration and invasion in cholangiocarcinoma cells, Biochem Biophys Res Commun, vol.496, pp.455-461, 2018.

A. Moirangthem, X. Wang, and I. K. Yan, Network analyses-based identification of circular ribonucleic acid-related pathways in intrahepatic cholangiocarcinoma: Tumor Biol. Epub ahead of print 31, vol.87, 2018.

, ème congrès annuel de l'International Liver Cancer Association (ILCA) en

E. Gaignard, D. Bergeat, L. Courtin-tanguy, M. Rayar, A. Merdrignac et al., Is systematic nasogastric decompression after pancreaticoduodenectomy really necessary?, Langenbecks Arch Surg, vol.403, issue.5, pp.573-580, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01833941

F. Borel, M. Ouaissi, A. Merdrignac, A. Venara, D. Franco et al.,

, Pancreatico-jejunostomy decreases post-operative pancreatic fistula incidence and severity after central pancreatectomy, ANZ J Surg, vol.88, issue.1-2, pp.77-81, 2018.

A. Merdrignac, H. Jeddou, P. Houssel-debry, E. Flecher, M. Rayar et al., Venous stent in liver transplant candidates: dodging the top tip traps, Liver Transplantation, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01558817

D. Bergeat, M. Rayar, Y. Mouchel, A. Merdrignac, B. Meunier et al.,

L. , Preoperative bevacizumab and surgery for colorectal liver metastases: a propensity score analysis, Langenbecks Arch Surg, vol.402, pp.57-67, 2017.

A. Merdrignac, D. Bergeat, M. Rayar, Y. Harnoy, K. Turner et al.,

B. Meunier and L. Sulpice, Frey procedure combined with biliary diversion in chronic pancreatitis, Surgery, vol.160, pp.1264-70, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01414694

A. Merdrignac, D. Bergeat, L. Sandri, G. B. Agus, M. Boudjema et al.,

, Hepatic artery reinforcement after post pancreatectomy haemorrhage caused by pancreatitis, Gland Surg, vol.5, pp.427-457, 2016.

L. Courtin-tanguy, A. Merdrignac, B. Meunier, and L. Sulpice, A weird polyp, 8 years after the Whipple procedure, Surgery, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01560559

D. Bergeat, A. Fautrel, B. Turlin, A. Merdrignac, M. Rayar et al., Impact of stroma LOXL2 overexpression on the prognosis of intrahepatic cholangiocarcinoma, J Surg Res, vol.203, pp.441-50, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-01341595

D. Bergeat, M. Rayar, L. Beuzit, L. Sandri, G. B. Dagher et al., An unusual case of adrenocortical carcinoma with liver metastasis that occurred at 23 years after surgery, Hepatobiliary Surg Nutr, vol.5, pp.265-273, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01334069

A. Merdrignac, M. Proisy, B. Fremond, E. Habonimana, N. Nardi et al.,

, An Unusual Intussusception. J Pediatr, vol.175, p.240, 2016.

L. Courtin-tanguy, M. Rayar, D. Bergeat, A. Merdrignac, Y. Harnoy et al.,

, J Surg Oncol, vol.113, pp.575-80, 2016.

D. Bergeat, L. Sulpice, M. Rayar, E. J. Merdignac, A. Meunier et al.,

K. , Extended liver resections for intrahepatic cholangiocarcinoma: friend or foe?, Surgery, vol.157, pp.656-65, 2015.

P. E. Robert, C. Leux, M. Ouaissi, M. Miguet, F. Paye et al., Predictors of long-term survival following resection for ampullary carcinoma: a large retrospective French multicentric study, Pancreas, vol.43, pp.692-699, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01971505

A. Merdrignac, L. Sulpice, M. Rayar, T. Rohou, E. Quehen et al.,

, Hepatobiliary Pancreat Dis Int, 2014.

S. R. Hamilton and L. A. Aaltonen, Pathology and Genetics of Tumours of the Digestive System, Report-Series/Who-Iarc-Classification-Of-Tumours/Pathology-And-Genetics-Of-Tumours-Of-The-Digestive, 2000.

B. Blechacz, M. Komuta, and T. Roskams, Clinical diagnosis and staging of cholangiocarcinoma, Nat Rev Gastroenterol Hepatol, vol.8, pp.512-522, 2011.

Y. Shaib and H. B. El-serag, The Epidemiology of Cholangiocarcinoma. Semin Liver Dis, vol.24, pp.115-125, 2004.

M. C. Bragazzi, V. Cardinale, and G. Carpino, Epidemiology and risk factors, Transl Gastrointest Cancer, vol.1, pp.21-32, 2011.

J. M. Banales, V. Cardinale, and G. Carpino, Expert consensus document: Cholangiocarcinoma: current knowledge and future perspectives consensus statement from the European Network for the Study of Cholangiocarcinoma (ENS-CCA), Nat Rev Gastroenterol Hepatol, vol.13, pp.261-280, 2016.

A. Doussot, C. Lim, and C. Gómez-gavara, Multicentre study of the impact of morbidity on long-term survival following hepatectomy for intrahepatic cholangiocarcinoma, BJS, vol.103, pp.1887-1894, 2016.

N. Razumilava and G. J. Gores, Classification, Diagnosis, and Management of Cholangiocarcinoma, Clin Gastroenterol Hepatol, vol.11, pp.13-21, 2013.

W. C. Palmer and T. Patel, Are common factors involved in the pathogenesis of primary liver cancers? A meta-analysis of risk factors for intrahepatic cholangiocarcinoma, J Hepatol, vol.57, pp.69-76, 2012.

Y. H. Shaib, J. A. Davila, and K. Mcglynn, Rising incidence of intrahepatic cholangiocarcinoma in the United States: a true increase?, J Hepatol, vol.40, pp.472-477, 2004.

S. A. Khan, S. Emadossadaty, and N. G. Ladep, Rising trends in cholangiocarcinoma: Is the ICD classification system misleading us, J Hepatol, vol.56, pp.848-854, 2012.

T. M. Welzel, B. I. Graubard, and S. Zeuzem, Metabolic syndrome increases the risk of primary liver cancer in the United States: a population-based case-control study, Hepatol Baltim Md, vol.54, pp.463-471, 2011.

S. Yamasaki, Intrahepatic cholangiocarcinoma: macroscopic type and stage classification, J Hepatobiliary Pancreat Surg, vol.10, pp.288-291, 2003.

M. N. Mavros, K. P. Economopoulos, and V. G. Alexiou, Treatment and prognosis for patients with intrahepatic cholangiocarcinoma: Systematic review and meta-analysis, JAMA Surg, vol.149, pp.565-574, 2014.

T. Maeda, K. Kajiyama, and E. Adachi, The expression of cytokeratins 7, 19, and 20 in primary and metastatic carcinomas of the liver, Mod Pathol Off J U S Can Acad Pathol Inc, vol.9, pp.901-909, 1996.

A. Rullier, B. L. Bail, and R. Fawaz, Cytokeratin 7 and 20 Expression in Cholangiocarcinomas Varies Along the Biliary Tract But Still Differs From That in Colorectal Carcinoma Metastasis, Am J Surg Pathol, vol.24, pp.870-876, 2000.

A. E. Sirica and G. J. Gores, Desmoplastic Stroma and Cholangiocarcinoma: Clinical Implications and Therapeutic Targeting, Hepatol Baltim Md, vol.59, pp.2397-2402, 2014.

A. E. Sirica, The role of cancer-associated myofibroblasts in intrahepatic cholangiocarcinoma, Nat Rev Gastroenterol Hepatol, vol.9, pp.44-54, 2012.

L. Sulpice, M. Rayar, and M. Desille, Molecular profiling of stroma identifies osteopontin as an independent predictor of poor prognosis in intrahepatic cholangiocarcinoma, Hepatol Baltim Md, vol.58, 1992.
URL : https://hal.archives-ouvertes.fr/hal-01068717

I. Fabregat and D. Caballero-díaz, Transforming Growth Factor--Induced Cell Plasticity in Liver Fibrosis and Hepatocarcinogenesis. Front Oncol; 8. Epub ahead of print 10, 2018.

V. Cardinale, A. Renzi, and G. Carpino, Profiles of Cancer Stem Cell Subpopulations in Cholangiocarcinomas, Am J Pathol, vol.185, pp.1724-1739, 2015.

B. Fan, Y. Malato, and D. F. Calvisi, Cholangiocarcinomas can originate from hepatocytes in mice, J Clin Invest, vol.122, pp.2911-2915, 2012.

S. Sekiya and A. Suzuki, Intrahepatic cholangiocarcinoma can arise from Notch-mediated conversion of hepatocytes, J Clin Invest, vol.122, pp.3914-3918, 2012.

A. Moeini, D. Sia, and N. Bardeesy, Molecular Pathogenesis and Targeted Therapies for Intrahepatic Cholangiocarcinoma, Am Assoc Cancer Res, vol.22, pp.291-300, 2016.

J. B. Andersen, B. Spee, and B. R. Blechacz, Genomic and Genetic Characterization of Cholangiocarcinoma Identifies Therapeutic Targets for Tyrosine Kinase Inhibitors, Gastroenterology, vol.142, pp.1021-1031, 2012.

Y. Arai, Y. Totoki, and F. Hosoda, Fibroblast growth factor receptor 2 tyrosine kinase fusions define a unique molecular subtype of cholangiocarcinoma, Hepatology, vol.59, pp.1427-1434, 2014.

D. Sia, V. Tovar, and A. Moeini, Intrahepatic cholangiocarcinoma: pathogenesis and rationale for molecular therapies, Oncogene, vol.32, pp.4861-4870, 2013.

D. Sia, Y. Hoshida, and A. Villanueva, Integrative Molecular Analysis of Intrahepatic Cholangiocarcinoma Reveals 2 Classes That Have Different Outcomes, Gastroenterology, vol.144, pp.829-840, 2013.

A. H. Patel, D. M. Harnois, and G. G. Klee, The utility of CA 19-9 in the diagnoses of cholangiocarcinoma in patients without primary sclerosing cholangitis, Am J Gastroenterol, vol.95, pp.204-207, 2000.

D. Tamandl, B. Herberger, and B. Gruenberger, Influence of Hepatic Resection Margin on Recurrence and Survival in Intrahepatic Cholangiocarcinoma, Ann Surg Oncol, vol.15, pp.2787-2794, 2008.

T. Uenishi, O. Yamazaki, and H. Tanaka, Serum Cytokeratin 19 Fragment (CYFRA21-1) as a Prognostic Factor in Intrahepatic Cholangiocarcinoma, Ann Surg Oncol, vol.15, pp.583-589, 2008.

S. H. Loosen, C. Roderburg, and K. L. Kauertz, Elevated levels of circulating osteopontin are associated with a poor survival after resection of cholangiocarcinoma, J Hepatol, vol.67, pp.749-757, 2017.

L. Sulpice, M. Rayar, and B. Turlin, Epithelial cell adhesion molecule is a prognosis marker for intrahepatic cholangiocarcinoma, J Surg Res
URL : https://hal.archives-ouvertes.fr/hal-01069630

D. Bergeat, A. Fautrel, and B. Turlin, Impact of stroma LOXL2 overexpression on the prognosis of intrahepatic cholangiocarcinoma, J Surg Res, vol.203, pp.441-450, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-01341595

A. Arbelaiz, M. Azkargorta, and M. Krawczyk, Serum extracellular vesicles contain protein biomarkers for primary sclerosing cholangitis and cholangiocarcinoma, Hepatology, vol.66, pp.1125-1143, 2017.

C. Valls, A. Gumà, and I. Puig, Intrahepatic peripheral cholangiocarcinoma: CT evaluation, Abdom Imaging, vol.25, pp.490-496, 2000.

L. Sulpice, M. Rayar, and E. Boucher, Treatment of recurrent intrahepatic cholangiocarcinoma, Br J Surg, vol.99, pp.1711-1717, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00865290

J. Bridgewater, P. R. Galle, and S. A. Khan, Guidelines for the diagnosis and management of intrahepatic cholangiocarcinoma, J Hepatol, vol.60, pp.1268-1289, 2014.

N. Goldaracena, A. Gorgen, and G. Sapisochin, Current status of liver transplantation for cholangiocarcinoma, Liver Transpl, vol.24, pp.294-303, 2018.

J. Valle, H. Wasan, and D. H. Palmer, Cisplatin plus Gemcitabine versus Gemcitabine for Biliary Tract Cancer, N Engl J Med, vol.362, pp.1273-1281, 2010.

R. T. Shroff, E. B. Kennedy, and M. Bachini, Adjuvant Therapy for Resected Biliary Tract Cancer: ASCO Clinical Practice Guideline, J Clin Oncol, 2019.

J. Edeline, M. Benabdelghani, and A. Bertaut, Gemcitabine and Oxaliplatin Chemotherapy or Surveillance in Resected Biliary Tract Cancer (PRODIGE 12-ACCORD 18-UNICANCER GI): A Randomized Phase III Study, J Clin Oncol, vol.37, pp.658-667, 2019.

J. Edeline, F. L. Du, and M. Rayar, Glass Microspheres 90Y Selective Internal Radiation Therapy and Chemotherapy as First-Line Treatment of Intrahepatic Cholangiocarcinoma, Clin Nucl Med, vol.40, pp.851-855, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01187323

Y. S. Chun and M. Javle, Systemic and Adjuvant Therapies for Intrahepatic Cholangiocarcinoma, Cancer Control J Moffitt Cancer Cent, vol.24, 2017.

A. E. Sirica, G. J. Gores, and J. D. Groopman, Intrahepatic Cholangiocarcinoma: Continuing Challenges and Translational Advances. Hepatology; 0

J. Larkin, V. Chiarion-sileni, and R. Gonzalez, Combined Nivolumab and Ipilimumab or Monotherapy in Previously Untreated Melanoma, N Engl J Med, vol.373, pp.23-34, 2015.

J. Massagué, TGF signalling in context, Nat Rev Mol Cell Biol, vol.13, pp.616-630, 2012.

J. Massagué and R. R. Gomis, The logic of TGF signaling, FEBS Lett, vol.580, pp.2811-2820, 2006.

R. J. Akhurst and A. Hata, Targeting the TGF signalling pathway in disease, Nat Rev Drug Discov, vol.11, pp.790-811, 2012.

D. R. Principe, J. A. Doll, and J. Bauer, TGF-: Duality of Function Between Tumor Prevention and Carcinogenesis, JNCI J Natl Cancer Inst, vol.106, 2014.

L. Luo, N. Li, and N. Lv, SMAD7: a timer of tumor progression targeting TGF-signaling, Tumor Biol, pp.1-7, 2014.

, Massagué J. TGF in Cancer. Cell, vol.134, pp.215-230, 2008.

D. Wever, O. Pauwels, P. , D. Craene, and B. , Molecular and pathological signatures of epithelial-mesenchymal transitions at the cancer invasion front, Histochem Cell Biol, vol.130, pp.481-494, 2008.

J. Vaquero, N. Guedj, and A. Clapéron, Epithelial-mesenchymal transition in cholangiocarcinoma: From clinical evidence to regulatory networks, J Hepatol, vol.66, pp.424-441, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01377000

A. Dongre and R. A. Weinberg, New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer, Nat Rev Mol Cell Biol, vol.20, p.69, 2019.

H. You, W. Ding, and C. B. Rountree, Epigenetic Regulation of Cancer Stem Cell Marker CD133 by Transforming Growth Factor, Hepatol Baltim Md, vol.51, pp.1635-1644, 2010.

W. Ding, M. Mouzaki, and H. You, CD133+ Liver Cancer Stem Cells from Methionine Adenosyl Transferase 1A-Deficient Mice Demonstrate Resistance to Transforming Growth Factor (TGF)--Induced Apoptosis, Hepatol Baltim Md, vol.49, pp.1277-1286, 2009.

B. Xiong, L. Gong, and F. Zhang, TGF-1 expression and angiogenesis in colorectal cancer tissue, World J Gastroenterol, vol.8, pp.496-498, 2002.

M. Goumans, F. Lebrin, and G. Valdimarsdottir, Controlling the Angiogenic Switch: A Balance between Two Distinct TGF-b Receptor Signaling Pathways, Trends Cardiovasc Med, vol.13, pp.301-307, 2003.

D. Padua, X. Zhang, and Q. Wang, TGF primes breast tumors for lung metastasis seeding through angiopoietin-like 4, Cell, vol.133, pp.66-77, 2008.

E. Bertran, E. Crosas-molist, and P. Sancho, Overactivation of the TGF-pathway confers a mesenchymal-like phenotype and CXCR4-dependent migratory properties to liver tumor cells, Hepatology, vol.58, pp.2032-2044, 2013.

Y. Sato, K. Harada, and K. Itatsu, Epithelial-Mesenchymal Transition Induced by Transforming Growth Factor-1/Snail Activation Aggravates Invasive Growth of Cholangiocarcinoma, Am J Pathol, vol.177, pp.141-152, 2010.

N. Oishi, M. R. Kumar, and S. Roessler, Transcriptomic profiling reveals hepatic stem-like gene signatures and interplay of miR-200c and epithelial-mesenchymal transition in intrahepatic cholangiocarcinoma, Hepatology, vol.56, pp.1792-1803, 2012.

M. Á. Manzanares, A. Usui, and D. J. Campbell, Transforming Growth Factors ? and Are Essential for Modeling Cholangiocarcinoma Desmoplasia and Progression in a Three-Dimensional Organotypic Culture Model, Am J Pathol, vol.187, pp.1068-1092, 2017.

T. Shimizu, S. Yokomuro, and Y. Mizuguchi, Effect of transforming growth factor-1 on human intrahepatic cholangiocarcinoma cell growth, World J Gastroenterol WJG, vol.12, pp.6316-6324, 2006.

C. Huang, A. Aihara, and Y. Iwagami, Expression of transforming growth factor 1 promotes cholangiocarcinoma development and progression, Cancer Lett, vol.380, pp.153-162, 2016.

Y. Zen, K. Harada, and M. Sasaki, Intrahepatic cholangiocarcinoma escapes from growth inhibitory effect of transforming growth factor-1 by overexpression of cyclin D1, Lab Invest, vol.85, pp.572-581, 2005.

C. Benckert, J. S. Cramer, and T. , Transforming Growth Factor 1 Stimulates Vascular Endothelial Growth Factor Gene Transcription in Human Cholangiocellular Carcinoma Cells, Cancer Res, vol.63, pp.1083-1092, 2003.

Y. Chen, L. Ma, and Q. He, TGF-1 expression is associated with invasion and metastasis of intrahepatic cholangiocarcinoma, Biol Res, vol.48, 2015.

S. Zou, J. Li, and H. Zhou, Mutational landscape of intrahepatic cholangiocarcinoma, Nat Commun, vol.5, p.5696, 2014.

Y. Kim, E. Hong, and S. Kong, Two classes of intrahepatic cholangiocarcinoma defined by relative abundance of mutations and copy number alterations, Oncotarget, vol.7, pp.23825-23836, 2016.

X. Mu, J. Pradere, and S. Affò, Epithelial Transforming Growth Factor-Signaling Does Not Contribute to Liver Fibrosis but Protects Mice From Cholangiocarcinoma, Gastroenterology

M. K. Iyer, Y. S. Niknafs, and R. Malik, The Landscape of Long Noncoding RNAs in the Human Transcriptome, Nat Genet, vol.47, pp.199-208, 2015.

S. Memczak, M. Jens, and A. Elefsinioti, Circular RNAs are a large class of animal RNAs with regulatory potency, Nature, vol.495, pp.333-338, 2013.

T. Derrien, R. Johnson, and G. Bussotti, The GENCODE v7 catalog of human long noncoding RNAs: Analysis of their gene structure, evolution, and expression, Genome Res, vol.22, pp.1775-1789, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01205054

C. Wong, F. Tsang, and I. Ng, Non-coding RNAs in hepatocellular carcinoma: molecular functions and pathological implications, Nat Rev Gastroenterol Hepatol, vol.15, pp.137-151, 2018.

Y. He, X. Meng, and C. Huang, Long noncoding RNAs: Novel insights into hepatocelluar carcinoma, Cancer Lett, vol.344, pp.20-27, 2014.

P. J. Batista and H. Y. Chang, Long noncoding RNAs: Cellular address codes in development and disease, Cell, vol.152, pp.1298-1307, 2013.

K. C. Wang, Y. W. Yang, and B. Liu, Long noncoding RNA programs active chromatin domain to coordinate homeotic gene activation, Nature, vol.472, pp.120-124, 2011.

M. Tsai, O. Manor, and Y. Wan, Long Noncoding RNA as Modular Scaffold of Histone Modification Complexes, Science, vol.329, pp.689-693, 2010.

T. Hung, Y. Wang, and M. F. Lin, Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters, Nat Genet, vol.43, pp.621-629, 2011.

E. Sotillo and A. Thomas-tikhonenko, The long reach of noncoding RNAs, Nat Genet, vol.43, pp.616-617, 2011.

I. J. Matouk, N. Degroot, and S. Mezan, The H19 non-coding RNA is essential for human tumor growth, PloS One, vol.2, p.845, 2007.

A. Keniry, D. Oxley, and P. Monnier, The H19 lincRNA is a developmental reservoir of miR-675 that suppresses growth and Igf1r, Nat Cell Biol, vol.14, pp.659-665, 2012.

L. Gao, W. Ren, and L. Zhang, PTENp1, a natural sponge of miR-21, mediates PTEN expression to inhibit the proliferation of oral squamous cell carcinoma, Mol Carcinog, vol.56, pp.1322-1334, 2017.

Z. Wangyang, J. Daolin, and X. Yi, NcRNAs and Cholangiocarcinoma. J Cancer, vol.9, pp.100-107, 2018.

J. Wang, H. Xie, and Q. Ling, Coding-noncoding gene expression in intrahepatic cholangiocarcinoma, Transl Res, vol.168, pp.107-121, 2016.

W. Song, D. Miao, and L. Chen, Comprehensive analysis of long noncoding RNA-associated competing endogenous RNA network in cholangiocarcinoma, Biochem Biophys Res Commun, vol.506, pp.1004-1012, 2018.

X. Wang, K. B. Hu, and Y. Q. Zhang, Comprehensive analysis of aberrantly expressed profiles of lncRNAs, miRNAs and mRNAs with associated ceRNA network in cholangiocarcinoma, Cancer Biomark, vol.23, pp.549-559, 2018.

W. Yang, Y. Li, and X. Song, Genome-wide analysis of long noncoding RNA and mRNA co-expression profile in intrahepatic cholangiocarcinoma tissue by RNA sequencing, Oncotarget, vol.8, pp.26591-26599, 2017.

Y. Yu, M. Zhang, and N. Wang, Epigenetic silencing of tumor suppressor gene CDKN1A by oncogenic long non-coding RNA SNHG1 in cholangiocarcinoma, Cell Death Dis, vol.9, 2018.

C. Zhang, J. Li, and F. Tian, Long Noncoding RNA NEAT1 Promotes Growth and Metastasis of Cholangiocarcinoma Cells, Oncol Res, vol.26, pp.879-888, 2018.

Y. Li, Q. Cai, and W. Li, Long non-coding RNA EPIC1 promotes cholangiocarcinoma cell growth, Biochem Biophys Res Commun. Epub, 2018.

C. Wang, Z. P. Mao, and L. Wang, Long non-coding RNA MALAT1 promotes cholangiocarcinoma cell proliferation and invasion by activating PI3K/Akt pathway, Neoplasma, vol.64, pp.725-731, 2017.

X. Xia, D. Xue, and T. Xiang, Overexpression of long non-coding RNA CRNDE facilitates epithelial-mesenchymal transition and correlates with poor prognosis in intrahepatic cholangiocarcinoma, Oncol Lett, vol.15, pp.4105-4112, 2018.

B. Zeng, H. Ye, and J. Chen, LncRNA TUG1 sponges miR-145 to promote cancer progression and regulate glutamine metabolism via Sirt3/GDH axis, Oncotarget, vol.8, pp.113650-113661, 2017.

Y. Xu, K. Leng, and Z. Li, The prognostic potential and carcinogenesis of long noncoding RNA TUG1 in human cholangiocarcinoma, Oncotarget, vol.8, pp.65823-65835, 2017.

M. Beltran, I. Puig, and C. Peña, A natural antisense transcript regulates Zeb2/Sip1 gene expression during Snail1-induced epithelial-mesenchymal transition, Genes Dev, vol.22, pp.756-769, 2008.

J. Yuan, F. Yang, and F. Wang, A Long Noncoding RNA Activated by TGF-Promotes the Invasion-Metastasis Cascade in Hepatocellular Carcinoma, Cancer Cell, vol.25, pp.666-681, 2014.

Y. Fan, J. C. Xu, and B. , Long noncoding RNA activated by TGF-in human cancers: A meta-analysis, Clin Chim Acta, vol.468, pp.10-16, 2017.

J. Zhang, C. Han, and N. Ungerleider, A Transforming Growth Factor-and H19

, Signaling Axis in Tumor-Initiating Hepatocytes That Regulates Hepatic Carcinogenesis. Hepatology; 0. Epub ahead of print 16, 2018.

K. Takahashi, I. K. Yan, and T. Kogure, Extracellular vesicle-mediated transfer of long non-coding RNA ROR modulates chemosensitivity in human hepatocellular cancer, FEBS Open Bio, vol.4, pp.458-467, 2014.

T. Mondal, S. Subhash, and R. Vaid, MEG3 long noncoding RNA regulates the TGFpathway genes through formation of RNA-DNA triplex structures, Nat, 2015.

Y. He, Y. Wu, and C. Huang, Inhibitory effects of long noncoding RNA MEG3 on hepatic stellate cells activation and liver fibrogenesis, Biochim Biophys Acta, vol.1842, pp.2204-2215, 2014.

C. Braconi, T. Kogure, and N. Valeri, microRNA-29 can regulate expression of the long non-coding RNA gene MEG3 in hepatocellular cancer, Oncogene, vol.30, pp.4750-4756, 2011.

J. Tang, H. Zhuo, and X. Zhang, A novel biomarker Linc00974 interacting with KRT19 promotes proliferation and metastasis in hepatocellular carcinoma, Cell Death Dis, vol.5, p.1549, 2014.

Y. Takahashi, G. Sawada, and J. Kurashige, Amplification of PVT-1 is involved in poor prognosis via apoptosis inhibition in colorectal cancers, Br J Cancer, vol.110, pp.164-171, 2014.

F. Wang, J. Yuan, and S. Wang, Oncofetal long noncoding RNA PVT1 promotes proliferation and stem cell-like property of hepatocellular carcinoma cells by stabilizing NOP2, Hepatology, vol.60, pp.1278-1290, 2014.

J. Zhao, S. Hao, and L. Wang, Long non-coding RNA ANRIL promotes the invasion and metastasis of thyroid cancer cells through TGF-/Smad signaling pathway, Oncotarget, vol.7, pp.57903-57918, 2016.

D. Chen, Z. Zhang, and C. Mao, ANRIL inhibits p15INK4b through the TGF 1 signaling pathway in human esophageal squamous cell carcinoma, Cell Immunol, vol.289, pp.91-96, 2014.

A. Congrains, K. Kamide, and M. Ohishi, ANRIL: Molecular Mechanisms and Implications in Human Health, Int J Mol Sci, vol.14, pp.1278-1292, 2013.

J. Ma, T. Li, and X. Han, Knockdown of LncRNA ANRIL suppresses cell proliferation, metastasis, and invasion via regulating miR-122-5p expression in hepatocellular carcinoma, J Cancer Res Clin Oncol, vol.144, pp.205-214, 2018.

R. Moll, M. Divo, and L. Langbein, The human keratins: biology and pathology, Histochem Cell Biol, vol.129, pp.705-733, 2008.

C. Dmello, S. Sawant, and H. Alam, Vimentin regulates differentiation switch via modulation of keratin 14 levels and their expression together correlates with poor prognosis in oral cancer patients, PLoS ONE, vol.12, 2017.

R. D. Merkin, E. A. Vanner, and J. L. Romeiser, Keratin 17 is overexpressed and predicts poor survival in estrogen receptor-negative/human epidermal growth factor receptor-2-negative breast cancer, Hum Pathol, vol.62, pp.23-32, 2017.

M. Ide, T. Kato, and K. Ogata, Keratin 17 Expression Correlates with Tumor Progression and Poor Prognosis in Gastric Adenocarcinoma, Ann Surg Oncol, vol.19, pp.3506-3514, 2012.

P. G. Chu, R. E. Schwarz, and S. K. Lau, Immunohistochemical staining in the diagnosis of pancreatobiliary and ampulla of Vater adenocarcinoma: application of CDX2, CK17, MUC1, and MUC2, Am J Surg Pathol, vol.29, pp.359-367, 2005.

Z. Peng, J. Wang, and B. Shan, The long noncoding RNA LINC00312 induces lung adenocarcinoma migration and vasculogenic mimicry through directly binding YBX1. Mol Cancer; 17. Epub ahead of print 23, 2018.

K. Liu, W. Huang, and D. Yan, Overexpression of long intergenic noncoding RNA LINC00312 inhibits the invasion and migration of thyroid cancer cells by downregulating microRNA-197-3p, Biosci Rep, vol.37, 2017.

Y. Wang, Z. Wu, and G. Wang, LINC00312 inhibits the migration and invasion of bladder cancer cells by targeting miR-197-3p, Tumor Biol, vol.37, pp.14553-14563, 2016.

M. Li, M. Qiu, and Y. Xu, Differentially expressed protein-coding genes and long noncoding RNA in early-stage lung cancer, Tumor Biol, vol.36, pp.9969-9978, 2015.

W. J. Wu, H. Yin, and J. J. Hu, Long noncoding RNA LINC00313 modulates papillary thyroid cancer tumorigenesis via sponging miR-4429, Neoplasma, vol.65, pp.933-942, 2018.

L. Lessard, M. Liu, and D. M. Marzese, The CASC15 long intergenic non-coding RNA locus is involved in melanoma progression and phenotype-switching, J Invest Dermatol, vol.135, pp.2464-2474, 2015.

Y. Yin, B. Zhao, and D. Li, Long non-coding RNA CASC15 promotes melanoma progression by epigenetically regulating PDCD4. Cell Biosci; 8. Epub ahead of print 13, 2018.

M. R. Russell, A. Penikis, and D. A. Oldridge, CASC15-S is a tumor suppressor lncRNA at the 6p22 neuroblastoma susceptibility locus, Cancer Res, vol.75, pp.3155-3166, 2015.

T. Mondal, P. K. Juvvuna, and A. Kirkeby, Sense-Antisense lncRNA Pair Encoded by Locus 6p22.3 Determines Neuroblastoma Susceptibility via the USP36-CHD7-SOX9 Regulatory Axis, Cancer Cell, vol.33, pp.417-434, 2018.

J. Zhang, Z. Zhuo, and J. Wang, CASC15 gene polymorphisms reduce neuroblastoma risk in Chinese children, Oncotarget, vol.8, pp.91343-91349, 2017.

C. M. Clemson, J. N. Hutchinson, and S. A. Sara, An Architectural Role for a Nuclear Noncoding RNA: NEAT1 RNA Is Essential for the Structure of Paraspeckles, Mol Cell, vol.33, pp.717-726, 2009.

K. Imamura, N. Imamachi, and G. Akizuki, Long Noncoding RNA NEAT1-Dependent SFPQ Relocation from Promoter Region to Paraspeckle Mediates IL8 Expression upon Immune Stimuli, Mol Cell, vol.53, pp.393-406, 2014.

J. A. West, C. P. Davis, and H. Sunwoo, The Long Noncoding RNAs NEAT1 and MALAT1 Bind Active Chromatin Sites, Mol Cell, vol.55, pp.791-802, 2014.

A. Fujimoto, M. Furuta, and Y. Totoki, Whole-genome mutational landscape and characterization of noncoding and structural mutations in liver cancer, Nat Genet, vol.48, pp.500-509, 2016.

Y. Xu, Y. Yao, and X. Jiang, SP1-induced upregulation of lncRNA SPRY4-IT1 exerts oncogenic properties by scaffolding EZH2/LSD1/DNMT1 and sponging miR-101-3p in cholangiocarcinoma, J Exp Clin Cancer Res CR, vol.37, 2018.

Q. Wu, S. Xiang, and J. Ma, Long non-coding RNA CASC15 regulates gastric cancer cell proliferation, migration and epithelial mesenchymal transition by targeting CDKN1A and ZEB1, Mol Oncol, vol.12, pp.799-813, 2018.

T. He, L. Zhang, and Y. Kong, Long non-coding RNA CASC15 is upregulated in hepatocellular carcinoma and facilitates hepatocarcinogenesis, Int J Oncol, vol.51, pp.1722-1730, 2017.

N. Jing, T. Huang, and H. Guo, LncRNA CASC15 promotes colon cancer cell proliferation and metastasis by regulating the miR-4310/LGR5/Wnt/ -catenin signaling pathway, Mol Med Rep, vol.18, pp.2269-2276, 2018.

B. Zheng, S. Jeong, and Y. Zhu, miRNA and lncRNA as biomarkers in cholangiocarcinoma(CCA), Oncotarget, vol.8, pp.100819-100830, 2017.

L. Li, D. Masica, and M. Ishida, Human bile contains MicroRNA-laden extracellular vesicles that can be used for cholangiocarcinoma diagnosis, Hepatology, vol.60, pp.896-907, 2014.

J. Shi, X. Li, and F. Zhang, The Plasma LncRNA Acting as Fingerprint in Hilar Cholangiocarcinoma, Cell Physiol Biochem, vol.49, pp.1694-1702, 2018.

X. Ge, Y. Wang, and J. Nie, The diagnostic/prognostic potential and molecular functions of long non-coding RNAs in the exosomes derived from the bile of human cholangiocarcinoma, Oncotarget, vol.8, pp.69995-70005, 2017.

Y. Han, S. Xia, and Y. Zhang, Circular RNAs: A novel type of biomarker and genetic tools in cancer. Oncotarget; 8. Epub ahead of print 8, 2017.

C. E. Burd, W. R. Jeck, and Y. Liu, Expression of Linear and Novel Circular Forms of an INK4/ARF-Associated Non-Coding RNA Correlates with Atherosclerosis Risk, PLoS Genet, vol.6, issue.2, 2010.

Y. Xu, Y. Yao, and X. Zhong, Downregulated circular RNA hsa_circ_0001649 regulates proliferation, migration and invasion in cholangiocarcinoma cells, Biochem Biophys Res Commun, vol.496, pp.455-461, 2018.

X. Jiang, Z. Li, and J. Li, A novel prognostic biomarker for cholangiocarcinoma: circRNA Cdr1as, Eur Rev Med Pharmacol Sci, vol.22, pp.365-371, 2018.

J. Salzman, R. E. Chen, and M. N. Olsen, Cell-Type Specific Features of Circular RNA Expression, PLoS Genet, vol.9, p.1003777, 2013.

M. Sand, F. G. Bechara, and D. Sand, Long-noncoding RNAs in basal cell carcinoma, Tumor Biol, vol.37, pp.10595-10608, 2016.

S. Zhang, W. Sun, and J. Wu, TGF-signaling pathway as a pharmacological target in liver diseases, Pharmacol Res, vol.85, pp.15-22, 2014.

M. Serova, A. Tijeras-raballand, and C. D. Santos, Effects of TGF-signalling inhibition with galunisertib (LY2157299) in hepatocellular carcinoma models and in ex vivo whole tumor tissue samples from patients, Oncotarget, vol.6, pp.21614-21627, 2015.

A. M. Lustri, D. Matteo, S. Fraveto, and A. , TGF-signaling is an effective target to impair survival and induce apoptosis of human cholangiocarcinoma cells: A study on human primary cell cultures, PLoS ONE, vol.12, 2017.

D. Yamada, S. Kobayashi, and H. Wada, Role of crosstalk between interleukin-6 and transforming growth factor-1 in epithelial-mesenchymal transition and chemoresistance in biliary tract cancer, Eur J Cancer, vol.49, pp.1725-1740, 2013.

Z. Shuang, W. Wu, and J. Xu, Transforming growth factor-1-induced epithelialmesenchymal transition generates ALDH-positive cells with stem cell properties in cholangiocarcinoma, Cancer Lett, vol.354, pp.320-328, 2014.

L. Li, K. Piontek, and M. Ishida, Extracellular vesicles carry microRNA-195 to intrahepatic cholangiocarcinoma and improve survival in a rat model, Hepatology, vol.65, pp.501-514, 2017.

R. Gao, C. Fang, and J. Xu, LncRNA CACS15 contributes to oxaliplatin resistance in colorectal cancer by positively regulating ABCC1 through sponging miR-145, Arch Biochem Biophys, vol.663, pp.183-191, 2019.

S. Tang, G. Tan, and X. Jiang, An artificial lncRNA targeting multiple miRNAs overcomes sorafenib resistance in hepatocellular carcinoma cells, Oncotarget, vol.7, pp.73257-73269, 2016.