D. Silva, N. S. Klein, and U. , Dynamics of B cells in germinal centres, Nat Rev Immunol, vol.15, issue.3, 2015.

S. L. Nutt, P. D. Hodgkin, D. M. Tarlinton, and L. M. Corcoran, The generation of antibody-secreting plasma cells, Nat Rev Immunol, vol.15, issue.3, 2015.

T. Recaldin and D. J. Fear, Transcription factors regulating B cell fate in the germinal centre, Clinical and experimental immunology, vol.183, issue.1, 2016.

L. A. Garrett-sinha, Review of Ets1 structure, function, and roles in immunity, Cell Mol Life Sci, vol.70, issue.18, 2013.

J. C. Bories, D. M. Willerford, D. Grevin, L. Davidson, A. Camus et al., Increased T-cell apoptosis and terminal B-cell differentiation induced by inactivation of the Ets-1 proto-oncogene, Nature, vol.377, issue.6550, 1995.

A. D. Sharrocks, The ETS-domain transcription factor family, Nat Rev Mol Cell Biol, vol.2, issue.11, pp.827-864, 2001.

P. C. Hollenhorst, L. P. Mcintosh, and B. J. Graves, Genomic and biochemical insights into the specificity of ETS transcription factors, Annu Rev Biochem, vol.80, 2011.

E. W. Scott, M. C. Simon, J. Anastasi, and H. Singh, Requirement of transcription factor PU.1 in the development of multiple hematopoietic lineages, Science, vol.265, issue.5178, pp.1573-1580, 1994.

W. D. Cook, B. J. Mccaw, C. Herring, D. L. John, S. J. Foote et al., 1 is a suppressor of myeloid leukemia, inactivated in mice by gene deletion and mutation of its DNA binding domain, Blood, vol.104, issue.12, 2004.

F. Rosenbauer, K. Wagner, J. L. Kutok, H. Iwasaki, L. Beau et al., Acute myeloid leukemia induced by graded reduction of a lineage-specific transcription factor, PU.1, Nat Genet, vol.36, issue.6, 2004.

H. Iwasaki, C. Somoza, H. Shigematsu, E. A. Duprez, J. Iwasaki-arai et al., Distinctive and indispensable roles of PU.1 in maintenance of hematopoietic stem cells and their differentiation, Blood, vol.106, issue.5, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00187635

S. L. Nutt and B. L. Kee, The transcriptional regulation of B cell lineage commitment, Immunity, vol.26, issue.6, 2007.

S. Carotta, S. N. Willis, J. Hasbold, M. Inouye, S. H. Pang et al., The transcription factors IRF8 and PU.1 negatively regulate plasma cell differentiation, J Exp Med, vol.211, issue.11, 2014.

D. Lu, R. Nakagawa, S. Lazzaro, P. Staudacher, C. Abreu-goodger et al., The miR-155-PU.1 axis acts on Pax5 to enable efficient terminal B cell differentiation, J Exp Med, vol.211, issue.11, 2014.

S. N. Willis, J. Tellier, Y. Liao, S. Trezise, A. Light et al., Environmental sensing by mature B cells is controlled by the transcription factors PU.1 and SpiB, Nat Commun, vol.8, issue.1, 2017.

B. U. Mueller, T. Pabst, M. Osato, N. Asou, L. M. Johansen et al., Heterozygous PU.1 mutations are associated with acute myeloid leukemia, Blood, vol.100, issue.3, pp.998-1007, 2002.

V. P. Lavallee, I. Baccelli, J. Krosl, B. Wilhelm, F. Barabe et al., The transcriptomic landscape and directed chemical interrogation of MLL-rearranged acute myeloid leukemias, Nat Genet, vol.47, issue.9, 2015.

M. Seki, S. Kimura, T. Isobe, K. Yoshida, H. Ueno et al., Recurrent SPI1 (PU.1) fusions in high-risk pediatric T cell acute lymphoblastic leukemia, Nat Genet, vol.49, issue.8, 2017.

K. Basso and R. Dalla-favera, Germinal centres and B cell lymphomagenesis, Nat Rev Immunol, vol.15, issue.3, pp.172-84, 2015.

R. E. Davis, V. N. Ngo, G. Lenz, P. Tolar, R. M. Young et al., Chronic active B-cell-receptor signalling in diffuse large B-cell lymphoma, Nature, vol.463, issue.7277, 2010.

V. N. Ngo, R. M. Young, R. Schmitz, S. Jhavar, W. Xiao et al., Oncogenically active MYD88 mutations in human lymphoma, Nature, vol.470, issue.7332, 2011.

G. Knittel, P. Liedgens, D. Korovkina, J. M. Seeger, Y. Al-baldawi et al., B-cell-specific conditional expression of Myd88p.L252P leads to the development of diffuse large B-cell lymphoma in mice, Blood, vol.127, issue.22, 2016.

S. P. Treon, L. Xu, G. Yang, Y. Zhou, X. Liu et al., MYD88 L265P somatic mutation in Waldenstrom's macroglobulinemia, N Engl J Med, vol.367, issue.9, 2012.

R. G. Owen, S. P. Treon, A. Al-katib, R. Fonseca, P. R. Greipp et al., Clinicopathological definition of Waldenstrom's macroglobulinemia: consensus panel recommendations from the Second International Workshop on Waldenstrom's Macroglobulinemia, Semin Oncol, vol.30, issue.2, 2003.

F. Nguyen-khac, J. Lambert, E. Chapiro, A. Grelier, S. Mould et al., Chromosomal aberrations and their prognostic value in a series of 174 untreated patients with Waldenstrom's macroglobulinemia, Haematologica, vol.98, issue.4, pp.649-54, 2013.

F. Damm, E. Mylonas, A. Cosson, K. Yoshida, D. Valle et al., Acquired initiating mutations in early hematopoietic cells of CLL patients, Cancer Discov, vol.4, issue.9, 2014.

Z. R. Hunter, L. Xu, G. Yang, Y. Zhou, X. Liu et al., The genomic landscape of Waldenstrom macroglobulinemia is characterized by highly recurring MYD88 and WHIM-like CXCR4 mutations, and small somatic deletions associated with B-cell lymphomagenesis, Blood, vol.123, issue.11, 2014.

L. Quek, G. W. Otto, C. Garnett, L. Lhermitte, D. Karamitros et al., Genetically distinct leukemic stem cells in human CD34-acute myeloid leukemia are arrested at a hemopoietic precursor-like stage, J Exp Med, vol.213, issue.8, 2016.

A. L. Shaffer, G. Wright, L. Yang, J. Powell, V. Ngo et al., A library of gene expression signatures to illuminate normal and pathological lymphoid biology, Immunol Rev, vol.210, pp.67-85, 2006.

S. Malinge, C. Ragu, V. Della-valle, D. Pisani, S. N. Constantinescu et al., Activating mutations in human acute megakaryoblastic leukemia, Blood, vol.112, issue.10, pp.4220-4226, 2008.

J. Calvo, A. Benyoucef, J. Baijer, M. C. Rouyez, and F. Pflumio, Assessment of human multi-potent hematopoietic stem/progenitor cell potential using a single in vitro screening system, PLoS One, vol.7, issue.11, 2012.

C. Quivoron, L. Couronne, D. Valle, V. Lopez, C. K. Plo et al., DNA binding specificities of Spi-1/PU.1 and Spi-B transcription factors and identification of a Spi-1/Spi-B binding site in the c-fes/c-fps promoter, Cancer Cell, vol.20, issue.1, pp.303-316, 1995.

M. Ridinger-saison, V. Boeva, P. Rimmele, I. Kulakovskiy, I. Gallais et al., Spi-1/PU.1 activates transcription through clustered DNA occupancy in erythroleukemia, Nucleic Acids Res, vol.40, issue.18, pp.8927-8968, 2012.

J. Ernst and M. Kellis, Chromatin-state discovery and genome annotation with ChromHMM, Nat Protoc, vol.12, issue.12, 2017.

M. D. David, D. Petit, and J. Bertoglio, The RhoGAP ARHGAP19 controls cytokinesis and chromosome segregation in T lymphocytes, J Cell Sci, vol.127, issue.2, 2014.

A. Reddy, J. Zhang, N. S. Davis, A. B. Moffitt, C. L. Love et al., Genetic and Functional Drivers of Diffuse Large B Cell Lymphoma, Cell, vol.171, issue.2, pp.481-94, 2017.

S. Kasar, J. Kim, R. Improgo, G. Tiao, P. Polak et al., Whole-genome sequencing reveals activation-induced cytidine deaminase signatures during indolent chronic lymphocytic leukaemia evolution, Nat Commun, vol.6, pp.8866-8876, 2015.

G. H. Wei, G. Badis, M. F. Berger, T. Kivioja, K. Palin et al., Genome-wide analysis of ETS-family DNA-binding in vitro and in vivo, EMBO J, vol.29, issue.13, 2010.

P. Laslo, J. M. Pongubala, D. W. Lancki, and H. Singh, Gene regulatory networks directing myeloid and lymphoid cell fates within the immune system, Semin Immunol, vol.20, issue.4, 2008.

J. Q. Wang, Y. S. Jeelall, B. Beutler, K. Horikawa, and C. C. Goodnow, Consequences of the recurrent MYD88(L265P) somatic mutation for B cell tolerance, J Exp Med, vol.211, issue.3, pp.413-439, 2014.

M. Ceribelli, P. N. Kelly, A. L. Shaffer, G. W. Wright, X. W. Yang et al., Blockade of oncogenic IkappaB kinase activity in diffuse large B-cell lymphoma by bromodomain and extraterminal domain protein inhibitors, Proc Natl Acad Sci, vol.111, issue.31, 2014.

Y. Yang, A. L. Shaffer, N. C. Emre, M. Ceribelli, M. Zhang et al., Exploiting synthetic lethality for the therapy of ABC diffuse large B cell lymphoma, Cancer Cell, vol.21, issue.6, pp.723-760, 2012.

R. Kodandapani, F. Pio, C. Z. Ni, G. Piccialli, M. Klemsz et al., A new pattern for helix-turnhelix recognition revealed by the PU.1 ETS-domain-DNA complex, Nature, vol.380, issue.6573, 1996.

L. A. Solomon, S. K. Li, J. Piskorz, L. S. Xu, and R. P. Dekoter, Genome-wide comparison of PU.1 and Spi-B binding sites in a mouse B lymphoma cell line, BMC Genomics, vol.16, p.76, 2015.

P. Saelee, A. Kearly, S. L. Nutt, and L. A. Garrett-sinha, Genome-Wide Identification of Target Genes for the Key B Cell Transcription Factor Ets1, Front Immunol, vol.8, p.383, 2017.

D. O. Cowley and B. J. Graves, Phosphorylation represses Ets-1 DNA binding by reinforcing autoinhibition, Genes Dev, vol.14, issue.3, pp.366-76, 2000.

, Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France monocyte-to-osteoclast differentiation, Genome Biol, vol.14, issue.9, 2013.

D. A. Landau, E. Tausch, A. N. Taylor-weiner, C. Stewart, J. G. Reiter et al., Mutations driving CLL and their evolution in progression and relapse, Nature, vol.526, issue.7574, 2015.

R. D. Morin, M. Mendez-lago, A. J. Mungall, R. Goya, K. L. Mungall et al., Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma, Nature, vol.476, issue.7360, 2011.

X. Zhang, P. S. Choi, J. M. Francis, G. F. Gao, J. D. Campbell et al., Somatic Superenhancer Duplications and Hotspot Mutations Lead to Oncogenic Activation of the KLF5 Transcription Factor, Cancer Discov, vol.8, issue.1, pp.108-133, 2018.

S. A. Tomlins, D. R. Rhodes, S. Perner, S. M. Dhanasekaran, R. Mehra et al., Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer, Science, vol.310, issue.5748, 2005.

O. Delattre, J. Zucman, B. Plougastel, C. Desmaze, T. Melot et al., Gene fusion with an ETS DNA-binding domain caused by chromosome translocation in human tumours, Nature, vol.359, issue.6391, 1992.

G. Lenz, I. Nagel, R. Siebert, A. V. Roschke, W. Sanger et al., Aberrant immunoglobulin class switch recombination and switch translocations in activated B cell-like diffuse large B cell lymphoma, J Exp Med, vol.204, issue.3, pp.633-676, 2007.

P. Bonetti, M. Testoni, M. Scandurra, M. Ponzoni, R. Piva et al., Deregulation of ETS1 and FLI1 contributes to the pathogenesis of diffuse large B-cell lymphoma, Blood, vol.122, issue.13, pp.2233-2274, 2013.

L. Pasqualucci, V. Trifonov, G. Fabbri, J. Ma, D. Rossi et al., Analysis of the coding genome of diffuse large B-cell lymphoma, Nat Genet, vol.43, issue.9, 2011.

X. K. Zhang, O. Moussa, A. Larue, S. Bradshaw, I. Molano et al., The transcription factor Fli-1 modulates marginal zone and follicular B cell development in mice, J Immunol, vol.181, issue.3, pp.1644-54, 2008.

H. H. Xue, J. Bollenbacher-reilley, Z. Wu, R. Spolski, X. Jing et al., The transcription factor GABP is a critical regulator of B lymphocyte development, Immunity, vol.26, issue.4, pp.421-452, 2007.

R. P. Dekoter, M. Geadah, S. Khoosal, L. S. Xu, G. Thillainadesan et al., Regulation of follicular B cell differentiation by the related E26 transformation-specific transcription factors PU.1, Spi-B, and Spi-C, J Immunol, vol.185, issue.12, 2010.

S. A. John, J. L. Clements, L. M. Russell, and L. A. Garrett-sinha, Ets-1 regulates plasma cell differentiation by interfering with the activity of the transcription factor Blimp-1, J Biol Chem, vol.283, issue.2, pp.951-62, 2008.

B. A. Walker, E. M. Boyle, C. P. Wardell, A. Murison, D. B. Begum et al., Mutational Spectrum, Copy Number Changes, and Outcome: Results of a Sequencing Study of Patients With Newly Diagnosed Myeloma, J Clin Oncol, vol.33, issue.33, 2015.

G. Lu, R. E. Middleton, H. Sun, M. Naniong, C. J. Ott et al., The myeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins, Science, vol.343, issue.6168, pp.305-314, 2014.

R. R. Hardy, C. E. Carmack, S. A. Shinton, J. D. Kemp, and K. Hayakawa, Resolution and characterization of pro-B and pre-pro-B cell stages in normal mouse bone marrow, J Exp Med, vol.173, pp.1213-1238, 1991.

T. S. Heng and M. W. Painter, Immunological Genome Project, C. The Immunological Genome Project: networks of gene expression in immune cells, Nat Immunol, vol.9, pp.1091-1095, 2008.

E. Laurenti and B. Gottgens, From haematopoietic stem cells to complex differentiation landscapes, Nature, vol.553, issue.7689, pp.418-444, 2018.

A. Vedi, A. Santoro, C. F. Dunant, J. E. Dick, and E. Laurenti, Molecular landscapes of human hematopoietic stem cells in health and leukemia, Ann N Y Acad Sci, vol.1370, issue.1, pp.5-14, 2016.

G. M. Crane, E. Jeffery, and S. J. Morrison, Adult haematopoietic stem cell niches, Nat Rev Immunol, vol.17, issue.9, pp.573-90, 2017.

I. L. Weissman, D. J. Anderson, and F. Gage, Stem and progenitor cells: origins, phenotypes, lineage commitments, and transdifferentiations, Annu Rev Cell Dev Biol, vol.17, pp.387-403, 2001.

J. Adolfsson, R. Mansson, N. Buza-vidas, A. Hultquist, K. Liuba et al., Identification of Flt3+ lymphomyeloid stem cells lacking erythro-megakaryocytic potential a revised road map for adult blood lineage commitment, Cell, vol.121, issue.2, pp.295-306, 2005.

A. Hussen, K. Vu-manh, T. P. Guimiot, F. Nelson, E. Chabaane et al., Molecular and Functional Characterization of Lymphoid Progenitor Subsets Reveals a Bipartite Architecture of Human Lymphopoiesis, Immunity, vol.47, issue.4, pp.680-96, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-01624830

M. S. Schlissel, Regulating antigen-receptor gene assembly, Nat Rev Immunol, vol.3, issue.11, pp.890-899, 2003.

F. Weisel and M. Shlomchik, Memory B Cells of Mice and Humans, Annu Rev Immunol, vol.35, pp.255-84, 2017.

V. G. Martin, Y. B. Wu, C. L. Townsend, G. H. Lu, J. S. O'hare et al., Transitional B Cells in Early Human B Cell Development -Time to Revisit the Paradigm? Front Immunol, vol.7, p.546, 2016.

T. W. Lebien and T. F. Tedder, B lymphocytes: how they develop and function, Blood, vol.112, issue.5, pp.1570-80, 2008.

Q. Wei and P. S. Frenette, Niches for Hematopoietic Stem Cells and Their Progeny, Immunity, vol.48, issue.4, pp.632-680, 2018.

M. R. Clark, M. Mandal, K. Ochiai, and H. Singh, Orchestrating B cell lymphopoiesis through interplay of IL-7 receptor and pre-B cell receptor signalling, Nat Rev Immunol, vol.14, issue.2, pp.69-80, 2014.

R. P. Dekoter, B. L. Schweitzer, M. B. Kamath, D. Jones, H. Tagoh et al., Regulation of the interleukin-7 receptor alpha promoter by the Ets transcription factors PU.1 and GA-binding protein in developing B cells, J Biol Chem, vol.282, pp.14194-204, 2007.

P. Papathanasiou, J. L. Attema, H. Karsunky, N. Hosen, Y. Sontani et al., Self-renewal of the long-term reconstituting subset of hematopoietic stem cells is regulated by Ikaros, Stem Cells, vol.27, issue.12, pp.3082-92, 2009.

K. Kikuchi, A. Y. Lai, C. L. Hsu, and M. Kondo, IL-7 receptor signaling is necessary for stage transition in adult B cell development through up-regulation of EBF, J Exp Med, vol.201, issue.8, pp.1197-203, 2005.

T. Maeda, T. Merghoub, R. M. Hobbs, L. Dong, M. Maeda et al., Regulation of B versus T lymphoid lineage fate decision by the proto-oncogene LRF, Science, vol.316, issue.5826, pp.860-866, 2007.

E. Bertolino, K. Reddy, K. L. Medina, E. Parganas, J. Ihle et al., Regulation of interleukin 7-dependent immunoglobulin heavy-chain variable gene rearrangements by transcription factor STAT5, Nat Immunol, vol.6, issue.8, pp.836-879, 2005.

M. Fuxa, J. Skok, A. Souabni, G. Salvagiotto, E. Roldan et al., Pax5 induces V-to-DJ rearrangements and locus contraction of the immunoglobulin heavy-chain gene, Genes Dev, vol.18, issue.4, pp.411-433, 2004.

K. Lassoued, C. A. Nunez, L. Billips, H. Kubagawa, R. C. Monteiro et al., Expression of surrogate light chain receptors is restricted to a late stage in pre-B cell differentiation, Cell, vol.73, issue.1, pp.73-86, 1993.

H. Wardemann, S. Yurasov, A. Schaefer, J. W. Young, E. Meffre et al., Predominant autoantibody production by early human B cell precursors, Science, vol.301, issue.5638, pp.1374-1381, 2003.

D. Nemazee and K. Buerki, Clonal deletion of autoreactive B lymphocytes in bone marrow chimeras, Proc Natl Acad Sci U S A, vol.86, issue.20, pp.8039-8082, 1989.

C. C. Goodnow, J. Crosbie, S. Adelstein, T. B. Lavoie, S. J. Smith-gill et al., Altered immunoglobulin expression and functional silencing of self-reactive B lymphocytes in transgenic mice, Nature, vol.334, issue.6184, pp.676-82, 1988.

D. Gay, T. Saunders, S. Camper, and M. Weigert, Receptor editing: an approach by autoreactive B cells to escape tolerance, J Exp Med, vol.177, issue.4, pp.999-1008, 1993.

Z. Sabouri, S. Perotti, E. Spierings, P. Humburg, M. Yabas et al., IgD attenuates the IgM-induced anergy response in transitional and mature B cells, Nat Commun, vol.7, p.13381, 2016.

G. P. Sims, R. Ettinger, Y. Shirota, C. H. Yarboro, G. G. Illei et al., Identification and characterization of circulating human transitional B cells, Blood, vol.105, issue.11, pp.4390-4398, 2005.

A. Cerutti, M. Cols, and I. Puga, Marginal zone B cells: virtues of innate-like antibody-producing lymphocytes, Nat Rev Immunol, vol.13, issue.2, pp.118-150, 2013.

M. Seifert and R. Kuppers, Human memory B cells, Leukemia, vol.30, issue.12, pp.2283-92, 2016.

J. C. Weill, S. Weller, and C. A. Reynaud, Human marginal zone B cells, Annu Rev Immunol, vol.27, pp.267-85, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00338311

D. Bagnara, M. Squillario, D. Kipling, T. Mora, A. M. Walczak et al., A Reassessment of IgM Memory Subsets in Humans, J Immunol, vol.195, issue.8, pp.3716-3740, 2015.

D. Silva, N. S. Klein, and U. , Dynamics of B cells in germinal centres, Nat Rev Immunol, vol.15, issue.3, pp.137-185, 2015.

S. L. Nutt, P. D. Hodgkin, D. M. Tarlinton, and L. M. Corcoran, The generation of antibody-secreting plasma cells, Nat Rev Immunol, vol.15, issue.3, pp.160-71, 2015.

L. Mesin, J. Ersching, and G. D. Victora, Germinal Center B Cell Dynamics. Immunity, vol.45, issue.3, pp.471-82, 2016.

F. D. Batista and N. E. Harwood, Control systems and decision making for antibody production, Goodnow CC, vol.9, pp.681-689, 2009.

J. G. Cyster, B cell follicles and antigen encounters of the third kind, Nat Immunol, vol.11, issue.11, pp.989-96, 2010.

D. Paus, T. G. Phan, T. D. Chan, S. Gardam, A. Basten et al., Antigen recognition strength regulates the choice between extrafollicular plasma cell and germinal center B cell differentiation, J Exp Med, vol.203, issue.4, pp.1081-91, 2006.

T. D. Chan, S. Gardam, D. Gatto, V. M. Turner, J. Silke et al., In vivo control of B-cell survival and antigen-specific B-cell responses, Immunol Rev, vol.237, issue.1, pp.90-103, 2010.

T. A. Schwickert, G. D. Victora, D. R. Fooksman, A. O. Kamphorst, M. R. Mugnier et al., A dynamic T celllimited checkpoint regulates affinity-dependent B cell entry into the germinal center, J Exp Med, vol.208, issue.6, pp.1243-52, 2011.

S. M. Kerfoot, G. Yaari, J. R. Patel, K. L. Johnson, D. G. Gonzalez et al., Germinal center B cell and T follicular helper cell development initiates in the interfollicular zone, Immunity, vol.34, issue.6, pp.947-60, 2011.

M. Kitano, S. Moriyama, Y. Ando, M. Hikida, Y. Mori et al., Bcl6 protein expression shapes pregerminal center B cell dynamics and follicular helper T cell heterogeneity, Immunity, vol.34, issue.6, pp.961-72, 2011.

G. D. Victora, D. Dominguez-sola, A. B. Holmes, S. Deroubaix, R. Dalla-favera et al., Identification of human germinal center light and dark zone cells and their relationship to human B-cell lymphomas, Blood, vol.120, issue.11, pp.2240-2248, 2012.

C. D. Allen, K. M. Ansel, C. Low, R. Lesley, H. Tamamura et al., Germinal center dark and light zone organization is mediated by CXCR4 and CXCR5, Nat Immunol, vol.5, issue.9, pp.943-52, 2004.

G. Caron, L. Gallou, S. Lamy, T. Tarte, K. Fest et al., CXCR4 expression functionally discriminates centroblasts versus centrocytes within human germinal center B cells, J Immunol, vol.182, issue.12, pp.7595-602, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00869387

C. G. Vinuesa, M. A. Linterman, C. C. Goodnow, and K. L. Randall, T cells and follicular dendritic cells in germinal center Bcell formation and selection, Immunol Rev, vol.237, issue.1, pp.72-89, 2010.

Z. Xu, H. Zan, E. J. Pone, T. Mai, and P. Casali, Immunoglobulin class-switch DNA recombination: induction, targeting and beyond, Nat Rev Immunol, vol.12, issue.7, pp.517-548, 2012.

T. Kurosaki, K. Kometani, and W. Ise, Memory B cells, Nat Rev Immunol, vol.15, issue.3, pp.149-59, 2015.

M. Shapiro-shelef and K. Calame, Regulation of plasma-cell development, Nat Rev Immunol, vol.5, issue.3, pp.230-272, 2005.

K. A. Fairfax, A. Kallies, S. L. Nutt, and D. M. Tarlinton, Plasma cell development: from B-cell subsets to long-term survival niches, Semin Immunol, vol.20, issue.1, pp.49-58, 2008.

I. C. Maclennan, K. M. Toellner, A. F. Cunningham, K. Serre, D. M. Sze et al., Extrafollicular antibody responses, Immunol Rev, vol.194, pp.8-18, 2003.

M. J. Shlomchik and F. Weisel, Germinal center selection and the development of memory B and plasma cells, Immunol Rev, vol.247, issue.1, pp.52-63, 2012.

S. L. Nutt and D. M. Tarlinton, Germinal center B and follicular helper T cells: siblings, cousins or just good friends?, Nat Immunol, vol.12, issue.6, pp.472-479, 2011.

A. Radbruch, G. Muehlinghaus, E. O. Luger, A. Inamine, K. G. Smith et al., Competence and competition: the challenge of becoming a long-lived plasma cell, Nat Rev Immunol, vol.6, issue.10, pp.741-50, 2006.

K. Kometani, R. Nakagawa, R. Shinnakasu, T. Kaji, A. Rybouchkin et al., Repression of the transcription factor Bach2 contributes to predisposition of IgG1 memory B cells toward plasma cell differentiation, Immunity, vol.39, issue.1, pp.136-183, 2013.

S. L. Nutt, N. Taubenheim, J. Hasbold, L. M. Corcoran, and P. D. Hodgkin, The genetic network controlling plasma cell differentiation, Semin Immunol, vol.23, issue.5, pp.341-350, 2011.

S. H. Swerdlow, E. Campo, S. A. Pileri, N. L. Harris, H. Stein et al., The 2016 revision of the World Health Organization classification of lymphoid neoplasms, Blood, vol.127, issue.20, pp.2375-90, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01800015

A. A. Alizadeh, M. B. Eisen, R. E. Davis, C. Ma, I. S. Lossos et al., Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling, Nature, vol.403, issue.6769, pp.503-514, 2000.

A. Rosenwald, A. A. Alizadeh, G. Widhopf, R. Simon, R. E. Davis et al., Relation of gene expression phenotype to immunoglobulin mutation genotype in B cell chronic lymphocytic leukemia, J Exp Med, vol.194, issue.11, pp.1639-1686, 2001.

U. Klein, Y. Tu, G. A. Stolovitzky, M. Mattioli, G. Cattoretti et al., Gene expression profiling of B cell chronic lymphocytic leukemia reveals a homogeneous phenotype related to memory B cells, J Exp Med, vol.194, issue.11, pp.1625-1663, 2001.

G. Wright, B. Tan, A. Rosenwald, E. H. Hurt, A. Wiestner et al., A gene expression-based method to diagnose clinically distinct subgroups of diffuse large B cell lymphoma, Proc Natl Acad Sci, vol.100, issue.17, pp.9991-9997, 2003.

S. S. Dave, K. Fu, G. W. Wright, L. T. Lam, P. Kluin et al., Molecular diagnosis of Burkitt's lymphoma, N Engl J Med, vol.354, issue.23, pp.2431-2473, 2006.

P. G. Isaacson and M. Q. Du, MALT lymphoma: from morphology to molecules, Nat Rev Cancer, vol.4, issue.8, pp.644-53, 2004.

K. Basso, A. Liso, E. Tiacci, R. Benedetti, A. Pulsoni et al., Gene expression profiling of hairy cell leukemia reveals a phenotype related to memory B cells with altered expression of chemokine and adhesion receptors, J Exp Med, vol.199, issue.1, pp.59-68, 2004.

P. G. Isaacson, A. J. Norton, and B. J. Addis, The human thymus contains a novel population of B lymphocytes, Lancet, vol.2, issue.8574, pp.1488-91, 1987.

L. Pasqualucci, R. Guglielmino, J. Houldsworth, J. Mohr, S. Aoufouchi et al., Expression of the AID protein in normal and neoplastic B cells, Blood, vol.104, issue.10, pp.3318-3343, 2004.

A. R. Ramiro, M. Jankovic, T. Eisenreich, S. Difilippantonio, S. Chen-kiang et al., AID is required for c-myc/IgH chromosome translocations in vivo, Cell, vol.118, issue.4, pp.431-439, 2004.

R. Kuppers, Mechanisms of B-cell lymphoma pathogenesis, Nat Rev Cancer, vol.5, issue.4, pp.251-62, 2005.

M. R. Clark, A. Tanaka, S. E. Powers, and M. Veselits, Receptors, subcellular compartments and the regulation of peripheral B cell responses: the illuminating state of anergy, Mol Immunol, vol.48, issue.11, pp.1281-1287, 2011.

J. M. Dal-porto, S. B. Gauld, K. T. Merrell, D. Mills, and A. E. Pugh-bernard, Cambier J. B cell antigen receptor signaling

, Mol Immunol, vol.41, issue.6-7, pp.599-613, 2004.

M. Thome, J. E. Charton, C. Pelzer, and S. Hailfinger, Antigen receptor signaling to NF-kappaB via CARMA1, BCL10, and MALT1, Cold Spring Harb Perspect Biol, vol.2, issue.9, p.3004, 2010.

T. Kurosaki and M. Hikida, Tyrosine kinases and their substrates in B lymphocytes, Immunol Rev, vol.228, issue.1, pp.132-180, 2009.

R. E. Davis, V. N. Ngo, G. Lenz, P. Tolar, R. M. Young et al., Chronic active B-cell-receptor signalling in diffuse large B-cell lymphoma, Nature, vol.463, issue.7277, pp.88-92, 2010.

R. Schmitz, R. M. Young, M. Ceribelli, S. Jhavar, W. Xiao et al., Burkitt lymphoma pathogenesis and therapeutic targets from structural and functional genomics, Nature, vol.490, issue.7418, pp.116-136, 2012.

M. Compagno, W. K. Lim, A. Grunn, S. V. Nandula, M. Brahmachary et al., Mutations of multiple genes cause deregulation of NF-kappaB in diffuse large B-cell lymphoma, Nature, vol.459, issue.7247, pp.717-738, 2009.

A. Rosenwald, G. Wright, W. C. Chan, J. M. Connors, E. Campo et al., The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma, N Engl J Med, vol.346, issue.25, pp.1937-1984, 2002.

G. Lenz, R. E. Davis, V. N. Ngo, L. Lam, T. C. George et al., Oncogenic CARD11 mutations in human diffuse large B cell lymphoma, Science, vol.319, issue.5870, pp.1676-1685, 2008.

S. B. Gauld, J. M. Dal-porto, and J. C. Cambier, B cell antigen receptor signaling: roles in cell development and disease, Science, vol.296, issue.5573, pp.1641-1643, 2002.

K. P. Lam, R. Kuhn, and K. Rajewsky, In vivo ablation of surface immunoglobulin on mature B cells by inducible gene targeting results in rapid cell death, Cell, vol.90, issue.6, pp.1073-83, 1997.

M. Kraus, M. B. Alimzhanov, N. Rajewsky, and K. Rajewsky, Survival of resting mature B lymphocytes depends on BCR signaling via the Igalpha/beta heterodimer, Cell, vol.117, issue.6, pp.787-800, 2004.

M. Thome and . Carma1, BCL-10 and MALT1 in lymphocyte development and activation, Nat Rev Immunol, vol.4, issue.5, pp.348-59, 2004.

R. M. Young, T. Wu, R. Schmitz, M. Dawood, W. Xiao et al., Survival of human lymphoma cells requires B-cell receptor engagement by self-antigens, Proc Natl Acad Sci, vol.112, issue.44, pp.13447-54, 2015.

W. H. Wilson, R. M. Young, R. Schmitz, Y. Yang, S. Pittaluga et al., Targeting B cell receptor signaling with ibrutinib in diffuse large B cell lymphoma, Nat Med, vol.21, issue.8, pp.922-928, 2015.

B. L. Kee, E and ID proteins branch out, Nat Rev Immunol, vol.9, issue.3, pp.175-84, 2009.

J. Richter, M. Schlesner, S. Hoffmann, M. Kreuz, E. Leich et al., Recurrent mutation of the ID3 gene in Burkitt lymphoma identified by integrated genome, exome and transcriptome sequencing, Nat Genet, vol.44, issue.12, pp.1316-1336, 2012.

F. Mackay and P. Schneider, Cracking the BAFF code, Nat Rev Immunol, vol.9, issue.7, pp.491-502, 2009.

K. Warnatz, U. Salzer, M. Rizzi, B. Fischer, S. Gutenberger et al., B-cell activating factor receptor deficiency is associated with an adult-onset antibody deficiency syndrome in humans, Proc Natl Acad Sci, vol.106, issue.33, pp.13945-50, 2009.

J. V. Almaden, Y. C. Liu, Y. E. Otero, D. C. Birnbaum, H. Davis-turak et al., The transmembrane activator TACI triggers immunoglobulin class switching by activating B cells through the adaptor MyD88, Nat Immunol, vol.127, issue.10, pp.836-881, 2010.

A. J. Novak, D. M. Grote, M. Stenson, S. C. Ziesmer, T. E. Witzig et al., Expression of BLyS and its receptors in B-cell non-Hodgkin lymphoma: correlation with disease activity and patient outcome, Blood, vol.104, issue.8, pp.2247-53, 2004.

J. M. Hildebrand, Z. Luo, M. K. Manske, T. Price-troska, S. C. Ziesmer et al., A BAFF-R mutation associated with non-Hodgkin lymphoma alters TRAF recruitment and reveals new insights into BAFF-R signaling, J Exp Med, vol.207, issue.12, pp.2569-79, 2010.

D. J. Rawlings, M. A. Schwartz, S. W. Jackson, and A. Meyer-bahlburg, Integration of B cell responses through Toll-like receptors and antigen receptors, Nat Rev Immunol, vol.12, issue.4, pp.282-94, 2012.

D. Chiron, I. Bekeredjian-ding, C. Pellat-deceunynck, R. Bataille, and G. Jego, Toll-like receptors: lessons to learn from normal and malignant human B cells, Blood, vol.112, issue.6, pp.2205-2218, 2008.

V. N. Ngo, R. M. Young, R. Schmitz, S. Jhavar, W. Xiao et al., Oncogenically active MYD88 mutations in human lymphoma, Nature, vol.470, issue.7332, pp.115-124, 2011.

D. Rossi, V. Trifonov, M. Fangazio, A. Bruscaggin, S. Rasi et al., The coding genome of splenic marginal zone lymphoma: activation of NOTCH2 and other pathways regulating marginal zone development, J Exp Med, vol.209, issue.9, pp.1537-51, 2012.

S. P. Treon, L. Xu, G. Yang, Y. Zhou, X. Liu et al., MYD88 L265P somatic mutation in Waldenstrom's macroglobulinemia, N Engl J Med, vol.367, issue.9, pp.826-859, 2012.

L. Xu, Z. R. Hunter, G. Yang, Y. Zhou, Y. Cao et al., MYD88 L265P in Waldenstrom macroglobulinemia, immunoglobulin M monoclonal gammopathy, and other B-cell lymphoproliferative disorders using conventional and quantitative allele-specific polymerase chain reaction, Blood, vol.121, issue.11, pp.2051-2059, 2013.

A. Iwasaki and R. Medzhitov, Regulation of adaptive immunity by the innate immune system, Science, vol.327, issue.5963, pp.291-296, 2010.

N. Warner and G. Nunez, MyD88: a critical adaptor protein in innate immunity signal transduction, J Immunol, vol.190, issue.1, pp.3-4, 2013.

R. Sen and D. Baltimore, Inducibility of kappa immunoglobulin enhancer-binding protein Nf-kappa B by a posttranslational mechanism, Cell, vol.47, issue.6, pp.921-929, 1986.

L. M. Staudt, Oncogenic activation of NF-kappaB, Cold Spring Harb Perspect Biol, vol.2, issue.6, p.109, 2010.

B. J. Zarnegar, Y. Wang, D. J. Mahoney, P. W. Dempsey, H. H. Cheung et al., Noncanonical NF-kappaB activation requires coordinated assembly of a regulatory complex of the adaptors cIAP1, cIAP2, TRAF2 and TRAF3 and the kinase NIK, Nat Immunol, vol.9, issue.12, pp.1371-1379, 2008.

M. Gyrd-hansen, M. Darding, M. Miasari, M. M. Santoro, L. Zender et al., IAPs contain an evolutionarily conserved ubiquitin-binding domain that regulates NF-kappaB as well as cell survival and oncogenesis, Nat Cell Biol, vol.101, issue.11, pp.1309-1326, 2008.

Q. Zhang, M. J. Lenardo, and D. Baltimore, 30 Years of NF-kappaB: A Blossoming of Relevance to Human Pathobiology, Cell, vol.168, issue.1-2, pp.37-57, 2017.

M. Kaileh and R. Sen, NF-kappaB function in B lymphocytes, Immunol Rev, vol.246, issue.1, pp.254-71, 2012.

A. L. Shaffer, A. Rosenwald, E. M. Hurt, J. M. Giltnane, L. T. Lam et al., Signatures of the immune response, Immunity, vol.15, issue.3, pp.375-85, 2001.

N. Heise, D. Silva, N. S. Silva, K. Carette, A. Simonetti et al., Germinal center B cell maintenance and differentiation are controlled by distinct NF-kappaB transcription factor subunits, J Exp Med, vol.211, issue.10, pp.2103-2121, 2014.

M. Saito, J. Gao, K. Basso, Y. Kitagawa, P. M. Smith et al., A signaling pathway mediating downregulation of BCL6 in germinal center B cells is blocked by BCL6 gene alterations in B cell lymphoma, Cancer Cell, vol.12, issue.3, pp.280-92, 2007.

R. M. Tavares, E. E. Turer, C. L. Liu, R. Advincula, P. Scapini et al., The ubiquitin modifying enzyme A20 restricts B cell survival and prevents autoimmunity, Immunity, vol.33, issue.2, pp.181-91, 2010.

U. Klein, S. Casola, G. Cattoretti, Q. Shen, M. Lia et al., Transcription factor IRF4 controls plasma cell differentiation and class-switch recombination, Nat Immunol, vol.7, issue.7, pp.773-82, 2006.

R. Sciammas, A. L. Shaffer, J. H. Schatz, H. Zhao, L. M. Staudt et al., Graded expression of interferon regulatory factor-4 coordinates isotype switching with plasma cell differentiation, Immunity, vol.25, issue.2, pp.225-261, 2006.

R. Kuppers, Molecular biology of Hodgkin lymphoma, Hematology Am Soc Hematol Educ Program, pp.491-497, 2009.

R. Schmitz, M. L. Hansmann, V. Bohle, J. I. Martin-subero, S. Hartmann et al., TNFAIP3 (A20) is a tumor suppressor gene in Hodgkin lymphoma and primary mediastinal B cell lymphoma, J Exp Med, vol.206, issue.5, pp.981-990, 2009.

M. Kato, M. Sanada, I. Kato, Y. Sato, J. Takita et al., Frequent inactivation of A20 in B-cell lymphomas, Nature, vol.459, issue.7247, pp.712-718, 2009.

K. Honma, S. Tsuzuki, M. Nakagawa, H. Tagawa, S. Nakamura et al., TNFAIP3/A20 functions as a novel tumor suppressor gene in several subtypes of non-Hodgkin lymphomas, Blood, vol.114, issue.12, pp.2467-75, 2009.

S. Manier, K. Z. Salem, J. Park, D. A. Landau, G. Getz et al., Genomic complexity of multiple myeloma and its clinical implications, Nat Rev Clin Oncol, vol.14, issue.2, pp.100-113, 2017.

F. Damm, E. Mylonas, A. Cosson, K. Yoshida, D. Valle et al., Acquired initiating mutations in early hematopoietic cells of CLL patients, Cancer Discov, vol.4, issue.9, pp.1088-101, 2014.

L. Mansouri, L. A. Sutton, V. Ljungstrom, S. Bondza, L. Arngarden et al., Functional loss of IkappaBepsilon leads to NF-kappaB deregulation in aggressive chronic lymphocytic leukemia, J Exp Med, vol.212, issue.6, pp.833-876, 2015.

L. Mansouri, D. Noerenberg, E. Young, E. Mylonas, M. Abdulla et al., Frequent NFKBIE deletions are associated with poor outcome in primary mediastinal B-cell lymphoma, Blood, vol.128, issue.23, pp.2666-70, 2016.

D. Rossi, S. Deaglio, D. Dominguez-sola, S. Rasi, T. Vaisitti et al., Alteration of BIRC3 and multiple other NF-kappaB pathway genes in splenic marginal zone lymphoma, Blood, vol.118, issue.18, pp.4930-4934, 2011.

D. Rossi and G. Gaidano, The clinical implications of gene mutations in chronic lymphocytic leukaemia, Br J Cancer, vol.114, issue.8, pp.849-54, 2016.

D. Rossi, C. Ciardullo, and G. Gaidano, Genetic aberrations of signaling pathways in lymphomagenesis: revelations from next generation sequencing studies, Semin Cancer Biol, vol.23, issue.6, pp.422-452, 2013.

S. Hu, M. Q. Du, S. M. Park, A. Alcivar, L. Qu et al., cIAP2 is a ubiquitin protein ligase for BCL10 and is dysregulated in mucosa-associated lymphoid tissue lymphomas, J Clin Invest, vol.116, issue.1, pp.174-81, 2006.

C. Y. Ying, D. Dominguez-sola, M. Fabi, I. C. Lorenz, S. Hussein et al., MEF2B mutations lead to deregulated expression of the oncogene BCL6 in diffuse large B cell lymphoma, Nat Immunol, vol.14, issue.10, pp.1084-92, 2013.

R. D. Morin, M. Mendez-lago, A. J. Mungall, R. Goya, K. L. Mungall et al., Frequent mutation of histonemodifying genes in non-Hodgkin lymphoma, Nature, vol.476, issue.7360, pp.298-303, 2011.

P. Brescia, C. Schneider, A. B. Holmes, Q. Shen, S. Hussein et al., Human c-myc onc gene is located on the region of chromosome 8 that is translocated in Burkitt lymphoma cells, Proc Natl Acad Sci, vol.34, issue.3, pp.7824-7831, 1982.

R. Taub, I. Kirsch, C. Morton, G. Lenoir, D. Swan et al., Translocation of the c-myc gene into the immunoglobulin heavy chain locus in human Burkitt lymphoma and murine plasmacytoma cells, Proc Natl Acad Sci, vol.79, issue.24, pp.7837-7878, 1982.

D. P. Calado, Y. Sasaki, S. A. Godinho, A. Pellerin, K. Kochert et al., The cell-cycle regulator c-Myc is essential for the formation and maintenance of germinal centers, Nat Immunol, vol.13, issue.11, pp.1092-100, 2012.

D. Dominguez-sola, G. D. Victora, C. Y. Ying, R. T. Phan, M. Saito et al., The proto-oncogene MYC is required for selection in the germinal center and cyclic reentry, Nat Immunol, vol.13, issue.11, pp.1083-91, 2012.

U. Klein, Y. Tu, G. A. Stolovitzky, J. L. Keller, J. Haddad et al., Transcriptional analysis of the B cell germinal center reaction, Proc Natl Acad Sci, vol.100, issue.5, pp.2639-2683, 2003.

C. Y. Lin, J. Loven, P. B. Rahl, R. M. Paranal, C. B. Burge et al., Transcriptional amplification in tumor cells with elevated c-Myc, Cell, vol.151, issue.1, pp.56-67, 2012.

Z. Nie, G. Hu, G. Wei, K. Cui, A. Yamane et al., c-Myc is a universal amplifier of expressed genes in lymphocytes and embryonic stem cells, Cell, vol.151, issue.1, pp.68-79, 2012.

L. Pasqualucci and R. Dalla-favera, Genetics of diffuse large B-cell lymphoma, Blood, vol.131, issue.21, p.2307, 2018.

M. Saito, U. Novak, E. Piovan, K. Basso, P. Sumazin et al., BCL6 suppression of BCL2 via Miz1 and its disruption in diffuse large B cell lymphoma, Proc Natl Acad Sci, vol.106, issue.27, pp.11294-11303, 2009.

L. Pasqualucci, P. Neumeister, T. Goossens, G. Nanjangud, R. S. Chaganti et al., Hypermutation of multiple proto-oncogenes in B-cell diffuse large-cell lymphomas, Nature, vol.412, issue.6844, pp.341-347, 2001.

P. H. Hoang, S. E. Dobbins, A. J. Cornish, D. Chubb, P. J. Law et al., Whole-genome sequencing of multiple myeloma reveals oncogenic pathways are targeted somatically through multiple mechanisms, Leukemia, 2018.

C. Cobaleda, W. Jochum, and M. Busslinger, Conversion of mature B cells into T cells by dedifferentiation to uncommitted progenitors, Nature, vol.449, issue.7161, pp.473-480, 2007.

S. L. Nutt, B. Heavey, A. G. Rolink, and M. Busslinger, Commitment to the B-lymphoid lineage depends on the transcription factor Pax5, Nature, vol.401, issue.6753, pp.556-62, 1999.

C. Cobaleda, A. Schebesta, A. Delogu, and M. Busslinger, Pax5: the guardian of B cell identity and function, Nat Immunol, vol.8, issue.5, pp.463-70, 2007.

I. Mikkola, B. Heavey, M. Horcher, and M. Busslinger, Reversion of B cell commitment upon loss of Pax5 expression, Science, vol.297, issue.5578, pp.110-113, 2002.

I. Revilla, I. Bilic, B. Vilagos, H. Tagoh, A. Ebert et al., The B-cell identity factor Pax5 regulates distinct transcriptional programmes in early and late B lymphopoiesis, EMBO J, vol.31, issue.14, pp.3130-3176, 2012.

A. Schebesta, S. Mcmanus, G. Salvagiotto, A. Delogu, G. A. Busslinger et al., Transcription factor Pax5 activates the chromatin of key genes involved in B cell signaling, adhesion, migration, and immune function, Immunity, vol.27, issue.1, pp.49-63, 2007.

C. Pridans, M. L. Holmes, M. Polli, J. M. Wettenhall, A. Dakic et al., Identification of Pax5 target genes in early B cell differentiation, J Immunol, vol.180, issue.3, pp.1719-1747, 2008.

A. Kallies, J. Hasbold, K. Fairfax, C. Pridans, D. Emslie et al., Initiation of plasma-cell differentiation is independent of the transcription factor Blimp-1, Immunity, vol.26, issue.5, pp.555-66, 2007.

J. L. Rinkenberger, J. J. Wallin, K. W. Johnson, and M. E. Koshland, An interleukin-2 signal relieves BSAP (Pax5)-mediated repression of the immunoglobulin J chain gene, Immunity, vol.5, issue.4, pp.377-86, 1996.

A. M. Reimold, P. D. Ponath, Y. S. Li, R. R. Hardy, C. S. David et al., Transcription factor B cell lineagespecific activator protein regulates the gene for human X-box binding protein 1, J Exp Med, vol.183, issue.2, pp.393-401, 1996.

K. P. Nera, P. Kohonen, E. Narvi, A. Peippo, L. Mustonen et al., Loss of Pax5 promotes plasma cell differentiation, Immunity, vol.24, issue.3, pp.283-93, 2006.

A. Delogu, A. Schebesta, Q. Sun, K. Aschenbrenner, T. Perlot et al., Gene repression by Pax5 in B cells is essential for blood cell homeostasis and is reversed in plasma cells, Immunity, vol.24, issue.3, pp.269-81, 2006.

T. Usui, Y. Wakatsuki, Y. Matsunaga, S. Kaneko, H. Koseki et al., Overexpression of B cell-specific activator protein (BSAP/Pax-5) in a late B cell is sufficient to suppress differentiation to an Ig high producer cell with plasma cell phenotype, J Immunol, vol.158, issue.7, pp.3197-204, 1997.

K. I. Lin, C. Angelin-duclos, T. C. Kuo, and K. Calame, Blimp-1-dependent repression of Pax-5 is required for differentiation of B cells to immunoglobulin M-secreting plasma cells, Mol Cell Biol, vol.22, issue.13, pp.4771-80, 2002.

D. Cozma, D. Yu, S. Hodawadekar, A. Azvolinsky, S. Grande et al., B cell activator PAX5 promotes lymphomagenesis through stimulation of B cell receptor signaling, J Clin Invest, vol.117, issue.9, pp.2602-2612, 2007.

A. M. Morrison, U. Jager, A. Chott, M. Schebesta, O. A. Haas et al., Deregulated PAX-5 transcription from a translocated IgH promoter in marginal zone lymphoma, Blood, vol.92, issue.10, pp.3865-78, 1998.

A. Souabni, C. Cobaleda, M. Schebesta, and M. Busslinger, Pax5 promotes B lymphopoiesis and blocks T cell development by repressing Notch1, Immunity, vol.17, issue.6, pp.781-93, 2002.

X. S. Puente, S. Bea, R. Valdes-mas, N. Villamor, J. Gutierrez-abril et al., Non-coding recurrent mutations in chronic lymphocytic leukaemia, Nature, vol.526, issue.7574, pp.519-543, 2015.

A. Reddy, J. Zhang, N. S. Davis, A. B. Moffitt, C. L. Love et al., Genetic and Functional Drivers of Diffuse Large B Cell Lymphoma, Cell, vol.171, issue.2, pp.481-94, 2017.

C. Murre, Helix-loop-helix proteins and lymphocyte development, Nat Immunol, vol.6, issue.11, pp.1079-86, 2005.

K. Kwon, C. Hutter, Q. Sun, I. Bilic, C. Cobaleda et al., Instructive role of the transcription factor E2A in early B lymphopoiesis and germinal center B cell development, Immunity, vol.28, issue.6, pp.751-62, 2008.

K. Igarashi, K. Kataoka, K. Itoh, N. Hayashi, M. Nishizawa et al., Regulation of transcription by dimerization of erythroid factor NF-E2 p45 with small Maf proteins, Nature, vol.367, issue.6463, pp.568-72, 1994.

A. Muto, H. Hoshino, L. Madisen, N. Yanai, M. Obinata et al., Identification of Bach2 as a B-cellspecific partner for small maf proteins that negatively regulate the immunoglobulin heavy chain gene 3' enhancer, EMBO J, vol.17, pp.5734-5777, 1998.

A. Muto, S. Tashiro, O. Nakajima, H. Hoshino, S. Takahashi et al., The transcriptional programme of antibody class switching involves the repressor Bach2, Nature, vol.429, issue.6991, pp.566-71, 2004.

K. Ochiai, Y. Katoh, T. Ikura, Y. Hoshikawa, T. Noda et al., Plasmacytic transcription factor Blimp-1 is repressed by Bach2 in B cells, J Biol Chem, vol.281, issue.50, pp.38226-38260, 2006.

K. Ochiai, A. Muto, H. Tanaka, S. Takahashi, and K. Igarashi, Regulation of the plasma cell transcription factor Blimp-1 gene by Bach2 and Bcl6, Int Immunol, vol.20, issue.3, pp.453-60, 2008.

A. Muto, K. Ochiai, Y. Kimura, A. Itoh-nakadai, K. L. Calame et al., Bach2 represses plasma cell gene regulatory network in B cells to promote antibody class switch, EMBO J, vol.29, issue.23, pp.4048-61, 2010.

C. Huang, H. Geng, I. Boss, L. Wang, and A. Melnick, Cooperative transcriptional repression by BCL6 and BACH2 in germinal center B-cell differentiation, Blood, vol.123, issue.7, pp.1012-1032, 2014.

S. Sasaki, E. Ito, T. Toki, T. Maekawa, R. Kanezaki et al., Cloning and expression of human B cellspecific transcription factor BACH2 mapped to chromosome 6q15, Oncogene, vol.19, issue.33, pp.3739-3788, 2000.

T. Kamio, T. Toki, R. Kanezaki, S. Sasaki, S. Tandai et al., B-cell-specific transcription factor BACH2 modifies the cytotoxic effects of anticancer drugs, Blood, vol.102, issue.9, pp.3317-3339, 2003.

E. Sakane-ishikawa, S. Nakatsuka, Y. Tomita, S. Fujita, I. Nakamichi et al., Prognostic significance of BACH2 expression in diffuse large B-cell lymphoma: a study of the Osaka Lymphoma Study Group, J Clin Oncol, vol.23, issue.31, pp.8012-8019, 2005.

C. Herbaux, E. Bertrand, G. Marot, C. Roumier, N. Poret et al., BACH2 promotes indolent clinical presentation in Waldenstrom macroglobulinemia, Oncotarget, vol.8, issue.34, pp.57451-57460, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01423307

A. L. Dent, A. L. Shaffer, X. Yu, D. Allman, and L. M. Staudt, Control of inflammation, cytokine expression, and germinal center formation by BCL-6, Science, vol.276, issue.5312, pp.589-92, 1997.

R. Dalla-favera, B. H. Ye, G. Cattoretti, L. Coco, F. Chang et al., BCL-6 in diffuse large-cell lymphomas, Important Adv Oncol, pp.139-187, 1996.

L. Pasqualucci, A. Migliazza, N. Fracchiolla, C. William, A. Neri et al., BCL-6 mutations in normal germinal center B cells: evidence of somatic hypermutation acting outside Ig loci, Proc Natl Acad Sci, vol.95, issue.20, pp.11816-11837, 1998.

K. Basso, M. Saito, P. Sumazin, A. A. Margolin, K. Wang et al., Integrated biochemical and computational approach identifies BCL6 direct target genes controlling multiple pathways in normal germinal center B cells, Blood, vol.115, issue.5, pp.975-84, 2010.

W. Ci, J. M. Polo, L. Cerchietti, R. Shaknovich, L. Wang et al., The BCL6 transcriptional program features repression of multiple oncogenes in primary B cells and is deregulated in DLBCL, Blood, vol.113, issue.22, pp.5536-5584, 2009.

C. Huang, K. Hatzi, and A. Melnick, Lineage-specific functions of Bcl-6 in immunity and inflammation are mediated by distinct biochemical mechanisms, Nat Immunol, vol.14, issue.4, pp.380-388, 2013.

K. Hatzi, Y. Jiang, C. Huang, F. Garrett-bakelman, M. D. Gearhart et al., A hybrid mechanism of action for BCL6 in B cells defined by formation of functionally distinct complexes at enhancers and promoters, Cell Rep, vol.4, issue.3, pp.578-88, 2013.

C. Huang, D. G. Gonzalez, C. M. Cote, Y. Jiang, K. Hatzi et al., The BCL6 RD2 domain governs commitment of activated B cells to form germinal centers, Cell Rep, vol.8, issue.5, pp.1497-508, 2014.

G. Cattoretti, L. Pasqualucci, G. Ballon, W. Tam, S. V. Nandula et al., Deregulated BCL6 expression recapitulates the pathogenesis of human diffuse large B cell lymphomas in mice, Cancer Cell, vol.7, issue.5, pp.445-55, 2005.

C. Tunyaplin, A. L. Shaffer, C. D. Angelin-duclos, X. Yu, L. M. Staudt et al., Direct repression of prdm1 by Bcl-6 inhibits plasmacytic differentiation, J Immunol, vol.173, issue.2, pp.1158-65, 2004.

M. A. Linterman, L. Beaton, D. Yu, R. R. Ramiscal, M. Srivastava et al., IL-21 acts directly on B cells to regulate Bcl-6 expression and germinal center responses, J Exp Med, vol.207, issue.2, pp.353-63, 2010.

D. Zotos, J. M. Coquet, Y. Zhang, A. Light, D. Costa et al., IL-21 regulates germinal center B cell differentiation and proliferation through a B cell-intrinsic mechanism, J Exp Med, vol.207, issue.2, pp.365-78, 2010.

C. H. Lee, M. Melchers, H. Wang, T. A. Torrey, R. Slota et al., Regulation of the germinal center gene program by interferon (IFN) regulatory factor 8/IFN consensus sequence-binding protein, J Exp Med, vol.203, issue.1, pp.63-72, 2006.

S. Carotta, S. N. Willis, J. Hasbold, M. Inouye, S. H. Pang et al., The transcription factors IRF8 and PU.1 negatively regulate plasma cell differentiation, J Exp Med, vol.211, issue.11, pp.2169-81, 2014.

L. Cimmino, G. A. Martins, J. Liao, E. Magnusdottir, G. Grunig et al., Blimp-1 attenuates Th1 differentiation by repression of ifng, tbx21, and bcl6 gene expression, J Immunol, vol.181, issue.4, pp.2338-2385, 2008.

L. Pasqualucci, A. Migliazza, K. Basso, J. Houldsworth, R. S. Chaganti et al., Mutations of the BCL6 proto-oncogene disrupt its negative autoregulation in diffuse large B-cell lymphoma, Science, vol.101, issue.8, pp.1039-1082, 2002.

B. Czermin, R. Melfi, D. Mccabe, V. Seitz, A. Imhof et al., Drosophila enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal Polycomb sites, Cell, vol.111, issue.2, pp.185-96, 2002.

J. Muller, C. M. Hart, N. J. Francis, M. L. Vargas, A. Sengupta et al., Histone methyltransferase activity of a Drosophila Polycomb group repressor complex, Cell, vol.111, issue.2, pp.197-208, 2002.

I. H. Su, A. Basavaraj, A. N. Krutchinsky, O. Hobert, A. Ullrich et al., Ezh2 controls B cell development through histone H3 methylation and Igh rearrangement, Nat Immunol, vol.4, issue.2, pp.124-155, 2003.

J. C. Van-galen, D. F. Dukers, C. Giroth, R. G. Sewalt, A. P. Otte et al., Distinct expression patterns of polycomb oncoproteins and their binding partners during the germinal center reaction, Eur J Immunol, vol.34, issue.7, pp.1870-81, 2004.

W. Beguelin, R. Popovic, M. Teater, Y. Jiang, K. L. Bunting et al., EZH2 is required for germinal center formation and somatic EZH2 mutations promote lymphoid transformation, Cancer Cell, vol.23, issue.5, pp.677-92, 2013.

M. Caganova, C. Carrisi, G. Varano, F. Mainoldi, F. Zanardi et al., Germinal center dysregulation by histone methyltransferase EZH2 promotes lymphomagenesis, J Clin Invest, vol.123, issue.12, pp.5009-5031, 2013.

I. Velichutina, R. Shaknovich, H. Geng, N. A. Johnson, R. D. Gascoyne et al., EZH2-mediated epigenetic silencing in germinal center B cells contributes to proliferation and lymphomagenesis, Blood, vol.116, issue.24, pp.5247-55, 2010.

W. Beguelin, M. Teater, M. D. Gearhart, C. Fernandez, M. T. Goldstein et al., EZH2 and BCL6 Cooperate to Assemble CBX8-BCOR Complex to Repress Bivalent Promoters, Mediate Germinal Center Formation and Lymphomagenesis, Cancer Cell, vol.30, issue.2, pp.197-213, 2016.

K. Basso and R. Dalla-favera, Roles of BCL6 in normal and transformed germinal center B cells, Immunol Rev, vol.247, issue.1, pp.172-83, 2012.

B. H. Ye, S. Chaganti, C. C. Chang, H. Niu, P. Corradini et al., Chromosomal translocations cause deregulated BCL6 expression by promoter substitution in B cell lymphoma, EMBO J, vol.14, issue.24, pp.6209-6226, 1995.

W. Chen, S. Iida, D. C. Louie, R. Dalla-favera, and R. S. Chaganti, Heterologous promoters fused to BCL6 by chromosomal translocations affecting band 3q27 cause its deregulated expression during B-cell differentiation, Blood, vol.91, issue.2, pp.603-610, 1998.

S. Duan, L. Cermak, J. K. Pagan, M. Rossi, C. Martinengo et al., FBXO11 targets BCL6 for degradation and is inactivated in diffuse large B-cell lymphomas, Nature, vol.481, issue.7379, pp.90-93, 2012.

L. Pasqualucci, D. Dominguez-sola, A. Chiarenza, G. Fabbri, A. Grunn et al., Inactivating mutations of acetyltransferase genes in B-cell lymphoma, Nature, vol.471, issue.7337, pp.189-95, 2011.

O. R. Bereshchenko, W. Gu, and R. Dalla-favera, Acetylation inactivates the transcriptional repressor BCL6, Nat Genet, vol.32, issue.4, pp.606-619, 2002.

K. Basso and R. Dalla-favera, Germinal centres and B cell lymphomagenesis, Nat Rev Immunol, vol.15, issue.3, pp.172-84, 2015.

K. Schubart, S. Massa, D. Schubart, L. M. Corcoran, A. G. Rolink et al., B cell development and immunoglobulin gene transcription in the absence of Oct-2 and OBF-1, Nat Immunol, vol.2, issue.1, pp.69-74, 2001.

L. M. Corcoran, M. Karvelas, G. J. Nossal, Z. S. Ye, T. Jacks et al., Oct-2, although not required for early B-cell development, is critical for later B-cell maturation and for postnatal survival, Genes Dev, vol.7, issue.4, pp.570-82, 1993.

L. M. Corcoran and M. Karvelas, Oct-2 is required early in T cell-independent B cell activation for G1 progression and for proliferation, Immunity, vol.1, issue.8, pp.635-680, 1994.

P. O. Humbert and L. M. Corcoran, oct-2 gene disruption eliminates the peritoneal B-1 lymphocyte lineage and attenuates B-2 cell maturation and function, J Immunol, vol.159, issue.11, pp.5273-84, 1997.

D. B. Schubart, A. Rolink, M. H. Kosco-vilbois, F. Botteri, and P. Matthias, B-cell-specific coactivator OBF-1/OCA-B/Bob1 required for immune response and germinal centre formation, Nature, vol.383, issue.6600, pp.538-580, 1996.

L. M. Corcoran, J. Hasbold, W. Dietrich, E. Hawkins, A. Kallies et al., Differential requirement for OBF-1 during antibody-secreting cell differentiation, J Exp Med, vol.201, issue.9, pp.1385-96, 2005.

D. Emslie, K. Costa, J. Hasbold, D. Metcalf, K. Takatsu et al., Oct2 enhances antibody-secreting cell differentiation through regulation of IL-5 receptor alpha chain expression on activated B cells, J Exp Med, vol.205, issue.2, pp.409-430, 2008.

A. Karnowski, S. Chevrier, G. T. Belz, A. Mount, D. Emslie et al., B and T cells collaborate in antiviral responses via IL-6, IL-21, and transcriptional activator and coactivator, Oct2 and OBF-1, J Exp Med, vol.209, issue.11, pp.2049-64, 2012.

Y. Kanno, B. Z. Levi, T. Tamura, and K. Ozato, Immune cell-specific amplification of interferon signaling by the IRF-4/8-PU.1 complex, J Interferon Cytokine Res, vol.25, issue.12, pp.770-779, 2005.

S. L. Nutt, D. Metcalf, D. 'amico, A. Polli, M. Wu et al., Dynamic regulation of PU.1 expression in multipotent hematopoietic progenitors, J Exp Med, vol.201, issue.2, pp.221-252, 2005.

H. Wang, M. Yan, J. Sun, S. Jain, R. Yoshimi et al., A reporter mouse reveals lineage-specific and heterogeneous expression of IRF8 during lymphoid and myeloid cell differentiation, J Immunol, vol.193, issue.4, pp.1766-77, 2014.

G. H. Su, H. S. Ip, B. S. Cobb, M. M. Lu, H. M. Chen et al., The Ets protein Spi-B is expressed exclusively in B cells and T cells during development, J Exp Med, vol.184, issue.1, pp.203-217, 1996.

B. Bartholdy, C. Du-roure, A. Bordon, D. Emslie, L. M. Corcoran et al., The Ets factor Spi-B is a direct critical target of the coactivator OBF-1, Proc Natl Acad Sci, vol.103, issue.31, pp.11665-70, 2006.

A. L. Shaffer, K. I. Lin, T. C. Kuo, X. Yu, E. M. Hurt et al., Blimp-1 orchestrates plasma cell differentiation by extinguishing the mature B cell gene expression program, Immunity, vol.17, issue.1, pp.51-62, 2002.

M. Polli, A. Dakic, A. Light, L. Wu, D. M. Tarlinton et al., The development of functional B lymphocytes in conditional PU.1 knock-out mice, Blood, vol.106, issue.6, pp.2083-90, 2005.

M. Ye, O. Ermakova, T. Graf, and . Pu, 1 is not strictly required for B cell development and its absence induces a B-2 to B-1 cell switch, J Exp Med, vol.202, issue.10, pp.1411-1433, 2005.

J. Feng, H. Wang, D. M. Shin, M. Masiuk, C. F. Qi et al., IFN regulatory factor 8 restricts the size of the marginal zone and follicular B cell pools, J Immunol, vol.186, issue.3, pp.1458-66, 2011.

G. H. Su, H. M. Chen, N. Muthusamy, L. A. Garrett-sinha, D. Baunoch et al., Defective B cell receptormediated responses in mice lacking the Ets protein, Spi-B, EMBO J, vol.16, issue.23, pp.7118-7147, 1997.

S. Heinz, C. Benner, N. Spann, E. Bertolino, Y. C. Lin et al., Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities, Mol Cell, vol.38, issue.4, pp.576-89, 2010.

D. M. Shin, C. H. Lee, and H. C. Morse, IRF8 governs expression of genes involved in innate and adaptive immunity in human and mouse germinal center B cells, PLoS One, vol.6, issue.11, p.27384, 2011.

J. Hasbold, L. M. Corcoran, D. M. Tarlinton, S. G. Tangye, and P. D. Hodgkin, Evidence from the generation of immunoglobulin G-secreting cells that stochastic mechanisms regulate lymphocyte differentiation, Nat Immunol, vol.5, issue.1, pp.55-63, 2004.

H. Schmidlin, S. A. Diehl, M. Nagasawa, F. A. Scheeren, R. Schotte et al., Spi-B inhibits human plasma cell differentiation by repressing BLIMP1 and XBP-1 expression, Blood, vol.112, issue.5, pp.1804-1816, 2008.

E. Vigorito, K. L. Perks, C. Abreu-goodger, S. Bunting, Z. Xiang et al., microRNA-155 regulates the generation of immunoglobulin class-switched plasma cells, Immunity, vol.27, issue.6, pp.847-59, 2007.

D. Lu, R. Nakagawa, S. Lazzaro, P. Staudacher, C. Abreu-goodger et al., The miR-155-PU.1 axis acts on Pax5 to enable efficient terminal B cell differentiation, J Exp Med, vol.211, issue.11, pp.2183-98, 2014.

S. N. Willis, J. Tellier, Y. Liao, S. Trezise, A. Light et al., Environmental sensing by mature B cells is controlled by the transcription factors PU.1 and SpiB, Nat Commun, vol.8, issue.1, p.1426, 2017.

S. A. John, J. L. Clements, L. M. Russell, and L. A. Garrett-sinha, Ets-1 regulates plasma cell differentiation by interfering with the activity of the transcription factor Blimp-1, J Biol Chem, vol.283, issue.2, pp.951-62, 2008.

S. John, L. Russell, S. S. Chin, W. Luo, R. Oshima et al., Transcription factor Ets1, but not the closely related factor Ets2, inhibits antibody-secreting cell differentiation, Mol Cell Biol, vol.34, issue.3, pp.522-554, 2014.

K. Ochiai, M. Maienschein-cline, G. Simonetti, J. Chen, R. Rosenthal et al., Transcriptional regulation of germinal center B and plasma cell fates by dynamical control of IRF4, Immunity, vol.38, issue.5, pp.918-947, 2013.

S. N. Willis, K. L. Good-jacobson, J. Curtis, A. Light, J. Tellier et al., Transcription factor IRF4 regulates germinal center cell formation through a B cell-intrinsic mechanism, J Immunol, vol.192, issue.7, pp.3200-3206, 2014.

B. Falini, M. Fizzotti, A. Pucciarini, B. Bigerna, T. Marafioti et al., A monoclonal antibody (MUM1p) detects expression of the MUM1/IRF4 protein in a subset of germinal center B cells, plasma cells, and activated T cells, Blood, vol.95, issue.6, pp.2084-92, 2000.

M. Ciofani, A. Madar, C. Galan, M. Sellars, K. Mace et al., A validated regulatory network for Th17 cell specification, Cell, vol.151, issue.2, pp.289-303, 2012.

E. Glasmacher, S. Agrawal, A. B. Chang, T. L. Murphy, W. Zeng et al., A genomic regulatory element that directs assembly and function of immune-specific AP-1-IRF complexes, Science, vol.338, issue.6109, pp.975-80, 2012.

P. Li, R. Spolski, W. Liao, L. Wang, T. L. Murphy et al., BATF-JUN is critical for IRF4-mediated transcription in T cells, Nature, vol.490, issue.7421, pp.543-549, 2012.

J. Rengarajan, K. A. Mowen, K. D. Mcbride, E. D. Smith, H. Singh et al., Interferon regulatory factor 4 (IRF4) interacts with NFATc2 to modulate interleukin 4 gene expression, J Exp Med, vol.195, issue.8, pp.1003-1015, 2002.

W. Ise, M. Kohyama, B. U. Schraml, T. Zhang, B. Schwer et al., The transcription factor BATF controls the global regulators of class-switch recombination in both B cells and T cells, Nat Immunol, vol.12, issue.6, pp.536-579, 2011.

C. F. Eisenbeis, H. Singh, U. Storb, and . Pu, 1 is a component of a multiprotein complex which binds an essential site in the murine immunoglobulin lambda 2-4 enhancer, Mol Cell Biol, vol.13, issue.10, pp.6452-61, 1993.

T. Decker, P. Di-magliano, M. Mcmanus, S. Sun, Q. Bonifer et al., Stepwise activation of enhancer and promoter regions of the B cell commitment gene Pax5 in early lymphopoiesis, Immunity, vol.30, issue.4, pp.508-528, 2009.

C. A. Turner, D. H. Mack, and M. M. Davis, Blimp-1, a novel zinc finger-containing protein that can drive the maturation of B lymphocytes into immunoglobulin-secreting cells, Cell, vol.77, issue.2, pp.297-306, 1994.

A. Kallies, J. Hasbold, D. M. Tarlinton, W. Dietrich, L. M. Corcoran et al., Plasma cell ontogeny defined by quantitative changes in blimp-1 expression, J Exp Med, vol.200, issue.8, pp.967-77, 2004.

C. Angelin-duclos, G. Cattoretti, K. I. Lin, and K. Calame, Commitment of B lymphocytes to a plasma cell fate is associated with Blimp-1 expression in vivo, J Immunol, vol.165, issue.10, pp.5462-71, 2000.

P. G. Soro, A. P. Morales, M. J. Martinez, A. S. Morales, S. G. Copin et al., Differential involvement of the transcription factor Blimp-1 in T cell-independent and -dependent B cell differentiation to plasma cells, J Immunol, vol.163, issue.2, pp.611-618, 1999.

F. H. Vasanwala, S. Kusam, L. M. Toney, and A. L. Dent, Repression of AP-1 function: a mechanism for the regulation of Blimp-1 expression and B lymphocyte differentiation by the B cell lymphoma-6 protooncogene, J Immunol, vol.169, issue.4, pp.1922-1931, 2002.

H. Kwon, D. Thierry-mieg, J. Thierry-mieg, H. P. Kim, J. Oh et al., Analysis of interleukin-21-induced Prdm1 gene regulation reveals functional cooperation of STAT3 and IRF4 transcription factors, Immunity, vol.31, issue.6, pp.941-52, 2009.

K. I. Lin, Y. Lin, and K. Calame, Repression of c-myc is necessary but not sufficient for terminal differentiation of B lymphocytes in vitro, Mol Cell Biol, vol.20, issue.23, pp.8684-95, 2000.

M. Shapiro-shelef, K. I. Lin, D. Savitsky, J. Liao, and K. Calame, Blimp-1 is required for maintenance of long-lived plasma cells in the bone marrow, J Exp Med, vol.202, issue.11, pp.1471-1477, 2005.

G. M. Doody, M. A. Care, N. J. Burgoyne, J. R. Bradford, M. Bota et al., An extended set of PRDM1/BLIMP1 target genes links binding motif type to dynamic repression, Nucleic Acids Res, vol.38, issue.16, pp.5336-50, 2010.

G. M. Doody, S. Stephenson, C. Mcmanamy, R. M. Tooze, H. P. Savage et al., PRDM1/BLIMP-1 modulates IFN-gamma-dependent control of the MHC class I antigen-processing and peptide-loading pathway, J Immunol, vol.179, issue.11, pp.2777-94, 2007.

K. D'costa, D. Emslie, D. Metcalf, G. K. Smyth, A. Karnowski et al., Blimp1 is limiting for transformation in a mouse plasmacytoma model, Blood, vol.113, issue.23, pp.5911-5920, 2009.

L. Pasqualucci, M. Compagno, J. Houldsworth, S. Monti, A. Grunn et al., Inactivation of the PRDM1/BLIMP1 gene in diffuse large B cell lymphoma, J Exp Med, vol.203, issue.2, pp.311-318, 2006.

J. G. Lohr, P. Stojanov, S. L. Carter, P. Cruz-gordillo, M. S. Lawrence et al., Widespread genetic heterogeneity in multiple myeloma: implications for targeted therapy, Cancer Cell, vol.25, issue.1, pp.91-101, 2014.

J. Mandelbaum, G. Bhagat, H. Tang, T. Mo, M. Brahmachary et al., BLIMP1 is a tumor suppressor gene frequently disrupted in activated B cell-like diffuse large B cell lymphoma, Cancer Cell, vol.18, issue.6, pp.568-79, 2010.

R. E. Davis, K. D. Brown, U. Siebenlist, and L. M. Staudt, Constitutive nuclear factor kappaB activity is required for survival of activated B cell-like diffuse large B cell lymphoma cells, J Exp Med, vol.194, issue.12, pp.1861-74, 2001.

D. J. Todd, L. J. Mcheyzer-williams, C. Kowal, A. H. Lee, B. T. Volpe et al., XBP1 governs late events in plasma cell differentiation and is not required for antigen-specific memory B cell development, J Exp Med, vol.206, issue.10, pp.2151-2160, 2009.

N. Taubenheim, D. M. Tarlinton, S. Crawford, L. M. Corcoran, P. D. Hodgkin et al., High rate of antibody secretion is not integral to plasma cell differentiation as revealed by XBP-1 deficiency, J Immunol, vol.189, issue.7, pp.3328-3366, 2012.

N. N. Iwakoshi, A. H. Lee, and L. H. Glimcher, The X-box binding protein-1 transcription factor is required for plasma cell differentiation and the unfolded protein response, Immunol Rev, vol.194, pp.29-38, 2003.

W. Tam, M. Gomez, A. Chadburn, J. W. Lee, W. C. Chan et al., Mutational analysis of PRDM1 indicates a tumor-suppressor role in diffuse large B-cell lymphomas, Blood, vol.107, issue.10, pp.4090-100, 2006.

J. Iqbal, T. C. Greiner, K. Patel, B. J. Dave, L. Smith et al., Distinctive patterns of BCL6 molecular alterations and their functional consequences in different subgroups of diffuse large B-cell lymphoma, Leukemia, vol.21, issue.11, pp.2332-2375, 2007.

G. Lenz, I. Nagel, R. Siebert, A. V. Roschke, W. Sanger et al., Aberrant immunoglobulin class switch recombination and switch translocations in activated B cell-like diffuse large B cell lymphoma, J Exp Med, vol.204, issue.3, pp.633-676, 2007.

G. Lenz, G. W. Wright, N. C. Emre, H. Kohlhammer, S. S. Dave et al., SPIB and BATF provide alternate determinants of IRF4 occupancy in diffuse large B-cell lymphoma linked to disease heterogeneity, Proc Natl Acad Sci U S A, vol.105, issue.36, pp.7591-610, 2008.

Y. Yang, A. L. Shaffer, N. C. Emre, M. Ceribelli, M. Zhang et al., Exploiting synthetic lethality for the therapy of ABC diffuse large B cell lymphoma, Cancer Cell, vol.21, issue.6, pp.723-760, 2012.

D. P. Calado, B. Zhang, L. Srinivasan, Y. Sasaki, J. Seagal et al., Constitutive canonical NF-kappaB activation cooperates with disruption of BLIMP1 in the pathogenesis of activated B cell-like diffuse large cell lymphoma, Cancer Cell, vol.18, issue.6, pp.580-589, 2010.

C. Leung-hagesteijn, N. Erdmann, G. Cheung, J. J. Keats, A. K. Stewart et al., Xbp1s-negative tumor B cells and pre-plasmablasts mediate therapeutic proteasome inhibitor resistance in multiple myeloma, Cancer Cell, vol.24, issue.3, pp.289-304, 2013.

A. L. Shaffer, N. C. Emre, L. Lamy, V. N. Ngo, G. Wright et al., IRF4 addiction in multiple myeloma, Nature, vol.454, issue.7201, pp.226-257, 2008.

Y. Lin, K. Wong, and K. Calame, Repression of c-myc transcription by Blimp-1, an inducer of terminal B cell differentiation, Science, vol.276, issue.5312, pp.596-605, 1997.

T. Yoshida, H. Mei, T. Dorner, F. Hiepe, A. Radbruch et al., Memory B and memory plasma cells, Immunol Rev, vol.237, issue.1, pp.117-156, 2010.

K. Kabashima, N. M. Haynes, Y. Xu, S. L. Nutt, M. L. Allende et al., Plasma cell S1P1 expression determines secondary lymphoid organ retention versus bone marrow tropism, J Exp Med, vol.203, issue.12, pp.2683-90, 2006.

M. Odendahl, H. Mei, B. F. Hoyer, A. M. Jacobi, A. Hansen et al., Generation of migratory antigenspecific plasma blasts and mobilization of resident plasma cells in a secondary immune response, Blood, vol.105, issue.4, pp.1614-1635, 2005.

A. E. Hauser, G. F. Debes, S. Arce, G. Cassese, A. Hamann et al., Chemotactic responsiveness toward ligands for CXCR3 and CXCR4 is regulated on plasma blasts during the time course of a memory immune response, J Immunol, vol.169, issue.3, pp.1277-82, 2002.

S. G. Tangye, Staying alive: regulation of plasma cell survival, Trends Immunol, vol.32, issue.12, pp.595-602, 2011.

R. Winkelmann, L. Sandrock, M. Porstner, E. Roth, M. Mathews et al., B cell homeostasis and plasma cell homing controlled by Kruppel-like factor 2, Proc Natl Acad Sci, vol.108, issue.2, pp.710-715, 2011.

Y. Wang and D. Bhattacharya, Adjuvant-specific regulation of long-term antibody responses by ZBTB20, J Exp Med, vol.211, issue.5, pp.841-56, 2014.

K. Tokoyoda, T. Egawa, T. Sugiyama, B. I. Choi, and T. Nagasawa, Cellular niches controlling B lymphocyte behavior within bone marrow during development, Immunity, vol.20, issue.6, pp.707-725, 2004.

V. T. Chu, A. Frohlich, G. Steinhauser, T. Scheel, T. Roch et al., Eosinophils are required for the maintenance of plasma cells in the bone marrow, Nat Immunol, vol.12, issue.2, pp.151-160, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00613147

O. Winter, E. Mohr, and R. A. Manz, Alternative cell types form a Multi-Component-Plasma-Cell-Niche, Immunol Lett, vol.141, issue.1, pp.145-151, 2011.

M. M. Kawano, K. Mihara, N. Huang, T. Tsujimoto, and A. Kuramoto, Differentiation of early plasma cells on bone marrow stromal cells requires interleukin-6 for escaping from apoptosis, Blood, vol.85, issue.2, pp.487-94, 1995.

E. Belnoue, M. Pihlgren, T. L. Mcgaha, C. Tougne, A. F. Rochat et al., APRIL is critical for plasmablast survival in the bone marrow and poorly expressed by early-life bone marrow stromal cells, Blood, vol.111, issue.5, pp.2755-64, 2008.

M. J. Benson, S. R. Dillon, E. Castigli, R. S. Geha, S. Xu et al., Cutting edge: the dependence of plasma cells and independence of memory B cells on BAFF and APRIL, J Immunol, vol.180, issue.6, pp.3655-3664, 2008.

B. P. O'connor, V. S. Raman, L. D. Erickson, W. J. Cook, L. K. Weaver et al., BCMA is essential for the survival of long-lived bone marrow plasma cells, J Exp Med, vol.199, issue.1, pp.91-99, 2004.

V. Peperzak, I. Vikstrom, J. Walker, S. P. Glaser, M. Lepage et al., Mcl-1 is essential for the survival of plasma cells, Nat Immunol, vol.14, issue.3, pp.290-297, 2013.

A. S. Saini, G. N. Shenoy, S. Rath, V. Bal, and A. George, Inducible nitric oxide synthase is a major intermediate in signaling pathways for the survival of plasma cells, Nat Immunol, vol.15, issue.3, pp.275-82, 2014.

Z. Xiang, A. J. Cutler, R. J. Brownlie, K. Fairfax, K. E. Lawlor et al., FcgammaRIIb controls bone marrow plasma cell persistence and apoptosis, Nat Immunol, vol.8, issue.4, pp.419-448, 2007.

L. J. Herrinton and N. S. Weiss, Incidence of Waldenstrom's macroglobulinemia, Blood, vol.82, issue.10, pp.3148-50, 1993.

M. A. Dimopoulos, P. Panayiotidis, L. A. Moulopoulos, P. Sfikakis, and M. Dalakas, Waldenstrom's macroglobulinemia: clinical features, complications, and management, J Clin Oncol, vol.18, issue.1, pp.214-240, 2000.

H. Wang, Y. Chen, F. Li, K. Delasalle, J. Wang et al., Temporal and geographic variations of Waldenstrom macroglobulinemia incidence: a large population-based study, Cancer, vol.118, issue.15, pp.3793-800, 2012.

S. Ailawadhi, A. Kardosh, D. Yang, W. Cozen, G. Patel et al., Incidence of lymphoplasmacytic lymphoma/Waldenstrom's macroglobulinaemia in Japan and Taiwan population-based cancer registries, Int J Cancer, vol.86, issue.5-6, pp.174-80, 1996.

J. D. Carreon, L. M. Morton, S. S. Devesa, C. A. Clarke, S. L. Gomez et al., Incidence of lymphoid neoplasms by subtype among six Asian ethnic groups in the United States, Cancer Causes Control, vol.19, issue.10, pp.1171-81, 1996.

C. Hanzis, R. P. Ojha, Z. Hunter, R. Manning, M. Lewicki et al., Associated malignancies in patients with Waldenstrom's macroglobulinemia and their kin, Clin Lymphoma Myeloma Leuk, vol.11, issue.1, pp.88-92, 2011.

R. A. Kyle, T. M. Therneau, S. V. Rajkumar, E. D. Remstein, J. R. Offord et al., Long-term follow-up of IgM monoclonal gammopathy of undetermined significance, Blood, vol.102, issue.10, pp.3759-64, 2003.

O. Landgren, R. A. Kyle, R. M. Pfeiffer, J. A. Katzmann, N. E. Caporaso et al., Monoclonal gammopathy of undetermined significance (MGUS) consistently precedes multiple myeloma: a prospective study, Blood, vol.113, issue.22, pp.5412-5419, 2009.

H. Aoki, M. Takishita, M. Kosaka, and S. Saito, Frequent somatic mutations in D and/or JH segments of Ig gene in Waldenstrom's macroglobulinemia and chronic lymphocytic leukemia (CLL) with Richter's syndrome but not in common CLL, Blood, vol.85, issue.7, pp.1913-1922, 1995.

S. D. Wagner, V. Martinelli, and L. Luzzatto, Similar patterns of V kappa gene usage but different degrees of somatic mutation in hairy cell leukemia, prolymphocytic leukemia, Waldenstrom's macroglobulinemia, and myeloma, Blood, vol.83, issue.12, pp.3647-53, 1994.

P. Martin-jimenez, R. Garcia-sanz, A. Balanzategui, M. Alcoceba, E. Ocio et al., Molecular characterization of heavy chain immunoglobulin gene rearrangements in Waldenstrom's macroglobulinemia and IgM monoclonal gammopathy of undetermined significance, Haematologica, vol.92, issue.5, pp.635-677, 2007.

J. Koshiol, G. Gridley, E. A. Engels, M. L. Mcmaster, and O. Landgren, Chronic immune stimulation and subsequent Waldenstrom macroglobulinemia, Arch Intern Med, vol.168, issue.17, pp.1903-1912, 2008.

T. P. Giordano, L. Henderson, O. Landgren, E. Y. Chiao, J. R. Kramer et al., Risk of non-Hodgkin lymphoma and lymphoproliferative precursor diseases in US veterans with hepatitis C virus, JAMA, vol.297, issue.18, pp.2010-2017, 2007.

K. E. Smedby, H. Hjalgrim, J. Askling, E. T. Chang, H. Gregersen et al., Medical history, lifestyle, family history, and occupational risk factors for lymphoplasmacytic lymphoma/Waldenstrom's macroglobulinemia: the InterLymph Non-Hodgkin Lymphoma Subtypes Project, J Natl Cancer Inst Monogr, vol.98, issue.1, pp.87-97, 2006.

S. Y. Kristinsson, M. Bjorkholm, L. R. Goldin, M. L. Mcmaster, I. Turesson et al., Risk of lymphoproliferative disorders among first-degree relatives of lymphoplasmacytic lymphoma/Waldenstrom macroglobulinemia patients: a population-based study in Sweden, Blood, vol.112, issue.8, pp.3052-3058, 2008.

M. L. Mcmaster, L. R. Goldin, Y. Bai, M. Ter-minassian, S. Boehringer et al., Genomewide linkage screen for Waldenstrom macroglobulinemia susceptibility loci in high-risk families, Am J Hum Genet, vol.79, issue.4, pp.695-701, 2006.

A. M. Roccaro, A. Sacco, J. Shi, M. Chiarini, A. Perilla-glen et al., Exome sequencing reveals recurrent germ line variants in patients with familial Waldenstrom macroglobulinemia, Blood, vol.127, issue.21, pp.2598-606, 2016.

M. L. Mcmaster, S. I. Berndt, J. Zhang, S. L. Slager, S. A. Li et al., Two high-risk susceptibility loci at 6p25.3 and 14q32.13 for Waldenstrom macroglobulinemia, Nat Commun, vol.9, issue.1, p.4182, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02061532

S. Grass, K. D. Preuss, A. Wikowicz, E. Terpos, M. Ziepert et al., Hyperphosphorylated paratarg-7: a new molecularly defined risk factor for monoclonal gammopathy of undetermined significance of the IgM type and Waldenstrom macroglobulinemia, Blood, vol.117, issue.10, pp.2918-2941, 2011.

L. Simon, M. Baron, and V. Leblond, How we manage patients with Waldenstrom macroglobulinaemia, Br J Haematol, vol.181, issue.6, pp.737-51, 2018.

S. P. Treon, Z. R. Hunter, J. J. Castillo, and G. Merlini, Waldenstrom macroglobulinemia, Hematol Oncol Clin North Am, vol.28, issue.5, pp.945-70, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00675965

Z. R. Hunter, L. Xu, G. Yang, Y. Zhou, X. Liu et al., The genomic landscape of Waldenstrom macroglobulinemia is characterized by highly recurring MYD88 and WHIM-like CXCR4 mutations, and small somatic deletions associated with B-cell lymphomagenesis, Blood, vol.123, issue.11, pp.1637-1683, 2014.

E. D. Remstein, C. A. Hanson, R. A. Kyle, J. M. Hodnefield, and P. J. Kurtin, Waldenstrom's macroglobulinemia is consistently composed of cells along a morphologic continuum of small lymphocytes, plasmacytoid lymphocytes, and plasma cells, Semin Oncol, vol.30, issue.2, pp.182-188, 2003.

J. F. San-miguel, M. B. Vidriales, E. Ocio, G. Mateo, F. Sanchez-guijo et al., Immunophenotypic analysis of Waldenstrom's macroglobulinemia, Semin Oncol, vol.30, issue.2, pp.187-95, 2003.

B. Paiva, M. C. Montes, R. Garcia-sanz, E. M. Ocio, J. Alonso et al., Multiparameter flow cytometry for the identification of the Waldenstrom's clone in IgM-MGUS and Waldenstrom's Macroglobulinemia: new criteria for differential diagnosis and risk stratification, Leukemia, vol.28, issue.1, pp.166-73, 2014.

M. J. Roberts, A. Chadburn, S. Ma, E. Hyjek, and L. C. Peterson, Nuclear protein dysregulation in lymphoplasmacytic lymphoma/waldenstrom macroglobulinemia, Am J Clin Pathol, vol.139, issue.2, pp.210-219, 2013.

B. Paiva, L. A. Corchete, M. B. Vidriales, R. Garcia-sanz, J. J. Perez et al., The cellular origin and malignant transformation of Waldenstrom macroglobulinemia, Blood, vol.125, issue.15, pp.2370-80, 2015.

P. Morel, A. Duhamel, P. Gobbi, M. A. Dimopoulos, M. V. Dhodapkar et al., International prognostic scoring system for Waldenstrom macroglobulinemia, Blood, vol.113, issue.18, pp.4163-70, 2009.

S. P. Treon, Y. Cao, L. Xu, G. Yang, X. Liu et al., Somatic mutations in MYD88 and CXCR4 are determinants of clinical presentation and overall survival in Waldenstrom macroglobulinemia, Br J Haematol, vol.123, issue.18, pp.374-80, 2014.

S. P. Treon, J. Gustine, K. Meid, G. Yang, L. Xu et al., Ibrutinib Monotherapy in Symptomatic, Treatment-Naive Patients With Waldenstrom Macroglobulinemia, J Clin Oncol, p.2018786426, 2018.

M. A. Dimopoulos, C. Zervas, A. Zomas, G. Hamilos, D. Gika et al., Extended rituximab therapy for previously untreated patients with Waldenstrom's macroglobulinemia, Clin Lymphoma, vol.3, issue.3, pp.163-169, 2002.

M. A. Gertz, M. Rue, E. Blood, L. S. Kaminer, D. H. Vesole et al., Multicenter phase 2 trial of rituximab for Waldenstrom macroglobulinemia (WM): an Eastern Cooperative Oncology Group Study (E3A98), Leuk Lymphoma, vol.45, issue.10, pp.2047-55, 2004.

A. J. Olszewski, C. Chen, R. Gutman, S. P. Treon, and J. J. Castillo, Comparative outcomes of immunochemotherapy regimens in Waldenstrom macroglobulinaemia, Br J Haematol, vol.179, issue.1, pp.106-121, 2017.

V. Leblond, E. Kastritis, R. Advani, S. M. Ansell, C. Buske et al., Treatment recommendations from the Eighth International Workshop on Waldenstrom's Macroglobulinemia, Blood, vol.128, issue.10, pp.1321-1329, 2016.

M. A. Dimopoulos, A. Anagnostopoulos, M. C. Kyrtsonis, K. Zervas, C. Tsatalas et al., Primary treatment of Waldenstrom macroglobulinemia with dexamethasone, rituximab, and cyclophosphamide, J Clin Oncol, vol.25, issue.22, pp.3344-3353, 2007.

M. J. Rummel, N. Niederle, G. Maschmeyer, G. A. Banat, U. Von-grunhagen et al., Bendamustine plus rituximab versus CHOP plus rituximab as first-line treatment for patients with indolent and mantle-cell lymphomas: an open-label, multicentre, randomised, phase 3 non-inferiority trial, Lancet, vol.381, issue.9873, pp.1203-1213, 2013.

M. Gavriatopoulou, E. Kastritis, and M. A. Dimopoulos, Ibrutinib for rituximab-refractory Waldenstrom macroglobulinemia, Oncotarget, vol.9, issue.16, pp.12536-12543, 2018.

S. P. Treon, A. R. Branagan, L. Ioakimidis, J. D. Soumerai, C. J. Patterson et al., Long-term outcomes to fludarabine and rituximab in Waldenstrom macroglobulinemia, Blood, vol.113, issue.16, pp.3673-3681, 2009.

V. Leblond, S. Johnson, S. Chevret, A. Copplestone, S. Rule et al., Results of a randomized trial of chlorambucil versus fludarabine for patients with untreated Waldenstrom macroglobulinemia, marginal zone lymphoma, or lymphoplasmacytic lymphoma, J Clin Oncol, vol.31, issue.3, pp.301-308, 2013.

R. Kuppers, U. Klein, M. L. Hansmann, and K. Rajewsky, Cellular origin of human B-cell lymphomas, N Engl J Med, vol.341, issue.20, pp.1520-1529, 1999.

M. Perez-andres, B. Paiva, W. G. Nieto, A. Caraux, A. Schmitz et al., Human peripheral blood B-cell compartments: a crossroad in B-cell traffic, Cytometry B Clin Cytom, vol.78, issue.1, pp.47-60, 2010.

M. K. Kjeldsen, M. Perez-andres, A. Schmitz, P. Johansen, M. Boegsted et al., Multiparametric flow cytometry for identification and fluorescence activated cell sorting of five distinct B-cell subpopulations in normal tonsil tissue, Am J Clin Pathol, vol.136, issue.6, pp.960-969, 2011.

A. Caraux, B. Klein, B. Paiva, C. Bret, A. Schmitz et al., Ageassociated changes in counts and detailed characterization of circulating normal CD138-and CD138+ plasma cells, Haematologica, vol.95, issue.6, pp.1016-1036, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00456476

S. S. Sahota, F. Forconi, C. H. Ottensmeier, D. Provan, D. G. Oscier et al., Typical Waldenstrom macroglobulinemia is derived from a B-cell arrested after cessation of somatic mutation but prior to isotype switch events, Blood, vol.100, issue.4, pp.1505-1512, 2002.

J. Kriangkum, B. J. Taylor, T. Reiman, A. R. Belch, and L. M. Pilarski, Origins of Waldenstrom's macroglobulinemia: does it arise from an unusual B-cell precursor?, Clin Lymphoma, vol.5, issue.4, pp.217-226, 2005.

N. Gachard, M. Parrens, I. Soubeyran, B. Petit, A. Marfak et al., IGHV gene features and MYD88 L265P mutation separate the three marginal zone lymphoma entities and Waldenstrom macroglobulinemia/lymphoplasmacytic lymphomas, Leukemia, vol.27, issue.1, pp.183-192, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00779407

J. Kriangkum, B. J. Taylor, S. P. Treon, M. J. Mant, A. R. Belch et al., Clonotypic IgM V/D/J sequence analysis in Waldenstrom macroglobulinemia suggests an unusual B-cell origin and an expansion of polyclonal B cells in peripheral blood, Blood, vol.104, issue.7, pp.2134-2176, 2004.

F. Nguyen-khac, J. Lambert, E. Chapiro, A. Grelier, S. Mould et al., Chromosomal aberrations and their prognostic value in a series of 174 untreated patients with Waldenstrom's macroglobulinemia, Haematologica, vol.98, issue.4, pp.649-54, 2013.

E. Braggio, J. J. Keats, X. Leleu, S. Van-wier, V. H. Jimenez-zepeda et al., Identification of copy number abnormalities and inactivating mutations in two negative regulators of nuclear factor-kappaB signaling pathways in Waldenstrom's macroglobulinemia, Cancer Res, vol.69, issue.8, pp.3579-88, 2009.

S. Poulain, C. Roumier, S. Galiegue-zouitina, A. Daudignon, C. Herbaux et al., Genome wide SNP array identified multiple mechanisms of genetic changes in Waldenstrom macroglobulinemia, Am J Hematol, vol.88, issue.11, pp.948-54, 2013.

R. F. Schop, W. M. Kuehl, S. A. Van-wier, G. J. Ahmann, T. Price-troska et al., Waldenstrom macroglobulinemia neoplastic cells lack immunoglobulin heavy chain locus translocations but have frequent 6q deletions, Blood, vol.100, issue.8, pp.2996-3001, 2002.

H. Chang, C. Qi, Y. Trieu, A. Jiang, K. H. Young et al., Prognostic relevance of 6q deletion in Waldenstrom's macroglobulinemia: a multicenter study, Clin Lymphoma Myeloma, vol.9, issue.1, pp.36-44, 2009.

E. M. Ocio, R. F. Schop, B. Gonzalez, S. A. Van-wier, J. M. Hernandez-rivas et al., 6q deletion in Waldenstrom macroglobulinemia is associated with features of adverse prognosis, Br J Haematol, vol.136, issue.1, pp.80-86, 2007.

C. Terre, F. Nguyen-khac, C. Barin, M. J. Mozziconacci, V. Eclache et al., Trisomy 4, a new chromosomal abnormality in Waldenstrom's macroglobulinemia: a study of 39 cases, Leukemia, vol.20, issue.9, pp.1634-1640, 2006.

M. Varettoni, S. Zibellini, I. Defrancesco, V. V. Ferretti, E. Rizzo et al., Pattern of somatic mutations in patients with Waldenstrom macroglobulinemia or IgM monoclonal gammopathy of undetermined significance, Haematologica, vol.102, issue.12, pp.2077-85, 2017.

S. Poulain, C. Roumier, E. Bertrand, A. Renneville, A. Caillault-venet et al., TP53 Mutation and Its Prognostic Significance in Waldenstrom's Macroglobulinemia, Clin Cancer Res, vol.23, issue.20, pp.6325-6360, 2017.

L. Cohen, W. J. Henzel, and P. A. Baeuerle, IKAP is a scaffold protein of the IkappaB kinase complex, Nature, vol.395, issue.6699, pp.292-298, 1998.

M. Loiarro, G. Gallo, N. Fanto, D. Santis, R. Carminati et al., Identification of critical residues of the MyD88 death domain involved in the recruitment of downstream kinases, J Biol Chem, vol.284, issue.41, pp.28093-103, 2009.

S. C. Lin, Y. C. Lo, and H. Wu, Helical assembly in the MyD88-IRAK4-IRAK2 complex in TLR/IL-1R signalling, Nature, vol.465, issue.7300, pp.885-90, 2010.

G. Yang, Y. Zhou, X. Liu, L. Xu, Y. Cao et al., A mutation in MYD88 (L265P) supports the survival of lymphoplasmacytic cells by activation of Bruton tyrosine kinase in Waldenstrom macroglobulinemia, Blood, vol.122, issue.7, pp.1222-1254, 2013.

T. Kawagoe, S. Sato, K. Matsushita, H. Kato, K. Matsui et al., Sequential control of Toll-like receptordependent responses by IRAK1 and IRAK2, Nat Immunol, vol.9, issue.6, pp.684-91, 2008.

X. Leleu, J. Eeckhoute, X. Jia, A. M. Roccaro, A. S. Moreau et al., Targeting NF-kappaB in Waldenstrom macroglobulinemia, Blood, vol.111, issue.10, pp.5068-77, 2008.

G. Yang, S. J. Buhrlage, L. Tan, X. Liu, J. Chen et al., HCK is a survival determinant transactivated by mutated MYD88, and a direct target of ibrutinib, Blood, vol.127, issue.25, pp.3237-52, 2016.

C. Jimenez, E. Sebastian, M. C. Chillon, G. P. , M. Hernandez et al., MYD88 L265P is a marker highly characteristic of, but not restricted to, Waldenstrom's macroglobulinemia, Leukemia, vol.27, issue.8, pp.1722-1730, 2013.

M. Varettoni, L. Arcaini, S. Zibellini, E. Boveri, S. Rattotti et al., Prevalence and clinical significance of the MYD88 (L265P) somatic mutation in Waldenstrom's macroglobulinemia and related lymphoid neoplasms, Blood, vol.121, issue.13, pp.2522-2530, 2013.

S. Poulain, C. Roumier, A. Decambron, A. Renneville, C. Herbaux et al., MYD88 L265P mutation in Waldenstrom macroglobulinemia, Blood, vol.121, issue.22, pp.4504-4515, 2013.

G. Knittel, P. Liedgens, D. Korovkina, J. M. Seeger, Y. Al-baldawi et al., B-cell-specific conditional expression of Myd88p.L252P leads to the development of diffuse large B-cell lymphoma in mice, Blood, vol.127, issue.22, pp.2732-2773, 2016.

B. Haribabu, R. M. Richardson, I. Fisher, S. Sozzani, S. C. Peiper et al., Regulation of human chemokine receptors CXCR4. Role of phosphorylation in desensitization and internalization, J Biol Chem, vol.272, issue.45, pp.28726-28757, 1997.

B. A. Teicher and S. P. Fricker, CXCL12 (SDF-1)/CXCR4 pathway in cancer, Clin Cancer Res, vol.16, issue.11, pp.2927-2958, 2010.

S. Poulain, C. Roumier, A. Venet-caillault, M. Figeac, C. Herbaux et al., Genomic Landscape of CXCR4 Mutations in Waldenstrom Macroglobulinemia, Clin Cancer Res, vol.22, issue.6, pp.1480-1488, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01230058

L. Xu, Z. R. Hunter, N. Tsakmaklis, Y. Cao, G. Yang et al., Clonal architecture of CXCR4 WHIM-like mutations in Waldenstrom Macroglobulinaemia, Br J Haematol, vol.172, issue.5, pp.735-779, 2016.

Y. Cao, Z. R. Hunter, X. Liu, L. Xu, G. Yang et al., The WHIM-like CXCR4(S338X) somatic mutation activates AKT and ERK, and promotes resistance to ibrutinib and other agents used in the treatment of Waldenstrom's Macroglobulinemia, Leukemia, vol.29, issue.1, pp.169-76, 2015.

J. Schmidt, B. Federmann, N. Schindler, J. Steinhilber, I. Bonzheim et al., MYD88 L265P and CXCR4 mutations in lymphoplasmacytic lymphoma identify cases with high disease activity, Br J Haematol, vol.169, issue.6, pp.795-803, 2015.

P. A. Hernandez, R. J. Gorlin, J. N. Lukens, S. Taniuchi, J. Bohinjec et al., Mutations in the chemokine receptor gene CXCR4 are associated with WHIM syndrome, a combined immunodeficiency disease, Nat Genet, vol.34, issue.1, pp.70-74, 2003.

B. Wu, E. Y. Chien, C. D. Mol, G. Fenalti, W. Liu et al., Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists, Science, vol.330, issue.6007, pp.1066-71, 2010.

B. Lagane, K. Y. Chow, K. Balabanian, A. Levoye, J. Harriague et al., CXCR4 dimerization and beta-arrestin-mediated signaling account for the enhanced chemotaxis to CXCL12 in WHIM syndrome, Blood, vol.112, issue.1, pp.34-44, 2008.
URL : https://hal.archives-ouvertes.fr/pasteur-00284464

M. J. Orsini, J. L. Parent, S. J. Mundell, A. Marchese, and J. L. Benovic, Trafficking of the HIV coreceptor CXCR4. Role of arrestins and identification of residues in the c-terminal tail that mediate receptor internalization, J Biol Chem, vol.274, issue.43, pp.31076-86, 1999.

A. M. Roccaro, A. Sacco, C. Jimenez, P. Maiso, M. Moschetta et al., C1013G/CXCR4 acts as a driver mutation of tumor progression and modulator of drug resistance in lymphoplasmacytic lymphoma, Blood, vol.123, issue.26, pp.4120-4151, 2014.

O. Bannard, R. M. Horton, C. D. Allen, J. An, T. Nagasawa et al., Germinal center centroblasts transition to a centrocyte phenotype according to a timed program and depend on the dark zone for effective selection, Immunity, vol.39, issue.5, pp.912-936, 2013.

Q. Ma, D. Jones, P. R. Borghesani, R. A. Segal, T. Nagasawa et al., Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4-and SDF-1-deficient mice, Proc Natl Acad Sci, vol.95, issue.16, pp.9448-53, 1998.

Y. Nie, J. Waite, F. Brewer, M. J. Sunshine, D. R. Littman et al., The role of CXCR4 in maintaining peripheral B cell compartments and humoral immunity, J Exp Med, vol.200, issue.9, pp.1145-56, 2004.

K. Tachibana, S. Hirota, H. Iizasa, H. Yoshida, K. Kawabata et al., The chemokine receptor CXCR4 is essential for vascularization of the gastrointestinal tract, Nature, vol.393, issue.6685, pp.591-595, 1998.

K. Balabanian, E. Brotin, V. Biajoux, L. Bouchet-delbos, L. E. Fenneteau et al., Proper desensitization of CXCR4 is required for lymphocyte development and peripheral compartmentalization in mice, Blood, vol.119, issue.24, pp.5722-5752, 2012.

V. Biajoux, J. Natt, C. Freitas, N. Alouche, A. Sacquin et al., Efficient Plasma Cell Differentiation and Trafficking Require Cxcr4 Desensitization, Cell Rep, vol.17, issue.1, pp.193-205, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-01401695

Z. R. Hunter, G. Yang, L. Xu, X. Liu, J. J. Castillo et al., Signaling, and Treatment of Waldenstrom Macroglobulinemia, J Clin Oncol, vol.35, issue.9, pp.994-1001, 2017.

, Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France 371. Wu JN, Roberts CW. ARID1A mutations in cancer: another epigenetic tumor suppressor?, Cancer Discov, vol.3, issue.1, pp.35-43, 2013.

K. C. Wiegand, S. P. Shah, O. M. Al-agha, Y. Zhao, K. Tse et al., ARID1A mutations in endometriosisassociated ovarian carcinomas, N Engl J Med, vol.363, issue.16, pp.1532-1575, 2010.

Z. J. Zang, I. Cutcutache, S. L. Poon, S. L. Zhang, J. R. Mcpherson et al., Exome sequencing of gastric adenocarcinoma identifies recurrent somatic mutations in cell adhesion and chromatin remodeling genes, Nat Genet, vol.44, issue.5, pp.570-574, 2012.

J. Huang, Q. Deng, Q. Wang, K. Y. Li, J. H. Dai et al., Exome sequencing of hepatitis B virus-associated hepatocellular carcinoma, Nat Genet, vol.44, issue.10, pp.1117-1138, 2012.

W. J. Chng, R. F. Schop, T. Price-troska, I. Ghobrial, N. Kay et al., Gene-expression profiling of Waldenstrom macroglobulinemia reveals a phenotype more similar to chronic lymphocytic leukemia than multiple myeloma, Blood, vol.108, issue.8, pp.2755-63, 2006.

N. C. Gutierrez, E. M. Ocio, J. De-las-rivas, P. Maiso, M. Delgado et al., Gene expression profiling of B lymphocytes and plasma cells from Waldenstrom's macroglobulinemia: comparison with expression patterns of the same cell counterparts from chronic lymphocytic leukemia, multiple myeloma and normal individuals, Leukemia, vol.21, issue.3, pp.541-550, 2007.

Z. R. Hunter, L. Xu, G. Yang, N. Tsakmaklis, J. M. Vos et al., Transcriptome sequencing reveals a profile that corresponds to genomic variants in Waldenstrom macroglobulinemia, Blood, vol.128, issue.6, pp.827-865, 2016.

M. F. Nunn, P. H. Seeburg, C. Moscovici, and P. H. Duesberg, Tripartite structure of the avian erythroblastosis virus E26 transforming gene, Nature, vol.306, issue.5941, pp.391-396, 1983.

D. Leprince, A. Gegonne, J. Coll, C. De-taisne, A. Schneeberger et al., A putative second cell-derived oncogene of the avian leukaemia retrovirus E26, Nature, vol.306, issue.5941, pp.395-402, 1983.

P. C. Hollenhorst, L. P. Mcintosh, and B. J. Graves, Genomic and biochemical insights into the specificity of ETS transcription factors, Annu Rev Biochem, vol.80, pp.437-71, 2011.

A. D. Sharrocks, The ETS-domain transcription factor family, Nat Rev Mol Cell Biol, vol.2, issue.11, pp.827-864, 2001.

C. Klambt, The Drosophila gene pointed encodes two ETS-like proteins which are involved in the development of the midline glial cells, Development, vol.117, issue.1, pp.163-76, 1993.

V. Lacronique, A. Boureux, V. D. Valle, H. Poirel, C. T. Quang et al., A TEL-JAK2 fusion protein with constitutive kinase activity in human leukemia, Science, vol.278, issue.5341, pp.1309-1321, 1997.

C. A. Kim, M. L. Phillips, W. Kim, M. Gingery, H. H. Tran et al., Polymerization of the SAM domain of TEL in leukemogenesis and transcriptional repression, EMBO J, vol.20, issue.15, pp.4173-82, 2001.

D. A. Baker, B. Mille-baker, S. M. Wainwright, D. Ish-horowicz, and N. J. Dibb, Mae mediates MAP kinase phosphorylation of Ets transcription factors in Drosophila, Nature, vol.411, issue.6835, pp.330-334, 2001.

R. Fenrick, J. M. Amann, B. Lutterbach, L. Wang, J. J. Westendorf et al., Both TEL and AML-1 contribute repression domains to the t(12;21) fusion protein, Mol Cell Biol, vol.19, issue.10, pp.6566-74, 1999.

M. Hassler and T. J. Richmond, The B-box dominates SAP-1-SRF interactions in the structure of the ternary complex, EMBO J, vol.20, issue.12, pp.3018-3046, 2001.

P. C. Hollenhorst, D. A. Jones, and B. J. Graves, Expression profiles frame the promoter specificity dilemma of the ETS family of transcription factors, Nucleic Acids Res, vol.32, issue.18, pp.5693-702, 2004.

B. R. Szymczyna and C. H. Arrowsmith, DNA binding specificity studies of four ETS proteins support an indirect readout mechanism of protein-DNA recognition, J Biol Chem, vol.275, issue.37, pp.28363-70, 2000.

G. M. Poon, R. B. Macgregor, and J. , Base coupling in sequence-specific site recognition by the ETS domain of murine PU.1, J Mol Biol, vol.328, issue.4, pp.805-824, 2003.

T. A. Brown and S. L. Mcknight, Specificities of protein-protein and protein-DNA interaction of GABP alpha and two newly defined ets-related proteins, Genes Dev, vol.6, issue.12B, pp.2502-2514, 1992.

J. A. Nye, J. M. Petersen, C. V. Gunther, M. D. Jonsen, and B. J. Graves, Interaction of murine ets-1 with GGA-binding sites establishes the ETS domain as a new DNA-binding motif, Genes Dev, vol.6, issue.6, pp.975-90, 1992.

D. Ray-gallet, C. Mao, A. Tavitian, and F. Moreau-gachelin, DNA binding specificities of Spi-1/PU.1 and Spi-B transcription factors and identification of a Spi-1/Spi-B binding site in the c-fes/c-fps promoter, Oncogene, vol.11, issue.2, pp.303-316, 1995.

P. Shore and A. D. Sharrocks, The ETS-domain transcription factors Elk-1 and SAP-1 exhibit differential DNA binding specificities, Nucleic Acids Res, vol.23, issue.22, pp.4698-706, 1995.

S. John, R. Marais, R. Child, Y. Light, and W. J. Leonard, Importance of low affinity Elf-1 sites in the regulation of lymphoid-specific inducible gene expression, J Exp Med, vol.183, issue.3, pp.743-50, 1996.

Y. S. Choi and S. Sinha, Determination of the consensus DNA-binding sequence and a transcriptional activation domain for ESE-2, Biochem J, vol.398, issue.3, pp.497-507, 2006.

X. Mao, S. Miesfeldt, H. Yang, J. M. Leiden, and C. B. Thompson, The FLI-1 and chimeric EWS-FLI-1 oncoproteins display similar DNA binding specificities, J Biol Chem, vol.269, issue.27, pp.18216-18238, 1994.

G. H. Wei, G. Badis, M. F. Berger, T. Kivioja, K. Palin et al., Genome-wide analysis of ETS-family DNAbinding in vitro and in vivo, EMBO J, vol.29, issue.13, pp.2147-60, 2010.

P. Oettgen, E. Finger, Z. Sun, Y. Akbarali, U. Thamrongsak et al., PDEF, a novel prostate epitheliumspecific ets transcription factor, interacts with the androgen receptor and activates prostate-specific antigen gene expression, J Biol Chem, vol.275, issue.2, pp.1216-1241, 2000.

P. C. Hollenhorst, K. J. Chandler, R. L. Poulsen, W. E. Johnson, N. A. Speck et al., DNA specificity determinants associate with distinct transcription factor functions, PLoS Genet, vol.5, issue.12, p.1000778, 2009.

D. Baillat, C. Laitem, G. Leprivier, C. Margerin, and M. Aumercier, Ets-1 binds cooperatively to the palindromic Ets-binding sites in the p53 promoter, Biochem Biophys Res Commun, vol.378, issue.2, pp.213-220, 2009.

C. W. Garvie, M. A. Pufall, B. J. Graves, and C. Wolberger, Structural analysis of the autoinhibition of Ets-1 and its role in protein partnerships, J Biol Chem, vol.277, issue.47, pp.45529-45565, 2002.

B. B. Bojovic and J. A. Hassell, The PEA3 Ets transcription factor comprises multiple domains that regulate transactivation and DNA binding, J Biol Chem, vol.276, issue.6, pp.4509-4530, 2001.

J. Hagman and R. Grosschedl, An inhibitory carboxyl-terminal domain in Ets-1 and Ets-2 mediates differential binding of ETS family factors to promoter sequences of the mb-1 gene, Proc Natl Acad Sci, vol.89, issue.19, pp.8889-93, 1992.

C. Wasylyk, J. P. Kerckaert, and B. Wasylyk, A novel modulator domain of Ets transcription factors, Genes Dev, vol.6, issue.6, pp.965-74, 1992.

F. Lim, N. Kraut, J. Framptom, and T. Graf, DNA binding by c-Ets-1, but not v-Ets, is repressed by an intramolecular mechanism, EMBO J, vol.11, issue.2, pp.643-52, 1992.

F. Lionneton, E. Lelievre, D. Baillat, D. Stehelin, and F. Soncin, Characterization and functional analysis of the p42Ets-1 variant of the mouse Ets-1 transcription factor, Oncogene, vol.22, issue.57, pp.9156-64, 2003.

M. D. Jonsen, J. M. Petersen, Q. P. Xu, and B. J. Graves, Characterization of the cooperative function of inhibitory sequences in Ets-1, Mol Cell Biol, vol.16, issue.5, pp.2065-73, 1996.

J. M. Petersen, J. J. Skalicky, L. W. Donaldson, L. P. Mcintosh, T. Alber et al., Modulation of transcription factor Ets-1 DNA binding: DNA-induced unfolding of an alpha helix, Science, vol.269, issue.5232, pp.1866-1875, 1995.

W. Y. Kim, M. Sieweke, E. Ogawa, H. J. Wee, U. Englmeier et al., Mutual activation of Ets-1 and AML1 DNA binding by direct interaction of their autoinhibitory domains, EMBO J, vol.18, issue.6, pp.1609-1629, 1999.

T. L. Goetz, T. L. Gu, N. A. Speck, and B. J. Graves, Auto-inhibition of Ets-1 is counteracted by DNA binding cooperativity with core-binding factor alpha2, Mol Cell Biol, vol.20, issue.1, pp.81-90, 2000.

D. Fitzsimmons, W. Hodsdon, W. Wheat, S. M. Maira, B. Wasylyk et al., Pax-5 (BSAP) recruits Ets protooncogene family proteins to form functional ternary complexes on a B-cell-specific promoter, Genes Dev, vol.10, issue.17, pp.2198-211, 1996.

D. O. Cowley and B. J. Graves, Phosphorylation represses Ets-1 DNA binding by reinforcing autoinhibition, Genes Dev, vol.14, issue.3, pp.366-76, 2000.

S. H. Yang, P. Shore, N. Willingham, J. H. Lakey, and A. D. Sharrocks, The mechanism of phosphorylation-inducible activation of the ETS-domain transcription factor Elk-1, EMBO J, vol.18, issue.20, pp.5666-74, 1999.

R. A. Hipskind, V. N. Rao, C. G. Mueller, E. S. Reddy, and A. Nordheim, Ets-related protein Elk-1 is homologous to the c-fos regulatory factor p62TCF, Nature, vol.354, issue.6354, pp.531-535, 1991.

S. Dalton and R. Treisman, Characterization of SAP-1, a protein recruited by serum response factor to the c-fos serum response element, Cell, vol.68, issue.3, pp.597-612, 1992.

P. R. Yates, G. T. Atherton, R. W. Deed, J. D. Norton, and A. D. Sharrocks, Id helix-loop-helix proteins inhibit nucleoprotein complex formation by the TCF ETS-domain transcription factors, EMBO J, vol.18, issue.4, pp.968-76, 1999.

R. Li, H. Pei, and D. K. Watson, Regulation of Ets function by protein -protein interactions, Oncogene, vol.19, issue.55, pp.6514-6537, 2000.

A. L. Brass, A. Q. Zhu, and H. Singh, Assembly requirements of PU.1-Pip (IRF-4) activator complexes: inhibiting function in vivo using fused dimers, EMBO J, vol.18, issue.4, pp.977-91, 1999.

Y. Mo, B. Vaessen, K. Johnston, and R. Marmorstein, Structure of the elk-1-DNA complex reveals how DNA-distal residues affect ETS domain recognition of DNA, Nat Struct Biol, vol.7, issue.4, pp.292-299, 2000.

H. Yamamoto, F. Kihara-negishi, T. Yamada, Y. Hashimoto, and T. Oikawa, Physical and functional interactions between the transcription factor PU.1 and the coactivator CBP, Oncogene, vol.18, issue.7, pp.1495-501, 1999.

H. Gille, A. D. Sharrocks, and P. E. Shaw, Phosphorylation of transcription factor p62TCF by MAP kinase stimulates ternary complex formation at c-fos promoter, Nature, vol.358, issue.6385, pp.414-421, 1992.

R. Marais, J. Wynne, and R. Treisman, The SRF accessory protein Elk-1 contains a growth factor-regulated transcriptional activation domain, Cell, vol.73, issue.2, pp.381-93, 1993.

A. J. Whitmarsh, P. Shore, A. D. Sharrocks, and R. J. Davis, Integration of MAP kinase signal transduction pathways at the serum response element, Science, vol.269, issue.5222, pp.403-410, 1995.

S. H. Yang, A. D. Sharrocks, and A. J. Whitmarsh, Transcriptional regulation by the MAP kinase signaling cascades

, Gene, vol.320, pp.3-21, 2003.

C. F. Eisenbeis, H. Singh, and U. Storb, Pip, a novel IRF family member, is a lymphoid-specific, PU.1-dependent transcriptional activator, Genes Dev, vol.9, issue.11, pp.1377-87, 1995.

P. J. Farnham, Insights from genomic profiling of transcription factors, Nat Rev Genet, vol.10, issue.9, pp.605-621, 2009.

P. C. Hollenhorst, A. A. Shah, C. Hopkins, and B. J. Graves, Genome-wide analyses reveal properties of redundant and specific promoter occupancy within the ETS gene family, Genes Dev, vol.21, issue.15, pp.1882-94, 2007.

J. Boros, I. J. Donaldson, O. Donnell, A. Odrowaz, Z. A. Zeef et al., Elucidation of the ELK1 target gene network reveals a role in the coordinate regulation of core components of the gene regulation machinery, Genome Res, vol.19, issue.11, pp.1963-73, 2009.

A. Kar and A. Gutierrez-hartmann, Molecular mechanisms of ETS transcription factor-mediated tumorigenesis, Crit Rev Biochem Mol Biol, vol.48, issue.6, pp.522-565, 2013.

G. M. Sizemore, J. R. Pitarresi, S. Balakrishnan, and M. C. Ostrowski, The ETS family of oncogenic transcription factors in solid tumours, Nat Rev Cancer, vol.17, issue.6, pp.337-51, 2017.

O. Delattre, J. Zucman, B. Plougastel, C. Desmaze, T. Melot et al., Gene fusion with an ETS DNA-binding domain caused by chromosome translocation in human tumours, Nature, vol.359, issue.6391, pp.162-167, 1992.

P. H. Sorensen, S. L. Lessnick, D. Lopez-terrada, X. F. Liu, T. J. Triche et al., A second Ewing's sarcoma translocation, t(21;22), fuses the EWS gene to another ETS-family transcription factor, ERG, Nat Genet, vol.6, issue.2, pp.146-51, 1994.

C. Tognon, S. R. Knezevich, D. Huntsman, C. D. Roskelley, N. Melnyk et al., Expression of the ETV6-NTRK3 gene fusion as a primary event in human secretory breast carcinoma, Cancer Cell, vol.2, issue.5, pp.367-76, 2002.

S. A. Tomlins, D. R. Rhodes, S. Perner, S. M. Dhanasekaran, R. Mehra et al., Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer, Science, vol.310, issue.5748, pp.644-652, 2005.

B. Lin, C. Ferguson, J. T. White, S. Wang, R. Vessella et al., Prostate-localized and androgen-regulated expression of the membrane-bound serine protease TMPRSS2, Cancer Res, vol.59, issue.17, pp.4180-4184, 1999.

S. A. Tomlins, R. Mehra, D. R. Rhodes, L. R. Smith, D. Roulston et al., TMPRSS2:ETV4 gene fusions define a third molecular subtype of prostate cancer, Cancer Res, vol.66, issue.7, pp.3396-400, 2006.

B. E. Helgeson, S. A. Tomlins, N. Shah, B. Laxman, Q. Cao et al., Characterization of TMPRSS2:ETV5 and SLC45A3:ETV5 gene fusions in prostate cancer, Cancer Res, vol.68, issue.1, pp.73-80, 2008.

S. A. Tomlins, B. Laxman, S. M. Dhanasekaran, B. E. Helgeson, X. Cao et al., Distinct classes of chromosomal rearrangements create oncogenic ETS gene fusions in prostate cancer, Nature, vol.448, issue.7153, pp.595-604, 2007.

B. S. Carver, J. Tran, A. Gopalan, Z. Chen, S. Shaikh et al., Aberrant ERG expression cooperates with loss of PTEN to promote cancer progression in the prostate, Nat Genet, vol.41, issue.5, pp.619-643, 2009.

J. C. King, J. Xu, J. Wongvipat, H. Hieronymus, B. S. Carver et al., Cooperativity of TMPRSS2-ERG with PI3-kinase pathway activation in prostate oncogenesis, Nat Genet, vol.41, issue.5, pp.524-530, 2009.

Y. Chen, P. Chi, S. Rockowitz, P. J. Iaquinta, T. Shamu et al., ETS factors reprogram the androgen receptor cistrome and prime prostate tumorigenesis in response to PTEN loss, Nat Med, vol.19, issue.8, pp.1023-1032, 2013.

B. C. Bastian, P. E. Leboit, H. Hamm, E. B. Brocker, and D. Pinkel, Chromosomal gains and losses in primary cutaneous melanomas detected by comparative genomic hybridization, Cancer Res, vol.58, issue.10, pp.2170-2175, 1998.

J. Widlund, H. R. Perner, S. Johnson, L. A. Dibner, A. C. Lin et al., An oncogenic role for ETV1 in melanoma, Cancer Res, vol.70, issue.5, pp.2075-84, 2010.

B. Mesquita, P. Lopes, A. Rodrigues, D. Pereira, M. Afonso et al., Frequent copy number gains at 1q21 and 1q32 are associated with overexpression of the ETS transcription factors ETV3 and ELF3 in breast cancer irrespective of molecular subtypes, Breast Cancer Res Treat, vol.138, issue.1, pp.37-45, 2013.

S. P. Romana, H. Poirel, M. Leconiat, M. A. Flexor, M. Mauchauffe et al., High frequency of t(12;21) in childhood B-lineage acute lymphoblastic leukemia, Blood, vol.86, issue.11, pp.4263-4272, 1995.

S. P. Romana, M. Mauchauffe, L. Coniat, M. Chumakov, I. et al., The t(12;21) of acute lymphoblastic leukemia results in a tel-AML1 gene fusion, Blood, vol.85, issue.12, pp.3662-70, 1995.

P. Peeters, I. Wlodarska, M. Baens, A. Criel, D. Selleslag et al., Fusion of ETV6 to MDS1/EVI1 as a result of t(3;12)(q26;p13) in myeloproliferative disorders, Cancer Res, vol.57, issue.4, pp.564-573, 1997.

T. R. Golub, G. F. Barker, M. Lovett, and D. G. Gilliland, Fusion of PDGF receptor beta to a novel ets-like gene, tel, in chronic myelomonocytic leukemia with t(5;12) chromosomal translocation, Cell, vol.77, issue.2, pp.307-323, 1994.

M. Eguchi, M. Eguchi-ishimae, A. Tojo, K. Morishita, K. Suzuki et al., Fusion of ETV6 to neurotrophin-3 receptor TRKC in acute myeloid leukemia with t(12;15)(p13;q25), Blood, vol.93, issue.4, pp.1355-63, 1999.

T. R. Golub, A. Goga, G. F. Barker, D. E. Afar, J. Mclaughlin et al., Oligomerization of the ABL tyrosine kinase by the Ets protein TEL in human leukemia, Mol Cell Biol, vol.16, issue.8, pp.4107-4123, 1996.

J. Schwaller, E. Parganas, D. Wang, D. Cain, J. C. Aster et al., Stat5 is essential for the myelo-and lymphoproliferative disease induced by TEL/JAK2, Mol Cell, vol.6, issue.3, pp.693-704, 2000.

M. Seki, S. Kimura, T. Isobe, K. Yoshida, H. Ueno et al., Recurrent SPI1 (PU.1) fusions in high-risk pediatric T cell acute lymphoblastic leukemia, Nat Genet, vol.49, issue.8, pp.1274-81, 2017.

P. Bonetti, M. Testoni, M. Scandurra, M. Ponzoni, R. Piva et al., Deregulation of ETS1 and FLI1 contributes to the pathogenesis of diffuse large B-cell lymphoma, Blood, vol.122, issue.13, pp.2233-2274, 2013.

L. Pasqualucci, V. Trifonov, G. Fabbri, J. Ma, D. Rossi et al., Analysis of the coding genome of diffuse large B-cell lymphoma, Nat Genet, vol.43, issue.9, pp.830-837, 2011.

B. Chapuy, C. Stewart, A. J. Dunford, J. Kim, A. Kamburov et al., Molecular subtypes of diffuse large B cell lymphoma are associated with distinct pathogenic mechanisms and outcomes, Nat Med, vol.24, issue.5, pp.679-90, 2018.

S. Horn, A. Figl, P. S. Rachakonda, C. Fischer, A. Sucker et al., TERT promoter mutations in familial and sporadic melanoma, Science, vol.339, issue.6122, pp.959-61, 2013.

F. W. Huang, E. Hodis, M. J. Xu, G. V. Kryukov, L. Chin et al., Highly recurrent TERT promoter mutations in human melanoma, Science, vol.339, issue.6122, pp.957-966, 2013.

P. A. Muller and K. H. Vousden, Mutant p53 in cancer: new functions and therapeutic opportunities, Cancer Cell, vol.25, issue.3, pp.304-321, 2014.

P. M. Do, L. Varanasi, S. Fan, C. Li, I. Kubacka et al., Mutant p53 cooperates with ETS2 to promote etoposide resistance, Genes Dev, vol.26, issue.8, pp.830-875, 2012.

J. Zhu, M. A. Sammons, G. Donahue, Z. Dou, M. Vedadi et al., Gain-of-function p53 mutants co-opt chromatin pathways to drive cancer growth, Nature, vol.525, issue.7568, pp.206-217, 2015.

P. Chi, Y. Chen, L. Zhang, X. Guo, J. Wongvipat et al., ETV1 is a lineage survival factor that cooperates with KIT in gastrointestinal stromal tumours, Nature, vol.467, issue.7317, pp.849-53, 2010.

L. Ran, I. Sirota, Z. Cao, D. Murphy, Y. Chen et al., Combined inhibition of MAP kinase and KIT signaling synergistically destabilizes ETV1 and suppresses GIST tumor growth, Cancer Discov, vol.5, issue.3, pp.304-319, 2015.

Y. Hayashi, M. R. Bardsley, Y. Toyomasu, S. Milosavljevic, G. B. Gajdos et al., Platelet-Derived Growth Factor Receptor-alpha Regulates Proliferation of Gastrointestinal Stromal Tumor Cells With Mutations in KIT by Stabilizing ETV1, Gastroenterology, vol.149, issue.2, pp.420-452, 2015.

A. C. Vitari, K. G. Leong, K. Newton, C. Yee, K. O'rourke et al., COP1 is a tumour suppressor that causes degradation of ETS transcription factors, Nature, vol.474, issue.7351, pp.403-409, 2011.

G. Lu, Q. Zhang, Y. Huang, J. Song, R. Tomaino et al., Phosphorylation of ETS1 by Src family kinases prevents its recognition by the COP1 tumor suppressor, Cancer Cell, vol.26, issue.2, pp.222-256, 2014.

, Moreau-Gachelin F, Tavitian A, Tambourin P. Spi-1 is a putative oncogene in virally induced murine erythroleukaemias, Nature, vol.331, issue.6153, pp.277-80, 1988.

F. Moreau-gachelin, D. Ray, M. G. Mattei, P. Tambourin, and A. Tavitian, The putative oncogene Spi-1: murine chromosomal localization and transcriptional activation in murine acute erythroleukemias, Oncogene, vol.4, issue.12, pp.1449-56, 1989.

M. J. Klemsz, S. R. Mckercher, A. Celada, C. Van-beveren, and R. A. Maki, The macrophage and B cell-specific transcription factor PU.1 is related to the ets oncogene, Cell, vol.61, issue.1, pp.113-137, 1990.

V. C. Nguyen, D. Ray, M. S. Gross, M. F. De-tand, J. Frezal et al., Localization of the human oncogene SPI1 on chromosome 11, region p11.22, Hum Genet, vol.84, issue.6, pp.542-548, 1990.

G. Behre, A. J. Whitmarsh, M. P. Coghlan, T. Hoang, C. L. Carpenter et al., c-Jun is a JNK-independent coactivator of the PU.1 transcription factor, J Biol Chem, vol.274, issue.8, pp.4939-4985, 1999.

N. Rekhtman, F. Radparvar, T. Evans, and A. I. Skoultchi, Direct interaction of hematopoietic transcription factors PU.1 and GATA-1: functional antagonism in erythroid cells, Genes Dev, vol.13, issue.11, pp.1398-411, 1999.

C. Nerlov, E. Querfurth, H. Kulessa, and T. Graf, GATA-1 interacts with the myeloid PU.1 transcription factor and represses PU.1-dependent transcription, Blood, vol.95, issue.8, pp.2543-51, 2000.

C. Hagemeier, A. J. Bannister, A. Cook, and T. Kouzarides, The activation domain of transcription factor PU.1 binds the retinoblastoma (RB) protein and the transcription factor TFIID in vitro: RB shows sequence similarity to TFIID and TFIIB, Proc Natl Acad Sci, vol.90, issue.4, pp.1580-1584, 1993.

S. Nagulapalli, J. M. Pongubala, and M. L. Atchison, Multiple proteins physically interact with PU.1. Transcriptional synergy with NF-IL6 beta (C/EBP delta, CRP3), J Immunol, vol.155, issue.9, pp.4330-4338, 1995.

J. M. Pongubala, C. Van-beveren, S. Nagulapalli, M. J. Klemsz, S. R. Mckercher et al., Effect of PU.1 phosphorylation on interaction with NF-EM5 and transcriptional activation, Science, vol.259, issue.5101, pp.1165-1171, 1990.

R. Hromas, A. Orazi, R. S. Neiman, R. Maki, C. Van-beveran et al., Hematopoietic lineage-and stagerestricted expression of the ETS oncogene family member PU.1, Blood, vol.82, issue.10, pp.2998-3004, 1993.

D. L. Galson, J. O. Hensold, T. R. Bishop, M. Schalling, D. 'andrea et al., Mouse beta-globin DNA-binding protein B1 is identical to a proto-oncogene, the transcription factor Spi-1/PU.1, and is restricted in expression to hematopoietic cells and the testis, Mol Cell Biol, vol.13, issue.5, pp.2929-2970, 1993.

D. Ray, R. Bosselut, J. Ghysdael, M. G. Mattei, A. Tavitian et al., Characterization of Spi-B, a transcription factor related to the putative oncoprotein Spi-1/PU.1, Mol Cell Biol, vol.12, issue.10, pp.4297-304, 1992.

D. E. Zhang, C. J. Hetherington, H. M. Chen, and D. G. Tenen, The macrophage transcription factor PU.1 directs tissuespecific expression of the macrophage colony-stimulating factor receptor, Mol Cell Biol, vol.14, issue.1, pp.373-81, 1994.

S. Hohaus, M. S. Petrovick, M. T. Voso, Z. Sun, D. E. Zhang et al., PU.1 (Spi-1) and C/EBP alpha regulate expression of the granulocyte-macrophage colony-stimulating factor receptor alpha gene, Mol Cell Biol, vol.15, issue.10, pp.5830-5875, 1995.

C. Perez, E. Coeffier, F. Moreau-gachelin, J. Wietzerbin, and P. D. Benech, Involvement of the transcription factor PU.1/Spi-1 in myeloid cell-restricted expression of an interferon-inducible gene encoding the human high-affinity Fc gamma receptor, Mol Cell Biol, vol.14, issue.8, pp.5023-5054, 1994.

R. Feinman, W. Q. Qiu, R. N. Pearse, B. S. Nikolajczyk, R. Sen et al., 1 and an HLH family member contribute to the myeloid-specific transcription of the Fc gamma RIIIA promoter, EMBO J, vol.13, issue.16, pp.3852-60, 1994.

H. L. Pahl, A. G. Rosmarin, and D. G. Tenen, Characterization of the myeloid-specific CD11b promoter, Blood, vol.79, issue.4, pp.865-70, 1992.

A. G. Rosmarin, R. Levy, and D. G. Tenen, Cloning and analysis of the CD18 promoter, Blood, vol.79, issue.10, pp.2598-604, 1992.

H. Iwasaki, C. Somoza, H. Shigematsu, E. A. Duprez, J. Iwasaki-arai et al., Distinctive and indispensable roles of PU.1 in maintenance of hematopoietic stem cells and their differentiation, Blood, vol.106, issue.5, pp.1590-600, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00187635

F. Rosenbauer, K. Wagner, J. L. Kutok, H. Iwasaki, L. Beau et al., Acute myeloid leukemia induced by graded reduction of a lineage-specific transcription factor, PU.1. Nat Genet, vol.36, issue.6, pp.624-654, 2004.

A. Dakic, D. Metcalf, D. Rago, L. Mifsud, S. Wu et al., PU.1 regulates the commitment of adult hematopoietic progenitors and restricts granulopoiesis, J Exp Med, vol.201, issue.9, pp.1487-502, 2005.

R. C. Fisher, J. D. Lovelock, and E. W. Scott, A critical role for PU.1 in homing and long-term engraftment by hematopoietic stem cells in the bone marrow, Blood, vol.94, issue.4, pp.1283-90, 1999.

J. Back, A. Dierich, C. Bronn, P. Kastner, S. Chan et al., 1 determines the self-renewal capacity of erythroid progenitor cells, Blood, vol.103, issue.10, pp.3615-3638, 2004.

J. Back, D. Allman, S. Chan, and P. Kastner, Visualizing PU.1 activity during hematopoiesis, Exp Hematol, vol.33, issue.4, pp.395-402, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00187415

Y. Arinobu, S. Mizuno, Y. Chong, H. Shigematsu, T. Iino et al., Reciprocal activation of GATA-1 and PU.1 marks initial specification of hematopoietic stem cells into myeloerythroid and myelolymphoid lineages, Cell Stem Cell, vol.1, issue.4, pp.416-443, 2007.

C. J. Spooner, J. X. Cheng, E. Pujadas, P. Laslo, and H. Singh, A recurrent network involving the transcription factors PU.1 and Gfi1 orchestrates innate and adaptive immune cell fates, Immunity, vol.31, issue.4, pp.576-86, 2009.

M. B. Kamath, I. B. Houston, A. J. Janovski, X. Zhu, S. Gowrisankar et al., Dose-dependent repression of T-cell and natural killer cell genes by PU.1 enforces myeloid and B-cell identity, Leukemia, vol.22, issue.6, pp.1214-1239, 2008.

R. P. Dekoter and H. Singh, Regulation of B lymphocyte and macrophage development by graded expression of PU.1, Science, vol.288, issue.5470, pp.1439-1480, 2000.

H. Chen, P. Zhang, H. S. Radomska, C. J. Hetherington, D. E. Zhang et al., Octamer binding factors and their coactivator can activate the murine PU.1 (spi-1) promoter, J Biol Chem, vol.271, issue.26, pp.15743-52, 1996.

, Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France 498. Eklund EA, Kakar R. Recruitment of CREB-binding protein by PU.1, IFN-regulatory factor-1, and the IFN consensus sequence-binding protein is necessary for IFN-gamma-induced p67phox and gp91phox expression, J Immunol, vol.163, issue.11, pp.6095-105, 1999.

Y. Li, Y. Okuno, P. Zhang, H. S. Radomska, H. Chen et al., Regulation of the PU.1 gene by distal elements, Blood, vol.98, issue.10, pp.2958-65, 2001.

U. Steidl, F. Rosenbauer, R. G. Verhaak, X. Gu, A. Ebralidze et al., Essential role of Jun family transcription factors in PU.1 knockdown-induced leukemic stem cells, Nat Genet, vol.38, issue.11, pp.1269-77, 2006.

Y. Bai, L. Srinivasan, L. Perkins, and M. L. Atchison, Protein acetylation regulates both PU.1 transactivation and Ig kappa 3' enhancer activity, J Immunol, vol.175, issue.8, pp.5160-5169, 2005.

F. Kihara-negishi, H. Yamamoto, M. Suzuki, T. Yamada, T. Sakurai et al., In vivo complex formation of PU.1 with HDAC1 associated with PU.1-mediated transcriptional repression, Oncogene, vol.20, issue.42, pp.6039-6086, 2001.

M. Suzuki, T. Yamada, F. Kihara-negishi, T. Sakurai, E. Hara et al., Site-specific DNA methylation by a complex of PU.1 and Dnmt3a/b, Oncogene, vol.25, issue.17, pp.2477-88, 2006.

A. Imoto, M. Okada, T. Okazaki, H. Kitasato, H. Harigae et al., Metallothionein-1 isoforms and vimentin are direct PU.1 downstream target genes in leukemia cells, J Biol Chem, vol.285, issue.14, pp.10300-10309, 2010.

C. W. Lio, J. Zhang, E. Gonzalez-avalos, P. G. Hogan, X. Chang et al., Tet2 and Tet3 cooperate with B-lineage transcription factors to regulate DNA modification and chromatin accessibility, Elife, vol.5, 2016.

D. C. Stephens and G. M. Poon, Differential sensitivity to methylated DNA by ETS-family transcription factors is intrinsically encoded in their DNA-binding domains, Nucleic Acids Res, vol.44, issue.18, pp.8671-81, 2016.

X. Li, D. Vradii, S. Gutierrez, J. B. Lian, A. J. Van-wijnen et al., Subnuclear targeting of Runx1 is required for synergistic activation of the myeloid specific M-CSF receptor promoter by PU.1, J Cell Biochem, vol.96, issue.4, pp.795-809, 2005.

G. Huang, P. Zhang, H. Hirai, S. Elf, X. Yan et al., 1 is a major downstream target of AML1 (RUNX1) in adult mouse hematopoiesis, Nat Genet, vol.40, issue.1, pp.51-60, 2008.

M. Leddin, C. Perrod, M. Hoogenkamp, S. Ghani, S. Assi et al., Two distinct auto-regulatory loops operate at the PU.1 locus in B cells and myeloid cells, Blood, vol.117, issue.10, pp.2827-2865, 2011.

C. V. Laiosa, M. Stadtfeld, H. Xie, L. De-andres-aguayo, and T. Graf, Reprogramming of committed T cell progenitors to macrophages and dendritic cells by C/EBP alpha and PU.1 transcription factors, Immunity, vol.25, issue.5, pp.731-775, 2006.

R. Feng, S. C. Desbordes, H. Xie, E. S. Tillo, F. Pixley et al., PU.1 and C/EBPalpha/beta convert fibroblasts into macrophage-like cells, Proc Natl Acad Sci, vol.105, issue.16, pp.6057-62, 2008.

D. Traver, T. Miyamoto, J. Christensen, J. Iwasaki-arai, K. Akashi et al., Fetal liver myelopoiesis occurs through distinct, prospectively isolatable progenitor subsets, Blood, vol.98, issue.3, pp.627-662, 2001.

P. Zhang, J. Iwasaki-arai, H. Iwasaki, M. L. Fenyus, T. Dayaram et al., Enhancement of hematopoietic stem cell repopulating capacity and self-renewal in the absence of the transcription factor C/EBP alpha, Immunity, vol.21, issue.6, pp.853-63, 2004.

R. Huber, D. Pietsch, T. Panterodt, and K. Brand, Regulation of C/EBPbeta and resulting functions in cells of the monocytic lineage, Cell Signal, vol.24, issue.6, pp.1287-96, 2012.

R. Dahl, S. R. Iyer, K. S. Owens, D. D. Cuylear, and M. C. Simon, The transcriptional repressor GFI-1 antagonizes PU.1 activity through protein-protein interaction, J Biol Chem, vol.282, issue.9, pp.6473-83, 2007.

P. Zhang, G. Behre, J. Pan, A. Iwama, N. Wara-aswapati et al., Negative cross-talk between hematopoietic regulators: GATA proteins repress PU.1, Proc Natl Acad Sci, vol.96, issue.15, pp.8705-8715, 1999.

A. B. Cantor and S. H. Orkin, Transcriptional regulation of erythropoiesis: an affair involving multiple partners, Oncogene, vol.21, issue.21, pp.3368-76, 2002.

P. Burda, P. Laslo, and T. Stopka, The role of PU.1 and GATA-1 transcription factors during normal and leukemogenic hematopoiesis, Leukemia, vol.24, issue.7, pp.1249-57, 2010.

P. Zhang, X. Zhang, A. Iwama, C. Yu, K. A. Smith et al., 1 inhibits GATA-1 function and erythroid differentiation by blocking GATA-1 DNA binding, Blood, vol.96, issue.8, pp.2641-2649, 2000.

M. K. Anderson, A. H. Weiss, G. Hernandez-hoyos, C. J. Dionne, and E. V. Rothenberg, Constitutive expression of PU.1 in fetal hematopoietic progenitors blocks T cell development at the pro-T cell stage, Immunity, vol.16, issue.2, pp.285-96, 2002.

F. Rosenbauer, B. M. Owens, L. Yu, J. R. Tumang, U. Steidl et al., Lymphoid cell growth and transformation are suppressed by a key regulatory element of the gene encoding PU.1, Nat Genet, vol.38, issue.1, pp.27-37, 2006.

P. Laslo, C. J. Spooner, A. Warmflash, D. W. Lancki, H. J. Lee et al., Multilineage transcriptional priming and determination of alternate hematopoietic cell fates, Cell, vol.126, issue.4, pp.755-66, 2006.

D. Reynaud, I. A. Demarco, K. L. Reddy, H. Schjerven, E. Bertolino et al., Regulation of B cell fate commitment and immunoglobulin heavy-chain gene rearrangements by Ikaros, Nat Immunol, vol.9, issue.8, pp.927-963, 2008.

S. Dias, R. Mansson, S. Gurbuxani, M. Sigvardsson, and B. L. Kee, E2A proteins promote development of lymphoidprimed multipotent progenitors, Immunity, vol.29, issue.2, pp.217-244, 2008.

K. T. Greig, C. A. De-graaf, J. M. Murphy, M. R. Carpinelli, S. H. Pang et al., Critical roles for c-Myb in lymphoid priming and early B-cell development, Blood, vol.115, issue.14, pp.2796-805, 2010.

S. Stehling-sun, J. Dade, S. L. Nutt, R. P. Dekoter, and F. D. Camargo, Regulation of lymphoid versus myeloid fate 'choice' by the transcription factor Mef2c, Nat Immunol, vol.10, issue.3, pp.289-96, 2009.

S. Carotta, A. Dakic, D. 'amico, A. Pang, S. H. Greig et al., The transcription factor PU.1 controls dendritic cell development and Flt3 cytokine receptor expression in a dose-dependent manner, Immunity, vol.32, issue.5, pp.628-669, 2010.

E. W. Scott, M. C. Simon, J. Anastasi, and H. Singh, Requirement of transcription factor PU.1 in the development of multiple hematopoietic lineages, Science, vol.265, issue.5178, pp.1573-1580, 1994.

S. Pang, C. A. De-graaf, D. J. Hilton, N. D. Huntington, S. Carotta et al., 1 Is Required for the Developmental Progression of Multipotent Progenitors to Common Lymphoid Progenitors, Front Immunol, vol.9, p.1264, 2018.

K. M. Sokalski, S. K. Li, I. Welch, H. A. Cadieux-pitre, M. R. Gruca et al., Deletion of genes encoding PU.1 and Spi-B in B cells impairs differentiation and induces pre-B cell acute lymphoblastic leukemia, Blood, vol.118, issue.10, pp.2801-2809, 2011.

L. A. Solomon, S. K. Li, J. Piskorz, L. S. Xu, and R. P. Dekoter, Genome-wide comparison of PU.1 and Spi-B binding sites in a mouse B lymphoma cell line, BMC Genomics, vol.16, p.76, 2015.

L. A. Garrett-sinha, G. H. Su, S. Rao, S. Kabak, Z. Hao et al., 1 and Spi-B are required for normal B cell receptor-mediated signal transduction, Immunity, vol.10, issue.4, pp.399-408, 1999.

S. H. Pang, M. Minnich, P. Gangatirkar, Z. Zheng, A. Ebert et al., 1 cooperates with IRF4 and IRF8 to suppress pre-B-cell leukemia, Leukemia, vol.30, issue.6, pp.1375-87, 2016.

R. Lu, K. L. Medina, D. W. Lancki, and H. Singh, IRF-4,8 orchestrate the pre-B-to-B transition in lymphocyte development, Genes Dev, vol.17, issue.14, pp.1703-1711, 2003.

H. Wang, C. H. Lee, C. Qi, P. Tailor, J. Feng et al., IRF8 regulates B-cell lineage specification, commitment, and differentiation, Blood, vol.112, issue.10, pp.4028-4066, 2008.

M. Minnich, H. Tagoh, P. Bonelt, E. Axelsson, M. Fischer et al., Multifunctional role of the transcription factor Blimp-1 in coordinating plasma cell differentiation, Nat Immunol, vol.17, issue.3, pp.331-374, 2016.

J. Tellier, W. Shi, M. Minnich, Y. Liao, S. Crawford et al., Blimp-1 controls plasma cell function through the regulation of immunoglobulin secretion and the unfolded protein response, Nat Immunol, vol.17, issue.3, pp.323-353, 2016.

P. S. Eis, W. Tam, L. Sun, A. Chadburn, Z. Li et al., Accumulation of miR-155 and BIC RNA in human B cell lymphomas, Proc Natl Acad Sci, vol.102, issue.10, pp.3627-3659, 2005.

R. M. O'connell, D. S. Rao, A. A. Chaudhuri, M. P. Boldin, K. D. Taganov et al., Sustained expression of microRNA-155 in hematopoietic stem cells causes a myeloproliferative disorder, J Exp Med, vol.205, issue.3, pp.585-94, 2008.

W. D. Cook, B. J. Mccaw, C. Herring, D. L. John, S. J. Foote et al., 1 is a suppressor of myeloid leukemia, inactivated in mice by gene deletion and mutation of its DNA binding domain, Blood, vol.104, issue.12, pp.3437-3481, 2004.

B. U. Mueller, T. Pabst, M. Osato, N. Asou, L. M. Johansen et al., Heterozygous PU.1 mutations are associated with acute myeloid leukemia, Blood, vol.100, issue.3, pp.998-1007, 2002.

C. Lamandin, C. Sagot, C. Roumier, P. Lepelley, D. Botton et al., Are PU.1 mutations frequent genetic events in acute myeloid leukemia (AML)?, Blood, vol.100, issue.13, pp.4680-4681, 2002.

K. Dohner, K. Tobis, T. Bischof, S. Hein, R. F. Schlenk et al., Mutation analysis of the transcription factor PU.1 in younger adults (16 to 60 years) with acute myeloid leukemia: a study of the AML Study Group Ulm (AMLSG ULM), Blood, vol.102, issue.10, p.3850, 2003.

V. P. Lavallee, I. Baccelli, J. Krosl, B. Wilhelm, F. Barabe et al., The transcriptomic landscape and directed chemical interrogation of MLL-rearranged acute myeloid leukemias, Nat Genet, vol.47, issue.9, pp.1030-1037, 2015.

T. Recaldin and D. J. Fear, Transcription factors regulating B cell fate in the germinal centre, Clinical and experimental immunology, vol.183, issue.1, pp.65-75, 2016.

L. A. Garrett-sinha, Review of Ets1 structure, function, and roles in immunity, Cell Mol Life Sci, vol.70, issue.18, pp.3375-90, 2013.

J. C. Bories, D. M. Willerford, D. Grevin, L. Davidson, A. Camus et al., Increased T-cell apoptosis and terminal B-cell differentiation induced by inactivation of the Ets-1 proto-oncogene, Nature, vol.377, issue.6550, pp.635-643, 1995.

S. L. Nutt and B. L. Kee, The transcriptional regulation of B cell lineage commitment, Immunity, vol.26, issue.6, pp.715-740, 2007.

R. G. Owen, S. P. Treon, A. Al-katib, R. Fonseca, P. R. Greipp et al., Clinicopathological definition of Waldenstrom's macroglobulinemia: consensus panel recommendations from the Second International Workshop on Waldenstrom's Macroglobulinemia, Semin Oncol, vol.30, issue.2, pp.110-115, 2003.

L. Quek, G. W. Otto, C. Garnett, L. Lhermitte, D. Karamitros et al., Genetically distinct leukemic stem cells in human CD34-acute myeloid leukemia are arrested at a hemopoietic precursor-like stage, J Exp Med, vol.213, issue.8, pp.1513-1548, 2016.

A. L. Shaffer, G. Wright, L. Yang, J. Powell, V. Ngo et al., A library of gene expression signatures to illuminate normal and pathological lymphoid biology, Immunol Rev, vol.210, pp.67-85, 2006.

S. Malinge, C. Ragu, V. Della-valle, D. Pisani, S. N. Constantinescu et al., Activating mutations in human acute megakaryoblastic leukemia, Blood, vol.112, issue.10, pp.4220-4226, 2008.

J. Calvo, A. Benyoucef, J. Baijer, M. C. Rouyez, and F. Pflumio, Assessment of human multi-potent hematopoietic stem/progenitor cell potential using a single in vitro screening system, PLoS One, vol.7, issue.11, p.50495, 2012.

C. Quivoron, L. Couronne, D. Valle, V. Lopez, C. K. Plo et al., TET2 inactivation results in pleiotropic hematopoietic abnormalities in mouse and is a recurrent event during human lymphomagenesis, Cancer Cell, vol.20, issue.1, pp.25-38, 2011.

M. Ridinger-saison, V. Boeva, P. Rimmele, I. Kulakovskiy, I. Gallais et al., Spi-1/PU.1 activates transcription through clustered DNA occupancy in erythroleukemia, Nucleic Acids Res, vol.40, issue.18, pp.8927-8968, 2012.

J. Ernst and M. Kellis, Chromatin-state discovery and genome annotation with ChromHMM, Nat Protoc, vol.12, issue.12, pp.2478-92, 2017.

M. D. David, D. Petit, and J. Bertoglio, The RhoGAP ARHGAP19 controls cytokinesis and chromosome segregation in T lymphocytes, J Cell Sci, vol.127, issue.2, pp.400-410, 2014.

S. Kasar, J. Kim, R. Improgo, G. Tiao, P. Polak et al., Whole-genome sequencing reveals activationinduced cytidine deaminase signatures during indolent chronic lymphocytic leukaemia evolution, Nat Commun, vol.6, p.8866, 2015.

P. Laslo, J. M. Pongubala, D. W. Lancki, and H. Singh, Gene regulatory networks directing myeloid and lymphoid cell fates within the immune system, Semin Immunol, vol.20, issue.4, pp.228-263, 2008.

J. Q. Wang, Y. S. Jeelall, B. Beutler, K. Horikawa, and C. C. Goodnow, Consequences of the recurrent MYD88(L265P) somatic mutation for B cell tolerance, J Exp Med, vol.211, issue.3, pp.413-439, 2014.

M. Ceribelli, P. N. Kelly, A. L. Shaffer, G. W. Wright, X. W. Yang et al., Blockade of oncogenic IkappaB kinase activity in diffuse large B-cell lymphoma by bromodomain and extraterminal domain protein inhibitors, Proc Natl Acad Sci, vol.111, issue.31, pp.11365-70, 2014.

R. Kodandapani, F. Pio, C. Z. Ni, G. Piccialli, M. Klemsz et al., A new pattern for helix-turn-helix recognition revealed by the PU.1 ETS-domain-DNA complex, Nature, vol.380, issue.6573, pp.456-60, 1996.

P. Saelee, A. Kearly, S. L. Nutt, and L. A. Garrett-sinha, Genome-Wide Identification of Target Genes for the Key B Cell Transcription Factor Ets1, Front Immunol, vol.8, p.383, 2017.

C. E. Foulds, M. L. Nelson, A. G. Blaszczak, and B. J. Graves, Ras/mitogen-activated protein kinase signaling activates Ets-1 and Ets-2 by CBP/p300 recruitment, Mol Cell Biol, vol.24, issue.24, pp.10954-64, 2004.

W. Hong, A. Y. Kim, S. Ky, C. Rakowski, S. B. Seo et al., Inhibition of CBP-mediated protein acetylation by the Ets family oncoprotein PU.1, Mol Cell Biol, vol.22, issue.11, pp.3729-3772, 2002.

R. L. De-la, J. Rodriguez-ubreva, M. Garcia, A. B. Islam, J. M. Urquiza et al., 1 target genes undergo Tet2-coupled demethylation and DNMT3b-mediated methylation in monocyte-to-osteoclast differentiation

, Genome Biol, vol.14, issue.9, p.99, 2013.

D. A. Landau, E. Tausch, A. N. Taylor-weiner, C. Stewart, J. G. Reiter et al., Mutations driving CLL and their evolution in progression and relapse, Nature, vol.526, issue.7574, pp.525-555, 2015.

X. Zhang, P. S. Choi, J. M. Francis, G. F. Gao, J. D. Campbell et al., Somatic Superenhancer Duplications and Hotspot Mutations Lead to Oncogenic Activation of the KLF5 Transcription Factor, Cancer Discov, vol.8, issue.1, pp.108-133, 2018.

X. K. Zhang, O. Moussa, A. Larue, S. Bradshaw, I. Molano et al., The transcription factor Fli-1 modulates marginal zone and follicular B cell development in mice, J Immunol, vol.181, issue.3, pp.1644-54, 2008.

H. H. Xue, J. Bollenbacher-reilley, Z. Wu, R. Spolski, X. Jing et al., The transcription factor GABP is a critical regulator of B lymphocyte development, Immunity, vol.26, issue.4, pp.421-452, 2007.

R. P. Dekoter, M. Geadah, S. Khoosal, L. S. Xu, G. Thillainadesan et al., Regulation of follicular B cell differentiation by the related E26 transformation-specific transcription factors PU.1, Spi-B, and Spi-C, J Immunol, vol.185, issue.12, pp.7374-84, 2010.

B. A. Walker, E. M. Boyle, C. P. Wardell, A. Murison, D. B. Begum et al., Mutational Spectrum, Copy Number Changes, and Outcome: Results of a Sequencing Study of Patients With Newly Diagnosed Myeloma, J Clin Oncol, vol.33, issue.33, pp.3911-3931, 2015.

G. Lu, R. E. Middleton, H. Sun, M. Naniong, C. J. Ott et al., The myeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins, Science, vol.343, issue.6168, pp.305-314, 2014.

R. R. Hardy, C. E. Carmack, S. A. Shinton, J. D. Kemp, and K. Hayakawa, Resolution and characterization of pro-B and prepro-B cell stages in normal mouse bone marrow, J Exp Med, vol.173, issue.5, pp.1213-1238, 1991.

T. S. Heng and M. W. Painter, Immunological Genome Project C. The Immunological Genome Project: networks of gene expression in immune cells, Nat Immunol, vol.9, issue.10, pp.1091-1095, 2008.

N. F. De-miranda, K. Georgiou, L. Chen, C. Wu, Z. Gao et al., Exome sequencing reveals novel mutation targets in diffuse large B-cell lymphomas derived from Chinese patients, Blood, vol.124, issue.16, pp.2544-53, 2014.

B. S. White, I. Lanc, J. O'neal, H. Gupta, R. S. Fulton et al., A multiple myeloma-specific capture sequencing platform discovers novel translocations and frequent, risk-associated point mutations in IGLL5, Blood Cancer J, vol.8, issue.3, p.35, 2018.

J. D. Phelan, R. M. Young, D. E. Webster, S. Roulland, G. W. Wright et al., A multiprotein supercomplex controlling oncogenic signalling in lymphoma, Nature, vol.560, issue.7718, pp.387-91, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02117984

P. B. Staber, P. Zhang, M. Ye, R. S. Welner, C. Nombela-arrieta et al., Sustained PU.1 levels balance cellcycle regulators to prevent exhaustion of adult hematopoietic stem cells, Mol Cell, vol.49, issue.5, pp.934-980, 2013.