, Commissariat général au développement durable. Les chiffres clés de l'énergie, édition 2015. Repères 1, p.48, 2016.

, Directive 2009/28/CE du Parlement européen et du Conseil du 23 avril 2009 relative à la promotion de l'utilisation de l'énergie produite à partir de sources renouvelables et modifiant puis abrogeant les directives 2001/77/CE et 2003/30/CE, J. Off. L'Union Eur, vol.140, pp.16-62, 2009.

I. Bouvarel, Des sources de protéines locales pour l'alimentation des volailles : quelles voies de progrès ?, vol.21, p.405, 2014.

F. Khajali and B. A. Slominski, Factors that affect the nutritive value of canola meal for poultry, Poult. Sci, vol.91, pp.2564-2575, 2012.

A. P. Vig and A. Walia, Beneficial effects of Rhizopus oligosporus fermentation on reduction of glucosinolates, fibre and phytic acid in rapeseed (Brassica napus) meal, Bioresour. Technol, vol.78, pp.309-312, 2001.

J. O. Ugwuanyi, B. Mcneil, and L. M. Harvey, Production of Protein-Enriched Feed Using Agro-Industrial Residues as Substrates. in Biotechnology for Agro-Industrial Residues Utilisation, pp.77-103, 2009.

C. Shi, Solid state fermentation of rapeseed cake with Aspergillus niger for degrading glucosinolates and upgrading nutritional value, J. Anim. Sci. Biotechnol, vol.6, p.13, 2015.

S. Ramachandran, S. K. Singh, C. Larroche, C. R. Soccol, and A. Pandey, Oil cakes and their biotechnological applications-A review, Bioresour. Technol, vol.98, 2000.

F. Duchiron and E. Copinet, Fermentation en milieu solide (FMS), 2011.

R. R. Singhania, A. K. Patel, C. R. Soccol, and A. Pandey, Recent advances in solid-state fermentation, Biochem. Eng. J, vol.44, pp.13-18, 2009.

M. Basalan and M. Abubakar, Biotechnology and Animal Nutrition, The Role of Biotechnology in Improvement of Livestock, pp.27-39, 2015.

G. Huyghebaert, R. Ducatelle, and F. Van-immerseel, An update on alternatives to antimicrobial growth promoters for broilers, Vet. J, vol.187, pp.182-188, 2011.

F. Zhu, B. Du, and B. Xu, A critical review on production and industrial applications of betaglucans. Food Hydrocoll, vol.52, pp.275-288, 2016.

A. O. Tzianabos, Polysaccharide Immunomodulators as Therapeutic Agents: Structural Aspects and Biologic Function, Clin. Microbiol. Rev, vol.13, pp.523-533, 2000.

N. Dalonso, G. H. Goldman, and R. M. Gern, Glucans: medicinal activities, characterization, biosynthesis and new horizons, Appl. Microbiol. Biotechnol, vol.99, issue.1?, pp.7893-7906, 2015.

C. Lull, H. J. Wichers, and H. F. Savelkoul, Antiinflammatory and immunomodulating properties of fungal metabolites, Mediators Inflamm, pp.63-80, 2005.

, Fédération Française des Producteurs d'Oléagineux et de Protéagineux (FOP), pp.1-7, 2016.

. Franceagrimer, Note de conjoncture Oléo-protéagineux, Analyse économique de FranceAgriMer -Panorama trimestriel des marchés oléo-protéagineux, pp.1-6, 2016.

P. Carre and A. Pouzet, Rapeseed market, worldwide and in Europe, OCL, vol.21, p.102, 2014.

. Franceagrimer, Les fiches de FranceAgriMer, Grandes cultures -filière Oléagineux, vol.1, 2015.

, Terres inovia, 2014.

P. H. Devillers, Huiles végétales, guide d'aide à l'application des Meilleures Technologies Disponibles, ITERG, 2010.

G. Jahreis, U. Schäfer, V. R. Preedy, R. R. Watson, and V. B. Patel, Rapeseed (Brassica napus) Oil and its Benefits for Human Health, Nuts & Seeds inHealth and Disease Prevention, pp.967-974, 2011.

C. Peyronnet, J. Lacampagne, P. L. Cadre, and F. Pressenda, Les sources de protéines dans l'alimentation du bétail en France : la place des oléoprotéagineux, OCL, vol.21, p.402, 2014.

B. Vigour, C. Peyronnet, A. Quinsac, J. M. Hallouis, and M. Lessire, Comparison of energy utilisation and nitrogen digestibility of rapeseed meal in roosters, broiler chicken and turkeys, 13th European Poultry Conference (EPC 2010), vol.66, p.459, 2010.

J. C. Blum, L'alimentation des animaux monogastriques porc lapin volailles, 1989.

M. Lessire, J. M. Hallouis, A. Quinsac, C. Peyronnet, and I. Bouvarel, Valeurs énergétique et azotée des nouveaux tourteaux de colza obtenus par pressage; comparaison entre coq et poulet, 8èmes Journées de la Recherche Avicole, pp.249-253, 2009.

J. Evrard, Les tourteaux d'oléagineux, source de protéines en alimentation animale, Ol. Corps Gras Lipides, vol.12, pp.224-227, 2005.

, Interventions d'automne : les bons conseils pour la campagne 2011/2012, Le tourteau de colza : sûr, économique et facile à utiliser, Arvalis -Cetiom, vol.18, p.23, 2011.

C. Rymer and F. Short, The Nutritive Value for Livestock of UK Oilseed Rape and Rapeseed Meal. (Home Grown Cereals Authority, 2003.

D. Sauvant, J. M. Perez, and G. Tran, Tables de composition et de valeur nutritive des matières premières destinées aux animaux d'élevage (Porcs, volailles, ovins, caprins, lapins, chevaux, poissons), 2004.

M. N. Bellostas, H. Sorensen, and S. Sorensen, Quality of rapeseed meal for animal nutrition and as a source of value-added products -glucosinolates, protein and fibres. in Nutrition and Processing Workshop of the International Rapeseed Congress, 2007.

R. Martineau, D. R. Ouellet, and H. Lapierre, The effect of feeding canola meal on concentrations of plasma amino acids, J. Dairy Sci, vol.97, pp.1603-1610, 2014.

L. Lacassagne, Inra Productions Animales -Alimentation des volailles : substituts au tourteau de soja. 2. Le tourteau de colza, INRA Prod. Anim, vol.1, pp.123-128, 1988.

I. M. Rodrigues, J. F. Coelho, and M. G. Carvalho, Isolation and valorisation of vegetable proteins from oilseed plants: Methods, limitations and potential, J. Food Eng, vol.109, pp.337-346, 2012.

M. K. Tripathi and A. S. Mishra, Glucosinolates in animal nutrition: A review, Anim. Feed Sci. Technol, vol.132, pp.1-27, 2007.

S. S. Wickramasuriya, Y. Yi, J. Yoo, N. K. Kang, and J. M. Heo, A review of canola meal as an alternative feed ingredient for ducks, J. Anim. Sci. Technol, vol.57, p.29, 2015.

S. S. Diarra, B. A. Usman, J. U. Igwebuike, and A. G. Yisa, Breeding for Efficient Phytatephosphorus Utilization by Poultry, Int. J. Poult. Sci, vol.9, pp.923-930, 2010.

A. Coulibaly, B. Kouakou, and J. Chen, Phytic acid in cereal grains: structure, healthy or harmful ways to reduce phytic acid in cereal grains and their effects on nutritional quality, Am. J. Plant Nutr. Fertil. Technol, vol.1, pp.1-22, 2011.

M. R. Bedford, Exogenous enzymes in monogastric nutrition-their current value and future benefits, Anim. Feed Sci. Technol, vol.86, pp.1-13, 2000.

S. Haefner, Biotechnological production and applications of phytases, Appl. Microbiol. Biotechnol, vol.68, pp.588-597, 2005.

P. H. Selle and V. Ravindran, Microbial phytase in poultry nutrition, Anim. Feed Sci. Technol, vol.135, pp.1-41, 2007.

P. Rozan, Detoxication of rapeseed meal by Rhizopus Oligosporus sp-T3: A first step towards rapeseed protein concentrate, Int. J. Food Sci. Technol, vol.31, pp.85-90, 1996.

L. Xu and L. L. Diosady, Removal of phenolic compounds in the production of high-quality canola protein isolates, Food Res. Int, vol.35, pp.23-30, 2002.

M. Naczk, R. Amarowicz, A. Sullivan, and F. Shahidi, Current research developments on polyphenolics of rapeseed/canola: a review, Food Chem, vol.62, pp.489-502, 1998.

L. Xu and L. L. Diosady, Interactions between canola proteins and phenolic compounds in aqueous media, Food Res. Int, vol.33, pp.725-731, 2000.

M. Larbier and B. Leclercq, Nutrition et alimentation des volailles, 1992.

W. Kracht, Effect of dehulling of rapeseed on feed value and nutrient digestibility of rape products in pigs, Arch. Anim. Nutr, vol.58, pp.389-404, 2004.

B. A. Slominski, J. Simbaya, L. D. Campbell, G. Rakow, and W. Guenter, Nutritive value for broilers of meals derived from newly developed varieties of yellow-seeded canola, Anim. Feed Sci. Technol, vol.78, pp.249-262, 1999.

B. Carré, S. Mignon-grasteau, and H. Juin, Breeding for feed efficiency and adaptation to feed in poultry, Worlds Poult. Sci. J, vol.64, pp.377-390, 2008.

K. Dhama, Growth promoters and novel feed additives improving poultry production and health, bioactive principles and beneficial applications: The trends and advances-A Review, Int. J. Pharmacol, vol.10, pp.129-159, 2014.

A. Lomascolo, E. Uzan-boukhris, J. Sigoillot, and F. Fine, Rapeseed and sunflower meal: a review on biotechnology status and challenges, Appl. Microbiol. Biotechnol, vol.95, pp.1105-1114, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01268168

C. Wenk, Recent advances in animal feed additives such as metabolic modifiers, antimicrobial agents, probiotics, enzymes and highly available minerals, Asian Australas. J. Anim. Sci, vol.13, pp.86-95, 2000.

V. Ravindran, Main ingredients used in poultry feed formulations. Poult, Dev. Rev. Ed FAO, pp.67-69, 2013.

. Règlement, du Parlement européen et du Conseil du 22 mai 2001 fixant les règles pour la prévention, le contrôle et l'éradication de certaines encéphalopathies spongiformes transmissibles, J. Off. Communautés Eur. L, vol.147, pp.1-40, 2001.

. Règlement, UE) n° 56/2013 de la Commission du 16 janvier 2013 modifiant les annexes I et IV du règlement (CE) n°999/2001 du Parlement européen et du Conseil fixant les règles pour la prévention, le contrôle et l'éradication de certaines encéphalopathies spongiformes transmissibles, J. Off. L'Union Eur, vol.21, pp.3-16, 2013.

. Règlement, CE) n° 1831/2003 relatif aux additifs destinés à l'alimentation des animaux, J. Off. L'Union Eur, vol.268, pp.30-43, 2003.

J. I. Castanon, History of the use of antibiotic as growth promoters in European poultry feeds, Poult. Sci, vol.86, pp.2466-2471, 2007.

A. L. Demain and S. Sanchez, Microbial drug discovery: 80 years of progress, J. Antibiot. (Tokyo), vol.62, pp.5-16, 2009.

S. Leeson and J. D. Summers, Commercial poultry nutrition, 2009.

C. G. Scanes, G. Brant, and M. E. Deceased, Poultry Science, 2003.

M. Gallois and I. P. Oswald, Les additifs immunomodulateurs dans l'alimentation du porcelet sont-ils une alternative aux antimicrobiens facteurs de croissance ?, Journées Recherche Porcine, vol.41, pp.79-88, 2009.

P. Anupama-&-ravindra, Value-added food:: Single cell protein, Biotechnol. Adv, vol.18, pp.459-479, 2000.

S. Ghorai, Fungal biotechnology in food and feed processing, Food Res. Int, vol.42, pp.577-587, 2009.

S. Dharmaraj and K. Dhevendaran, Evaluation of Streptomyces as a probiotic feed for the growth of ornamental fish Xiphophorus helleri, Food Technol. Biotechnol, vol.48, pp.497-504, 2010.

N. Chand and R. U. Khan, Replacement of Soybean Meal with Yeast Single Cell Protein in Broiler Ration: The Effect on Performance Traits, Pak. J. Zool, vol.46, pp.1753-1758, 2014.

G. Chiang, Effects of feeding solid-state fermented rapeseed meal on performance, nutrient digestibility, intestinal ecology and intestinal morphology of broiler chickens, Asian-Aust J Anim Sci, vol.23, pp.263-271, 2010.

K. Hong, C. Lee, and S. W. Kim, Aspergillus oryzae GB-107 Fermentation Improves Nutritional Quality of Food Soybeans and Feed Soybean Meals, J. Med. Food, vol.7, pp.430-435, 2004.

R. Mathivanan, P. Selvaraj, and K. Nanjappan, Feeding of fermented soybean meal on broiler performance, Int. J. Poult. Sci, vol.5, pp.868-872, 2006.

K. Chen, Effects of Bacillus subtilis var. natto and Saccharomyces cerevisiae mixed fermented feed on the enhanced growth performance of broilers, Poult. Sci, vol.88, pp.309-315, 2009.

S. Shimizu, Vitamins and related compounds: microbial production. Biotechnol. Set Second Ed, pp.318-340, 2008.

W. Leuchtenberger, K. Huthmacher, and K. Drauz, Biotechnological production of amino acids and derivatives: current status and prospects, Appl. Microbiol. Biotechnol, vol.69, pp.1-8, 2005.

M. Ikeda and D. R. Faurie, Amino Acid Production Processes, Microbial Production of l-Amino Acids, pp.1-35, 2003.

P. Butaye, L. A. Devriese, and F. Haesebrouck, Antimicrobial growth promoters used in animal feed: effects of less well known antibiotics on gram-positive bacteria, Clin. Microbiol. Rev, vol.16, pp.175-188, 2003.

I. Chopra and M. Roberts, Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol, Mol. Biol. Rev, vol.65, pp.232-260, 2001.

R. P. Elander, Industrial production of ?-lactam antibiotics, Appl. Microbiol. Biotechnol, vol.61, pp.385-392, 2003.

E. B. Graminha, Enzyme production by solid-state fermentation: Application to animal nutrition, Anim. Feed Sci. Technol, vol.144, pp.1-22, 2008.

R. L. Howard, E. Abotsi, E. J. Van-rensburg, and S. Howard, Lignocellulose biotechnology: issues of bioconversion and enzyme production, Afr. J. Biotechnol, vol.2, pp.602-619, 2003.

C. G. Kumar and H. Takagi, Microbial alkaline proteases: from a bioindustrial viewpoint, Biotechnol. Adv, vol.17, pp.561-594, 1999.

R. S. Jayani, S. Saxena, and R. Gupta, Microbial pectinolytic enzymes: a review, Process Biochem, vol.40, pp.2931-2944, 2005.

M. Bonneau and B. Laarveld, Biotechnology in animal nutrition, physiology and health, Livest. Prod. Sci, vol.59, pp.223-241, 1999.

J. A. Patterson and K. M. Burkholder, Application of prebiotics and probiotics in poultry production, Poult. Sci, vol.82, pp.627-631, 2003.

F. M. Aida, M. Shuhaimi, M. Yazid, and A. G. Maaruf, Mushroom as a potential source of prebiotics: a review, Trends Food Sci. Technol, vol.20, pp.567-575, 2009.

P. T. Sangeetha, M. N. Ramesh, and S. G. Prapulla, Recent trends in the microbial production, analysis and application of fructooligosaccharides, Trends Food Sci. Technol, vol.16, pp.442-457, 2005.

N. Albayrak and S. Yang, Production of galacto-oligosaccharides from lactose by Aspergillus oryzae ?-galactosidase immobilized on cotton cloth, Biotechnol. Bioeng, vol.77, pp.8-19, 2002.

W. H. Van-zyl, S. H. Rose, K. Trollope, and J. F. Görgens, Fungal ?-mannanases: Mannan hydrolysis, heterologous production and biotechnological applications, Process Biochem, vol.45, pp.1203-1213, 2010.

M. Sauer, D. Porro, D. Mattanovich, and P. Branduardi, Microbial production of organic acids: expanding the markets, Trends Biotechnol, vol.26, pp.100-108, 2008.

P. Bhosale and . Bernstein, P. S. Microbial xanthophylls. Appl. Microbiol. Biotechnol, vol.68, pp.445-455, 2005.

K. Kirti, S. Amita, S. Priti, and S. Jyoti, Colorful world of microbes: carotenoids and their applications, Adv. Biol, 2014.

A. Hernandez-almanza, Lycopene: Progress in microbial production, Trends Food Sci. Technol, vol.56, pp.142-148, 2016.

D. E. Breithaupt, Modern application of xanthophylls in animal feeding-a review, Trends Food Sci. Technol, vol.18, pp.501-506, 2007.

G. D. Hayen and D. S. Pollmann, Animal feeds comprising yeast glucan. US6214337 (B1), 2001.

F. C. Guo, Effects of mushroom and herb polysaccharides on cellular and humoral immune responses of Eimeria tenella-infected chickens, Poult. Sci, vol.83, pp.1124-1132, 2004.

S. R. Hashemi and H. Davoodi, Herbal plants and their derivatives as growth and health promoters in animal nutrition, Vet. Res. Commun, vol.35, pp.169-180, 2011.

J. P. Jacob and A. J. Pescatore, Barley ?-glucan in poultry diets, Ann. Transl. Med, vol.2, 2014.

A. Parisien, B. Allain, J. Zhang, R. Mandeville, and C. Q. Lan, Novel alternatives to antibiotics: bacteriophages, bacterial cell wall hydrolases, and antimicrobial peptides, J. Appl. Microbiol, vol.104, pp.1-13, 2008.

P. M. Silva, S. Gonçalves, and N. C. Santos, Defensins: antifungal lessons from eukaryotes, New Edge Antibiot. Dev. Antimicrob. Pept. Corresp. Resist, vol.5, p.75, 2014.

, CFR -Code of Federal Regulations Title 21, Food and Drugs. (FDA -Food and Drug Administration, 2016.

, Scientific Opinion on the maintenance of the list of QPS biological agents intentionally added to food and feed (2013 update): QPS 2013 update, EFSA Panel on Biological Hazards (BIOHAZ), vol.11, p.3449, 2013.

. Règlement, UE) N° 68/2013 relatif au catalogue des matières premières pour aliments des animaux, J. Off. L'Union Eur, vol.29, pp.1-64, 2013.

, Update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA 4: suitability of taxonomic units notified to EFSA until, EFSA Panel on Biological Hazards (BIOHAZ), vol.14, p.4522, 2016.

Y. S. Rahardjo, J. Tramper, and A. Rinzema, Modeling conversion and transport phenomena in solid-state fermentation: a review and perspectives, Biotechnol. Adv, vol.24, pp.161-179, 2006.

S. R. Couto and M. A. Sanroman, Application of solid-state fermentation to food industry-a review, J. Food Eng, vol.76, pp.291-302, 2006.

U. Hölker and J. Lenz, Solid-state fermentation-are there any biotechnological advantages?, Curr. Opin. Microbiol, vol.8, pp.301-306, 2005.

A. Durand, Bioreactor designs for solid state fermentation, Biochem. Eng. J, vol.13, pp.113-125, 2003.

B. S. Mienda, A. Idi, and A. Umar, Microbiological features of solid state fermentation and its applications-An overview, Res. Biotechnol, vol.2, pp.21-26, 2011.

A. A. Assamoi, J. Destain, and P. Thonart, Microbial aspects of endo-?-1, 4-xylanase production in solid-state fermentation by Penicillia: the case of Penicillium canescens, Biotechnol. Agron. Société Environ, vol.13, pp.281-294, 2009.

A. Pandey, C. R. Soccol, and D. Mitchell, New developments in solid state fermentation: Ibioprocesses and products, Process Biochem, vol.35, pp.1153-1169, 2000.

D. A. Mitchell, L. F. De-lima-luz, N. Krieger, and M. Berovi?, 25-Bioreactors for Solid-State Fermentation, Comprehensive Biotechnology, vol.2, pp.347-360, 2011.

J. W. Bennett, Mycotechnology: the role of fungi in biotechnology, J. Biotechnol, vol.66, pp.101-107, 1998.

A. Branger, Fabrication de produits alimentaires par fermentation: les ferments, Tech. Ing. Agroaliment, vol.2, 2004.

L. Fan, C. R. Soccol, and A. Pandey, Mushroom Production. in Current Developments in Solidstate Fermentation, pp.253-274, 2008.

F. Bourdichon, Food fermentations: Microorganisms with technological beneficial use, Int. J. Food Microbiol, vol.154, pp.87-97, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01004544

, Part I: biochemistry and biotechnology, 2015.

A. Blandino, M. E. Al-aseeri, S. S. Pandiella, D. Cantero, and C. Webb, Cereal-based fermented foods and beverages, Food Res. Int, vol.36, pp.527-543, 2003.

M. Sari, A. Prange, J. I. Lelley, and R. Hambitzer, Screening of beta-glucan contents in commercially cultivated and wild growing mushrooms, Food Chem, vol.216, pp.45-51, 2017.

C. Z. Blumenthal, Production of toxic metabolites in Aspergillus niger, Aspergillus oryzae, and Trichoderma reesei: justification of mycotoxin testing in food grade enzyme preparations derived from the three fungi, Regul. Toxicol. Pharmacol, vol.39, pp.214-228, 2004.

D. A. Mitchell, M. Berovic, and N. Krieger, Solid-State Fermentation Bioreactors -Fundamentals of Design and Operation, 2006.

G. S. Dhillon, H. S. Oberoi, S. Kaur, S. Bansal, and S. K. Brar, Value-addition of agricultural wastes for augmented cellulase and xylanase production through solid-state tray fermentation employing mixed-culture of fungi, Ind. Crops Prod, vol.34, pp.1160-1167, 2011.

P. V. Gawande and M. Y. Kamat, Production of Aspergillus xylanase by lignocellulosic waste fermentation and its application, J. Appl. Microbiol, vol.87, pp.511-519, 1999.

G. B. Shivanna and G. Venkateswaran, Phytase production by Aspergillus niger CFR 335 and Aspergillus ficuum SGA 01 through submerged and solid-state fermentation, Sci. World J, 2014.

J. J. Pandya and A. Gupte, Production of xylanase under solid-state fermentation by Aspergillus tubingensis JP-1 and its application, Bioprocess Biosyst. Eng, vol.35, pp.769-779, 2012.

K. Raghavarao, T. V. Ranganathan, and N. G. Karanth, Some engineering aspects of solid-state fermentation, Biochem. Eng. J, vol.13, pp.127-135, 2003.

P. Gervais and P. Molin, The Role of Water in Solid State Fermentation, Biochem. Eng. J, vol.13, pp.85-101, 2003.

Z. Junior, L. Luiz, G. A. Linde, and N. B. Colauto, Carbon-to-nitrogen ratios for Agaricus brasiliensis on the axenic method, Acta Sci. Agron, vol.32, pp.55-60, 2010.

, Current Developments in Solid-state Fermentation, 2008.

A. Durand, C. Vergoignan, and C. Desgranges, Biomass estimation in solid state fermentation, Advances in Solid State Fermentation, pp.23-37, 1997.

M. Abdul-manan, Design aspects of solid state fermentation, 2014.

S. Bhargav, B. P. Panda, M. Ali, and S. Javed, Solid-state fermentation: an overview, Chem. Biochem. Eng. Q, vol.22, pp.49-70, 2008.

M. R. Terebiznik and A. M. Pilosof, Biomass estimation in solid state fermentation by modeling dry matter weight loss, Biotechnol. Tech, vol.13, pp.215-219, 1999.

C. Desgranges, M. Georges, C. Vergoignan, and A. Durand, Biomass estimation in solid state fermentation II. On-line measurements, Appl. Microbiol. Biotechnol, vol.35, pp.206-209, 1991.

C. Desgranges, C. Vergoignan, M. Georges, and A. Durand, Biomass estimation in solid state fermentation I. Manual biochemical methods, Appl. Microbiol. Biotechnol, vol.35, pp.200-205, 1991.

S. Steudler and T. Bley, Biomass estimation during macro-scale solid-state fermentation of basidiomycetes using established and novel approaches, Bioprocess Biosyst. Eng, vol.38, pp.1313-1323, 2015.

H. K. Ali and M. M. Zulkali, Design aspects of bioreactors for solid-state fermentation: a review, Chem. Biochem. Eng. Q, vol.25, pp.255-266, 2011.

A. Durand and D. Chereau, A new pilot reactor for solid-state fermentation: Application to the protein enrichment of sugar beet pulp, Biotechnol. Bioeng, vol.31, pp.476-486, 1988.

S. G. Villas-boas, E. Esposito, and D. A. Mitchell, Microbial conversion of lignocellulosic residues for production of animal feeds, Anim. Feed Sci. Technol, vol.98, pp.1-12, 2002.

X. Wang, Screening of glucosinolate-degrading strains and its application in improving the quality of rapeseed meal, Ann. Microbiol, vol.62, pp.1013-1020, 2012.

J. Zuchowski, L. Pecio, M. Jaszek, and A. Stochmal, Solid-state fermentation of rapeseed meal with the white-rot fungi Trametes versicolor and Pleurotus ostreatus, Appl. Biochem. Biotechnol, vol.171, pp.2075-2081, 2013.

L. Kupski, Solid-state fermentation for the enrichment and extraction of proteins and antioxidant compounds in rice bran by Rhizopus oryzae, Braz. Arch. Biol. Technol, vol.55, pp.937-942, 2012.

H. Bau, Effect of a solid-state fermentation using Rhizopus oligosporus sp.T-3 on elimination of antinutritional substances and modification of biochemical constituents of defatted rapeseed meal, J. Sci. Food Agric, vol.65, pp.315-322, 1994.

O. Safari, Study on the effect of solid state fermentation with Aspergillus niger on antinutritional factors of canola protein concentrate with aim of using in the diet of rainbow trout (oncorhynchus mykiss), The 1th International and the 4th National Congress on Recycling of Organic Waste in Agriculture, 2012.

J. C. Anderson-hafermann, Y. Zhang, and C. M. Parsons, Effects of processing on the nutritional quality of canola meal, Poult. Sci, vol.72, pp.326-333, 1993.

A. Caprita and R. Caprita, In vitro techniques to estimate amino acid digestibility, J. Agroaliment. Process. Technol, vol.15, pp.19-27, 2009.

C. Shi, Amino acid, phosphorus, and energy digestibility of fermented rapeseed meal fed to growing pigs, J. Anim. Sci, vol.93, pp.2916-2925, 2015.

A. Snyder, M. J. Morra, J. Johnson-maynard, and D. C. Thill, Seed Meals from Brassicaceae Oilseed Crops as Soil Amendments: Influence on Carrot Growth, Microbial Biomass Nitrogen, and Nitrogen Mineralization, HortScience, vol.44, pp.354-361, 2009.

J. R. Croat, M. Berhow, B. Karki, K. Muthukumarappan, and W. R. Gibbons, Conversion of canola meal into a high-protein feed additive via solid-state fungal incubation process, J. Am. Oil Chem. Soc, vol.93, pp.499-507, 2016.

S. M. Maesoomi, G. R. Ghorbani, M. Alikhani, and A. Nikkhah, Short communication: Canola meal as a substitute for cottonseed meal in diet of midlactation Holsteins, J. Dairy Sci, vol.89, pp.1673-1677, 2006.

X. Wang, Degradation of tannins and phytic acid in double-low rapeseed meal by Aspergillus niger in solid fermentation and optimization of fermenting condition, Period. Ocean Univ. China, vol.43, pp.15-22, 2013.

L. Liu, Y. Guo, S. Qiu, and H. Zhou, Study on improving the nutritive value of cold-pressed rapeseed cake with microbes under solid-state fermentation, Food Sci. Technol, vol.8, p.5, 2011.

V. C. Nair and Z. Duvnjak, Reduction of phytic acid content in canola meal by Aspergillus ficuum in solid state fermentation process, Appl. Microbiol. Biotechnol, vol.34, pp.183-188, 1990.

Y. Wu, X. Yao, H. Sun, X. Wang, and J. Tang, Optimization of solid-state fermentation conditions of rapeseed meal using response surface analysis combined with principal component analysis, J. Zhejiang Univ. Agric. Life Sci, vol.38, pp.490-496, 2012.

S. Al-asheh and Z. Duvnjak, Phytase production and decrease of phytic acid content in canola meal byAspergillus carbonarius in solid-state fermentation, World J. Microbiol. Biotechnol, vol.11, pp.228-231, 1995.

A. Ashayerizadeh, B. Dastar, M. S. Shargh, A. S. Mahoonak, and S. Zerehdaran, Fermented rapeseed meal is effective in controlling Salmonella enterica serovar Typhimurium infection and improving growth performance in broiler chicks, Vet. Microbiol, vol.201, pp.93-102, 2017.

X. Fazhi, Effects of fermented rapeseed meal on growth performance and serum parameters in ducks, Asian-Australas. J. Anim. Sci, vol.24, pp.678-684, 2011.

F. Z. Xu, X. G. Zeng, and X. L. Ding, Effects of Replacing Soybean Meal with Fermented Rapeseed Meal on Performance, Serum Biochemical Variables and Intestinal Morphology of Broilers, Asian-Australas. J. Anim. Sci, vol.25, pp.1734-1741, 2012.

Y. S. Song, V. G. Pérez, J. E. Pettigrew, C. Martinez-villaluenga, and E. G. De-mejia, Fermentation of soybean meal and its inclusion in diets for newly weaned pigs reduced diarrhea and measures of immunoreactivity in the plasma, Anim. Feed Sci. Technol, vol.159, pp.41-49, 2010.

L. Yuan, Fermented soybean meal improves the growth performance, nutrient digestibility, and microbial flora in piglets, Anim. Nutr, vol.3, pp.19-24, 2017.

S. W. Kim, E. Van-heugten, F. Ji, C. H. Lee, and R. D. Mateo, Fermented soybean meal as a vegetable protein source for nursery pigs: I. Effects on growth performance of nursery pigs, J. Anim. Sci, vol.88, pp.214-224, 2010.

G. R. Huff, W. E. Huff, N. Rath, and G. Tellez, Limited treatment with ?-1, 3/1, 6-glucan improves production values of broiler chickens challenged with Escherichia coli, Poult. Sci, vol.85, pp.613-618, 2006.

G. C. Chan, .. Chan, W. K. Sze, D. M. , and .. , The effects of ?-glucan on human immune and cancer cells, J. Hematol. Oncol.J Hematol Oncol, vol.2, 2009.

J. Latgé, The cell wall: a carbohydrate armour for the fungal cell, Mol. Microbiol, vol.66, pp.279-290, 2007.

J. Chen and R. Seviour, Medicinal importance of fungal ?-(1? 3),(1? 6)-glucans, Mycol. Res, vol.111, pp.635-652, 2007.

X. Meng, H. Liang, and L. Luo, Antitumor polysaccharides from mushrooms: a review on the structural characteristics, antitumor mechanisms and immunomodulating activities, Carbohydr. Res, vol.424, pp.30-41, 2016.

S. S. Ferreira, C. P. Passos, P. Madureira, M. Vilanova, and M. A. Coimbra, Structure-function relationships of immunostimulatory polysaccharides: A review, Carbohydr. Polym, vol.132, pp.378-396, 2015.

J. J. Volman, Immune modulation by dietary glucans from oat and mushrooms; results from in vitro, animal and human studies, 2009.

S. Kumar, Immune response gene expression in spleens of diverse chicken lines fed dietary immunomodulators, Poult. Sci, vol.90, pp.1009-1013, 2011.

Y. Tang, L. Zhu, H. Li, and D. Li, Submerged culture of mushrooms in bioreactors-challenges, current state-of-the-art, and future prospects, Food Technol. Biotechnol, vol.45, pp.221-229, 2007.

S. P. Wasser, Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides, Appl. Microbiol. Biotechnol, vol.60, pp.258-274, 2002.

F. Zhu, B. Du, Z. Bian, and B. Xu, Beta-glucans from edible and medicinal mushrooms: Characteristics, physicochemical and biological activities, J. Food Compos. Anal, vol.41, pp.165-173, 2015.

M. V. Kyanko, R. S. Canel, V. Ludemann, G. Pose, and . Wagner, ?-Glucan content and hydration properties of filamentous fungi, Appl. Biochem. Microbiol, vol.49, pp.41-45, 2013.

N. Pengkumsri, Extraction of ?-glucan from Saccharomyces cerevisiae: Comparison of different extraction methods and in vivo assessment of immunomodulatory effect in mice, Food Sci. Technol. Camp, vol.37, 2016.

J. A. Ferreira, A. Mahboubi, P. R. Lennartsson, and M. J. Taherzadeh, Waste biorefineries using filamentous ascomycetes fungi: Present status and future prospects, Bioresour. Technol, vol.215, pp.334-345, 2016.

J. E. Ramberg, E. D. Nelson, and R. A. Sinnott, Immunomodulatory dietary polysaccharides: a systematic review of the literature, Nutr. J, vol.9, 2010.

S. K. Singdevsachan, Mushroom polysaccharides as potential prebiotics with their antitumor and immunomodulating properties: A review, Bioact. Carbohydr. Diet. Fibre, vol.7, pp.1-14, 2016.

A. C. Ruthes, F. R. Smiderle, and M. Iacomini, Mushroom heteropolysaccharides: A review on their sources, structure and biological effects, Carbohydr. Polym, vol.136, pp.358-375, 2016.

K. Chen, Direct enhancement of the phagocytic and bactericidal capability of abdominal macrophage of chicks by ?-1, 3-1, 6-glucan, Poult. Sci, vol.87, pp.2242-2249, 2008.

V. K. Lowry, Purified ?-glucan as an abiotic feed additive up-regulates the innate immune response in immature chickens against Salmonella enterica serovar Enteritidis, Int. J. Food Microbiol, vol.98, pp.309-318, 2005.

C. M. Cox, Immune responses to dietary ?-glucan in broiler chicks during an Eimeria challenge, Poult. Sci, vol.89, pp.2597-2607, 2010.

B. M. Rathgeber, K. L. Budgell, J. L. Macisaac, M. A. Mirza, and K. L. Doncaster, Growth performance and spleen and bursa weight of broilers fed yeast beta-glucan. Can, J. Anim. Sci, vol.88, pp.469-473, 2008.

B. Zhang, Y. Guo, and Z. Wang, The modulating effect of beta-1, 3/1, 6-glucan supplementation in the diet on performance and immunological responses of broiler chickens, Asian Australas. J. Anim. Sci, vol.21, pp.237-244, 2008.

B. J. Chae, Effects of supplementation of ?-glucan on the growth performance and immunity in broilers, Res. Vet. Sci, vol.80, pp.291-298, 2006.

B. K. An, Growth performance and antibody response of broiler chicks fed yeast derived ?glucan and single-strain probiotics, Asian-Aust J Anim Sci, vol.21, pp.1027-1032, 2008.

M. Shi, Y. Yang, D. Guan, Y. Zhang, and Z. Zhang, Bioactivity of the crude polysaccharides from fermented soybean curd residue by Flammulina velutipes, Carbohydr. Polym, vol.89, pp.1268-1276, 2012.

H. Kim, H. Suh, K. Kwon, J. Hwang, and K. Yu, Immunostimulation activity of a polysaccharide from fermented ginseng with Hericium erinaceum mycelia in solid-state culture, Food Sci. Biotechnol, vol.25, pp.311-318, 2016.

Y. Liu, Effects of hot-water extracts from Ganoderma lucidum, Bot. Stud, vol.56, pp.1-10, 2015.

M. Shi, Y. Yang, D. Guan, Y. Wang, and Z. Zhang, Evaluation of solid-state fermentation by Ganoderma lucidum using soybean curd residue, Food Bioprocess Technol, vol.6, pp.1856-1867, 2013.

X. Jia, W. Dong, W. Lu, L. Guo, and Y. Wei, In vivo immunostimulatory and tumor-inhibitory activities of polysaccharides isolated from solid-state-cultured Trametes robiniophila Murrill, World J. Microbiol. Biotechnol, vol.25, pp.2057-2063, 2009.

M. Svagelj, Solid-state cultivation of Grifola frondosa (Dicks: Fr) SF Gray biomass and immunostimulatory effects of fungal intra-and extracellular ?-polysaccharides, New Biotechnol, vol.25, pp.150-156, 2008.

E. T. Oner, Microbial production of extracellular polysaccharides from biomass, Pretreatment techniques for biofuels and biorefineries, pp.35-56, 2013.

N. Nwe, T. Furuike, and H. Tamura, Production, properties and applications of fungal cell wall polysaccharides: chitosan and glucan, vol.244, pp.187-207, 2011.

S. A. Khalaf, Production and characterization of fungal chitosan under solid-statefermentation conditions, Int. J. Agric. Biol. Pak, vol.6, pp.1033-1036, 2004.

K. R. Sugumaran, P. Jothi, and V. Ponnusami, Bioconversion of industrial solid waste-Cassava bagasse for pullulan production in solid state fermentation, Carbohydr. Polym, vol.99, pp.22-30, 2014.

K. W. Yu, Y. S. Kim, K. S. Shin, J. M. Kim, and H. J. Suh, Macrophage-stimulating activity of exo-biopolymer from cultured rice bran with Monascus pilosus, Appl. Biochem. Biotechnol, vol.126, pp.35-48, 2005.

S. Li, Utilization of Soybean Curd Residue for Polysaccharides Production by Morchella esculenta and Evaluation of its Biological Activity, 2014.

J. P. Tamang, D. Shin, S. Jung, and S. Chae, Functional Properties of Microorganisms in Fermented Foods, Front. Microbiol, vol.7, 2016.

M. Raimbault, General and microbiological aspects of solid substrate fermentation, Electron. J. Biotechnol, vol.1, pp.26-27, 1998.

D. A. Mitchell, O. F. Von-meien, N. Krieger, and F. D. Dalsenter, A review of recent developments in modeling of microbial growth kinetics and intraparticle phenomena in solidstate fermentation, Biochem. Eng. J, vol.17, pp.15-26, 2004.

F. Nagel, J. Oostra, J. Tramper, and A. Rinzema, Improved model system for solid-substrate fermentation: effects of pH, nutrients and buffer on fungal growth rate, Process Biochem, vol.35, pp.69-75, 1999.

J. P. Smits, A. Rinzema, J. Tramper, H. V. Sonsbeek, and W. Knol, Solid-state fermentation of wheat bran by Trichoderma reesei QM9414: substrate composition changes, C balance, enzyme production, growth and kinetics, Appl. Microbiol. Biotechnol, vol.46, pp.489-496, 1996.

C. Larroche, J. Moksia, and J. Gros, A convenient method for initial dry weight determination in samples from solid state cultivations, Process Biochem, vol.33, pp.447-451, 1998.

J. P. Smits, A. Rinzema, J. Tramper, E. E. Schlösser, and W. Knol, Accurate determination of process variables in a solid-state fermentation system, Process Biochem, vol.31, pp.669-678, 1996.

J. Mauron, Influence of processing on protein quality, J. Nutr. Sci. Vitaminol. (Tokyo), vol.36, pp.57-69, 1990.

, Association of Official Analytical Chemists. Official methods of analysis, vol.15, 1990.

, BIPEA Bureau Interprofessionnel d'Etudes. Recueil des méthodes d'analyse des communautés européennes, BIPEA Gennevilliers, 1976.

S. R. Fernandez, Y. Zhang, and C. M. Parsons, Determination of protein solubility in oilseed meals using coomassie blue dye binding, Poult. Sci, vol.72, pp.1925-1930, 1993.

G. Saucedo-castaneda, On-line automated monitoring and control systems for CO2 and O2 in aerobic and anaerobic solid-state fermentations, Process Biochem, vol.29, pp.13-24, 1994.

C. Lareo, A. F. Sposito, A. L. Bossio, and D. C. Volpe, Characterization of growth and sporulation of Mucor bacilliformis in solid state fermentation on an inert support, Enzyme Microb. Technol, vol.38, pp.391-399, 2006.

L. Delhalle, G. Daube, Y. Adolphe, S. Crevecoeur, and A. Clinquart, Les modèles de croissance en microbiologie prévisionnelle pour la maitrise de la sécurité des aliments (synthèse bibliographique), Biotechnol. Agron. Société Environ, vol.16, p.369, 2012.

D. Mazaheri and S. A. Shojaosadati, Mathematical models for microbial kinetics in solid-state fermentation: A review, Iran. J. Biotechnol, vol.11, pp.156-167, 2013.

N. Okazaki, S. Sugama, and T. Tanaka, Mathematical model for surface culture of koji mold: Growth of koji mold on the surface of steamed rice grains (IX), J. Ferment. Technol, vol.58, pp.471-476, 1980.

R. Wang, Bioconversion of rapeseed meal for the production of a generic microbial feedstock, Enzyme Microb. Technol, vol.47, pp.77-83, 2010.

X. Sun, Z. Liu, Y. Qu, and X. Li, The effects of wheat bran composition on the production of biomass-hydrolyzing enzymes by Penicillium decumbens, Appl. Biochem. Biotechnol, vol.146, pp.119-128, 2008.

M. Kontro, U. Lignell, M. Hirvonen, and A. Nevalainen, pH effects on 10 Streptomyces spp. growth and sporulation depend on nutrients, Lett. Appl. Microbiol, vol.41, pp.32-38, 2005.

S. Salazar-villanea, Physical and chemical changes of rapeseed meal proteins during toasting and their effects on in vitro digestibility, J. Anim. Sci. Biotechnol, vol.7, p.62, 2016.

J. Esbelin, S. Mallea, A. F. Ram, and F. Carlin, Role of pigmentation in protecting Aspergillus niger conidiospores against pulsed light radiation, Photochem. Photobiol, vol.89, pp.758-761, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01329096

C. S. Farinas, G. L. Vitcosque, R. F. Fonseca, V. B. Neto, and S. Couri, Modeling the effects of solid state fermentation operating conditions on endoglucanase production using an instrumented bioreactor, Ind. Crops Prod, vol.34, pp.1186-1192, 2011.

A. K. Gombert, A. L. Pinto, L. R. Castilho, and D. M. Freire, Lipase production by Penicillium restrictum in solid-state fermentation using babassu oil cake as substrate, Process Biochem, vol.35, pp.85-90, 1999.

A. Augustine, J. Imelda, R. Paulraj, and N. S. David, Growth kinetic profiles of Aspergillus niger S14 a mangrove isolate and Aspergillus oryzae NCIM 1212 in solid state fermentation, Indian J. Fish, vol.62, pp.100-106, 2015.

E. Favela-torres, J. Cordova-lopez, M. Garcia-rivero, and M. Gutierrez-rojas, Kinetics of growth of Aspergillus niger during submerged, agar surface and solid state fermentations, Process Biochem, vol.33, pp.103-107, 1998.

Z. Hamidi-esfahani, S. A. Shojaosadati, and A. Rinzema, Modelling of simultaneous effect of moisture and temperature on A. niger growth in solid-state fermentation, Biochem. Eng. J, vol.21, pp.265-272, 2004.

H. Li, Evaluation of industrial Saccharomyces cerevisiae strains as the chassis cell for second-generation bioethanol production, Microb. Biotechnol, vol.8, pp.266-274, 2015.

E. Sforza, A. Bertucco, T. Morosinotto, and G. Giacometti, Vegetal oil from microalgae: species selection and optimization of growth parameters, Chem. Eng. Trans, vol.20, pp.199-204, 2010.

R. A. Sparringa and J. D. Owens, Causes of alkalinization in tempe solid substrate fermentation, Enzyme Microb. Technol, vol.25, pp.677-681, 1999.

A. K. Misra, Optimization of solid state fermentation of mustard (Brassica campestris) straw for production of animal feed by white rot fungi (Ganoderma lucidum), ASIAN Australas. J. Anim. Sci, vol.20, p.208, 2007.

M. Xue, D. Liu, H. Zhang, H. Qi, and Z. Lei, A pilot process of solid state fermentation from sugar beet pulp for the production of microbial protein, J. Ferment. Bioeng, vol.73, pp.203-205, 1992.

H. Lee and J. D. Garlich, Effect of overcooked soybean meal on chicken performance and amino acid availability, Poult. Sci, vol.71, pp.499-508, 1992.

M. Araba and N. M. Dale, Evaluation of protein solubility as an indicator of overprocessing soybean meal, Poult. Sci, vol.69, pp.76-83, 1990.

B. Pastuszewska, The protein value of differently processed rapeseed solvent meal and cake assessed by in vitro methods and in tests with rats, Anim. Feed Sci. Technol, vol.106, pp.175-188, 2003.

X. Meng and B. A. Slominski, Nutritive values of corn, soybean meal, canola meal, and peas for broiler chickens as affected by a multicarbohydrase preparation of cell wall degrading enzymes, Poult. Sci, vol.84, pp.1242-1251, 2005.

M. A. Manan and C. Webb, Multi-enzymes Production Studies in Single Tray Solid State Fermentation with Opened and Closed System, J. Life Sci, vol.10, pp.342-356, 2016.

N. J. Kruger, The Bradford method for protein quantitation, 1994.

V. S. Bisaria, S. K. Saxena, R. B. Manihar, and K. S. Gopalkrishnan, Solid state fermentation of plant residues for improved animal feed byPleurotus sp, Appl. Biochem. Biotechnol, vol.9, pp.341-341, 1984.

M. Jin, Activation of selective transcription factors and cytokines by water-soluble extract from Lentinus lepideus, Exp. Biol. Med, vol.228, pp.749-758, 2003.

S. Kumar, Immune response gene expression in spleens of diverse chicken lines fed dietary immunomodulators, Poult. Sci, vol.90, pp.1009-1013, 2011.

Y. Guo, R. A. Ali, and M. A. Qureshi, The Influence of ?-Glucan on Immune Responses in Broiler Chicks, Immunopharmacol. Immunotoxicol, vol.25, pp.461-472, 2003.

H. A. El-enshasy and R. Hatti-kaul, Mushroom immunomodulators: unique molecules with unlimited applications, Trends Biotechnol, vol.31, pp.668-677, 2013.

R. S. Singh, R. Bhari, V. Rana, and A. K. Tiwary, Immunomodulatory and therapeutic potential of a mycelial lectin from Aspergillus nidulans, Appl. Biochem. Biotechnol, vol.165, pp.624-638, 2011.

S. Mahapatra and D. Banerjee, Optimization of a bioactive exopolysaccharide production from endophytic Fusarium solani SD5, Carbohydr. Polym, vol.97, pp.627-634, 2013.

J. A. Takahashi and S. A. Carvalho, Nutritional potential of biomass and metabolites from filamentous fungi, Curr. Res. Technol. Educ. Top. Appl. Microbiol. Microb. Biotechnol, pp.1126-1135, 2010.

D. P. Stites, A. I. Terr, and T. C. Parslow, Basic & Clinical Immunology, 1994.

R. Castro, N. Couso, A. Obach, and J. Lamas, Effect of different ?-glucans on the respiratory burst of turbot (Psetta maxima) and gilthead seabream (Sparus aurata) phagocytes, Fish Shellfish Immunol, vol.9, pp.529-541, 1999.

R. H. Gifford and S. E. Malawista, The nitroblue tetrazolium reaction in human granulocytes adherent to a surface, Yale J. Biol. Med, vol.45, pp.119-132, 1972.

N. Couso, R. Castro, M. Noya, A. Obach, and J. Lamas, Location of superoxide production sites in turbot neutrophils and gilthead seabream acidophilic granulocytes during phagocytosis of glucan particles, Dev. Comp. Immunol, vol.25, pp.607-618, 2001.

I. Paul, Orally administered ?-glucan of edible mushroom (Pleuratus florida) origin upregulates innate immune response in broiler, Indian J Anim Sci, vol.82, pp.745-748, 2012.

J. R. Nerren and M. H. Kogut, The selective Dectin-1 agonist, curdlan, induces an oxidative burst response in chicken heterophils and peripheral blood mononuclear cells, Vet. Immunol. Immunopathol, vol.127, pp.162-166, 2009.

T. Hofstaetter and H. Brammsen, A microassay for nitroblue tetrazolium reduction by human neutrophils, Immunobiology, vol.159, pp.283-292, 1981.

D. Pietretti, N. I. Vera-jimenez, D. Hoole, and G. F. Wiegertjes, Oxidative burst and nitric oxide responses in carp macrophages induced by zymosan, MacroGard® and selective dectin-1 agonists suggest recognition by multiple pattern recognition receptors, Fish Shellfish Immunol, vol.35, pp.847-857, 2013.

S. Soltanian, Enhanced disease resistance in Artemia by application of commercial ?glucans sources and chitin in a gnotobiotic Artemia challenge test, Fish Shellfish Immunol, vol.23, pp.1304-1314, 2007.

H. Stier, V. Ebbeskotte, and J. Gruenwald, Immune-modulatory effects of dietary Yeast Beta-1,3/1,6-D-glucan, Nutr. J, vol.13, p.38, 2014.

X. Wang, Y. Zhang, L. Zhang, and Y. Ding, Multiple conformation transitions of triple helical lentinan in DMSO/water by microcalorimetry, J. Phys. Chem. B, vol.113, pp.9915-9923, 2009.

M. E. Danielson, Enzymatic method to measure ?-1, 3-?-1, 6-glucan content in extracts and formulated products (GEM assay), J. Agric. Food Chem, vol.58, pp.10305-10308, 2010.

Y. Lee and Y. Kim, Water-solubility of ?-Glucans in Various Edible Mushrooms-Research Note, Prev. Nutr. Food Sci, vol.10, pp.294-297, 2005.

C. Israilides, In vitro cytostatic and immunomodulatory properties of the medicinal mushroom Lentinula edodes, Phytomedicine, vol.15, pp.512-519, 2008.

S. Wu, T. Lu, M. Lai, and L. Ng, Immunomodulatory activities of medicinal mushroom Grifola frondosa extract and its bioactive constituent, Am. J. Chin. Med, vol.41, pp.131-144, 2013.

D. Ca, The biological properties of interleukin-1, Eur. Cytokine Netw, vol.5, pp.517-531, 1994.

W. K. Chan, H. K. Law, Z. Lin, Y. L. Lau, G. C. Chan et al., Response of human dendritic cells to different immunomodulatory polysaccharides derived from mushroom and barley, Int. Immunol, vol.19, pp.891-899, 2007.

B. Guey, M. Bodnar, S. N. Manie, A. Tardivel, and V. Petrilli, Caspase-1 autoproteolysis is differentially required for NLRP1b and NLRP3 inflammasome function, Proc. Natl. Acad. Sci. U. S. A, vol.111, pp.17254-17259, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02376146

W. Lew, J. J. Oppenheim, and K. Matsushima, Analysis of the suppression of IL-1 alpha and IL-1 beta production in human peripheral blood mononuclear adherent cells by a glucocorticoid hormone, J. Immunol, vol.140, pp.1895-1902, 1988.

E. Sonck, E. Stuyven, B. Goddeeris, and E. Cox, The effect of beta-glucans on porcine leukocytes, Vet. Immunol. Immunopathol, vol.135, pp.199-207, 2010.

C. S. Engstad, R. E. Engstad, J. Olsen, and B. Osterud, The effect of soluble ?-1, 3-glucan and lipopolysaccharide on cytokine production and coagulation activation in whole blood, Int. Immunopharmacol, vol.2, pp.1585-1597, 2002.

D. D. Poutsiaka, M. Mengozzi, E. Vannier, B. Sinha, and C. A. Dinarello, Cross-linking of the beta-glucan receptor on human monocytes results in interleukin-1 receptor antagonist but not interleukin-1 production, Blood, vol.82, pp.3695-3700, 1993.

J. Luhm, 1? 3)-D-glucan modulates DNA binding of nuclear factors ?B, AT and IL-6 leading to an anti-inflammatory shift of the IL-1?/IL-1 receptor antagonist ratio, BMC Immunol, vol.7, issue.5, 2006.

G. Abel and J. K. Czop, Stimulation of human monocyte ?-glucan receptors by glucan particles induces production of TNF-? and IL-1?, Int. J. Immunopharmacol, vol.14, pp.1363-1373, 1992.

X. Han, Structure elucidation and immunomodulatory activity of a beta glucan from the fruiting bodies of Ganoderma sinense, PloS One, vol.9, p.100380, 2014.

S. P. Smeekens, An anti-inflammatory property of Candida albicans ?-glucan: Induction of high levels of interleukin-1 receptor antagonist via a Dectin-1/CR3 independent mechanism, Cytokine, vol.71, p.215, 2015.

S. Jang, S. Kang, and E. Sohn, Phagocytic Effects of ?-Glucans from the Mushroom Coriolus versicolor are Related to Dectin-1, NOS, TNF-? Signaling in Macrophages, Biomol. Ther, vol.19, pp.438-444, 2011.

O. A. Hoffman, E. J. Olson, and A. H. Limper, Fungal ?-glucans modulate macrophage release of tumor necrosis factor-? in response to bacterial lipopolysaccharide, Immunol. Lett, vol.37, pp.19-25, 1993.

J. C. Zhuang and G. N. Wogan, Growth and viability of macrophages continuously stimulated to produce nitric oxide, Proc. Natl. Acad. Sci, vol.94, pp.11875-11880, 1997.

K. Luther, A. Torosantucci, A. A. Brakhage, J. Heesemann, and F. Ebel, Phagocytosis of Aspergillus fumigatus conidia by murine macrophages involves recognition by the dectin-1 betaglucan receptor and Toll-like receptor 2, Cell. Microbiol, vol.9, pp.368-381, 2007.

Z. Ji, Immunomodulation of RAW264. 7 macrophages by GLIS, a proteopolysaccharide from Ganoderma lucidum, J. Ethnopharmacol, vol.112, pp.445-450, 2007.

Z. Lin, Cellular and molecular mechanisms of immuno-modulation by Ganoderma lucidum, J. Pharmacol. Sci, vol.99, pp.144-153, 2005.

H. Hsu, Extract of Reishi polysaccharides induces cytokine expression via TLR4-modulated protein kinase signaling pathways, J. Immunol, vol.173, pp.5989-5999, 2004.

I. Suzuki, Effect of orally administered ?-glucan on macrophage function in mice, Int. J. Immunopharmacol, vol.12, pp.675-684, 1990.

W. Chanput, ?-Glucans are involved in immune-modulation of THP-1 macrophages, Mol. Nutr. Food Res, vol.56, pp.822-833, 2012.

O. Taofiq, A. Martins, M. F. Barreiro, and I. C. Ferreira, Anti-inflammatory potential of mushroom extracts and isolated metabolites, Trends Food Sci. Technol, vol.50, pp.193-210, 2016.

C. Municio, The response of human macrophages to ?-glucans depends on the inflammatory milieu, PloS One, vol.8, p.62016, 2013.

C. Sanchez, Bioactives from Mushroom and Their Application, pp.23-57, 2017.

A. Pandey, Solid-state fermentation, Biochem. Eng. J, vol.13, pp.81-84, 2003.

H. O. Hamad, M. H. Alma, H. M. Ismael, and A. Goceri, The Effect of Some Sugars on the Growth of Aspergillus niger, Kahramanmara? Sütçü ?mam Üniversitesi Do?a Bilim. Derg, vol.17, pp.7-11, 2014.

C. Krishna, Solid-state fermentation systems-an overview, Crit. Rev. Biotechnol, vol.25, pp.1-30, 2005.

Z. Ajdari, Nutritional requirements for the improvement of growth and sporulation of several strains of Monascus purpureus on solid state cultivation, BioMed Res. Int, 2011.

Y. Kumeda and T. Asao, Single-strand conformation polymorphism analysis of PCR-amplified ribosomal DNA internal transcribed spacers to differentiate species of Aspergillus section Flavi, Appl. Environ. Microbiol, vol.62, pp.2947-2952, 1996.

S. Sivaramakrishnan, D. Gangadharan, K. M. Nampoothiri, C. R. Soccol, and A. Pandey, Alpha amylase production by Aspergillus oryzae employing solid-state fermentation, J. Sci. Ind. Res, vol.66, pp.621-626, 2007.

C. C. Duru and N. U. Uma, Protein enrichment of solid waste from cocoyam (Xanthosoma sagittifolium (L.) Schott) cormel processing using Aspergillus oryzae obtained from cormel flour, Afr. J. Biotechnol, vol.2, pp.228-232, 2003.

V. Zambare, Solid state fermentation of Aspergillus oryzae for glucoamylase production on agro residues, Int. J. Life Sci, vol.4, pp.16-25, 2010.

N. Curvetto, D. Figlas, R. Gonzalez-matute, and S. Delmastro, Shiitake Bag Cultivation on sunflower seed hulls. in Mushroom Growers' Handbook 2: Shiitake Cultivation, pp.100-104, 2005.

H. T. Hoa and C. Wang, The effects of temperature and nutritional conditions on mycelium growth of two oyster mushrooms (Pleurotus ostreatus and Pleurotus cystidiosus), Mycobiology, vol.43, pp.14-23, 2015.

S. K. Dhananjay and V. H. Mulimani, Purification of ?-galactosidase and invertase by three-phase partitioning from crude extract of Aspergillus oryzae, Biotechnol. Lett, vol.30, pp.1565-1569, 2008.

K. Miloski, K. Wallace, A. Fenger, E. Schneider, and K. Bendinskas, Comparison of biochemical and chemical digestion and detection methods for carbohydrates, Am. J. Undergrad. Res, vol.7, pp.48-52, 2008.

F. Freitas, V. D. Alves, and M. A. Reis, Advances in bacterial exopolysaccharides: from production to biotechnological applications, Trends Biotechnol, vol.29, pp.388-398, 2011.

F. Thevenieau, A. Bourdillon, A. Durand, J. De-coninck, and S. Sutter, Food Product and Method for Producing Same, p.2015101650, 2015.

S. Sutter, F. Thevenieau, A. Bourdillon, and J. De-coninck, Immunomodulatory Properties of Filamentous Fungi Cultivated through Solid-State Fermentation on Rapeseed Meal, Appl. Biochem. Biotechnol, vol.182, pp.910-924, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01501382

D. Heerd, S. Yegin, C. Tari, and M. Fernandez-lahore, Pectinase enzyme-complex production by Aspergillus spp. in solid-state fermentation: A comparative study, Food Bioprod. Process, vol.90, pp.102-110, 2012.

I. Kimura, H. Sasahara, and S. Tajima, Purification and characterization of two xylanases and an arabinofuranosidase from Aspergillus sojae, J. Ferment. Bioeng, vol.80, pp.334-339, 1995.

I. Kimura and S. Tajima, Subsite affinities of ?-glucosidase from Aspergillus sojae on various xylooligosaccharides, J. Biosci. Bioeng, vol.87, pp.572-575, 1999.

S. Delaunay, E. Rondags, and P. Germain, Production d'antibiotiques par biotechnologies, 2003.

, Propositions pour une démarche d'évaluation de substances ou de produits « nouveaux » destinés à l'alimentation animale. Cas particulier des substances et produits à base de plantes, 2007.