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Acknowledgements

This thesis contains results of original work I’ve carried out during my three years PhD.

Many people contributed, in a direct or indirect way, to making those results possible.

The first person I need to thank is my PhD advisor, Marco Schirò, who took me under
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Summary

My PhD was devoted to the study of driven-dissipative quantum many-body systems.

These systems represent natural platforms to explore fundamental questions about matter

under non-equilibrium conditions, having at the same time a potential impact on emerging

quantum technologies. My goal was to investigate new physical phenomena determined

by the interplay of interactions, dissipation and non-equilibrium conditions as well as to

develop new techniques to study these systems.

The outline of the thesis is the following. In chapter 1 we will introduce the research

field, at the boundaries of condensed matter physics, quantum optics and quantum infor-

mation. We will discuss my motivations to do research in this field as well as the main

ideas behind it, or at least my point of view, and go through some recent theoretical and

experimental developments. In chapter 2 we will introduce some theoretical techniques

and concepts that will be useful in the rest of the thesis. Rather than entering in techni-

cal details, for which we will refer to books and papers, we will try to make connections

between different techniques that are not often discussed in literature. In chapter 3 we

will discuss the spectral properties of Markovian open quantum systems, looking in par-

ticular at a quantum van der Pol oscillator, in presence of an additional non-linear term

in its Hamiltonian. This chapter is mostly based on [1]. In chapter 4, we will study

the phase transition between a normal and a superfluid phase in a prototype system of

driven-dissipative bosons on a lattice, which is characterized by an instability of dynam-

ical modes. This chapter is mostly based on [2]. In chapter 5 we will discuss the phase

boundary of a Mott insulating phase stabilized by dissipation, which is potentially relevant

for undergoing experiments. The results of this chapter are preliminary and unpublished.

Finally, in chapter 6 we will discuss some developments towards using the technique of

dynamical mean field theory (DMFT) for studying driven-dissipative lattice systems. We

will revisit and extend some well known techniques for impurity systems in the context of

Markovian open systems, which are potentially useful both in the context of DMFT and to

go beyond Markovian master equations into more complicated scenarios of non-Markovian

dissipation. This chapter is mostly based on [3].
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Chapter 1

Driven-Dissipative Quantum

Many-Body Systems

Along this chapter we will motivate my interest in the theoretical investigation of driven-

dissipative quantum many-body systems and make connections with the literature and

with state-of-the-art experiments. In Sec. 1.1 we will introduce the main ideas behind

this research field. In Sec. 1.2 we will describe experimental platforms that are emerging

as quantum simulators, with a focus on circuit quantum electro-dynamics (circuit QED),

while in Sec. 1.3 we will discuss the concept of dissipation engineering, turning dissipation

from a decoherence machine into a resource to prepare quantum states. Finally, in Sec.

1.4 we will present some recent theoretical advances in this field, leaving a number of open

questions for future investigations.

1.1 The basic ideas

The 10 years old field of driven-dissipative quantum many-body systems is a hybrid

research field, intersecting ideas coming from traditionally different domains of physics,

in particular atomic molecular and optical (AMO) physics, condensed matter physics and

quantum information. Let’s start by breaking down the parts composing the name of this

research field. The quantum many-body problem could be traced back to Dirac’s quote

“The general theory of quantum mechanics is now almost complete...the difficulty is only

that the exact application of these laws leads to equations much too complicated to be solu-

ble” [4]. Quantum many-body physics has seen a series of breakthrough in its history, for

example the BCS theory of superconductivity [5] or the understanding magnetic impurities

in metals [6], leading to the development of renormalization group techniques. Collective

phenomena arise when many particles interact with each other realizing spectacular macro-

scopic quantum states, such as for example Bose-Einstein condensates, superconductors

or Mott insulators. The above Dirac quote continues with “It there fore becomes desirable

that approximate practical methods of applying quantum mechanics should be developed”

[4]. In fact, quantum many-body problems are very hard to solve, calling for a variety

of approximated techniques, each of them tailored to address certain physical regimes.
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While the computer era has significantly pushed the boundary of tractable problems, the

exponential increase of the Hilbert space with the number of degrees of freedom limits the

system sizes that can be treated numerically. The assumption, when verified, of themody-

namic equilibrium significantly simplifies the many-particles problem. A direct application

of the thermodynamics ensembles of classical statistical mechanics to quantum particles,

allows to obtain quantum statistics. These describe the equilibrium state obtained by

putting a quantum system in contact with a reservoir with some well defined thermody-

namic variables, such as temperature and chemical potential. The limit of this approach

is that it does not allow to study the dynamics towards equilibration, that instead needs

a more microscopic modeling of dissipation, nor more general non-equilibrium scenarios.

This microscopic modeling of dissipation in quantum mechanics was born in the 60’s,

stimulated by the invention of the laser. While in many cases one is interested in quantum

systems which are as isolated as possible from their environment, as the coupling to the

environment is detrimental for quantum features, this is not the case, for example, in the

phenomenon of laser action, which needs a lossy cavity to take place [7]. While dissipative

phenomena are easily described in classical Newtonian mechanics, for example drag forces

in fluids or thermal losses in a circuit, the Hamiltonian formulation of quantum mechanics

does not naturally allow for describing dissipative processes. The simplest idea of trying to

quantize classical dissipative equations of motion unfortunately leads to the catastrophic

consequence of breaking the quantum canonical commutation relations [7]. The effort to

develop a dissipative quantum theory that would recover well known classical equations in

the classical limit while preserving canonical commutation has led to the now commonly

accepted “system plus reservoir” approach [8–10].

In order to compensate for losses of particles and energy, one can drive the system

applying external forces on it, eventually establishing a dynamical balance between driving

forces and losses. We will call such a system a driven-dissipative system. The dynamical

balance between driving forces and losses is not expected, though, to lead to a thermo-

dynamic state and rather it realizes a non-equilibrium stationary state. In fact, the drive

plus dissipation mechanism explicitly breaks microscopic reversibility, or detailed balance,

underlying thermodynamic equilibrium. In this dissertation we will focus on those non-

equilibrium stationary states rather than on transient dynamics. We will mainly consider

dissipative processes that can be described in terms of Lindblad master equations, that

we will introduce in Ch. 2.

Combining the non-equilibrium conditions realized in driven-dissipative systems with

the interest in collective phenomena arising when many particles interact with each other,

gives rise to the new area of activity of driven-dissipative quantum many-body systems

[11–26]. Relaxing the constraint of thermodynamic equilibrium opens the door to new,

many-body phases, with no equilibrium counterpart. For example, there’s no guarantee

that a driven-dissipative system will ever reach a time-independent state and the onset

of limit-cycles or chaos are valid alternatives [20, 27, 28]. Driven-dissipative stationary

states can undergo phase-transitions when tuning some control knobs, called dissipative

phase transitions, that are potentially different from ordinary quantum or thermal phase

8



transitions and therefore are attracting a lot of attention [29–55]. While driven-dissipative

systems are very natural platforms to study out-of-equilibrium phenomena, dissipation is

detrimental for quantum features and thus for observing insteresting quantum mechanical

behaviours. For example, most of the phase-transitions in those systems belong to thermal

universality classes [18, 41, 45] even if this is not a general statement [41, 46, 53]. Never-

theless not all the quantum features get necessarily washed out by dissipation, to the point

that dissipative processes can be engineered in such a way that they generate quantum

states rather than suppressing them; this is the concept of dissipation engineering that

we will discuss in section 1.3. In the next section, instead, we will discuss the experimen-

tal platforms that allow to realize and manipulate driven-dissipative quantum systems

and that are pushing the technological boundaries towards the quantum simulation of

many-body physics in these systems.

1.2 Experimental platforms

The last years have see enormous advances in controlling and probing quantum systems,

motivated by the wish to understand fundamental questions, but also with the goal of

realizing technologies taking advances of quantum mechanical effects. Those developments

have been achieved in several branches of physics such as condensed matter physics, atomic

physics, quantum optics and quantum information. They brought forth a number of highly

controllable and measurable experimental platforms, which can simulate the behaviour

of more complex, otherwise inaccessible many-body quantum systems: these platforms

are called quantum simulators. The idea of quantum simulation was originally proposed

by Feynman [56]. The necessity for a quantum platform to simulate quantum many-

body systems comes from the observation that their Hilbert space grows exponentially

with the number of degrees of freedom. An exponentially large amount of data would

then be needed to encode a quantum many-body wavefunction in a classical computer,

making the problem intractable for big systems. Rather than trying to solve a many-body

Hamiltonian using a computer, one can take a physical system, that is ideally very easy

to control and measure and that is modelled by that Hamiltonian, and study how that

system behaves: this physical system realizes a quantum simulator. A series of quantum

simulators nowadays allow to explore non-equilibrium many-body quantum physics, such

as ultracold atomic gases [57, 58], quantum circuits [47, 59–63], optical cavities [35, 44],

and trapped ions [64]. In the last 20 years, quantum simulators allowed to experimentally

engineer many theoretically investigated Hamiltonians and to probe quantum phases of

matter and phase transitions [65–69].

Platforms have emerged as well to simulate driven-dissipative many-body systems.

Photonic systems are particularly suited to realize these systems as their particle number

is hardly conserved in realistic situations. On the other hand photons are among the

best examples of non-interacting particles in vacuum. If one is interested in studying

many-body effects which arise thanks to the interactions amongst particles, interacting

particles are needed. A first experimental challenge in those photonic platforms though,

9



was to make photons interact with each other [59, 70]. In order to do that, photons are

coupled, through their electromagnetic field, to other interacting particles, which in turn

mediate photon-photon interactions. Those mediated interactions need to be bigger then

the photonic decay rate due to dissipation in order to play a major role [71]. Promising

experimental platforms in which such strong interactions in driven-dissipative systems are

achieved are: those involving photons with optical wavelengths [70, 72], and those based

on superconducting circuits [59, 60, 63, 73] whose excitations are microwave photons.

Photon-photon interactions are mediated by a non-linear component: the possibility of

photons to excite electron-hole pairs in semiconductors for the first category, and the non-

linear behaviour of Josephson junctions in the second. In the next section we will do a

short overview of superconducting circuits, that are promising to realize scalable arrays of

strongly-interacting photons [73–76].

1.2.1 Theory of superconducting circuits

Superconducting circuits [77] can be described by collective, mesoscopic variables, such

as charge and flux, which show quantum mechanical behaviour if thermal fluctuations

are smaller then the excitation energies of the circuit. The leads that are connected to

the system in order to probe and control it, constitute an unavoidable electromagnetic

environment responsible for losses of particles, energy and quantum coherence [63]. Those

loss and decoherence processes can be usually modelled by a Lindblad master equation

[63], that we will discuss in chapter 2. A natural way to probe such systems consists in

driving them continuously with a microwave generator, thus realizing a balance of incom-

ing and outgoing particles and energy. The simplest building blocks of superconducting

circuit platforms are LC resonators, characterized by their inductance and capacitance

with typical values around L = 1nH and C = 10 pF leading to a resonant frequency of

ω0/2π = 1/2π
√
LC ≈ 1.6GHz, in the microwave range [78]. An LC resonator can be

quantized by writing down its classical Hamiltonian and promoting the conjugate classical

variables, Q and φ, that mimic respectively position and momentum, to quantum oper-

ators satisfying the canonical commutation rules [Q,φ] = −i. The ~ = 1 units will be

used throughout the thesis. The Hamiltonian of an LC resonator is simply the sum of the

inductor and capacitance energies and it is formally equivalent to a mass connected to a

spring, that is to an harmonic oscillator, thus it can be expressed in terms of annihilation

and creation operators, a = 1√
ω0

(
Q√
2C

+ i φ√
2L

)
,

H =
φ2

2L
+
Q2

2C
= ω0

(
a†a+

1

2

)
(1.1)

An LC resonator is a linear circuit element and its Hamiltonian is quadratic in a† and a

operators. In order to make things more interesting, one needs to introduce non-linear

elements in the circuit, such as Josephson junctions. These are made by sandwiching a thin

insulating layer between two superconductors [79]. Josephson discovered that, without any

voltage drop, such a junction sustains a current given by I = Ic sin(∆θ), where ∆θ is the

difference of the phase of the superconducting order parameter between the two sides of
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the junction and Ic is the critical current above which dissipative conduction takes place:

this is called the dc Josephson effect. The magnetic flux through a superconducting circuit

is related to the gradient of the phase ∆θ of the superconducting order parameter by the

local gauge invariance of the vector potential giving φ/φ0 = ∆θ, where φ0 = 1/(2e) is

the flux quantum [80]. A Josephson junction stores an energy of −EJ cos(φ/φ0), with

EJ = Icφ0, consistently with the Josephson current just introduced (I = Q̇ = ∂H/∂φ).

The second order in φ gives a linear inductance contribution to the Hamiltonian, with

LJ = φ2
0/EJ , while higher orders introduce non-linearities in the model. The junction also

has its own capacitance CJ , thus it is represented as a Josephson non-linear element (a

cross in schematics) in parallel with CJ , with total Hamiltonian

HJ =
Q2

2CJ
+

φ2

2LJ
+ UNL(φ) (1.2)

with non-linearities UNL(φ) = EJ
∑

n>1(−1)n+1 (φ/φ0)2n / (2n)!. Keeping the first non-

linear contribution in the rotating-wave approximation, that is keeping only terms with

equal number of annihilation and creation operators, we get the Hamiltonian

H = ωJa
†a+

U

2
(a†a)2 (1.3)

If one puts two Josephson junctions in parallel to form a ring, realizing a superconducting

quantum interference device (SQUID), they behave like a single effective junction for the

rest of the circuit, but the Josephson energy EJ can be tuned by controlling a magnetic

flux applied through the ring, which in turns allows to tune U . Devices featuring one or

more Josephson junctions are called superconducting qubits [81]. Connecting two circuits

elements, i and j, with a capacitive coupling gives rise to the hopping element (in the

rotating wave approximation)

HJ = J
(
a†iaj + aia

†
j

)
(1.4)

Using those building blocks, or combining them in more sophisticated ways, allows to

engineer a variety of many-body Hamiltonians describing bosonic particles on a lattice

[60, 73, 82].

1.2.2 Many-body Hamiltonians with circuits

An array of coupled Josephson junctions is described by a Bose-Hubbard Hamiltonian

[83].

HBH =
∑
i

(
ω0ni +

U

2
n2
i

)
− J

∑
〈ij〉

(
a†iaj + hc

)
(1.5)

with ni = a†iai. When we will discuss, in Ch. 4,5 the Bose-Hubbard model with losses

and driving terms, we will have this kind of experimental set-up in mind. Josephson

junctions arrays were first realized in 1980’s and Bose-Hubbard physics was investigated
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Figure 1.1: Picture from [62]. Bose–Hubbard lattice in a superconducting circuit. a)

Optical image of the device. Superconducting transmon qubits (Q1–Q8; yellow) consti-

tute lattice sites with energies tunable by individual fluxbias lines. Capacitive coupling

between transmons leads to tunnelling J , and transmon anharmonicity gives the on-site

interaction U . Readout resonators (green) enable site-resolved occupancy measurement

via a common transmission line. A lossy resonator (red) acts as a cold reservoir for the sta-

bilization process. A stabilization line (blue) drives only site Q1. Inset, close-up scanning

electron microscope image of the transmon qubit, showing the bottom of the cross-shaped

capacitor pad and the SQUID loop. b) Measured on-site interactions U, tunnelling rates

J, single-photon losses Γ1, dephasing rate Γd and on-site disorder δε, demonstrating a

high-coherence, low-disorder Bose–Hubbard lattice in the strongly interacting regime.

12



already in the early 1990 [84]. One of the main advances of current architectures is that

individual circuit elements are separated by larger distances on the chip and thus are

individually accessible. Also there’s much better control on disorder in the fabrication

of chips, that was a significant limitation to experiments [73]. In [83, 85] the authors

made a recent theoretical proposal using Josephson junctions embedded in LC resonators.

A experimental platform on this line has recently been experimentally realized in [62],

consisting in an array of 8 transmon qubits, that are SQUIDS in parallel with a large

capacitance. Their circuit is shown in Fig. 1.1

Another Hamiltonian that received much attention in recent years, because it can be

naturally realized in circuits [47, 61, 86, 87], is the Jaynes-Cummings Hubbard Hamiltonian

[11, 13, 29, 33, 73, 88–90]. The on-site Jaynes-Cummings Hamiltonian is realized by

coupling an LC resonator to a qubit [63]. This set-up features two bosonic modes per site,

in contrast with the Bose-Hubbard, where there’s only one mode per site: a linear mode

inside the LC resonator and a non-linear mode in the qubit. If the Josephson non-linearity

is bigger than all other energy scales, the qubit can be approximated with a 2-level system

with raising and lowering operators σ+ and σ−, thus realizing the Jaynes-Cummings lattice

Hamiltonian

HJC =
∑
i

[
ω0a

†
iai + εσ+

i σ
−
i + g

(
aiσ

+
i + a†iσ

−
i

)]
− J

∑
〈ij〉

(
a†iaj + hc

)
(1.6)

The physics of the Jaynes-Cummings Hubbard and the Bose-Hubbard Hamiltonian is

strictly related. Both of them feature a similar equilibrium phase diagram including a Mott

and a superfluid phase with a transition between them belonging to the same universality

classes [29, 90, 91].

1.3 Dissipation engineering

Quantum behaviour is very fragile and indeed our everyday world hardly shows any quan-

tum feature. In fact, the interaction of a quantum system with its environment is re-

sponsible for destroying its quantum features and recovering the much more familiar to us

classical behaviour. Despite the usual negative connotation associated with dissipation,

dissipative processes can actually be turned into resources to prepare, rather than sup-

press, states with interesting quantum mechanical behaviour. This concept is known as

dissipation engineering [92] and a major effort in this direction is currently being made

in the quantum optics and quantum information communities. Dissipation engineering

has been successfully employed to prepare quantum states in different contexts [62, 93–97]

and it is promising for realizing autonomous quantum error correction [98–100]. In this

section we will discuss two cases of experimental realizations of this concept. The first

is the dissipative stabilization of a Mott insulating phase, realized experimentally in [62]

and theoretically proposed in [93, 101, 102], which will be the subject of Ch. 5. In [62]

the authors realized a 1D chain of 8 coupled transmons qubits, realizing a Bose-Hubbard

Hamiltonian. Each site has intrinsic losses which would lead to an empty state. In order
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Figure 1.2: Picture from [62]. Scheme for the one-transmon dissipative stabilizer designed

in [62]. An auxiliary transmon R acts as an environment for the n = 2 state of the target

site S, stabilizing the site in the n = 1 state.

to stabilize a Mott insulating phase with exactly one photon on each site, the authors

implemented two versions of a “dissipative stabilizer”, respectively involving one and two

auxiliary transmons. We will describe the working principle of the stabilizer, in the scheme

involving one auxiliary transmon for simplicity, first considering the case in which the sys-

tem consists of a single site coupled to the auxiliary transmon as shown in Fig. 1.2. Say

we want to put exactly one photon in the site. In order to populate the site, transitions are

driven from the n = 0 state the n = 2 state, with a classical field of frequency ω02/2. Due

to the on-site Hubbard interaction U , the drive frequency is detuned from the transition

from the n = 0 to the n = 1 state by U/2: ω02/2 6= ω01. Once in the state with n = 2, the

second photon with energy ω12 rapidly tunnels to the auxiliary transmon, that is strongly

lossy and eventually dissipates the photon in its environment. Eventually, the target site

is left with exactly one photon. When considering the whole chain instead of a single site,

the first site of the chain being the stabilized site, then the first site acts as a narrow-band

photon source for the rest of the chain. Photons from this site tunnel into the others until

filling them all. When all the sites are filled with one photon, then the stabilizer will be

unable to inject additional photons, as this would require an energy higher then the source

energy, because of the incompressibility of the Mott phase. A driving scheme in the same

spirit of having an energy selective source of particles was proposed in [101] and will be

discussed in Ch. 5, where we will study the phase diagram of such a dissipatively-stabilized

Mott insulator. A second example of engineered dissipation is the experimental prepara-

tion [103, 104] of what are maybe the most paradigmatic example of non-classical states,

Schrödinger cat states, through dissipation. In this experiment, the authors observe the

two Schrödinger cat states obtained by the symmetric and antisymmetric superposition of

two photonic coherent states with opposite phase squeeze out of vacuum in the dissipative

dynamics. Their set-up consists of two superconducting resonators, named the storage and

the readout cavity, coupled through a Josephson junction. The readout cavity is driven

through a coherent tone and strongly coupled to a transmission line and it is meant to
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evacuate entropy from the storage, as the auxiliary transmon of the experiment [62]. The

coupling of the cavities through the Josephson junction and the pumping of the readout,

stimulates the conversion of two storage photons into one readout photon, which is rapidly

lost in the transmission line, and one pump photon. An effective description of the storage

cavity involves terms in which a pair of photons are injected in the storage or dissipated

from the storage. Additionally, dissipative processes involving only one storage photon at

a time are also present. As a result of the processes involving photons pair creation and

annihilation, the authors observe Schrödinger cats states squeezing out of the vacuum,

before decaying into a classical state, because of the always present single-particle losses.

This model has been investigated theoretically in [105], where an analytical solution for the

steady state density matrix is found. Due to unavoidable single-particle losses, the authors

show that the steady state density matrix is always a statistical mixture of the two cat

states, but that the transient dynamics can pass through a metastable state lasting orders

of magnitudes longer than the photon lifetime. With those two examples of engineered

dissipation, that were chosen amongst others according to my personal taste, I hope I

gave the reader the flavour of why dissipative quantum systems are more interesting then

expected, in the sense that not only they are important to understand how a quantum

system turns classical by the effect of the coupling to the environment, but that they can

be equally used for engineering new out-of-equilibrium quantum phases of matter.

1.4 Theoretical investigations

In this last section we will discuss some recent theoretical investigations in the realm of

driven-dissipative quantum many-body systems. This discussion is by no means exhaustive

and the selection of topics is a personal choice. As a first example of a topic of current

interest, optical bistability has recently been studied beyond its semi-classical solution, in

the context of a single coherently driven non-linear resonator with one-particle Markovian

losses [54, 106]. While in the semi-classical limit, in which the bosonic field is replaced

by its expectation value, there is a region in the strength of the driving field with two

dynamically stable solutions, in the same region the quantum solution obtained as the

steady state of the corresponding Lindblad master equation has a single solution. These

two pictures are reconciled by investigating the behaviour of the smallest eigenvalue of

the Liouvillian super-operator, called the Liouvillian gap, in the same region. In the semi-

classical limit of infinitely many-bosons this eigenvalue is vanishingly small and the master

equation admits two stationary states, thus recovering the semi-classical bistability in this

limit. The closing of the Liouvillian gap allows to interpret the phenomenon of optical

bistability as a first order dissipative phase transition [37, 49]. This novel point of view

attracted a new wave of interest on optical bistability and more generally on the possibility

of having multiple steady-states of the Liouvillan in the thermodynamic limit. In [106] the

authors claimed that a closing of the Liouvillian gap and thus a dissipative phase transition

would also occur connecting many of those cavities in a lattice model. This time only a

finite number of photons per site is needed, and a dissipative phase transition is supposed
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to arise in the thermodynamic limit of infinitely many sites. Indeed, a following work [50]

numerically showed that it is the case in 2D, where the Liouvillian gap closes point-wise

for a critical drive strength, while in 1D the Liouvillian gap unexpectedly saturates to

a finite value as the lattice size is increased. In a similar direction, a recent work [107]

analysed a spin model for which the mean-field solution shows a bistable behaviour, with

a method aimed at including quantum fluctuations beyond mean-field in a self-consistent

way supported by MPO simulations. The numerical results of [107] show that bistability

is completely washed away in 1D, while suggest the possibility of true bistability in the

thermodynamic limit in 2D.

Another interesting front of current investigations is aimed at understanding universal

phenomena in many-body driven-dissipative systems. Universal phenomena are intimately

related to phase transitions and to fixed points of the renormalization group flows [108]

and can characterize both non-equilibrium stationary states of driven-dissipative systems

and their dynamics. The interest in critical phenomena in this novel class of systems

is two-fold. The first reason of interest stems from the non-equilibrium nature of those

systems. While equilibrium dynamical phase transitions have been classified by Hohen-

berg and Halperin [109], non-equilibrium conditions can lead to new universality classes

which escape this classification. On the other hand, most of the phase transitions in

driven-dissipative systems belong to thermal universality classes and are described by an

emergent effective temperature, as quantum fluctuations are lost as a result of dissipation

[18, 41, 45]. A current challenge is to understand to which extent quantum features can

be present in the critical properties of those systems. Some progresses in both directions

have been made. In [41], the authors study the Bose condensation transition in driven-

dissipative systems using a functional renormalization group approach. They predict a

new critical exponent, which describes how quantum coherent dynamics is washed away

towards an effective thermal behaviour, which escapes the Hohenberg-Halperin classifica-

tion of equilibrium critical dynamics and thus defines a new universality class. In this

work, the renormalization group flow leads to a fixed point where all quantum coherence

is lost and where only the dissipative couplings are non-zero and thus the phase-transition

in the stationary state is then essentially classical. In [110], the authors discuss a novel

universality class in one-dimensional driven open quantum system, which manifests in

presence of strong diffusive noise on top of inevitable white noise. They predict a new

non-equilibrium fixed point with mixed coherent and dissipative nature. In striking con-

trast with [41], quantum mechanical effects persist in the critical behaviour. This critical

behaviour though, characterizes only intermediate length-scales, before the final onset of

decoherence at the longest length-scales in the system. A relevant work in this context

is the recent numerical study [53] of the critical behaviour of a model of a quadratically

driven non-linear photonic lattice. Essentially, this is a lattice model obtained by coupling

several cavities of the kind that were used to prepare cat states in [103]. Each site of the

lattice features drive and dissipative processes involving two photons at a time as well as

additional single-photon losses. The authors of [53] claim that, for small values of dissi-

pation, the critical behaviour is determined by an underlying quantum critical point of
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the quantum Ising universality class. For increasing photon loss rates, a departure from

this quantum universal behaviour is interpreted as the onset of a quantum critical regime,

akin of what one would expect by increasing temperature starting from a zero temperature

quantum critical point [111, 112].

Finally, I would like to turn the attention to the possibility of breaking time-translational

symmetry in many-body driven-dissipative systems. In the quantum world, the question

of whether it is possible to break time-translational invariance, has recently attracted a lot

of interest, starting the quest for time-crystals. Soon after the original proposal [113] of

an oscllating ground-state of a quantum many-body system, no-go theorems showed that

it is actually impossible to break continuous time-translational symmetry in ground-states

[114–116]. Starting from this defeat, the focus has changed from looking for realizations

of spontaneously broken continuous time-translational symmetry to investigating cases in

which discrete time-translational symmetry is broken. The basic idea is looking at sys-

tems driven with a certain drive period, which show a dynamics with a period which is a

multiple of the drive period: this is the class of Floquet time-crystals [117–121]. As the

time-crystal behaviour is supposed to be an effect of many-body interactions, the spon-

taneous frequency of oscillations of the system should be robust to perturbations in the

drive frequency. In driven-dissipative systems, nothing prevents from the possibility of

breaking time-translational symmetry resulting in a non-equilibrium state which oscillates

in time. A well know example is provided by exciton-polariton condensates where the su-

perfluid order parameter oscillates at an effective chemical potential [30, 31, 70, 122]. The

breaking of time-translational symmetry in those systems is associated with a dissipative

phase transition, in which some eigenvalues of the Liouvillian become purely imaginary.

An example of this time-crystal behaviour is given in the semi-classical spin model stud-

ied in the context of boundary time-crystals [28]. There, the possibility of time-crystal

behaviour at the boundary of a closed many-body quantum systems is connected with

a driven-dissipative problem showing time-crystal behaviour in its long time dynamics.

In this semi-classical model, the authors show that indeed a large number of eigenvalues

of the Liouvillian become purely imaginary in the thermodynamic limit, thus the limit

cycle phase is characterized by several harmonics. Another interesting work in the context

of spin models is [123], where the authors study an incoherent spin-model developing a

time-crystal phase, relating it to models of synchronization of oscillators. Limit cycles

are easily predicted at the mean-field level, but it is questionable whether they survive

upon including fluctuations. In [20] for example, the authors investigate the robustness of

limit cycles predicted in mean-field in a driven-dissipative Heisenberg lattice using beyond

mean-field methods, and conclude that those oscillation are damped out in any physical

dimension upon including beyond mean-field fluctuations. In [22], the authors show that

dissipation can actually prevent systems, which would thermalize if they were isolated,

from thermalizing. They show that a D-dimensional Hubbard model shows non-damped

oscillations in presence of dissipation, which are damped out in absence the environment.

This happens because the coherences that lead to dephasing in the isolated system get

damped out by the dissipation. The authors formulate an algebraic condition for the
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existence of purely imaginary eigenvalues of a Liouvillian which applies for special kinds

of engineered dissipation. We will discuss breaking of time-translational symmetry in the

context of strongly-interacting driven-dissipative bosons on a lattice in Ch. 4, resulting in

a phase transition in which a finite frequency mode becomes unstable. In Ch. 5 we will

discuss the phase diagram of dissipatively-stabilized Mott insulators, which is profoundly

modified with respect to the ground state one due to the instability of dynamical modes.

The field of driven-dissipative quantum many-body systems is still young and rapidly

growing. The topics covered in this chapter are not exhausting and are related to my

personal point of view of the field. After this short, hopefully exciting introduction to the

field, we are now ready to discuss some investigation I carried on during my PhD.
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Chapter 2

Theoretical Methods

In this chapter we will introduce some theoretical tools we will make use of throughout

the thesis. We are mainly interested in open quantum systems that can be described by

Markovian master equations. Treating many-body systems using master equations though

is a hard problem and we will resort to a field-theoretical approach based on Green func-

tions, when this is advantageous. As we have discussed, driven-dissipative systems are

naturally out-of-equilibrium, so we need to work in the non-equilibrium framework pro-

vided by Keldysh field theory. In order to make the discussion short and more interesting

for the reader, well established topics will be introduced in a concise way, referring to

textbooks and papers for technical details. We will rather concentrate on making connec-

tions amongst different techniques, as these connections are not so often discussed in the

literature.

We will keep the discussion generic for bosonic and fermionic systems introducing the

variable ξ such that

ξ = 1 for bosons

ξ = −1 for fermions

We will give all definitions considering a single bosonic (fermionic) mode in second quan-

tization, with creation and annihilation operators a and a† following the commutation

(anti-commutation) relations [
a, a†

]
ξ

= 1

where [ , ]ξ is the commutator (anti-commutator) for bosons (fermions).

The outline of the chapter is the following. In section 2.1 we will introduce non-

equilibrium Green functions, which will be the main theoretical building block of our

theoretical approach, giving a brief overview of why they are useful and which kind of

information one can extract from them. In section 2.2 we will introduce the concept of the

non-equilibrium contour and set the definitions of the main objects one has to deal with

in Keldysh field theory. In section 2.3 we will discuss Markovian open quantum systems,

we will introduce the Lindblad master equation, discuss super-operators and look at how
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to make contact between master equations and Keldysh field theory. Finally, in Sec. 2.4

we will discuss Green functions of Markovian quantum systems, trying again to make

contact with their definitions in Keldysh field theory, and we will discuss a useful spectral

decomposition of such Green functions.

2.1 Non-equilibrium Green functions

When dealing with interacting many-body problems, diagonalizing the Hamiltonian is

usually hard for big systems. Most of the methods of many-body theory are tailored at

computing Green functions rather than at diagonalising the Hamiltonian. We generically

call Green functions average values of strings of operators computed at different points in

time or space. This definition can be made more precise and it doesn’t justify the use of

the name “Green functions”. The content of this section with more details can be easily

found in books [124, 125]. Green functions allow to extract physical information about

the system, such as to describe the response to an applied perturbation or to describe

correlations. For a generic interacting problem, they cannot be computed exactly, but

many powerful approximations have been developed in the past years. One advantage of

working with Green functions is that this allows for systematic perturbative expansions

about the non-interacting limit, that can be evaluated by means of Wick’s theorem.

Throughout this thesis we will mostly deal with one-particle Green functions, de-

scribing the creation and annihilation of one particle at different times. Let’s consider a

quantum system following the Hamiltonian dynamics described by von Neumann equation

∂tρ(t) = −i [H, ρ(t)] (2.1)

where H and ρ are the system Hamiltonian and density matrix. Out of equilibrium one

can define two, independent, one-particle Green functions, the so-called greater and lesser.

Those are given by

G>(t, t′) = −i〈a(t)a†(t′)〉 (2.2)

G<(t, t′) = −iξ〈a†(t′)a(t)〉

where 〈. . .〉 = tr (. . . ρ(0)), where we assume the normalization trρ(0) = 1, a(t) is the

annihilation operator in the Heisenberg picture a(t) ≡ eiHtae−iHt and a†(t) its conjugate.

The > (<) label indicates that the operator corresponding to the first time argument is

applied after (before) the other one, i.e. the first time argument must be regarded as

“greater (lesser)” than the other. An equivalent choice is to work with the symmetric and

antisymmetric combinations of the greater and the lesser. It is actually useful to split

the antisymmetric combination into its retarded and advanced components, as those are

response functions describing the linear response of the system to an applied perturbation.
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By doing so, one obtains the Keldysh and retarded one-particle Green functions

GK(t, t′) = G>(t, t′) +G<(t, t′) = −i〈
{
a(t), a†(t′)

}
ξ
〉 (2.3)

GR(t, t′) = θ(t− t′)
(
G>(t, t′)−G<(t, t′)

)
= −i〈

[
a(t), a†(t′)

]
ξ
〉θ(t− t′) (2.4)

(2.5)

where θ(t) is the step function, θ(t) = 0 for t ≤ 0, θ(t) = 1 for t > 0, and { , }ξ is the

anti-commutator (commutator) for bosons (fermions). The Keldysh Green function has

the property GK(t, t′) = −
[
GK(t′, t)

]∗
. We left out the advanced Green function

GA(t, t′) = θ(t′ − t)
(
G<(t, t′)−G>(t, t′)

)
= i〈

[
a(t), a†(t′)

]
ξ
〉θ(t′ − t)

that depends on the retarded by the relation
[
GA(t′, t)

]∗
= GR(t, t′). The lesser, greater,

Keldysh, retarded and advanced Green functions naturally arise in the context of Keldysh

field theory and are the most natural quantities one can aim at computing in such a

framework.

Those quantities allow to exctract a big amount of physical information. Coupling a

classical, time-dependent field to the Hamiltonian, Hh = H + a†h(t) + a h∗(t), the linear

response is given by the retarded Green function through the Kubo formula

〈a(t)〉h = 〈a(t)〉h=0 +

∫ ∞
−∞

GRh=0(t, t′)h(t′) (2.6)

In a cavity set-up the intracavity fields are related to extracavity ones through input-

output theory [126, 127] and the retarded Green function of intracavity fields can be

measured directly through an homodyne detection measurement [128].

Green functions depend on two times for transient dynamics, but, if the system reaches

a stationary state, i.e. ρ(t) = ρss, for sufficiently long times, then in this stationary

regime they depend only on time differences. Equivalently one says they become time-

translational invariant. In this case it is usually advantageous to work in Fourier space,

by introducing the Fourier transform of a function f(t) as f(ω) =
∫∞
−∞ dtf(t)eiωt. As the

retarded Green function is a causal function, i.e. it is zero for t < t′, the real and imaginary

parts of its Fourier transform depend on each other through the Kramers- Krönig relations

[129]:

ReGR(ω) = P
∫ ∞
−∞

dω′

π

ImGR(ω′)

ω′ − ω
ImGR(ω) = −P

∫ ∞
−∞

dω′

π

ReGR(ω′)

ω′ − ω
(2.7)

The Fourier transform of the retarded Green function is then completely determined

by its imaginary part, called the spectral function

A(ω) = − 1

π
ImGR(ω) = − 1

2πi

(
GR(ω)−GA(ω)

)
= − 1

2πi

(
G>(ω)−G<(ω)

)
(2.8)

The second equality holds because in Fourier space
[
GR(ω)

]∗
= GA(ω). One can show

that
∫∞
−∞ dωA(ω) = 1 due to commutation (anti-commutation) relations of annihilation
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and creation operators, and the −1/π factor is a normalization constant. The spectral

function measures how well adding one particle on top of a given state represents an

excited state of the system. If adding one particle gives an exact excited state, then this

state will never decay, as it is the case for free particles, and this gives a delta peak in

A(ω). For an interacting system, instead, those delta peaks normally get renormalized by

interactions getting a finite width.

In the case the system is in thermal equilibrium with inverse temperature β, then

a very special relation holds, known as the fluctuation-dissipation theorem (FDT). This

relates the Keldysh Green function to the spectral function

GK(ω) = −2πi(1 + 2ξnξ,β(ω))A(ω) (2.9)

where nξ,β = (exp(βω)− ξ)−1 is the Bose(Fermi) distribution with inverse temperature β

and zero chemical potential (in units of the Boltzmann constant, i.e. kB = 1). When FDT

holds, i.e. in equilibrium, then the Keldysh Green function doesn’t add any additional

information with respect to the spectral function. Out of equilibrium, instead, the Keldysh

Green function is an independent quantity that carries extra information. At equal times

it gives the occupation of the mode at a given time

GK(t, t) = −i
(

1 + ξ2〈a†a〉(t)
)

(2.10)

while the spectral function at equal-times information yields a constant, corresponding to

its fixed area in Fourier space, thus it gives no information on the state.

Out of equilibrium one can parametrize the ratio between the Keldysh Green function

and the spectral function, called the distribution function:

F (ω) =
GK(ω)

−2πiA(ω)
(2.11)

This is a real function as A(ω) is real by definition, while the GK(ω) is purely imaginary

as it satisfies GK(ω) = −
[
GK(ω)

]∗
. In equilibrium this function would be fixed by

FDT, Feq(ω) = (1 + 2ξnξ,β(ω)), while out of equilibrium it is completely arbitrary. F (ω)

allows to define effective thermodynamic quantities, in specific cases. For example, if

for small frequencies the bosonic distribution function of a given system shows a 1/ω

behaviour, one can define a low-energy effective temperature by analogy with the bosonic

equilibrium distribution function by βeff = 2/ (ω limω→0 F (ω)). One must be careful,

though, with effective thermodynamic quantities as there are several other ways to define

them with different meanings. Also, those effective quantities describe observables, rather

than the whole system, in the sense that different observables can yield different effective

thermodynamic quantities [24, 130].

2.2 Non-Equilibrium contour and Keldysh field theory

We have already discussed the need for a non-equilibrium theoretical framework to deal

with driven-dissipative systems. The formalism of the Schwinger/Keldysh double-contour [131,
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132] arises very naturally when considering the time-evolution of the density matrix of a

quantum mechanical system. In this section we will introduce the double-contour and the

formalism of Keldysh field theory.

To understand the idea behind the double-contour, consider the evolution of the density

matrix according to the Von Neumann equation

∂tρ(t) = −i [H, ρ(t)] (2.12)

This equation is formally solved by introducing the evolution operator U(t, t′) = e−iH(t−t′).

Considering an initial state ρ(t′) then ρ(t) = U(t, t′)ρ(t′)U(t′, t). One is interested in com-

puting average values. Let’s consider an observable O at time t. Assuming the normal-

ization trρ(t) = 1, its average value is given by

〈O〉(t) = tr [Oρ(t)] = tr
[
U(t′, t)OU(t, t′)ρ(t′)

]
(2.13)

where we have used the cyclic property of the trace. This way of writing corresponds to

applying a forward time evolution on ρ(t′) up to time t, then picking up the operator O

and applying a backward evolution from time t to t′. One can always extend the upper

time t of forward and backwards evolutions up to ∞ and we will assume this extension

in the following. Also, we will consider systems that forget about their initial condition,

thus we will take the limit t′ → −∞. These forward and backwards time-evolutions from

t′ = −∞ to t =∞ define the define the two branches of the double-contour, that we will

call C.

The Keldysh path integral can be derived by slicing time-evolutions in infinitesimal

time-steps and introducing identities in terms of bosonic (fermionic) coherent states[133]1.

If one is interested only in the ground state or in finite temperature equilibrium states,

there are workarounds to avoid the double-contour evolution [133], leading to the the zero

temperature or finite temperature formulations path integrals.

In the following, we will give a pragmatic definition of the kind of objects one has to

manipulate in Keldysh field theory, without entering in the details, for which we refer to

textbooks [124, 133] and to the review [135] in the context of Markovian quantum systems.

In a coherent-states path integral formulation, a model is specified by its action rather

than its Hamiltonian, which is a functional of time-dependent coherent fields. Given there

are both a forward and backward evolution, there will be two kinds of fields, respectively

belonging to the forward and backward branches of the double-contour. In order to dis-

tinguish between them, fields with time arguments belonging to the forward(backward)

branch are assigned a +(-) label, so that the couple (t, γ), with γ ∈ {+,−}, allows to

locate one field on the double-contour. For a single-mode system, the Keldysh partition

function is defined by

Z = trρ(∞) =

∫
D [a, ā] eiS[a,ā] (2.14)

1The coherent state path integral has been developed also for spin systems, see for example [134].
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The action S [a, ā] is a functional of the time-dependent coherent fields a and ā, where

the over-bar indicates complex conjugation. All the fields under the path integral sign are

time-ordered by the contour time-ordering operator TC . A time-ordering is defined on the

double-contour, such that

(t,+) > (t′,+) if t > t′

(t,−) > (t′,−) if t′ > t

(t,−) > (t′,+) ∀t, t′

In words, two fields belonging to the + branch follow standard time-ordering, those on the

− branch are ordered in the opposite way and − fields come always after + ones. This

time-ordering allows to define TC by its action on two generic functions of coherent fields

belonging to the plus or minus contour, that we call f and g, by

TCfγ(t)gγ′(t
′) = fγ(t)gγ′(t

′) if (t, γ) > (t′, γ′) (2.15)

TCfγ(t)gγ′(t
′) = ξgγ′(t

′)fγ(t) if (t, γ) < (t′, γ′) (2.16)

According to this definition, bosonic fields commute in the path integral, while fermionic

fields anti-commute, i.e. they are Grassman variables. We define contour integrals as∫
C dt f(t) ≡

∫∞
−∞ dt f+(t) −

∫∞
−∞ dt f−(t). This allows to write the action of a generic

closed system in the compact continuous form

S [a, ā] =

∫
C
dt ā(t) i∂ta(t)−H (a(t), ā(t)) (2.17)

where H (a(t), ā(t)) is the Hamiltonian of the system, that is a function of coherent fields.

Contour time-ordered averages can be also computed by the path integral, for example

one-particle Green functions read

Gγ,γ
′ (
t, t′
)

= −i〈aγ(t)āγ′(t
′)〉 = −i

∫
D [a, ā] aγ(t)āγ′(t

′)eiS[a,ā] (2.18)

where the average 〈. . .〉 of Keldysh fields is a time-ordered average, i.e. 〈. . .〉 ≡ 〈TC . . .〉.
We can defined a matrix G(t, t′) of four Green functions in the contour indices γ, γ′

G
(
t, t′
)

= −i

(
〈a+(t)ā+(t′)〉 〈a+(t)ā−(t′)〉
〈a−(t)ā+(t′)〉 〈a−(t)ā−(t′)〉

)
(2.19)

The off-diagonal components correspond to the lesser and greater Green functions in-

troduced in section 2.1: G<(t, t′) = G+−(t, t′) and G>(t, t′) = G−+(t, t′). The diagonal

components are combinations of G< and G>.

A change of basis in the contour indices, known as Keldysh rotation, is often convenient

in calculations. This corresponds to introducing the classical and quantum fields

ac(t) =
a+(t) + a−(t)√

2
aq(t) =

a+(t)− a−(t)√
2

(2.20)
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In this basis, the one-particle Green functions read

G
(
t, t′
)

= −i

(
〈ac(t)āc(t′)〉 〈ac(t)āq(t′)〉
〈aq(t)āc(t′)〉 0

)
(2.21)

where we called the matrix again G as (2.19), with an abuse of notation. Working in

this basis is convenient because the Gq q component is identically zero. This corresponds

to the relation G++(t, t′) + G−−(t, t′) − G+−(t, t′) − G−+(t, t′) = 0 between the Green

functions in the other basis and can be proved by direct inspection. One can easily show

[135] that the components of G(t, t′) in this basis are the Keldysh, retarded and advanced

Green functions introduced in section 2.1: Gc c(t, t′) = GK(t, t′), Gc q(t, t′) = GR(t, t′), and

Gq c(t, t′) = GA(t, t′).

2.3 Markovian open quantum systems

A quantum system that is decoupled from any environment – also called bath or reservoir –

is said to be closed. Of course, no physical system is really closed, but in many cases this is

a reasonable assumption to study quantum mechanical effects. In other situations, instead,

one is interested in taking into account the environment, as this is crucial for describing

the behaviour of the system. We will call universe the system plus reservoir ensemble. An

environment is defined as an infinite set of degrees of freedom with a continuous spectrum.

It is important that the spectrum is continuous to describe a true irreversible, dissipative

dynamics; in this limit, the Poincaré recurrence theorem for quantum dynamics doesn’t

hold, the bath loses memory about its past and the dynamics becomes truly irreversible

[136, 137]. The environment Hamiltonian can, in many cases, be modeled as an infinite

set of free modes, known as the Caldeira-Leggett model [10]. If each mode is only weakly

coupled to the system, this model is fairly general as the system is not expected to perturb

sufficiently the environment modes to experience its non-linearities [10]. The Caldeira-

Leggett model of the environment accounts for all memory-effects and it’s very hard to

treat if the system is interacting. We will develop a scheme to account for those memory

effects in section 6, while in the rest of the thesis we will focus on Markovian open quantum

systems, where memory of the environment is neglected.

This is a reasonable simplification in many physical scenarios, for example in typical

quantum optics setups. A formal theory of Markovian open quantum systems have been

developed [136, 138, 139], based on the semi-group property of Markovian time-evolution

[136]. When dealing with open systems, one is interested in obtaining an effective dynamics

for the reduced density matrix of the system, obtained by doing a partial trace trE on the

environment degrees of freedom:

ρ = trEυ

where υ is the density matrix of the universe, i.e system plus environment. The physical

assumption one needs to satisfy in order to neglect memory effects of the environment

while doing such a trace is that
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1. the characteristic time of decay of bath correlations, τB, is short compared to the

relaxation time of the system τR coupled to the bath

Under this assumption, the dynamics of the reduced density matrix takes the form of a

quantum dynamical semigroup and it is described by a Lindblad master equation [136,

138, 139]2.

2.3.1 The Lindblad master equation

The Lindblad master equation, describing the evolution of the reduced density matrix

under the above assumptions, reads

∂tρ = Lρ = −i [H, ρ] +Dρ

Dρ =
∑
α

γα

(
LαρL

†
α −

1

2

{
L†αLα, ρ

}) (2.22)

L will be referred to as the Liouvillian/Lindblad super-operator. The term D is called

Lindblad dissipator and it makes the effective dynamics substantially different from closed

systems dynamics, in particular non-unitary. It is defined through the jump operators Lα,

that can be microscopically determined by specifying the coupling Hamiltonian between

system and bath, and by the positive rates γα. Assuming a time-independent L, the

Lindblad master equation is formally solved by the eLt propagator:

ρ(t) = eLtρ(0)

It can be shown that the Lindblad master equation is a trace preserving and completely

positive map [136], two fundamental properties for probabilities to be positive and con-

served. In section 6 we will discuss those properties for a non-Markovian map, where it is

highly non-trivial to develop approximated schemes that do not spoil those properties.

Throughout this thesis we will use weak-coupling master equations, which are derived

assuming that the coupling with the reservoir is small. For those master equations, as-

sumption 1 is not enough for those master equations to be of the Lindblad form (2.22),

and thus to guarantee that probabilities are conserved and positive during the dynamics.

One needs to make a second assumption in order to justify a secular approximation or

rotating-wave approximation [136]:

2. the typical time scale of the intrinsic evolution of the system, τS , must be shorter

than its relaxation time τR

We finally remark that coupling of the bath to the system not only gives rise to the dissipa-

tor, but it also gives an Hamiltonian contribution, known as the Lamb shift Hamiltonian.

We will absorb this term in the definition of the original Hamiltonian, if not specified

otherwise.

2Actually this was proven by Lindblad [139] only for a bounded generator L. A discussion is reported

in [136].
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2.3.2 Super-operators

In the context of open systems we have to deal with operators acting on others operators,

such as the Liouvillian on the density matrix: these will be called super-operators. In this

section, we will first introduce the ± notation for super-operators which makes formal

contact with Keldysh field theory. Then we will introduce the Liouville space with the

purpose of being able to represent super-operators, which are rank-4 tensors in the original

Hilbert space, as matrices; this is advantageous for example to compute numerically the

spectrum of the Liouvillian. The proper definition of a canonical algebra of annihilation

and creation operators in the Liouville space leads to the so called third-quantization

or super-fermionic representation [140–144], which is useful for an algebraic approach to

many-body Markovian open systems, but it goes beyond the scope of this thesis and won’t

be addressed here.

Let’s first introduce the ± notation for super-operators. One can always promote

operators to super-operators. Let’s consider the two cases of an operator O applied to

the right and left of another operator, that we will indicate with •. We define the super-

operators O+, O−, as

O+ = O•
O− = •O

The • notation is useful to specify where the argument of a super-operator must be in-

serted, but becomes superfluous when using ± indices. The following dagger rules are very

useful

(O+•)† = O†−•† (2.23)

(O−•)† = O†+•† (2.24)

They follow from the definitions of O±: (O+•)† = (O•)† = •†O† = O†−•† and (O−•)† =

(•O)† = O†•† = O†+•†. The ± notation, in which operators are promoted to super-

operators, turns useful as one can write nested applications of super-operators without

the need for parentheses specifying the argument of each super-operator, being understood

that super-operators always apply on the whole string appearing to their right. To make

an example, consider the nested expression S (S (•)O), where the paretheses are needed to

specify the arguments of super-operators; in the ± notation S (S (•)O) = SO−S and no

parentheses or bullets are needed. The most generic super-operator S we will encounter

can be written as S =
∑

αAα • Bα. As it is made up of operators acting from the right

or left, it can be written analogously as S =
∑

αAα,+Bα,− =
∑

αBα,−Aα,+ in the ±
notation. In this notation the Lindblad super-operator takes the form

L = −i (H+ −H−) +
∑
α

γα

(
Lα,+L

†
α,− −

1

2

(
L†α,+Lα,+ + Lα,−L

†
α,−

))
(2.25)

We remark the order of L†α,− and Lα,− in the last term, as it could lead to mistakes:

Lα,−L
†
α,− = •L†αLα.
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We will now introduce the Liouville space. Super-operators are operators acting on

others operators, such as the Liouvillian on the density matrix. It is natural to define

a vector space H ⊗ H, which is the tensor product of two copies of the original Hilbert

space H, whose elements are the operators acting on H. Super-operators are then linear

applications on this vector space of operators. This enlarged space is called Liouville

space. Defining the inner product of two operators A, B as 〈A,B〉 ≡ tr
(
A†B

)
, the

Liouville space becomes a Hilbert space. Operators, for example the density operator

ρ =
∑

n,m ρnm|n〉〈m|, acting on the original space H and in the basis {|n〉}, become kets

|ρ〉 =
∑

n,m ρnm|n〉|m〉 in the Liouville space. We will call this change of representation

vectorization. We define bras as complex transpose of kets 〈ρ| = (|ρ〉)†. We indicate

super-operators in Liouville space with hats. The O± super-operators defined above, in

Liouville space become Ô+ = O ⊗ 1, Ô− = 1 ⊗ OT . One can verify that this definition

is the right one as applying Ô± on a ket, i.e. Ô±|ρ〉, yields the same result of vectorizing

the operator O±ρ→ |O±ρ〉, using the vectorization rule given above. i.e. Ô±|ρ〉 = |O±ρ〉.
Following from this last identity, the vectorized identity operator |1〉, has the property

Ô±|1〉 = |O〉. Also, the trace of an operator can be written using the identity ket or bra

as trO = 〈1|O〉 = 〈O†|1〉, according to the definition of inner product. In Liouville space

S =
∑

αAα,+Bα,− becomes Ŝ =
∑

αAα ⊗ BT
α . The corresponding form of the Lindblad

super-operator in Liouville space can be found with the rules just introduced and reads

L̂ = −i (H ⊗ 1− 1⊗H∗) +
∑
α

γα

(
Lα ⊗ L∗α −

1

2

(
L†αLα ⊗ 1 + 1⊗ LTαL∗α

))
(2.26)

This formula allows to simply represent L̂ as a matrix in a code, using methods to per-

form the tensor (Kronecker) product of two matrices provided with standard libraries.

Finally, we remark that in Liouville space the Lindblad master equation takes the form of

a Schrödinger equation with non-Hermitian Hamiltonian L̂: ∂t|ρ〉 = L̂|ρ〉.

2.3.3 From Lindblad master equations to Keldysh action

The approaches of Keldysh field theory and master equations are closely related. The

main formal difference is that while master equations are defined at the operator level,

Keldysh field theory is a path integral approach. As it is described in detail in [135],

writing the Keldysh action associated with a master equation is actually simple. Starting

from a Lindblad master equation (2.22), the associated Keldysh action reads

S [a+, ā+, a−, ā−] =

∫ ∞
−∞

dt (ā+i ∂ta+ − ā−i ∂ta− − iL (a+, ā+, a−, ā−)) (2.27)

To obtain L (a+, ā+, a−, ā−) entering the Keldysh action, one has to perform the follow-

ing steps. First, the operators H, Lα, L†α and L†αLα, defining the master equation (2.22)

must be expressed in terms of a and a† operators and brought in normal ordered form, that

is with all a† operators on the left of a operators. Then, the resulting “normal-ordered”

Liouvillian must be written in the ± notation for super-operators as in Eq. (2.25). Finally
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a†± and a± super-operators must be replaced with the corresponding coherent fields, giving

L (a+, ā+, a−, ā−) bit entering in the Keldysh action.

2.4 Markovian systems Green functions

For open systems, the Green functions of systems operators are naturally defined in the

Hilbert space of the universe, which is a closed system as an ensemble; for example, being

a, a† system operators, the greater and lesser one-particle Green functions are defined (as

in (2.2)) by

G>(t, t′) = −i〈a(t)a†(t′)〉υ (2.28)

G<(t, t′) = −iξ〈a†(t′)a(t)〉υ

where the average 〈. . .〉υ is performed on the universe density matrix 〈. . .〉υ = trυ (. . . υ(0))

and a(t) is the annihilation operator in the Heisenberg picture a(t) ≡ eiHυtae−iHυt, evolved

with the universe Hamiltonian Hυ. This definition is straightforward, but difficult to

evaluate, and one is interested in deriving formulae to compute Green functions after

removing the environmental degrees of freedom performing a partial trace. This is a

non-trivial task as, even if a,a† are system operators, they are evolved with the universe

Hamiltonian, which couples system and environment. For Markovian quantum systems,

the partial trace on environment degrees of freedom can be performed and yields the

quantum regression formulae that we will discuss in Sec. 2.4.1. In Ch. 6, we will derive

analogous formulae for a non-Markovian propagator in a Non-Crossing approximation.

2.4.1 Lindblad Green functions: the quantum regression formulae

The Lindblad master equation (2.22) allows to compute the effective dynamics of the

system density matrix, and thus of system observables, after removing the degrees of

freedom of the environment with a partial trace. All the information needed to evolve

the system reduced density matrix is contained in the Liouvillian super-operator. Green

functions of system operators can be computed in the same spirit through the quantum

regression formulae [145, 146] (also known as quantum regression theorem): one only needs

to know the Liouvillian in order to compute them. We restrict to report the formulae for

the lesser and greater one-particle Green functions we have introduced in section 2.1,

but analogous formulae hold for n-particle Green functions, that we will use in section

6.4.2, where we will also give a proof for the n-particle case. We stress that the quantum

regression formulae hold under the same assumptions one makes to derive the Lindblad

master equation. A nice discussion and derivation of those formulae can be found in [7].

The quantum regression formulae for the greater and lesser, in the ± notation introduced

in 2.3.2 for super-operators, read:

G>(t, t′) = −i tr
[
a−e

L(t−t′)a†+ρ
(
t′
)]
θ(t− t′)− i tr

[
a†+e

L(t′−t)a−ρ (t)
]
θ(t′ − t) (2.29)

G<(t, t′) = −iξ tr
[
a+e

L(t−t′)a†−ρ
(
t′
)]
θ(t− t′)− iξ tr

[
a†−e

L(t′−t)a+ρ (t)
]
θ(t′ − t) (2.30)
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where “tr” is the trace on system degrees of freedom only. The θ step function appears as

a result of the irreversibility of Lindblad dynamics [136]: as there’s no backward evolution

propagator, one always has to reduce to forward in time propagations; this is achieved

distinguishing the two cases in which t > t′ and t < t′. Reporting those formulae, we used

the ± notation for super-operators introduced in section 2.3.2. Being familiar with the

definition of non-equilibrium Green functions in Keldysh field theory in terms of + and −
fields (2.19), its easy to remember the quantum regression formulae in this notation. For

example, the lesser one-particle Green function in Keldysh field theory is given by

G<(t, t′) = G+−(t, t′) = −i〈a+(t)ā−(t′)〉

where a+(t), ā−(t′) are fields on the double-contour. The < or +− label indicates that the

field a (ā) corresponding to the first (second) time argument must be placed on the + (−)

contour. To write the corresponding quantum regression formula, one needs to time-order

the fields on Keldysh contour and distinguish the cases t > t′ and t′ > t:

G<(t, t′) = −i〈a+(t)ā−(t′)〉 = −iξ〈ā−(t′)a+(t)〉θ(t− t′)− iξ〈ā−(t′)a+(t)〉θ(t′ − t)

Then one simply replaces the ā−(t′), a+(t) fields with a†−, a+ super-operators. In this

replacement, super-operators must be swapped to enforce their real-time ordering, rather

than contour-time ordering, but this time without taking extra minus signs coming from

fermionic anticommutation rules. For the lesser, this procedure gives Eq. (2.30):

G<(t, t′) = −iξ tr
[
a+e

L(t−t′)a†−ρ
(
t′
)]
θ(t− t′)− iξ tr

[
a†−e

L(t′−t)a+ρ (t)
]
θ(t′ − t)

To the best of my knowledge, this notation connecting quantum regression formulae and

Green functions in Keldysh field theory has not been discussed elsewhere.

2.4.2 Liouvillian spectrum

In this section we analyse the spectral properties of the Liouvillian super-operator. In

particular we will need them to write a spectral representation of Green function in Sec.

2.4.3, but the spectral properties of the Liouvillian are interesting on their own, for example

to study dissipative phase transitions[37, 49]. Let’s consider the Liovillian super-operator

in Liouville space L̂. It is a non-Hermitian matrix thus it has very different spectral

properties from a Hermitian Hamiltonian. We consider the simplest case in which the

Liouvillian can be diagonalized. The right-eigenvectors |rα〉, left-eigenvectors 〈lα|, and

eigenvalues λα of the Liouvillian are defined via

L̂ |rα〉 = λα|rα〉 (2.31)

〈lα|L̂ = 〈lα|λα (2.32)

where 〈lβ|, |rα〉 are biorthogonal (see e.g. [147]). We choose a normalization such that

they are also biorthonormal:

〈lβ|rα〉 = δβα (2.33)
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Some properties of the eigenstates of the Liouvillian follow from its trace preservation

property, that is 0 = ∂ttrρ = tr∂tρ = trLρ. In Liouville space this reads 〈1|L̂|ρ〉 =

0. As this is valid ∀ρ, it follows that 〈1| is always a left-eigenvector of L̂ with zero

eigenvalue, 〈1|L̂ = 0, and we identify it with the α = 0 left-eigenvector: 〈1| ≡ 〈l0| and

λ0 ≡ 0. As the eigenvalues λα are unique for left and right-eigenvectors, there must be

also at least one right-eigenvector with zero eigenvalue. We assume here that this right-

eigenvector is unique and identify it with the steady state: |r0〉 ≡ |ρss〉. It follows from

the orthonormality condition (2.33) that, with the normalization fixed by the definition

〈1| ≡ 〈l0|, ρss is normalized trρss = 〈1|ρss〉 = 1. There are interesting cases in which

the Liouvillian has multiple steady states, but we won’t discuss those cases [148]. Always

from the orthonormality condition (2.33) and from the assumption of unique steady state,

it follows that all the right eigenstates different from the steady state rα 6=0 are traceless:

〈1|rα 6=0〉 = δ0,α 6=0 = 0.

We can now interpret the eigenstates of the Liouvillian different from the steady state

as decay modes of deviations from the stationary state. Suppose now that at t = 0 the

system starts in some state |ρ(0)〉 that is not the stationary state. At later times, the

system reduced density matrix will be given by

|ρ(t)〉 = |ρss〉+
∑
α 6=0

cαe
λαt|rα〉 (2.34)

with cα 6=0 = 〈lα|ρ(0)〉 and c0 = 〈1|ρss〉 = 1 by orthonormality (2.33). We can thus

interpret each Liouvillian eigenmode α 6= 0 as a possible dynamical decay mode of some

initial deviation from the steady state, with a decay rate given by −Reλα. In general,

a given decay mode will involve both diagonal elements of the density matrix in the

energy-eigenstates basis (i.e. populations) as well as off-diagonal elements (i.e. coherences).

However, in some cases the situation simplifies and one can cleanly separate the eigenmodes

into processes only involving populations (T1 processes) or only involving coherences (T2

processes) as will be the case in Ch. 3.

2.4.3 Spectral representation of Green functions

For closed systems in thermal equilibrium, it is extremely useful to relate Green func-

tions directly to the energy eigenvalues and eigenstates of the system, obtaining their

Lehmann representation [124, 125, 149, 150]. We introduce here a similar decomposition

for Markovian open systems, which we will also call Lehmann or spectral representation.

This section is mostly based on [1]. For those systems the relevant spectrum is not that of

a system Hamiltonian, but rather of the system Liouvillian. Such spectral decompositions

for open systems have been derived before, for example in the context of electron transport

through correlated impurities [151, 152] or in the contex of non-linear oscillators [153],

where a “sum of partial spectra” was introduced. Nevertheless, the discussion of this de-

composition in the literature was marginal, thus we reported a detailed discussion in [1],

which is entirely contained in this section and in chapter 3.
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To show how to derive a spectral representation let’s consider the quantum regression

formula for the lesser Green function in Eq. (2.30) and restrict to t > t′ = 0 for simplicity.

We specialize to the case of a stationary density matrix ρss, but the spectral representation

can be equivalently derived for a time-dependent state. With these assumptions and in

Liouville space, from the quantum regression formula (2.30) we get

iξG<(t)θ(t) = 〈a†(0)a(t)〉θ(t) = 〈1|a+e
Lta†−ρss〉θ(t) (2.35)

We note that the super-operator a†− acting on steady state density matrix ρss causes

the system to deviate from the steady state. Just as in Eq. (2.34), this deviation can be

expressed as a linear combination of right-eigenstates of the Liouvillian

|a†−ρss〉 =
∑
α

|rα〉〈lα|a†−ρss〉 (2.36)

eventually giving

iξG<(t)θ(t) =
∑
α

eλαt 〈1|â+|rα〉〈lα|â†−|ρss〉 (2.37)

At an intuitive level, â†− “excites” the various dynamical eigenmodes of the Liouvillian;

these modes then oscillate and decay as functions of time. The factor 〈1|â+|rα〉 = tr (arα)

corresponds to the change in 〈a〉, compared to the steady state value, associated with

exciting a particular dynamical eigenmode α, as we understand from Eq. (2.34). In many

cases, one is interested in the connected average 〈a†(0)a(t)〉 − 〈a†(0)〉〈a(t)〉. In this case,

the steady state mode with α = 0, does not contribute to the sum in Eq. (2.37). The

spectral decomposition of greater and lesser one-particle Green’s function in Fourier space

reads

G>(ω) =
∑
α

{
1

ω − iλα
〈1|â−|rα〉〈lα|â†+|ρss〉 −

1

ω + iλα
〈1|â†+|rα〉〈lα|â−|ρss〉

}
(2.38)

G<(ω) = ξ
∑
α

{
1

ω − iλα
〈1|â+|rα〉〈lα|â†−|ρss〉 −

1

ω + iλα
〈1|â†−|rα〉〈lα|â+|ρss〉

}
(2.39)

It is interesting to see how one recovers the standard closed-systems Lehmann repre-

sentation by taking the zero-dissipation limit. This limit implies keeping only the Hamil-

tonian term in the Liouvillian, i.e. replacing L with −i [H, •]. Letting |ψi〉 and Ei denote

the eigenstates and eigenvalues of the Hamiltonian H, it is straightforward to find the

dynamical eigenmodes of L. Each dynamical eigenmode α corresponds to a pair of energy

eigenstates i, j:

r
(0)
i,j = l

(0)
i,j = |ψi〉〈ψj | (2.40)

λ
(0)
i,j = −i (Ei − Ej) . (2.41)

These modes have a simple interpretation. For a closed system, populations in the energy

eigenstate basis are time-independent, corresponding to the zero-eigenvalue modes λ
(0)
i,i .

Further, the coherences in the energy eigenstate basis have a simple undamped oscillatory
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behaviour, corresponding to the i 6= j modes. We stress that in the purely closed system

case, the dynamics no longer picks out a unique steady state, as any incoherent mixture

of energy eigenstates is stationary. The only constraint from the dynamics to gaurantee

stationarity is that ρss be diagonal in the energy eigenstate basis: ρss =
∑

k pk|ψk〉〈ψk|. As

usual, if the system is not coupled to an environment, one must then assume a distribution

for the probabilities pk when computing average values and correlation functions. For a

system in thermal equilbrium, the pk are Boltzmann weights. Plugging the closed systems

eigenmodes (2.40) in Eq. (2.37) we obtain

〈a†(0)a(t)〉θ(t) = θ(t)
∑
ij
e−i(Ei−Ej)t〈ψj |a|ψi〉〈ψi|ρssa†|ψj〉

= θ(t)
∑
ij
e−i(Ei−Ej)t〈ψj |a|ψi〉〈ψi|a†|ψj〉pi (2.42)

The first line matches what one would obtain from a direct calculation using
〈
a†(0)a(t)

〉
=

tr
(
ρssa

†eiHtae−iHt
)
. In the second line, we have used the diagonal form of ρss. This

formula is actually valid both for t > 0 and t < 0 and it corresponds to the usual textbook

thermal equilibrium Lehmann representation for the lesser one-particle Green function

[112, 125].

The Lehmann representation is a powerful tool giving both physical insight on the

meaning of Green functions and allowing to prove exact mathematical properties, such as

sum rules, sign properties and the fluctuation dissipation theorem for equilibrum systems.

In Ch. 3 we will discuss further the Lehmann representation for Markovian systems,

focusing on the spectral function and in the context of a specific model of a quantum

non-linear oscillator.
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Chapter 3

Spectral Properties of a Quantum

van der Pol Oscillator

In this chapter, we study the Green functions of Markovian driven-dissipative quantum

systems, using the spectral representation of Green functions we discussed in section 2.4.3.

Applying it to the prototype model of a quantum van der Pol oscillator with an additional

non-linearity in its Hamiltonian, we predict phenomena that are not apparent in the

steady-state density matrix. Unlike the steady state, the photonic spectral function of this

model has a strong dependence on interaction strength. We point out that a sign property

of spectral functions of equilibrium systems doesn’t hold in the case of open systems. As

a consequence of this, we find that the interplay of interaction and non-equilibrium effects

can result in a surprising “negative density of states” with direct physical consequences

as it can, for example, generate negative temperature states or produce finite-frequency

instabilities in lattice models, as we will discuss in Ch. 4 and how it has been recently

discussed in the context of quantum quenches [154]. In particular we find that the “nega-

tive density of states” can appear even in absence of steady state population inversion in

the system density matrix. The results of this chapter have been published in [1].

3.1 Introduction

Driven-dissipative quantum systems typically have non-thermal steady states determined

by the balancing of drive and dissipation. A vast amount of theoretical work has focused

on finding (either exactly or approximately) the steady state of such systems, and the

corresponding steady-state expectation values of observables [82, 155–158].

While describing steady states is clearly of interest, many experimental probes involve

studying how a system responds to a weak applied perturbation. One is then naturally

interested in understanding the Green functions that describe the linear response of the

system to external perturbations, as we discussed in Sec. 2.1. For Markovian systems,

these correlations functions can be readily computed using the quantum regression theo-

rem, and have been studied in a variety of different contexts, from the standard example of

resonance fluorescence of a driven two-level atom [159–161], recently discussed in the case
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Figure 3.1: Schematic plot of the setup considered in this manuscript. A cavity mode

with Kerr nonlinearity is driven by an incoherent pump and subject to two-photons losses.

We investigate its spectral features, encoded in the cavity mode spectral function. This

quantity could be directly measured by considering the reflection of a weak probe tone.

of arrays of coupled qubits [24], to the second-order correlations probing bunching/anti-

bunching of time-delayed photons (see, e.g., [162]). The topic of correlation functions is

also a standard topic in almost any quantum optics textbook (see, e.g., [7, 136]).

Despite this existing work, methods for obtaining physical intuition from the behaviour

of Green functions remain of interest. For closed, equilibrium quantum many body sys-

tems, the Lehmann representation [125, 149, 150] is a powerful tool. It expresses a one-

particle Green function in terms of the system energy eigenstates, and allows one to

interpret the spectral function in terms of Fermi Golden rule rates for the addition (or

removal) of a particle. This directly connects to experimental probes (e.g. angle-resolved

photoemission spectroscopy (ARPES) or tunneling spectroscopy), and is invaluable in

constructing intuitive pictures. Also, the Lehmann representation allows to prove exact

mathematical properties, such as sum rules, sign properties and the fluctuation dissipation

theorem for equilibrum systems.

In this chapter, we show that the Lehmann representation of Green functions of a

driven dissipative system discussed in Sec. 2.4.3 also serves as a powerful interpretive tool.

As a concrete example, we analyze a simple, but non-trivial model of a nonlinear quan-

tum van der Pol oscillator, describing a single-mode bosonic cavity subject to incoherent

driving and nonlinear loss (see Ref. [153] for a comprehensive review), with an additional

Kerr interaction in its Hamiltonian. This model has recently received attention in the

context of quantum synchronization with [163] and without [164, 165] Kerr interaction; it

is also directly realizable in superconducting circuit architectures, where strong Kerr in-

teractions and engineered two-photon losses have been experimentally achieved [103, 104].

Indeed, nonlinearities in those architectures are also of practical interest, inducing a pho-

ton blockade effect [166] which plays a crucial role to engineer states relevant for quantum

computation [167–169]. While the model has a relatively simple steady state, its spec-

tral features are instead remarkably rich [153, 170]. Unlike the steady state, the spectral

function depends strongly on the size of the Kerr interaction, and reveals physics beyond

that in the steady state density matrix. Specifically we show that the model features
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both population inversion in the density matrix and a negative density of states (NDoS),

two aspects which are tightly connected in equilibrium but whose interplay in the driven-

dissipative case appears to be more complex. In particular we find a regime where NDoS

emerges, even in absence of a population inversion in the stationary density matrix.

The chapter is organized as follows. In Sec. 3.2 we compare the Lehmann representa-

tion of the spectral function between the two cases of closed and open quantum systems,

discussing a sign property of equilibrium spectral functions that doesn’t hold instead for

open systems. In Sec. 3.3 we discuss a notion of effective temperature with a direct opera-

tional meaning, directly probing the sign of the spectral function. In Sec. 3.4 we introduce

the model of a van der Pol oscillator with Kerr nonlinearity and make some considerations

on its symmetries, and in Sec. 3.5 we discuss its spectral properties and NDoS using the

Lehmann representation and perturbation theory.

3.2 Spectral function

We will consider a bosonic system with a single mode, letting a denote its annihilation

operator. We will study the retarded single-particle Green function, GR(t), introduced in

Sec. 2.1, evaluated on a time-independent density matrix. As the state is assumed not to

depend on time, Green functions depend only on time-differences. The definition of GR(t)

reads

GR(t) = −iθ(t)〈
[
a(t), a†(0)

]
〉 (3.1)

This correlation function plays an important role in many different contexts. For example,

via the Kubo formula, it describes the linear response of the system (see Sec. 2.1). In the

case where a describes a photonic cavity mode, GR(t) can be directly measured by weakly

coupling the cavity to an input-output waveguide and measuring the reflection of a weak

probe tone or by homodyne detection (see e.g. [128, 171, 172]).

3.2.1 Closed systems spectral representation

For a closed system in a time-independent statistical mixture, the Fourier transform of

the Lehmann representation of the retarded Green function is [112]

GR(ω) =
∑
i,j

∣∣〈ψj |a†|ψi〉∣∣2 (pi − pj)
ω − Ej + Ei + iη

(3.2)

where η is a positive infinitesimal. Consistent with causality, this function is analytic in

the upper half plane. It has simple poles with infinitesimal negative imaginary part, and

with purely real weights. Of particular interest is the imaginary part of GR(ω), which

defines the one-particle spectral function or density of states A(ω):

A(ω) = − 1

π
ImGR(ω). (3.3)
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For a closed system, the spectral function follows directly from Eq. (3.2):

A(ω) =
∑
i,j

pi

( ∣∣∣〈ψj |a†|ψi〉∣∣∣2 δ (ω − Ej + Ei)− |〈ψj |a|ψi〉|2 δ(ω − Ei + Ej)
)

=

=
∑
i,j

(pi − pj)
∣∣∣〈ψj |a†|ψi〉∣∣∣2 δ (ω − Ej + Ei) (3.4)

The name one-particle spectral function or density of states comes from the fact that

this function, for non-interacting systems, is a weighed sum of delta peaks located at

the transition energies of the systems, thus it reveals the spectrum of the Hamiltonian.

The first equality allows us to give a simple physical interpretation of A(ω) in terms of

Golden rule transition rates. The first term is naturally associated with adding a particle

to the steady state and creating an excitation with energy ω, whereas the second term

is associated with removing a particle and creating an excitation with energy −ω. For

example the rate of going from state ψi to state ψj at long times as an effect of the

perturbation a†e−iωt is given by Fermi Golden rule by

lim
t→∞

Pψi→ψj = 2π
∣∣∣〈ψj |a†|ψi〉∣∣∣2 δ(ω − Ej + Ei) (3.5)

which, apart from a normalization, is the rate entering in A(ω).

The second equality in Eq. (3.4) also leads to an important result. If we assume that

pj ≤ pi whenever Ej ≥ Ei, which is the case for an equilibrium Boltzmann distribution

pi = e−βEi , then we immediately can conclude:

A(ω) ≷ 0 for ω ≷ 0, (3.6)

i.e. the spectral function A(ω) has the same sign as ω. In particular this is valid for

ground-states, for which p0 = 1 and pi 6=0 = 0. A violation of this condition indicates

the existence of population inversion in the steady state: a higher-energy eigenstate has

a larger population in the steady state than a lower-energy eigenstate. While this is

impossible in thermal equilibrium, it is indeed possible in a generic driven-dissipative

non-thermal steady state.

3.2.2 Markovian open systems spectral representation

We can use the Lehmann representation for Green functions of Markovian open systems

introduced in section 2.4.3, to obtain the corresponding formula to (3.2) for Markovian

systems. Let’s introduce the eigenvalues and right and left eigenstates of the Liouvillian

λα, |rα〉, 〈lα|, defined in Sec. 2.4.2. Then, the Lehmann representation for GR(ω) reads

GR(ω) =
∑
α

wα
ω + Imλα − iReλα

(3.7)

with

wα = 〈1|â−|rα〉〈lα|â†+|ρss〉 − 〈1|â+|rα〉〈lα|â†−|ρss〉 =

= tr (arα) tr
(
l†α[a†, ρss]

) (3.8)
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There is clearly some similarity to the closed-system expression Eq.(3.2). Like the closed-

system case, the Green function is decomposed into a sum of simple poles. However,

whereas for the closed system poles occurred at energy differences that were infinitesimally

shifted from the real axis, now the poles occur at eigenvalues of the Liouvillian, and will

be shifted a finite distance below the real axis.

More intriguingly, the residues wα associated with the poles of GR(ω) are no longer

necessarily real, as it must be for a closed system.

This has a direct consequence on the spectral function (c.f. Eq. (3.3)), which now takes

the form

A(ω) = − 1

π

∑
α

zα (ω)
Reλα

(ω + Imλα)2 + (Reλα)2 (3.9)

where

zα (ω) = Rewα + Imwα
ω + Imλα

Reλα
. (3.10)

It follows that the spectral function is no longer simply a sum of Lorentzians. An immedi-

ate corollary is that unliked the closed-system case (c.f. Eq.(3.6)), the sign of the spectral

function is not controlled in a simple way by steady state probabilities. In other words,

a driven-dissipative systems can have spectral functions which violate the sign property

Eq. (3.6), without this necessarily coming from an inverted population of the stationary

state, as it is the case for closed system.

We remark that the spectral function in Eq. (3.9) satisfies the sum rules originating

from the commutation relations of operators at equal time:∫ ∞
−∞

dωA(ω) = 〈
[
a, a†

]
〉 = 1, (3.11)

as one can verify from Eq. (3.7). As a result, interactions, driving and dissipation can

reshape A(ω), but they cannot change its area. Finally, this spectral decomposition of

Markovian Green functions makes it clear that one can extract information on the eigen-

values of the Liouvillian from the poles of GR(ω). In particular, it shows that the usual

definition of second order phase transitions in terms of diverging susceptibilities coincides

with the closure of the Liouvillian gap, namely the smallest non-zero eigenvalue of the

Liouvillian vanishing, which is sometimes considered the hallmark of dissipative phase

transitions [37, 49].

3.3 Effective temperature

As we have already discussed in Sec. 2.1 distribution function allows to define effective

thermodynamic quantities out-of-equilibrium. In Sec. 2.1 we gave the example of the low

energy effective temperature. We have also warned that there is no unique definition of

those effective quantities and that different definitions bear different physical meanings.

In this section it is significant to define the frequency dependent effective temperature

Teff(ω) by
GK(ω)

−2πiA(ω)
≡ coth

(
ω

2Teff(ω)

)
(3.12)
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by analogy with the FDT for bosons in equilibrium GK(ω)/ (−2πiA(ω)) = 1 + 2nβ(ω) =

coth (ω/ (2T )), where T = 1/β. As discussed extensively in Ref. [130], this Teff(ω) has a

direct operational meaning and is a useful quantity in many different physical contexts,

e.g. the theory of optomechanical cavity cooling using driven resonators [173]. In general,

if a second narrow-bandwidth auxiliary system interacts weakly with our main system

via exchanging photons, it will equilibrate to a temperature Teff(ωaux), where ωaux is the

frequency of the auxiliary system. As example, the auxiliary system could be a qubit with

splitting frequency ωaux, which interacts with the main system via Hint ∝ (σ+a+ h.c.)

[130, 172]. Note that for a general non-equilibrium system, there is no requirement that

the effective temperature Teff(ω) be positive. Supposing iGK(ω) > 0, then the sign of A(ω)

dictates that of Teff(ω). In particular, if the sign of A(ω) obeys the equilibrium property

Eq. (3.6), then Teff(ω) > 0 ∀ω. If this is not true, then there will be frequency regions in

which Teff(ω) is negative. We thus see that the anomalous sign of the spectral function

discussed earlier is directly connected to the existence of negative effective temperatures.

We stress that this negative temperature has physical consequences. Again, consider

weakly coupling an auxiliary qubit to our system. If the qubit splitting frequency ωaux is

such that Teff(ωaux) < 0, the qubit would thermalize at negative temperature, implying

an inversion of the qubit population, – namely a higher probability for the qubit to be in

the excited state rather than its ground state.

3.4 The van der Pol oscillator

We now restrict to study a specific system. We consider the well-known quantum van der

Pol (VdP) oscillator [153, 163] with an additional non-linear term in the Hamiltonian. The

model thus describes a non-linear oscillator subject to incoherent single-particle driving

and two particle losses. It is described by the master equation

∂tρ = −i[H, ρ] + γ
(
rD(1)

p +D(2)
l

)
ρ (3.13)

H = ω0a
†a+

U

2

(
a†a
)2

(3.14)

D(1)
p ρ = a†ρâ− 1

2

{
aa†, ρ

}
(3.15)

D(2)
l ρ = aaρa†a† − 1

2

{
a†a†aa, ρ

}
(3.16)

Here ω0 is the cavity frequency and U/2 the strength of the Kerr (or Hubbard) interaction.

γ is the two-photon loss rate, while γr is the single photon pumping rate. We will set

ω0 = 0 in the following, as it can be eliminated by moving to a rotating frame.

Note first that the unique steady state density matrix of this model has been found

analytically in Ref. [170, 174]. The steady state is an incoherent mixture of photon number

Fock states; further, it is completely independent of the interaction strength U , and is only

determined by the dimensionless parameter r (ratio of the driving to the nonlinear losses).

The photon-number probabilities in the steady state are in fact determined by a classical
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r=6: population inversion
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Figure 3.2: The stationary state density matrix is diagonal in the Fock basis. Its diagonal

elements are plotted as a function of the number of bosons for two values of the pump-loss

ratio r, showing a distribution with and without population inversion. The stationary

state does not depend on the interaction U , resonator frequency ω0 or dissipation scale γ.

Numerical calculations use a Hilbert space cutoff Nmax = 15. With this choice of cutoff

the numerical solutions (dots) agree perfectly with the analytical predictions (solid lines).

master equation (i.e. coherences play no role) and they are given by

pn = rn
Γ(r)Φ(1 + n, r + n, r)

Γ(r + n)Φ(1, r, 2r)
(3.17)

where Γ(x) and Φ(a, b, x) are the gamma function and the confluent hypergeometric func-

tion. In Fig. 3.2 we plot the probabilities pn in the steady state for two different values of

r. For the smaller value of r, those probabilities decay monotonically with n, whereas for

large values, one obtains a peaked, non-monotonic distribution. As the Hamiltonian H

dictates that energy increases with increasing photon number, this latter situation formally

corresponds to a population inversion.

A natural question we now ask is whether this inversion effect (which is essentially

classical) manifests itself in the cavity’s spectral properties. We will answer this question

in the rest of this chapter. We remark that the spectral properties of a related quantum van

der Pol oscillator in different regimes were first discussed in a series of seminal works [153,

170] (see instead Ref. [175] for the undriven model). More recently, the power spectrum of

a coherently driven quantum van der Pol oscillator was computed to investigate signatures

of synchronization [165].
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Figure 3.3: Evolution of the single-particle spectral function A(ω) upon changing the

interaction U , for two values of the parameter r, the ratio between drive and losses.

For r = 0.5 (top panel) we see that increasing the nonlinearity splits the single particle

peak into a series of well separated resonances. For larger drive, r = 6 (bottom panel),

corresponding to an inverted steady state density matrix, a new feature appears for large

enough interaction (bottom-right panel), namely the spectral function becomes negative

over a range of frequencies. Parameters: resonator frequency ω0 = 0, Hilbert space cutoff

Nmax = 15.
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3.4.1 Liouvillian eigenmodes and symmetry considerations

To understand the Green functions of our model, it will be useful to first discuss its

symmetry properties. Due to driving and dissipation, the system does not conserve photon

number. Nonetheless, the Liouvillian is invariant under the U(1) symmetry a→ aeiθ. This

implies that the Liouvillian L commutes with the superoperator K = [a†a, •] that generates

the symmetry operation. As a result, the eigenvalues k of K are quantum numbers which

label the eigenstates of L. We can use this to write the Liouvillian in the block-diagonal

form L = ⊕kLk, where Lk acts only within the eigensubspace of K corresponding to the

(integer) eigenvalue k. We denote the right eigenstates of a particular block Lk by

rα,k =
∑
n

rnα,k|n+ k〉〈n| (3.18)

In Fock space, we see that this is a matrix that only has non-zero elements along the kth

off-diagonal.

The presence of this symmetry greatly reduces the numerical complexity of the prob-

lem, as we can diagonalize the different blocks separately. It also gives a simple physical

way to label the different eigenmodes of L. Eigenmodes corresponding to k = 0 describe

how diagonal elements of the density matrix (in the Fock basis) decay. Such decay modes

conventionally referred to as T1 relaxation processes. In contrast, eigenmodes correspond-

ing to k 6= 0 describe how Fock-state coherences decay. These are generically referred

to as T2 relaxation processes. In general, eigenmodes of the Liouvillian mix T1 and T2

processes; in this case, due to the presence of the U(1) symmetry, T1 and T2 processes

correspond to different decay modes.

We make the crucial remark that different correlation functions will only be sensitive to

a particular (small) subset of Liouvillian eigenmodes. For example, for the single particle

Green function defined in Eq. (3.1), it is only the eigenmodes corresponding to k = 1 that

contribute. This follows immediately from the fact that the residues wα (3.8) of the poles

of the retarded Green function Eq. (3.7) vanish for k 6= 1 as

tr (arα,k) = 0 (k 6= 1) (3.19)

Analogously, correlation functions like g(2) = 〈a†(t)a†(t)a(0)a(0)〉 would probe Liouvillian

eigenmodes with k = 2, i.e. T2 processes involving coherences between states whose photon

number differs by 2. Similarly, a correlation function destroying k bosons at t = 0 and

creating k bosons at time t would probe the decay of coherences between states whose

photon numbers differ by k. It also follows that if one wishes to probe T1 processes

(i.e. k = 0), one needs to look at density-density correlation functions.

3.5 Spectral properties of vdP oscillator

We now turn to the spectral properties of the nonlinear van der Pol oscillator Eq. (3.13).

We use the Lehmann representation given in Eq. (3.7) to compute the spectral functions

numerically, by truncating the bosonic Hilbert space to a maximum number of states
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Nmax = 15 and diagonalizing L. The cutoff Nmax = 15 is enough to obtain accurate

results, as it is shown by the agreement of the steady state numerical solution with the

analytical prediction in Fig. 3.2. We further checked that the results for the Green

functions are stable by increasing Nmax and that they satisfy sum properties like Eq.

(3.11).

3.5.1 Spectral function and the role of interactions

In Fig. 3.3 we plot the spectral function A(ω) (c.f. Eq. (3.3)) of our system for several val-

ues of the dimensionless interaction strength U/γ and for two values of the drive/loss ratio

r. An immediate result, visible in all four panels, is that the spectral functions strongly

depend on the interaction strength. This is remarkably different from the steady state

density matrix, which (as discussed in Sec. 3.4) is completely insensitive to U . Heuris-

tically, while the steady state density matrix is completely independent of the system’s

coherent Hamiltonian dynamics, the system’s response to perturbations retains a strong

dependence on H.

For a more detailed analysis, consider first the regime of relatively weak driving where

r = 0.5 (top row of Fig. 3.3). To understand the lineshapes, recall from Sec. 3.4.1 that

the spectral function is probing T2 decay modes which describe the decay of coherences

between Fock states |n〉 and |n + 1〉. The oscillation frequency of these coherences is

largely determined by the coherent Hamiltonian H. For U = 0, there is no Hamiltonian,

and coherences do not oscillate; we thus obtain a single peak in the spectral function. As

U/γ is increased, distinct peaks become visible in A(ω) (each approximately Lorentzian),

corresponding to different coherences and different decay modes; the peaks become more

and more resolved with increasing U/γ.

For larger values of the driving parameter r (bottom row of Fig. 3.3, r = 6), the

situation is markedly different. For large driving and large enough interaction U , we

find that the spectral function hits zero at a positive finite frequency, and for larger

frequencies, becomes negative. We term this negativity of A(ω) at ω > 0 “negative

density of states” (NDoS). This is a clear indicator of non-equilibrium: as discussed in

Sec. (3.2.1), this cannot happen in a closed system in thermal equilibrium. We also stress

that (as discussed in Sec. 3.3 and in [172]), this NDoS corresponds to a negative effective

temperature Teff(ω); this is shown in Fig. 3.4. We remark that this effective temperature,

as defined by Eq. (3.12), is not a property of the stationary state and that it rather

describes its excitations. As such, a population inversion of the stationary state is not

sufficient for it to be negative and interactions are needed as well. As also discussed, this

negative temperature effect could be directly probed by coupling the cavity weakly to an

auxiliary probe qubit.

One might first think that the NDoS effect here is simply a reflection of the population

inversion in the steady state photon number distribution, which occurs when r is suffi-

ciently large. This is not the case: while the population inversion in the steady state is

independent of U/γ, A(ω) only becomes negative at ω > 0 for sufficiently large U/γ. This

is shown explicitly in Fig. 3.3. The relation between the NDoS effect in the spectral func-
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Figure 3.4: Frequency-dependent effective temperature Teff(ω) as defined in Eq. (3.12)

in the regime of large pump-loss ratio (r = 6). We notice that interaction U makes the

effective temperature turn negative in some positive frequency region. For comparison we

also plot the effective temperature of a U = 0 cavity, which is always positive for ω > 0.

Parameters: resonator frequency ω0 = 0, Hilbert space cutoff Nmax = 15.

tion and population inversion in the steady state is thus not entirely trivial; we will explore

this in more detail in the next sections. Note that similar spectral function negativity in

presence of a population inversion has previously been identified in a related model of

a quantum van der Pol oscillator in presence of negative damping and monochromatic

drive [153, 170], as well as in parametrically driven bosonic systems [172].

3.5.2 Dissipation-induced lifetime

The results of the previous section show that the spectral properties of the nonlinear

quantum VdP oscillator are richer than its steady state. In this section, we investigate the

extent to which these can be understood using a perturbative approach where the only

dynamical effect of dissipation and driving taken into account is to give a finite lifetime

to the Fock-state eigenstates of the system Hamiltonian H.

Our starting point is the open-system Lehmann representation of Eq. (3.7). We

will approximate the eigenstates of the Liouvillian to be the same as those of the closed

system, e.g. simple outer products of Fock states (c.f. Eq. 2.40), ignoring their perturbative

corrections due to dissipation for the time being. A special treatment will be reserved to the

stationary state density matrix, whose populations pn will be taken to follow Eq. (3.17),

which is the exact distribution determined by dissipative processes. We will however

take into account the modification of the Liouvillian’s eigenvalues to leading order in the

dissipation (i.e. in γ). Formally, this procedure can be implemented using the Lindblad

perturbation theory approach introduced in Ref. [176]. We write our full Liouvillian as

L = L(0) + D, with the unperturbed Liouvillian L(0)ρ = −i[H, ρ] and the perturbation

44



D = γ
(
rD(1)

p +D(2)
l

)
. While L(0) is highly degenerate, we can still use the simple non-

degenerate perturbation theory of [176] to compute the spectral function. In fact, due

to the symmetry of L discussed in Sec. 3.4.1, the eigenmodes determining the spectral

function are only those with k = 1. We expand those eigenvalues and eigenvectors of the

Liouvillian in powers of γ:

λα = λ(0)
α + λ(1)

α +O(γ2)

rα = r(0)
α + r(1)

α +O(γ2)

lα = l(0)
α + l(1)

α +O(γ2)

with the unperturbed quantities λ
(0)
α , l

(0)
α , r

(0)
α defined by

r
(0)
n+1,n = l

(0)
n+1,n = |n+ 1〉〈n| (3.20)

λ
(0)
n+1,n = −i (En+1 − En) = −i (ω0 + Un) (3.21)

where En = ω0n + U/2n2 are the eigenvalues of the Hamiltonian. As this set of zero-

order eigenvalues λ
(0)
n+1,n are all distinct, we can apply non-degenerate perturbation theory.

We retain the perturbative corrections to the eigenvalues, while ignoring for the time

being any corrections to the eigenstates. The validity of such an approximation and

the role of these corrections will be discussed later in the chapter. Perturbation theory

tells us that the leading order correction to the Liouvillian eigenvalues λα are given by

λ
(1)
α = tr

[
(l

(0)
α )†D r(0)

α

]
. Accordingly, Eq. (3.7) yields the following approximate form for

the spectral function:

A(ω) =
1

π

∞∑
n=0

Γn+1,n

∣∣〈n+ 1|a†|n〉
∣∣2 (pn − pn+1)

(ω − En+1,n)2 + Γ2
n+1,n

(3.22)

where

En+1,n = −Im
(
λ

(0)
n+1,n + λ

(1)
n+1,n

)
= En+1 − En = ω0 + U/2 + Un (3.23)

Γn+1,n = −Re
(
λ

(0)
n+1,n + λ

(1)
n+1,n

)
= 2γn2 + rγ(2n+ 3) (3.24)

Note that the first order correction to the λα is purely real, implying there is no shift in

the position of the spectral function resonances. The approximate spectral funciton in

Eq. (3.22) is exactly the same as the equilibrium expression in Eq. (3.2), except that the

populations pn are non-thermal, and each resonance has a finite width Γn+1,n. While we

have shown how this width can be calculated using formal perturbation theory, it also has

a simple physical origin: it is the sum of the Fermi’s Golden rule decay rates for the states

|n〉 and |n+ 1〉, forming the non-perturbed eigenstates (3.20) of the Liouvillian, i.e.

Γn+1,n =
∑
m

rγ

(∣∣∣〈m|a†|n〉∣∣∣2 +
∣∣∣〈m|a†|n+ 1〉

∣∣∣2)+

+
∑
m

γ
(
|〈m|aa|n〉|2 + |〈m|aa|n+ 1〉|2

) (3.25)
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Figure 3.5: The spectral function A(ω) obtained by numerical evaluation of the exact

Lehmann representation, as well as that obtained using the lifetime approximation of Eq.

(3.22). Top: The perturbative treatment of the lifetime is in good agreement with the exact

result for a value of the interaction U/γ = 100. Bottom: Perturbation theory gets bad

when the resonances are not well resolved. Here the interaction is U/γ = 3. Parameters:

resonator frequency ω0 = 0, pump-loss ratio r = 6, Hilbert space cutoff Nmax = 15.

The first line is the decay rate due to the incoherent driving, the second due to the two-

photon loss. Basically, the first correction to the eigenvalues of the Liouvillian due to

dissipation are the Fermi’s Golden rule lifetimes of the non-perturbed eigenstates and

they give the leading contribution to the width of the resonances of the spectral function.

In Fig. 3.5 we compare the perturbative result with the full calculation obtained with the

Lehmann representation for r = 6 and two values of the Kerr interaction. We see that at

large U/γ ' 100 the perturbative approach captures rather well the main features of the

spectrum, in particular the location of the peaks, their width and weight. However, upon

decreasing the interaction, the agreement deteriorates, as we show for U/γ = 3. This

behaviour is of course not surprising, as the perturbative approach is only valid in the

small dissipation limit 1� U/γ,r � U/γ. As a rough rule of thumb, when resonances in

Eq. (3.22) begin to overlap, perturbation theory starts getting bad, as the spacing between

adjacent resonances is of order U and the width of the resonances of order γ.

Taking into account the dissipation-induced lifetime in Eq. (3.22) allows to uncover

a mechanism by which dissipation can mask the effect of a population-inverted density

matrix on the spectral function. Indeed, a population inversion in the stationary state,

if there were no lifetime broadening, would certainly result in a violation of the Green

functions sign property in Eq. (3.6), as one can see straight from Eq. (3.2). On the other

hand, the lifetime broadens the resonances, making them overlap and possibly resulting

in those with smaller weights to be completely masked by bigger ones. As a result, the

spectral function in Eq. (3.22) does not obey anymore a precise sign rule which is dictated

by the behaviour of populations of the density matrix, as in equilibrium (3.6). As a

corollary, the presence of population inversion in the stationary state may not be revealed

by a change of sign of the spectral function.
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Figure 3.6: Region of parameters in the r-U plane where the spectral function A(ω) is

negative in some positive frequency range (NDoS), according to the exact result obtained

by the Lehmann representation, Eq. (3.7), and to the lifetime approximation of Eq. (3.22).

The vertical grey line shows the threshold value of r for which population inversion sets

in the stationary state. According to the lifetime approximation, a NDoS is only possible

with population inversion in the stationary state, while the exact result shows that this

is not strictly necessary. Parameters: resonator frequency ω0 = 0, Hilbert space cutoff

Nmax = 15.

In Fig. 3.6, we summarize the above analysis by presenting a “phase” diagram, in

the (r, U/γ) plane, of the regions of parameter space exhibiting the NDoS effect (i.e. the

spectral function A(ω) is negative at positive frequencies). The region r > 1 (shaded

grey) indicates where the steady-state exhibits a population inversion; this boundary can

be determined analytically from the exact stationary state solution [174] and we remark

that it is independent of U . In contrast, the spectral function is sensitive to both in-

teraction and non equilibrium effects, resulting in a non-trivial value Uc(r) above which

the negative density of state emerges. We plot this threshold interaction strength both

for the numerically exact calculation of the spectral function (red-solid line), and for the

approximate perturbative (lifetime broadening) calculation (red-dashed line). In general,

the perturbative approach underestimates the NDoS effect; further, it fails to yield any

population inversion in the region r < 1. In contrast, the numerically exact calculation

reveals that NDoS can occur even for r < 1, i.e. in regions where the steady state photon

number exhibits no population inversion. This is a remarkable result, which points toward

yet another origin of NDoS, as we are going to further discuss below.
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3.5.3 Dissipative effects beyond lifetime broadening

As demonstrated above, the simple perturbative lifetime broadening of eigenstates intro-

duced in Eq. (3.22) was able to capture many aspects of the spectral function of our model.

It however failed to describe the most interesting aspect of Fig. 3.6: there are parameter

regions where the spectral function exhibits NDoS, even though the steady state density

matrix does not exhibit population inversion. As we now show, this effect can also be

captured in perturbation theory if we go beyond simply calculating a correction to the

Liouvillian eigenvalues due to dissipation, but also calculate the change to the eigenmodes

themselves. The leading eigenmode correction can cause the weight factors wα in Eqs. (3.7)

and to acquire an imaginary part, implying that the spectral function is no longer a simple

sum of Lorentzians. This provides a new route for NDoS.

Using the same perturbation theory used in Sec. 3.5.2, we can analytically compute the

leading-order-in-γ correction to the Liouvillian eigenmodes. Following [176] and assuming

L−1 exists, the first order corrections to the right and left eigenstates are given by:

r(1)
α =

∑
β 6=α

tr

[
(r

(0)
β )
†
Dr(0)

α

]
λ

(0)
α − λ(0)

β

r
(0)
β (3.26)

l(1)
α =

∑
β 6=α

tr

[
(l

(0)
β )
†
D†l(0)

α

]
λ

(0)
α

∗
− λ(0)

β

∗ l
(0)
β (3.27)

As expected, dissipation mixes the various eigenmodes together with a strength that is

inversely proportional to the difference in eigenvalues. Here, the denominator is purely

imaginary (as all unperturbed eigenvalues are imaginary).

As discussed, for the spectral function, the unperturbed modes of interest correspond

to coherences between the |n〉 and |n+ 1〉 Fock states:

r
(0)
n+1,n = l

(0)
n+1,n = |n+ 1〉〈n| (3.28)

With dissipation, these modes acquire a real part to their eigenvalues, corresponding to

dephasing. The first-order correction to the eigenstates takes the form:

r
(1)
n+1,n =− irγ

U
2
√

(n+ 2)(n+ 1) r
(0)
n+2,n+1+

+ i
γ

U
n
√
n2 − 1 r

(0)
n−1,n−2

(3.29)

l
(1)
n+1,n =− irγ

U
2
√

(n+ 1)n l
(0)
n,n−1+

+ i
γ

U
(n+ 2)

√
(n+ 1)(n+ 3) l

(0)
n+3,n+2

(3.30)

At a physical level, these corrections tell us that dephasing eigemodes of the Liouvillian

no longer correspond to a single Fock state coherence; rather, each mode involves three

distinct coherences.

In Fig. 3.7 we show the effect of including these eigenmode corrections in the eval-

uation of the spectral function. We see that this modified approach is able to capture
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Figure 3.7: The spectral function A(ω) for a value of r just below the threshold needed

in order to have steady state population inversion. Strikingly, the spectral function A(ω)

(as computed numerically) still exhibits negativity at positive frequencies. This feature

is missed if one calculates A(ω) using the simple lifetime approximation of Eq. (3.22).

Including the dissipative correction to the Liouvillian eigenstates (to leading order), one is

then able to recover the negative part of A(ω). Parameters: resonator frequency ω0 = 0,

interaction U/γ = 15 , pump-loss rate r = 0.94, Hilbert space cutoff Nmax = 15.

non-Lorentzian contributions to the spectral function, and to improve qualitatively and

quantitatively the agreement with the exact numerical result. In particular, a region of

negative density of states now appears at small frequency, an effect which is completely

missed by the lifetime broadening approximation.

These eigenmode corrections can also be given a physical interpretation in terms of

interference of different dephasing modes. Consider the contributions to the time-domain

correlation function in Eq. (2.37) associated with a particular initial photon number m:

∑
n

eλn+1,nt

(∑
l

〈l|arn+1,n|l〉

)
〈m|l†n+1,na

†|m〉ρm,m (3.31)

Recall the interpretation: starting with m photons, we add a photon to the cavity, exciting

a dephasing eigenmode α = (n+ 1, n) of the Liouvillian. To 0-th order in dissipation, the

time-independent weight factors are necessarily real. This follows from the fact that i)

r
(0)
n+1,n = l

(0)
n+1,n, and ii) the only non-zero contribution is when l = n = m, i.e. adding a

photon to |m〉 excites a single, unique dephasing eigenmode.

Including dissipation to first order, both conditions (i) and (ii) no longer hold. In

particular, as the dephasing eigenmodes no longer correspond to a single Fock coher-

ence (c.f. Eq. (3.29)-(3.30)), adding a photon to |m〉 can simultaneously excite several
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distinct dephasing eigenmodes. It is the interference between these processes that give

rise to complex weights and hence non-Lorentzian contributions to the spectral functions.

The spectral function is thus sensitive to an interference in the dynamics, even though

there is no coherence in the steady state density matrix. Stepping back, we thus see

that even for weak dissipation, the spectral function is sensitive to more than just the

lifetime-broadening effect of dissipation: the fact that dissipation can also create more

complicated dephasing processes also directly impacts the form of A(ω). This gives rise

to anti-Lorentzian contributions, and (in our model) negative density of states in regimes

where the steady state exhibits no population inversion.

3.6 Conclusions

In this work we have studied the spectral properties of driven-dissipative quantum sys-

tems, taking the simple case of a quantum van der Pol oscillator with Kerr non-linearity

as a working example. We have first derived some general results concerning the single

particle Green function of systems described by a Lindblad master equation. Using a de-

composition in terms of exact eigenstates of the Liouvillian we have compared the spectral

representation for the Green function and compared it to the well known Lehmann rep-

resentation for closed systems in thermal equilibrium. Such a spectral representation, in

addition of being of practical relevance for numerical computations whenever the system

is sufficiently small to be diagonalized exactly, has also a conceptual value. From one side

it connects properties of the Liouville eigenvalues and eigenstates, which are of theoretical

interest but often hard to access, to the behavior of the spectral functions, which are of

direct experimental relevance. In addition it allows for a more transparent interpretation

of spectral features in regimes far from equilibrium, for which a simple intuition is often

lacking or misleading. As an example we have shown that the well known sign property

of equilibrium Green functions, changing sign at zero frequency as a result of thermal

occupation, can be violated in driven-dissipative systems and it is in general not directly

constrained by the structure of the stationary state density matrix.

We have then applied our approach to the case of a quantum van der Pol oscillator with

Kerr non-linearity. Such a model turns out to be a perfect case study, since the properties

of its stationary density matrix are well known, while its spectral features reveal a number

of surprises. In particular the resonator density of state shows a strong dependence from

the strength of the Kerr nonlinearity, a feature completely absent in the steady state

populations only set by pump/loss ratio. Even more interestingly, in the regime of large

interaction and large non-equilibrium imbalance a NDoS emerges, an effect which would

not be possible in thermal equilibrium.

We have summarized the behavior of the spectral function of this model in the phase

diagram of figure (3.6) which shows that NDoS is not necessarily related to an inverted

population in the steady state density matrix. In order to build physical intuition and to

better understand the origin of this result we have developed a semi-analytical approach

that starts from the spectral function of the isolated problem and adds a lifetime due to
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dissipation in the spirit of a Fermi Golden Rule. This method, which turns out to be

equivalent to a perturbation theory in the dissipation where only the eigenvalues of the

Liouvillian are corrected, was able to partially capture the NDoS effect, at least for suf-

ficiently large interaction and whenever the stationary density matrix shows population

inversion. Finally we have shown that including the perturbative correction to the eigen-

states of the Liouvillian results into a new mechanism for NDoS, due to the emergence of

complex weights in the spectral function. This turns to be crucial to capture NDoS in the

regime where the populations of the steady state are not yet inverted.

To conclude we mention that the approach outlined here is rather general and can be

used to shed light on the spectral properties of other small driven-dissipative quantum

models. Interesting future directions include for example the study of resonance fluores-

cence lineshapes beyond the two-level system limit [177, 178], the spectral features of a

coherently driven cavity across a zero-dimensional dissipative phase transition [43, 47, 106]

or applications related to quantum synchronization [164, 179, 180].
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Chapter 4

Finite-Frequency Transition in

Driven-Dissipative Bosons on a

Lattice

Critical points and phase transitions are characterized by diverging susceptibilities, re-

flecting the tendency of the system toward spontaneous symmetry breaking. Equilibrium

statistical mechanics bounds these instabilities to occur at zero frequency, giving rise to

static order parameters. In this chapter we argue that a prototype model of correlated

driven-dissipative lattice bosons, of direct relevance for upcoming generation of circuit

QED arrays experiments, exhibits a susceptibility sharply diverging at a finite non-zero

frequency, which is an emerging scale set by interactions and non-equilibrium effects. Our

work, connecting breaking of time translational invariance to divergent finite-frequency

susceptibilities, could potentially be extended to study other time-domain instabilities

in non-equilibrium quantum systems, including Floquet time-crystals [118] and quantum

synchronization [163, 164, 181, 182]. The results of this chapter have been published in

[2].

4.1 Introduction

Second order phase transitions in systems at thermal equilibrium or in their ground state

are characterized, according to the Landau paradigm, by the emergence of a static order

parameter which spontaneously breaks a symmetry of the system, such as spin rotational

invariance for magnetism or spatial translational invariance for crystals [111, 183]. The

resulting criticality is described in terms of an instability of a symmetric phase, character-

ized by a singularity of a static susceptibility. For classical systems far away from thermal

equilibrium, such as in presence of external forcing and dissipation, the variety of insta-

bilities can be far richer, with both finite momentum and finite frequency modes going

unstable and resulting in the formation of patterns, propagating fronts, spatio-temporal

chaos, synchronization or other oscillatory behaviors [184–186]. Quantum many body sys-
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tems in presence of both driving and dissipation mechanisms represent natural platforms

to understand and explore such dynamical phases. A well know example is provided by

exciton-polariton condensates where superfluidity has an order parameter oscillating in

time [30, 31, 70, 122]. Yet the oscillating condensate is successfully described by semi-

classical theories such as driven-dissipative Gross-Pitaevski equations that are valid in

the regime of weak interactions. More recently the attention has shifted toward strongly

correlated quantum lattice models with drive and dissipation, where several works have re-

vealed the existence of limit cycles, i.e. non-stationary solutions of the quantum dynamics

for a macroscopic order parameter, at least at the mean field level [16, 17, 20, 93, 187–189].

In this chapter we focus on a paradigmatic model of driven-dissipative interacting

bosons on a lattice, which is directly relevant for the upcoming generation of circuit QED

arrays experiments [61, 62, 86]. We argue that a dynamical susceptibility of such an

open quantum many body system, which in thermal equilibrium is finite and small since

non-zero frequency modes are typically damped by interactions, can display a genuine

singularity at finite frequency, as a result of strong interactions and non-equilibrium effects.

The critical frequency is non-trivial and set by a competition of interactions with drive

and dissipation. Eventually, the system undergoes a dynamical phase transition where the

order parameter emerges with a finite oscillation frequency and in the broken symmetry

phase oscillates in time without damping, thus breaking the continuous time-translational

symmetry. This stationary-state instability is controlled by both dissipative and coherent

couplings, in particular by the ratio between hopping and local interaction, thus providing

the strongly correlated analogue of weak coupling non-equilibrium bosons condensation.

The chapter is organized in the following way. In section 4.2 we introduce the many-

body model in the framework of Keldysh field theory and we discuss our approach based

on a strong-coupling effective action combined with the exact numerical solution of the

single-site master equation. In section 4.3 we discuss the stationary-state instability of the

normal phase characterized by a diverging finite-frequency susceptibility and we discuss

how this is related to the physics of the single-site problem. In section 4.4 we present

the consequences of this instability on the dynamics of the order parameter, first by a

numerical mean-field calculation and then recovering this dynamics from the saddle point

solution of our effective field theory.

4.2 The model

We consider the Bose-Hubbard (BH) Hamiltonian

H = −J
∑
〈ij〉

(
a†iaj + hc

)
+
∑
i

(
ω0ni +

U

2
n2
i

)
(4.1)

modelling a lattice of circuit QED resonators (see Sec. 1.2). Each lattice site hosts a single

bosonic mode with annihilation and creation operators ai, a
†
i , with frequency ω0 and local

interaction U ; ni = a†iai is the occupation operator of site i.
∑
〈ij〉 is a sum on nearest-

neighbours sites, which are coupled with hopping rate J . The Bose-Hubbard model is a
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prototype model of interacting bosonic lattices and it has been intensively studied. We

mainly refer to the important paper [91] and to the book [111]. We supplement the model

with local pump and losses, necessary to drive the system into a non-equilibrium steady

state. We anticipate that the results we are going to discuss do not depend on the specific

model for drive and dissipation and we will highlight the key features a model needs to

have for our results to apply. We formulate the many-body problem specifying its Keldysh

action, which reads

S =

∫
C
dt

(∑
i

āii∂tai −H

)
+
∑
i

(Sl,i + Sσ,i) (4.2)

H =
∑
i

(
ω0āiai +

U

2
āiāiaiai

)
−
∑
〈ij〉

J (āiaj + hc) (4.3)

Sl,i describes Markovian particle losses of each lattice site,

Sl,i = −iκ
∫ ∞
−∞

dt

(
āi−ai+ −

1

2
āi+ai+ −

1

2
āi−ai−

)
(4.4)

and corresponds to a standard Lindblad term by the mapping introduced in Sec. 2.3.3.

Sσ,i describes the coupling of each site to, for the time being generic and non-Markovian,

reservoirs

Sσ,i = −i
∫
C
dt

∫
C
dt′
∑
i

āi(t)C(t− t′)ai(t′) (4.5)

where C describes the bath correlations and it depends only on time-differences as we

assume the reservoir to be in a stationary state. Both kinds of dissipations are local and

homogeneous throughout the lattice. The reservoir (4.5) will describe the drive, that is the

term injecting particles in the system. It is an incoherent drive, meaning that it exchanges,

in particular injects, bosons without a well defined phase into the system. As a result,

it preserves the U(1) symmetry, the invariance under ai → eiφai, of the Hamiltonian in

Eq. (4.1). This leaves open the possibility of a spontaneous breaking of this symmetry,

that is what we are interested in studying. In other words, if we chose to drive the system

with a coherent, classical field, i.e. with Hamiltonian Hd = a†Fe−iωdt + aF ∗eiωdt as in

[15, 190, 191], this would explicitly spoil the U(1) symmetry, precluding the possibility of

a spontaneous symmetry breaking.

4.2.1 Strong-coupling approach

We now introduce a general strong-coupling approach to study driven-dissipative cor-

related lattice models, which generalizes the equilibrium approach of Ref [91] (see also

[90, 111, 192]). We write down the Keldysh partition function

Z =

∫ ∏
i

D[āi, ai]e
iS[{āi,ai}] (4.6)
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where by {āi, ai} we mean the set of bosonic coherent fields of all sites. We rewrite the

effective action in the form

S = Sloc −
∫
C
dt
∑
ij

āiJijaj (4.7)

Sloc =
∑
i

(Su,i + Sl,i + Sσ,i) (4.8)

where Sloc describes decoupled sites, containing the term Su,i describing unitary evolu-

tion and the dissipative contributions Sl,i, Sσ,i. The only term coupling different sites is

the hopping term, where Jij is the hopping matrix, being equal to −J for nearest neigh-

bours sites and zero otherwise. We then decouple the hopping term through a Hubbard-

Stratonovich transformation, by introducing an auxiliary bosonic field ψi for each site.

This transformation corresponds formally to the Gaussian integral

exp

−i∫
C
dt
∑
ij

āiJijaj

 =
1

N

∫ ∏
i

D
[
ψ̄iψi

]
exp

i
∫
C
dt

∑
ij

ψ̄iJ
−1
ij ψj +

∑
i

(
ψ̄iai + ψiāi

)
(4.9)

where J−1
ij is the inverse hopping matrix and N is a normalization constant coming from

Gaussian integration that we don’t need to compute. The field ψi plays the role of a local

order parameter since, for small 〈ai〉, 〈ψi〉 is linearly related to 〈ai〉 [91]. By plugging this

formula in the action (4.2), we are now left with a path integral on ai, āi and ψi, ψ̄i fields.

We can formally integrate on the ai, āi fields

Z =

∫ ∏
i

D[āi, ai]e
iS[{āi,ai}] =

=
1

N

∫ ∏
i

D[ψ̄i, ψi]e
i
∫
C dt

∑
ij ψ̄iJ

−1
ij ψj

∫ ∏
i

D[āi, ai]e
iSlocei

∫
C

∑
i(ψ̄iai+ψiāi)

(4.10)

and define an effective action for the fields ψi, ψ̄i alone, of the form

Seff =

∫
C
dt

∑
ij

ψ̄iJ
−1
ij ψj +

∑
i

Γ[ψ̄i, ψi]

 (4.11)

where the second term represents the generating functional of the bosonic Green functions

of isolated sites, Γ[ψ̄i, ψi] = −i log〈TCe
i
∫
C dt

(
ψ̄iai+a

†
iψi

)
〉loc. We stress that the latter aver-

age is taken over the interacting driven-dissipative decoupled sites, which is much easier

to compute then averages on the many-body problem. We will now describe the on-site

dynamics by a Markovian master equation and we compute the Green function of isolated

sites entering the effective action by exact diagonalization of the associated Liouvillian

and using the spectral representation introduced in Sec. 2.4.3. Our approach therefore

combines the strong coupling field theory (4.11) with the exact numerical solution of the

single-site problem. As such, it could be applied to lattice models with any scheme of

incoherent local drive and dissipation by just solving the appropriate local problem.

55



4.2.2 Single-site problem: driving protocol and master equation

In this chapter we consider the physical realization of the drive theoretically proposed in

[101, 189, 193]. An ensemble of Nat � 1 two-level emitters with randomly distributed

frequencies is coupled to each resonator. The microscopic Hamiltonian for this driving

scheme reads

Hd =
∑
i

Nat∑
n=1

ω
(n)
at σ

+(n)
i σ

−(n)
i + g

∑
i,n

(
a†iσ
−(n)
i + hc

)
(4.12)

where σ
−(n)
i , (σ

+(n)
i ) are the lowering (raising) operators for the two-level emitters and g is

the single-emitter Rabi frequency. The transition frequencies ω
(n)
at of the two-level systems

are assumed to be uniformly distributed over a finite range. Each emitter is further

incoherently pumped by an external pump in its excited state at a strong rate, such that

the emitters are constantly maintained in their excited states, namely their population is

kept perfectly inverted. As a consequence of this, the emitters cannot absorb particles

from the system, but only inject particles into the system: as soon as one emitter relaxes

to its ground state injecting a particle in the system, the pump will immediately bring it

in its excitated state again, before it can absorb any particle from the system. We refer

to [101, 193] for more details about the physical realization of this scheme. In order to

describe this driving scheme we have to specify the Keldysh components of its correlation

function C entering the action (4.5). As the two-level emitters frequencies are uniformly

distributed on a finite range, their spectrum of emission can be approximated by a box-

shaped function. The absorption rate of the bath will be zero instead. In frequency

domain, this corresponds to

C−+(ω) ≡ 0 C+−(ω) ≡ fΓ+−(ω) ≡ f θ (σ − |ω|) (4.13)

where θ is the step function and σ is the bandwith of the drive: the drive only exchanges,

namely injects, particles with the system with energy lower than σ. Reservoirs selective

in energy have been studied theoretically and experimentally in different works [93, 166,

193] and have been proposed to dissipatively stabilize gapped ground-states [101, 189], a

challenge that has been experimentally achieved in [62]. We will discuss the phases ones

can dissipatively stabilize using those kind of reservoirs in chapter 5.

The dynamics of an isolated site described by the action (4.8) can be described, in the

Markovian approximation, by means of the master equation

∂tρ = −i [Hloc, ρ] +
(
κDl + fgD̃[a†, ã†g] + flD̃[a, ãl]

)
ρ (4.14)

with Hloc = ω0n+ U
2 n

2. Dl is a Lindblad dissipator describing single-particle losses with

rate κ

Dlρ =

(
aρa† − 1

2

{
a†a, ρ

})
(4.15)

The dissipator D̃ describes the reservoir (4.5) in a Markovian approximation. It is not of

a Lindblad form, as no secular or rotating wave approximation is performed in order to
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keep the frequency structure of the bath. This dissipator has been used in the literature

in different contexts, for example in [101, 166, 193], and we report a derivation and other

details about it in appendix A.1. D̃ is defined by

D̃[X,Y ] = XρY † + Y ρX† −X†Y ρ− ρY †X (4.16)

and it is evaluated in the modified bosonic operators ãg, ãl, which are dressed by the drive

correlation functions. Our model of the drive (4.13) corresponds to fl = 0, f ≡ fg. The

modified annihilation operator ãg is given by

ãg =
∑
n

ΓR+− (ε(n+ 1)− ε(n)) 〈n|a|n+ 1〉|n〉〈n+ 1| (4.17)

while we don’t need ãl as fl = 0 (its definition is reported in appendix A.1). The function

ΓR+−(ω) is evaluated in ε(n+1)−ε(n) = Un+(ω0 + U/2), the level spacing of the isolated

single-site Hamiltonian, and it is the retarded part of the box-shaped lesser defined in

(4.13), namely ΓR+−(t) ≡ Γ+−(t)θ(t) and reads

ΓR+− (ω) =
1

2
θ(σ − |ω|)− i

2π
log

∣∣∣∣σ − ωσ + ω

∣∣∣∣ (4.18)

Some more details about those functions are reported in appendix A.1. The imagi-

nary part of ΓR+− (ω) is a Lamb-shift term. This terms becomes important when σ '
|ε(n+ 1)− ε(n)| because it diverges logaritmically. Staying away from those points and

for small dissipation, the Lamb-shift does not affect the results of this chapter, thus we

will neglect it.

4.3 Finite-frequency instability of the normal phase

The effective action (4.11) is exact, but we need to approximate the generating functional

Γ[ψ̄i, ψi] to actually compute some observables. We expand Eq. (4.11) in the fields ψ, ψ̄

and truncate at second order in those fields, performing a gaussian approximation. A

gaussian approximation of the effective action is well suited within the normal phase,

where the order parameter fluctuates around zero. It is equivalent to a strong-coupling

resummation of the perturbation theory in the hopping J often referred to as random phase

approximation (RPA) around the atomic limit [89, 194] and it is well known to capture

qualitatively the instability of the Mott phase, as for example discussed in Refs. [91, 111].

We explicit the gaussian action in the Keldysh basis, introducing the classical and quantum

components of the fields and grouping them in the vector Ψ†i = (ψ∗i,c, ψ
∗
i,q). In this notation,

we obtain the effective action

Seff =

∫ ∞
−∞

∫ ∞
−∞

dt dt′
∑
ij

Ψ†i (t)χ
−1
ij (t− t′)Ψj(t

′) (4.19)

As we are interested in computing Green functions in the stationary state of the dissipative

dynamics, assuming such a stationary state exists, the order parameter inverse Green
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function χ−1
ij will depend only on time differences. In terms of its Keldysh components it

reads

χ−1
ij (t− t′) =

(
0 J−1

ij −GAloc(t− t′)
J−1
ij −GRloc(t− t′) −GKloc(t− t′)

)
(4.20)

where G
R/A/K
loc (t− t′) are the single-site retarded, advanced and Keldysh Green functions,

defined in section 2.2, evaluated in the stationary state of the single-site problem, i.e.

at J = 0. The susceptibility of the order parameter, which corresponds to the retarded

component of χ, is finally given by

χR(q, ω) =
1

J−1
q −GRloc(ω)

(4.21)

Jq = −2J
∑d

α=1 cos qα is the dispersion of a hypercubic lattice, where the sum is on spatial

dimensions, and J−1
q = 1/Jq. In thermal equilibrium, the U(1) susceptibility Eq. (4.21) is

well known to show a zero-frequency singularity at a critical value of the hopping, at which

the Mott insulating phase becomes unstable towards superfluidity [91, 111]. As we are

going to show, the behavior of the same quantity in our non-equilibrium state is remarkably

different. As it happens for example in [30], out of equilibrium both the unstable mode

and the critical hopping have to be determined by setting to zero the denominator of the

susceptibility (4.21). It’s easy to check that increasing J the first unstable mode occurs for

q = 0, as long as ReGRloc(Ω∗) < 0, which is the case here. This leads to the two conditions

for the critical point

0 = ImGRloc(Ω∗) (4.22)

1/ (zJc) = −ReGRloc(Ω∗)

involving the retarded Green function of the single-site problem. z = 2d is the coordination

number, i.e. the number of neighbours of one site, of the hypercubic lattice; we will

absorb it in the hopping parameter redefining it through zJ → J in the rest of the

chapter. The first condition determines the frequency of the unstable mode, Ω∗, while the

second determines the critical hopping Jc. In figure 4.1 we plot the q = 0 susceptibility,

probing the instability of the homogeneous normal phase, for different values of the hopping

strength J , showing a pole at ω = Ω∗ when the critical hopping Jc is reached. Right at

Jc the susceptibility diverges as a power law around Ω∗, χ
R(q = 0, ω) = χ0/ (ω − Ω∗)

α,

with mean-field exponent α = 1. The appearance of a singularity at finite frequency

is a remarkable result with no counterpart in systems in thermal equilibrium, where one

expects finite frequency modes to be damped by interactions thus acquiring a finite lifetime,

ultimately cutting off the singularity of any dynamical susceptibility. In section 4.3.1, we

will interpret Ω∗ as an effective chemical potential for bosons.

4.3.1 Results on the single-site problem

In this section we analyse the one-particle Green functions of the single-site problem, which

enter in the effective action (4.19). While consisting only of a single site, this problem
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Figure 4.1: Normal phase susceptibility in the gaussian approximation, Eq. (4.21), as a

function of frequency and for different values of the hopping J . The real part of the

susceptibility goes through a zero with a characteristic two-peaks structure which gets

sharper as the critical value Jc is approached, turning into a genuine singularity at Ω∗.

Parameters: Drive amplitude f = 0.125U , bandwidth σ = U , loss rate κ = 0.0064U ,

resonator frequency ω0 = 0.0, interaction U = 8.

remains quite non-trivial due to non-linearity and dissipation and cannot be solved exactly,

as in the equilibrium analog [111]. The analysis of this section is based on the drive scheme

introduced in section 4.2.2, but the results can be extended to other driving schemes as

we will discuss in section 4.3.2. We compute the single-site retarded and Keldysh Green

functions – defined in Sec. 2.1 – in the stationary state of the single-site problem. In

order to do that we use their Lehmann representation (see Sec. 2.4.3) and a numerical

diagonalization of the Liouvillian, truncating the bosonic Fock space to NH = 11 states.

We are interested in the strong-drive f � κ and strongly-interacting U � f, κ regime for

which the finite-frequency transition occurs and we will briefly discuss the opposite regimes

in Sec. 4.3.2. In this regime, as we see in the main panel of figure 4.2, the spectral function

of single-particle excitations, ImGRloc, features two atomic-like excitations separated by U .

As it has been extensively discussed in Ch. 3, the spectral function of bosonic systems

in thermal equilibrium or in their ground state, is constrained to change sign at zero

frequency. In the non-equilibrium conditions we consider, the spectral function in 4.2

changes sign at a non-zero frequency which depends on interactions, drive and dissipation.

This is precisely Ω∗, the unstable mode of the many-body problem at the critical hopping,

for which the susceptibility 4.21 diverges. In the inset of figure 4.2 we show that Ω∗
increases with the drive amplitude f . This frequency can be interpreted as an emergent

chemical potential for bosons, as we can deduce from the bosonic distribution function,
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Figure 4.2: Retarded Green function of the interacting single-site problem in Eq. (4.1) with

drive and dissipation in the strong-drive regime f � κ. The imaginary part, describing

the spectral function, shows two peaks separated by a gap of order U . Crucially, the two

peaks are not placed around zero frequency, i.e. the imaginary part changes its sign at a

finite frequency Ω∗. This emergent frequency is not fixed a priori but rather fully tunable

and depending from the amplitude and bandwidth of the drive. The inset shows how it

changes with the drive amplitude. Parameters: drive amplitude f = 0.125U , bandwidth

σ = U , loss rate κ = 0.0128U , resonator frequency ω0 = 0.0, interaction U = 8.

which contains information on the occupation of bosonic modes. We recall that the bosonic

distribution function (Sec. 2.1) is defined by

Floc(ω) =
GKloc(ω)

2iImGRloc(ω)
(4.23)

In thermal equilibrium the fluctuation-dissipation theorem (FDT) constraints the dis-

tribution function of bosons to Feq(ω) = coth ((ω − µ) / (2T )). In the non-equilibrium

conditions determined by drive and dissipation, FDT does not hold and the distribution

function is arbitrary and determined by the dynamics. We plot in figure 4.3 the distri-

bution function for a given value of interaction, drive and dissipation. While its overall

shape shows departures from the thermal equilibrium case, we find that around the crit-

ical frequency Ω∗ the system develops a singularity of the form F (ω) ' 2Teff/ (ω − Ω∗),

arising from the fact that ImGRloc(ω) has a zero at Ω∗ while the Keldysh component is

finite around the same frequency range. By analogy with the low frequency behaviour of

the equilibrium distribution function, and discussed in Sec. (2.1), this suggests an asymp-

totic thermalization around the frequency Ω∗. The frequency Ω∗ thus plays the role of an

effective chemical potential for single particle excitations.
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Figure 4.3: Effective Distribution Function as a function of frequency around Ω∗ for fixed

value of interaction, drive and dissipation. Around the frequency Ω∗ the system develops

a singularity which allows to define an effective temperature Teff, whose dependence from

the drive bandwidth is plotted in the inset. Parameters: loss rate κ = 0.0128U , resonator

frequency ω0 = 0.0, drive bandwidth (left panel) σ = U , drive amplitude (right panel)

f = 0.125U , interaction U = 8.

4.3.2 Discussion on the finite-frequency transition

A zero of the single site spectral function ImGRloc(ω) at a finite frequency Ω∗ is the essential

feature to get the finite-frequency transition. We discussed in Ch. 3 that a change of sign

of the spectral function at finite frequency can be related to a population inversion in the

density matrix. Provided drive and dissipation can make the spectral function change

sign at a non-zero frequency, then the details about the driving scheme don’t matter; our

results then apply to a large class of driven-dissipative bosonic lattices. We will discuss an

alternative driving scheme, which equally realizes a finite-frequency transition, at the end

of Ch. 5. Our finite-frequency phase transition can equally be connected with phenomena

of quantum sychronization [163, 164, 181, 182]. The relation of negative spectral functions

with dynamical phase transition in the context of quantum quenches has been recently

discussed in [154].

For our choice of the drive, such a non-trivial zero is essentially related to the existence

of the two-peakes of the spectral function in Fig. 4.2. This structure is there in the

strong-drive regime f � κ, for which the drive prompts an inversion of populations. In

this regime, one also needs that the interaction U is sufficiently strong with respect to

dissipation such that the width of the peaks is smaller compared to U : by decreasing U

the two peaks merge in a single one, recovering a single-peaked spectrum akin to that

of a driven-dissipative linear oscillator, as we discussed in Sec. 3.5.1. Consequently,
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there’s no zero in the spectral function for small U and no phase transition in the lattice

problem is predicted. As driven-dissipative condensates have been predicted in the weak

coupling regime [41], this is a clear artifact of our strong-coupling approach. Namely the

field-theoretical approach we use and the weak coupling master equation describing the

single-site problem, are both valid for U � f, κ. Till now, we considered the strong-drive

condition f � κ. In the opposite regime f . κ the zero of the spectral function is also

washed away and no phase transition is predicted. This agrees with the existence of a

critical drive-to-loss ratio for getting non-equilibrium condensates as in [41].

The evidence of a finite-frequency mode of correlated driven-dissipative bosonic lattices

becoming unstable at the critical hopping Jc is one of the main results of this work.

Also, our strong coupling approach shows the existence of a normal phase for J < Jc
in the strong drive regime f > κ, where weak coupling approaches to non-equilibrium

condensation in extended systems predict a superfluid phase [41]. In fact, in [41], the

condensation transition happens in the drive to loss ratio, regardless of the hopping. In

[41] the driven-dissipative condensate oscillates at an effective chemical potential arising

at the condensation transition, which is determined semiclassically and it is proportional

to the condensation order parameter [41]. Right at the condensation transition, though,

where the superfluid order parameter vanishes, a vanishing effective chemical potential is

predicted. By contrast, our effective chemical potential, Ω∗, is finite at the condensation

transition. In fact Ω∗ equally affects the transient dynamics of the incoherent normal phase

where the superfluid order parameter is exactly zero, as we will show in 4.4. This difference

comes from our strong-coupling approach around the atomic limit. As such, an accurate

quantum-mechanical treatment of interactions, resulting in atomic-like excitations of the

single-site problem, is needed to determine Ω∗. In section 4.4.1, we derive a field theory

describing the transition by expanding the effective action around the unstable mode. The

scale Ω∗, generated by local interactions and dissipation, is then a parameter entering the

effective field theory, that is microscopically determined by (4.22).

4.4 Dissipative dynamics

We now discuss the consequences of the finite-frequency instability of the normal phase

we have presented so far and investigate the dissipative dynamics of the lattice problem

for different values of the hopping J close to the critical value. To this extent, we use a

time-dependent Gutzwiller (tdG) decoupling of the density matrix, i.e. ρ(t) =
∏
i ρi(t)

that we further assume homogeneous in space, ρi(t) ≡ ρloc(t). This approximation results

in an effective single-site problem ∂tρloc(t) = −i[Heff(t), ρloc(t)]+Dloc[ρloc] where Heff(t) =

ω0n+Un2/2 + zJ
(
a†ψ(t) + hc

)
with z the coordination number of the lattice, Dloc is the

local dissipator including incoherent drive and losses, while ψ(t) = tr (ρloc(t)a) is a self-

consistent time-dependent field. We expect this approximation to capture some qualitative

features of the dynamics across the phase transition, at least in high enough dimensions,

where its mean field description is supposed to be accurate. In figure 4.4 we plot the

dynamics of the bosonic order parameter ψ(t) = 〈a(t)〉 as a function of time for different
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Figure 4.4: Dynamics of the order parameter ψ(t) = |ψ(t)|eiθ(t) obtained from the tdG

method, for different values of the hopping strength J . The initial condition is unimportant

at long times. (Top Panel) Normal phase, J = 0.8Jc, exponential decay of the order

parameter toward an incoherent stationary state |ψ(t→∞)| ∼ e−t/τ(J), with oscillations

at frequency Ω(J) (see inset) due to the phase linearly growing in time. (Bottom Panel,

log scale) Approaching the critical point Jc, the dynamics slows down suggesting a power-

law decay right at the transition, as we show analytically. Parameters: drive amplitude

f = 0.125U , bandwidth σ = U , loss rate κ = 0.0064U , resonator frequency ω0 = 0.0,

interaction U = 8.

values of the hopping J . Jc. Introducing a polar representation, ψ(t) = |ψ(t)|eiθ(t), we

see that the absolute value of the order parameter shows an exponential relaxation toward

zero, |ψ(t)| ∼ e−t/τ(J), indicating an incoherent stationary state, while the phase grows

linearly in time with finite angular velocity Ω, θ(t) = Ω(J)t+θ0. A closer inspection reveals

that the characteristic frequency Ω(J) differs from the value Ω∗ previously identified by

an amount δΩ(J) = |Ω(J)−Ω∗| which depends on the hopping rate J and vanishes at the

critical point J = Jc with a characteristic power law, δΩ ∼ (Jc − J), as shown in the top

panel of figure 4.5. Similarly the relaxation time diverges upon approaching the critical

hopping Jc, τ ∼ 1/(Jc−J) (see figure 4.5) and the order parameter shows a characteristic

critical slowing down, as shown in the bottom panel of figure 4.4.

4.4.1 Nonequilibrium field theory of finite frequency criticality

We now proceed to set up a Keldysh non-equilibrium field theory for the finite-frequency

transition, which allows us to obtain a complete analytical picture of the mean field dy-

namics and sets the stage to discuss the role of quantum fluctuations beyond mean field.

The starting point is to expand the effective action (4.11) for q → 0 and ω → Ω∗ and then
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for the two scales δΩ (slow frequency oscillation mode, top panel) and τ (relaxation time

to reach a steady state, bottom) as a function of the distance from the critical point, Jc−
J . The dissipative dynamical transition is characterized by both energy scales becoming

critical. Parameters: drive amplitude f = 0.125U , bandwidth σ = U , loss rate κ =

0.00648U , resonator frequency ω0 = 0.0, interaction U = 8.

move to a rotating frame where the field is oscillating at frequency Ω∗. Introducing the

fields ψ̃c,q(x, t) = e−iΩ∗tψc,q(x, t), we obtain

Seff =

∫
dtdxψ̃∗c

(
−r +K1i∂t +

K2

2
∂2
t −K3∇2

)
ψ̃q + hc

+Snoise + Sint (4.24)

where r = 1/zJ + ReGRloc(Ω∗) = (Jc − J) /J2
c is the distance from the dissipative phase

transition while K3 = 1/zJ2. Differently from the weak-coupling action [135] yelding a

Gross-Pitaevski equation for the condensate dynamics, the effective action (4.24) features

both first and second time-derivative terms, with complex coefficients K1,2 = ∂1,2
ω GRloc(Ω∗),

a feature of the strong-coupling limit around which we expand. In equilibrium K1,K2

play a crucial role for the critical behavior of the transition, which changes universality

class at the tip of the Mott lobes, where K1 = 0. In the present case we always find

numerically K1 6= 0 for finite dissipation, suggesting a single universality class for our

driving scheme, but this point need to be investigated further. Assuming K1 6= 0, K2

is irrelevant under renormalization, as one can tell by scaling arguments and it can be

neglected to study the critical dynamics. In Eq. (4.24), Snoise =
∫
dxdtdt′ ψ̃∗q (x, t)G

K
loc(t−

t′)ψ̃q(x, t
′) represents the noise contribution, which depends on the Keldysh Green function

of the single site. Around Ω∗ this gives a finite time-local contribution, and thus we can

disregard retardation and obtain a purely time local quadratic action with noise term

Snoise = D
∫
dxdtψ̃∗q (x, t)ψ̃q(x, t). Here D plays the role of effective diffusion coefficient in
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the equivalent stochastic (Langevin) dynamics and it is indeed given by D ' GKloc(Ω∗) ∼
Teff. Finally Sint accounts for the non-linearities and it is completely determined by the

multi-particle Green functions of the driven-dissipative single site problem. If we restrict

to interaction terms with one quantum and three classical fields, which is valid in high

enough dimensions according to canonical power counting [135], we can write this term as

Sint = u
∫
dxdtψ̃∗q (x, t)ψ̃

∗
c (x, t)ψ̃

2
c (x, t) + hc. We can now take the saddle point equation

δS/δψ̃∗q (x, t) = 0 and obtain the equation of motion(
iK1∂t −K3∇2 − r

)
ψ̃c + u|ψ̃c|2ψ̃c = 0 (4.25)

which takes the form of a complex Ginzburg-Landau equation, well known as a phenomeno-

logical description of pattern formation in classical non-equilibrium systems [184–186]. The

spatially homogeneous solution of equation (4.25) can be obtained in closed form, as we

discuss in the next section, and it describes a transition between a phase where ψ̃c → 0 for

t→∞ and a phase where the modulus of the order parameter saturates to a finite value.

We remark that this semi-classical dynamics only describes the evolution in a frame rotat-

ing at frequency Ω∗. The origin of this energy scale, which is not contained in Eq. (4.25),

is instead genuinely quantum mechanical and rooted in the solution of the quantum single

site problem, as previously discussed.

4.4.2 Analytical solution of saddle point dynamics

We discuss here more in detail the solution of equation (4.25). Assuming an homogeneous

solution and introducing polar coordinates for absolute value and phase of the order pa-

rameters ψ̃c(t) ≡ |ψ̃c(t)|eiθ̃(t) one obtains two separate equations for |ψ̃c(t)| and θ̃(t), whose

solution reads

|ψ̃c(t)| = |ψ̃c(0)| e−r̃I t√
1 + α (1− e−2r̃I t)

(4.26)

θ̃(t) = −r̃Rt+ ũR

∫ t

0
dt′|ψ̃c(t′)|2 (4.27)

where r̃, ũ are complex coefficients given by

r̃ ≡ r̃R + ir̃I = r/K1 (4.28)

ũ ≡ ũR + iũI = u/K1 (4.29)

while α = |ψ̃c(0)||ũI |/r̃I . This solution describes a dynamical transition close to the critical

point Jc. Specifically for J < Jc the order parameter shows damped oscillations toward

zero

ψ̃c(t) ∼ e−t/τ e−iδΩt (4.30)

with a divergent relaxation time and an oscillation frequency going to zero approaching

the transition

τ = 1/r̃I ∼ 1/ (Jc − J) (4.31)

δΩ = r̃R ∼ (Jc − J) (4.32)
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Upon crossing the critical point, for J > Jc, the dynamics shows instead an amplification

of the order parameter which saturates at long times into a train of finite amplitude

oscillations

ψ̃c(t) ∼ |ψ̃c (∞) |e−iδΩsf t (4.33)

with |ψ̃c (∞) | =
√
|r̃I |/|ũI | ∼

√
J − Jc and δΩsf ∼ (r̃R + r̃I ũR/ũI) ∼ (J − Jc). In the

normal phase, where the non-linearity u disappears from the solution (4.27) at long times

because ψ̃c(t) = 0, the transient dynamics shows harmonic oscillations while in the broken

symmetry phase multiple frequencies are present, at least on intermediate time scales, as

encoded in the phase dynamics (4.27). Right at the transition, for J = Jc when r̃R,I = 0,

the amplitude of the order parameter decays towards zero as a power-law [34, 36] while

the angular velocity vanishes and the phase grows in time only logarithmically,

|ψ̃c(t)| ∼ 1/
√
t (4.34)

θ̃(t) ∼ log(1 + 2ũI |ψ̃c(0)|t) (4.35)

By this field-theoretical treatment we found microscopic expressions for the critical

scales δΩ and τ (4.31), which determine the mean-field dynamics of the order parameter

close to criticality. In Fig. 4.5 we compare those expressions with the numerical values

found fitting the Gutzwiller dynamics, finding perfect agreement, which confirms the va-

lidity of our analysis.

4.4.3 Discussion

In the previous section we have shown that disregarding (i) retardation effects in the ef-

fective action, i.e. expanding all local correlators around the critical frequency Ω∗, as

well as (ii) disregarding terms higher than quadratic in the quantum fields allow to fully

reproduce the results obtained by time-dependent Gutzwiller decoupling, describing the

finite-frequency dynamical transition at the mean field level. Still the full effective action in

Eq. (4.24) includes the effect of non linearities, noise and quantum fluctuations beyond this

semiclassical mean field dynamics that could renormalize the oscillation frequency. These

can be captured with a renormalization group treatment of the finite-frequency critical-

ity, along the lines discussed for the equilibrium Bose Hubbard model [195] as well as

for weakly interacting non-equilibrium superfluids [41, 46]. Particularly interesting in this

respect is the role under renormalization of higher order expansion coefficients in the effec-

tive action, such as K1,K2 and the next order noise term controlled by ∂ωG
K
loc(Ω∗). The

former are related to emergent symmetries, such as particle-hole in the equilibrium Bose-

Hubbard model [111] or the asymptotic equilibrium symmetry in the driven-dissipative

condensation, whose deviation results in a KPZ like critical phase dynamics [135] . A

term analogous to the latter was shown instead to give rise to non-trivial critical behavior

in diffusively driven one dimensional bosons [110]. An interesting question is whether

the inclusion of fluctuations beyond the gaussian level could completely wash away the

finite-frequency transition or renormalize the critical frequency Ω∗ down to zero, resulting
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in a static transition. While answering this question certainly deserves further investiga-

tion, our results suggest that, provided the effective action (4.24) in the rotating frame

admits a non-vanishing U(1) order parameter ψ̃c 6= 0, then the broken symmetry phase in

the original frame will display undamped oscillations and breaking of time-translational

invariance.

4.5 Conclusions

In this chapter we have shown that a prototype model of correlated driven-dissipative

lattice bosons develops, for a critical value of the hopping rate, a diverging susceptibility

at a non-zero frequency Ω∗. The resulting finite-frequency criticality corresponds to the

dissipative dynamics lacking of a stationary state and rather oscillating in time without

damping. Writing down the effective Keldysh field theory for this finite frequency transi-

tion we have obtained its semiclassical limit which we show to reproduce the results of a

time-dependent Gutzwiller decoupling of the density matrix. We emphasize that capturing

the critical frequency Ω∗ requires the quantum solution of the single-site dissipative inter-

acting problem and it is therefore not contained in the semi-classical equation of motion

we derived, which only describes the dynamics in the frame rotating at Ω∗. Our results

differ from other studies of limit cycles instabilities in driven-dissipative systems, such as

exciton-polariton condensates described by Gross-Pitaevski (GP) types of equation and it

could be seen as the strongly correlated version of them. Indeed our transition shares gen-

uine features of a dissipative Mott-superfluid quantum phase transitions being tuned both

by coherent couplings and pump/loss rates. In particular our incoherent phase exists at

small hopping even beyond the standard threshold of pump greater than losses, an effect

which is genuinely quantum mechanical due to the Hubbard repulsion favouring Fock-like

states rather than coherent states. Furthermore the frequency of the limit cycle is finite at

the transition point, where the superfluid order parameter vanishes, and influences also the

normal phase dynamics, while in GP theories it vanishes at that point, being proportional

to the superfluid order parameter. Our work suggests several interesting future directions.

From one side it would be interesting to include dynamical and spatial fluctuations to

study the fate of this dissipative dynamical transition in finite dimensions, following sim-

ilar investigations done for dynamical transitions in isolated quantum systems [196–198].

Another intriguing open question is whether a similar finite-frequency criticality exists in

models of driven-dissipative systems with discrete broken symmetry phases [16] or even

in presence of a purely coherent drive, as for example in the context of optomechanical

platforms [172, 199] or coherently driven quantum spin chains [188]. Finally, while our

work focuses on a paradigmatic model of driven-dissipative bosons which is relevant for

the upcoming generation of circuit QED arrays experiments [61, 62, 93], it also outlines a

generic framework to study dynamical instabilities in non-equilibrium quantum systems,

by focusing on frequency dependent response functions and their divergences. Such a

framework has the potential to be applied in a wide range of contexts, including for ex-

ample driven and isolated Floquet systems, where breaking of discrete time-translational
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symmetry has been predicted [118, 119, 200] and observed [121, 201], quantum systems

undergoing various forms of synchronization [163, 164, 179, 181, 182, 199, 202] as well as

electronic systems under pump-probe optical-irradiation [203]
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Chapter 5

Dissipative Preparation of

Photonic Mott Insulators

The recent experimental advances in controlling dissipation has brought forth the possibil-

ity to engineer dissipative processes in order to obtain entangled quantum phases of matter

as stationary states of the dissipative dynamics. This follows the concept of dissipative

engineering introduced in Sec. 1.3. In Ch. 4 we studied a model of driven-dissipative

bosonic lattices and we concentrated on the finite-frequency phase transition driven by

the hopping term, that is not related to the specific choice of the drive. In this chapter,

instead, we will study the properties of the normal phase stabilized by the driving scheme

introduced in 4.2.2, which depend crucially on the choice of the drive. This driving scheme

was proposed in [101] to stabilize a Mott insulating phase as the stationary state of the

dissipative dynamics. An interesting question to ask is how different this Mott insulating

phase is from the equilibrium one. In [101], the authors showed that the stationary state

of such a driven-dissipative Bose-Hubbard chain in 1D is very close to the ground state

of a 1D Bose-Hubbard model with a proper chemical potential. This similarity extends

across both the Mott phase and the superfluid phase and suggests that, out of drive and

dissipation, one can get as close as wanted to the ground state. Remarkably though, in

[101], the non-equilibrium nature of the problem plays no major role. Their phase dia-

gram for the driven-dissipative stationary state matches pretty well the ground state one

in 1D, showing the well known Mott lobes structure [88, 204]. There’s no hint in [101]

of the finite-frequency transition we discussed in Ch. 4 and even the superfluid phase

is stationary. The numerical methods used in [101] are, in fact, tailored to compute the

time-independent stationary state of the model, but give no access to dynamical features.

On the other hand, driven-dissipative superfluids are well known oscillate in time [30, 41]

at an effective chemical potential. Also, in [189], where a similar problem in the hard-core

bosons limit is analysed, limit cycles are predicted. It is indeed puzzling to reconcile the

completely static, ground-state-like picture of [101], with the dynamical non-equilibrium

features predicted for example in [1, 30, 41, 189] for driven-dissipative systems. In this

chapter we provide a comprehensive picture allowing to reconcile these results. The dis-

sipative preparation of Mott insulators is relevant for current experiments. In [62], that
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we have already briefly discussed in Sec. 1, the authors use energy selective reservoirs

to dissipatively stabilize a Mott insulating phase. Their experiment features a 1D chain

of 8 non-linear superconducting resonators in a circuit. The chain realizes a lossy Bose-

Hubbard model, where the last site is coupled to an energy-selective reservoir that injects

photons with energy lower than the many-body gap. In contrast with the model of [101]

and with our model (4.2), where each site is driven, in [62] only one site is connected to

the reservoir.

In this chapter we study the stability of dissipatively stabilized Mott insulators, ob-

taining a mean-field phase diagram and making contact with the ground-state problem.

The chapter is organized as follows. In 5.1 we introduce the driven-dissipative lattice

model. In section 5.2 we discuss the ground-state properties of the single-site problem and

the ground-state phase diagram. In section 5.3 we study the driven-dissipative single-site

problem, drawing analogies with the ground-state case, and discuss the non-equilibrium

phase diagram. Finally, in section 5.4 we discuss a different driving protocol, stabiliz-

ing a mixed phase rather then a Mott insulator, and discuss the role of effective thermal

fluctuations.

5.1 The model

We consider the Bose-Hubbard model already defined in Sec. 4.2, reporting its action

(4.2)

S =

∫
C
dt

(∑
i

āii∂tai −H

)
+
∑
i

(Sl,i + Sσ,i) (5.1)

H =
∑
i

(
ω0āiai +

U

2
āiāiaiai

)
−
∑
〈ij〉

J (āiaj + hc) (5.2)

where H is the Bose-Hubbard Hamiltonian and Sl,i, Sσ,i describe the dissipative terms

(4.4), (4.5). In Sec. 4.2.1 we discussed how to use a Hubbard-Stratonovich transformation

to decouple the hopping term, reducing the lattice problem to computing momenta of

its single-site problem. We then truncated the effective action at Gaussian level in Sec.

4.3, which is a well suited approximation to describe the normal phase where the order

parameter fluctuates around zero, obtaining the mean-field critical point equation

1/ (zJc) +GR0 (Ω∗) = 0 (5.3)

This equation determines both Jc and Ω∗, the critical hopping and the mode becoming crit-

ical and GR0 is the retarded Green function of the single-site problem, which in the following

will be either the ground-state one or that of the driven-dissipative stationary-state. We

absorb the coordination number z in the hopping parameter redefining it through zJ → J .

We consider the driving scheme already introduced in sections 4.2.2, 4.2.2, which we will

refer to as the cold drive because, as we will show in section 5.3.1 that it allows to prepare

almost pure states with low temperature excitations 5.4.
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5.2 Ground-state problem

It is interesting, in order to understand the driven-dissipative case, to summarize the

ground-state properties of the Bose-Hubbard single-site problem and to discuss how those

are related to the ground-state phase diagram in mean-field. As we will see, the cold

drive leads to a stationary state of the single-site problem which is very similar to its

ground-state, in agreement with the discussions of [101].

5.2.1 Single-site ground state

The Bose-Hubbard site Hamiltonian reads

Hg = −µgn+
U

2
n2 (5.4)

where µg > 0 is the chemical potential. It is diagonal in Fock states and the energy of a

state with n bosons is ε(n) = U
2

(
n− µg

U

)2 − µ2
g

2U , which is a parabola centered at −µg/U .

The ground-state occupation ng > 0 minimizing the energy therefore is

ng −
1

2
<
µg
U

< ng +
1

2
(5.5)

The ground-state occupation ng stays constant for a finite range of chemical potential

values given by (5.5). Equivalently ng = ceiling
(µg
U −

1
2

)
, where ceiling(x) is the smallest

integer bigger then x. The one-particle retarded Green function can be easily computed

through a spectral decomposition and in the ground-state, given by (5.5), it takes the form

GRg (ω) =
ng + 1

ω − ωg+ + i0
− ng

ω − ωg− + i0
(5.6)

It probes the processes of adding or removing a particle from the ground state, with

excitation energies ωg+ and ωg−, which are given by

ωg+ = ε(ng + 1)− ε(ng) = −µg + U

(
ng +

1

2

)
(5.7)

ωg− = ε(ng)− ε(ng − 1) = −µg + U

(
ng −

1

2

)
(5.8)

They are respectively positive and negative, as ε(ng) is the ground-state energy, such that

ε(ng) > ε(ng + 1), ε(ng − 1). The imaginary part i0 is a vanishingly small regularization

term. The imaginary part of (5.6) is the sum of two delta functions centered at ωg+, ωg+,

while its real part has simple poles at those frequencies. Increasing the chemical poten-

tial at fixed ng, the excitations ωg+, ωg− shift towards lower energies. The ground state

condition (5.5) directly translates into the following bounds for ωg+ and ωg−:

− U < ωg− < 0 0 < ωg+ < U (5.9)
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5.2.2 Mean-field phase diagram

The ground-state mean-field phase diagram is given by the critical point equation (5.3)

for the Ω∗ = 0 mode. The condition ImGRg (0) = 0 is always satisfied in equilibrium, in

particular for ground-states, as we discussed in Sec. 3.2.1. The critical hopping is given

by

1/Jg,c = −ReGRg (0) (5.10)

Injecting GRg from (5.6), one obtains

Jg,c =
(U/2)2 − (Ung − µg)2

µg + U/2
(5.11)

yielding the well known Mott lobes in the µg/U , Jg,c/U plane.

5.3 Driven-dissipative problem

We now move to analysing the driven-dissipative Bose-Hubbard model (5.1), starting from

its single-site problem.

5.3.1 Driven-dissipative single-site problem

The master equation of the driven-dissipative Bose-Hubbard site, which we already intro-

duced in Sec. 4.2.2, reads

∂tρ = −i [Hs, ρ] + κ

(
aρa† − 1

2

{
a†a, ρ

})
+ rκ

(
a†ρãg + ã†gρa− aã†gρ− ρãga†

)
(5.12)

The Hamiltonian Hs = ω0n + U
2 n

2 is the same considered for the ground state, with the

substitution −µg → ω0 > 0. The last term in the master equation describes the cold drive

4.2.2 and we already discussed it in Sec. 4.2.2. We define the drive-to-loss ratio r and the

overall dissipative scale κ and we report the expression of the modified creation operator

ã†g, which is the hermitian conjugate of (4.17).

ã†g =
∑
n

ΓA+− (ε(n)− ε(n− 1))〈n|a†|n− 1〉|n〉〈n− 1| (5.13)

ΓA+−(ω) is evaluated in ε(n) − ε(n − 1) = ω0 + U
(
n− 1

2

)
, the level spacing of the site

Hamiltonian. For the box-shaped lesser Γ+−(ω) = θ(σ − |ω|), we have

ΓA+− (ω) =
1

2
θ(σ − |ω|) +

i

2π
log

∣∣∣∣σ − ωσ + ω

∣∣∣∣ (5.14)

that is the conjugate of (4.18). This model is essentially the same as proposed in [101],

with a simplification that needs a comment. We considered the box-function Γ+−(ω) =

θ(σ−|ω|), while in [101] the authors consider a more physical smoothly-decaying function.

Strictly speaking, the markovian approximation leading to the master equation (5.12) is

violated by our choice, but, in the small dissipation limit κ → 0 we will consider, our
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Figure 5.1: Driven-dissipative single-site steady-state average population 〈n〉 as a function

of the drive-to-loss ratio r, for different values of µs/U . For r sufficiently big, say r � 1,

the average population takes almost integer values; the corresponding density matrix is

almost pure and only the Fock state with n = 〈n〉 is populated. The population changes

stepwise with µs/U , in a photon blockade fashion. Parameters: µs/U = 1/2 + 10−2,

k/U = 10−6, σ/U = 3.5.

choice is consistent and equivalent to their model. A more detailed discussion can be

found in appendix A.1. Let’s describe the steady state populations of this model, that

can be computed analytically. One can easily show that stationary state populations

depend only on the drive-to-loss ratio r and not on the overall dissipative rate κ and that

they are determined only by the real part of ΓA+− which is the theta function 1
2θ(σ −

|ε(n)− ε(n− 1)|). Consequently only Fock states with up to n bosons can be populated,

with the energy of the n-th boson such that ε(n)− ε(n− 1) = ω0 +U
(
n− 1

2

)
< σ, where

σ is the bandwidth of the drive. In Fig. 5.1 we show the numerical calculations of the

average population as a function of the drive-to-loss ratio r. For r sufficiently big, say

r � 1, the average population takes almost integer values; the corresponding density

matrix is almost pure and only the Fock state with the highest possible occupation, that

we call ns, is populated. This second condition can be written as ω0 + U
(
ns + 1

2

)
& σ.

Defining µs = σ − ω0, those two conditions are summarized by

ns −
1

2
<
µs
U

. ns +
1

2
(5.15)

which is analogous to the ground state condition (5.5) with µs in place of µg. Equivalently,

the steady state population is ns ≈ ceiling
(µs
U −

1
2

)
as we also show in figure 5.1. Let’s

now consider the one-particle retarded Green function of the driven-dissipative single-site

problem. In the spirit of adding the effect of dissipation on Green functions in perturbation

theory, as we have done in Ch. 3, the residues and the poles of the Green function get

corrected by dissipative contributions. The retarded one-particle Green function, for r � 1
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will have main contributions

GRs (ω) ≈ ns + 1 +O(κ)

ω − ωs+ + iΓ(κ) + δ(κ)
− ns +O(κ)

ω − ωs− + iΓ(κ) + δ(κ)
(5.16)

where the lifetime Γ(κ) and energy-shift δ(κ) vanish for κ→ 0. For small dissipation, the

real part of the poles is essentially the same as for the closed system, replacing −µg with

ω0. Recalling that ω0 = σ − µs, we get

ωs+ ' ε(ns + 1)− ε(ns) = σ − µs + U

(
ns +

1

2

)
(5.17)

ωs− ' ε(ns)− ε(ns − 1) = σ − µs + U

(
ns −

1

2

)
(5.18)

Those excitation energies are very similar the ground-state ones (5.7), with µs in place of

µg, but that they are globally shifted by σ. The stationary state condition (5.15) translates

in the bound for ωs+, ωs−

σ − U < ωs− < σ σ < ωs+ < σ + U (5.19)

which is analogous to the ground state one (5.9). We remark that even if the stationary

state (5.15) of (5.12) is very close to the ground state of a Bose-Hubbard site (5.4) with

chemical potential µs, the excitation energies of the driven-dissipative stationary state

are shifted by σ with respect to the ground-state ones, telling that this is a high-energy

state rather then the ground-state. The ground-state and stationary-state Green functions

coincide in the limit of small dissipation

lim
κ→0

GRs (ω + σ)→ GRg (ω)|µs (5.20)

5.3.2 Non-equilibrium versus ground-state phase diagram

We now focus on the mean-field phase diagram and take the limit of small dissipation

κ → 0, while keeping the drive-to-loss ratio large r � 1. In this limit we have shown in

5.3.1 that the properties of the driven-dissipative single site, its occupation and spectrum,

resemble those of the ground state of a Bose-Hubbard isolated site, therefore one could

expect a ground-state-like phase diagram. We will show that instead the phase diagram

of the driven-dissipative model is remarkably different. The equation for the critical point

(5.3) is the same as for the ground-state case. Nevertheless, as we already discussed in Ch.

4, under the non-equilibrium conditions determined by drive and dissipation, the mode

becoming unstable at the phase transition is not necessarily the ω = 0 mode, as for ground

states, but it must be determined from the critical point equation itself, giving the two

conditions for Ω∗ and Jc

0 = ImGRs (Ω∗) (5.21)

1/Jc = −ReGRs (Ω∗) (5.22)

The phase-diagram obtained by solving this equations is shown in Fig. 5.2. Some com-
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non-equilibrium boundary:

unstable mode ω=Ω*

ground-state boundary 1/J=-ReGR(σ)
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Figure 5.2: Mean-field phase diagram in the µs/U versus Jc/U plane featuring a Mott

insulating phase on the left and a superfluid phase on the right. Black line: ground state

phase diagram of a Bose-Hubbard Hamiltonian with chemical potential µs. Blue line:

non-equilibrium phase diagram of the driven-dissipative Bose-Hubbard model. The dissi-

patively stabilized Mott insulator becomes unstable at lower hopping then in the ground-

state case due to finite-frequency modes instabilities. Dashed-gray line: ground-state-like

boundary computed from the driven-dissipative problem solving 1/J = −ReGR(σ), which

coincides with the ground-state boundary; this is not the phase diagram of the driven-

dissipative model. Inset: the critical mode Ω∗ changes linearly with µs/U jumping when

going from one Mott lobe to the other. Parameters: κ/U = 10−5, σ/U = 3.5, r = 102.
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ments are due to explain Fig. 5.2, which is one of the most important results of this

chapter. The solid black line shows the ground-state phase diagram of a Bose-Hubbard

Hamiltonian with chemical potential µs; it is obtained from Eq. 5.11, with the replacement

µg → µs, and it will serve as a reference for comparison with our non-equilibrium results.

Solving (5.22) for both Jc and the unstable mode Ω∗, the non-equilibrium phase-diagram

of system is given by the blue line in Fig. 5.2. The critical hopping Jc is much smaller than

the corresponding ground-state value. As a result, the Mott phase is remarkably shrunk

with respect to the ground state case and the Mott lobes get “cut off” by finite-frequency

modes becoming unstable. The inset of Fig. 5.2 shows the dependence of the unstable

mode Ω∗ on µs/U . We see that Ω∗ is linear in µs/U and it jumps when going from one

lobe to the other. This inset is important as it shows that the unstable mode Ω∗ changes

with µs/U . This is in remarkable contrast with the ground-state critical point equation

(5.10), in which the critical mode ω = 0 doesn’t change with µg/U and it is the rea-

son why the non-equilibrium phase diagram is remarkably different from the ground-state

one. For different values of µs/U different dynamical modes become unstable determining

the “flattening” of the Mott lobes. A priori, due to the analogies between the single-site

stationary-state and ground-state, one could have expected that, in the limit of vanishing

dissipation κ→ 0, one would have had Ω∗ → σ. In this case, the phase diagram would have

been given by the dashed-gray line which coincides with the ground-state phase diagram.

The dashed-gray line has been obtained by solving 1/J = −ReGR0 (σ) at fixed frequency

ω = σ and it coincides with the ground state boundary because the stationary state Green

function coincides with the ground state one in this limit (5.20). This coincidence probably

justifies the ground-state-like phase diagram found in [193], where the authors study the

time-independent stationary state of the many-body master equation, but have no access

to dynamical modes. We checked that the limit κ→ 0 is numerically achieved, by showing

that the critical hopping Jc attains a constant value for small enough κ, while keeping the

drive-to-loss ratio r � 1 fixed. This is shown in Fig. 5.3. We conclude this section by

remarking that the small dissipation limit κ → 0 makes a huge difference in determining

the critical point with respect to the ground-state, as it selects the unstable mode driving

the transition. For κ = 0 strictly, in fact, the equation ImGRg (ω) = 0 is satisfied for all

ω 6= ωg,±, while for any finite κ this degeneracy is lifted and there are isolated points at

which ImGRs (ω) = 0. The limit κ → 0 is thus non-trivial as it leads to a finite frequency

criticality and thus to the spontaneous break of time-translational symmetry.

5.3.3 Mott phase stability to drive protocol

In the previous section we have identified a non-trivial non-equilibrium phase-diagram in

the limit of small dissipation κ → 0, while keeping fixed the drive-to-loss ratio r � 1;

the Mott phase stabilized by drive and dissipation is considerably shrunk in Fig. 5.2

with respect to the ground-state phase diagram as a result of dynamical modes becoming

unstable. In this section we will explore the effect of changing r on the phase diagram.

Let’s first recall the effect of r on populations, which is shown in Fig. 5.1. By decreasing

r, the steady state becomes less pure, departing from the ground-state of a Bose-Hubbard
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Figure 5.3: Critical hopping Jc as a function of κ/U at fixed r. For small enough κ, Jc
reaches a constant value. Parameters: µs/U = 1, k/U = 10−6, σ/U = 3.5, r = 103.

site. In Fig. 5.1 we see that already for r = 10 there’s an important departure of population

from integer values, 〈n〉 ' 0.83, while for r = 100 the average population is very close

to integer, 〈n〉 ' 0.98. In Fig. 5.4 we show how the non-equilibrium phase diagram

changes by changing r. We observe the remarkable result that, for increasing values of

r the Mott phase shrinks, until disappearing. This is also shown in the inset of Fig. 5.4

at fixed µs/U . The other way around, decreasing r the “Mott” phase expands to higher

values of J ; nevertheless, at the same time it gets less “Mott”, as on-site populations

depart from the integer values characterizing a Mott insulator. Our results suggest that

there is a trade off between the fidelity of the dissipatively stabilized phase to the Mott

ground-state and the robustness of such a phase at finite hopping. A very interesting

quantity to look at is the on-site occupation at finite J as a function of r. This quantity

can be computed in our strong-coupling approach and its calculation will be addressed

in the future. For the moment, we can’t tell much about the Mott nature of this phase

for r � 1, for example about its compressiblity, but the numerical results of [101] show

that the stationary state of their 7-sites 1D chain reproduces a Mott insulator with very

high fidelity. The analysis of this section eventually suggests that the more mixed the

“Mott” phase becomes, which at some point will call normal phase rather than Mott, the

more this normal phase survives at finite hopping. In the next section we will consider

a different driving scheme, that allows to stabilize a much more mixed steady-state, and

show that the corresponding phase diagram agrees with this observation.

5.4 Changing the driving protocol

In this section we discuss a second driving protocol, that was experimentally realized in

[166]. A random classical stochastic field η is modulated with a coherent tone ωL described
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Figure 5.4: Mean-field phase diagram in the µs/U versus Jc/U plane featuring a Mott

insulating phase on the left and a superfluid phase on the right. Black like: ground state

phase diagram of a Bose-Hubbard Hamiltonian with chemical potential µs. Blue lines:

non-equilibrium phase diagram of the driven-dissipative Bose-Hubbard model changing

the drive-to-loss ratio r. Inset: Jc/U versus 1/r at fixed µs/U = 1. The region of Mott

insulator stability shrinks increasing r. Parameters: kr/U = 10−3, σ/U = 3.5.
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Figure 5.5: Left panel: average stationary state population 〈n〉 obtained with the hot

drive versus the drive bandwidth σ/U . The occupation increases stepwise showing photon

blockade. The hot drive stabilizes half-integer values of the average population for r � 1.

Parameters: ω0 = 0, k/U = 10−6, σ/U = 3.5, r = 103. Right panel: Effective temperature

Teff as a function of the drive bandwidth σ for the two driving protocols considered. We

notice that while in the cold drive case Teff depends only weakly on σ and stay small, for

the hot drive case it substantially increases as σ (and therefore the number of photons)

increases. Parameters: κ/U = 0.0128, ω0 = 0, σ/U = 0.625, r = 9.77.

by the time-dependent Hamiltonian

Hhot(t) =
(
eiωLta†η(t) + hc

)
(5.23)

η(t) is assumed to have Gaussian statistics with zero average, 〈η(t)〉 = 0, and two-point

correlations with Fourier transform 〈η(ω)η(ω′)〉 = fδ(ω − ω′)θ(σ − |ω|). We will refer

to this implementation as to the hot drive in the following, as opposed to the cold drive

considered before. This drive can be described by the already introduced master equation

(4.14) involving the modified dissipator (4.16), with fg = fl = f and ãg = ãl and with

equal absorption and emission spectra

ΓR+−(ω) = ΓR−+(ω) =
f

2
θ(σ − |ω|)− i f

2π
log

∣∣∣∣σ − ωσ + ω

∣∣∣∣ (5.24)

This drive acts both as a source and as a sink of particles with equal rates, much like a

high-temperature bath, justifying the name hot drive. The corresponding density matrix

is diagonal in Fock space and all the Fock states with n < µs/U + 1
2 are populated. For

r � 1 those states get evenly populated, mocking an infinite temperature density matrix

with a cut-off, which results in quasi-half-integer populations as we show in Fig. 5.5.

This opposes to the cold drive we previously considered, that stabilizes an almost pure

Fock state in the same regime. This discussion about the “temperature” of steady-state

populations is corroborated with the calculation of the effective temperature of one-particle

excitations. As discussed in 4.3.1, for r � 1 one-particle excitations are thermally dis-

tributed around Ω∗, and thus Ω∗ can be interpreted as a chemical potential for those
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Figure 5.6: Stationary state phase diagram in the µs/U versus Jc/U plane, for the two

driving protocols considered, namely the cold drive (top panel) and hot drive (bottom

panel). For increasing values of µs/U the critical hopping decreases with the cold drive, as

in the ground-state case, and increases with the hot drive, as an effect of effective thermal

fluctuations. Parameters: k/U = 10−6, σ/U = 3.5, r = 103.

excitations. The corresponding effective temperatures Teff as a function of the drive band-

width σ, for the two cases of the cold and hot drive, are shown in Fig. 5.5. The dependence

of Teff is remarkably different between the two cases. Indeed, upon increasing σ, the effec-

tive temperature increases for the hot drive while slightly decreases for the cold drive.

5.4.1 Phase diagram

We compare the phase diagram of the cold drive, dissipatively stabilizing a Mott-like

phase, with that of the hot drive, creating an incoherent mixed phase, in Fig. 5.6. Some

interesting observations follow from this plot. First, we note that the values of critical

hopping Jc for the hot drive are much bigger then for the cold case (the same parameters are

used for both drives). Secondly, we notice that, for the cold drive (top panel), by increasing

µs and thus the local occupation, the region in which the normal phase is stable shrinks

and the critical hopping Jc decreases, analogously to the ground-state phase diagram.

Vice-versa, with the hot drive (bottom panel) we find the opposite behaviour, namely the

critical hopping increases with µs and the region of normal phase stability expands. We

can understand this behaviour from the discussion about the effective temperature of one-

particle excitations. Increasing µs, the effective temperature of excitations increases for

the hot drive, with the result of shrinking the broken symmetry region due to the increased

thermal fluctuations. This also agrees with the observation that, for the cold drive, the

critical hopping increases the more the density matrix is mixed, that is by decreasing r.
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5.5 Conclusions

In this chapter we discussed the phase diagram of photonic Mott insulators, dissipatively

stabilized using the scheme proposed in [101]. We discussed the similarity between the

driven-dissipative stationary state of the single-site problem with the ground-state of a

Bose-Hubbard site. This similarity at the single-site level extends to the 7-sites 1D chain

studied in [101], where the authors find that this driven-dissipative model has a stationary

state reproducing a Mott insulator with very high fidelity. We studied the mean-field

phase-diagram of such a dissipatively stabilized Mott insulator in the limit of vanishing

dissipation, for which the physics of one isolated site is very close to its ground state.

We predicted that, surprisingly, the region of stability of such a phase is remarkably

shrunk with respect to the ground-state phase diagram of the corresponding Bose-Hubbard

Hamiltonian, due to the onset of dynamical modes instabilities. We found that the bigger

the drive-to-loss ratio, the smaller the critical hopping for which the Mott phase becomes

unstable. For bigger drive-to-loss ratio, the stationary state is also expected to be closer to

the Mott ground state. Accordingly, our results suggest that there is a trade off between

the fidelity of the stationary phase to a Mott insulator and robustness of such a phase at

finite hopping. The validity of our results beyond mean-field needs to be asserted with more

powerful methods. Indeed mean-field theory tends to favour the broken symmetry phase,

thus one could expect that fluctuations beyond mean-field would push the Mott-superfluid

phase boundary to larger values of the hopping. We expect though that the qualitative

trend of the critical hopping decreasing with the drive strength, that arises from the local

physics, would remain valid beyond mean-field. We finally studied the phase diagram

of a different driving scheme, stabilizing a mixed incoherent normal phase rather than a

Mott insulator, showing that effective thermal fluctuations increase the stability region of

the normal phase, as expected. The results of this chapter are preliminary and mostly

unpublished. The very interesting limit of vanishing dissipation can be solved analytically,

computing the Green functions in perturbation theory as we did in Ch. 3. The occupation

of the many-body stationary state can be equally computed using our strong-coupling

approach. This driven-dissipative model thus turns out to be a very nice toy model to

discuss dissipatively stabilized Mott insulators, being at the same time relevant for current

experiments [62].
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Chapter 6

Towards Dynamical Mean Field

Theory for Driven-Dissipative

Systems

Dynamical mean field theory (DMFT) has emerged in the last two decades as a very pow-

erful approach to study strongly-interacting quantum many-body systems [205]. As for

any quantum many-body problem, the exponential scaling of the size of the Hilbert space

with the number of degrees of freedom makes it difficult to address big systems numeri-

cally. Markovian open systems suffer even more of this limitation, as the natural space to

numerically treat those problems is the Liouville space (Sec. 2.3), whose size is the square

of that of the original Hilbert space. Several methods have recently being proposed, which

are mostly limited to 1D or to small system sizes. Tensor network schemes [206–208] are

very efficient for 1D systems, but are still limited in higher dimensionalities despite the

ongoing efforts [209]. A promising method for 2D is the corner space renormalization

method [53, 156]. Recently a Monte Carlo method has been proposed [210], but its ap-

plicability it’s limited by its sign problem. Beyond mean field methods such as cluster

methods [157, 211] and the self-consistent projection operator [20, 212] are also promising

techniques. Finally, four groups have independently proposed a neural-network ansaz for

the density matrix of many-body open systems [213–216], following the proposal for closed

system [217]. This approach looks promising, but its strengths and limitations still need

to be assessed. Developing a DMFT approach to driven-dissipative quantum many-body

systems would fill a gap in this scenario. DMFT is a non-perturbative strong-coupling

technique that maps a lattice many-body problem in the thermodynamic limit onto an

auxiliary problem describing a single-site coupled to a self-consistent bath, that we will

call impurity problem. This is in the spirit of standard mean field theory, where a lattice

problem is mapped onto a single-site problem in a self-consistent field. The qualitative

difference is that the effective problem in mean-field is described by an Hamiltonian, while

in DMFT retardation effects that one site experiences as an effect of the rest of the lattice

are taken into account and the effective theory must be described in terms of an action,
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which is non-local in time, hence the name dynamical mean field theory. Being formulated

directly in the thermodynamic limit, DMFT is not limited to small system sizes as most

of the already existing methods. The bottleneck of DMFT is that solving the auxiliary

impurity problem is not an easy task, but it is still by far easier than solving the original

lattice problem. As a result, one needs appropriate methods, which we will call impurity

solvers, to solve the auxiliary problem.

The work presented in this chapter is the first attempt towards solving DMFT for

driven-dissipative lattice problems. In section 6.1 we will introduce DMFT for driven-

dissipative bosonic particles on a lattice, compare it with mean field theory and in 6.2

we will discuss the need for developing a tailored impurity solver for driven-dissipative

systems. The development of the impurity solver will occupy the core of the chapter from

section 6.3 on and a more detailed outline of the chapter will be given at the end of Sec.

6.2.

6.1 Driven-dissipative bosonic DMFT

DMFT was developed [218, 219] to give new insights on strongly-correlated fermionic

systems in equilibrium, for example to shed light on the Hubbard model conundrum [205,

220]. Following its success for fermionic systems in equilibrium, it has been extendend to

bosons [221, 222] and to out-of-equilibrium conditions [223–225]. We will discuss DMFT in

the context of bosonic systems, as we have in mind the experimental realizations discussed

in Ch. 1 which involve bosonic particles. As we are interested in driven-dissipative systems,

we must use the real-time, non-equilibrium formulation of DMFT, which for bosons was

derived in [226] and that we will briefly discuss in this section. For bosons, the standard

mean-field theory, that consists in decoupling the hopping introducing a self-consistent

external field, becomes exact in the z →∞ limit, where z is the coordination number of the

lattice, i.e. the number of neighbours of each site. Bosonic DMFT improves on mean-field

theory by adding first-order corrections in 1/z or, equivalently, by adding second-order

corrections in the fluctuations of the bosonic field [221, 226]. This is very different for

fermions, for which DMFT is the theory recovered in the limit z →∞ [205, 219].

We consider a generic problem of bosonic particles on a lattice with on-site drive and

dissipation described by a Markovian master equation with jump operators Liα; each

site has Hamiltonian H0 i, possibly strongly-interacting, and nearest-neighbours sites are

coupled with a hopping term with strength J . The Keldysh action describing the problem,

following the mapping of section 2.3, reads

S =
∑
i

S0,i +
∑
〈ij〉

J

z

∫
C
dt (āiaj + hc) (6.1)

S0,i =

∫
C
dt (ā i∂ta−H0,i)− i

∫ ∞
−∞

dt
∑
α

γα

(
Li α+L̄i α− −

1

2

(
L̄i α+Li α+ + Li α−L̄i α−

))
(6.2)

The rescaling of the hopping strength J with the lattice coordination number z is necessary
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to yield the correct z → ∞ limit [221]; the scaling for fermions would be instead J/
√
z

[205]. We make the further assumption that all lattice sites are equivalent. DMFT maps

the action (6.1) onto an effective action Seff describing a single-site, that we will call the

impurity, coupled to a field Φeff and to a bath ∆ 1:

Seff = S0 +

∫
C
dtΦ†eff(t)a(t)− 1

2

∫
C
dt dt ′a†(t)∆(t, t′)a(t′) (6.3)

Φ†eff = JΦ†(t) +

∫
C
dt ′Φ†(t′)∆(t′, t) (6.4)

We have dropped the site indices as all the terms in (6.3) refer to the same site. We refer to

[226] for the derivation of this action and we remark that their derivation naturally applies

also to our case of driven-dissipative lattices as long as drive and dissipation do not couple

different lattice sites. The boldened fields a,Φeff,Φ represent Nambu vectors, for example

a† = (ā, a), which one needs to introduce in order to describe bosonic condensates, while ∆

is a matrix in this space. The action S0 describes the local, interacting driven-dissipative

single-site problem, that we can solve numerically formulating it in terms of a Markovian

master-equation, as we have done in Ch. 4 and 5.

The field Φ and the bath ∆ need to be determined self-consistently from the effective

action Seff itself. The self-consistent condition for the first is simply given by Φ = 〈a〉.
The key approximation of DMFT allows to determine a self-consistent condition for ∆.

This approximation consists in taking the lattice self-energy to be local in space

Σij(t, t
′) ' Σ(t, t′)δij (6.5)

The Green function of the original lattice model is then given by the Dyson equation

Gij(t, t
′)−1 = δij

[
Gni(t, t

′)−1 −Σ(t, t′)
]
− JijI (6.6)

where Gij(t, t
′) = −i〈TCai(t)a

†
j(t
′)〉 + iΦi(t)Φ

†
j(t
′) is the connected part of the Green

function, G−1
ni is the inverse, non-interacting Green function of the single-site problem and

I is the identity in Nambu space. The inverse Green function of the impurity computed

by the effective action (6.3) is given by

G(t, t′)−1 = Gni(t, t
′)−1 −∆(t, t′)−Σ(t, t′) (6.7)

In order for the effective impurity (6.3) to represent the original lattice problem, the Green

function of the impurity must be the same as the local Green function of the lattice, that

is G(t, t′) = Gii(t, t
′), where to obtain Gii(t, t

′) one needs to invert Gij(t, t
′)−1. Equations

(6.6) and (6.7) provide the implicit relation between G(t, t′) and ∆(t, t′). This relation

can be made more formal in terms of Hilbert transforms, as in [205, 221] and involves the

non-interacting density of states of the lattice. Taking the z →∞ limit, ∆ ∝ 1/z vanishes

and (6.3) reduces to describing an isolated site in an external field, recovering standard

mean-field theory.

1Note that here we use the convention Z =
∫
eiS rather than Z =

∫
e−iS that is used in [226].
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6.2 Auxiliary impurity problem

In order to solve DMFT, one needs to solve the auxiliary impurity problem, where by

“solving” we mean computing 〈a〉 and G from the effective action (6.3). If one is able

to compute those quantities, then the Φ and ∆ can be updated using the self-consistent

conditions described above, determining a new effective action; one then iterates this pro-

cedure until a fixed-point is reached, corresponding to the solution of the impurity problem.

Unfortunately, solving the auxiliary impurity problem is not an easy task. In appendix

B.2, we discuss a simple approximation which allows to solve the impurity problem ana-

lytically in the symmetric phase, which is known as the Hubbard-I approximation. This

approximation allows for example to compute the local occupation and the one-particle

spectral function at finite hopping. This already goes beyond simple mean-field theory,

which describes the symmetric phase as a bunch of decoupled sites, giving no information

on the hopping dependence of any quantity. The Hubbard-I approximation can be shown

to coincide [227] with the strong-coupling Gaussian approximation 4.2.1 we used in Ch.

4,5. In particular, when applied to the Bose-Hubbard model we discussed in Ch. 4, it

yields the same phase boundary for the normal to superfluid transition as mean-field. This

is discussed more in details in appendix B, where we actually derive a non-trivial equation

for the critical point in DMFT which goes beyond the mean-field equation (4.22) and we

show that it reduces to mean-field in the Hubbard-I approximation. As a result, we need

a more powerful impurity solver to go beyond the strong-coupling Gaussian description of

Ch. 4,5 with DMFT and to obtain a beyond mean-field phase diagram. This motivates

the rest of the chapter, in which we will derive a solver for the DMFT auxiliary impurity

problem, tailored to address driven-dissipative lattice models.

Methods to solve the dynamics of quantum impurity models have flourished in recent

years. The motivation comes from studying models of quantum dissipation and macro-

scopic quantum tunneling in the early days of Caldeira-Leggett and spin-boson mod-

els [228, 229] which keep attracting a lot of interest [230–232] or from diluted magnetic

impurities in metals [233] and transport through quantum dots and single molecules at-

tached to leads [234–236] leading to fermionic realizations of so called quantum impurity

models. These consist of a small quantum systems with few interacting degrees of freedom,

the impurity, coupled via hybridization to a gapless reservoir of fermionic or bosonic exci-

tations. The dynamical correlations of such reservoirs, which decay in time as power laws

at zero temperature and feature strong memory effects [237], together with local interac-

tions, make quantum impurity physics highly non-trivial. The non-equilibrium impurity

solvers may be classified into two classes: diagrammatic approaches and methods based

on Hamiltonian diagonalization [225]. The most powerful techniques are based on dia-

grammatic Monte Carlo [238–246], giving numerically exact results in some cases, but in

many cases these are affected by a nasty sign problem, limiting their application. We will

develop an approximate technique, based on a self-consistent diagrammatic resummation

known as the Non-Crossing Approximation [226, 247–251].

In the context of driven-dissipative lattice systems, the auxiliary impurity problem
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(6.3) describes a driven-dissipative site, where losses and pump are described in terms

on a Markovian master equation, which is further coupled to the self-consistent bath ∆

(and field Φ). An ideal impurity solver would allow to describe the physical, Markovian

dissipation using the efficient formalism of Markovian master equations, while resorting to

more involved methods to take into account the effect of the self-consistent, non-Markovian

bath ∆ introduced by DMFT.

Apart from using it for DMFT, such a solver would allow to study models of quantum

impurities in presence of both Markovian and non-Markovian losses. The two paradigms

of Markovian and non-Markovian dissipation represent two well studied, yet substantially

separated, paradigms of open quantum systems. The former has mostly being investigated

in the context of quantum optics, quantum electronics and quantum information science

where major efforts are devoted to design non-linear dissipative processes which act as a

resource for quantum state preparation (see Sec. 1.3). The latter has been studied in the

context of impurity in metals and transport through quantum dots, as we have already

mentioned. The interest around quantum impurity problems featuring both Markovian

and non-Markovian dissipation has recently grown [252–254]. Mesoscopic quantum devices

have been successfully coupled to electromagnetic resonators hosting dissipative photon

fields [255–258] offering the possibility to investigate the fate exotic many body phases

such as the Kondo effect in presence of Markovian dissipation.

Taking inspiration from recent developments in quantum impurity physics [238–241]

we develop an hybridization expansion for the real-time evolution operator of the impurity,

in presence of both Markovian and non-Markovian dissipation. The final result naturally

generalizes the well known real-time hybridization expansion [225, 240, 259] to impurities

with an intrinsic quantum Markovian, rather than unitary, dynamics. In addition to its

own interest and potential for the development of diagrammatic Monte Carlo sampling,

this expansion allows us to formulate a Non-Crossing Approximation. We derive and

discuss in details this approach and test it on a simple fermionic model coupled to a

zero temperature bath and in presence of Markovian dissipation. Those results have been

published in [3].

The rest of the chapter is organized as follows. In section 6.3 we give a general for-

mulation of the impurity model and we introduce its reduced dynamics. Section 6.4 is

devoted to derive the hybridzation expansion for the real-time impurity propagator, after

tracing out the non-Markovian bath (section 6.4.1) and the Markovian environment (sec-

tion 6.4.2). In section 6.5 we define diagrammatic rules and obtain a Dyson equation for

the impurity propagator. In section 6.6 we develop a self-consistent resummation based

on the Non-Crossing Approximation, while in section 6.6.3 we apply this method to a

simple model of a fermionic impurity, showing interesting effects due to the simultaneous

presence of Markovian and non-Markovian dissipative processes.
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Quantum Impurity

Non-Markovian Bath Markovian Bath

Figure 6.1: Schematic plot of the setup considered in this manuscript. A small quantum

system (impurity) is (i) bilinearly coupled to a quantum bath whose non-trivial correla-

tions, encoded in the hybridization function ∆(t, t′), lead to non-Markovian behavior and

(ii) coupled non-linearly to a Markovian bath whose effect on the impurity is described by a

Lindblad master equation. The resulting quantum impurity model with mixed Markovian

and non-Markovian dissipation is studied using hybridization expansion techniques.

6.3 Formulation of the impurity problem

We consider a model of a quantum impurity, a small quantum system with a finite number

of bosonic (fermionic) degrees of freedom [da, d
†
b]± = δab and with Hamiltonian HI [da, d

†
a],

coupled to two different quantum baths (see figure 6.1). We will denote the Hamilto-

nian of the baths with HM and HM̄ , where the subscripts refer to the fact that M̄ is

a non-Markovian bath and M is a Markovian one. We describe the two environments

as a collection of non-interacting bosonic (fermionic) modes, respectively for a bosonic

(fermionic) impurity:

HM =
∑
p

ωpb
†
pbp HM̄ =

∑
k

εkc
†
kck (6.8)

The total Hamiltonian therefore reads

H = HI +HM +HIM +HM̄ +HIM̄

where we have introduced the two coupling terms between the impurity and the M and M̄

baths. We will consider the impurity to be bilinearly coupled to the M̄ bath, i.e. through

a coupling Hamiltonian of the form

HIM̄ =
∑
ka

Vka

(
d†ack + hc

)
(6.9)

while the coupling between the impurity and the M bath is taken of the most general form

for which one can derive a Lindblad master-equation [136]:

HIM =
∑
α

XαBα (6.10)
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with Xα = X†α, Bα = B†α generic operators respectively of the impurity and of the Marko-

vian bath.

Defining the time evolution operator of the entire system as U(t, 0) = e−iHt and given

an initial condition for the system density matrix ρ(0) we can formally write down the

reduced density matrix of the impurity at time t, tracing out the degrees of freedom of

the two environments

ρI(t) = trMM̄

[
U(t, 0)ρ(0)U †(t, 0)

]
(6.11)

from which the dynamics of simple impurity observables can be readily obtained as OI(t) =

tr [ρI(t)OI ]. With the assumption that the initial density operator of the environment and

the impurity factorizes [136], we can define the evolution operator of the reduced dynamics

ρI(t) = V(t, 0)ρI(0) (6.12)

This reduced density operator and its evolution operator are the key quantities over which

we will focus our attention throughout the chapter. Performing the trace over the environ-

ment degrees of freedom is a highly non-trivial problem. In the following we will obtain

two main results. The first one is a formal series from V to all orders in the coupling with

the non-Markovian bath, called hybridization expansion, and the second one is a closed

equation for V, based on a self-consistent resummation of the series. We stress that the

order in which the trace over the two environments is taken in Eq. (6.11) is not crucial.

While in this work we will proceed by first taking the trace over the non-Markovian en-

vironment, resulting in an hybridization expansion, and then over the Markovian one, we

could have equally reversed this choice and still obtain the same final result.

6.4 Hybridization expansion

In this section we derive a formal hybridization expansion (6.26) for the reduced density

matrix of the impurity. Such an expansion is usually derived in the context of quantum

impurity models coupled to a single bath, as a starting point to develop exact Monte-

Carlo sampling [239, 240] or approximated resummation techniques [225, 250] to solve the

problem. There the formulation is typically done at the level of the partition function,

i.e. tracing out also the impurity degrees of freedom, while we are interested in the

reduced density matrix and the evolution operator, see Eq. (6.12), therefore we will not

perform such a trace, a fact that will result in some formal difference in the approach.

More importantly, here the quantum impurity is also coupled to a second Markovian

environment that we will need to trace out as well and this can be done exactly under the

assumption that the IM subsystem obeys a Markovian Lindblad master equation [7, 136].

6.4.1 Tracing over the non-Markovian bath

We begin by performing the trace over the non-Markovian environment which is quadratic

in terms of bath operators and bilinearly coupled to the impurity. Such a trace could be

performed exactly within a path integral formulation leading to an effective Keldysh action
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Figure 6.2: Two equivalent pictorial representations of the Schwinger/Keldysh contour

C(t, 0), describing the non-equilibrium evolution of an initial density operator ρ(0) from

time 0 to time t. The two branches of the contour are usually called + and − and they

correspond to the two time evolution operators applied to the left and to the right of the

initial density operator, as in Eq. (6.13).

which is non-local in time. Here we proceed instead at the operator level by noticing that

the trace could be taken exactly order by order in an expansion in the the coupling between

the non-Markovian environment and the impurity.

In order to derive this expansion, we write down the full Hamiltonian of the system as

H = H0 + HM̄ + HIM̄ , describing respectively the impurity embedded in the Markovian

bath (H0 = HI + HM + HIM ), the non-Markovian environment and its coupling to the

impurity. We then move to the interaction picture with respect to the Hamiltonian H0 +

HM̄ . Introducing the standard time-ordering and anti-time-ordering operators Tt and Ťt,

the density operator becomes

ρ(t) =e−i(H0+HM̄ )tTte
−i
∫ t
0 dt
′HIM̄ (t′)ρ(0)×

×Ťtei
∫ t
0 dt
′HIM̄ (t′)ei(H0+HM̄ )t

(6.13)

We will perform a simultaneous expansion in powers of HIM̄ (t′) both on the left and

on the right of the initial density operator ρ(0). A formal way to manage a single series

expansion and to write all the operators on the left side of the density operator, is to use

the formalism of the Schwinger/Keldysh double contour [131, 132] (see Sec. 2.2). Actually,

the contour we consider does not extend up to infinite times, thus we call it C(t, 0), and

it is an “open” version of the Keldysh contour (Fig. 6.2); the reason for this difference is

that we are not performing the trace on the impurity degrees of freedom, as it is done in

the Keldysh path integral. Operators on the left (right) side of ρ(0) are assigned a + or -

label, so that the couple (t, γ) with γ ∈ {+,−}, allows to locate one operator on the double

contour. For convenience, we will attach the ± indices to times, rather than to operators,

as it is usually done in Keldysh field theory (the reader can compare the notation with Sec.

2.2). We will use the short notation tγ ≡ (t, γ). The fact that the contour is “open” means

the maximum times on the different branches do not coincide: t+ 6= t−. The time-ordering

on the contour is defined as usual, as well as the contour-time-ordering operator TC , with

the understanding that once time ordered, the operators belonging to the - branch of the

contour have to be brought on the right side of the density matrix, as if we were exploiting

the cyclic property of a trace.

Finally we define contour integrals as
∫
C(0,t) dt ≡

∫ t+
0 dt+ −

∫ t−
0 dt−. One can show
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that the density operator evolution (6.13) can be written in the compact form

ρ(t) = TCe
−i(H0+HM̄ )(t+−t−)e

−i
∫
C(0,t) dt

′HIM̄ (t′)
ρ(0)

and, accordingly, the evolution operator defined in (6.12) can be written as

V(t, 0)ρI(0) = trMM̄

[
TCe

−iH0(t+−t−)e
−i
∫
C(0,t) dt

′HIM̄ (t′)
ρ(0)

]
(6.14)

where we dropped HM̄ using the cyclic property of trM̄ . In order to perform the partial

trace on the non-Markovian environment, we assume that at time t = 0 there’s no entan-

glement between the non-Markovian bath and the rest of the system, such that the density

operator factorizes ρ(0) = ρIM (0) ⊗ ρM̄ (0), with ρM̄ (0) quadratic in bosonic (fermionic)

operators. Initial thermal states could be taken into account considering a third, imagi-

nary time branch of the non-equilibrium contour [260–262], but this is beyond the interest

of this work.

We then Taylor-expand the time-ordered exponential in powers of the impurity-bath

hybridization HIM̄ and perform the trace over the bath degrees of freedom, which im-

mediately reduces the expansion to only even order terms. Then using Wick’s theorem

and performing the sums over {bi, b′i}, we can write the final result in terms of the bath

hybridization function

∆γ′γ
a′a(t′, t) ≡

∑
b′

Va′b′V
∗
ab′G

γ′,γ
b′ (t′, t) (6.15)

where Gγ
′,γ
b′ (t′, t) = −i〈TCcb′(t′γ′)c

†
b′(tγ)〉 is the contour ordered bath Green function. Fi-

nally, we obtain the hybridization expansion [225, 240, 259]:

V(t, 0)ρI(0) =

∞∑
k=0

(−i)k

k!2

∑
γ1...γ′k

∏
i

γiγ
′
i

∑
a1...a′k∫ t

0

dt1· · ·
∫ t

0

dt′k trM

[
TCe

−iH0(t+−t−)d†a′k
(t′k, γ

′
k)dak(tk, γk)... da1(t1, γ1)ρIM (0)

]
∑
σ∈P

ξsign(σ)∆
γ′1γσ(1)
a′1aσ(1)

(t′1, tσ(1)) . . .∆
γ′kγσ(k)
a′kaσ(k)

(t′k, tσ(k))

(6.16)

γi, γ
′
i are contour indices γ ∈ {+,−}. We notice that the hybridization function ∆

γ′i,γj
a′iaj

(t′i, tj)

connects the daj (tj , γj) operator with the d†
a′i

(t′i, γ
′
i) one. We can interpret this construc-

tion as follows. The d operator creates a ”hole” in the impurity, which is propagated

through the system and then annihilated by a d† operator. To this hole it corresponds

(from the definition of ∆) a particle of the environment which is created, propagated and

annihilated. Thus, the series eventually describes processes in which particles hop from

the impurity to the environment and back to the impurity.

90



6.4.2 Tracing over the Markovian bath

Super-operators formalism

It is useful to describe time-evolution using super-operators (see Sec. 2.3.2), as these are

natural objects to describe the dynamics of open systems and since they provide a useful

framework to work out the trace on the Markovian environment in Eq. (6.16). We recall

that a super-operator is operator acting on another operator. The focus is shifted from the

standard evolution operator U(t, 0) = e−iHt, which evolves a pure state (a ket) in time, to

the super-operator U(t, 0) which time-evolves a density operator and is defined by

ρ(t) = U(t, 0)ρ(0)U(0, t) ≡ U(t, 0)ρ(0) (6.17)

We can write a generic time-ordered string of operators, like it appears in Eq. (6.16),

in the Schrödinger’s picture and in a compact form, using the super-operators notation

introduced in Sec. 2.3.2. We promote d, d† operators in the Schrödinger’s picture to

super-operators

d†γ• =

d†• if γ = +

•d† if γ = −
(6.18)

We trivially generalize the contour time-ordering operator TC to the super-operators no-

tation

TCX1(t,γ)U0(t, t′)X2(t′,γ′) =

=

X1(t,γ)U0(t, t′)X2(t′,γ′) for (t, γ) > (t′, γ′)

ξX2(t′,γ′)U0(t′, t)X1(t,γ) for (t, γ) < (t′, γ′)

(6.19)

The Xt,γ super-operators are objects in Schrödinger’s picture and their time label t is just

meant to know how to order them.

We also need to introduce a further “forward” time-ordering operator TF , that orders

two super-operators according to their time labels t, t′, regardless of their contour index:

TFX1(t,γ)U0(t, t′)X2(t′,γ′) =

=

X1(t,γ)U0(t, t′)X2(t′,γ′) for t > t′

X2(t′,γ′)U0(t′, t)X1(t,γ) for t < t′

(6.20)

This definition is the same for both fermions and bosons, with no extra minus signs for

fermions.

Using these definitions, we can write the following identity

TCe
−iH0(t+−t−)d†(t′k) . . . d(t1)ρIM (0) =

=TFTCU0(t, t′k)d
†
t′kγ
′
k
U0(t′k, tk−1) . . . dt1γ1U0(t1, 0)ρIM (0)

(6.21)

The second line is a chain of subsequent time-evolutions operated by U0, going overall

from time 0 to time t, alternated with the application of dγ , d
†
γ super-operators. We remark
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that the two time-order operators TC and TF do not commute. In order to evaluate the

second line of Eq. (6.21), one has first to order the super-operators according to TC ;

this first ordering is necessary in order to compute the non-trivial sign factor obtained

by swapping fermionic operators. Then the super-operators must be re-ordered according

to the “forward” time-ordering operator TF . This ensures that, in order to evaluate Eq.

(6.21), one has to apply only forward in time evolutions; this is necessary as in the next

section U0 will become a Markovian evolution, which cannot be performed backwards in

time.

Performing the partial trace

We now aim at performing the partial trace on the Markovian environment which is left in

Eq. (6.16). This trace is taken on a contour time-ordered string of impurity operators. The

latter are nevertheless evolved by the joint dynamics of the impurity plus the remaining

bath, making the partial trace non-trivial to evaluate. Assuming that the impurity-bath

dynamics is governed by a Lindblad master equation, then the partial trace becomes

trivial, as show in [126]and also explained in [7]. We report a proof here as this is a

crucial step to obtain the hybridization expansion (6.26). We recall the Lindblad master

equation[7, 136]:

∂tρ
0
I = −i

[
HI , ρ

0
I

]
+
∑
α

γα

(
Lαρ

0
IL
†
α −

1

2

{
L†αLα, ρ

0
I

})
(6.22)

where Lα are the jump operators, microscopically determined by the environment-impurity

coupling (6.10). ρ0
I(t) must not be confused with ρI(t) = trMρIM (t), as the former is the

density operator obtained by evolving ρ(0) in presence of the Markovian environment

alone. ρI(t) instead is obtained by evolving ρ(0) with a dynamics that includes both the

Markovian and non-Markovian environments. Defining the Markovian evolution super-

operator, V0(t− t′) = eL(t−t′), with t > t′, then

ρ0
I(t) = V0(t− t′)ρI(0) (6.23)

We remark that V0 depends only on time differences as it formally solves (6.22). This is

equivalent to

ρ0
I(t) = trMρ

0
IM (t) = trM

[
U0(t, t′)ρ0

IM (t′)
]

= V0(t−t′)trMρ0
IM (t′) = V0(t−t′)ρI(0) (6.24)

In order to show how to perform the trace of the string of super-operators in (6.21), let’s

assume time ordering is already enforced so that we don’t have to care about it. Defining

r1(t) = U0(t, t′k)r1(t′k) and r1(t′k) = d†
t′kγ
′
k
U0(t′k, tk−1) . . . dt1γ1U0(t1, 0)ρIM (0), we can break

down the trace operation as follows:

trM

[
U0(t, t′k)d

†
t′kγ
′
k
. . . dt1γ1U0(t1, 0)ρIM (0)

]
=

trMr1(t) = trM
[
U0(t, t′k)r1(t′k)

]
= V0(t− t′)trMr1(t′k)

(6.25)

The last equality is analogous to Eq. (6.24) and holds under the same assumptions lead-

ing to Lindblad master equation. One can iterate this procedure, as now trMr1(t′k) =

d†
t′kγ
′
k
trM [U0(t′k, tk−1)r2(tk−1)], to turn all the U0 super-operators in Eq. (6.16) in V0 ones.
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Figure 6.3: The Feynman rules to represent the hybridization expansion (6.26). The arrow

of the hybridization line ∆ goes from a d super-operator to a d† one.

Generalized hybridization expansion

We then get to the final form of the hybridization expansion in presence of both a non-

Markovian and Markovian environment, that is one of the main results of this work:

V(t, 0) =
∑
k=0

(−i)k

k!2

∑
γ1...γ′k

∏
i

γiγ
′
i

∑
a1...a′k∫ t

0
dt1· · ·

∫ t

0
dt′kTFTCV0(t, t′k)d

†
a′k(t′kγ

′
k)
V0(t′k, tk−1) . . . da1(t1γ1)V0(t1, 0)×

×
∑
σ∈P

ξsign(σ)∆
γ′1γσ(1)

a′1aσ(1)
(t′1, tσ(1)) . . .∆

γ′kγσ(k)

a′kaσ(k)
(t′k, tσ(k))

(6.26)

This series can be sampled using stochastic sampling techniques [239, 240, 263] or

approximately resummed [225, 250]. For both purposes, it is useful to define the Feynman

rules for the series (6.26). Each term of the hybridization expansion (6.26) must be

understood as a composition of applications of super-operators, from the right-most to

the left-most one, on the initial density operator. This becomes a simple matrix product

in Liouville space, where super-operators are represented by matrices (see Sec. 2.3.2).

Using “hats” to indicate super-operators in Liouville space, we have

V0(t, t′k)d
†
a′k(t′kγ

′
k)
. . . da1(t1γ1)V0(t1, 0)ρI(0)

→V̂0(t, t′k)d̂
†
a′k(t′kγ

′
k)
. . . d̂a1(t1γ1)V̂0(t1, 0)|ρI(0)〉

(6.27)

6.5 Diagrammatic rules and Dyson equation

6.5.1 Feynman rules

The Feynman rules to draw the hybridization expansion (6.26) are represented in figure 6.3.

We will use these rules to draw a term with 2k annihilation plus creation super-operators,

with a particular ordering for the times {ti, t′i . . . t1, t′1} and a choice of a permutation
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Figure 6.4: The Feynman diagram representing Eq. (6.28)

+ + +=

Figure 6.5: Compact diagrams represent an ensemble of diagrams hiding the double con-

tour structure. By omitting the arrows on hybridization (dashed) lines, we mean the sum

of all the possible arrows choices.

{σ(1), σ(2) . . . σ(k)}. To do that, we draw a couple of parallel axes representing the double

contour from time t = 0 to time t. dγ (d†γ) super-operators are represented as dashed half-

lines with outwards (inwards) arrows, stemming from the contour branch γ. The dashed

half-lines corresponding to the super-operators d†
a′i(t
′
iγ
′
i)

and daj(tjγj) are joined together

to form a hybridization line, representing the hybridization function ∆
γ′iγj
a′iaj

(t′i, tj), which

has an arrow going from d to d†. Then, each part of the double contour between two

integration times, drawn as two parallel solid segments, represents a time-propagation

super-operator V0. The dressed evolution operator V is drawn by replacing the contour

solid lines by double lines. As an example, the diagram corresponding to

i

∫ t

0
dt1

∫ t1

0
dt′1V0(t, t′1)d†

a′1−
V0(t′1, t1)da1+V0(t1, 0)∆−+

a′1,a1
(t′1, t1) (6.28)

is shown in figure 6.4. All the diagrams with 2k annihilation and creation super-operators

are generated by connecting d† super-operators to d ones in all possible choices of permu-

tations σ and considering all possible time orderings of integration times.

6.5.2 Compact diagrams

In this section we start from the hybridization expansion derived in section III, which

involves bare diagrams to all orders, and use the Feynman rules to introduce diagrammatic

resummation techniques.

To proceed further it is useful to draw more compact diagrams where the double

contour is collapsed on a single time-axis and thus a time propagation V0 is represented

by a single line, as we show in figure 6.5. These compact diagrams represent an ensemble

of diagrams drawn with the rules we introduced in 6.3. The advantage of this notation is

that all the diagrams represented by a single compact diagram have the same topology in
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1PI 1PI

crossing
1PI1PI

Figure 6.6: 1PI diagrams of the hybridization expansion in Eq. (6.26)

terms of being 1-particle irreducible or non-crossing. Figure 6.6 shows the hybridization

expansion drawn using these compact diagrams.

6.5.3 Dyson equation

As a first step it is useful to distinguish diagrams which are one-particle irreducibles, i.e.

compact diagrams which cannot be separated, by cutting a solid line, in two parts that

are not connected by any hybridization line, as indicated in figure 6.6. Then, we introduce

the self-energy Σ as the sum of one particle irreducible (1PI) diagrams. All the non-1PI

diagrams can be obtained by joining some 1PI diagrams with solid lines, thus the whole

series can be written as

V = V0 + V0 ◦ Σ ◦ V0 + V0 ◦ Σ ◦ V0 ◦ Σ ◦ V0 + . . .

We remark that the objects composing this series, V0 and Σ, are super-operators and

the series must be understood as a composition of applications of super-operators, from

the right-most to the left-most one, on a target operator. Self-energies and propagators are

joined by the circle operation, ◦, standing for a super-operator application and a partial

time convolution. Using brackets to stress that we refer to a super-operator application

and the symbol • to indicate a target operator, we have

Σ(t, t1) ◦ V0(t1, t
′) ≡

∫ t

t′
dt1Σ(t, t1)

[
V0(t1, t

′) [•]
]

The series above sums up to the Dyson equation V = V0 + V0 ◦ Σ ◦ V = V0 + V ◦ Σ ◦ V0,

or equivalently, in integro-differential form

∂tV(t, t′) = LV(t, t′) +

∫ t

t′
dt1Σ(t, t1)V(t1, t

′) (6.29)

When the self-energy of the non-Markovian environment Σ is set to zero, this equation

yields V(t) = eLt, which is the Lindblad, Markovian evolution.

One of the main effects of dissipative dynamics is that the system may forget about

initial conditions and reach the same stationary state for any initial condition. Assuming

a stationary state exists for a non-Markovian map V defined by the Dyson equation (6.29),

then it satisfies (
L+

∫ ∞
0

dt1Σ(∞, t1)

)
ρss = 0 (6.30)

Setting the non-Markovian self-energy to zero, this equation reduces to the Lindblad con-

dition for the stationary state. The derivation of this equation invokes the finite memory

of Σ and the stationarity of V and is reported in appendix C.1.
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Figure 6.7: The NCA series of the self-energy Σ. The resummed series for Σ corresponds

to its k = 1 diagrams, where the bare propagator V0 is replaced with the dressed one V.

6.6 The Non-Crossing impurity solver

The non-crossing approximation (NCA) corresponds to approximating the series for V, and

thus also for Σ, by considering only the compact diagrams 6.5.2 in which the hybridization

lines do not cross [247–250]. The NCA diagrams composing the self-energy are shown in

figure 6.7. In order to prove the second equality in figure 6.7, we remark that the first and

last times of a self-energy diagram must be connected together by an hybridization line.

If it’s not the case, in fact, the resulting diagram is either non-1PI or it’s crossed. Then

all the diagrams of Σ (in NCA) are obtained connecting the intermediate times to form

all the possible non-crossing diagrams (not only the 1PI ones this time). But the latter all

non-crossing diagrams in turn define the NCA series for V. This proves the second equality

in figure 6.7. We remark that then, the NCA self-energy coincides with its contributions

(with k = 1), where the bare propagator V0 is replaced with the dressed one V.

To obtain an analytic expression of the self-energy, we have to cast the k = 1 term of

the hybridization expansion (6.26) in a form in which the innermost integration time is

lower than the outermost, that is of the form
∫ t
t′ dt1

∫ t1
t′ dt2. In doing so, one must deal

with the signs coming out of the time ordering. We report the calculation in appendix

C.2. The expression for the self-energy eventually reads

Σ(t1, t2) =
∑
αβ

ab

− α(1+ξ)/2βi
[
∆βα
ba (t1, t2)d†βbV(t1, t2)dαa + ξ∆αβ

ab (t2, t1)dβbV(t1, t2)d†αa

]
(6.31)

where α, β ∈ {+,−} are contour indices, a, b are the fermionic generic indices. We can

interpret the two terms in Eq. (6.31) as follows. The first term propagates a hole in

the impurity (applies d† first and then d) and a particle in the bath, the latter being

described by a hybridization function with the same time arguments of V; The second

term propagates a particle in the impurity and a hole in the bath with a hybridization

function with opposite time arguments than V.

Few comments are in order here, concerning the above result. First, in absence of

the Markovian environment, that is by replacing V(t, t′) and V0(t, t′) with U(t, t′) and

U0(t, t′), our results are equivalent to non-equilibium NCA schemes for unitary dynamics

[226, 249, 251]. There is a formal difference consisting in our super-operators formulation

of the hybridization expansion and of the Dyson equation, that is necessary to consider

the additional Markovian environment without further approximations, but this difference

is only formal and does not affect the results. In fact, if N is the dimensionality of the

impurity Hilbert space, the usual non-equilibrium NCA propagator [226, 251] has different
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Keldysh components, each of them being an N ×N matrix, while our V propagator is a

N2 ×N2 matrix with no Keldysh components.

Furthermore, the result obtained for the NCA self-energy in Eq. (6.31) makes it clear

that for a bath hybridization which is delta-correlated in time, the resulting self-energy

contribution to the Dyson equation takes the form of a Lindblad dissipator. Indeed, one

can recover the Lindblad master equation from our diagrammatic NCA approach doing

the usual approximations one makes to derive master equations [136], and possibly discuss

corrections to the master equation from higher order terms, as recently done [264].

6.6.1 Properties of the NCA propagator

The propagator V(t, t′) obtained in NCA is the time-evolution super-operator of the re-

duced density operator of the impurity. Assuming to switch on the interaction with the

baths at time t = 0, then the density operator of the impurity at time t is given by

ρI(t) = V(t, 0)ρI(0). A time evolution super-operator must be a convex-linear, completely

positive and trace-preserving map [136]. It is natural to ask which of these properties are

preserved by the NCA approximation. V is a obviously a linear map, implying it is also

convex linear. We proved that it is trace-preserving and that it preserves hermiticity (see

appendix C), while proving or disproving whether the map is completely positive is a tough

task [265] that will be addressed in the future. We stress that V(t, t′) describes a non-

Markovian evolution, so it does not form a semi-group, that is V(t, t′) 6= V(t, t1)V(t1, t
′)

with t′ < t1 < t. Time-evolution super-operators have also interesting spectral properties

following from trace preservation, akin to Lindblad master equations 2.4.2. We refer to

appendix C for the proof. We call λi(t, t
′), vRi (t, t′) the eigenvalues and right-eigenvectors

of V(t, t′), both depending on time. As it preserves the trace, V(t, t′) must have at least one

eigenvalue equal to one, say λ0 ≡ 1. If we assume this eigenvalue is non-degenerate, then

all the others eigenvectors with i 6= 0, are traceless. As a consequence of these properties,

if one evolves an initial state ρ(0) and expands ρ(t) on the instantaneous eigenvectors

vRi (t, 0), then those eigenvectors with i 6= 0 will represent decay modes of the dynamics as

they will be suppressed by their corresponding vanishing eigenvalues for long times, while

vRi=0(t, 0) will evolve in time undumped until reaching a stationary value, representing the

stationary state of the non-Markovian evolution. This discussion is analogous to the one

in 2.4.2 about eigenmodes of the Liouvillian, with the formal difference that here we are

looking at the evolution operator, rather than at its generator. We will numerically check

these properties in figure 6.8 of the next section, where we will apply our NCA algorithm

to a specific example.

6.6.2 Impurity Green functions

For using this NCA impurity solver in DMFT, one needs to compute one-particle Green

functions, given the propagator V. The expression for those Green functions generalizes

the quantum regression formulae for Markovian master equations discussed in section 2.4.1
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Figure 6.8: Real-time evolution of the absolute value of the eigenvalues of the impurity

propagator. While an eigenvector with eigenvalue one is present at all times, all the other

eigenvalues decay to zero at long times. The i = 2 and i = 3 curves coincide because the

corresponding eigenvalues are complex conjugates. The decay is purely exponential for a

purely Markovian system, which corresponds to the dashed lines, while strong deviations

appear in the non-Markovian case. The inset shows that the right eigenstates of V(t) with

different-from-one eigenvalues are traceless, while the right eigenstate with eigenvalue one

has a finite (unnormalized) trace. Parameters: ε0 = 5, γ = γl = γp = γd = 0.5, w = 10,

η = 1, ∆t = 0.02, ρ0 = |0〉〈0|.

and takes the form

Gαβab (t, t′) = −i
{
β(1−ξ)/2tr

[
dαaV(t, t′)d†βbV(t′, 0)ρ0

]
θ(t− t′)+

+ξα(1−ξ)/2tr
[
d†βbV(t′, t)dαaV(t, 0)ρ0

]
θ(t′ − t)

} (6.32)

We report a derivation of this formula in appendix C.5.

6.6.3 Case study: spin-less fermionic impurity

As a non-trivial application of the NCA approach for open system described so far, we

consider here a model of a single-mode, spin-less fermionic impurity with Markovian losses,

pump and dephasing and further coupled to a non-Markovian fermionic environment,

with coupling Hamiltonian (6.8). We notice that the model in absence of dephasing,

also known as Resonant Level Model, is quadratic in all the fermionic degrees of freedom

and therefore easily solvable, with analytical expressions known for the wide-band limit.

At finite dephasing this is no longer the case and the model cannot, to the best of our

knowledge, be solved by simple means. This could be understood naturally in the Keldysh

approach, where the dephasing would result in density-density type of coupling between

different Keldysh branches.
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Figure 6.9: Dynamics of the number of fermions for different sets of parameters, namely

changing the hybridization strength (Top left) the bandwidth (bottom left) and the de-

phasing rate (top right). Average population of the stationary state as a function of the

energy level (bottom right). Parameters: ε0 = 1, γ = γl = γp = γd = 0.5, w = 10, η = 1,

∆t = 0.02, ρ0 = |0〉〈0|.
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Figure 6.10: The density of states J(ε) of the bath with bandwidth 2w and particle-hole

symmetric. In blue, the Fermi function nF (ε) at zero temperature and zero chemical

potential. ε0 is the energy of the impurity level.

The Markovian dynamics is described by a Lindblad master equation

∂tρ
0
I = Lρ0

I = −i
[
HI , ρ

0
I

]
+ (γlDl + γpDp + γdDd) ρ0

I

HI = ε0d
†d

Dlρ0
I = dρ0

Id
† − 1

2
{d†d, ρ0

I}

Dpρ0
I = d†ρ0

Id−
1

2
{dd†, ρ0

I}

Ddρ0
I = d†dρ0

Id
†d− 1

2
{d†d, ρ0

I}

where ε0 is the energy of the fermionic level.

The effect of the non-Markovian environment on the impurity is completely determined

by its hybridization function (6.15). Here we choose a zero temperature, particle-hole

symmetric, fermionic bath with constant density of states, J(ε), of bandwidth 2w and with

coupling strength to the impurity η as sketched in Fig 6.10. In this case the hybridization

function depends only on time-differences. As a consequence, one can show that also V
and Σ depend only on time differences and we will set t′ = 0. With these definitions we

get for the hybridization functions

∆+−(t) = i

∫ ∞
−∞

J(ε)nF (ε)e−iεt = 2iη eiwt/2 sin (w t/2) /t

∆−+(t) = −i
∫ ∞
−∞

J(ε) (1− nF (ε)) e−iεt = −2iη e−iwt/2 sin (w t/2) /t

To solve the Dyson equation (6.29) numerically we use the simple forward discretization

scheme ∂f(t) = [f(t+ ∆t)− f(t)] /∆t,
∫ t

0 dt1f(t1) = ∆t/2
∑t/∆t−1

l=0 [f((l + 1)∆t) + f(l∆t)],

with time-step ∆t. More refined integration methods are explained in detail in [225]. The

Hilbert space of the impurity has size N = 2, so that the super-operator V has size

N2 ×N2 = 4× 4 .
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Figure 6.11: Dynamics of the density matrix coherence for different values of the dephasing.

Parameters: ε0 = 1, γ = γl = γp = γd = 0.5, w = 10, η = 1, ∆t = 0.02, ρ0 =

|0〉〈0|+ |0〉〈1|+ |1〉〈0|.

Results

We start analyzing the spectral properties of the propagator V(t), which have been dis-

cussed generically in section 6.6.1, and are reported in figure 6.8. In the main panel we

plot the time dependence of the absolute value of the eigenvalues of V(t), both in the

purely Markovian case (dashed lines) as well in presence of both Markovian and non-

Markovian dissipations. In both cases there is an eigenvalue which remains equal to one,

while the others decay to zero at long times, as pointed out in section 6.6.1. However the

nature of this decay is rather different in the two cases, showing a faster dynamics and

long time oscillations in the non-Markovian case as opposed to a pure exponential decay

in the Markovian one. The inset of figure 6.8 shows instead that all the right-eigenstates

of V(t) with different-from-one eigenvalues are traceless, while the right eigenstate with

eigenvalue one has a finite trace (that we could normalize to one at every time).

We then consider the dynamics of a simple observable, such as the density of fermions

in the impurity level, as a function of time and for different parameters (see the different

panels of figure 6.9). In the left figures we plot the dynamics for different values of

the coupling η (top) and bandwidth w (bottom) of the non-Markovian environment, in

presence of fixed Markovian losses, pump and dephasing. We see that with respect to

the purely Markovian dynamics, characterized by a simple exponential relaxation, the

NCA approach captures aspects related to the non-Markovian nature of the environment.

In particular the dynamics becomes characterized by oscillations whose amplitude and

frequency increase with the coupling η. Similarly, increasing the bandwidth of the non-

Markovian environment reduces the oscillations characterizing the short-time population

dynamics t . 1/w, which disappear in the large bandwidth limit, as it is the case for the
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unitary dynamics of the Resonant Level Model.

Overall the non-Markovian environment makes the dynamics substantially faster. In

the top-right plot we discuss the role of dephasing, that is actually very interesting as

it shows an effect of the combined Markovian and non-Markovian environments. The

dashed line shows that, for Markovian dissipation only, the dephasing does not affect

the population dynamics; this is well understood as the dephasing dissipator commutes

with the number operator. It’s interesting to see that, instead, combined with a non-

Markovian environment the dephasing has an impact on the dynamics of populations; this

is a smaller effect as it involves both the Markovian and the non-Markovian environments.

This effect can be understood as follows: let’s consider a process in the time-evolution in

which the non-Markovian environment applies a d†+ super-operator on the density matrix

and then, after some time, a d+ super-operator. The application of the creation super-

operator converts populations of the density matrix into coherences. Then the Markovian

dephasing damps those coherences, which are then converted back to populations when

the non-Markovian environment applies the annihilation operator. As a net effect, the

dephasing has produced a change into populations, as it is shown in the top-right plot.

We also note that not only the dynamics, but also the stationary values of the occupation

change with the dephasing. A more direct effect of the dephasing appears in the coherences,

i.e. in the off-diagonal elements of the density matrix, which decay to zero faster as γd
is increased, as we show in figure 6.11. For what concerns the stationary state, we

notice from the bottom-right plot that the average density would be independent of the

energy of the fermionic level in the purely Markovian case, which leads to a infinite-

temperature fully-mixed stationary state for the chosen dissipation rates. This makes

sense as a Markovian bath has no energy structure, thus the level effectively sees always

the same bath even if it’s shifted in energy. On the other hand the coupling to the non-

Markovian bath makes populations depend strongly on the position of the energy level

and gives a result which is in good agreement with exact analytical calculations (dashed

line); to justify the quantitative discrepancy with this analytical result, we stress that for

the non-interacting limit we consider here, the NCA approximation, which is based on a

strong coupling expansion, is not expected to be exact.

6.7 Conclusions

In this chapter we reported our developments towards a Dynamical Mean Field Theory

(DMFT) approach to driven-dissipative lattice systems. Those efforts are justified by the

current lack of established methods to study those systems. We introduced DMFT in the

context of driven-dissipative models, we discussed how it compares to standard mean field

theory and we derived a beyond mean field critical point equation for the delocalization

transition on the Bethe lattice.

In order to solve DMFT, we developed a method to solve the auxiliary problem of

a single impurity, which in our context is coupled simultaneously to a Markovian and a

non-Markovian environment. We derived a formal hybridization expansion for the evo-
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lution super-operator of the impurity, obtained after tracing out all the bath degrees of

freedom. This result generalizes to non-unitary, Markovian case the hybridization ex-

pansion obtained for unitary quantum impurity models. As such it provides the natural

starting point for the development of stochastic sampling techniques of the dissipative

real-time dynamics of the impurity based on Diagrammatic Monte Carlo, that we leave

for future studies. Starting from this expansion we define real-time diagrammatic rules

and write down a Dyson Equation for the impurity propagator that we evaluate retaining

only non-crossing diagrams, an approximation which is known to capture some aspects

of the impurity physics at strong coupling. The resulting approach leads to a trace and

hermiticity preserving non-Markovian dynamical map, with consequences on the spectral

properties of the evolution super-operator, while proving its complete positivity in full

generality remains an open question.

It is interesting to comment on the relation between our approach and related methods

to deal with impurity models coupled to multiple baths. While in principle both the hy-

bridization expansion [266] as well as the strong-coupling diagrammatic resummation [267]

can be generalized in presence of multiple environments, taking the Markovian limit from

the start has some practical and conceptual advantage. In particular, we can take direct

advantage of the local nature of the Markovian evolution and perform an expansion around

an atomic-limit which now contains not only local interactions, but also drive and dissipa-

tion. This limit can be easily solved by direct diagonalization of a Lindbladian, as opposed

to treating the Markovian environment as an additional NCA self-energy. The key idea

is therefore to treat on equal footing all the energy scales related to fast processes, while

resorting to perturbation theory when dealing with processes leading to slowing decay

correlations such as the coupling to gapless reservoirs.

As an application, we solved numerically the Dyson equation for the simple model

of a fermionic, single-mode impurity, with Markovian losses, pump and dephasing and

coupled to a non-Markovian, zero temperature environment. This model is non-trivial for

the presence of dephasing, which is a quartic term in fermionic operators. This simple

implementation allowed to check the spectral properties of the evolution super-operator

and to study how Markovian dynamics gets modified by coupling to a non-Markovian

environment. In particular our method allowed to show a physical consequence of coupling

simultaneously to Markovian and non-Markovian environments: Markovian dephasing

combined with non-Markovian processes leads to a change in impurity occupations. Future

directions include the exploration of more complex impurity models involving internal

degrees of freedom such as the Anderson Impurity model as well as bosonic extensions

and to use of this NCA solver to solve DMFT for driven-dissipative lattices.
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Chapter 7

General Conclusions

In this thesis we discussed the investigations I have been carrying on during my PhD in the

realm of driven-dissipative quantum many-body systems. Chapter 1 was an introduction

to this research field, highlighting my motivations and my point of view. Chapter 2 was

devoted to introduce well known theoretical techniques, with an effort to make contact

between Lindblad master equation and Keldysh field theory. In chapter 3 we discussed a

spectral or Lehmann decomposition of single-particle Green functions of Markovian open

systems. We applied such a spectral representation to a model of a quantum van der Pol

oscillator with an additional non-linear term in its Hamiltonian. We pointed out that

a sign property of spectral functions of equilibrium systems doesn’t hold in the case of

open systems. As a consequence of this, we found that the interplay of interaction and

non-equilibrium effects can result in a surprising “negative density of states” with direct

physical consequences as it can, for example, generate negative temperature states or pro-

duce finite-frequency instabilities in lattice models, as we discussed in Ch. 4. In particular

we found that the “negative density of states” can appear even in absence of steady state

population inversion in the system density matrix. In chapter 4, we studied the phase tran-

sition between a normal and a superfluid phase in a prototype system of driven-dissipative

bosons on a lattice, which is expected to occur in a wide class of driven-dissipative models.

This transition is characterized by a dynamical mode becoming unstable, determined by in-

teractions and non-equilibrium conditions. We emphasize that capturing the critical mode

requires the quantum solution of the single-site dissipative interacting problem and thus

it is not a semiclassical result. The resulting finite-frequency criticality corresponds to the

spontaneous break of time-translational invariance and to the lack of a time-independent

stationary state. Writing down the effective Keldysh field theory for this finite frequency

transition we have obtained its semiclassical limit which we show to reproduce the results

of a time-dependent Gutzwiller decoupling of the density matrix. The theoretical strong-

coupling framework we used has the potential to be applied in a wide range of contexts,

including for example driven and isolated Floquet systems and problems of quantum syn-

chronization. In chapter 5 we discussed the mean-field phase diagram a Mott insulating

phase stabilized by dissipation, which is potentially relevant for ongoing experiments. We

predicted that the region of stability of such a phase is remarkably shrunk with respect
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to the ground-state phase diagram of a Bose-Hubbard Hamiltonian, due to the onset of

dynamical modes instabilities. Our results suggest that there is a trade off between the

fidelity of the stationary phase to a Mott insulator and robustness of such a phase at finite

hopping. These results are preliminary and mostly unpublished. Finally we discussed

the effects of effective thermal fluctuations on the phase diagram. Future developments

include going further with analytical calculations, computing properties of the dissipative

stabilized Mott at finite hopping and compute the non-equilibrium phase diagram beyond

mean-field. Finally, in chapter 6 we discussed some developments towards using dynamical

mean field theory (DMFT) for studying driven-dissipative lattice systems. We introduced

DMFT in the context of driven-dissipative models and we discussed how it compares to

standard mean field theory. In order to solve DMFT, we developed a method to solve

the auxiliary problem of a single impurity, which is coupled simultaneously to a Marko-

vian and a non-Markovian environment. We derived an hybridization expansion for the

evolution super-operator of the impurity, generalizing to additional Markovian dissipa-

tion the well known hybridization expansion for quantum impurity models and providing

the natural starting point for the development of stochastic sampling of the dissipative

real-time dynamics of the impurity based on Diagrammatic Monte Carlo, that we leave

for future studies. We developed an Non-Crossing Approximation (NCA) of the expan-

sion, leading to a trace and hermiticity preserving non-Markovian dynamical map, while

proving its complete positivity in full generality remains an open question. As a test, we

applied this novel method to a simple model of a fermionic, single-mode impurity, with

Markovian losses, pump and dephasing and coupled to a non-Markovian, zero tempera-

ture environment. In particular our method allowed to show effects of the interplay of

Markovian and non-Markovian environments. Future directions include the exploration of

more complex impurity models involving internal degrees of freedom such as the Anderson

impurity model as well as bosonic extensions and to use of this method to solve DMFT

for driven-dissipative lattices.
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Chapter 8

Résumé Substantiel

8.1 Introduction

Le jeune domaine des systèmes quantiques à plusieurs corps dissipatifs pilotés est

un champ de recherche hybride, qui croise des idées issues de domaines de la physique

traditionnellement différents, en particulier la physique atomique moléculaire et optique

(AMO), la physique de la matière condensée et l’information quantique. Commençons par

décomposer les éléments composant le nom de ce domaine de recherche. Le problème de

systèmes quantiques à plusieurs corps pourrait être remonté à la citation de Dirac

“ The general theory of quantum mechanics is now almost complete...the difficulty is only

that the exact application of these laws leads to equations much too complicated to be sol-

uble” [4]. La physique quantique à plusieurs corps a connu une série de percées dans

son histoire, par exemple la théorie BCS de la supraconductivité [5] ou la compréhension

des impuretés magnétiques dans les métaux [6], conduisant au développement de tech-

niques de groupe de renormalisation. Des phénomènes collectifs se produisent lorsque de

nombreuses particules interagissent les unes avec les autres, réalisant des états quantiques

macroscopiques spectaculaires, tels que par exemple des condensats de Bose-Einstein, des

supraconducteurs ou des isolants de Mott. La citation de Dirac ci-dessus continue avec “It

there fore becomes desirable that approximate practical methods of applying quantum me-

chanics should be developed” [4]. En fait, les problèmes quantiques à plusieurs corps sont

très difficiles à résoudre, nécessitant une variété de techniques approchées, chacune d’entre

elles étant adaptées à certains régimes physiques. Alors que l’ère de l’informatique a con-

sidérablement repoussé les limites des problèmes traitables, l’augmentation exponentielle

de l’espace de Hilbert avec le nombre de degrés de liberté limite les tailles de système pou-

vant être traitées numériquement. L’hypothèse, une fois vérifiée, de l’équilibre thermody-

namique simplifie considérablement le problème des particules multiples. Une application

directe des ensembles thermodynamiques de la mécanique statistique classique aux par-

ticules quantiques permet d’obtenir les statistiques quantiques. Celles-ci décrivent l’état

d’équilibre obtenu en mettant un système quantique en contact avec un réservoir avec des

variables thermodynamiques bien définies, telles que la température et le potentiel chim-

ique. La limite de cette approche est qu’elle ne permet pas d’étudier la dynamique vers
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l’équilibrage, qui nécessite plutôt une modélisation plus microscopique de la dissipation,

ainsi que des scénarios plus généraux de non-équilibre.

Cette modélisation microscopique de dissipation en mécanique quantique est née

dans les années 60, stimulée par l’invention du laser. Bien que dans de nombreux cas

on s’intéresse aux systèmes quantiques aussi isolés que possible de leur environnement,

le couplage à l’environnement étant préjudiciable aux caractéristiques quantiques, il n’en

va pas ainsi, par exemple, du phénomène d’action laser, qui nécessite une cavité avec

pertes pour avoir lieu [7]. Bien que les phénomènes dissipatifs soient facilement décrits

dans la mécanique newtonienne classique, par exemple les forces de trâınée dans les fluides

ou les pertes thermiques dans un circuit, la formulation hamiltonienne de la mécanique

quantique ne permet pas naturellement de décrire les processus dissipatifs. L’idée la plus

simple d’essayer de quantifier les équations dissipatives classiques du mouvement conduit

malheureusement à la conséquence catastrophique de rompre les relations de commutation

quantiques canoniques [7]. L’effort de développer une théorie quantique dissipative qui

permettrait de récupérer les équations classiques bien connues dans la limite classique tout

en préservant la commutation canonique a conduit à l’approche “système plus réservoir”

[8–10].

Pour compenser les pertes de particules et d’énergie, on peut piloter le système en

lui appliquant des forces externes, et établissant un équilibre dynamique entre les forces

motrices et les pertes. Nous appellerons un tel système un système dissipatif piloté.

L’équilibre dynamique entre les forces motrices et les pertes ne devrait toutefois pas con-

duire à un état thermodynamique, mais plutôt à un état stationnaire hors d’équilibre.

En fait, le mécanisme pilotage plus dissipation rompt explicitement la réversibilité micro-

scopique, ou équilibre détaillé, sous-jacent l’équilibre thermodynamique. Dans cette thèse,

nous allons nous concentrer sur ces états stationnaires hors d’équilibre plutôt que sur une

dynamique transitoire. Nous considérerons principalement les processus dissipatifs qui

peuvent être décrits en termes d’équations-mâıtresses de Lindblad.

La combinaison des conditions de non-équilibre réalisées dans les systèmes dissipatifs

pilotés avec l’intérêt pour les phénomènes collectifs apparaissant lorsque de nombreuses

particules interagissent entre elles donne naissance au nouveau domaine d’activité des

systèmes quantiques à plusieurs corps dissipatifs pilotés[11–26]. Le relâchement de la con-

trainte de l’équilibre thermodynamique ouvre la porte à de nouvelles phases à plusieurs

corps, sans contrepartie à l’équilibre. Par exemple, rien ne garantit qu’un système dissi-

patif déterminé atteindra jamais un état indépendant du temps et des cycles limites ou

du chaos sont des alternatives valables [20, 27, 28]. Les états stationnaires dissipatifs-

pilotés peuvent subir des transitions de phase lors du réglage de paramètres de contrôle,

appelées transitions de phase dissipatives, qui sont potentiellement différentes des transi-

tions de phase quantiques ou thermiques ordinaires et attirent donc beaucoup d’attention

[29–55]. Bien que les systèmes dissipatifs pilotés soient des plates-formes très naturelles

pour étudier les phénomènes hors d’équilibre, la dissipation est préjudiciable pour les car-

actéristiques quantiques et donc pour l’observation des comportements particuliers de la

mécanique quantique. Par exemple, la plupart des transitions de phase dans ces systèmes
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appartiennent aux classes d’universalité thermique [18, 41, 45]. Néanmoins, toutes les car-

actéristiques quantiques ne sont pas nécessairement effacées par la dissipation, au point

que les processus dissipatifs peuvent être conçus de manière à générer des états quantiques

plutôt qu’à les supprimer; C’est le concept de l’ingénierie de la dissipation.
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8.2 Spectral Properties of a Quantum van der Pol Oscillator

Dans ce chapitre, nous étudions les fonctions de Green des systèmes quantiques markoviens

dissipatifs pilotés, en utilisant une représentation spectrale de ces fonctions. En l’appliquant

au modèle prototype d’un oscillateur quantique van der Pol avec une non-linéarité supplémentaire

dans son hamiltonien, nous prédisons des phénomènes qui n’apparaissent pas dans la ma-

trice de densité stationnaire. Contrairement à l’état stationnaire, la fonction spectrale

photonique de ce modèle dépend fortement de la force de l’interaction. Nous soulignons

qu’une propriété de signe des fonctions spectrales des systèmes d’équilibre ne tient pas

dans le cas des systèmes ouverts. En conséquence, nous constatons que la cooperation

d’interactions et d’effets hors équilibre peut donner lieu à une surprenante “densité d’états

négative” avec des conséquences physiques directes, dans la mesure où elle peut générer

des états de température négatifs ou des transitions de phase à fréquences finies dans des

modèles de réseau, comme nous le verrons dans le chapitre 8.3 et comment cela a été

discuté récemment dans le contexte des quenches quantiques [154]. Nous trouvons en par-

ticulier que la “densité d’états négative” peut apparâıtre même en l’absence d’inversion

de population dans l’état stationnaire. Les résultats de ce chapitre ont été publiés dans

[1].

8.2.1 Introduction

Les systèmes quantiques dissipatifs-pilotés ont généralement des états stationnaires non

thermiques déterminés par l’équilibrage de le pilotage et de la dissipation. Un grand

nombre de travaux théoriques ont été consacrés à la recherche (exacte ou approximative) de

l’état stationnaire de tels systèmes et des valeurs correspondantes attentes des observables.

[82, 155–158].

Bien que la description des états stationnaires présente clairement un intérêt, de nom-

breuses sondes expérimentales impliquent d’étudier comment un système répond à une

perturbation appliquée faible. On cherche alors naturellement à comprendre les fonctions

de Green qui décrivent la réponse linéaire du système aux perturbations externes. Pour les

systèmes markoviens, ces fonctions de corrélation peuvent être facilement calculées à l’aide

du théorème de régression quantique et ont été étudiées dans divers contextes différents,

à partir de l’exemple standard de la fluorescence d’un atome à deux niveaux piloté [159–

161] au cas récemment discuté des reseaux de qubits couplés [24]. Le sujet des fonctions

de corrélation est également un sujet standard dans presque tous les manuels d’optique

quantique (voir, par exemple, [7, 136]).

Malgré ces travaux, les méthodes permettant d’obtenir une intuition physique à par-

tir du comportement des fonctions de Green restent intéressantes. Pour les systèmes de

nombreux corps quantiques fermés et à l’équilibre, la représentation de Lehmann est un

outil puissant [125, 149, 150]. Il exprime une fonction de Green à une particule en termes

d’états propres de l’hamiltonien du système et permet d’interpréter la fonction spectrale

en termes de taux de règle d’or de Fermi pour l’ajout (ou le retrait) d’une particule.

Ceci se connecte directement aux sondes expérimentales (par exemple, ARPES ou spec-
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troscopie à effet tunnel) et est inestimable pour la construction d’images intuitives. En

outre, la représentation de Lehmann permet de prouver des propriétés mathématiques ex-

actes, telles que les règles de somme, les propriétés de signe et le théorème de dissipation

de fluctuation pour les systèmes à l’équilibre. Dans ce chapitre, nous montrons que la

représentation de Lehmann des fonctions de Green d’un système dissipatif piloté constitue

également un puissant outil d’interprétation. Comme exemple concret, nous analysons un

modèle simple, mais non trivial, d’un oscillateur de van der Pol quantique non linéaire,

décrivant une cavité bosonique monomode sujette à un pilotage incohérente motrice et à

une dissipation non linéaire (voir Réf. [153] pour plus de détails.), avec une interaction

de Kerr supplémentaire dans son hamiltonien. Ce modèle a récemment retenu l’attention

dans le contexte de la synchronisation quantique avec l’interaction de Kerr [163] et sans

[164, 165]; il est également directement réalisable dans les architectures de circuits supra-

conducteurs, où de fortes interactions de Kerr et des pertes artificielles à deux photons

ont été obtenues expérimentalement [103, 104]. En effet, les non-linéarités dans ces

architectures présentent également un intérêt pratique, induisant un effet de blocage de

photons [166] qui joue un rôle crucial dans l’ingénierie d’états pertinents pour le calcul

quantique [167–169]. Bien que le modèle ait un état stationnaire relativement simple,

ses caractéristiques spectrales sont remarquablement riches [153, 170]. Contrairement

à l’état d’équilibre, la fonction spectrale dépend fortement de la taille de l’interaction de

Kerr et révèle la physique au-delà de celle de la matrice de densité en état d’équilibre. Nous

montrons en particulier que le modèle présente à la fois une inversion de population dans

la matrice de densité et une densité d’états négative (NDoS), deux aspects étroitement liés

à l’équilibre mais dont l’interaction dans le cas piloté-dissipatif apparâıt plus complexe.

Nous trouvons en particulier un régime dans lequel la NDoS émerge, même en l’absence

d’inversion de population dans la matrice de densité stationnaire.

8.2.2 Résultats

Dans ce travail, nous avons étudié les propriétés spectrales des systèmes quantiques dis-

sipatifs pilotés. Prenons le cas simple d’un oscillateur quantum van der Pol avec la non-

linéarité de Kerr. Nous avons d’abord tiré quelques résultats généraux concernant la

fonction de Green à une particule de systèmes décrite par une équation de Lindblad. En

utilisant une décomposition en termes d’états propres exacts du Liouvillien, nous avons

comparé la représentation spectrale de la fonction de Green à la bien connue représentation

de Lehmann pour les systèmes fermés en équilibre thermique. Une telle représentation

spectrale, en plus de présenter un intérêt pratique pour les calculs numériques lorsque le

système est suffisamment petit pour être diagonalisé exactement, a également une valeur

conceptuelle. D’un côté, il relie les propriétés des valeurs propres et des états propres

de Liouville, qui présentent un intérêt théorique mais qui sont souvent difficiles d’accès,

au comportement des fonctions spectrales, qui présentent une pertinence expérimentale

directe. De plus, cela permet une interprétation plus transparente des caractéristiques

spectrales dans des régimes éloignés de l’équilibre, pour lesquels une simple intuition est

souvent absente ou trompeuse. A titre d’exemple, nous avons montré que la propriété
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bien connue des fonctions de Green à l’équilibre, qui changent de signe à une fréquence

nulle comme conséquence de l’occupation thermique, peut être violée dans les systèmes

dissipatifs pilotés et qu’elle n’est en général pas directement contrainte par la structure de

la matrice de densité stationnaire du système.

Nous avons ensuite appliqué notre approche au cas d’un oscillateur quantique de van

der Pol avec une non-linéarité de Kerr. Un tel modèle s’avère être une étude de cas par-

faite, car les propriétés de sa matrice de densité stationnaire sont bien connues, tandis

que ses caractéristiques spectrales révèlent un certain nombre de surprises. En partic-

ulier, la densité d’état du résonateur montre une forte dépendance vis-à-vis de la force de

la non-linéarité de Kerr, une caractéristique totalement absente des populations à l’état

d’équilibre, définie uniquement par le rapport pompe/perte. Encore plus intéressant, sous

le régime de fortes interactions et d’un important déséquilibre, une NDoS apparâıt, effet

qui ne serait pas possible en équilibre thermique.

Nous avons résumé le comportement de la fonction spectrale de ce modèle dans un di-

agramme de phase qui montre que la NDoS n’est pas nécessairement lié à une population

inversée dans la matrice de densité stationnaire. Afin de construire une intuition physique

et de mieux comprendre l’origine de ce résultat, nous avons développé une approche semi-

analytique qui part de la fonction spectrale du problème isolé et ajoute une durée de vie

due à la dissipation dans l’esprit de la règle d’or de Fermi. Cette méthode, qui s’avère

équivalente à une théorie de perturbation dans la dissipation où seules les valeurs propres

du liouvillien sont corrigées, a pu capturer partiellement l’effet de la NDoS, au moins pour

une interaction suffisamment grande et chaque fois que la matrice de densité stationnaire

montre une inversion de population. Enfin, nous avons montré que l’inclusion de la correc-

tion perturbative des états propres du Liouvillian détermine un nouveau mécanisme pour

avoir une NDoS, du fait de l’émergence de poids complexes dans la fonction spectrale.

Cela s’avère crucial pour capturer les NDoS dans le régime où les populations de l’état

stationnaire ne sont pas encore inversées.

Pour conclure, nous mentionnons que l’approche décrite ici est plutôt générale et peut

être utilisée pour faire la lumière sur les propriétés spectrales d’autres modèles quantiques

dissipatifs pilotés. Parmi les orientations futures intéressantes, citons par exemple l’étude

des formes de lignes de fluorescence au-delà de la limite du système à deux niveaux [177,

178], les caractéristiques spectrales d’une cavité pilotée de manière cohérente à travers une

transition de phase dissipative de dimension zéro [43, 47, 106] ou des applications liées

à la synchronisation quantique [164, 179, 180].
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8.3 Transition à fréquence finie dans des réseaux de bosons

pilotés et dissipatifs

Les points critiques et les transitions de phase sont caractérisés par des susceptibilités

divergentes, reflétant la tendance du système à la rupture spontanée de symétrie. La

mécanique statistique d’équilibre oblige ces instabilités à se produire à une fréquence

nulle, donnant lieu à des paramètres d’ordre statiques. Dans ce chapitre, nous expliquons

qu’un modèle de prototype de bosons sur réseau dissipatifs piloté et corrélés, qui présente

un intérêt direct pour la prochaine génération d’expériences avec les circuits quantiques,

présente une susceptibilité divergeant à une fréquence finie non nulle, une échelle émergente

définie par des interactions et par les effets de non équilibre. Nos travaux, établissant un

lien entre l’invariance par translation dans le temps et les susceptibilités divergentes en

fréquence finie, pourraient éventuellement être étendus à l’étude d’autres instabilités dans

le domaine temporel dans des systèmes quantiques hors équilibre, notamment les cristaux

de temps de Floquet [118] et la synchronisation quantique [163, 164, 181, 182]. Les résultats

de ce chapitre ont été publiés dans [2].

8.3.1 Introduction

Les transitions de phase de second ordre dans les systèmes à l’équilibre thermique ou dans

leur état fondamental sont caractérisées, selon le paradigme de Landau, par l’émergence

d’un paramètre d’ordre statique qui rompt spontanément une symétrie du système, telle

que l’invariance de rotation du spin pour le magnétisme ou la translation spatiale pour

les cristaux [111, 183]. La criticité qui en résulte est décrite en termes d’instabilité

d’une phase symétrique, caractérisée par la singularité d’une susceptibilité statique. Pour

les systèmes classiques éloignés de l’équilibre thermique, comme en présence de forçage

et de dissipation externes, la variété des instabilités peut être beaucoup plus riche, les

modes à la fois l’impulsion finie et la fréquence finie devenant instables et conduisant à

la formation de chaos temporel, synchronisation ou autres comportements oscillatoires

[184–186]. Les systèmes quantiques à plusieurs corps dissipatifs et pilotés, représentent

des plateformes naturelles pour comprendre et explorer de telles phases dynamiques. Un

exemple bien connu est fourni par les condensats d’excitons et polaritons où la superfluidité

apparait avec un paramètre d’ordre oscillant dans le temps [30, 31, 70, 122]. Pourtant,

le condensat oscillant est décrit avec succès par des théories semi-classiques telles que

les équations de Gross-Pitaevski qui sont valables dans le régime des interactions faibles.

Plus récemment, l’attention s’est tournée vers les modèles de réseau fortement corrélés

avec pilotage et dissipation, plusieurs travaux ayant révélé l’existence de cycles limites,

à savoir des solutions non stationnaires de la dynamique quantique pour un paramètre

d’ordre macroscopique, au moins au niveau du champ moyen [16, 17, 20, 93, 187–189].

Dans ce chapitre, nous nous intéressons à un modèle paradigmatique de bosons en inter-

action dissipative-forcés sur un réseau, qui est directement pertinent pour les expériences

de la prochaine génération de matrices de circuits QED [61, 62, 86]. Nous soutenons

qu’une susceptibilité dynamique d’un tel système quantique ouvert aux nombreux corps,
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qui en équilibre thermique est fini et petit car les modes de fréquence non nuls sont

généralement amortis par des interactions, peut afficher une véritable singularité à fréquence

finie, à la suite d’interactions fortes et des effets de non équilibre. La fréquence critique

est non triviale et définie par une compétition d’interactions entre dynamisme et dissipa-

tion. Finalement, le système subit une transition de phase dynamique où le paramètre

d’ordre émerge avec une fréquence d’oscillation finie et dans la phase de symétrie brisée

oscille dans le temps sans amortissement, rompant ainsi la symétrie de translation dans

le temps continue. Cette instabilité à l’état stationnaire est contrôlée à la fois par des

couplages dissipatifs et cohérents, en particulier par le rapport entre le paramètre de saut

et l’interaction locale, fournissant ainsi l’analogue fortement corrélé de la condensation de

bosons hors équilibre à couplage faible.

8.3.2 Résultats

Dans ce chapitre, nous avons montré qu’un modèle prototype de bosons sur réseau dissi-

patifs et pilotés, développe pour une valeur critique du taux de sauts une susceptibilité

divergente à une fréquence non nulle Omega∗. La criticité à fréquence finie obtenue corre-

spond à une dynamique dissipative dépourvue d’état stationnaire et oscillant plutôt dans

le temps sans amortissement. En notant la théorie du champ de Keldysh effectif pour

cette transition de fréquence finie, nous en avons obtenu la limite semi-classique, que nous

montrons reproduire les résultats d’un découplage de Gutzwiller dépendant du temps et

de la matrice de densité. Nous soulignons que la capture de la fréquence critique Omega∗
nécessite la solution quantique du problème d’un site isolé avec interaction et dissipation

et qu’elle ne figure donc pas dans l’équation semi-classique du mouvement que nous avons

dérivée, qui ne décrit que la dynamique du cadre en rotation à la fréquence Omega∗. Nos

résultats diffèrent des autres études sur les instabilités en cycles limites dans les systèmes

dissipatifs pilotés, tels que les condensats de excitons et polaritons décrits par les équations

de type Gross-Pitaevski (GP), et pourraient en être considérées comme la version forte-

ment corrélée. En effet, notre transition partage les caractéristiques authentiques d’une

transition de phase quantique dissipative de Mott-superfluide, étant contrôlée à la fois par

des couplages cohérents et par les taux de pompage/pertes. En particulier, notre phase

incohérente existe par petits taux de saut, même au-delà du seuil standard de la pompe

supérieur aux pertes, un effet véritablement quantique dû à la répulsion de Hubbard fa-

vorisant les états de type Fock plutôt que les états cohérents. De plus, la fréquence du

cycle limite est finie au point de transition, où le paramètre d’ordre superfluide disparâıt

et influence également la dynamique de phase normale, tandis que dans les théories GP,

elle s’annule à ce point, étant proportionnelle au paramètre d’ordre superfluide.

Nos travaux suggèrent plusieurs directions futures intéressantes. D’un côté, il serait

intéressant d’inclure des fluctuations dynamiques et spatiales pour étudier le sort de cette

transition dynamique dissipative en dimensions finies, à la suite d’enquêtes similaires ef-

fectuées pour les transitions dynamiques dans les systèmes quantiques isolés [196–198].

Une autre question ouverte intrigante consiste à savoir s’il existe une criticité similaire à

fréquence finie dans les modèles de systèmes dissipatifs et pilotés avec phases de symétrie

113



discrètes brisées [16] ou même en présence d’un pilotage purement cohérent, comme par

exemple dans le contexte de plates-formes optomécaniques [172, 199] ou des châınes de

spin quantiques pilotés de manière cohérente [188].

Enfin, alors que nos travaux portent sur un modèle paradigmatique de bosons dissi-

patifs entrâınés, pertinents pour la prochaine génération d’expériences sur les matrices de

circuits QED, [61, 62, 93], il décrit également un cadre générique pour l’étude des in-

stabilités dynamiques dans systèmes quantiques hors d’équilibre, en se concentrant sur les

fonctions de réponse dépendant de la fréquence et leurs divergences. Un tel cadre pourrait

être appliqué dans un large éventail de contextes, y compris par exemple les systèmes

de Floquet pilotés et isolés, dans lesquels une rupture de la symétrie temps-translation

discrète a été prédite [118, 119, 200] et observée [121, 201], systèmes quantiques soumis

à diverses formes de synchronisation [163, 164, 179, 181, 182, 199, 202] ainsi que des

systèmes électroniques sous irradiation optique pompe-sonde [203].
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8.4 Préparation d’isolants de Mott à l’aide de la dissipation

Les progrès expérimentaux récents en matière de contrôle de la dissipation ont donné la

possibilité de mettre au point des processus dissipatifs afin d’obtenir des phases quantiques

enchevêtrées de la matière en tant qu’états stationnaires de la dynamique dissipative. Cela

fait suite au concept d’ingénierie dissipative. Dans le chapitre 8.3, nous avons étudié

un modèle de réseaux bosoniques dissipatif et piloté et nous nous sommes concentrés sur

la transition de phase aux fréquences finies entrâınée par le paramétré de saut, qui n’est

pas liée au choix spécifique du mécanisme de pilotage. Dans ce chapitre, nous étudierons

plutôt les propriétés de la phase normale stabilisée par le schéma de pilotage proposé par

[101]. Ce schéma de pilotage a été proposé dans [101] pour stabiliser une phase isolante de

Mott en tant qu’état stationnaire de la dynamique dissipative. Une question intéressante

à poser est la différence entre cette phase isolante de Mott et la phase d’équilibre. Dans

[101], les auteurs ont montré que l’état stationnaire d’une telle châıne de Bose-Hubbard

pilotée et dissipative en 1D est très proche de l’état fondamental d’un modèle de Bose-

Hubbard 1D avec un potentiel chimique approprié. Cette similitude s’étend à la fois à la

phase de Mott et à la phase superfluide et suggère que, en contrôlent le pilotage et de la

dissipation, on peut s’approcher autant que souhaité de l’état fondamental. De manière

remarquable, cependant, dans [101], le caractère de non équilibre du problème ne joue

aucun rôle majeur. Leur diagramme de phase pour l’état stationnaire piloté et dissipatif

correspond assez bien à l’état fondamental un en 1D, montrant la structure bien connue

des lobes de Mott [88, 204]. Il n’y a aucune indication dans [101] de la transition en

fréquence finie dont nous avons parlé dans le chapitre 8.3 et même la phase superfluide

est stationnaire. Les méthodes numériques utilisées dans [101] sont en fait adaptées pour

calculer l’état stationnaire indépendant du temps du modèle, mais ne donnent pas accès

aux caractéristiques dynamiques. D’autre part, on sait bien que les superfluides pilotés et

dissipatifs oscillent dans le temps [30, 41] à un potentiel chimique efficace. De même, dans

[189], où un problème similaire de la limite des bosons à noyau dur est analysé, des cycles

limites sont prédits. Il est en effet déroutant de réconcilier l’image complètement sta-

tique de l’état fondamental de [101] avec les caractéristiques de non-équilibre dynamiques

prédites par exemple dans [1, 30, 41, 189] . Dans ce chapitre, nous fournissons une image

complète permettant de réconcilier ces résultats. La préparation dissipative des isolantes

de Mott est pertinente pour les expériences en cours. Dans [62] les auteurs utilisent des

réservoirs sélectifs en énergie pour stabiliser de manière dissipative une phase isolante de

Mott. Leur expérience comprend une châıne 1D de 8 résonateurs supraconducteurs non

linéaires dans un circuit. La châıne réalise un modèle de Bose-Hubbard avec pertes, dans

lequel le dernier site est couplé à un réservoir sélectif en énergie qui injecte des photons

avec une énergie inférieure à celle du gap de la phase de Mott. Contrairement au modèle

de [101] et à notre modèle, où chaque site est piloté, à [62], un seul site est connecté au

réservoir.
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8.4.1 Résultats

Dans ce chapitre, nous avons abordé le diagramme de phase des isolants photoniques de

Mott, stabilisés de manière dissipative, selon le schéma proposé dans [101]. Nous avons

discuté de la similarité entre l’état stationnaire dissipatif du problème de site unique et

l’état fondamental d’un site de Bose-Hubbard. Cette similitude au niveau des sites uniques

s’étend à la châıne 1D de 7 sites étudiée dans [101], où les auteurs ont constaté que ce

modèle dissipatif et piloté présente un état stationnaire reproduisant avec une très haute

fidélité un isolant de Mott. Nous avons étudié le diagramme de phase en champ moyen

d’un tel isolant de Mott stabilisé par voie dissipative dans la limite de la dissipation nulle,

pour laquelle la physique d’un site isolé est très proche de son état fondamental. Nous

avions prédit que, de manière surprenante, la région de stabilité d’une telle phase est

remarquablement réduite par rapport au diagramme de phase de l’état fondamental de

l’hamiltonien de Bose-Hubbard correspondant, en raison de l’apparition d’instabilités de

modes dynamiques. Nous avons constaté que plus le ratio pilotage/perte est important,

plus le taux de saut critique pour lequel la phase de Mott devient instable est petit. Pour

un rapport pilotage/perte supérieur, l’état stationnaire devrait également être plus proche

de l’état fondamental de Mott. En conséquence, nos résultats suggèrent qu’il existe un

compromis entre la fidélité de la phase stationnaire à un isolant de Mott et la robustesse

d’une telle phase à taux de saut finis. La validité de nos résultats au-delà du champ moyen

doit être affirmée avec des méthodes plus puissantes. En effet, la théorie du champ moyen

tend à favoriser la phase de symétrie interrompue. On peut donc s’attendre à ce que

des fluctuations au-delà du champ moyen poussent la limite de phase de Mott-superfluide

à des valeurs plus grandes du saut. Nous nous attendons cependant que la tendance

qualitative du taux de saut critique qui décroisse avec la force du pilotage, résultant

de la physique locale, reste valable au-delà du champ moyen. Nous avons finalement

étudié le diagramme de phase d’un schéma de pilotage différent, en stabilisant une phase

normale mixte incohérente plutôt qu’un isolant de Mott, montrant que les fluctuations

thermiques effectives augmentent la région de stabilité de la phase normale, comme prévu.

Les résultats de ce chapitre sont préliminaires et pour la plupart non publiés. La limite très

intéressante de dissipation évanescente peut être résolue analytiquement, en calculant les

fonctions de Green dans la théorie des perturbations. L’occupation de l’état stationnaire à

plusieurs corps peut être également calculée en utilisant notre approche de couplage fort.

Ce modèle à dissipation pilotée s’avère donc être un très simple modèle pour discuter des

isolants Mott stabilisés par dissipation, tout en étant pertinent pour les expériences en

cours [62].
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8.5 Vers une approche DMFT pour les réseaux de bosons

dissipatifs pilotés

La théorie du champ moyen dynamique (DMFT) est apparue au cours des deux dernières

décennies comme une approche très puissante pour étudier les systèmes quantiques à

plusieurs corps fortement en interaction [205]. Comme pour tout problème quantique à

plusieurs corps, la mise à l’échelle exponentielle de la taille de l’espace de Hilbert avec

le nombre de degrés de liberté rend difficile la résolution numérique de gros systèmes.

Les systèmes ouverts markoviens souffrent encore plus de cette limitation, car l’espace

naturel pour traiter numériquement ces problèmes est l’espace de Liouville, dont la taille

est le carré de celui de l’espace de Hilbert original. Plusieurs méthodes ont récemment

été proposées, qui sont généralement limitées à 1D ou à des systèmes de petite taille. Les

schémas de réseau de tenseurs [206–208] sont très efficaces pour les systèmes 1D, mais

sont encore limités dans les dimensions supérieures malgré les efforts en cours [209]. Une

méthode prometteuse en 2D est la méthode “corner space renormalization group” [53, 156].

Récemment, une méthode de Monte Carlo a été proposée [210], mais son applicabilité est

limitée par son problème de signe. Au-delà des méthodes de champ moyen telles que

les méthodes de cluster [157, 211] et l’opérateur de projection auto-cohérent [20, 212]

sont également des techniques prometteuses. Enfin, quatre groupes ont indépendamment

proposé un réseau de neurones pour la matrice de densité des systèmes ouverts à plusieurs

corps [213–216], à la suite de la proposition pour les systèmes quantiques fermé [217].

Cette approche semble prometteuse, mais ses forces et ses limites doivent encore être

évaluées. Développer une approche DMFT pour les systèmes quantiques à plusieurs corps

quantiques dissipatifs et pilotés comblerait une lacune dans ce scénario. DMFT est une

technique de couplage fort non perturbative qui mappe un problème de réseau dans la

limite thermodynamique sur un problème auxiliaire décrivant un site unique couplé à un

bain autocohérent, que nous appellerons problème d’impureté. C’est dans l’esprit de la

théorie du champ moyen standard, où un problème de réseau est mappé sur un problème

à site unique dans un champ autocohérent. La différence qualitative est que le problème

effectif en champ moyen est décrit par un hamiltonien, tandis que les effets de retardement

de DMFT qu’un site expérimente en tant qu’effet du reste du réseau sont pris en compte et

que la théorie effective doit être décrite en termes de une action, qui n’est pas locale dans

le temps, d’où le nom de théorie des champs moyens dynamiques. Formulé directement

dans les limites thermodynamiques, DMFT ne se limite pas aux systèmes de petite taille,

comme la plupart des méthodes existantes. Le goulot d’étranglement de DMFT réside

dans le fait que la résolution du problème des impuretés auxiliaires n’est pas une tâche

facile, mais elle reste de loin plus facile que de résoudre le problème du réseau initial. En

conséquence, nous avons besoin de méthodes appropriées, que nous appellerons résolveurs

d’impuretés, pour résoudre le problème auxiliaire. Le travail présenté dans ce chapitre

constitue la première tentative vers la résolution de la DMFT pour des problèmes de

réseau dissipatifs pilotés. Ces résultats ont été publiés dans [3].
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8.5.1 Résultats

Dans ce chapitre, nous présentons nos développements vers une approche DMFT (Dynam-

ical Mean Field Field) à pour étudier de systèmes à réseaux dissipatifs pilotés. Ces efforts

sont justifiés par l’absence actuelle de méthodes bien établies pour étudier ces systèmes.

Afin de résoudre DMFT, nous avons développé une méthode pour résoudre le problème

auxiliaire d’une seule impureté, qui dans notre contexte est couplé simultanément à un en-

vironnement markovien et à un environnement non-markovien. Nous avons dérivé une ex-

pansion formelle d’hybridation pour le super-opérateur d’évolution de l’impureté, obtenue

après avoir tracé tous les degrés de liberté du bain. Ce résultat généralise au cas d’une

dynamique markovienne non unitaire l’expansion d’hybridation obtenu pour les modèles

unitaires d’impuretés quantiques. En tant que tel, il constitue le point de départ naturel

pour le développement de techniques d’échantillonnage stochastique de la dynamique dis-

sipative en temps réel de l’impureté basées sur Diagrammatic Monte Carlo, que nous

laisserons pour des études ultérieures. À partir de cette expansion, nous définissons des

règles de diagramme en temps réel et écrivons une équation de Dyson pour le propagateur

d’impuretés que nous évaluons en ne retenant que les diagrammes non croisés, une approx-

imation connue pour capturer certains aspects de la physique des impuretés à couplage

fort.

Il est intéressant de commenter la relation entre notre approche et les méthodes as-

sociées pour traiter les modèles d’impuretés couplés à plusieurs bains. Alors qu’en principe

l’expansion d’hybridation [266] ainsi que la résumation schématique à couplage fort

[267] peuvent être généralisées en présence de plusieurs environnements, prendre la limite

markovienne dès le début présente un avantage pratique et conceptuel. En particulier, nous

pouvons tirer directement parti de la nature locale de l’évolution markovienne et effectuer

un développement autour d’une limite atomique qui contient maintenant non seulement

des interactions locales, mais également le pilotage et la dissipation. Cette limite peut

être facilement résolue par la diagonalisation directe d’un Lindbladien, par opposition au

traitement de l’environnement markovien comme une self-énergie dans l’approximation

NCA. L’idée clé est donc de traiter sur un pied d’égalité toutes les échelles d’énergie liées

aux processus rapides, tout en recourant à la théorie des perturbations pour traiter les

processus conduisant à des corrélations lentes telles que le couplage à des réservoirs sans

gap.

En tant qu’application, nous avons résolu numériquement l’équation de Dyson pour

le modèle simple d’une impureté fermionique, avec pertes markoviennes, pompage et

déphasage et couplé à un environnement à température nulle non markovien. Ce modèle

n’est pas trivial pour la présence de déphasage, qui est un terme quartique dans les

opérateurs fermioniques. Cette implémentation simple a permis de vérifier les propriétés

spectrales du super-opérateur d’évolution et d’étudier comment la dynamique markovi-

enne est modifiée par couplage à un environnement non-markovien. En particulier, notre

méthode a permis de mettre en évidence une conséquence physique du couplage simultané

à des environnements markoviens et non-markoviens: le déphasage markovien associé à

des processus non-markoviens entrâıne une modification des occupations des impuretés.
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Les orientations futures comprennent l’exploration de modèles d’impuretés plus complexes

faisant intervenir des degrés de liberté internes, tels que le modèle d’Anderson, ainsi que

des extensions bosoniques, ainsi que l’utilisation de ce solveur NCA pour résoudre DMFT

en réseaux dissipatifs pilotés.

119



Appendix A

Energy-selective dissipator

A.1 Derivation

In this appendix we derive the dissipator defined in section 4.2 for the coupling to an energy selective

reservoir. The derivation follows that of a Lindblad master equation, but we won’t do the rotating-

wave or secular approximation. We mainly follow [136] for the derivation of master equations.

Let’s consider a Bose-Hubbard site with Hamiltonian HS = ω0a
†a+ U/2

(
a†a
)2

, with eigenvalues

ε(n) = ω0n+ U/2n2 in terms of the eigenvalues of a†a, namely the Fock states. We consider this site

to be coupled to a two-level system environment with coupling Hamiltonian

HSR =
∑
k

Vk

(
a†σ−k + hc

)
(A.1)

where σ−k , σ+
k are spin-flip operators. We consider a spin environment having in mind the physical

implementation proposed in [101], but this choice is not crucial for the derivation. We leave the

environment hamiltonian HR unspecified. The total Hamiltonian of the system+reservoir is H = H0 +

HSR, where we defined H0 = HS +HR. We denote by υ the total density matrix of system+reservoir,

obeying the Von-Neumann equation.

∂tυ = −i [H, υ] (A.2)

We move to the interaction picture; the density matrix and operators in the interaction picture are

defined as

υip(t) = eiH0tυ(t)e−iH0t H ip
SR(t) = eiH0tHSRe

−iH0t (A.3)

In the interaction picture time evolution is in terms on H ip
SR(t) and the Von-Neumann equation reads

∂tυ
ip(t) = −i

[
H ip
SR(t), υip(t)

]
(A.4)

Integrating this equation one gets υip(t) = υip(0) − i
∫ t

0 dt
′
[
H ip
SR(t′), υip(t′)

]
, and plugging it back in

(A.4), we get

∂tυ
ip(t) = −i

[
H ip
SR(t), υip(0)

]
−
∫ t

0
dt′
[
H ip
SR(t),

[
H ip
SR(t′), υip(t′)

]]
(A.5)
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The reduced density matrix of the system is defined by ρ = trRυ. Performing a partial trace on the

environment, and assuming

trR

[
H ip
SR(t), υip(0)

]
= 0 (A.6)

which is an easy condition to verify [7], we get

∂tρ
ip(t) = −

∫ t

0
dt′trR

[
H ip
SR(t),

[
H ip
SR(t′), υip(t′)

]]
(A.7)

We perform the Born approximation, which is a weak coupling approximation. It assumes that the

bath density matrix is not changed by the coupling with the system: υip(t) ' ρip(t)ρR. The Born

approximation, and a change in integration variables, leads to

∂tρ
ip(t) = −

∫ t

0
dτ trR

[
H ip
SR(t),

[
H ip
SR(t− τ), ρip(t− τ)ρR

]]
(A.8)

We now perform the Markov approximation. It consists in assuming that the integrand vanishes for

τ > τB, where τB is the relaxation time for bath correlations, so that we can let the upper limit of

integration go to infinity. Also, one assumes that for τ < τB the system density matrix ρip(t − τ)

doesn’t change much, thus ρip(t− τ) ' ρip(t). Under these assumptions we get a time local equation

∂tρ
ip(t) = −

∫ ∞
0

dτ trR

[
H ip
SR(t),

[
H ip
SR(t− τ), ρip(t)ρR

]]
(A.9)

Performing an additional secular or rotating-wave approximation we would get a Lindblad master

equation. We won’t do it, thus we will get a dissipator that cannot be written Lindblad form, thus it

is not guaranteed to yield a positive-definite density matrix [136, 193] and positivity must be checked

a posteriori. By expanding the commutators we get

∂tρ
ip(t) =

∫ ∞
0

dτ trR

(
H ip
SR(t− τ)ρip(t)ρRH

ip
SR(t)−H ip

SR(t)H ip
SR(t− τ)ρip(t)ρR + hc

)
(A.10)

Using the form of the system-reservoir coupling (A.1) and assuming anomalous correlations to vanish,

trRσ
±(t)σ±(t− τ)ρR = 0, we get

∂tρ
ip(t) =

∫ ∞
0

dτ fl

(
aip(t− τ)ρip(t)a†

ip
(t)Γ−+(τ)− a†ip(t)aip(t− τ)ρip(t)Γ−+(τ) + hc

)
+fg

(
a†

ip
(t− τ)ρip(t)aip(t)Γ+−(−τ)− aip(t)a†

ip
(t− τ)ρip(t)Γ+−(−τ) + hc

) (A.11)

where we defined the bath hybridization greater (−+) and lesser (+−) functions

fl Γ−+(τ) =
∑
k

|Vk|2 trR

(
σ−

ip
(t)σ+ip

(t− τ)ρR

)
(A.12)

fg Γ+−(−τ) =
∑
k

|Vk|2 trR

(
σ+ip

(t)σ−
ip

(t− τ)ρR

)
(A.13)

where fl and fg are positive coefficients. We note that the greater accounts for the process of creating

a particle in the reservoir and losing one in the system, while the lesser describe a gain one one

particle for the system. We assume that ρR is stationary with respect to the bath dynamics, such that

121



those hybridization functions depend only on the time difference τ and not on t. Also we note that

Γ−+(τ)∗ = Γ−+(−τ) and Γ+−(τ)∗ = Γ+−(−τ). The assumption (A.6) becomes trR

[
σip
− (t), ρR

]
=

trR

[
σip

+ (t), ρR

]
= 0. We can now go back to the Schröedinger picture, using ∂tρ(t) = −i [HS , ρ(t)] +

e−iHSt
(
∂tρ

ip(t)
)
eiHSt. This accounts for removing all the ip indices and the t times. We also write

explicitly the hermitian conjugates.

∂tρ(t) = −i [HS , ρ(t)] +

+

∫ ∞
0

dτ fl

(
a(−τ)ρ(t)a†Γ−+(τ)− a†a(−τ)ρ(t)Γ−+(τ) + aρ(t)a†(−τ)Γ−+(−τ)− ρ(t)a†(−τ)aΓ−+(−τ)

)
+fg

(
a†(−τ)ρ(t)aΓ+−(−τ)− aa†(−τ)ρΓ+−(−τ) + a†ρ(t)a(−τ)Γ+−(τ)− ρ(t)a(−τ)a†Γ+−(τ)

)
(A.14)

The first of the last two lines is a loss dissipator, while the second is a pump one. We can define the

following modified annihilation and creation operators

ãl =

∫ ∞
0

dτ Γ−+(τ)a(−τ) ã†l =

∫ ∞
0

dτ Γ−+(−τ)a†(−τ) (A.15)

ã†g =

∫ ∞
0

dτ Γ+−(−τ)a†(−τ) ãg =

∫ ∞
0

dτ Γ+−(τ)a(−τ) (A.16)

where ã†l = (ãl)
†, ã†g = (ãg)

†. Finally we introduce the modified dissipator (4.16), D̃[X,Y ] = XρY † +

Y ρX† −X†Y ρ− ρY †X, getting the non-secular master equation

∂tρ(t) = −i [HS , ρ(t)] + D̃ [a, ãl] + D̃
[
a†, ã†p

]
(A.17)

D̃ [a, ãl] = fl

(
ãlρ(t)a† + aρ(t)ã†l − a

†ãlρ(t)− ρ(t)ã†l a
)

(A.18)

D̃
[
a†, ã†p

]
= fg

(
ã†gρ(t)a+ a†ρ(t)ãg − aã†gρ(t)− ρ(t)ãga

†
)

(A.19)

The modified creation and annihilation operators can be computed more easily in the basis of

Fock states, in terms of the Fourier transform of Γ−+(t),Γ+−(t). Let’s focus on the gain operator

ãg =
∫∞

0 dτΓ+−(τ)a(−τ). Projecting it on the basis of Fock states, we get

ãg =
∑
n

ΓR+− (ε(n+ 1)− ε(n)) 〈n|a|n+ 1〉|n〉〈n+ 1| (A.20)

where ε(n) are the eigenvalues of the Hamiltonian and where we have defined the retarded Fourier

transform

ΓR+− (ω) =

∫ ∞
−∞

dtΓ+−(t)θ(t)eiωt =

∫ ∞
0

dtΓ+−(t)eiωt (A.21)

We also introduce the Fourier transform of Γ+−(t)

Γ+−(ω) =

∫ ∞
−∞

dtΓ+−(t)eiωt (A.22)

There is a relation between ΓR+− (ω) and Γ+−(ω), exploiting that Γ+−(ω) is a real function, because

Γ+−(t)∗ = Γ+−(−t) and thus Γ+−(t) and Γ+−(−t) carry the same information. This relation reads

ΓR+− (ω) =
1

2
Γ+− (ω)− iP

∫ ∞
−∞

dω′

2π

Γ+− (ω′)

ω′ − ω
(A.23)
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where the real and imaginary part of ΓR+− (ω) satisfy the Kramers-Krönig relations (2.7) because it

is a retarded function. We also remark that
[
ΓR+−(ω)

]∗
= ΓA+−(ω), which turns useful to write the

creation operator ã†g.

A.2 Cold and hot drives

In the main text we considered two driving schemes, which can be modeled using the dissipator

derived in this appendix, which have been named the cold 4.2.2 and the hot drive 5.4. The cold drive

corresponds to fg ≡ f 6= 0, fl = 0. The hot drive corresponds to f ≡ fg = fl and Γ+− = Γ−+, thus

ãg = ãl. We considered, for both drives

Γ+− (ω) ≡ θ(σ − |ω|) (A.24)

where θ(ω) is a step function centered in zero. This form for Γ implies its retarded component

ΓR+− (ω) =
1

2
θ(σ − |ω|)− i

2π
log

∣∣∣∣σ − ωσ + ω

∣∣∣∣ (A.25)

The imaginary part ImΓR+− (ω), is a Lamb-shift term. We note that its contribution is particularly

important when σ ' |ε(n+ 1)− ε(n)| for which this term has a logaritmic divergence. We neglect

this term in Ch. 4, where we keep our parameters far from these divergent points, while we keep it

in Ch. 5, where we explore the whole phase diagram. Also, the choice of a window function with a

hard cut-off for Γ+− (ω) is not rigorously justified, as this violates the Markovianity conditions under

which the master equation was derived. In fact, we assumed that the relaxation time of the system

τR is much smaller then bath relaxation τB. The characteristic time induced by the reservoir on the

system is τR ∼ 1/f , while there’s no other time-scale in the bath correlation dynamics, as one can

see by the real time correlation function of the bath Γ+− (t) = sin(σt)/ (πt). One should consider a

“smooth” box-function, as in [101]:

Γ+−(ω) =
1

N

(
arctan

(
σ − ω
∆/2

)
− arctan

(
−σ − ω

∆/2

))
(A.26)

where the normalization N is chosen such that the window has height 1: N = Γ+−(0) = 2 arctan
(

2σ
∆

)
.

∆ serves as a cut-off for the bath correlations τB ∼ 1/∆ as

Γ+−(t) =
1

N
e−∆t/2 sin (σt)

t
(A.27)

and the condition fg � ∆ enforces the Markovian assumption. Also the Lamb-shift divergence gets

cut off by ∆

Im ΓR+−(ω) =
1

4N
log

(
(ω − σ)2 + (∆/2)2

(ω + σ)2 + (∆/2)2

)
(A.28)

We preferred to use the simpler version with a “hard” cut-off. In fact, with the “smooth” window

one has to numerically satisfy the conditions fg, κ � ∆ � U , where κ is the loss rate, which consid-

erably reduces the available parameters range. We checked that the choice of a “hard” rather then a

“smooth” box-function produces only small quantitative differences in our results. In Ch. 4, in fact,
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the choice of the “hard” box cannot be justified a priory. In Ch. 5, instead, the choice of a “hard”

cut-off, that is ∆ → 0, is consistent with the small dissipation limit κ → 0, assuming the order of

limits doesn’t matter; we numerically checked that indeed the two choices give qualitatively equivalent

results.
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Appendix B

More on DMFT

B.1 Delocalization transition in DMFT

Let’s consider the Bose-Hubbard model we discussed in Ch. 4,5, with an incoherent phase with Φ = 0

at low hopping separated by a second order phase transition from a broken-symmetry phase with

Φ 6= 0. In this appendix, we derive an equation for the critical point in DMFT which goes beyond

the mean-field equation (4.22) for the critical hopping Jc (5.3)1

1

Jc
+GR0 (Ω∗) = 0 (B.1)

using the simplified self-consistency relation for a Bethe lattice [226]

∆ =
J2

z
G (B.2)

We remark that at Jc the off-diagonal components of G vanish thus we can restrict to the first diagonal

component, which we call G. The critical-point equation in DMFT reads

1

Jc
+GR(Ω∗, Jc) +

Jc
z

[
GR(Ω∗, Jc)

]2
= 0 (B.3)

We notice that the lattice retarded Green function enters in (B.3), rather then that of a decoupled

site as in (B.1): this gives a much more non-trivial dependence of (B.3) on the critical hopping Jc.

The last term in (B.3) describes 1/z corrections, as expected by DMFT. Eventually (B.3) is a bold

equation, i.e. involving lattice correlators, including 1/z corrections. The mean-field equation (B.1)

is recovered from (B.3) taking the z →∞ limit. In fact, in this limit, lattice Green functions coincide

with those of decoupled-sites GR → GR0 whenever Φ = 0 and thus in particular at the critical point,

as the effective action (6.3) reduces to standard mean field and describes decoupled sites in this limit.

The proof of (B.3) goes as follows. Let’s sit in the early symmetry-broken phase, where the order

parameter Φ = 〈a〉 has just formed and it’s small. This implies a small external field Φeff (6.4)

Φeff(t) = JΦ(t) +

∫
C
dt′∆(t, t′)Φ(t′) (B.4)

1we need to rescale the hopping J → J/z in (5.3) to get (B.1)
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in the DMFT effective action (6.3). We assume to be in stationary regime, such that two point

correlators depend on time differences and move to Fourier space. As Φeff is an average field Φeff+ =

Φeff−, thus (B.4) is also equivalent to

Φeff(ω) = JΦ(ω) + ∆R(ω)Φ(ω) (B.5)

The response to Φeff in linear-response theory is given by

Φ(ω) ≡ 〈a(ω)〉 = 〈a(ω)〉Φeff=0 −GR
Φeff=0(ω)Φeff(ω) (B.6)

where GΦeff=0(ω) is computed at Φeff = 0. We also have that 〈a(ω)〉Φeff=0 = 0 for Φeff = 0. Plugging

(B.5) into (B.6), using the self-consistent equation (B.2) and retaining only first-order-in-Φeff terms,

one gets

Φ(ω) = −JGR
Φeff=0(ω)Φ(ω)− J2

z
GR

Φeff=0(ω)GR
Φeff=0(ω)Φ(ω) (B.7)

This equation is satisfied for Φ = 0, in the normal phase, and it must be satisfied in the early

symmetry-broken phase, where Φ 6= 0. At the critical point both solutions exist, and the second gives

an equation for the critical point. As at the critical point the anomalous – non-diagonal – components

of G vanish, we consider the first diagonal component G only. We thus obtain the DMFT equation

for the critical point (B.3), where it’s not necessary to specify that the Green functions are computed

at Φeff = 0, as they are computed at Jc where Φeff = 0 by definition.

B.2 Hubbard-I impurity solver in the symmetric phase

In this section, we introduce the simplest non-trivial solver for the impurity action (6.3). By solving

the impurity problem, we mean being able to compute its one-particle Green functions. This solver

is based on the Hubbard-I approximation [227, 268], where the lattice self-energy is approximated at

zeroth order in the hopping; the Hubbard-I approximation is equivalent [227] to the random phase

approximation (RPA) and thus to the strong-coupling approach we used in Ch. 4,5. We restrict to

study the symmetric phase, i.e. Φ = 0, where equations involve one Nambu component and to the

stationary regime where convolutions turn into product under Fourier transform. From the Dyson

equation for the impurity Green function we have

G−1 = G−1
ni −∆− Σ (B.8)

where Gni is the non-interacting Green function of the single-site problem – including also dissipative

non-interacting terms – and Σ is the impurity self-energy. We approximate the impurity self-energy

Σ at zeroth order in the bath ∆

Σ ≈ G−1
ni −G

−1
J=0 (B.9)

where GJ=0 is the Green function of an isolated site including all interactions, thus it is different from

Gni . By plugging this self-energy in the above Dyson equation (B.8) and using the Bethe lattice

self-consistent condition (B.2), we get

G−1 = G−1
J=0 −∆ = G−1

J=0 −
J2

z
G (B.10)
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This is a closed equation for G, which is easily solved in Fourier space, where it becomes a second-

order algebraic equation. We can extract the retarded and Keldysh components from Eq. (B.10). The

retarded Green function is simply given by

GR(ω) =
z

2J2
GRJ=0(ω)

−1

(
1−

√
1− 4J2

z
GRJ=0(ω)

2

)
(B.11)

We extract the inverse Keldysh Green function
[
G−1

]K
=
[
G−1
J=0

]K − J2

z G
K from Eq. (B.10), that we

invert with the standard relation GK = −GR
[
G−1

]K
GA, giving

GK =

∣∣GR∣∣2GKJ=0∣∣GRJ=0

∣∣2 (1− J2

z |GR|
2
) (B.12)

We finally show that the equation determining the delocalization transition (B.3), reduces to the mean-

field one (B.1) when evaluating it using the Hubbard-I impurity solver. In fact, from (B.10) we get

J2/z G = G−1
J=0 −G−1 that plugged into (B.3) gives 1 + JG+G

(
G−1
J=0 −G−1

)
= G

(
J +G−1

J=0

)
= 0,

where the last term is exactly the mean-field critical point equation (B.1). This is consistent with the

fact that the Hubbard-I approximation coincides [227] with the strong-coupling approach we used to

compute Green functions in Ch. 4,5, which yields the mean-field phase diagram.
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Appendix C

Details of the NCA solver

C.1 Stationary state

Assuming a stationary state exists for a non-Markovian map V defined by the Dyson equation

∂tV(t, t′) = LV(t, t′) +

∫ t

t′
dt1Σ(t, t1)V(t1, t

′) (C.1)

then, setting t′ = 0, it satisfies (
L+

∫ ∞
0

dt1Σ(∞, t1)

)
ρss = 0 (C.2)

In order to derive this equation, we focus on the propagator V (∞, 0), that projects any initial state

on the stationary state: ρss = V (∞, 0)ρ(0). This propagator obeys the Dyson equation

lim
t→∞

∂tV(t, 0) = LV(∞, 0) +

∫ ∞
0

dt1Σ(∞, t1)V(t1, 0)

At this point we need to make some assumptions based on physical arguments. V(t1, 0) is expected to

have a transient dynamics in a finite time interval of duration ttr, starting at time t1 = 0, and then to

become stationary, i.e. limt→∞ ∂tV(t, 0) = 0. In addition, the system is supposed to lose memory of

initials conditions, thus the convolution in the above Dyson equation must be cut off by the self-energy

Σ(∞, t1) for ∞− t1 > tmem. Then, in the region where Σ(∞, t1) is non-zero, V(∞, t1) is stationary

and we can replace it with V(∞, 0). With these arguments we get
(
L+

∫∞
0 dt1Σ(∞, t1)

)
V(∞, 0) = 0

and applying it to any initial state we find (C.2).

C.2 Derivation of NCA self-energy

To obtain an analytic expression of the self-energy, we have to cast the k = 1 term of the hybridization

expansion obtained in the main text in a form in which the innermost integration time is lower than

the outermost, that is with integrals of the form
∫ t
t′ dt1

∫ t1
t′ dt2. In doing so, sign of each contribution

will be determined by the time-ordering TC . The k = 1 term of the hybridization expansion, omitting
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the fermionic indices to simplify the expressions, reads

iV(1)(t, 0) =
∑
γ1,γ2

γ1γ2

∫ t

0
dt1

∫ t

0
dt2TFTCV0(t, t1)d†(t1γ1)V0(t1, t2)d(t2γ2)V0(t2, 0)∆γ1γ2(t1, t2) =

=

∫ t

0
dt1

∫ t

0
dt2TFTCV0(t, t1)d†(t1+)V0(t1, t2)d(t2+)V0(t2, 0)∆++(t1, t2)+

−
∫ t

0
dt1

∫ t

0
dt2TFTCV0(t, t1)d†(t1+)V0(t1, t2)d(t2−)V0(t2, 0)∆+−(t1, t2)+

−
∫ t

0
dt1

∫ t

0
dt2TFTCV0(t, t1)d†(t1−)V0(t1, t2)d(t2+)V0(t2, 0)∆−+(t1, t2)+∫ t

0
dt1

∫ t

0
dt2TFTCV0(t, t1)d†(t1−)V0(t1, t2)d(t2−)V0(t2, 0)∆−−(t1, t2)

(C.3)

where we have summed on contour indices γ1 and γ2. Now we break the integrals in two pieces, for

t2 > t1 and t2 < t1, which allows to put the operators in a time-ordered fashion according to TC .

iV(1)(t, 0) =

=

∫ t

0
dt1

∫ t1

0
dt2TFV0d

†
(t1+)V0d(t2+)V0∆++(t1, t2) + ξ

∫ t

0
dt1

∫ t

t1

dt2TFV0d(t2+)V0d
†
(t1+)V0∆++(t1, t2)+

−ξ
∫ t

0
dt1

∫ t1

0
dt2TFV0d(t2−)V0d

†
(t1+)V0∆+−(t1, t2)− ξ

∫ t

0
dt1

∫ t

t1

dt2TFV0d(t2−)V0d
†
(t1+)V0∆+−(t1, t2)+

−
∫ t

0
dt1

∫ t1

0
dt2TFV0d

†
(t1−)V0d(t2+)V0∆−+(t1, t2)−

∫ t

0
dt1

∫ t

t1

dt2TFV0d
†
(t1−)V0d(t2+)V0∆−+(t1, t2)+

+ξ

∫ t

0
dt1

∫ t1

0
dt2TFV0d(t2−)V0d

†
(t1−)V0∆−−(t1, t2) +

∫ t

0
dt1

∫ t

t1

dt2TFV0d
†
(t1−)V0d(t2−)V0∆−−(t1, t2)

(C.4)

where we omitted the time arguments of the V0 operators. The TF time ordering will now sort the

operators in ascending order in time from right to left:

iV(1)(t, 0) =

=

∫ t

0
dt1

∫ t1

0
dt2V0d

†
(t1+)V0d(t2+)V0∆++(t1, t2) + ξ

∫ t

0
dt1

∫ t

t1

dt2V0d(t2+)V0d
†
(t1+)V0∆++(t1, t2)+

−ξ
∫ t

0
dt1

∫ t1

0
dt2V0d

†
(t1+)V0d(t2−)V0∆+−(t1, t2)− ξ

∫ t

0
dt1

∫ t

t1

dt2V0d(t2−)V0d
†
(t1+)V0∆+−(t1, t2)+

−
∫ t

0
dt1

∫ t1

0
dt2V0d

†
(t1−)V0d(t2+)V0∆−+(t1, t2)−

∫ t

0
dt1

∫ t

t1

dt2V0d(t2+)V0d
†
(t1−)V0∆−+(t1, t2)+

+ξ

∫ t

0
dt1

∫ t1

0
dt2V0d

†
(t1−)V0d(t2−)V0∆−−(t1, t2) +

∫ t

0
dt1

∫ t

t1

dt2V0d(t2−)V0d
†
(t1−)V0∆−−(t1, t2)

(C.5)

129



Using the fact that
∫ t

0 dt1
∫ t
t1
dt2 =

∫ t
0 dt2

∫ t2
0 dt1 and exchanging the integration times in the second

column we get

iV(1)(t, 0) =

=

∫ t

0
dt1

∫ t1

0
dt2[V0d

†
(t1+)V0d(t2+)V0∆++(t1, t2) + ξV0d(t1+)V0d

†
(t2+)V0∆++(t2, t1)+

−ξV0d
†
(t1+)V0d(t2−)V0∆+−(t1, t2)− ξV0d(t1−)V0d

†
(t2+)V0∆+−(t2, t1)+

−V0d
†
(t1−)V0d(t2+)V0∆−+(t1, t2)− V0d(t1+)V0d

†
(t2−)V0∆−+(t2, t1)+

+ξV0d
†
(t1−)V0d(t2−)V0∆−−(t1, t2) + V0d(t1−)V0d

†
(t2−)V0∆−−(t2, t1)] =

(C.6)

=
∑

αβ∈{+,−}

α(1+ξ)/2β

∫ t

0
dt1

∫ t1

0
dt2×

×V0(t, t1)
[
d†(t1β)V0(t1, t2)d(t2α)∆

βα(t1, t2) + ξd(t1β)V0(t1, t2)d†(t2α)∆
αβ(t2, t1)

]
V0(t2, 0)

which defines the NCA self-energy

Σ(t1, t2) =
∑

αβ∈{+,−}

−α(1+ξ)/2βi
[
d†βV(t1, t2)dα∆βα(t1, t2) + ξdβV(t1, t2)d†α∆αβ(t2, t1)

]
(C.7)

C.3 Trace preservation

The evolution super-operator V obtained in the non-crossing approximation preserves the trace of the

density operator, that is

tr
{
V(t, t′)•

}
= tr {•}

Writing V(t, t′)• means applying the super-operator V on a generic operator •; we recall that in the

usual representation where the operator • is a matrix, this is not a matrix product. To prove this, we

take the trace of the NCA Dyson equation and we use the fact that V0 does preserve the trace

tr
[
V(t, t′)ρI(t

′)
]

= tr
[
V0(t, t′)ρI(t

′)
]

+

∫ t

t′
dt1

∫ t1

t′
dt2tr

[
V0(t, t1)Σ(t1, t2)V(t2, t

′)ρI(t
′)
]

=

= tr
[
ρI(t

′)
]

+

∫ t

t′
dt1

∫ t1

t′
dt2tr

[
Σ(t1, t2)V(t2, t

′)ρI(t
′)
] (C.8)

Then, using the expression for the self-energy Eq. (C.7), we can prove that the integrand vanishes,

which completes the proof. In order to show that, we remark that for the cyclic property of the

trace it holds that tr [X+•] = tr [X−•], X being a generic super-operator. Then we can fix the d†β, dβ

super-operators to be d†+, d+ under the trace, getting

tr
[
Σ(t1, t2)V(t2, t

′)ρI(t
′)
]

=

=
∑
a,b

∑
αβ∈{+,−}

−α(1+ξ)/2β i tr
{[

∆βα
ba (t1, t2)d†βbV(t1, t2)dαa + ξ∆αβ

ab (t2, t1)dβbV(t1, t2)d†αa

]
V(t1, t

′)ρI(t
′)
}

=

=
∑
a,b

∑
αβ∈{+,−}

−α(1+ξ)/2β i tr
{[

∆βα
ba (t1, t2)d†+bV(t1, t2)dαa + ξ∆αβ

ab (t2, t1)d+bV(t1, t2)d†αa

]
V(t1, t

′)ρI(t
′)
}

(C.9)
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By summing over β, one gets the two terms ∆+α
ba (t1, t2)−∆−αba (t1, t2) and ∆α+

ab (t2, t1)−∆α−
ab (t2, t1),

which vanish because of the following identities, holding for t1 > t2:

∆++(t1, t2) = ∆−+(t1, t2) ∆++(t2, t1) = ∆+−(t2, t1)

∆+−(t1, t2) = ∆−−(t1, t2) ∆−+(t2, t1) = ∆−−(t2, t1)

These identities hold because of the definition of ∆, given in the main text, in terms of contour time-

ordered Green functions, i.e. ∆α,β(t1, t2) ∼ −i〈TCc(t1, α)c†(t2, β)〉, and remembering that times on

the − contour branch come after times on the + one. Using these arguments, we notice that the trace

vanishes for the operators with the following structure, which include the self-energy, and this will be

useful to derive the formula for computing Green functions from V:

∑
β∈{+,−}

β tr
[
∆βα(t1, t2)Xβ•

]
= 0 (C.10)

∑
β∈{+,−}

β tr
[
∆αβ(t2, t1)Xβ•

]
= 0 (C.11)

Here Xβ is a generic super-operator acting only from the left (right), β = 1(−1), and • is a generic

target operator.

C.3.1 Spectral properties the propagator V

We call λi(t, t
′), vRi (t, t′), vLi (t, t′) the eigenvalues and right and left eigenvectors of V(t, t′), which

depend on time. As it preserves the trace, V(t, t′) must have at least one eigenvalue equal to one, say

λ0 ≡ 1. If we assume this eigenvalue is non-degenerate, then all the others eigenvectors with i 6= 0,

are traceless. The proof of these properties goes as follows. tr[V(t, t′)ρ] = tr [ρ] in the matrix notation

reads 〈1| ¯̄V(t, t′)|ρ〉 = 〈1|ρ〉 which holds for every |ρ〉 as the trace is preserved; then 〈1| must be a

left eigenvector of V(t, t′), 〈vL0 | ≡ 〈1|, with eigenvalue λ0 = 1. If we assume that there is only one

eigenvector with eigenvalue 1, then all the others right-eigenvectors of V(t, t′) must be orthogonal to

〈1|, that is they must have zero trace: 〈1|vRi (t, t′)〉 = tr
[
vRi (t, t′)

]
= 0, for i 6= 0.

C.4 Hermiticity preservation

A quantum dynamical map evolving the density operator should preserve its Hermiticity: will show

that this property is not spoiled by the NCA approximation. The proof is inductive and goes as showing

that, if V(t, t′) preserves Hermiticity, then V(t+dt, t′) does; given the initial condition V(t′, t′) = 1, that

obviously preserves Hermiticity, then it follows that V(t, t′) is Hermiticity preserving ∀t. Assuming

V(t, t′) is analytic in t, then its increment is given by its Taylor series

V(t+ dt, t′) = V(t, t′) + dt ∂tV(t, t′) +
dt2

2
∂2
t V(t, t′) + . . . (C.12)

From the Dyson equation (C.1), we can show that if V(t, t′) preserves Hermiticity, then all its

derivatives do, which in turn implies, from the Taylor expansion, that V(t+dt, t′) does. This ultimately

comes for the causal structure of the Dyson equation.
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We will restrict to show that ∂tV(t, t′) is Hermiticity preserving, assuming V(t, t′) is. This result

can be generalized to higher order derivatives, obtained by taking derivatives of the Dyson equation

(C.1), with two observations: the n-th derivative of V depends only on its lower order derivatives;

the structure of the equation for the n-th derivative is such that, if the lower order derivatives are

Hermiticity preserving, then also the n-th derivative is.

We now assume V(t, t′) Hermiticity preserving and show that this implies ∂tV(t, t′) also is. With •
an Hermitian operator, Hermiticity preservation of V means (V•)† = V•. L preserves Hermiticity as

it is a Lindblad generator. Then, taking the hermitian conjugate of the Dyson equation (C.1) we get

(
∂tV(t, t′)•

)†
=

(
LV(t, t′) •+

∫ t

t′
dt1Σ(t, t1)V(t1, t

′)•
)†

=

= LV(t, t′) •+

∫ t

t′
dt1
(
Σ(t, t1)V(t1, t

′)•
)† (C.13)

We need to determine the hermitian conjugate of Σ(t1, t2) •. Σ(t1, t2) in the NCA approximation is

given by (C.7) and it depends on the hybridization function ∆. Defining the Keldysh indices ᾱ = −α,

β̄ = −β and with ∗ meaning complex conjugation, the following property holds(
∆αβ(t1, t2)

)∗
= −∆β̄ᾱ(t2, t1)

that can be proven from the definition of ∆α,β(t1, t2) ∝ −i〈TCc(t1, α)c†(t2, β)〉 and writing down

explicitly its Keldysh components. It also holds that

(Xα•)† = X†ᾱ •†

as (X+•)† = (X•)† = •†X† = X†−•† and (X−•)† = (•X)† = X†•† = X†+•†. For a nested application

of super-operators as it appears in the self-energy, this property gives (X1αVX2β•)† = X†1ᾱVX
†
2β̄
•,

where we have used that the our ansaz for V preserves hermiticity and that • is hermitian. Using

these two results it follows that (Σ(t1, t2)•)† = Σ(t1, t2)• as

(Σ(t1, t2)•)† =

 ∑
αβ∈{+,−}

−α(1+ξ)/2βi
[
d†βV(t1, t2)dα∆βα(t1, t2) + ξdβV(t1, t2)d†α∆αβ(t2, t1)

]
•

† =

=
∑

αβ∈{+,−}

+α(1+ξ)/2βi
[
dβ̄V(t1, t2)d†ᾱ

(
−∆ᾱβ̄(t2, t1)

)
+ ξd†

β̄
V(t1, t2)dᾱ

(
−∆β̄ᾱ(t1, t2)

)]
• =

=
∑

ᾱβ̄∈{+,−}

ξ (−1)(1+ξ)/2 ᾱ(1+ξ)/2β̄i
[
ξdβ̄V(t1, t2)d†ᾱ∆ᾱβ̄(t2, t1) + d†

β̄
V(t1, t2)dᾱ∆β̄ᾱ(t1, t2)

]
• =

= Σ(t1, t2)•
(C.14)

In the one but last equality, ξ (−1)(1+ξ)/2 = −1, for both bosons and fermions (ξ = ±1). This
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completes the proof as

(
∂tV(t, t′)•

)†
= V(t, t′) •+

∫ t

t′
dt1
(
Σ(t, t1)V(t1, t

′)•
)†

=

= V(t, t′) •+

∫ t

t′
dt1Σ(t, t1)V(t1, t

′)• = ∂tV(t, t′)•
(C.15)

C.5 Green Functions

In this section we show how to compute impurity Green functions knowing V(t, t′). Writing the

Keldysh path integral of the impurity coupled to a bath as in Eq. (6.8) and integrating out the bath,

one obtains the expression for the partition function of the impurity

Z =

∫
D
[
d̄(t)d(t)

]
exp

iSimp − i
∫ ∞

0
dt1

∫ ∞
0

dt2
∑
αβ

d̄α(t1)αβ∆αβ(t1, t2)dβ(t2)

 (C.16)

where ∆ is the hybridization function in Eq. (6.15) and where the fields are expressed in the +−
basis and the indices α, β ∈ {+,−} are Keldysh indices. One-particle Green functions are obtained as

functional derivatives of the partition function

Gαβ
(
t, t′
)

= −i〈dα(t)d̄β(t′)〉 = αβξ
δZ

δ∆βα(t′, t)
(C.17)

The same partition function is obtained by Z = tr [ρI(∞)] = tr [V(∞, 0)ρI(0)]. Using the Dyson

equation (6.29) for V(∞, 0), we get

Gαβ(t, t′) = αβξtr

{∫ ∞
0

dt1

∫ t1

0
dt2

[
V0(∞, t1)

δΣ(t1, t2)

δ∆βα(t′, t)
V(t2, 0) + V0(∞, t1)Σ(t1, t2)

δV(t2, 0)

δ∆βα(t′, t)

]
ρ0

}
(C.18)

In the last expression we can drop all V0s as they leave the trace unchanged. The second contribution

to the trace vanishes because tr(Σ•) = 0 and we get that, for a generic self-energy

Gαβ(t, t′) = αβξtr

{∫ ∞
0

dt1

∫ t1

0
dt2

δΣ(t1, t2)

δ∆βα(t′, t)
V(t2, 0)ρ0

}
(C.19)

We now consider the NCA self-energy (6.31), which we report here dropping mode indices a, b for

simplicity

Σ(t1, t2) =
∑

αβ∈{+,−}

−α(1+ξ)/2βi
[
∆βα(t1, t2)d†βV(t1, t2)dα + ξ∆αβ(t2, t1)dβV(t1, t2)d†α

]
(C.20)

and take its functional derivative with respect to ∆. We get two contributions of the form '
tr
(
δ∆
δ∆X1VX2 + ∆X1

δV
δ∆X2

)
where the second one vanishes because it’s a trace of the type (C.10).

Remembering that t1 > t2 in the Dyson equation, we get

δΣ(t1, t2)

δ∆β,α(t′, t)
= −i

[
β(1+ξ)/2αξdαV(t, t′)d†βθ(t− t

′) + α(1+ξ)/2βd†βV(t′, t)dαθ(t
′ − t)

]
(C.21)
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The non-equilibrium Green functions are then given by

Gαβ(t, t′) = −i
{
β

1−ξ
2 tr

[
dαV(t, t′)d†βV(t′, 0)ρ0

]
θ(t− t′) + ξα

1−ξ
2 tr

[
d†βV(t′, t)dαV(t, 0)ρ0

]
θ(t′ − t)

}
(C.22)

This equation has the same form of quantum regression formulae 2.4.1 for one-particle Green functions

for Markovian systems. This result naturally generalizes the quantum regression formulae to our non-

Markovian NCA impurity solver.
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sity of states of a driven-dissipative nonlinear quantum resonator,” New Journal of

Physics 21, 043040 (2018).

[2] O. Scarlatella, R. Fazio, and M. Schiró, “Emergent finite frequency criticality of
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[22] B. Buča, J. Tindall, and D. Jaksch, “Non-stationary coherent quantum many-body

dynamics through dissipation,” Nature Communications 10, 1804.06744 (2019).

[23] F. Vicentini, F. Minganti, A. Biella, G. Orso, and C. Ciuti, “Optimal stochastic

unraveling of disordered open quantum systems: Application to driven-dissipative

photonic lattices,” Physical Review A 99, 032115 (2019).

[24] D. Kilda and J. Keeling, “Fluorescence spectrum and thermalization in a driven

coupled cavity array,” Physical Review Letters 122, 043602 (2017).

136

http://dx.doi.org/10.1103/PhysRevLett.100.216401
http://dx.doi.org/10.1103/PhysRevLett.100.216401
http://dx.doi.org/10.1073/pnas.1107970109
http://dx.doi.org/10.1073/pnas.1107970109
http://dx.doi.org/10.1103/PhysRevA.90.063821
http://dx.doi.org/10.1103/PhysRevA.90.063821
http://dx.doi.org/10.1103/PhysRevLett.116.143603
http://dx.doi.org/10.1103/PhysRevLett.116.143603
http://dx.doi.org/10.1103/PhysRevA.94.033801
http://dx.doi.org/10.1103/PhysRevA.94.033801
http://dx.doi.org/ 10.1103/PhysRevLett.119.190402
http://dx.doi.org/ 10.1103/PhysRevLett.119.190402
http://arxiv.org/abs/1801.05943
http://dx.doi.org/ 10.1088/1367-2630/aab7d3
http://dx.doi.org/ 10.1088/1367-2630/aab7d3
http://dx.doi.org/10.1103/PhysRevA.98.063815
http://dx.doi.org/ 10.1038/s41467-019-09757-y
http://dx.doi.org/10.1103/PhysRevA.99.032115
http://dx.doi.org/10.1103/PhysRevLett.122.043602


[25] R. Bouganne, M. B. Aguilera, A. Ghermaoui, J. Beugnon, and F. Gerbier, “Anoma-

lous momentum diffusion in a dissipative many-body system,” arXiv:1905.04808 .
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“Quantum phase transition from a superfluid to a Mott insulator in an ultracold gas

of atoms,” Physica B: Condensed Matter 329-333, 11–12 (2003).

[68] J. Simon, W. S. Bakr, R. Ma, M. E. Tai, P. M. Preiss, and M. Greiner, “Quantum

simulation of antiferromagnetic spin chains in an optical lattice,” Nature 472, 307–

312 (2011).

[69] M. Schreiber, S. S. Hodgman, P. Bordia, H. P. Lüschen, M. H. Fischer, R. Vosk,
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zacapo, U. Las Heras, L. Lamata, E. Solano, S. Filipp, and A. Wallraff, “Digital

quantum simulation of spin models with circuit quantum electrodynamics,” Physical

Review X 5, 21027 (2015).

[76] Y. Chen, P. Roushan, D. Sank, C. Neill, E. Lucero, M. Mariantoni, R. Barends,

B. Chiaro, J. Kelly, A. Megrant, J. Y. Mutus, P. J. J. O’Malley, A. Vainsencher,

J. Wenner, T. C. White, Y. Yin, A. N. Cleland, and J. M. Martinis, “Emulating

weak localization using a solid-state quantum circuit,” Nature Communications 5,

1–6 (2014).

[77] R. J. Schoelkopf and S. M. Girvin, “Wiring up quantum systems,” Nature 451,

664–669 (2008).

140

http://dx.doi.org/10.1126/science.269.5221.198
http://dx.doi.org/10.1126/science.269.5221.198
http://dx.doi.org/10.1016/S0921-4526(02)01872-0
http://dx.doi.org/10.1038/nature09994
http://dx.doi.org/10.1038/nature09994
http://dx.doi.org/10.1126/science.aaa7432
http://dx.doi.org/10.1103/RevModPhys.85.299
http://dx.doi.org/10.1103/RevModPhys.85.299
http://dx.doi.org/10.1063/1.58235
http://dx.doi.org/10.1063/1.58235
http://dx.doi.org/10.1088/0953-4075/38/9/007
http://dx.doi.org/10.1088/0953-4075/38/9/007
http://dx.doi.org/ 10.1088/2040-8978/18/10/104005
http://dx.doi.org/ 10.1088/2040-8978/18/10/104005
http://dx.doi.org/ 10.1103/PhysRevA.86.023837
http://dx.doi.org/ 10.1103/PhysRevA.86.023837
http://dx.doi.org/10.1103/PhysRevX.5.021027
http://dx.doi.org/10.1103/PhysRevX.5.021027
http://dx.doi.org/10.1038/ncomms6184
http://dx.doi.org/10.1038/ncomms6184
http://dx.doi.org/10.1038/451664a
http://dx.doi.org/10.1038/451664a


[78] U. Vool and M. Devoret, “Introduction to quantum electromagnetic circuits,” Inter-

national Journal of Circuit Theory and Applications 45, 897–934 (2017).

[79] B. D. Josephson, “The Discovery of Tunnelling Supercurrents,” Proceedings of the

IEEE 62, 838–841 (1974).

[80] J. F. Annett, Superconductivity, Superfluids and Condensates (Oxford University

Press, 2004).

[81] M. H. Devoret and J. M. Martinis, “Implementing Qubits with Superconducting In-

tegrated Circuits,” in Experimental Aspects of Quantum Computing , Vol. 3 (Springer

US, Boston, MA, 2004) pp. 163–203.

[82] C. Noh and D. G. Angelakis, “Quantum simulations and many-body physics with

light,” Reports on Progress in Physics 80, 16401 (2017).

[83] M. Leib, F. Deppe, A. Marx, R. Gross, and M. J. Hartmann, “Networks of nonlinear

superconducting transmission line resonators,” New Journal of Physics 14, 075024

(2012).

[84] R. Fazio and H. Van der Zant, “Quantum phase transitions and vortex dynamics in

superconducting networks,” Physics Report 355, 235–334 (2001).

[85] J. Bourassa, F. Beaudoin, J. M. Gambetta, and A. Blais, “Josephson-junction-

embedded transmission-line resonators: From Kerr medium to in-line transmon,”

Physical Review A 86, 013814 (2012).

[86] J. Raftery, D. Sadri, S. Schmidt, H. E. Türeci, A. A. Houck, H. E. Tureci, and
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Résumé : Ma thèse de doctorat était consacrée à
l’étude des systèmes quantiques à plusieurs corps
dissipatifs et pilotés. Ces systèmes représentent des
plateformes naturelles pour explorer des questions
fondamentales sur la matière dans des conditions de
non-équilibre, tout en ayant un impact potentiel sur
les technologies quantiques émergentes. Dans cette
thèse, nous discutons d’une décomposition spectrale
de fonctions de Green de systèmes ouverts marko-
viens, que nous appliquons à un modèle d’oscillateur
quantique de van der Pol. Nous soulignons qu’une
propriété de signe des fonctions spectrales des
systèmes d’équilibre ne s’imposait pas dans le cas de
systèmes ouverts, ce qui produisait une surprenante
”densité d’états négative”, avec des conséquences
physiques directes. Nous ensuite étudions la transi-
tion de phase entre une phase normale et une phase
superfluide dans un système prototype de bosons dis-
sipatifs forcés sur un réseau. Cette transition est ca-
ractérisée par une criticité à fréquence finie corres-

pondant à la rupture spontanée de l’invariance par
translation dans le temps, qui n’a pas d’analogue
dans des systèmes à l’équilibre. Nous discutons le
diagramme de phase en champ moyen d’une phase
isolante de Mott stabilisée par dissipation, potentielle-
ment pertinente pour des expériences en cours. Nos
résultats suggèrent qu’il existe un compromis entre la
fidélité de la phase stationnaire à un isolant de Mott et
la robustesse d’une telle phase à taux de saut fini. En-
fin, nous présentons des développements concernant
la théorie du champ moyen dynamique (DMFT) pour
l’étude des systèmes à plusieurs corps dissipatifs et
forcés. Nous introduisons DMFT dans le contexte des
modèles dissipatifs et forcés et nous développons une
méthode pour résoudre le problème auxiliaire d’une
impureté couplée simultanément à un environnement
markovien et à un environnement non-markovien. À
titre de test, nous appliquons cette nouvelle méthode
à un modèle simple d’impureté fermionique.

Title : Driven-Dissipative Quantum Many-Body Systems
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Abstract : My PhD was devoted to the study of driven-
dissipative quantum many-body systems. These sys-
tems represent natural platforms to explore funda-
mental questions about matter under non-equilibrium
conditions, having at the same time a potential impact
on emerging quantum technologies. In this thesis, we
discuss a spectral decomposition of single-particle
Green functions of Markovian open systems, that we
applied to a model of a quantum van der Pol oscilla-
tor. We point out that a sign property of spectral func-
tions of equilibrium systems doesn’t hold in the case
of open systems, resulting in a surprising “negative
density of states”, with direct physical consequences.
We study the phase transition between a normal and
a superfluid phase in a prototype system of driven-
dissipative bosons on a lattice. This transition is cha-
racterized by a finite-frequency criticality correspon-

ding to the spontaneous break of time-translational in-
variance, which has no analog in equilibrium systems.
Later, we discuss the mean-field phase diagram of a
Mott insulating phase stabilized by dissipation, which
is potentially relevant for ongoing experiments. Our re-
sults suggest that there is a trade off between the fi-
delity of the stationary phase to a Mott insulator and
robustness of such a phase at finite hopping. Finally,
we present some developments towards using dyna-
mical mean field theory (DMFT) for studying driven-
dissipative lattice systems. We introduce DMFT in the
context of driven-dissipative models and developed a
method to solve the auxiliary problem of a single im-
purity, coupled simultaneously to a Markovian and a
non-Markovian environment. As a test, we apply this
novel method to a simple model of a fermionic, single-
mode impurity.
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