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Émilie Chouzenoux
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Florence Tupin
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Contents 1

Notations and abbreviations

General notations

— u : a scalar. u1..n is used as a shortcut for writing the whole set of scalars u1,
u2, ..., un ;

— u : a vector ;

— U : a matrix. Vectors are considered as a matrix with only one column ;

— U : a set ;

— Ui : ith line of matrix U (when U = S corresponds to the sources, also called
an observation). The notation is extended to subsets of lines : if J is a finite
subset of [1,n], UJ denotes the lines indexed by J ;

— Uj : jth column of matrix U (when U = S corresponds to the sources, also
called a sample). The notation is extended to subsets of columns : if J is a
subset of [1,t], UJ denotes the columns indexed by J ;

— Uij : (i,j)th entry of matrix U (also called coefficient) ;

— UT : transpose of U ;

— U† : Moore-Penrose pseudo-inverse of U ;

— U∗ : true underlying matrix (to be estimated) ;

— Ũ : in proximal algorithms, estimate of a variable U∗ before the application
of the proximal operator ;

— Û : estimate of U∗ by an algorithm ;

— Û(l) : in iterative algorithms, denotes the estimation of U∗ at iteration l ;
Û(1..l) is used as a shorthand for the set of all the estimates until iteration l.

— U[J ] : used to denote an estimation of U∗ using the mini-batch indexed by
J . Note that we do not use a hat here, as it is used for the estimate obtained
from the aggregation of the various U[J ] ;

— f(.) function with scalar output ;

— f(.) function with matrix output ;

— 1n×t : matrix of size n× t filled with ones ;

— Id : identity matrix ;

— JC complementary set of J ;

— Diag(λ1, ..., λn) : diagonal matrix having as diagonal elements λ1, ..., λn.

Operators and norms

— ‖u‖`p , p ∈ R+ : `p (quasi)-norm of u, that is for u ∈ Ru, ‖u‖`p = (
∑u

i=1 upi )
1
p ;

— ‖u‖0 : number of non-zeros elements in u ;

— ‖U‖F : Frobenius norm of U ;
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— ‖U‖p matrix norm of U induced by the `p-norm on vectors ;

— ‖U‖∞ : maximum absolute value of the coefficients of U. The notation is the
same for vectors : ‖u‖∞ ;

— � : Hadamart product (e.g. elementwise product of two matrices) ;

— U � 0 means that all the coefficients of U are non-negative : Ui,j ≥ 0 ;

— < .|. > : scalar product ;

— ∆f (.) : gradient of f ;

— proxf (u) : proximal operator of f in u. See Appendix A for definition and
special case of soft-thresholding Sλ(u) and projection on set U , ΠU (u) ;

— Mf (.) : Moreau envelope of f ;

— ιU (.) is the characteristic function of a set U :

∀u ∈ R, ιU (u) =

{
0 if u ∈ U
∞ otherwise

The notation is extended for matrices U ∈ Rm×n : ιU (U) =
∑m

i=1

∑n
j=1 ιU (Uij).

— mad(u) : Median Absolute Deviation of u. MAD(U) : vector, which elements
are the mad of each line of U ;

— #U : number of elements in set U ;

— expu and logu : exponential and logarithmic map used for the Fréchetmean ;

Specific naming

— X ∈ Rm×t : dataset ;
— A ∈ Rm×n : mixing matrix ;

— S ∈ Rn×t : source matrix ;

— N ∈ Rm×t : noise matrix ;

— P : permutation matrix ;

— W = A† ;

— U(1),U(2),U(3)... : some generic matrices ;

— Θ = {A,S}

— n : number of sources ;

— m : number of observations ;

— t : number of samples ;

— T : number of samples in a transformed domain ;

— σ : a standard deviation ;
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— h : differentiable term in a cost function (most of the time, h is also multi-
convex) ;

— h(i) : convex function corresponding to the multi-convex function h with all
but one block fixed ;

— J (.), G(.) and J(i) : functions used to enforce constraints on A and S respec-
tively, while J(i) is used for the more general case of more than two A and S

matrices. Examples of constraints : positive orthant K+ = {S ∈ Rn×t;∀j ∈
[1, n], k ∈ [1, t],Skj ≥ 0} and oblique constraint O = {A ∈ Rm×n;∀j ∈
[1, n], ‖Aj‖22 = 1} ;

— K : number of constraints J(i) ;

— Φ or ΦS : a sparsifying transform (size T × t) ;
— RS (size n×T ) control the trade-off between the data fidelity and the sparsity

terms. It can be decomposed into RS = ΛSG where ΛS (n × n) is a diago-
nal matrix of the regularization parameters λ1, λ2, ..., λn and G (n × T ) is a
matrix used to introduce individual penalization coefficients in the context of
reweighted `1 ;

— MS : GMCA regularization parameters. MS
(l) = Diag(µ

(l)
1 , µ

(l)
2 , ..., µ

(l)
n )1n×t ;

— γ, δ : parameters in (0, 1) used for the step size ;

— η : gradient step size, or learning rate in the machine learning terminology ;

— L : Lispchitz constant of a gradient ;

— ωi, ∀i ∈ [1, B] : weights : ωi ≥ 0 and
∑B

i=1 ωi = 1. The ωi can be written
within a vector w : wi = ωi ;

— κ : constant used as a multiplicative factor of the mad. Usually, κ = 3 ;

— l : in iterative algorithms, number of the current iteration (lf is specifically
used for the Fréchetalgorithm) ;

— L : number of iterations of an iterative algorithm (Lf is specifically used for
the Fréchetalgorithm) ;

— ∆ : stopping criterion in iterative algorithms ;

— CA : mixing matrix criterion (see Appendix B) ;

— Cmed, Cmean, Cangle : metrics for separation quality. See Appendix B ;

— s = S∗ − Ŝ : error on sources ;

— E : error on the source estimation introduced by the use of blocks ;

— R : residual ;

— ε : small constant (e.g. 10−3) ;
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— α : parameter of a function (i.e. of a generalized Gaussian distribution, sine
or cosine, exponential decay...) ;

— σi : standard deviation of the noise in the source indexed by i ;

— Cd(S) : condition number of S∗ ;

— Cd : condition number of the mixing matrix A∗ ;

— p : sparsity level (in [0,1]) ;

— k : number of non-zeros coefficients ;

— r : block size ;

— B : number of mini-batches used ;

— b ∈ [1, B] : index of a mini-batch ;

— tb : size of the mini-batch indexed by b ;

— Jb : indices of the columns in the mini-batch indexed by b ;

— φ(U(1),U(2)) : distance between U(1) and U(2) (e.g. on a geodesic) ;

— Sm : m-dimensional hypersphere ;

— ν : parameter of Nesterov smoothing technique ;

— ρ : step size used for Fréchetmean ;

— f∗ : non-linear mixing function ;

— Xu ∈ Rn×t : unfolded manifolds ;

— τ ∈ R+ : a threshold ;

— h : non-linear indeterminacy function appearing in non-linear BSS (note : in
the context of linear BSS, h is a scaling factor) ;

— P : polynomial function, supposed to be estimate h ;

Abreviations

— BSS : Blind Source Separation ;

— ICA : Independent Component Analysis ;

— NMF : Non-negative Matrix Factorization ;

— SMF : Sparse Matrix Factorization ;

— BCD : Block Coordinate Descent ;

— PALM : Proximal Alternating Linearized Minimization ;

— (p)ALS : (projected) Alternating Least-Squares ;

— PBC : Proximal Block Coordinate ;

— GD : Gradient Descent ;
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— SGD : Stochastic Gradient Descent ;

— FBS : Forward Backward Splitting ;

— GFBS : Generalized Forward Backward Splitting ;

— PNL : Post Non-Linear ;

— LQ : Linear Quadratic ;

— GMCA : Generalized Morphological Component Analysis ;

— bGMCA : block Generalized Morphological Component Analysis ;

— dGMCA : distributed Generalized Morphological Component Analysis ;

— AMCA : Adaptative Morphological Component Analysis ;

— StackedAMCA : Stacked Adaptative Morphological Component Analysis ;

— PCA : Principal Component Analysis ;

— EFICA : Efficient FastICA ;

— HALS : Hierarchical Alternating Least Squares ;

— RNA : Relative Newton Algorithm ;

— MISEP : algorithm of [Almeida 2003] ;

— NFA : Nonlinear Factor Analysis ;

— ANICA : Adversarial Non-linear Independent Component Analysis ;

— SDR, SAR, SIR, SNR : Signal to Distortion-Artifact-Interference-Noise Ratio ;

— ME : Mean absolute Error ;

— MSE : Mean Square Error ;

— LC / MS : Liquid Chromatography Mass Spectroscopy ;

— LC / 1H NMR : Liquid Chromatography - 1H Nuclear Magnetic Resonance ;

— i.i.d. : Independent Identically Distributed

— 1/2/3/.../nD : 1/2/3/.../D-Dimensional ;

— ReLU : Rectified Linear Unit ;





Chapitre I

Résumé

La séparation aveugle de sources (BSS 1 – [Comon & Jutten 2010]) est une mé-
thode de premier plan pour apprendre des décompositions physiques de données
multi-valuées. Celle-ci a fait ses preuves dans de nombreux domaines, tels que par
exemple le traitement du signal audio [Vincent et al. 2003,Vincent et al. 2011,Oze-
rov & Févotte 2010, Duong et al. 2010, Févotte et al. 2009], le biomédical [Jung
et al. 2000,Negro et al. 2016,Poh et al. 2010] et l’astrophysique [Bobin et al. 2014].

Les jeux de données utilisés en BSS sont obtenus à partir de mélanges de signaux
élémentaires appelés sources (cf. Fig. I.1 pour un exemple illustratif tiré de données
astrophysiques). De manière générale, les observations, regroupées en tant que lignes
d’une matrice X (de taille m× t), peuvent donc s’écrire comme :

X = f∗(S∗) + N

où les sources sont les lignes de la matrice S∗ (de taille n×t), qui sont mélangées par
la fonction f . La matrice N correspond aux imperfections du modèle et est appelée
bruit. Une instance spécifique de ce type de problèmes est le cas où le mélange est
linéaire :

X = A∗S∗ + N (I.1)

Où A∗ (taille m×n) est une matrice contenant les coefficients linéaires de mélange.
De manière très simplifiée, l’objectif de la séparation de sources est de démélanger
les sources S∗ à l’origine des données (compte tenu de certaines indéterminations
qui seront détaillées dans le reste du manuscrit). Ceci est d’autant plus délicat que
la séparation aveugle ne suppose (quasiment) aucune connaissance a priori sur le
processus de mélange f∗, si ce n’est dans le cas où le mélange est supposé linéaire,
et où celui-ci revient donc à une multiplication matricielle.

En l’état, le problème de BSS formulé comme précédemment admet une infi-
nité de solutions, parmi lesquelles seul un petit nombre correspond aux signaux
physiques, c’est à dire qui sont réellement à l’origine des données observées. Dit
autrement, la BSS est un problème mal posé, pour lequel il est courant de rajouter
une information a priori dans le but de restreindre l’espace des solutions possibles.

1. Les abréviations utilisées dans cette introduction correspondent, par soucis de cohérence avec
le reste du manuscrit, aux acronymes anglais.
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(a) X1 (b) X5 (c) X9 (d) X30

(e) Synchrotron (f) Thermique (g) Fer 1 (h) Fer 2
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Figure I.1 – Exemple de problème de BSS en astrophysique, correspondant ici à
l’étude d’un rémanent de supernova. Haut : Quelques données / mélanges observés
par le satellite Chandra. Chaque image correspond au même rémanent, mais capturé
à une longueur d’onde différente. Le mélange peut ici être considéré comme linéaire :
chaque image est alors aplanie pour devenir une ligne de X∗ dans (I.1). Milieu :
sources physiques à l’origine des données / des mélanges observés : chaque image
(inconnue en pratique et à retrouver par BSS) correspond à une émission spécifique
provenant du rémanent. Ici, il s’agit de gauche à droite de : l’émission synchrotron,
l’émission thermique et l’émission du fer, à deux décalages vers le rouge différent.
Dans (I.1), chaque image est une ligne de S∗ ; Bas : Chaque courbe est le spectre
d’une des 4 émissions précédentes. Ceux-ci (chacun étant une colonne de A∗) ne sont
pas disjoints : ainsi, la prise d’images X à différentes longueurs d’ondes ne permet
pas d’isoler chaque émission parfaitement, d’où le besoin d’une méthode de BSS.
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Par exemple, les sources peuvent être supposées statistiquement indépendantes, ou
avoir des coefficients positifs. Dans ce manuscrit, nous nous intéressons spécifique-
ment au cas où les sources sont parcimonieuses, puisque cette approche a permis
d’obtenir d’excellents résultats lors de la dernière décennie [Zibulevsky & Pearlmut-
ter 2001, Bobin et al. 2007, Bobin et al. 2015]. Pour résumer très succinctement,
l’hypothèse de parcimonie présuppose que les sources comportent un grand nombre
de coefficients nuls (potentiellement dans un espace transformé, par exemple le do-
maine de Fourier pour donner un cas simple).

En tant que tel, le problème de BSS parcimonieuse peut s’écrire comme un
problème d’optimisation multi-convexe de la forme (nous prendrons ici le cas le plus
simple) :

argmin
A∈Rm×n,S∈Rn×t

1

2
‖X−AS‖2F + ‖RS � S‖1 + ι{∀i∈[1,n];‖Ai‖22=1}(A) (I.2)

Dans lequel :

— Le terme 1
2 ‖X−AS‖2F , avec ‖.‖F la norme de Forbenius, promeut une re-

construction fidèle des données.

— Le terme ‖RS � S‖1 encourage la parcimonie des sources, où � est utilisé pour
le produit d’Hadamard. La matrice de paramètres RS (de taille n× t) permet
de contrôler le compromis effectué entre les termes d’attache aux données et
de parcimonie.

— Pour éviter des solutions A and S dégénérées dans lesquelles ‖A‖F → ∞ et
‖S‖F → 0 à cause du terme de parcimonie, un dernier terme appelé contrainte
oblique est introduit. Il impose que toutes les colonnes de A se trouvent sur
l’hypersphère unité `2. La fonction charactéristique est notée ι.

Les algorithmes classiques de BSS parcimonieuse s’attachent donc généralement
à minimiser le problème (I.2), soit de manière exacte 2 (BCD [Tseng 2001] ou
PALM [Bolte et al. 2014]), soit de manière approximative mais en introduisant des
heuristiques 3 permettant d’augmenter empiriquement la robustesse grâce à un choix
automatique des paramètres de régularisation RS (GMCA [Bobin et al. 2007]).

Toutefois, en dépit de leurs nombreux succès, la plupart des méthodes ont été
utilisées sur des problèmes de petites tailles. Par conséquent, le déluge de données
actuel représente un important défi pour les méthodes de BSS actuelles. En astro-
physique par exemple, de nouveaux instruments tels que le Square Kilometer Array

2. Exacte est à comprendre ici dans le sens où ces algorithmes garantissent de converger vers
un point critique du problème (I.2). En revanche, ce point n’est pas nécessairement un minimum
global du problème.

3. Par heuristique, nous entendons ici une méthode approximative simplifiant un des aspects
du problème initial (réduction du temps de calcul, choix d’hyper-paramètres ou d’initialisation...),
et permettant d’obtenir des résultats corrects mais non nécessairement optimaux.
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(SKA) seront à même de fournir des volumes de données colossaux. Dans le contexte
de la BSS, et pour donner un ordre d’idée des tailles à considérer, des données com-
prenant jusqu’à t = 109 échantillons et m = 104 observations pourraient faire leur
apparition. De manière similaire, en spectroscopie les mélanges peuvent comporter
plusieurs dizaines de sources. L’objectif de ce doctorat est donc de proposer
de nouvelles méthodes de séparation aveugle de sources parcimonieuses
permettant de traiter des problèmes grande échelle.

Plus précisément, les travaux s’articulent autour de quatre problématiques ma-
jeures :

1 - L’introduction d’une méthode de choix automatique des paramètres
de régularisation RS du problème (I.2) lors de sa minimisation par
l’algorithme PALM [Bolte et al. 2014]. Cette problématique est primor-
diale, puisque qu’un tel choix est généralement effectué en testant différentes
valeurs de RS et en regardant la qualité de la solution obtenue par PALM
pour chaque jeu de paramètres (approche de type grid-search en Anglais).
Néanmoins, dans le cas grande échelle, les temps de calculs prohibitifs induits
par cette approche sont souvent rédhibitoires, nécessitant l’introduction d’une
méthode automatique permettant de ne lancer qu’une unique fois l’algorithme ;

2 - L’introduction d’une méthode permettant de traiter un nombre de
sources n important. Le défi présente ici deux facettes, puisque les algo-
rithmes classiques de BSS, lorsqu’ils sont confrontés à un nombre de sources
croissant i) nécessitent des temps de calcul accrus ; ii) voient la qualité des
solutions qu’ils proposent décliner ;

3 - L’introduction d’une méthode permettant de traiter des jeux de
données de grandes tailles, et en particulier présentant un grand
nombre d’échantillons t. Le problème a ici principalement trait à aux
difficultés calculatoires, car un grand nombre d’échantillons i) provoque un
temps de calcul fortement accru, rendant très couteuses des méthodes telles
GMCA [Bobin et al. 2007] puisque celles-ci nécessitent, à cause de leurs struc-
tures itératives, de multiples inversions de matrices gigantesques ; ii) peut im-
pliquer des tailles de données ne permettant même pas de stocker les matrices
en jeu en mémoire, prohibant l’utilisation des méthodes de BSS ;

4 - Une extension à la séparation aveugle de sources non-linéaire. Peu
de travaux ont été proposés en BSS non-linéaire parcimonieuse. La méthode
introduite durant ce doctorat nécessite de résoudre plusieurs sous-problèmes
de BSS linéaire, ce qui peut dans des cas complexes potentiellement nécessiter
de résoudre auparavant les points précédents.
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Après une introduction plus détaillée du problème et une présentation des stra-
tégies d’optimisation utilisées dans les chapitres II et III respectivement, le chapitre
IV s’attaque à la résolution du problème 1). Plus spécifiquement, la première partie
consiste à déterminer les difficultés induites par l’utilisation de PALM dans le cadre
de la BSS parcimonieuse. Une étude empirique nous permet d’avancer que dans ce
contexte, utiliser PALM avec une approche de type grid-search pour la recherche de
bons 4 paramètres de régularisation RS souffre d’une faible efficacité et versatilité.
Pour résumer succinctement, une faible efficacité signifie qu’il est délicat, pour une
expérience donnée, de trouver de bons paramètres de régularisation RS. Une faible
versatilité implique qu’il est difficile de généraliser un bon choix de RS d’un jeu
de données à un autre. Ainsi, faibles efficacité et versatilité rendent le choix des
paramètres de régularisation très complexes lors de l’utilisation de PALM pour des
problèmes grande échelle 5. Cependant, l’étude proposée montre qu’une fois de bons
paramètres RS trouvés, l’estimation des matrices A∗ et S∗ par PALM peut être de
très bonne qualité, surpassant celle d’algorithmes heuristiques tels que GMCA.
C’est pourquoi nous proposons, dans une deuxième partie, une méthode permettant
de contourner les difficultés précédentes. Plus spécifiquement, une approche en deux
étapes est introduite, comprenant :

— Une étape d’initialisation se basant sur l’algorithme GMCA : celui-ci, bien
qu’approximatif car basé sur des moindres carrés alternés projetés (pALS),
propose une méthode automatique de choix de RS, qui donne en pratique une
première estimation décente Â et Ŝ ;

— Une étape de raffinement se basant sur PALM. L’initialisation correcte fournie
par GMCA permet de déterminer un bon jeu de paramètres RS, utilisé dans
cette deuxième étape. PALM permet alors potentiellement d’améliorer la so-
lution fournie par GMCA, tout en fournissant des garanties mathématiques,
telle la convergence de l’algorithme.

La qualité de l’approche est démontrée grâce à une expérience de BSS sur des don-
nées réalistes d’astrophysique. Une discussion est également proposée quant aux
limitations de la méthode.

4. Le terme “bon” est à comprendre au sens donnant des estimations Â et Ŝ proches des vrais
facteurs physiques A∗ et S∗. Cette notion est donc distincte de simplement trouver un minimum
local du problème (I.2) : il s’agit ici de trouver un minimum particulier correspondant à des facteurs
ayant un sens physique.

5. Et ce d’autant plus que PALM souffre en plus d’une fiabilité limitée, signifiant sa sensibilité à
l’initialisation : autrement dit, il faut également potentiellement relancer plusieurs fois l’algorithme
avec des initialisations différentes jusqu’à l’obtention de résultats corrects.
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Dans le chapitre V, nous nous attaquons au problème 2). Nous montrons sur
une expérience simple la difficulté de traiter des cas de BSS comprenant un grand
nombre de sources n. Pour traiter ce problème, la solution proposée se concentre
sur la stratégie d’optimisation. Plus spécifiquement, nous utilisons une méthode de
minimisation par blocs de coordonnées, ce qui est couramment utilisé en BSS pour
contourner l’aspect non-convexe de la fonction de coût (I.2) en utilisant sa structure
multi-convexe. Les approches classiques peuvent être catégorisées en deux familles :

— Les méthodes de déflations ou hiérarchiques : celles-ci utilisent des blocs de
taille 1 : à chaque itération, une seule source est mise à jour, ainsi que la co-
lonne de A correspondante ;

— Les méthodes utilisant l’intégralité des matrices A et S. Dans ces méthodes,
telles le GMCA usuel, seulement deux blocs sont utilisés, le premier corres-
pondant à la matrice de mélange et le deuxième à la matrice source.

Par opposition, la méthode proposée, appelée block-GMCA (bGMCA), introduit
des blocs de tailles intermédiaires r au sein de l’algorithme GMCA 6. Ainsi, alors
que les approches par déflation ou hiérarchique correspondaient au cas r = 1, et les
méthodes utilisant l’intégralité des matrices au cas r = n, bGMCA utilise des tailles
r ∈ [1, n].
Outre un gain substantiel en termes de temps de calcul, il est montré expérimenta-
lement que l’algorithme permet une forte amélioration de la qualité de la séparation
pour des tailles de blocs modérées. Dans des cas simples, bGMCA permet aussi de
retrouver de manière quasi-exacte (aux incertitudes numériques près) les facteurs A∗

et S∗. L’explication avancée pour ces résultats est qu’il existe un compromis dans la
taille des blocs : pour r proche de 1, l’algorithme souffre d’erreurs de propagation
entre les itérations et le fait d’utiliser des blocs crée des erreurs, assimilables à un
bruit supplémentaire. Pour r = n, le problème de séparation devient plus complexe.
Prendre des valeurs de r intermédiaires semble donc permettre de limiter les erreurs
de propagation, tout en bénéficiant d’un problème plus simple.
Pour conclure ce chapitre et montrer que bGMCA peut être utilisé dans le cadre
de la BSS avec des a priori plus complexes que la seule parcimonie, un problème
réaliste de LC / 1H NMR est proposé, dans lequel la positivité des sources et de la
matrice de mélange est de surcroit imposée.

Dans le chapitre VI, le problème 3) est pris en considération. Plus spécifiquement,
bGMCA permettait de traiter des problèmes avec un grand nombre de sources mais
nécessitait l’utilisation de l’ensemble de la matrice de données X à chaque itéra-
tion. L’algorithme proposé ici, nommé distributed-GMCA (dGMCA), élimine cette

6. Plus exactement, des blocs sont introduits dans l’algorithme en deux étapes décrit précédem-
ment.
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limitation. Le principe général consiste en l’introduction de B mini-batchs [Xing
et al. 2018] dans le schéma de minimisation par projections alternées des moindres
carrés, et plus spécifiquement dans GMCA, ce qui permet de continuer à bénéficier
de la grande robustesse de cet algorithme, ainsi que de son choix simple de RS

7.
Cependant, l’utilisation du pALS implique qu’à chaque itération, un nombre B d’es-
timations de la matrice de mélange A∗ soit calculé, soit une par mini-batch. Ces
estimations ne sont pas toutes d’égales qualités, puisque réalisées sur des parties
différentes, de petite taille, des données X, qui peuvent être plus ou moins simples
à démélanger. Une question naturelle est donc comment les agréger, pour obtenir à
chaque itération une unique bonne estimation de A∗. Une méthode naturelle serait
de réaliser l’agrégation en effectuant une simple moyenne euclidienne. Cependant,
l’estimée de A∗ doit également respecter la contrainte oblique présente dans (I.2),
ce qui n’est pas garanti par l’utilisation de la moyenne euclidienne. Nous propo-
sons donc plutôt d’utiliser une moyenne de Fréchet, c’est à dire une moyenne sur
l’hypersphère. Pour robustifier l’approche, une deuxième version de l’agrégation est
proposée, similaire à une médiane sur l’hypersphère. De plus, une pondération est
utilisée, permettant de prendre en compte la qualité de l’estimation des sources
dans chaque mini-batch. Les expériences réalisées permettent de démontrer le gain
de temps (en plus du gain en mémoire, puisque X est potentiellement découpé sur
différents nœuds d’un cluster) obtenu par la méthode. L’étude de la qualité de la
séparation permet par ailleurs de distinguer deux régimes :

— Dans le cas de sources modérément parcimonieuses, la séparation obtenue
lors de l’utilisation de mini-batch est quasiment identique à celle en utilisant
l’ensemble des données, si tant est qu’une taille de mini-batch raisonnable
soit utilisée. Introduire des mini-batchs permet donc, à coût quasiment nul en
termes de qualité de séparation, un gain en temps de calcul important ;

— Dans le cas de sources très parcimonieuses, les résultats sont plus surprenants :
pour des mini-batchs de faibles tailles, la séparation est même meilleure que
lorsque l’ensemble des données est utilisée. L’explication proposée se base sur
des liens avec certains travaux récents sur la descente de gradient stochastique
(SGD). Notre hypothèse est que, similairement à la SGD, l’introduction de
mini-batch favorise certains minima du paysage d’optimisation de la fonction
de coût (I.2) qui généralisent bien. Dans le contexte de la BSS, de tels minima
correspondraient à des solutions peu sensibles à une réalisation donnée des
sources.

Ces résultats sont confirmés sur une expérience réaliste en spectroscopie gamma.

Le chapitre VII est une extension des travaux précédents, et s’attaque au pro-

7. En effet, bien que le chapitre IV ait permis de trouver une méthode pour fixer les paramètres
de régularisation dans PALM, il est à noter que l’approche nécessite au moins quelques itérations
de GMCA pour initialiser l’étape de raffinement. Par conséquent, faire fonctionner le pALS dans
le cas grande échelle reste nécessaire.
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blème 4). Peu d’études se sont intéressées à la séparation aveugle de sources non-
linéaire. Ceci est probablement dû à des indéterminations beaucoup plus importantes
que dans le cas linéaire. Notamment, l’indépendance des sources n’est par exemple
plus suffisante pour garantir leur séparation. Qui plus est, même dans le cas où les
sources seraient séparées, le reconstruction n’est pas garantie puisque celles-ci sont
retrouvées à une fonction non-linéaire h près, qui ne les remélange pas. L’algorithme
proposé, nommé StackedAMCA, bénéficie d’une interprétation géométrique du pro-
blème de BSS non-linéaire : graphiquement, chaque source est transformée en une
variété de dimension 1 (1D). Nous proposons d’estimer les non-linéarités en ajus-
tant un modèle linéaire par morceaux à ces variétés grâce à un algorithme itératif. A
chaque itération, un nouveau morceau est estimé grâce à un algorithme de BSS parci-
monieuse robuste aux non-linéarités de grandes amplitudes [Bobin et al. 2015]. Pour
passer d’un morceau à l’autre, et ainsi préparer l’itération suivante de l’algorithme,
un résidu est utilisé, correspondant aux données X desquelles sont soustraites les
contributions des modèles linéaires déjà estimés. Pour limiter les erreurs de propa-
gation, à chaque itération l’algorithme repart des données originales X et déploie
les variétés en appliquant l’ensemble des inverses des modèles linéaires calculés au-
paravant. L’algorithme admet de plus une interprétation en termes de réseau de
neurones, qui est détaillée.
La partie expérimentale comporte plusieurs expériences : un mélange linéaire par
morceaux, permettant ainsi d’étudier les mécanismes de StackedAMCA dans un
cas où le processus de démélange correspond exactement à celui du mélange ; un
mélange compliqué dans lesquelles sont présentes de nombreuses sources : Stacke-
dAMCA obtient une meilleure qualité de séparation que les autres méthodes de l’état
de l’art. De manière intéressante, la méthode est aussi ici capable de reconstruire
les sources, malgré l’indétermination par la fonction h : dit autrement, la structure
de l’algorithme crée une régularisation implicite qui permet la reconstruction. Nous
proposons une dernière expérience dans laquelle la reconstruction n’est plus garantie,
dans l’objectif de montrer que l’algorithme sépare encore toutefois bien les sources.
Enfin, dans une dernière partie, les hypothèses requises pour StackedAMCA sont
étudiées, et en particulier un sous-ensemble de mélanges pour lesquels l’algorithme
est supposé être capable de reconstruire les sources est caractérisé.



Chapitre II

Sparse Modelling and Large-Scale
BSS

A Multi-valued data analysis and BSS

The overwhelming quantities of data collected everyday have lead to the current
so-called deluge of data. Such a phenomenon finds its roots in many origins : one
can for instance cite the development of social media and search engines, or new
industrial equipment, cameras, sensors... As a specific example, in astronomy ins-
truments such as the Large-Synoptic Survey Telescope (LSST – [Ivezic et al. 2008])
or the Square Kilometer Array (SKA – [Blake et al. 2004]), to only name two of
them, will produce data of several terabytes and even petabytes of memory [Longo
et al. 2017].
Such unprecedented quantities require to develop scalable data processing tools
being able to operate in the large-scale regime. In this work, we will focus on a
specific method called Blind Source Separation (BSS), which is a key analysis tool
to learn meaningful decompositions of multivalued data and which has already been
successful in a wide variety of scientific fields such as audio processing [Vincent
et al. 2011,Vincent et al. 2003,Ozerov & Févotte 2010,Duong et al. 2010, Févotte
et al. 2009], biomedical data processing [Jung et al. 2000, Negro et al. 2016, Poh
et al. 2010] or astrophysics [Bobin et al. 2014], to only cite three of them. More
specifically, the objective of this thesis is to extend a sub-domain of BSS,
namely sparse BSS, to various large-scale contexts.
In the next section, we start by giving a few examples of practical BSS problems,
which will be followed by a formalization of the problem. Finally, the last part of
this chapter will introduce the problems faced in the large-scale setting and the
structure of this work.

A.1 Four BSS examples

A.1.1 Cocktail party problem

The most well-known BSS example might be the cocktail party problem. During
a party, n persons are speaking with each other. A given number m of microphones
are located in the room, registering the conversations. As the guests are speaking
at the same time, they create a brouhaha and the signals X1,X2, ...,Xm are cor-
responding to different mixings of their original sentences S∗1,S

∗
2, ...,S

∗
n. The signals

captured by each microphone are different, depending on several physical effects
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(such as for instance, the distance of each guest to a given microphone) which
are not necessarily known beforehand. As such, the mixing process leading to the
mixings X1,X2, ...,Xm is supposed to be unknown. The challenge of BSS is then
to recover the sounds pronounced by each individual from the mixings in a blind
fashion : from X1,X2, ...,Xm only, we want to retrieve S∗1,S

∗
2, ...,S

∗
n.

A.1.2 Spectroscopy : LC/MS data

The Liquid Chromatography – Mass Spectrometry (LC/MS) [Rapin et al. 2014]
enables to study a fluid in order to identify and quantify its constitutive chemicals.
This fluid could correspond to a drink and the goal of BSS would then be to identify
the spectra S∗1,S

∗
2, ...,S

∗
n of each chemical (e.g. caffeine, sucrose, menthone...) from

the LC/MS data X1,X2, ...,Xm. Furthermore, if the mixing is supposed to be linear,
the mixing coefficients (which are proportional to their concentrations) can also be
of interest.
The LC/MS data are collected within a matrix X ∈ Rm×t in the following way :

— A first physical imperfect separation is performed, during which the fluid goes
through a chromatography column and its chemicals are separated according
to their speeds (which themselves depend on their physical properties). At each
time moment 1/fe (determined beforehand by a given rate fe), the output of
the chromatography column is then sampled, giving a first imperfect time
separation.

— At each time 1/fe, the samples are analysed by a mass spectrometer. Since
the different chemicals have different masses, this yields a second imperfect
separation in mass.

This double imperfect separation both in time and in mass gives data similar to the
ones of Fig. II.1 : the time axis corresponds to the different columns of X, while the
mass to charge ratio corresponds to the rows of X. It has to be emphasized that at
this point, due to the imperfectness of the separations, the chemical are still mixed
within the X matrix. The goal of BSS is then to enhance the separation to precisely
recover the spectra of the different chemicals as rows S∗1,S

∗
2, ...,S

∗
n of a matrix S∗

(cf. Fig. II.2a). This enables to identify the chemicals.

A.1.3 Astronomical data : Chandra and Square Kilometer Array

We will develop two examples of astrophysical data :

— Chandra
Chandra satellite 1 is a X-ray observatory taking pictures of the sky in different
wavelength bands. Such observed images, picturing a supernovae remnant, are
displayed in the upper row of Figure II.3. Each of them corresponds to a

1. http ://chandra.harvard.edu/
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Figure II.1 – Example of LC/MS data. Figure taken from [Rapin 2014].

picture of the same supernovae remnant, but taken at different wavelength va-
lues. However, the different observations Xi, i ∈ [1,m] do not result each from
separated physical emissions, but rather from a mixture of the elementary
emissions S∗i , i ∈ [1, 4] displayed in the middle row of Fig. II.3 (the synchro-
tron and thermal emissions, as well as the one originating from the iron present
in the remnant, at two different redshift values). Indeed, all these emissions
overlap in the wavelength domain (cf. lowest plot of Fig. II.3, in which it can
be seen that several sources emit around 1, 5, 9 and 30), making that merely
taking pictures at different wavelength values does not enable to directly se-
parate them well.
Resorting to BSS enables to estimate the elementary emissions S∗i , i ∈ [1, 4],
which in turns allows to study the physical mechanisms at stake in the superno-
vae remnant. Furthermore, BSS methods can also estimate the corresponding
spectra A∗i , i ∈ [1, 4].

— SKA
The SKA is a continental-size radio-telescope that should be built in Austra-
lia and South America. It has several objectives, such as testing the general
relativity, studying the large-scale structure of the cosmos, the epoch of re-
ionization...
The SKA will be the world’s largest telescope, eventually comprehending thou-
sands of dishes and up to a million low-frequency antennas 2. However, due to
the wide range of frequencies in which it will operate and its size (approxi-
mately one square kilometer of collecting area), the quantities of data will

2. https ://www.skatelescope.org/the-ska-project/
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(a) One line of S∗ (b) One column of A∗

Figure II.2 – Example of BSS problem on the LC/MS data : Left : spectrum of
the DL-arginine ; Right : time elution of the DL-arginine. Figures taken from [Ra-
pin 2014].

be tremendous : it could indeed produce more data per day than the entire
content of internet in 2011 3.
Therefore, while the faced BSS problems are similar in principle to the ones of
the previous Chandra example, the datasets are much larger, calling for corres-
ponding adequate BSS methods that will enable to draw as much information
as possible from the data. As an example, datasets with up to m = 10000 wa-
velength bands and up to t = 109 pixels will potentially have to be considered.

A.1.4 Show-through removal

The show-through effect appears during the scanning process of documents. The
issue at hand is that the backside of the document is visible on the front side, for
instance due to a too high transparency of the paper [Merrikh-Bayat et al. 2011].
Thus, when reading the content of one side of the paper, the reader also sees the
writing on the back.
This can be written has a BSS problem with two observations X1 and X2, each
corresponding to the scan of one side of the paper on which the show-through effect
is visible, and two sources S∗1 and S∗2, each corresponding to an image of what is
actually written on each side of the paper. The goal of BSS is to retrieve the sources,
that is to remove the contribution of the other side of the paper that deteriorates
the reading. See Figure II.4 for a concrete example of show-through.

A.2 Mixing model

It is now time to introduce slightly more mathematically the BSS problem, by
focusing on two different possible kinds of mixings : the linear and the non-linear
models.

3. https ://www.computerworld.com.au/article/392735/ska_telescope_generate_more
_data_than_entire_internet_2020/
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(a) X1 (b) X5 (c) X9 (d) X30
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Figure II.3 – Example of BSS with the Chandra satellite : Up : some observed data
(each flattened image of 128 x 128 pixels corresponds to one row of X) ; Middle : true
physical sources (each flattened image corresponds to one row of S∗), corresponding
to several kinds of emissions ; Down : true mixing matrix (each curve corresponds
to the spectrum of an emission and is a column of A∗)
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(a) (b)

Figure II.4 – Example of show-through effect. Text from Les Misérables, Victor
Hugo. Left : Recto ; Right : Verso.

A.2.1 Linear model

The linear model is largely the most widespread one and has led to a large variety
of works [Comon & Jutten 2010]. In these, the m observations X1,X2, ...,Xm are
supposed to be the linear combinations of n sources S∗1,S

∗
2, ...,S

∗
n, each of them

having t samples :

∀i ∈ [1,m],Xi =
n∑
j=1

a∗ijS
∗
j (II.1)

The linear BSS model can be written in matrix form : the observations Xi ∈ Rt
(with i ∈ [1,m]) are grouped as rows of a matrix X (of size m× t) and similarly the
sources are stacked as a matrix S∗ (of size n× t). The model then becomes :

X = A∗S∗ + N (II.2)

with A∗ (of size m× n) the mixing matrix containing the linear mixing coefficients
a∗ij . The matrix N (of size m× t) enables to take into account some slight deviations
from the ideal linear model, such as the ones induced for instance by some noise in
the measurements. Thus, N is called the noise matrix. In the current work, we will
further focus exclusively on the over-determined case 4 in which n ≤ m.
The objective of linear source separation is to retrieve from the sole knowledge of X

the sources S∗ (up to limited indeterminacies, cf. below), as well as in the present
blind setting the linear mixing coefficients A∗. As such, BSS is a matrix factorization
problem in which we aim to recover matrices having physical meanings, in contrast
for instance to dictionary learning [Mairal et al. 2014].
Written in this form, BSS is however an ill-posed problem as we are looking for

4. While the under-determined setting in which there are more sources than observations is
interesting, it leads to challenges that are beyond our scope. Nevertheless, in future work, Chapter V
could be of interest for such a setting.
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a small subset of physical solutions among the infinity of possible ones. Therefore,
several families of algorithms have emerged, introducing some regularization. Each
of them imposes a different kind of prior knowledge on the sources, aiming to help
to discriminate the desired solutions. One can cite the Independent Component
Analysis (ICA – [Comon & Jutten 2010]), the Non-negative Matrix Factorization
(NMF – [Gillis & Glineur 2012]) and the Sparse Matrix Factorization (SMF – [Zi-
bulevsky 2003]) families. Each one will be detailed in section A.3.
A natural question is then the identifiability issue : using the previous priors on the
sources, can we really hope to recover them? Starting with the ICA methods, such
questions have been well studied in the past and it has been for instance shown that
the independence of the sources – in the absence of noise and Gaussian sources – en-
ables to recover them up to a mere scaling and permutation indeterminacy (Darmois
theorem [Darmois 1953]). Concerning the sparsity prior, conditions for recovery up
to the same indeterminacies are studied in [Gribonval & Schnass 2010, Gribonval
et al. 2015]. In the last work, the authors furthermore studied the non-asymptotical
noisy setting in the presence of outliers, with potentially over-complete dictionaries
(i.e. mixing matrices in our setting). In brief, they show that A∗ can be recovered
using the cost function II.8, which is shown to have a local minimum around A∗

with high probability. Among others, some of the required hypotheses are that S∗

must be sparse enough (and follow other assumptions), A∗ must be sufficiently inco-
herent (depending on S∗ sparsity level), the noise level as well as the outlier energy
are limited, and the number of non-outlier samples large enough (there are also
assumptions on the regularization parameters). Note that these conditions might
however be slightly restrictive in realistic experiments, and might not thus be al-
ways respected during this work.

A.2.2 Non-linear model

While convenient for many problems, the linear mixing model is only an approxi-
mation which might not always hold : it is not anymore valid when using sensors
with saturations or non-linearities (for instance gas [Madrolle et al. 2018] or chemi-
cal [Jimenez 2006,Duarte & Jutten 2014] sensors), or in some specific applications
(show-through removal [Merrikh-Bayat et al. 2011], hyperspectral imaging [Dobi-
geon et al. 2014]). It can therefore be relevant to change the BSS model to a non-
linear one :

X = f∗(S∗) + N (II.3)

Where f∗ is an unknown non-linear function from Rn×t to Rm×t (where again here
n ≤ m). In this work, we will consider general functions f∗, by mostly (cf. Sec. E)
assuming that f∗ is invertible and symmetrical around the origin, as well as regular
enough. More detailed hypotheses, both on the mixing and the sources, are discussed
in Chapter. VII.
At this point, it is important to mention that non-linear BSS is much more difficult
than its linear counterpart and that it might not be possible to find both f∗ and S∗

up to a simple permutation and scaling indeterminacy. Therefore, and in contrast
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to usual linear BSS, the separation of the sources must be distinguished from their
reconstruction :

— The sources S are said to be well separated if they are estimated up to a
permutation and an unknown non-linear function h that does not remix them ;

— The sources S are said to be well reconstructed if they are estimated up to
a permutation and an unknown scaling factor (thus, h is here specifically a
scaling function).

It is interesting to note that in ICA, and in contrast to the linear case, the indepen-
dence of the sources is not anymore sufficient to guarantee their separation. In the
case of sparse sources, [Ehsandoust et al. 2016] claimed the possibility to separate
the sources if only one source is active for each sample. Nevertheless, sparsity does
not guarantee the reconstruction.
Thus, the goal of sparse non-linear BSS is only to separate the sources by estima-
ting the underlying non-linearities, but the source reconstruction is generally not
straightforward as the problem is too ill-posed.

A.3 ICA, NMF and SMF

As said above, BSS requires tackling an ill-posed unsupervised matrix factori-
zation problem. We here detail three additional priors (corresponding ICA, NMF,
SMF) that have been introduced for enabling the identification of the mixture para-
meters. The discussion will be restricted to the most classical linear mixing model,
the non-linear one being specifically addressed in Chapter VII. All the remainder of
this work will then focus on the sparsity of the sources, that already lead to enhanced
separation quality in various matrix factorization problems [Bobin et al. 2008,Zibu-
levsky & Pearlmutter 2001,Li et al. 2006,Le Roux et al. 2015].

A.3.1 ICA

The Independent Component Analysis is probably the family of BSS algorithms
for which the most extensive literature exists. It is a statistical approach that as-
sumes the sources to be independently identically distributed and that there is at
most one non-Gaussian source. Under these assumptions, it can be shown that the
sources can be recovered up to a mere permutation and scaling indeterminacy [Dar-
mois 1953,Comon 1994] provided that the mixing matrix is invertible. The main idea
is that mixing the independent sources will lead towards non independent signals,
since the mixtures share the same source signals. An extensive review can be found
in [Comon & Jutten 2010].
Typical ICA algorithms uses whitening and dimensionality reduction as prepro-
cessing in order to simplify the problem. This can be for instance achieved using
Principal Component Analysis (PCA – [Hotelling 1933,Eckart & Young 1936, Jol-
liffe 1986]), which enables to come back to the case m = n and to restrict the search
of the mixing matrix to the group of unitary matrices – while potentially reducing
the noise impact. Then, the problem boils down to finding a demixing (rotation)



A. Multi-valued data analysis and BSS 23

matrix W such that the estimated sources Ŝ = WX are independent. However, en-
forcing directly independence is not a trivial issue.
As such, several proxys have emerged. Among them, one can cite independence
measures based :

— On the mutual information (using second characteristic function or the Kullback-
Leibler divergence) : this is very general, and the mutual information is zero if
and only if there is independence. The drawback is however that this criterion
requires the joint density of the sources, which are unknown in practice and
must be replaced by an estimate, which can be relatively costly in practice.

— On contrast functions : such a function is an optimization criterion such that
its global maxima correspond to a separation of all the sources. However, one
then need to check that all the cumulant are zero, while in practice only a few
number of them are zero.

Despite its sound mathematical foundations, the ICA family suffers from several
drawbacks. First, it (implicitly) requires the knowledge of the probability density
functions of the sources. While approximations can be used, these can have an
impact on the final solution. Second, the mutual independence of the sources might
not be a valid hypothesis in several applications (cf. Planck data [Bobin et al. 2014],
or hyperspectral data : as the sum of abundance fractions associated to each pixel is
constant, the sources cannot be independent [Nascimento & Dias 2005]). Finally, its
performances decrease much in the presence of noise, since most the approaches are
assuming noiseless mixings (and since the addition of noise create some identifiability
issues of the sources [Davies 2004]).

A.3.2 NMF

The second family of algorithms builds on the special case where it is known
that A∗ and S∗ have only non-negative coefficients [Paatero & Tapper 1994,Lee &
Seung 1999], which is often the case on real world data [Gillis & Glineur 2012]. For
instance, the LC/MS data and the Chandra data of Section A.1 both fulfill this
condition.
The non-negativity condition states that there are vectors S∗j , j ∈ [1, n] such that
all the data points in X can be written as non-negative linear combinations of
the S∗j . In contrast to ICA, it makes that no subtraction can occur, which has led
to the intuitive notion that NMF finds a data representation by patch, combining
parts to form a whole [Lee & Seung 1999]. Furthermore, as the S∗j are non-negative,
a geometric interpretation of NMF is that it looks for a simplicial cone 5 in the
positive orthant containing all the data points. However, if the data values are
strictly positive, there is many such simplicial cones, raising the identifiability issue.
In [Donoho & Stodden 2004], the authors however show that uniqueness of the
simplicial cone can hold even if the data do not fill out the positive orthant, but

5. The simplicial cone generated by vectors Sj , j ∈ [1, n] is defined as ΓS = {x ∈ Rt|x =∑n
i=1 αiSi, 0 ≤ αi}
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rather a proper subset of the positive orthant. In particular, they show that the
model is identifiable under the pure pixel assumption, stating that each source is
active alone at least once.
As this condition might not always holds, NMF has also been combined with sparsity
[Hoyer 2004,Kim & Park 2008,Rapin 2014].

A.3.3 SMF

In this thesis, we will specifically focus on sparse BSS, in which the sources are
assumed to be sparse (roughly speaking, they are supposed to have a large number
of zero coefficients, cf. Section B.1). This family has attracted much interest du-
ring the last two decades [Zibulevsky & Pearlmutter 2001,Bronstein et al. 2005,Li
et al. 2006], which has mainly been motivated by the success of sparse signal mode-
ling for solving very large classes of inverse problems [Starck et al. 2010].
Sparse BSS will be more extensively presented in Section B. In brief, it has lead to
enhanced separation quality, in particular with the Generalized Morphological Com-
ponent Analysis (GMCA – [Bobin et al. 2007]) algorithm. In the framework of ICA,
Efficient FastICA (EFICA) [Koldovsky et al. 2006] is a FastICA-based algorithm
that is especially adapted to retrieve sources with generalized Gaussian distribu-
tions, which includes sparse sources. In the seminal paper [Zibulevsky 2003], the
author also proposed a Newton-like method for ICA called Relative Newton Algo-
rithm (RNA), which uses quasi-maximum likelihood estimation to estimate sparse
sources.
In the next section, we develop the concept of sparsity and sparse BSS.

B Sparsity and sparse BSS

B.1 Sparsity

Over the last twenty years, sparse modelling has had an increased impact in
various signal processing areas, such as denoising [Elad & Aharon 2006] (or more
generally signal restoration), feature extraction [Hyvarinen et al. 1998], compres-
sion [Le Pennec & Mallat 2000] and, in our case, source separation [Zibulevsky &
Pearlmutter 2001, Bobin et al. 2007]. This interest has been mainly driven by the
compressed sensing theory [Candes & Tao 2004,Donoho et al. 2006], which can be
seen as an alternative to the Shannon sampling theory (in which the signals are
assumed to be frequency band-limited and not sparse). In brief, compressed sensing
theory gives some support to methods assuming the sparsity to make better-posed
ill-posed inverse problems. Indeed, it can be shown that (under conditions) methods
that look for a sparse solution might find the exact solution to the problem at hand.
The goal of this subsection is thus to briefly present the concept of sparsity (while it
is of course widely used in this work, we do not aim at presenting in depth theoreti-
cal results). The presentation will mainly follow the one of [Starck et al. 2010,Mairal
et al. 2014], but we also recommend [Mallat 1999,Elad 2010], while [Rapin 2014,Che-
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Figure II.5 – Examples of : Left : exactly sparse signal : most of the coefficients are
0 ; Right : approximately sparse signal : while most of the coefficients are non-zeros,
many of them are close to 0, making that the signal can be well approximated by its
highest amplitude coefficients. Thus, if all the coefficients between the two red lines
are set to 0, the remaining samples comprehend most of the signal energy, which
makes that the approximately sparse signal is decently approximated by the exactly
sparse signal of the left figure.

not 2017] give a more specific overview of sparsity for BSS.

B.1.1 Definition of sparsity and sparsity in the direct domain

Generally speaking, sparsity amounts to represent a signal with as few variables
as possible. More specifically, a signal s ∈ R1×t is said to be exactly sparse if only
few of its coefficients, let say k � t, are non-zeros : ‖s‖0 = k. An example of such a
signal is displayed in Figure II.5a.
Nevertheless, in real-life the exact sparsity is a too restrictive assumption and a more
interesting case is the one of approximately sparse signals (also called weakly sparse
or compressible signals). In these, while ‖s‖0 ' t, only a small number k of samples
have a high amplitude, making that only keeping them already enables a good
approximation of the signal. In this sense the signal can be well approximated as k-
sparse. This is for instance the case if the sorted magnitude of the samples si, i ∈ [1, t]

decays according to a power low. For an example of such an approximately sparse
signal, see Figure II.5b.
A good example of sparse signals in the direct domain is the one of the LC/MS data
of Fig. II.2.

B.1.2 Sparsity in a transformed domain

However, most of the signals of interest are not (exactly or approximately) sparse
in the direct domain, but rather admit a sparse representation sΦ ∈ R1×T in a trans-
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formed domain Φ ∈ Rt×T (see Fig. II.6 for a concrete example). Said differently,
using a transform Φ which captures well the morphology of the signal s enables to
concentrate the energy of s within a few number of coefficients.
Many such domains have been proposed in the signal processing community, star-
ting from the broadly known Fourier basis [Bracewell & Bracewell 1986]. However,
the Fourier basis is not localized in space, making its use restricted to stationary
signals. To bypass this issue, wavelet transforms have been introduced. Compared
to the Fourier basis, the main advantage is that wavelets are localized both in space
and frequency domains. A wavelet basis is a set of functions Φ1,Φ2...,Φn that are
essentially dilated and shifted version of each other. Generally speaking, wavelets
enable to sparsify signals that are polynomial by parts. Starting from the ones
of Haar [Haar 1910], various wavelets have been designed that correspond to dif-
ferent signal or image geometric contents. Among them, one can cite 6 : Daubechies
wavelets [Daubechies 1988], the curvelets [Candes & Donoho 2002], the contour-
lets [Do & Vetterli 2005], the bandlets [Le Pennec & Mallat 2005], the starlet [Starck
et al. 2010], the shearlets [Easley et al. 2008]... It is important to emphasize that
among all these proposed transforms, a distinction must be made between i) ortho-
gonal (in which ΦTΦ = ΦΦT = Id) versus other bases of wavelets ; ii) redundant
(T > t) versus nonredundant transforms. While redundant transforms enables in-
teresting properties, they are more difficult to handle since the decomposition in the
transformed domain is not unique and ΦTΦ 6= Id – see [Rapin 2014] for a detailed
account of the use of redundant representations in the case of sparse BSS.
Once a transformed domain Φ has been chosen, we still have to find a sparse re-
presentation of s in this domain. For redundant transform, such a representation is
not unique and it is then possible to find among all the possible representations the
one that will follow a given criterion, namely here sparsity. More specifically, for a
given s ∈ R1×t the goal is to learn a representation s ' sΦΦT such that sΦ ∈ R1×T

is sparse. An option is to learn the representation sΦ from the minimization of a
cost function using the synthesis formulation :

argmin
sΦ∈R1×T

h(sΦΦT) + g(sΦ) (II.4)

with a data fidelity term h(sΦΦT) ∈ R+ expressing the discrepency of the model
with regards to the observations s, and a regularization term g(sΦ) ∈ R+, which is
used to enforce the sparsity of the representation. From this quite general model,
several specific ones can be derived, depending on the choice of h and g. For instance,
a natural choice of g is to choose it using the `0 norm, to count the number of non-
zeros elements : g(sΦ) = λ ‖sΦ‖0. However, in practice using the `1 norm instead of
the `0 one is common, since the `1 norm is the closest convex norm to the `0 one
[Chen et al. 2001]. Concerning h, generally a squared Euclidian `2 distance is used,

6. As a side remark, instead of imposing beforehand the transform, it is further possible to learn
it from the data through dictionary learning [Olshausen & Field 1996,Mairal et al. 2014,Mensch
et al. 2018], making it much more adapted to the data at hand. This is however not the main focus
of this thesis.
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which stems from the assumption of a Gaussian noise : h(sΦΦT) = 1
2

∥∥s− sΦΦT
∥∥2

`2
.

These choices lead to the well known basis pursuit formulation :

argmin
sΦ∈R1×T

1

2

∥∥s− sΦΦT
∥∥2

`2
+ λ ‖sΦ‖1 (II.5)

For other usual formulations, we refer the reader to [Mairal et al. 2014]. We would like
to recall – while this is not the main focus of this thesis – that another formulation
than the synthesis one of II.4 is possible, namely the analysis formulation :

argmin
s∈R1×t

h(s) + g(sΦ) (II.6)

While for orthonormal transforms Φ, synthesis and analysis formulations are equi-
valent, this is not anymore the case for redundant transforms [Rapin 2014].

B.2 Sparse BSS as an optimization problem

The goal of this section is to give a quick overview of the optimization problem
we will have to tackle to solve the BSS problem. More details will be given in the
next chapter.

B.3 General problem

Generally speaking, in this work we will aim at performing BSS through the
minimization of a non-convex cost function of the form :

argmin
A∈Rm×n,S∈Rn×t

1

2
h(A,S) + J (A) + G(S) (II.7)

Where :

— h is a data fidelity term measuring the discrepancy between the data and
the mixture model. In particular, h will be assumed to be differentiable with
respect to A and S, to have Lipschitz gradients and to be block multi-convex
[Xu & Yin 2013], cf. Chapter III-C.

— The penalizations J and G enforce some desired properties on A and S. The
conditions on such functions will be developed in Chapter III-C. As a quick
example, J and G can be used in NMF to impose the non-negativity of the
sources and the mixing matrix respectively. In this situation, J (A) = ι.�0(A)

and G(S) = ι.�0(S), where ιU is the indicator function of the set U : here,
it is equal to infinity if at least one coefficient of the corresponding matrix is
negative, and zero otherwise.

The minimization schemes used for Eq. II.7, and in particular the use of the
multi-convex structure of h will be detailed in Chapter A.
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Figure II.6 – Example of use of a wavelet transform, here the starlets, to sparsify
an image. Here, the image corresponds to a zoom on a noisy synchrotron emission
in a supernovae remnant. Upper left : original image s∗ ; Upper right : image in the
starlet domain SΦ (or more exactly, image corresponding to the first detail scale
in this decomposition) : much more pixels are close to 0 ; Down left : histogram of
the original image ; Down right : histogram of the image in the starlet domain :
the amplitudes are much closer to 0 and the histogram is much less flat than the
one in the original domain. In the starlet domain, the data can be considered as
approximately sparse.
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B.4 Concrete example : sparsity prior

To make things more concrete, we now derive a more specific version of Eq. II.7
in the context of sparse BSS, in which case it can be written using the following
form :

argmin
A∈Rm×n,S∈Rn×t

1

2
‖X−AS‖2F +

∥∥RS � (SΦT
S )
∥∥
`1

+ ι{∀i∈[1,n];‖Ai‖2`2=1}(A) (II.8)

— The h(A,S) = 1
2 ‖X−AS‖2F term promotes a faithful reconstruction of the

data under a white Gaussian noise N assumption inducing the use of the
Frobenius norm ‖.‖F (see e.g. [Hamzaoui & Bobin 2018,Bobin et al. 2019] for
the case of Poisson noise).

— The G(S) =
∥∥RS � (SΦT

S )
∥∥

1
term promotes a `1 sparsity of the sources, with

� denoting the Hadamard product. This work will focus on the `1-norm, which
has been shown to help the separation of the sources in the context of sparse
matrix factorization [Rapin et al. 2013]. The ΦS matrix (of size T × t, with
T > t) corresponds to the transform enforcing the sparsity. In this thesis,
it will be taken equal to either the identity (in which case the sparsity is
enforced in the direct domain) or the starlet transform [Starck et al. 2007].
The regularization parameter RS matrix (size n × T ) controls the trade-off
between the data fidelity and the sparsity terms. It can be decomposed into
RS = ΛSG where ΛS (n × n) is a diagonal matrix of the regularization
parameters λ1, λ2, ..., λn and G (n×T ) is a matrix used to introduce individual
penalization coefficients in the context of reweighted `1 [Candes et al. 2008]
(when no reweighting is used, G = 1n×T is a matrix with all coefficients equal
to 1).

— To avoid degenerated A and S matrices where ‖A‖F → ∞ and ‖S‖F → 0

due to the sparsity penalty, the last term enforces the oblique constraint,
ensuring that for all i, the ith column Ai of A is onto the `2 hypersphere :
J (A) = ι{∀i∈[1,n];‖Ai‖22=1}(A), with ι being the characteristic function of the
corresponding convex set.

B.5 Sparse BSS : hypotheses made throughout this work

In the following and without other indication, we will assume that :

— Both the matrices A∗ and S∗ are full rank : this is a common assumption,
especially as in ICA the matrix A∗ is supposed to be orthogonal ;

— The number of sources n is known.

— We are in the over-determined setting with n ≤ m : the under-determined
setting could however probably be tackled using the method of Chapter V, but
this is out of the scope of this work. Furthermore, m� t : high values of t
are required for identifiability issues [Gribonval & Schnass 2010].
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— The matrix A∗ has unitary columns : more specifically, each column lies
on the `2 unit sphere, which enables to leverage the scale indeterminacy issue
(cf. Sec. A.3.3).

— The sources are sparse in a transform domain ΦS and respect the
morphological diversity assumption : see Chapter A-C.4.2 for a more de-
tailed explanation, and [Gribonval & Schnass 2010] for identifiability in sparse
matrix factorization.

C Large-scale sparse BSS and organization of the ma-
nuscript

This thesis is subdivided into four sub-problems taking their roots around the
large-scale sparse BSS issue. We here detail them and shortly present some of the
main results to give a quick overview of this work. The methods, results and in-
terpretations will be more thoroughly presented in the following Chapters, after an
introduction in Chapter III of the background required for understanding the sparse
BSS optimization framework.

C.1 Preliminary question : avoiding relaunchs in sparse BSS and
increasing robustness

This first problem is to be linked the difficulty of finding a (local or global) mi-
nimum of the cost function II.7 corresponding to a physical factorization of the data
X 7. To perform such a task, it is possible to tune the regularization parameters RS

to try to highlight the most interesting critical points. Another way is to find a good
initialization of the algorithm, that is if possible an initialization within the basin
of attraction of a minimum corresponding to good estimate Â and Ŝ.
To perform such a task, it is usual to try several initializations and RS values, and to
retain the ones corresponding to the best estimates. This grid-search approach can
however become costly in the large-scale context we aim at tackling in this thesis,
as the computational cost of re-launching the algorithms can become prohibitive 8.
As such, methods that are robust to the initialization and enabling an automatic re-
gularization parameter choice without any relaunch are of uttermost importance for
working on practical datasets. Therefore, in Chapter IV we will aim at trying to ge-
neralize the automatic regularization parameter choice of GMCA [Bobin et al. 2007]
to the more recent and mathematically grounded Proximal Alternating Linearized

7. Thus, we highlight that we are not interested by finding any critical point of Eq. II.7, but
rather a specific one corresponding to the physical true underlying factor A∗ and S∗. Note also
that there are several global minima, which can however potentially correspond to estimations Â

and Ŝ of unequal qualities (see e.g. [Neyshabur 2017] in the context of over-parametrized machine
learning).

8. Note that this study is nevertheless not fully restricted to the large-scale setting, since in
some experiments practitioners might have no clue concerning the true A∗ and S∗, making it hard
to assess the quality of the estimates Â and Ŝ obtained for given parameters and initializations.
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Minimization (PALM) algorithm [Bolte et al. 2014]. The proposed strategy is em-
pirically shown to be robust to the initialization.
More precisely, Chapter IV is subdivided in two main parts :

— We first conduct an empirical study showing that, for sparse BSS, a mini-
mization of Eq. II.8 using PALM jointly with a grid-search approach for RS

choice is a strategy suffering from a low efficiency and versatility. In brief,
this highlights that performing sparse BSS using PALM requires a very care-
ful and sensitive tuning of RS. Similar conclusions can be (to a more limited
extent) shown concerning PALM initialization : this approach also undergo a
low reliability ;

— To alleviate the cumbersome hyper-parameter tuning described above and
increase the robustness to the initialization, we then rationalize a two-step
strategy, with i) a warm-up stage comprehending a GMCA, yielding in practice
a descent first guess of Â and Ŝ ; ii) a refinement stage using a PALM : the
regularization parameters RS are chosen based the warm-up stage first guess.

The quality of the method is shown on a realistic astrophysical experiment and the
limitations of the proposed two-step strategy are discussed. We refer the reader to
Chapter IV.

C.2 Large number of sources n

Chapter V extends the above two-step strategy to tackle mixings with a high
number of sources n. A classic example of such a problem is the one of the LC/MS
data developed in Section A.1.2 : if the fluid to be analysed has a high number of
constitutive elements, the corresponding number of spectra and thus of sources can
reach for instance up to n = 100. No sparse BSS algorithm is currently tailored for
such problems, as the issue is twofold :

— Computational issue : As the number of sources increases, so do the size of
the A∗ and S∗ matrices. Since state-of-art methods such as [Bobin et al. 2007]
requires several inversion of such matrices, the computational burden can be-
come high ;

— Deteriorated performances : Beyond the computational aspects, the separa-
tion quality of most BSS algorithms tends to dramatically deteriorate in the
presence of a high number of sources (cf. Fig. V.1 of Chapter V). Therefore,
being able to maintain high separation performances is an open challenge.

The approach proposed in Chapter V re-uses the two-step strategy and introduces
coordinate blocks of intermediate sizes r. This is in contrast to the other state-
of-art methods that either use sizes r = 1 (hierarchical of deflations methods) or
full-size blocks r = n (e.g. GMCA). Beyond a huge gain in computation time, the
proposed block-GMCA (bGMCA) algorithm is also empirically shown to improve
the separation quality for relatively small block sizes. An interpretation of such a
phenomenon, as well as extensive numerical experiments, are proposed in Chapter V.
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C.3 Large datasets X

The most tangible large-scale issue might the one of large datasets X ∈ Rm×t.
As evoked in introduction, these might for instance become the new standard in
astronomy, with space telescopes such as Euclid 9, huge radio-interferometers such
as the SKA 10 (cf. Sec. A.1.3), or the telescope LSST 11. Such devices will produce
tremendous amounts of data : in order to give a rough idea of the involved quantities,
one could speak of images of resolution t = 109 pixels and about m = 104 chan-
nels. In this context, sparse BSS algorithms that yielded high quality results [Bobin
et al. 2007] cannot be used, due to :

— Memory limitations : The datasets are so huge that they cannot be stored at
once within memory. Therefore, one of the few current solutions is to scan
submatrices of X and work on each of them in an isolated way, which might
deteriorate much the separation quality ;

— Time limitations : Even not considering memory issues, the heavy computa-
tions involved might largely slow down the processing time. As such, paralle-
lized algorithms should be preferred.

Chapter VI proposes to introduce mini-batches, that is submatrices of X, within
the GMCA algorithm 12. Note that this is in contrast to the use of intermediate-size
block coordinate methods described above, as these split the factors A and S but
use the whole X. However, the use of mini-batches with the projected Alternating
Least-Square (pALS) scheme of GMCA raises open questions, as each of the B mini-
batches yields a different estimate of the full A∗. Therefore, we need to aggregate
these estimates at each iteration of the proposed distributed-GMCA (dGMCA). In
brief, we propose to benefit from the structure implied by the oblique constraint
in Eq. II.8 to enhance such an aggregation through the use of a Fréchet mean. To
further robustify the process, we also propose to i) use weights taking into account
the assumed quality of the estimation of each source in each mini-batch ; ii) use a
more robust aggregation method, reminiscent of a median on the unit hypersphere.
Beyond the expected gain in terms of computation time and memory (as each mini-
batch can be sent to a different node of a cluster), a striking result is that when the
sources S∗ are very sparse, the use of the robust Fréchet mean enables to obtain
better results than with full batch methods. We propose an explanation of this
phenomenon in Chapter VI.

C.4 Non-linear BSS

Non-linear BSS is a difficult problem, although such a model can be required
when the usual linear one is too simplistic for correctly modelling the mixing. An

9. http ://sci.esa.int/euclid/
10. https ://www.skatelescope.org
11. https ://www.lsst.org
12. Indeed, the two-step approach requires as a warm-up stage at least a few iterations of GMCA.

As such, it still needs to be able to use GMCA on large X.
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example is the show-through removal presented in Section A.1.4, for which the phy-
sical processes imply a linear quadratic model rather than a mere linear model. The
StackedAMCA algorithm we propose in Chapter VII to tackle non-linear sparse BSS
can be envisioned as an extension of large-scale BSS. Indeed, it estimates the un-
derlying non-linearities through a linear-by-part model comprehending L parts. As
this approach requires to solve a potentially large number L of linear subproblems,
it calls for efficient linear BSS algorithms.
More specifically, StackedAMCA is an iterative algorithm. Each iteration alternates
between a linear step and a non-linear one :

— The linear step consists in the application on the current dataset of a sparse
linear BSS algorithm robust to high amplitude non-linearities, which enables
to find a new part of the linear-by-part approximation ;

— The non-linear step consists in creating a new dataset in which the contribution
of all the previously found linear models is canceled. This paves the way for the
next iteration, in which a new linear model will be fitted on this new dataset.

The algorithm obtains better separation results than other state-of-art methods.
Interestingly enough, it can further reconstruct the sources in some settings despite
increased indeterminacies in non-linear BSS (cf. Sec. A.2.2). The required hypotheses
for StackedAMCA to work, as well as a subset of mixings for which it can further
be expected to reconstruct the sources, are discussed in Chapter VII.





Chapitre III

Optimization frameworks for
sparse BSS

A Reminder about sparse BSS cost function and outline
of the chapter

As mentioned in the previous chapter, we will aim at performing BSS through
the minimization of a cost function of the form :

argmin
A∈Rm×n,S∈Rn×t

1

2
h(A,S) + J (A) + G(S) (III.1)

Such a minimization is not easy to perform due to several reasons :
— While the term h(A,S) is assumed to be smooth with a Lipschitz gradient,

calling for simple optimization methods such as gradient descent, it is not
necessarily the case of the J (A) and G(S) terms (cf. e.g. Sec. B.4 explaining
the case of sparse sources and the use of the `1-norm, which is not differentiable
in 0). Therefore, we will need to resort to non-smooth optimization algorithms
and more specifically to proximal algorithms, which will be explained in section
B.

— The problem is non-convex in A and S. Nevertheless, as mentioned in Section
B.3, it ismulti-convex [Xu & Yin 2013], calling for the use of specific algorithms
that will be detailed in sections C.3 (algorithms aiming at truly minimizing
Eq. II.7), and C.4 (heuristics enabling enhanced practical results).

We assume the reader to have a basic knowledge of optimization tools, and refer
to [Boyd et al. 2011] for generic notions.

B Proximal operators and proximal algorithms

Proximal algorithms enable to solve convex non-smooth optimization problems.
They have been extensively used over the last decades in the signal processing com-
munity [Combettes & Wajs 2005, Jenatton et al. 2010, Bolte et al. 2010, Jezierska
et al. 2012,Bolte et al. 2014,Chouzenoux et al. 2016]. Roughly speaking, they operate
at a high level of abstraction, since their base operation uses the proximal operator of
a function, which computation involves itself a (potentially simple) convex optimi-
zation problem. In this section, we will first explain the notion of proximal operator
and then their use within proximal algorithms. Our presentation will mainly follow
the ones from [Combettes & Pesquet 2011,Parikh et al. 2014].
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B.1 Proximal operators

B.1.1 Definition

We will call a function f : Rt → R ∪ {∞} proximable if it is a closed proper
convex function. For such functions, the proximal operator of f is defined as :

proxf (u) = argmin
y∈Rt

f(y) +
1

2
‖u− y‖2`2 (III.2)

with ‖.‖`2 the usual Euclidian norm for vectors. Since the minimized function is
strongly convex and not infinite everywhere, it has a unique minimizer.
Several interpretations of the proximal operators are interesting for their understan-
ding :

— A natural one is to see proximal operators as a local minimizer of f : the func-
tion minimized within the operator is the sum of f and a term that penalizes
high distances between the current point u and y. More specifically, if um is a
minimum of f , then proxf (um) = um, which is called the fixed point property.
This is one of the bases for understanding proximal algorithms and, combined
to the firm non-expansiveness of proximal operators, leads to one of the most
basic method, namely the proximal point algorithm (cf. Sec. B.3.1).

— Proximal operators can be interpreted as gradient steps for minimizing f or
a function related to f . For instance, introducing the Moreau envelope of f :
Mf (u) = inf

y∈Rt
(f(y)+ 1

2 ‖u− y‖2`2), it can be shown that the proximal operator

of f can be written as :

proxf (u) = u−∇Mf (u) (III.3)

Therefore, proxf can be viewed as a gradient step with step 1 (generalization
to other steps are possible) for minimizingMf , which has the same minimizers
as f . This leads to a natural interpretation for minimization algorithms.

— Proximal operators can also be seen as a generalization of projections. This
is explicit if f is the indicator function of a closed nonempty convex set U :
f(y) = i.∈U (y). Then the proximal operator of f reduces to the Euclidian
projection onto U :

proxf (u) = ΠU (u) = argmin
y∈U

‖u− y‖`2 (III.4)

This interpretation enables to understand the use of some proximal operators
in proximal algorithms as a projection onto some constraint set.

While the requirement of computing the proximal operators through a minimiza-
tion problem might seem intricate, in practice many usual functions have explicit
or easy-to-compute proximal operators. The role of the following subsection is to
present some of them which will be of use in the remaining of this work.
But before, we highlight a last generic property of proximal operators that will
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be implicitly used throughout this whole work. Indeed, we will in practice be ap-
plying proximal operators on matrices, and not on vectors as defined above. Fortu-
nately, this is not an issue since our constraints will be separable, enabling to use
the separable sum property. More specifically, if f is separable such that f(y) =∑K

i=1 fi(yi),K ∈ N∗, then :

(proxf (u))i = proxfi(ui) (III.5)

Where (proxf (u))i is the ith line of the vector proxf (u). Said differently, instead of
working directly on matrices, we can come back to the vector case (e.g. with the
oblique constraint on A, cf. below) or even to the scalar case (e.g. with the sparsity
constraint on S).

B.2 Examples of proximal operators used in this work

This subsection gives a few examples of proximal operators, by focusing on the
constraints J and G that will be used in this work.

1 - Penalizations G for the sources S and corresponding proximal operators :

- `1 sparsity constraint in some transformed domain : In this case, the
sparsity constraint on S is enforced with a `1-norm penalization (which
has led to enhanced separation quality in BSS [Rapin et al. 2013]) :

G(S) =
∥∥RS � (SΦT

S )
∥∥

1
(III.6)

where the � sign denotes the Hadamard product. The matrix RS (of
same size as SΦT

S ) contains individual regularization parameters for each
coefficient. The ΦS is a transform, supposed orthogonal in the following,
into a domain in which S can be sparsely represented. The proximal
operator of G is then explicit and corresponds to the soft-thresholding
operator with threshold RS – which we shall denote SRS

, cf. Appendix
A for the definition – applied in the transformed domain : proxG(S) =

SRS
(SΦS

T )ΦS

- Non-negativity in the direct domain : here, all coefficients in S must be
non-negative, which can be written using the characteristic function of
the positive orthant K+ = {S ∈ Rn×t;∀i ∈ [1, n], j ∈ [1, t],Sji ≥ 0} :

G(S) = ιK+(S) (III.7)

Following the previous subsection B.1.1, the corresponding proximal ope-
rator is then the projection on the positive orthant ΠK+ , which is the
identity for non-negative coefficients and 0 for the negative ones (cf. Ap-
pendix A for the exact definition).

- Non-negativity in the direct domain and `1 sparsity constraint in some
transformed domain : due to the non-negativity constraint, all coefficients
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in S must be non-negative in the direct domain in addition to the sparsity
constraint in a transformed domain ΦS. It can be formulated as :

G(S) = ‖RS �
(
SΦS

T
)
‖1 + ιK+(S) (III.8)

The difficulty is to enforce at the same time two constraints in two dif-
ferent domains, and the corresponding proximal operator of G is not
explicit. It can either be roughly approximated by composing the proxi-
mal operators of the individual penalizations to produce a cheap update :
proxG(S) = SRS

(ΠK+(S)ΦS
T )ΦS, or computed accurately using the Ge-

neralized Forward-Backward splitting algorithm [Raguet et al. 2013] (cf.
Sec. B.3.3).

2 - Penalizations J for the mixing matrix A :

- Oblique constraint : the columns of A are constrained to lie on the `2
hyper-sphere. The corresponding set isO = {A ∈ Rm×n;∀j ∈ [1, n], ‖Aj‖2`2 =

1}. This constraint is used to avoid degenerated Â and Ŝ results.
More specifically, J can be written as :

J (A) = ιO(A) (III.9)

Following this constraint, the proximal operator is proxJ (A) = ΠO(A),
the projection on the `2 unit hypersphere of each column of A (cf. Ap-
pendix A).

- Non-negativity and oblique constraint : Adding the non-negativity constraint
to the oblique constraint on A reads :

J (A) = ιO(A) + ιK+(A) (III.10)

The proximal operator can be shown to be the composition of the proxi-
mal operator corresponding to non-negativity ΠK+ followed by ΠO :
proxJ (A) = ΠO(ΠK+(A)).

B.3 Proximal algorithms

Now that the proximal operators have been introduced, we can explain how to
use them for solving convex (non-smooth) optimization problems. To do that, we will
detail several so-called proximal algorithms. While the first one is mostly described
for the sake of clarity and introducing the concept of proximal algorithms, the two
following ones will be cornerstones of this work 1.

1. Note that we only detail the two proximal splitting methods that will be used in this work.
Nevertheless, a vast literature related to this topic exists, with many well-known algorithms : Alter-
nating Direction Method of Multipliers (ADMM - [Boyd et al. 2011]), Douglas-Rachford [Douglas
& Rachford 1956], Chambolle-Pock [Chambolle & Pock 2011], Dykstra-like splitting [Combettes &
Pesquet 2011]...



B. Proximal operators and proximal algorithms 39

B.3.1 Proximal point algorithm

Let f : Rt → R be a closed proper convex function. The problem here is to find
a minimizer of f :

argmin
u∈Rt

f(u) (III.11)

To perform such a task, the most simple proximal algorithm is the proximal point
algorithm, which iterations are described by :

û(l+1) = proxλf (û(l)) (III.12)

where û(l) it the lth iteration of the algorithm and λ > 0. Then, if f has a minimum,
the algorithm converges to it, which is linked to the fact that the proximal operator
is a non-expansive operator and a local minimizer of f . However, this simple method
does not have many applications, since it is restricted to the cases where f is difficult
to minimize but f plus a quadratic is simple to minimize. Therefore, more advanced
minimization schemes using splitting methods have been introduced.

B.3.2 Forward backward splitting

The problem at hand is here to minimize :

argmin
u∈Rt

h(u) + J (u) (III.13)

with h : Rt → R and J : Rt → R ∪ {∞} closed proper convex and h differentiable.
As an example of such a problem, note that the BSS problem of Eq. II.8 when
performing the minimization over only one variable (e.g. fixing A and performing
the minimization over S only), is an instance (generalizing the discussion to matrices)
of such a minimization :

argmin
S∈Rn×t

1

2
‖X−AS‖2F +

∥∥RS � (SΦT
S )
∥∥

1
(III.14)

In accordance to its name, the Forward-Backward Splitting (FBS – [Combettes &
Wajs 2005]) method splits the objective into two terms, using the differentiability
of h. The corresponding iterations write as :

û(l+1) = proxηJ (û(l) − η∇h(û(l))) (III.15)

where η > 0 is a step size and ∇h is the gradient of h. The name of the algorithm
thus stems from the fact that it alternates between a forward / explicit gradient
step and a backward / implicit step, namely the application of the proximal ope-
rator (special cases include : i) when J = 0, the usual gradient descent ; ii) when
h = 0, the previous proximal point method).
Provided that h is L-Lipchitz, this methods converges when η ∈ (0, 2/L). It has also
to be emphasized that while the FBS algorithm has a convergence rate of O(1/l), it
can be accelerated to O(1/l2) using a linear combination of the previous estimates,
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which is known as the FISTA algorithm [Beck & Teboulle 2009].
While the FBS already found many applications and will be extensively used throu-
ghout this thesis, it is computationaly efficient only if the proximal operator of J is
easy to compute (or, even better, explicit). If it is not the case, but if J is the sum
of proximable terms which proximal operators are easy to compute, the following
Generalized Forward Backward Splitting (GFBS) algorithm can be used.

B.3.3 Generalized forward backward splitting

While the FBS algorithm is restricted to the sum of one differentiable and one
non-differentiable term, the GFBS [Raguet et al. 2013] generalizes to a higher num-
ber of non-differentiable terms :

argmin
u∈Rt

h(u) +
K∑
i=1

J(i)(u) (III.16)

with K ≥ 1 and J(1), ...,J(K) some lower semi-continuous proper and convex func-
tion from Rt to R∪ {∞}. As an example of such a problem, looking for the sources
with a fixed A in BSS when a sparsity and a non-negativity prior are both enforced
leads to the following problem :

argmin
S∈Rn×t

1

2
‖X−AS‖2F + ‖RS � (SΦT

S )‖1 + ιK+(S) (III.17)

where thus K = 2 and J(1) and J(2) would correspond to the second and third
terms respectively. In this example, while the proximal operator of J(1) and J(2)

can be computed easily (at least, provided that the transform ΦS is orthogonal),
it is not the case of the proximal operator of the sum J(1) + J(2), which is why a
GFBS algorithm is useful.
In brief, the GFBS algorithm uses at each iteration the proximal operator of each
individual constraint J(1), ...,J(K). Each iteration can be written as :

for i = 1..K do

z(i) = z(i) + µ
(
prox η

ωi
J(i)

(2û(l) − z(i) − η∇h(û(l)))− û(l)
)

û(l+1) ←
∑b

i=1 ωiz(i)

where the ωi are weights in the sum (thus, ∀i ∈ [1,K], ωi ∈ (0, 1) and
∑K

i=1 ωi = 1),
η ∈ (0, 2L) is the gradient step, bounded by the Lipschitz constant L of h, and
µ ∈ (0,min(1.5, 0.5 + 1

Lη )). Thus, from the sole knowledge of the proximal operator
of the J(i)’s, the GFBS enables to minimize problem III.16.

C Multi-convex optimization for sparse BSS

C.1 Problem statement

The previous section has enlighten how to handle the non-smoothness of matrix
factorization problems by using proximal algorithms. We now aim at reviewing some
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classical sparse BSS optimization methods. Such algorithms however need to tackle
the remaining non-convexity issue of the cost function II.7. Generally speaking, in
this part we aim at minimizing cost functions of the following form :

argmin
U(1)∈Rn1×t1 ,...,U(K)∈RnK×tK

h(U(1), ...,U(K)) +
K∑
i=1

J(i)(U(i)) (III.18)

with the following assumptions :

— The function h : Rn1×t1×Rn2×t2 ...×RnK×tK → R is assumed to be block multi-
convex, that is for all i ∈ [1,K], h is a convex function of U(i) while all the other
blocks are fixed. We will further write hi the corresponding convex function
over one block : h(i) : Rni×ti ,U → h(U(1), ...,U(i−1),U,U(i+1)...,U(K)) for
any arbitrary U(1) ∈ Rn1×t1 , ...,U(i−1) ∈ Rni−1×ti−1 ,U(i+1) ∈ Rni+1×ti+1 , ...,U(K) ∈
RnK×tK . In the following, each h(i) is further assumed to be differentiable and
its gradient to be Li-Lipschitz ;

— For all i ∈ [1,K], the extended-valued functions J(i) : Rni×ti → R ∪ {∞} are
assumed to be convex, proper and lower-continuous. While these functions are
used to enforce only individual penalizations over the U(i), we however point
out that they can be non-smooth.

Thus, the algorithms we will present in this section encompass a wider setting that
the actual BSS problem of II.7, which is a specific case of Eq. III.18 with K = 2

and U(1) = A, U(2) = S.

C.2 Overview

All the algorithms we present in this section are part of the Gauss-Seidel family.
More specifically, they use the multi-convex structure of the cost function (III.18)
by performing an (approximate) minimization over each block U(1), ...,U(K). We
will furthermore distinguish two sub-families of algorithms :

— Algorithms trying to minimize exactly problem (III.18) :
The multi-convex problem described by Eq. (III.18) can be tackled in its exact
form using one of the following three main algorithms : Block-Coordinate
Descent (BCD - [Tseng 2001]), Proximal Alternating Linearized Minimization
(PALM – [Bolte et al. 2014]) and Proximal Block Coordinate (PBC – [Attouch
et al. 2010]). Interestingly, these algorithms can precisely converge to a critical
point of (III.18).

— Algorithms minimizing an approximation of problem (III.18) :
Among them, the Projected Alternating Least Squares (pALS) was first in-
troduced in the context of NMF [Paatero & Tapper 1994]. Contrary to the
previous algorithms, it does not truly minimize (III.18), but rather an ap-
proximation of it. In the context of sparse BSS, we will further discuss one
of pALS extensions which has known a wild success : the Generalized Mor-
phological Component Analysis (GMCA [Bobin et al. 2007]). GMCA is based
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on the pALS framework, but uses an automatic decreasing hyper-parameter
strategy along the iterations that yields much more robustness in practice. In
addition, while the convergence of GMCA is not guaranteed because it is built
on pALS scheme, in practice this heuristic 2 helps it to numerically stabilize.

C.3 Algorithms aiming at finding a (local) minimum

We first review the algorithms that aim at minimizing exactly problem III.18.
They all have a strong mathematical background, and in particular they are proved
to converge under our assumptions [Xu & Yin 2013] (cf. Appendix B for more
details concerning this topic). It is however important to emphasize that due to
the nonconvexity of the problem, the minimizers yielded by the different algorithms
might be different.

C.3.1 BCD

The BCD algorithm [Tseng 2001] was one of the first algorithms to be able to
tackle Eq. III.18. It uses the multi-convex structure of the problem by solving exactly
and cyclicly convex subproblems of the form

argmin
U(i)∈Rni×ti

h(i)(U(i)) + J(i)(U(i)) (III.19)

Each of these subproblems can then be handled for instance by the usual proxi-
mal algorithms presented in section B.3, depending on the difficulty to compute the
proximal operator of J(i) (in particular, if such a proximal operator is explicit, a
FBS [Combettes & Wajs 2005] or one of its accelerated version is a straightforward
choice).
BCD is summarized in Algorithm 1, where h(l)

(i) is a short-hand for h(l)
(i) : Rni×ti ,U→

h(U
(l)
(1), ...,U

(l)
(i−1),U,U

(l−1)
(i+1)...,U

(l−1)
(K) ), that is h(i) with the fixed matrices chosen as

the previously updated matrices.
While the convergence conditions are in practice verified in sparse BSS, more gene-
rally the minimum in each BCD step must be uniquely attained to prove the conver-
gence [Zangwill 1969], otherwise the method may cycle indefinitely [Powell 1973].
Assuming a strict convexity of each subproblem III.19 then enables to prove that
every limit point of the sequence of iterates is a critical point of III.18.

2. By heuristic, we here mean an approximate method enabling to obtain non-optimal but still
decent results, while alleviating a difficulty of the initial problem (e.g. time computation issues,
difficult hyper-parameter choice, need to perform relaunches with different initializations...). As
such, the decreasing parameter choice of GMCA is an heuristic in that the parameters should
rigorously stay fixed during the whole algorithm to minimize Eq. II.8 : we shall see in Chapter IV
that the corresponding estimates Â and Ŝ are good while sub-optimal compared to what could
be obtained with optimal fixed regularization parameters. This heuristic however alleviate the
cumbersome search of regularization parameters.
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Algorithm 1 BCD

function BCD(Û(0)
(1), ..., Û

(0)
(K)) . Û

(0)
(1), ..., Û

(0)
(K) is the initialization

while not converged do
for i = 1...K do

Û
(l+1)
(i) = argmin

Û(i)

h
(l)
(i)(Û(i)) + J(i)(Û(i))

end for
l← l + 1

end while
return Û

(l)
(1), ..., Û

(l)
(K)

end function

C.3.2 PBC

Removing this strict convexity assumption can be done by relaxing the minimi-
zation of each subproblem III.19 with a proximal term [Attouch et al. 2010], yielding
new subproblems that each corresponds to a local minimization :

argmin
U(i)∈Rni×ti

h
(l)
(i)(U(i)) + J(i)(U(i)) +

1

2L(l)
(i)

∥∥∥U(i) −U
(l)
(i)

∥∥∥2
(III.20)

With the L(l)
(i) positive numbers (that are finite). This is, by definition of proximal

operators, equivalent to :
prox

L(i)×(h
(l)
(i)

+J(i))

(U
(l)
(i)) (III.21)

Hence the name of the Proximal Block Coordinate – PBC – algorithm. This leads
to the iterative scheme of Algorithm 2.

Algorithm 2 PBC

function PBC(Û(0)
(1), ..., Û

(0)
(K)) . Û

(0)
(1), ..., Û

(0)
(K) is the initialization

while not converged do
for i = 1...K do

Û
(l+1)
(i) = prox

L(l)
(i)
×(h

(l)
(i)

+J(i))

(Û
(l)
(i))

end for
l← l + 1

end while
return Û

(l)
(1), ..., Û

(l)
(K)

end function

While this algorithm has interesting properties (in particular, it is proved to converge
under mild conditions and might be intuitively faster than BCD [Chenot 2017]), it
has not been extensively used in sparse BSS. This might be linked to the fact that it
requires the proximal operator of h(l)

(i) + J(i) to be explicit to yield computationally
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cheap updates. If this is not the case, such a proximal operator must be computed
using a subroutine (e.g. a FBS), which however leads to the non-trivial issue of
computational error accumulations in each step. Thus, it has been claimed in [Bolte
et al. 2014] that such a scheme is mainly “conceptual”, calling instead for the PALM
algorithm. Therefore, the PBC will not be studied in this work.

C.3.3 PALM

PALM has been introduced in [Bolte et al. 2014,Xu & Yin 2014] and has driven
an intensive research with a large number of applications and extensions 3 in the
scope of matrix factorization [Chouzenoux et al. 2014,Chouzenoux et al. 2016]. It
can be seen as the merging of PBC with the FBS algorithm, or said differently, as
an alternating minimization approach for the FBS.
Compared to BCD, instead of fully minimizing the subproblems III.19, PALM mi-
nimizes a local regularization of the Gauss-Seidel scheme. However, in contrast to
PBC, it uses a proximal linearization of each subproblem. Therefore, it avoids the
entirely implicit step required by PBC. More specifically, the minimization perfor-
med by PALM is :

argmin
U(i)∈Rni×ti

h
(l)
(i)(U

(l)
(i)) + 〈∇h(l)

(i)(U
(l)
(i))|U(i) −U

(l)
(i)〉+ J(i)(U(i)) +

L(l)
(i)

2

∥∥∥U(i) −U
(l)
(i)

∥∥∥2

(III.22)
where L(i) is a constant that we will take equal to the Lipschitz constant of ∇h(l)

(i)

in the following. Compared to BCD, the advantage is that due to the linearization,
U(i) do not appear anymore in the first term. Thus, the update can be rewritten
using only the proximal operator of J(i) :

prox
J(i)

L(l)
(i)

U
(l)
(i) −

1

L(l)
(i)

∇h(l)
(i)

(
U

(l)
(i)

) (III.23)

Therefore, for each block of coordinates, PALM performs one gradient step on the
smooth part, while a proximal step is taken on the non-smooth part. Thus, provided
that the proximal operators of the individual regularization terms J(i) are explicit,
PALM iterations have a low computational cost. In particular, it can prove in some
settings to be faster than BCD, since it does not require to perform a full minimi-
zation of each subproblem at all iterations [Xu & Yin 2013]. The whole scheme is
summarized in Algorithm 3.

3. Among these extensions, some accelerated versions of PALM have been proposed (cf. e.g.
[Pock & Sabach 2016,Hien et al. 2019]). In this work and due to the difficulty of performing sparse
BSS using PALM (cf. Chapter IV), we do not however consider such accelerations, which is left
for future works.
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Algorithm 3 PALM

function PALM(Û(0)
(1), ..., Û

(0)
(K)) . Û

(0)
(1), ..., Û

(0)
(K) is the initialization

while not converged do
for i = 1...K do

Û
(l+1)
(i) = prox

J(i)
L(i)

(
Û

(l)
(i) −

1
L(i)
∇h(l)

(i)

(
Û

(l)
(i)

))
end for
l← l + 1

end while
return Û

(l)
(1), ..., Û

(l)
(K)

end function

Example of application of PALM : sparse BSS Since PALM will be ex-
tensively used in this work, we here derive it for the specific case of sparse BSS
corresponding to Eq. (II.8), which is done using the examples of proximal operators
given in section B.2 :

PALM(Â(0), Ŝ(0))

Requires : X,RS

While the stopping criterion ∆(l) has not reached the desired value, iterate over (l) :

1 - Update of S using the current version of Â(l−1) :

S̃ = Ŝ(l−1) − γ∥∥∥Â(l−1)T Â(l−1)
∥∥∥

2

Â(l−1)T (Â(l−1)Ŝ(l−1) −X) (III.24)

Ŝ(l) = S γRS

‖Â(l−1)T Â(l−1)‖
2

(S̃ΦT
S )ΦS (III.25)

2 - Update of A using the current version of Ŝ(l) :

Ã = Â(l−1) − δ∥∥∥Ŝ(l)Ŝ(l)T
∥∥∥

2

(Â(l−1)Ŝ(l) −X)Ŝ(l)T (III.26)

Â(l) = Π‖.‖2=1(Ã) (III.27)

3 - Update stopping criterion ∆(l) = minj∈[1,n]〈 Â(l)j

‖Â(l)j‖
F

, Â(l−1)j

‖Â(l−1)j‖
F

〉

The adaptation of PALM to our cost function is detailed below :

— Update of S : the term Â(l−1)T (Â(l−1)Ŝ(l−1) −X) is the gradient of the data
fidelity term with respect to S and a Lipschitz modulus upper bound can be
chosen as

∥∥∥Â(l−1)T Â(l−1)
∥∥∥

2
, where ‖.‖2 is the spectral norm 4. The parameter

4. More specifically, if U is a matrix, x a vector and ‖.‖`2 is the `2 norm for vectors, the ‖.‖2
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γ is chosen in the range (0, 1), which is required to ensure the convergence 5.

— Update of A : the term (Â(l−1)Ŝ(l)−X)Ŝ(l)T is the gradient of the data fidelity
term with respect to S and a Lipschitz modulus upper bound can be chosen as∥∥∥Ŝ(l)Ŝ(l)T

∥∥∥
2
. The parameter δ is chosen in the range (0, 1), which is required

to ensure the convergence.

— Stopping criterion : the stopping criterion ∆(l) was chosen in this thesis as
the cosine of the maximum angle between the columns of Â(l) and that of the
previous estimate of the mixing matrix Â(l−1). The algorithm stops when ∆(l)

becomes higher than a threshold τ fixed by the user, that is when the changes
in A become very small.

N.B. : while the blocks here were chosen as U(1) = A and U(2) = S, other choices
of coordinates are possible, which will be detailed in chapter V.

C.4 Algorithms minimizing an approximation of the cost function

We will now review some approximate algorithms. While such algorithms can
both be cheaper and easier to use than exact ones and obtain good practical results,
they however suffer from much less mathematical support.

C.4.1 pALS

The projected Alternating Least Square has first been introduced in the context
of NMF [Berry et al. 2007] by [Paatero & Tapper 1994]. 6 As all the previous algo-
rithms, it performs a cyclic update over all the coordinates. However, it does not
perform a true minimization of each subproblem III.19 as in BCD, but rather uses
a rough approximation : for a given i ∈ [1,K], the subproblem is first minimized wi-
thout taking into account the constraint J(i) ; then the solution is projected through
the proximal operator of J(i). The whole procedure is described in Algorithm 4.
While this algorithm can be interesting in many practical setting, especially when
the minimization of h(l)

(i)(U(i)) is explicit as well as the proximal operator of J(i), it
suffers from a lack of mathematical grounding. In particular, it is neither proved to
converge nor to minimize the cost function III.18 in general. Indeed, even in the his-
torical case of NMF, this algorithm can increase the cost function when performing
the minimization over one fixed variable, which precludes any convergence guaran-
tees in the BCD framework [Kim et al. 2008] (cf. Appendix B).

induced matrix norm is defined as :

‖U‖2 = sup
x 6=0

‖Ux‖`2
‖x‖`2

(III.28)

5. Note that such a parameter might influence the quality of the solution found by the algorithm,
due to the non-convexity of the cost function. Such a study is however beyond the scope of this
work.

6. While it historically started with the standard projected least-square approach, h being a
quadratic loss, we will present it here in a more general setting for the sake of continuity with the
previous subsection.
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Algorithm 4 pALS

function pALS(Û(0)
(1), ..., Û

(0)
(K)) . Û

(0)
(1), ..., Û

(0)
(K) is the initialization

while not stabilized or maximum number of iterations not reached do
for i = 1...K do

Ũ
(l+1)
(i) = argmin

Û(i)

h
(l)
(i)(Û(i))

Û
(l+1)
(i) = prox

J(i)

(
Ũ

(l+1)
(i)

)
end for
l← l + 1

end while
return Û

(l)
(1), ..., Û

(l)
(K)

end function

Despite this lack of mathematical guarantees, its simplicity has however made pALS
successful in the NMF community. Indeed, when the constraints J(i) are fairly
simple, it can give good practical results. Concerning sparse BSS, pALS has known a
huge success in the context of the GMCA algorithm. However, when the constraints
become more complicated than mere NMF or sparsity in the direct domain (such as
for instance trying to combine both non negativity in the direct domain and spar-
sity in another domain using redundant transforms), its separation performances
can deteriorate in comparison to a true BCD [Rapin et al. 2013].

pALS in sparse BSS Since the pALS is the basis of the GMCA algorithm [Bo-
bin et al. 2007], which is the core of this PhD (with PALM), we here detail it in
the context of sparse BSS. However and as explained above, contrary to the PALM
algorithm of section C.3.3, pALS does not truly look for a minimizer of II.8 but
rather for a minimizer of an approximation of the cost function. In that, the sparsity
parameters of pALS do not fully correspond to RS, the ones of II.8, and we shall
denote them as MS. The algorithm is then given by (for the sake of simplicity, ΦS

is supposed to be the identity matrix) :

pALS(Â(0), Ŝ(0))

Requires X,MS

While not stabilized or maximum number of iterations not reached, iterate over (l) :

1 - S is updated using the current Â(l−1).

Ŝ(l) = SMS

(
Â(l−1)†X

)
(III.29)

2 - A is updated using the current Ŝ(l) :

Â(l) = Π‖.‖2=1

(
XŜ(l)†

)
(III.30)
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In this algorithm, the minimization of the quadratic data fidelity term of II.8 over
one of the two matrices A,S is explicit and is performed using the Moore-Penrose
pseudo-inverse [Ben-Israel & Greville 2003] of the fixed matrix, denoted as †.
As a side remark, for this specific application of pALS to sparse BSS and in the case
where at each iteration l, Â(l) and Ŝ(l) are orthogonal, the pseudo-inverse of the
matrices is equal to the transpose. Thus, the PALM algorithm trivially reduces to
the pALS, and as such in this case the pALS both truly minimizes the cost function
II.8 and is proved to converge (and MS = RS). 7

C.4.2 GMCA as an optimized pALS for sparse BSS

GMCA is not a new optimization framework, but rather an enhancement of
the pALS algorithm in the sparse BSS case of II.7. As explained in the previous
subsection, while the pALS framework is appealing due to its simplicity and inter-
pretability, it nevertheless suffers from several issues (both theoretical and practical,
such as a lack of robustness when the thresholds are too low [Chenot 2017]). The
GMCA algorithm [Bobin et al. 2007] enables to both assuage such issues and to
yield good practical separation results [Bobin et al. 2008,Bobin et al. 2015], while
alleviating the cumbersome hyperparameter choice.
More specifically, while GMCA is very similar to the algorithm of section C.4.1,
its main strength is to propose an automatic adaptive parameter choice for MS,
which is based on a fixed point argument and further enables to benefit from the
morphological diversity assumption [Bobin et al. 2007]. In brief (the required quali-
ties needed for a good hyperparameter choice will be more extensively discussed in
chapter IV), such an automatic choice enables pALS to be more robust to the noise,
more reliable (insensitive to the initialization) and more accurate.
In the following, we will first state the morphological diversity principle and then
the GMCA automatic hyper-parameter choice.

Morphological diversity The morphological diversity dates back to mono-channel
component separation, and has first been proposed in the context of morphological
component analysis (MCA) [Starck et al. 2010]. In brief, in MCA the mixing x ∈ Rt
is assumed to be a linear combination of morphological components x∗i ∈ Rt :
x =

∑n
i=1 x∗i . Each of this components x∗i is assumed to be sparsest in its own dic-

tionary Φi, all the Φi being different, which corresponds to the assumption that all
the x∗i have different morphologies (said differently, different kinds of geometrical
features). For instance, in the case n = 2, x∗1 could be broadly distributed while x∗2
could resemble punctual sources : thus, x∗1 and x∗2 would be sparsest in different dic-
tionaries, encoding different kind of geometrical features. Using such an information

7. Note that instead of choosing the blocks as A and S but rather splitting the problem into
2n blocks corresponding to the columns of A and the rows of S, the update is explicit and pALS
also becomes exact (since ∀i ∈ [0, n],

∥∥Ai
∥∥
F

= 1 and Ai† = AiT ).
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then enables to recover x∗1, ...,x
∗
n from x by looking for a minimizer of :

argmin
x1∈Rt,...,xn∈Rt

∥∥∥∥∥x−
n∑
i=1

xi

∥∥∥∥∥
2

`2

+

n∑
i=1

λi
∥∥xiΦT

i

∥∥
0

(III.31)

On the other hand, this principle has been extended for sparse BSS to the case of
components having the same kind of geometrical features, that is, that are sparse
in a same dictionary ΦS. In that case, sparsity can still be used to discriminate
the components, which are now the sources S∗i . As the S∗i are sparse in ΦS, the
information is encoded in a small number of significant entries. Since the S∗i are
however different from each other, these significant entries are also likely to differ
through the position at which they are active. Therefore, the discrimination between
the sources can rely on their most significant coefficients in ΦS (cf. e.g. Fig. III.1,
where the support of the largest wavelet samples are almost disjoint).

It is important to point out that many practical sources satisfies the morphologi-
cal diversity hypothesis. In particular, i.i.d. sources drawn according to a Bernoulli-
Gaussian, a Laplacian, a Generalized Gaussian with parameter α ≤ 1 or a strongly
sub-gaussian distribution respect such an assumption.
In the remaining of this subsection, to explain the GMCA algorithm, we assume for
the sake of clarity that ΦT

S = Id, that is the sources are sparse in the direct domain.
The generalization to sparsity in transformed domain is relatively straightforward.

Another point of view on sparse BSS : a geometrical interpretation Just
before explaining how GMCA draws on the concept of morphological diversity to
disentangle the sources, let us turn towards the geometrical interpretation of sparse
BSS by starting back from the example of Fig. III.1. If we draw the scatter plot
of the source S∗1 wavelet samples as a function of the ones of S∗2, we will get a
star shape (cf. Fig. III.2) having its highest amplitude samples lying on the axes.
This is typical of sources respecting the morphological diversity assumption, since
the highest amplitude samples supports are (almost) disjoint. On the other hand,
any mixing by a non-trivial A∗ will break such a shape since the coefficients of the
largest amplitude samples will be simultaneously large (cf. Fig. III.2). Such a loss of
compressibility can be measured through the `1 norm : the samples of the sources
are enclosed into a `1 norm ball of smaller radius than the ones of the mixing. Thus,
a good unmixing matrix Â should ensure that the unmixing S̃ = Â†X = Â†A∗X

lies into a `1 norm of smallest radius.

GMCA : a pALS scheme enhanced with an heuristic threshold choice We
can now explain how the GMCA algorithm takes advantage from the morphological
diversity to perform sparse BSS. We will then detail the algorithm through a second
interpretation in terms of a fixed point condition and noise removal.

A decreasing threshold choice enabling to explicitly benefit from the
morphological diversity assumption As stated just above, the sparse BSS
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Source 1 Source 2

Sample

W
av
el
et

co
effi

ci
en
t
am

pl
it
ud

e

Figure III.1 – Up : Two natural images which are sparse in the same transformed
domain. Down : Wavelet coefficients of the images (to obtain such coefficients, the
images have been transformed into grayscale and resized). As hoped due to the
morphological diversity hypothesis, since the two images are different the support
of their most powerful wavelet samples are different (and here, they are almost
disjoint).
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Figure III.2 – Left, up and middle : Two sources S∗1 and S∗2. Left, down : Scatter
plot of the wavelet coefficients of the two sources. The red square corresponds to the
`1 ball of minimum radius enclosing all the source wavelet coefficients. Right, up and
middle : Two mixings X1 and X2 obtained from S∗1 and S∗2. Right, down : Scatter
plot of the wavelet coefficients of the two mixings. The green square corresponds
to the `1 ball of minimum radius enclosing all the mixing wavelet coefficients. As
expected, its radius is larger than the one of the `1 ball found with the source wavelet
coefficients, in red.
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problem geometrically amounts to find Â corresponding to an unmixing lying within
the smallest radius `1 ball. Due to the morphological diversity assumption, it is of
uttermost importance to note that such a ball is mainly determined by the highest
amplitude source samples. This is the core idea behind GMCA : emphasizing these
few high amplitude samples enables an enhanced separation quality. Placing such
an emphasis can be done by discarding all the lowest amplitude samples and setting
them to zero, which corresponds to setting high hyperparameters MS

8. We would
however suffer from a difficult trade-off :

— If too many samples are kept within the estimation process : taking into account
the lowest amplitude samples can worsen the separation results since : i) due
to the morphological diversity assumption, the lowest samples are the least
discriminative (the support can be very joint between the lowest amplitude
samples of the sources) ; ii) the lowest amplitude coefficients are highly likely
to be mainly due to the noise N.

— If too few samples are kept : taking only the very highest amplitude coeffi-
cients is treacherous since i) the morphological diversity assumption can be an
approximation, and small partial correlations 9 can occur even for the highest
amplitude samples ; ii) taking into account too few samples can create a lack
of statistics, making the problem much more ill-posed.

To bypass this difficult trade-off, GMCA proposes an adaptive hyperparameter MS

choice, by making them decrease along the iterations. In the first iterations, only the
most prominent samples of A(l−1)†X are kept, and the lower amplitude samples are
increasingly added within the estimation process to increase the statistics. Since the
MS hyperparameters are thus varying along the iterations l, we shall now denote
them as MS

(l) in the following.

A final threshold choice based on a fixed point interpretation We now
have justified the principle of decreasing thresholds through the morphological di-
versity. Beyond this general decreasing principle, a natural remaining question is :
which value to give to the MS

(l) in practice ?
In GMCA, such values are chosen according to a fixed point argument. More speci-
fically, since the algorithm is based on pALS, the thresholding applies to the least-
square estimate of the sources (cf. Sec. C.4.1). If we assume that after many itera-
tions the algorithm has ultimately stabilized on an estimate Â(∞) close to the true
mixing matrix A∗, the corresponding source update before thresholding is given

8. Since high MS correspond to a high thresholding SMS in the pALS algorithm.
9. That is, samples with multiple active coefficients.
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by 10 :

S̃(∞) = Â(∞)†X

' A∗†X

= A∗†(A∗S∗ + N)

= S∗ + A†∗N

(III.32)

Where A†∗N is a Gaussian noise (since it was assumed that N was Gaussian).
That is, the sources before thresholding S̃(∞) are equal to the true ones S∗ up
to an additive Gaussian noise. Thus, the MS

(∞) hyper-parameter choice can be
understood as choosing the hyper-parameters of a sparse signal Gaussian denoising
problem, which has been well studied.
More specifically, let us assume that no reweighted `1 is used and that MS

(∞) =

Diag(µ
(∞)
1 , µ

(∞)
2 , ..., µ

(∞)
n )1n×t. For each source S̃

(∞)
i , i ∈ [1, n], the threshold µi is

chosen such that it aims at setting to 0 the small coefficients of S̃(∞) that should
mainly correspond to the noise (A†∗N)i. Such a choice is usually performed through
a detection procedure using the “κσ ” rule, κ ∈ R+. For instance, if κ = 3, the
probability that a coefficient of S̃

(∞)
i with a larger amplitude than 3σi, with σi

the standard deviation of the Gaussian noise (A∗†N)i, corresponds to noise only is
roughly 0.4%.
A first practical difficulty is however that the standard deviation σi of the noise
(A†∗N)i is unknown (if only because A∗ itself is not known). It can fortunately be
approximated using the Median Absolute Deviation, defined as :

∀u ∈ Rt,mad(u) = median
i∈[1,t]

|ui −median
i∈[1,t]

(ui)| (III.33)

We further extend this definition to matrices, by taking their row-wise mad : MAD :

Rn×t → Rn, such that ∀i ∈ [1, n],∀U ∈ Rn×t,MAD(U)i = mad(Ui).
In our case, we have that σi ' 1.48×MAD((A†∗N)i). Furthermore, since S∗ is assu-
med to be sparse, the MAD operator is quite insensitive to it, and it is thus possible
to directly estimate κσi from S̃(∞), as κMAD(S̃(∞)) ' κMAD(S∗ + A†∗N) '
κMAD(A†∗N) = (µ

(∞)
1 , µ

(∞)
2 , ..., µ

(∞)
n )T .

A second, more challenging difficulty is that we have made the assumption that
the hyperparameter MS

(∞) were chosen according to the point where the algorithm
stabilizes, which rises two issues :

— This requires to know the result of the algorithm before launching it ;
— This further requires that the result of the algorithm will be good in the sense

that Â(∞) ' A∗, which is not trivial since A∗ is precisely unknown.
To bypass such pitfalls, the hyperparameter choice in GMCA is done using the
current, at iteration l, estimation of S̃(l) :(

µ
(l)
1 , µ

(l)
2 , ..., µ(l)

n

)T
= κ×MAD(Â(l−1)†X) (III.34)

10. We point out that while notations such as A(∞) and S(∞) are slightly abusive in this context
because GMCA is not proved to converge, the goal is to clarify the rational of hyper-parameter
choice.
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This is particularly appealing since :

— It alleviate the need to know the result of the algorithm ;

— It draws on the conclusions of the previous subsection, namely that an adaptive
decreasing threshold choice enables to take into account the morphological
diversity assumption. Indeed, we have that :(
µ

(l)
1 , µ

(l)
2 , ..., µ(l)

n

)T
= κ×MAD(Â(l−1)†X) = κ×MAD(Â(l−1)†A∗S∗+Â(l−1)†N)

(III.35)
Thus, as during the first iterations Â(l−1)†A∗ 6= Id, the term MAD(Â(l−1)†A∗S∗)

is non zero (it is the MAD of a mixing of sparse signal, which is itself non-
sparse), implying high µ(l)

1 , µ
(l)
2 , ..., µ

(l)
n . When the estimation improves, Â(l−1)†A∗

becomes closer to the identity and thus the term Â(l−1)†A∗S∗ becomes sparser,
and the corresponding µ(l)

1 , µ
(l)
2 , ..., µ

(l)
n lower.

GMCA, summary GMCA [Bobin et al. 2007] can be written in the following
way. The structure is similar to pALS, but the scheme is enhanced with an automa-
tic hyperparameter choice :

GMCA(Â(0), Ŝ(0))

Requires only X

While not stabilized or maximum number of iterations not reached, iterate over (l) :

1 - Automatic parameter choice :(
µ

(l)
1 , µ

(l)
2 , ..., µ(l)

n

)T
= κ×MAD(Â(l−1)†X) (III.36)

MS
(l) = Diag(µ

(l)
1 , µ

(l)
2 , ..., µ(l)

n )1n×t (III.37)

2 - S is updated using the current Â(l−1).

Ŝ(l) = SMS
(l)

(
Â(l−1)†X

)
(III.38)

3 - A is updated using the current Ŝ(l) :

Â(l) = Π‖.‖2=1

(
XŜ(l)†

)
(III.39)

Lastly, we would like to highlight that other, more advanced scheme for setting
the hyperparameters MS of GMCA have been proposed (see Appendix D for a
presentation of some of these extensions). We do not however focus on this aspect,
since the common rationale is the same : use a decreasing hyperparameter choice
and set the final values according to the fixed point argument.
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C.5 AMCA, an extension of GMCA

As evoked in the previous section and already relatively visible in Figure III.2,
the morphological diversity hypothesis might be a too strong assumption in prac-
tical cases, for which some samples can have several high amplitude coefficients.
In this situation GMCA, that grounds its hyperparameter estimation on such high
amplitude samples, can have lowered performances.
The Adaptive Morphological Component Analysis (AMCA – [Bobin et al. 2015])
has been introduced to tackle such difficult cases. The main idea is the following :
AMCA assigns a weight to each sample Xj , j ∈ [1, t] which will enable to discard in
the estimation process samples suffering from partial correlations : that is, the ones
that do not respect the morphological diversity. AMCA weights are grouped as the
diagonal elements of a diagonal matrix M ∈ Rt×t.
Let us write ΩC the source samples for which the morphological diversity does not
hold, and Ω∗ the samples for which it does holds. If such sets are known beforehand,
creating the M matrix is easy : for samples Xj ∈ ΩC ,Mjj = 0 (thus discarding
them) and for samples Xj ∈ Ω∗,Mjj = 1 (thus keeping them unchanged). Instead
of minimizing Eq. II.8, the new cost function 11 is then given by 12 :

argmin
A∈Rm×n,S∈Rn×t

1

2
Tr
[
(X−AS)ΦT

S MΦS(X−AS)
]
+
∥∥RS � (SΦT

S )
∥∥

1
+ι{∀i∈[1,n];‖Ai‖22=1}(A)

(III.40)
Where, compared to Eq. II.8, the data fidelity term has been changed to take into
account the weights M. Since ΩC and Ω∗ are however unknown in practice, the
authors proposed to relax this method using an adaptive reweighting procedure.
They thus use a M matrix chosen based on the sparsity level of SΦT

S columns :

M = Diagj∈[1,t]

 1

‖(SΦT
S )j‖

`p(l)

‖(SΦT
S )j‖

`2

+ ε

 (III.41)

where ε is a small constant that may be required when some columns have vanishing
`p norms, and p ∈ [0, 1] is a parameter determining the influence in the reweighting
of the the source samples sparsity level. In brief, p changes during the iterations l : it
is close to 1 at the beginning, to avoid to penalize too strongly imperfectly unmixed
sources, and it decreases during the following iterations when the unmixing becomes
better.

11. Note that only an approximation of such a cost function is minimized because similarly to
GMCA the AMCA algorithm is based on pALS.
12. Assuming, without loss of generality, that ΦS is orthogonal.





Chapitre IV

Using PALM in Sparse BSS

A Introduction

As mentioned in the previous chapter, the optimization strategy is of uttermost
importance with regards to the performances of sparse BSS. Among the algorithms
presented earlier, the GMCA algorithm [Bobin et al. 2007] (cf. Sec. III-C.4.2) has
well established over the last decade its ability to handle various problems. This in
particular due to its heuristic parameter choice – described in Sec. III-C.4.2 – making
them decrease during the iterative process and benefitting from the morphological
diversity assumption.
The goal of this chapter is however to depart from this approach and give a closer
look to algorithms that have been introduced more recently and that are usually used
with fixed parameters. More specifically, we will focus on PALM ( [Bolte et al. 2014]
– cf. Sec III-C.3.3), both exploring empirically its performances in the context of
sparse BSS, and trying to draw the quintessence from it by re-using heuristics in
the same spirit as in GMCA.

A.1 What is a good sparse BSS algorithm?

But first, a questions is : what is a “good” sparse BSS algorithm? Generally
speaking, any sparse BSS algorithm yields an estimate Θ̂ of the true mixture para-
meters Θ∗ = {A∗,S∗}. This estimate depends on the data X : of course, through
Θ∗ but also through the noise N. To find a good estimate Θ̂, a practitioner has
access to a given data set X but can choose a solver A, an initial point Θ̂(0) and a
set of regularization parameters RS, which can be formulated as follows :

Θ̂ = A
(
Θ̂(0),RS; X

)
The goal of this chapter is to introduce a reliable, effective and versatile algo-

rithmic framework to tackle sparse BSS problems, which is needed for real-world
large-scale applications :

— Reliability means that the solution has a low dependence on the initial point,
which is important when little is known about the solution. More specifically
with given RS and X, the variance over Θ̂(0) of the separation quality (mea-
sured by an estimator CA – see Appendix B for the one used here) is as small
as possible.

— Efficiency has to do with the algorithmic framework and the regularization
parameter tuning strategy : for a given dataset X, it should be possible to
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obtain a solution close to the true Θ? without having to perform a cumber-
some regularization parameter choosing. In particular, this is achieved if the
algorithmic framework is not too sensitive to the regularizing parameter choice
(the variance of CA over RS is small for a given dataset X and initialization
Θ̂(0)) or if some good automatic thresholding strategy is available.

— Versatibility in sparse BSS deals with the fact that the efficiency must hold
for various data X settings : the thresholding strategy must generalize well
to different data. In the case of a threshold choice performed through a mere
grid search, versatility can be assessed by looking at the variance of CA over
different datasets X for given Θ̂(0) and RS. If such a variance is low, it means
that a threshold that has been determined for a specific dataset can be re-used
easily for another one.

A.2 Questions arising from PALM use in sparse BSS

While the PALM algorithm has become one of the most attractive optimization
frameworks for tackling generic matrix factorization [Repetti et al. 2015, Lanaras
et al. 2015,Thouvenin et al. 2015,Bao et al. 2016,Pierre et al. 2015], its application
to sparse BSS raises open questions :

— What are the major limitations of minimizing Eq. (II.8) using the
PALM algorithm to perform sparse BSS ? The investigations presented
in the following highlight the low reliability of PALM, while performing sparse
BSS by minimizing Eq. (II.8) using it exhibits a dramatic lack of efficiency
and versatility. The outputs of Eq. (II.8) are indeed highly sensitive to the
regularization parameters in some scenarios. In these, PALM – and poten-
tially any other algorithm – is therefore impractical if not associated with an
automatic regularization parameter strategy. This is all the more problematic
as the regularizing parameters choice is not always well discussed in the lite-
rature (although it is a difficult problem [Mensch et al. 2018], in many works
it is either not discussed, or sums up to a grid search, or uses the true fac-
torization [Repetti et al. 2015,Lanaras et al. 2015,Thouvenin et al. 2015,Bao
et al. 2016]).
It is however also empirically shown here that potentially accurate results could
be found if optimal regularization parameters for a given (good) initialization
were known beforehand.

— Is it possible to improve the estimation yielded by the minimization
of Eq. (1) using PALM with heuristic techniques ? The hope is then
twofold : i) reach PALM potential accurate results when adapted regularizing
parameters are used ; ii) benefit from PALM mathematical guarantees. It has
to be emphasized that using heuristics in other matrix factorization algorithms
has already known a wide success, both for sparse BSS [Bobin et al. 2007]
and for NMF [Vandaele et al. 2016]. We show how combining PALM with
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heuristic techniques can enhance the separation quality by providing adapted
initializations and regularization parameters.

B Chapter outline

In section C, we investigate the practical limitations of performing sparse BSS
by minimizing Eq. (II.8) using PALM. In section D, we show and explain the diffi-
culty of straightforwardly extending existing heuristic techniques to PALM to make
it easier to use. In section E, we re-use the results of section C and D to handle
each element hindering PALM applicability in sparse BSS and, building on them,
to rationalize a 2-step approach (with an initialization stage followed by a refine-
ment procedure). In section F, the quality of the 2-step approach is demonstrated
on realistic astrophysical data, while in section G, the limitations of the approach
are studied. Several extensions of this work are furthermore shortly discussed in
Appendix E (in particular, a quick study of BCD is performed, and other 2-step
approaches are proposed).

C Limitations of minimizing Eq. (II.8) with PALM to
perform sparse BSS, an empirical study

The objective of this section is to empirically shed light on the limitations of
using the PALM algorithm along with Eq. (II.8) to handle the sparse BSS problem.
For that purpose, we will evaluate the accuracy of the final point estimate Θ̂ =

{Â, Ŝ} yielded by PALM in terms of an estimator (which can be computed here only
due to the fact that the true matrices are simulated and therefore known). More
specifically, we will highlight the limitations of using PALM to minimize problem
(II.8) to perform sparse BSS in terms of efficiency, reliability and versatility.

At this point, it might be important to highlight two elements :

— We study the results in terms of separation quality measured by an estimator
CA, and not only in terms of the cost function (II.8). That is, we try to find
a good critical point corresponding to a true physical factorization.

— The phenomena we study here could be inherent to the use of Eq. (II.8) for
performing BSS, since the role of PALM is only to perform its minimization.
However, in the light of the previous remark and since (II.8) is non-convex,
the use of another minimization scheme could lead to a different (local) mini-
mum with a different quality in terms of the estimator. For instance, another
minimization algorithm could be more or less sensitive to the regularization
parameter values 1. In this work, we mainly study the separation quality when
minimizing Eq. (II.8) with PALM (and therefore not problem (II.8) in general
– however, preliminary results with BCD are also presented in Appendix E,

1. Due for example to an implicit regularization introduced by the minimization scheme.
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tending to suggest that several conclusions might be quite inherent to the cost
function).

C.1 Gist of the experiments : what is to be studied ?

The goal of this subsection is to determine which factors have a potential in-
fluence on the final separation quality and must therefore be taken into account in
the study of PALM for sparse BSS. This can be inferred by detailing the first update
step of the sources in the PALM algorithm :

S̃ = Ŝ(0) − γ∥∥∥Â(0)T Â(0)
∥∥∥

2

Â(0)T (Â(0)Ŝ(0) −X)

= Ŝ(0) +
γ∥∥∥Â(0)T Â(0)

∥∥∥
2

(Â(0)TA∗S∗ − Â(0)T Â(0)Ŝ(0) + Â(0)TN)
(IV.1)

The gradient descent step is followed by the application of the proximal operator of
the penalization term :

S(1) = S γRS

‖Â(0)T Â(0)‖
2

(
S̃
)

(IV.2)

Therefore, the best estimation of S∗ will potentially depend on the starting point
Θ̂(0) = {Â(0), Ŝ(0)}, the true mixture parameters Θ? = {A∗, S∗}, the noise N and
the regularizing parameters RS.

More specifically, to relate this discussion to the desired properties of a sparse
BSS algorithm and outline the experimental protocol :

— The efficiency will be studied by trying several values of RS for a given ex-
perimental setting. This will give an insight of the estimate quality sensibility
(in terms of CA) yielded by the minimization of Eq. (II.8) using PALM.

— The reliability will be studied varying the initial points Θ̂(0) and more speci-
fically Â(0).

— The versatility will be studied by changing the experimental setting : Θ? =

{A∗, S∗}, and the noise N. More specifically, 4 types/cases of experiments
will be described in Sec. C.2 and we will analyse :

— The inter-case versatility : for instance, how a change in the source dis-
tribution affects the estimate quality ?

— The intra-case versatility : even focusing on a specific case, does using
another random realization of Θ? = {A∗, S∗}, and N can affect the
quality ?
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C.2 Description of the data

To bring out the mechanisms at stake, we will perform experiments using 4
different datasets. In each case, there is n = 2 sources 2.

— Case 1 : The sources are assumed to be exactly sparse in the direct domain
and to follow a Bernoulli-Gaussian distribution : a proportion p = 0.1 of
the t = 500 samples is non-zero and drawn according to a standard normal
distribution. The sources are equilibrated, i.e. they have equal variances. Their
dynamic (maximum minus minimum value) is circa 0.6. This example therefore
corresponds to very simple synthetic data. The mixing is performed through
a matrix A∗ drawn randomly following a standard normal distribution and
modified to have unit columns. Its condition number is Cd = 10 and we focus
on the exactly determined case : there is an equal number of observations and
sources m = n. To complete the creation of the X data, a Gaussian noise is
added to the mixing, such that the Signal to Noise Ratio is SNR = 60 dB.

— Case 2 : The sources are assumed to be approximately sparse in the direct
domain and to follow a generalized Gaussian distribution of parameter α =

0.25. There is again t = 500 samples and the sources are still equilibrated with
a dynamic of circa 0.6. The mixing is performed with the same A∗ matrix as
in case 1 and an additive noise N is added in a similar way. Compared to case
1, case 2 corresponds to a more realistic setting, since the wavelet coefficients
of natural images would have a similar distribution.

— Case 3 : The sources are constructed in a similar way as in case 2. However, the
noise energy of the first observation is twice the one of the second observation.
Furthermore, A∗ is taken orthogonal (that is, A∗TA∗ = A∗A∗T = Id) to
ensure that the noise projection on the source space has different amplitudes.
While this setting might be simpler than the one of cases 2, it allows to study
the impact of the noise on the parameter choice.

— Case 4 : The sources come from simulations obtained from real data of Cas-
siopeia A supernova remnant. These data originate from the Chandra 3 X-ray
observatory. The sources in these wavelength values correspond to the thermal
emission and the iron 2. As displayed in Fig. II.3, each of them consists in a
2D image of resolution t = 128 × 128 pixels, supposed to be approximately
sparse in the starlet domain (in which their dynamic range is circa 4 × 10−3

and 6×10−4 respectively). The mixing is performed with the same A∗ matrix
as in case 1. A Gaussian additive noise is added to the mixing, such that the
SNR = 30 dB. Beyond being still more realistic than the other cases, case 4
involves non-equilibrated sources.

2. While the case of n = 2 sources might seem too simplistic, the following experiments will
already highlight the difficulty of performing sparse BSS using PALM in this setting. As such, it
is not expected that the use of PALM would be made easier with more sources.

3. http ://chandra.harvard.edu/
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C.3 Evaluation protocol

For each experimental scenario, a large number of values for the regularization
parameters RS are tested. More specifically, since no reweighting `1 in problem (II.8)
is used in this part, the work will be done on ΛS = RS. As we will focus on the case
of n = 2 sources, there will be 2 parameters to test, λ1 and λ2.
For each (λ1, λ2) value, a criterion measuring the separation quality is evaluated.
Since a change in the regularization parameters directly impacts the source estima-
tion, we will use the mixing matrix criterion described in [Bobin et al. 2015] (cf.
Appendix B) :

CA = mean(|PÂ†A∗ − Id|) (IV.3)

With A∗ the true mixing matrix and PÂ
†
the pseudo-inverse of the estimate cor-

rected through P for the scale and permutation indeterminacies. The mean is the
average of all the elements inside the matrix. For the sake of clarity, the plots will
display −10 log10(CA). As such, the higher the values, the better the separation.

C.4 Results and interpretation

C.4.1 Efficiency : sensitivity to the regularization parameters

In this subsection, we study the efficiency, that is we want to get an idea of the
sensitivity for a given X of PALM estimate to the regularizing parameters ΛS = RS.
Therefore, we take one fixed experiment of each case and we try several (λ1, λ2) va-
lues. For each of them, the mixing matrix criterion CA is computed from the estimate
and reported in a 2D plot, displayed in Figure IV.1. To try to separate as much as
possible the efficiency issue to the reliability issue, we launched the algorithm with
5 different random initializations Â(0) and the median is displayed.
The first observation corresponds to the high variations induced by changes of regu-
larizing parameters, with a dynamic range of more than 40 dB for case 1, 30 dB for
case 2 and 20 dB for case 4. The results change from good to catastrophic, making
the choice of the regularizing parameters a crucial point, especially as these high
variations are very fast on the plot.
In case 1, since the sources have identical distributions and the noise is supposed to
be white, it would be expected from the best regularization parameters λ1 and λ2

to have similar values. However, while staying close to the diagonal could restrict
the space of possible good parameters, it is unfortunately dangerous to fully restrict
the search to the diagonal, as demonstrated in Fig. IV.2. In case 1, just using the
parameters on the diagonal closest to the best ones of Fig. IV.2a yields a drop of
more than 10 dB (which might be linked to a too small number of samples for the
noise to be perfectly white).
In the non-equilibrated case 4, while not very visible in Fig. IV.1 due to the median
over different initializations, very good parameter settings appear far from the dia-
gonal for specific initializations as testified in Fig. IV.2b. Restricting the parameter
search to the diagonal would hide these high quality results.
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Figure IV.1 – Median of CA (dB) for 5 initializations of PALM algorithm as a 2D
function of the 2 thresholds corresponding to the n = 2 sources.
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(a) Case 1, zoom around the maximum (median
over 5 different initializations)
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(b) Case 4 for one specific experiment

Figure IV.2 – CA (dB) of the output of PALM algorithm as a 2D function of the
thresholds.

Even if we assume that it is possible to restrict the regularizing parameter search
to the diagonal, the variations are still quick in comparison to the dynamic of the
sources. In the simple case 1, a shift of 0.1% of the dynamic of the sources in the
regularizing parameters in a parallel direction to the diagonal yields a 7 dB loss. In
case 2, a shift of 5% yields a 8 dB drop and for case 3, a 1% change implies a 8 dB
drop.
This highlights that, for a single experiment (i.e. for a given A∗, S∗ and N), the
separation performances are highly sensitive to the choice of the regula-
rization parameters.

C.4.2 Versatility : impact on the regularization parameters of A∗, S∗ and
N

Inter-case versatility

We first look at the main potential source of lack of versatility, that is when the
distributions of the matrices A∗, S∗ and N change. To do that and for computational
reasons, we will merely compare the results displayed in Fig. IV.1 to highlight the
lack of versatility implied by a change of the distribution of S∗ or of the back-
projected noise A∗TN.

— Impact of S∗

The shapes of the plots of the 4 different cases strongly differ. In particu-
lar, the observations we made in the previous subsection show that the best
regularizing parameter values are highly dependent on the true source S∗ dis-
tributions :
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— In addition to remove the noise, the regularizing parameters should li-
mit the presence of remixing or interferences between the sources, which
depend on the distribution of S∗, the mixing matrix A∗ as well as the
initialization.

— The resulting thresholding induces a bias, called artifacts, which also
depend on the distribution of S∗. These are also problematic as they can
eventually convert into interferences between the sources in the iterative
optimization process.

— Impact of the back-projection of N

At the vicinity of the true mixture parameters A∗ and S∗, the only source
of error that contributes to the estimate of S∗ originates from propagated
noise. The role of the regularization parameters is then merely to avoid a
deterioration of the estimate by the noise, that is to threshold the update
A∗T (X−A∗S∗) = A∗TN. Consequently, an intuitive choice for the regula-
rization parameters for each sources i would be λi =

∥∥(A∗TN)i
∥∥
∞, which

implies a clear dependency between the thresholds and the back-projection
of N through A∗T . This can be studied through case 3 : in this setting, A∗

is orthogonal and the noise N energy is different over the observations. The
thresholds enabling the convergence should therefore be different for the two
sources : λ1 6= λ2. This is confirmed by Figure IV.1c, which shows that contrary
to the other cases, the highest separation quality lies far from the diagonal.
Thus, unbalanced backprojected observation noise (that is, with different va-
riances on each source) can make the threshold choice much more difficult 4

than in settings where the noise is equilibrated due to optimal parameters
further from the diagonal.

Intra-case versatility

We now look at the intra-case versatility, that is we study the impact of changing
the realization of the data for a fixed case – more specifically, we will focus on case
1 and 2. To do that, we draw for both cases 10 new random A∗, S∗ and N matrices
and create new data. For each of these data and to try to separate the versatility
issue from the reliability one, we try 10 initializations and take the median over
them. Therefore, we get 10 plots similar to the ones of Fig. IV.1, each of them
corresponding to a new random A∗, S∗ and N. To study the versatility, we look
at the diversity among this plots by looking at their dynamic : for each (λ1, λ2)

value, we plot the mixing criterion of the best estimation minus the mixing criterion
of the worst estimation. It gives us an idea of the intra-case variability for given
parameters. The results are plotted in Fig. IV.3.

In the exactly sparse case 1, the dynamic of circa 40 dB is huge compared to the
results yielded by the best value of some settings (which are in some realizations of

4. Introducing a weighted Frobenius norm - squared Mahalanobis distance - would avoid this
situation but it requires a good estimate of the covariance matrix of the noise N.
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Figure IV.3 – Dynamic of CA (dB) over different random realizations of A∗, S∗

and N.

24 dB). For the approximately sparse case 2, the dynamic is relatively similar.
It makes that even without changing the distribution of the random matrices (said
differently, even if we know their distributions), choosing good (λ1, λ2) values is very
difficult because this choice is extremely dependent on the specific data realization
that must be handled.

Consequently, the best regularizing parameters are dramatically dependent on
the data X, which further highlights the low versatility of performing sparse
BSS by minimizing Eq. (II.8) using PALM without any automatic regu-
larization parameter choice. In particular, the extra-case versatility has pointed
out that the regularization parameters should be chosen based on S∗ as well as the
backprojected noise.

C.4.3 Reliability : impact of the initialization Â(0), Ŝ(0)

The impact of the initialization has two theoretical groundings :

- As problem (II.8) is not convex but multi-convex, the algorithm performing
its minimization can be trapped in spurious critical points depending on the
initial matrices Â(0) and Ŝ(0).

- The initialization directly impacts the quality of the estimate yielded by spe-
cific thresholds through Eq. (IV.2) and the threshold choice. Said differently,
for a given initialization, it might be desirable to change the cost function via
the choice of thresholds to avoid a spurious critical point that would not be
an issue for another initialization.

To quantify this impact, the dynamic of CA over 5 different initializations Â(0)

is plotted for case 4 in Fig. IV.4. The high values, up to more than 13 dB, are to
be compared with the best results of Fig. IV.2b, that is slightly less than 18 dB.
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Figure IV.4 – Dynamic (maximum value minus minimum value) of CA (dB) as a
2D function of the thresholds for 5 different initializations of PALM algorithm.

This is mainly due to regularizing parameters outside the diagonal, which unfortu-
nately correspond to a high separation quality for some experiments. This means
than choosing such parameters in these experiments can lead to almost the best
performances, as well as very bad ones (3 dB), making the regularization parameter
choice still more difficult.
These experiments emphasize that the quality of PALM results is highly connected
to the initialization. More strikingly, the choice of good regularization parameters in
terms of CA is also connected to the initial point. In practice, to avoid relaunching
the algorithm with different initializations for given regularization parameter values
(which is especially important with large-scale data), it is important to make
PALM estimate, as well as the regularization parameter choice, more
robust to the initial conditions.

D Enhancing PALM with heuristic techniques

To bypass the cumbersome parameter choice described in the previous section,
the goal of this section is to try and show the issues of a straight adaptation within
PALM of the heuristic parameter choice used in GMCA. In the first subsection,
GMCA heuristic is reminded, and some general remarks about the performances
of GMCA made. In section D.2, the heuristic parameter choice is adapted to the
PALM framework. In section D.3, the heuristic is tested and shown to work badly
within PALM, while in D.4 these empirical results are explained.

D.1 GMCA heuristic and performances
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Value displayed Case 1 Case 2
Average 36.3 20.0

Dynamic over A∗, S∗ and N 8.6 14.2
Minimum value over A∗, S∗ and N 29.7 15.8

Variance over initializations 3.2×10−12 5.6×10−13

Tableau IV.1 – GMCA results in terms of CA.

D.1.1 Reminder concerning GMCA heuristic

From Chapter III, we would like to recall that GMCA proposes an automatic
threshold choice by using the following κ-MAD rule :

MS = Diag
(
µ

(l)
1 , µ

(l)
2 , ..., µ(l)

n

)
= Diag(κ×MAD(Â(l−1)†X)) (IV.4)

D.1.2 Remark about the performances of GMCA

The practical success of the GMCA algorithm relies on its good reliability as well
as the heuristic to automatically tune MS, enabling both efficiency and versatility.
To give an idea of the performances of GMCA in the experimental setting of Sec. C,
we launched it on cases 1 and 2, for 10 different initializations and 10 A∗, S∗ and
N settings. The results are summarized in Table IV.1.

Compared to PALM, the dynamic over different realizations of A∗, S∗ and N

is much lower than the one of PALM, and the worst values are still good, meaning
a much higher versatility. The automatic parameter choice yields a high mean of
CA, showing GMCA efficiency. The reliability seems to be extremely high as shown
by the very low standard deviation over the initializations. However, the results of
GMCA are not always as good as the ones yielded by PALM with the best parameters.
This might be due that the use of the pseudo inverse A(k)† in GMCA can strongly
increase the noise back-projection when Â(l) is badly conditioned. As an example
of such a difference between GMCA and PALM, the results of GMCA are 36.3 dB
in the experience of case 1 displayed in Fig. IV.2, to be compared with a little more
than 40 dB for PALM. This partially justifies the will to make PALM easy to use :
to benefit from its potential high accuracy when it is well tuned.

D.2 Adaptation of GMCA heuristic parameter choice to PALM :
a first idea

The goal is here to explain a straightforward adaptation to PALM of GMCA
automatic parameter choice.
For the sake of simplicity, let us assume that there is no reweighting : RS = ΛS.
The update of S by PALM in Eq. (III.25) is then :

Ŝ(l) = S γΛS

‖Â(l−1)T Â(l−1)‖
2

(
S̃PALM

)
(IV.5)
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Under the same assumptions, the update of GMCA is the following (with S̃GMCA =

Â(l−1)†X) :
Ŝ(l) = SMS

(
S̃GMCA

)
(IV.6)

Taking into account the differences between S̃PALM and S̃GMCA, the parallel bet-
ween Eq. (IV.5) and (IV.6) suggests that ΛS could be choosen similarly as the
parameters in GMCA (in which case the parameters change over the iterations, but
are fixed at the end to ensure the convergence of the algorithm) :

γ

‖A∗TA∗‖2
(λ1, λ2, ..., λn)T = κ×MAD

(
S̃PALM

)
(IV.7)

If so, and if PALM has converged to both the true matrices A∗ and S∗, then :

γ

‖A∗TA∗‖2
(λ1, λ2, ..., λn)

T
= κ×MAD

(
S∗ − γ

‖A∗TA∗‖2
A∗T (A∗S∗ −X)

)
' κ× γ

‖A∗TA∗‖2
MAD(A∗TN)

(IV.8)

Where the last line is obtained because S∗ is assumed sparse and the MAD is
robust to outliers. Therefore, using the MAD enables a thresholding of a projection
of the noise N, which yields a similar interpretation as in GMCA (cf. Sec. III-C.4.2).
This parallel must however be tempered :

— It only holds when and if PALM has converged towards good A and S ;

— The projection is not performed through the pseudo-inverse as in GMCA, but
rather through A∗T . Both projections however merge when A is orthogonal.

Remark : Choosing the regularization parameters in general inverse problems has
been the subject of several studies, which propose various ways for setting them.
Among them, one can highlight the Stein’s Unbiased Risk Estimator – SURE – me-
thod (and its extended versions [Stein 1981,Eldar 2009,Giryes et al. 2011,Deledalle
et al. 2014]), the generalized cross-validation [Golub et al. 1979, Lukas 2006], the
L-curve [Hansen & O’Leary 1993], the discrepancy principle (or some variants [Al-
meida & Figueiredo 2013]) or some Bayesian methods [Pereyra et al. 2015, Vidal
& Pereyra 2018]. However, most of these are not directly tractable in the case of
sparse BSS for several reasons : i) we are dealing with the blind setting, in which
the linear operator A∗ must also be evaluated, making the use of these methods
more complicated ; ii) some of these methods can be computationally expensive in
the large-scale setting, since they require to try several regularization parameters
and compute a criterion to decide which one to choose ; iii) some of them, such as
SURE, use as a criterion for the parameter choice the estimated MSE : it is not clear
if this criterion is the most relevant one in sparse BSS (cf. [Feng & Kowalski 2018]) ;
iv) some of them have mostly been applied in the case of linear solutions (e.g. by
using a `2 regularization instead of `1 – this has been emphasized in the context of
deconvolution in [Almeida & Figueiredo 2013]).
Therefore, choosing the regularization parameters using the MAD seems one of the
most interesting solutions since it has already lead to enhanced separation quality
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Figure IV.5 – Mixing matrix criterion for PALM and the 2-step strategy (cf. Sec. E)
on case 1. The results of GMCA are also plotted as a baseline, with a fixed κ = 3,
which is a classical value due to the corresponding hypothesis in terms of Gaussian
noise removal. Left : the dashed line is the median of CA over the different A∗,S∗ and
N, and the error bars correspond to the quartiles of the criterion over the initializa-
tion ; center : the dashed line corresponds to the values of CA for one specific A∗,S∗

and N, and the error bars to the quartiles of the criterion over the initialization ;
right : the dashed line corresponds to the median of CA over the initializations, and
the error bars to the quartiles of the criterion over the realizations of A∗,S∗ and N.

within the context of GMCA. In Appendix E, we however try one of the previous
methods in sparse BSS to back this claim.

D.3 Illustration

The automatic parameter setting based on the MAD described in the previous
subsection is tried inside of a PALM algorithm for different κ values. The parameter
κ is the same for both sources, since the MAD is supposed to be adaptive enough
to the noise. The metric on the separation quality CA is the same as used in Sec. C
and the data is the same as in case 1 : it is obtained from two exactly sparse sources
with a square mixing matrix having a condition number of 10. The experiments are
conducted with 5 realizations of A∗, S∗ and N and 10 different initializations. The
results are displayed in Fig IV.5 (red curve). The low efficiency is highlighted by
two points : i) the low average values of CA, reaching at most 1 dB in the leftmost
plot of Fig. IV.5 ; ii) even in the experiments for which the strategy works, it is very
difficult to choose a good κ value, as seen with the upper quartile of the rightmost
plot.
Furthermore, for one specific experiment (see plot in the center of Fig. IV.5) the
standard deviation for the different initializations is very high compared to the
average value of CA, which denotes a lack of reliability. Finally, the lack of versatility
is shown by the high error bars in the rightmost plot.
The goal of the following subsection is to explain these empirical results.
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D.4 Understanding the limitations of the heuristic in the scope of
PALM

We previously pointed out that the thresholds are not identical in GMCA and
PALM. A key difference is that the thresholding applies to different quantities :

— In GMCA, it is applied on a least-square estimate of the sources after a direct
inversion of the mixing matrix ;

— In PALM, it applies on a single gradient descent step, that is during the
inversion.

Therefore, the estimation errors originating from both an imperfect unmixing and
the noise are different in the two algorithms. Since it is the role of the thresholds to
filter out these estimation errors, they do not have the same impact and the optimal
ones may differ from an algorithm to the other.
To better understand this role, let us assume that both GMCA and PALM algo-
rithms are initialized with the true mixing matrix A∗ only. Let us further assume on
the contrary that the initialization of the sources is not perfect and can be written
as S = S∗ + s with s the error made on the sources. For GMCA, the thresholds
given by the MAD heuristic then are :

(µ1, µ2, ..., µn)T = κMAD(A∗†X) = κMAD(S∗ + A∗†N) ' κMAD(A∗†N)

(IV.9)
Where the last equality is obtained because the MAD operator is not sensible
to sparse signals. In this case, the thresholds are thus set according to the back-
projection of the noise only and an imperfect estimation of S∗ does not affect the
thresholding strategy as long as the mixing matrix is well estimated.
In contrast, when using PALM the thresholds are given by :

γ

‖A∗TA∗‖2
(λ1, λ2, ..., λn)T = κ× MAD

(
S− γ

‖A∗TA∗‖2
A∗T (A∗S−X)

)
= κ× MAD

(
S− γ

‖A∗TA∗‖2
A∗T (A∗(S∗ + s)−X)

)
' κ γ

‖A∗TA∗‖2
MAD

(
A∗TN−A∗TA∗s

)
(IV.10)

The previous equation highlights the following (and unfortunately complementary)
issues of using the MAD inside of PALM :

— An inappropriate threshold choice :
Compared to GMCA, the thresholds are calculated with the additional de-
trimental A∗TA∗s interference term. Indeed, they are computed after only
one gradient step and therefore when the interferences are still high. Another
interpretation is that the MAD is computed on an approximation of the mi-
nimization of the data fidelity term, namely a gradient step update, and its
results are therefore not as accurate as in GMCA.
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This hinders the interpretation of the use of the MAD in terms of noise remo-
val, particularly when the remixing A∗TA∗s has more energy than the noise
term A∗TN. More specifically, this is the case when the columns of A∗ are
strongly correlated, as testified by the product A∗TA∗, or when the error on
the sources s are high (which is in particular the case if the initialization is
random or if there are many artifacts). If s is further strongly non-Gaussian,
the MAD use is still less relevant (at least, when the number of sources n is
low).

— Higher interferences in the estimation process :
The gradient update on the sources creates at each iteration a remixing of the
error s due to the A∗TA∗s term. While this could be a limited issue if A was
fixed, since in PALM only one proximal gradient step is performed on S before
the update of the mixing matrix, A will be computed from sources with high
interferences.
In particular, this issue is very important with high thresholds that induce
artefacts and therefore a large s, creating more interferences (which in turn
feeds the problem of the previous point, creating more artefacts and so on...). It
makes that high thresholds are not that valuable in PALM. Therefore, contrary
to GMCA in which the A∗TA∗s is not present, it is harder to exploit the Mor-
phological Diversity assumption. Indeed, while the most significant coefficients
are still assumed to be the most interesting for the separation, selecting only
them will create interferences counterbalancing their positive effect.

To conclude, in PALM high thresholds are less interesting than in GMCA and
using the MAD heuristic does not results in good separations in practice
if the level of the interferences is not negligible in comparison to the noise
contribution.

E Combining GMCA and PALM : a hybrid strategy

The previous part has demonstrated that the introduction of an heuristic based
only on the back-projection of the noise does not yield satisfactory results within
a single PALM. We therefore rationalize an approach tackling the various elements
(cf. Sec. C) hindering the applicability of PALM in sparse BSS by combining the
best of GMCA and PALM in a two-step approach. The first warm-up stage consists
in a GMCA. It is followed by a refinement stage during which PALM is performed
retaining as much information as possible coming from the warm-up stage. Inside
the refinement stage, the MAD heuristic is used to choose PALM parameters.
The main idea of the two step approach is to reduce the interferences by a good
initialization of the refinement stage and the artifacts using a reweighting infor-
mation coming from the warm-up stage. It has to be emphasized that this 2-step
approach has already been empirically used in two previous works [Chenot & Bo-
bin 2018,Kervazo et al. 2018]. Therefore, the novelty of the following is to provide an
in-depth justification of this approach while the previous results were only empirical.
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More specifically, this justification describes in details all the required elements for
this approach to work, which is done both with theoretical arguments along with
experiments to confirm these on new datasets.

E.1 Motivation of the two step approach

Our 2-step approach has several motivations :

— Dealing with the factors deteriorating the results of sparse BSS (in terms
of versatility, efficiency and reliability) when using PALM for minimizing
Eq. (II.8) :
While the MAD heuristic enables the refinement stage to handle the noise
back-projection, using some reweighting information from the warm-up stage
enables to take into account the distribution of S∗, which was the second fac-
tor of the lack of versatility of using PALM in the context of sparse BSS (cf.
Sec. C). The automatic parameter choice then enables to circumvent in the
refinement stage the difficult parameter choice and the lack of efficiency. Fi-
nally, using a reliable algorithm such as GMCA as a warm-up stage enables
a reliable global 2-step algorithm. Furthermore, it enables a good initializa-
tion of PALM (which is reached using decreasing regularization parameters
and benefiting from the morphological diversity, in contrast to what is usually
done when using a single PALM with fixed regularization parameters).

— Enabling to use the MAD heuristic :
One of the main advantages of combining GMCA and PALM is to initialize
PALM with the output ÂGMCA and ŜGMCA of GMCA. Since both ÂGMCA

and ŜGMCA are close to A∗ and S∗, the level of the interferences is relati-
vely low in comparison to the noise. Therefore, following the conclusion of
Sec. D.4, the MAD is still relatively accurate to derive the thresholds once at
the beginning of the refinement step and the interpretation in terms of noise
removal is more accurate than with a poor initialization, due to smaller inter-
ferences. In addition, the interferences are further indirectly reduced by the
use of the reweighting, which reduces the artefacts that would be transformed
into interferences by the gradient step.

— Keeping mathematical guarantees and PALM high potential accuracy :
While GMCA is only a proxy, the 2-step algorithm will attempt to solve exactly
Eq. (II.8) as PALM does. It will further benefit from PALM potential high
accuracy (cf. Sec. D.1.2). Moreover, since PALM is proved to converge under
mild assumptions [Bolte et al. 2014], so is the 2-step algorithm 5.

5. Note that here only a single PALM is used in the refinement step. It could be interesting to
study a two-loop algorithm, in which several PALM would be launched until stabilization (if any),
with each time new regularization parameters computed on the solution of the previous PALM. It
seems however clear that such a process would preclude any convergence guarantee of the whole
algorithm, as it is not straightforward that the regularization parameters would converge.
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E.2 Use information on S∗ from GMCA : reweighted `1

As evoked in the previous subsection, it is possible to take into account in the
refinement stage the information from S∗ coming from the warm-up stage. To that
end, minimizing the artifacts can be carried out by improving the sparse regulari-
zer. This is done by resorting to a reweighted `1 regularizer [Candes et al. 2008].
In this setting, one can benefit from the first guess estimate ŜGMCA to compute
the reweighting matrix G in problem (II.8). This generally leads to a significant de-
crease of the artifacts, which eventually reduces the importance of the interferences
introduced by the A∗TA∗s term. This will improve the efficiency of the proposed
hybrid heuristic, which interpretation is based on noise removal only. In this work,
we use the following reweighting scheme :

Gj
i =

ε

ε+
|ŜjGMCAi

|

‖ŜGMCAi‖∞

(IV.11)

where ε is a small constant (here 10−3),Gj
i the coefficient of G corresponding to the

ith line and jth column and Ŝi the ith line of Ŝ. In brief, the thresholds are lowered
for the largest samples of the estimated sources, reducing the bias introduced by the
soft-thresholding and therefore the error s and the interferences.

E.3 Final algorithm

The previous remarks lead to the following algorithm using a smart initialization
and thresholding strategy :
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Input : X (data matrix)

— Warm-up stage :
Random initialization Â(0) and Ŝ(0)

ÂGMCA, ŜGMCA = GMCA(X,Â(0),Ŝ(0))

— Refinement stage :
Update of the reweighting information in Eq. (II.8) :

Gj
i =

ε

ε+
|ŜjGMCAi

|

‖ŜGMCAi‖∞

(IV.12)

Update of the parameters ΛS in Eq. (II.8) :

γ∥∥∥ÂT Â
∥∥∥

2

(λ1, λ2, ..., λn)T

= κ× MAD

ŜGMCA −
γ∥∥∥ ˆAGMCA
T
ÂGMCA

∥∥∥
2

ÂT
GMCA(ÂGMCAŜGMCA −X)


(IV.13)

PALM step, initialization coming from GMCA :
ÂPALM, ŜPALM = PALM(X,ÂGMCA,ŜGMCA)

E.4 Complexity of the algorithm

We here derive the complexity of one iteration of each of the 2 steps of the
algorithm.

E.4.1 Initialization stage

Each iteration of the warm-up stage can be decomposed into the following ele-
mentary steps : i) the pseudo-inverse is performed using the singular value decom-
position of a n×n matrix, which yield an overall complexity of O(n3 +m2n+nmt) ;
ii) the thresholding-strategy first requires the evaluation of the threshold values,
which has a complexity of nt ; iii) the soft-thresholding step itself has a complexity
of O(nt) ; and iv) updating A is finally performed using a conjugate gradient algo-
rithm, whose complexity is known to depend on the number of non-zero entries in
S and on the condition of this matrix Cd(S). An upperbound for this complexity
is O(nt

√
Cd(S)). The final estimate of the complexity of a single iteration is thus

given by :
m2n+ n3 + nmt+ nt

√
Cd(S) (IV.14)

With Cd(S) the condition number of S.
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E.4.2 Refinement stage

For the refinement stage, i) the update of S is dominated by the multiplication
required for ÂT (X − ÂŜ), which has a O(nmt) complexity, and the computation
of
∥∥∥ÂT Â

∥∥∥
2
having an overall complexity of O(n2m) (for instance, using the power

method). The thresholding and weight computation complexities are negligible ; ii)
similarly, for A update the complexity is O(n2t+ nmt).
Therefore, the final estimate of the complexity of a single iteration of the refinement
stage is given by :

nmt+ n2(m+ t) (IV.15)

Beyond this complexity, the overall number of required iterations needed to give
“good” results for GMCA and convergence for PALM is also of uttermost importance.
In practice, the number of PALM iterations tends to be much higher than the one of
GMCA. Therefore, the refinement stage is in practice much more computationally
expensive than the warm-up one. The whole 2-step algorithm is however much faster
than a single isolated PALM. This is due to the warm-up stage that enables the
refinement stage to start from a good initialization and therefore to converge in less
iterations.

E.5 Illustration

The experimental protocol is the same as described in Sec. D.3 (two exactly
sparse sources with a square mixing matrix having a condition number of 10 and
a SNR of 60 dB) except that the 2-step algorithm is used instead of PALM. The
results are plotted in Fig. IV.5. With values of CA higher than 33 dB, the demixing
is close to the best ones obtained with the exhaustive search in Sec. C. Compared
to PALM only, the variance of results over different initializations is also largely
improved as it is close to zero, which shows the increased reliability of the algorithm
with regards to the initialization.

F Application to a realistic data separation problem in
astrophysics

F.1 Description of the data

The following numerical experiments are carried out on simulated astrophysical
data, which have been generated from real Chandra 6 observations of the Cassiopeia
A supernova remnants (cf. Sec. II-A.1.3). The observations are made of a linear
combination of three components : the synchrotron emission and 2 redshifted iron
(Fe) emission lines 7. Compared to case 4, there are now n = 3 sources (which creates

6. http ://chandra.harvard.edu/
7. More precisely, the emissions lines correspond to the telescope impulse response to Dirac-

shaped emission lines, which are modeled as Gaussian-shaped spectra. These lines are centered
about different energy values, which depend on the relative speed of propagation of each iron



F. Application to a realistic data separation problem in astrophysics 77

Wavelength value (arbitrary units)

E
ne
rg
y
(a
rb
it
ra
ry

un
it
s)

Figure IV.6 – Realistic Chandra A∗ matrix with 12 channels.

more interferences and makes the unmixing more difficult). These are displayed in
Fig. IV.7. Furthermore, contrary to case 4 where A∗ was taken equal to the one of
case 1 and case 2 to enable simple comparisons, A∗ is now obtained from realistic
simulations (cf. Fig. IV.6). In particular, we are now in the over-determined setting
since m = 12 while n = 3. Finally, comparisons are performed with 5 different levels
of additional noise : SNR = 10, 15, 20, 30 and 60 dB. The practical SNR levels are
between 10 and 35 dB.

F.2 Results

Results for different SNR values in terms of CA are displayed in Table IV.2. The
original sources and the ones estimated for a SNR of 30 dB, as well as the diffe-
rence between both rows, are shown in Fig. IV.7. The “PALM” line corresponds to a
PALM algorithm equipped with the MAD heuristic described in Section D (which is
already a potential improvement compared to an exhaustive search on the regulari-
zing parameters – in the sense that it makes possible to use PALM in the large-scale
context – if the interferences are low compared to the noise level). To make the
comparison fair with RNA [Zibulevsky 2003] and EFICA [Koldovsky et al. 2006], in
this subsection the data were pre-whitened.
The separation quality of the 2-step algorithm is good, both for the estimation of
A∗ (cf. Table IV.2) and S∗ (cf. Fig IV.7). In this experiment, the 2-step algorithm
always obtains better results than both PALM and GMCA with a gain of about
2 dB for all tested SNR. This highlights the advantage provided by the 2-step ap-
proach compared to either GMCA or PALM alone.
Interestingly, the PALM algorithm alone provides rather reasonable separation re-

component due to the Doppler effect. The synchrotron component has a power emission law. These
components are representative of typical supernovae remnants in the energy band 5000− 6000 eV
(electron-volt).
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Figure IV.7 – Up : true sources S∗ ; Middle : sources estimated by the 2-step al-
gorithm (for a mixing with 30 dB of noise) ; Down : residual between upper and
middle images.

sults in these experiments. It has to be noticed that in this setting the condition
number of the mixing matrix is low, e.g. 1.8. Therefore, since A∗ is close to the or-
thogonality, the A∗TA∗s error term of Eq. IV.10 is quite low and potentially sparse.
This is precisely the regime where the MAD heuristic can perform correctly in the
PALM algorithm (cf. Fig IV.9).

The standard sparse ICA-based methods, namely RNA and EFICA, perform
rather poorly at low SNR, which highlights their higher sensitivity to noise. In
contrast, they perform similarly (or even better) to GMCA in the low noise regime.
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10 dB 15 dB 20dB 30 dB 60 dB
2 step 15.0 16.3 17.4 19.7 20.9
PALM 11.9 13.3 13.5 14.2 14.5
GMCA 13.2 14.8 15.1 17.1 18.6
EFICA 8.8 10.3 14.0 18.9 19.4
RNA 9.8 12.6 15.6 18.3 18.4

Tableau IV.2 – CA for 5 SNR values and 5 algorithms.

G Discussion on the 2-step approach

G.1 Limitations of the current 2-step strategy

While the 2-step approach has been shown to perform very well in a realistic
astrophysical setting, its limitations and applicability are now discussed in more
details.

G.1.1 Explanation of the limitations on the realistic setting

To further understand in which regimes the 2-step is valuable or not, let us have
a closer look at Eq. (IV.10) where two important terms must be highlighted : i)
the back-projected error on the first guess sources A∗TA∗s and ii) the noise back-
projection A∗TN. For a fixed starting point (i.e. fixed error s), both the condition
number of the mixing matrix A∗T and the SNR define different regimes. As an illus-
tration, experiments are performed with the astrophysical data described before but
with random non-negative mixing matrices with a larger condition number equal to
10. We carry out 10 Monte-Carlo simulations over A∗, with for each 10 different
random initializations. The results are displayed in Fig. IV.8a, in which the average
over the initializations is used. The error bars correspond to the quartiles of the
results for different A∗.
For larger condition numbers, the re-mixing effect in the PALM iterations plays a
prominent role since it tends to concentrate the first guess errors in the subspace
spanned by the eigenvectors that are associated with the largest eigenvalues of the
Gram matrix of A∗. Consequently, the MAD heuristic is more likely to yield badly
estimated regularization parameters and the results of the 2-step approach com-
pared to GMCA only are worse than in the previous subsection. This gain will
likely depend on the relative levels of A∗TA∗s and A∗TN, which are displayed in
Fig. IV.8b. When the noise level is large enough, the term A∗TN dominates and
the proposed MAD heuristic will perform correctly, which will be favorable for the
2-step approach. This can be observed when the SNR is below 25 dB but not too
small : for still smaller SNR, GMCA does not work well, which makes that the 2-step
approach has deteriorated performances due to a bad initialization (this is probably
due to the pseudo-inverse in GMCA of a badly conditioned A in the presence of
strong noise). For larger SNR (in the range 25 − 50 dB in Fig. IV.8a), the term
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Figure IV.8 – Left : CA as a function of the SNR (in dB), with a condition number
of A∗ of 10. To plot the figure, the mean over the realizations has been used. The
dashed line corresponds to the mean over the different A∗ and the error bars to the
corresponding quartiles. Right : Practical influence of the two terms of Eq. (IV.10)
in the experiment.

A∗TA∗s becomes dominant. In that case, the 2-step approach might degrade the
GMCA solution. Finally for larger SNR, the contribution of the noise to the thre-
sholds is almost zero. While the MAD therefore yields a bad estimation of optimal
parameters, the thresholds are however low because of low interferences due to the
relatively good initial point proposed by GMCA. It makes that the solution yielded
by the refinement step does not deviate significantly from a simple minimization of
the data fidelity term. Since in GMCA the data fidelity term is minimized at each
iteration, the solution of the warm-up stage is close to one of its minimizers and
therefore the solution of the refinement step does not change much from the one of
GMCA. Said differently, in this regime even if the thresholds are bad, they are low
enough for the refinement stage estimate to stay close from the one yielded by the
warm-up stage, which is already quite good because GMCA performs well with low
noise 8.

G.1.2 Further understanding of the limitations of the two step strategy

To further understand the limitations of the two step strategy and the mecha-
nisms at stake, we propose to come back to simulated data. Doing so should in
particular enable to understand more deeply the influence of the two terms A∗TA∗s

and A∗TN by playing on the sparsity level, the noise level and the condition number

8. Note however that while such a conclusion seems to hold true in this case, where the condition
number of A∗ is relatively low and where the sources are not too sparse, it might not be the case
for all experiments, see the plots of next subsection.
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of A∗.
More specifically, the experiences are similar to the one of case 2 : the sources follow
a generalized Gaussian distribution of parameter α, which will vary in the range
between α = 0.05 (very sparse sources) and α = 1 to study the impact of s in
A∗TA∗s. The noise is Gaussian, with a SNR that will vary from 10 dB to 120 dB,
enabling to study N in the term A∗TN. Finally, we will look at the influence of A∗

in both terms by trying six condition number Cd values, namely 1, 2, 5, 10, 20 and
100. The matrix A∗ is further drawn randomly from a standard normal distribution
and modified to have unit columns.
For each parameter value, we launch the 2-step algorithm and compute the mixing
matrix criterion CA. Each value of Cd yields a 2-D image, displayed in Fig. IV.9. The
6 upper plots correspond the results of the GMCA warm-up stage, and the 6 lower
plots to the improvement of the PALM refinement stage over the warm-up stage.
The differences between lower and upper parts correspond to two phenomena : i)
the different behavior between PALM and the pALS scheme ; ii) the relevance of
MAD use within PALM.
Generally speaking, the differences between GMCA and the two step strategy are
increased by higher condition numbers Cd, which was expected since in the case
of orthogonal matrices (Cd = 1), the pseudo-inverse is equal to the transpose :
A† = AT .
Moreover, the plots of Fig. IV.9 confirm what was observed in the previous subsec-
tion with realistic sources : the 2-step strategy improves GMCA results when the
noise level is high (left part of the plots), that is when GMCA does not work well.
This is due to the fact that i) the pALS scheme of GMCA and in particular the use
of the pseudo-inverse amplifies the noise, which is not the case in PALM ; ii) the
MAD is relevant, since the Gaussian noise A∗TN dominates over the interferences
A∗TA∗s, making the gradient step similar to Gaussian if the estimates are close to
the true values.
Point ii) can further be made more precise by looking at the shape of the first gra-
dient step within the refinement step (that is, the shape of AT (X−AS) at the first
iteration of PALM). Such a shape is displayed in Fig. IV.10 for extreme cases close to
the corners of the plots of Fig. IV.9, for a condition number of Cd = 20. Fig. IV.10a
displays a residual resembling closely to a Gaussian distribution, explaining the
good 9 results yielded by the MAD within the PALM stage in the corresponding up-
per left corner of Fig. IV.9. On the contrary, Fig. IV.10d shows a fully non-Gaussian
residual since the noise is very low and the A∗TA∗s term is far from Gaussianity
(since α is far from 2), thus explaining the deterioration of the 2-step strategy over
GMCA in the lower right corner of Fig. IV.9. On the diagonal, while the residual
are not Gaussian they are not too different either, explaining acceptable results of
the 2-step approach (although the residual seems to be further from a Gaussian
in the lower left plots of Fig. IV.9, the better results are likely to come from the

9. The term “good” is to be understood in comparison to the output of the GMCA stage, and
not necessarily in terms of the absolute performances of the whole 2-step algorithm – which can
be quite bad in this difficult setting where the sources are not very sparse and the noise level high.
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fact that the MAD is fairly insensitive to the sparse contamination coming from the
interferences A∗TA∗s – such a contamination is however less sparse in the upper
right corner).
Furthermore, we have already emphasized that the use of reweighted `1 enables to
lower the artifacts, that might be transformed into interferences by the gradient step
in PALM (cf. Sec. E.2). Looking in Fig. IV.11 at the (ideal) residual at convergence
A∗T (N−A∗s) for highly sparse S∗ and high SNR enables understanding another
interest of reweighting : it transforms a highly non-Gaussian residual into a Gaus-
sian one. Using reweighted `1, the MAD is therefore more likely to perform correctly
and to enables a threshold choice cancelling the erroneous updates, which confirms
that the reweighting is of uttermost importance in the 2-step strategy.

Conclusion

The applicability of sparse BSS methods to real-world data, especially for large-
scale ones, largely depends on the design of reliable, efficient and versatile methods.
Methods such as GMCA presenting these properties rely on heuristics that do not
however guarantee any optimality of the estimate. On the contrary, the estimation
using PALM algorithm to minimize a `1 regularized data fidelity term, which is
now a standard approach to tackle generic matrix factorization problems due to
mathematical guarantees, does not always exhibit such characteristics. To develop
an optimization framework merging the best of the two worlds, we first investigated
the behavior of PALM in the context of sparse BSS. These investigations show and
explain the dramatic sensitivity of the estimate with respect to the regularization
parameters (lack of efficiency and versatility) and also to the initialization (lack
of reliability). To mitigate these limitations, we rationalize a hybrid approach that
allows to circumvent the robustness issue of PALM with respect to the initialization
and provides a proxy to automatically tune the regularization parameters for various
data. Numerical experiments on both simulated and realistic data demonstrate the
quality of the proposed approach with respect to the three desired characteristics.
They also exhibits an improved separation accuracy with respect to state-of-the art
methods. On the other hand, an extensive study of the limitations of the proposed
strategy is performed, enlightening when to use it. As supplementary material, we
also propose in Appendix E several exploratory alternative ways of how to perform
a two-step strategy, which could pave the way for various enhancements.
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Figure IV.9 – Mixing matrix criterion CA (dB) as a function of the SNR and the
sparsity level, for 6 values of condition number Cd. 2 upper rows : results of GMCA
warm-up stage ; 2 bottom rows : improvement over GMCA results yielded by the
PALM refinement stage equipped with the MAD strategy.
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(d) α = 0.1, SNR = 120 dB

Figure IV.10 – Histograms of the gradient in the first iteration of PALM :
AGMCA

T (X−AGMCASGMCA), for a condition number of Cd = 20. The spar-
sity level α and the SNR are specified for each plot.



G. Discussion on the 2-step approach 85

Ideal gradient value

N
um

be
r
of

oc
cu
rr
en
ce
s

(a)

Ideal gradient value

N
um

be
r
of

oc
cu
rr
en
ce
s

(b)

Figure IV.11 – Influence of reweighted `1 on the ideal gradient shape, that is the
gradient computed with the true A∗ and S∗ according to Eq. IV.10. The error s

then corresponds only to the bias introduced by the thresholding. In this experiment,
Cd = 20, SNR = 60 and α = 0.2. Left : A∗T (N−A∗s), with s = SΛS∗ (S

∗)− S∗ :
no reweighted `1 is used for the threshold choice, Right : A∗T(N−A∗s), with
s = SRS∗ (S

∗)− S∗, RS∗ = ΛS∗ �G, with G accounting for reweighted `1.





Chapitre V

Tackling a high number of
sources : blockGMCA

The goal of the previous chapter was to find both a reasonable initialization for
a sparse BSS algorithm and a way to set the regularization parameters, which was a
first mandatory step to hope to handle large-scale problems. In this chapter, we now
enter the core subject of this thesis with a first large-scale issue of BSS : handling
a large number of sources n. This problem is both difficult, since most methods fail
when the number of sources typically exceeds a few tens, and of paramount impor-
tance in various applications such as spectroscopy, astronomy [Bobin et al. 2008] or
biomedical imaging [Biswal & Ulmer 1999].
The proposed approach focuses on the optimization strategy, which has already been
deemed as crucial in the previous chapters. More specifically, the proposed block-
Generalized Morphological Component Analysis (bGMCA) algorithm builds upon
block-coordinate descent with intermediate size blocks. Numerical experiments are
provided that show the quality of the approach when the sources are numerous.

A Problem and outline

A.1 Problem : decreased performances with large numbers of sources

We illustrate in Fig. V.1 the performance deterioration of most BSS methods
when the number of sources n becomes large. The evolution of the mixing matrix
criterion as a function of the number of sources shows that most methods do not
perform correctly in such a large-scale regime. In this case, the main source of
deterioration is very likely related to the non-convex nature of BSS problem and a
regularization issue. Indeed, for a fixed number of samples t, an increasing number
of sources n will make these algorithms more prone to be trapped in spurious local
minima, which tends to hinder the applicability of BSS on practical issues with a
large n. Consequently, the optimization strategy has a huge impact on the separation
performances.

A.2 Outline

The goal of this chapter is to introduce a novel algorithm dubbed bGMCA to
specifically tackle sparse BSS problems when many sources need to be estimated. In
addition to sparse modelling, this algorithm builds upon an efficient minimization
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Figure V.1 – Evolution of the mixing matrix criterion CA (cf. Appendix B) of
four standard BSS algorithms for an increasing n. For comparison, the results of
the proposed bGMCA algorithm are presented, showing that its use allows the
good results of GMCA for low n (around 160 dB for n = 3) to persist for n < 50

and to stay much better than GMCA for n > 50. The experiment was conducted
using exactly sparse sources S∗, with 10% non-zero coefficients, the other coefficients
having a Gaussian amplitude. The mixing matrix A∗ was taken orthogonal. Both
A∗ and S∗ were generated randomly, the experiments being done 25 times and the
median used to draw the figure.

scheme based on block-coordinate descent, as explained in Section B. In contrast to
state-of-the art methods [Zibulevsky 2003,Bobin et al. 2015,Rapin et al. 2014,Gillis
& Glineur 2012], we show that block-based minimization with intermediate block
sizes allows the bGMCA to dramatically enhance the separation performances for
large n. This is demonstrated through comparisons with state-of-the art methods
in Section C, which have been carried out on various simulation scenarios. The last
part of the Chapter shows the flexibility of bGMCA, with an application to sparse
and non-negative BSS in the context of spectroscopy.

B Proposed approach : use of intermediate block-sizes

B.1 State-of-art

As explained in Chapter III-C, to bypass both the coupling between A and S

and the non-convexity of problem II.7, a common idea of several strategies (BCD
[Tseng 2001], PALM [Bolte et al. 2014], ALS) is to benefit from the multi-convex
structure of (II.7) by using blocks [Xu & Yin 2014] in which each sub-problem is
convex. The minimization is then performed alternately with respect to one of the
coordinate blocks while the other coordinates stay fixed, which entails solving a
sequence of convex optimization problems. Most of the already existing methods
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can then be categorized in one of two families, depending on the block sizes :

- Hierarchical or deflation methods : these algorithms use a block of size 1. For
instance, Hierarchical ALS (HALS) ( [Gillis & Glineur 2012] and references
therein, [Comon & Jutten 2010]) updates only one specific column of Â and
one specific row of Ŝ at each iteration. The main advantage of this family
is that each subproblem is often much simpler as their minimizer generally
admits a closed-form expression. Moreover, the matrices involved being small,
the computation time is much lower. The drawback is however that the errors
on some sources/mixing matrix columns propagate from one iteration to the
other since they are updated independently.

- Full-size blocks : these algorithms use as blocks the whole matrices Â and Ŝ

(the block size is thus equal to n). For instance, GMCA [Bobin et al. 2008] is
part of this family. One problem compared to hierarchical or deflation methods
is that the problem is more complex due to the simultaneous estimation of a
high number of sources. Moreover, the computational cost increases quickly
with the number of sources, since large-size problems need to be handled (e.g.
in GMCA, the pseudo-inverse of the whole matrices Â and Ŝ needs to be
computed at each iteration).

The gist of the proposed bGMCA algorithm is to adopt an alternative approach
that uses intermediate block sizes. The underlying intuition is that using blocks of
intermediate size can be recast as relatively small-scale source separation problems,
which are simpler to solve as testified by Fig. V.1. As a byproduct, these subproblems
are also less costly to tackle. On the other hand, they are not small enough to incur
dramatic error propagation.

B.2 Proposed approach

In the following, bGMCA minimizes the problem in eq. (II.7) with blocks, which
are indexed by a set of indices I of size r, 1 6 r 6 n. In practice, the minimization is
performed at each iteration on submatrices of Â (keeping only the columns indexed
by I) and Ŝ (keeping only the rows indexed by I).
We thereafter re-used the work described in the previous chapter and used a 2-
step minimization strategy using intermediate-size coordinate blocks. As before, it
comprehends a GMCA as warm-up stage and PALM as refining stage, enabling the
various benefits described in Chapter III. In the following, we describe both steps.

B.2.1 Warm-up stage

In the framework of the proposed bGMCA algorithm, the GMCA-based warm-
up stage uses blocks of size 1 6 r 6 n and alternates between the update of some
submatrices of Â and Ŝ (these submatrices will be noted ÂI and ŜI). The whole
stage is summarized below :
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0 - Initialize the algorithm with random Â(0).

For each iteration (l) :

1 - A submatrix ŜI is now updated instead of the whole Ŝ. This is performed
using a projected least square solution :

Ŝ
(l)
I = proxG(.)(Â

I (l−1)†
RI ) (V.1)

where : RI is the residual term defined by RI = X− ÂIC
(l−1)

Ŝ
(l−1 )

IC
(with

IC the indices of the sources outside the block), which is the part of X to be
explained by the sources in the current block I .

2 - The mixing sub-matrix ÂI is similarly updated with a fixed S :

ÂI (l)
= proxJ (.)(RIS

(l)†
I ) (V.2)

In this chapter, the penalizations J and G we will consider are the ones described
in Section III-B.2.

B.2.2 Refinement stage

The PALM-based refinement stage using intermediate-size blocks reads as :

While the stopping criterion ∆(l) has not reached the desired value, iterate over (l) :

1 - Update of a submatrix ŜI instead of the whole Ŝ :

Ŝ
(l)
I = prox γG(.)∥∥∥∥ÂI

(l−1)T
ÂI

(l−1)
∥∥∥∥
2

Ŝ
(l−1)
I − γ∥∥∥ÂI(l−1)T

ÂI(l−1)
∥∥∥

2

ÂI(l−1)T
(Â(l−1)Ŝ(l−1) −X)


(V.3)

2 - Update of a submatrix ÂI instead of the whole Â :

Â
(l)
I = prox δJ (.)∥∥∥∥Ŝ

(l)
I

Ŝ
(l)T

I

∥∥∥∥
2

ÂI (l−1) − δ∥∥∥Ŝ(l)
I Ŝ

(l)T

I

∥∥∥
2

(Â(l−1)Ŝ(l) −X)Ŝ
(l)T

I

 (V.4)

3 - Update stopping criterion : ∆(l) =

∑
j∈[1,n]

∥∥∥Âj(l)�Âj(l−1)
∥∥∥

1
n

Where the notations and the different constants are the same as in Chapter III.
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B.2.3 Block choice

Several strategies for selecting at each iteration new block indices I have been
investigated :

— Sequential : at each iteration, r sources are selected sequentially in a cyclic
way ;

— Random : at each iteration, r indices in [1, n] are randomly chosen following a
uniform distribution and the corresponding sources updated ;

— Random sequential : this strategy combines the sequential and the random
choices to ensure that all sources are updated an equal number of times.

In the experiments, random strategies tended to provide better results. Indeed,
compared to a sequential choice, randomness is likely to make the algorithm more
robust with respect to spurious local minima. Since the results between the random
strategy and the random sequential one are similar, the first was eventually selected.

B.2.4 Convergence

The use of intermediate-size blocks do not alter the convergence guarantees of
PALM algorithm with fixed thresholds. As such, the refinement stage converges
to a stationary point of eq. (II.7), as long as the blocks are updated following an
essentially cyclic rule [Chouzenoux et al. 2016] or even if they are chosen randomly
and updated one by one [Patrascu & Necoara 2015].

B.2.5 Complexity

In this part, we focus only on the warm-up stage, which iterations are the most
computationally expensive. Each iteration can then be decomposed into the follo-
wing elementary steps : i) a residual term is computed with a complexity of O(mtr),
where m is the number of observations, t the number of samples and r the block
size ; ii) the pseudo-inverse is performed with the singular value decomposition of
a r × r matrix, which yield an overall complexity of O(r3 + r2m + m2r) ; iii) the
thresholding-strategy first requires the evaluation of the threshold values, which
has a complexity of rt ; iv) then the soft-thresholding step which has complexity
O(rt) ; and v) updating A is finally performed using a conjugate gradient algo-
rithm, whose complexity is known to depend on the number of non-zero entries in
S and on the condition of this matrix Cd(S). An upperbound for this complexity
is thus O(rt

√
Cd(S)). The final estimate of the complexity of a single iteration is

finally given by :
r[mt+ rm+m2 + r2 + t

√
Cd(S)] (V.5)

With Cd(S) the conditioning number of S. Thus, both the r factor and the behavior
in r3 show that small r values will lower the computational budget of each iteration.
Since the algorithm is iterative, the final running time will however depend on both
the complexity of each iteration and of the number of iterations. Intuitively, the
required number of iterations should be inversely proportional to r, since only r
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sources are updated at each iteration, requiring dn/re times the number of itera-
tions needed by an algorithm using the full matrices. As will be emphasized later
on, the number of required iterations will be smaller than expected, which on overall
makes that the bGMCA algorithm enables a reduction of the computation time.

C Explaining the behavior of bGMCA : numerical ex-
periments on simulated data

In this part, we present our results on simulated data. The goal is to show and
to explain on simple data how bGMCA works.

C.1 Experimental protocol

The simulated data were generated in the following way :

1 - Source matrix S∗ : the sources are exactly sparse in the sample domain (that
is, ΦS = Id – the results would however be identical for any source sparse in an
orthogonal representation). Their coefficients are drawn randomly according
to a Bernoulli-Gaussian distribution : among the t samples (t = 1 000), a
proportion p (unless specified, p = 0.1) of the samples is non-zero, with an
amplitude drawn according to a standard normal distribution.

2 - Mixing matrix A∗ : the mixing matrix is drawn randomly according to a
standard normal distribution and modified to have unit columns and a given
condition number Cd (unless specified, Cd = 1).

The number of observations m is taken equal to the number of sources : m = n.
In this first simulation, no noise is added. The number of iterations for the warm-
up stage is 10 000. Here, the following penalizations G and J were used (for more
mathematical details and the corresponding proximal operators, see Sec. III-B.2) :

- `1 sparsity constraint in some transformed domain : The constraint G on S is
a `1-norm penalization.

- Oblique constraint : to avoid degenerated A and S matrices, the columns of
A are constrained through J to lie onto the `2 hyper-sphere.

To measure the accuracy of the separation, we again followed the definition
in [Bobin et al. 2015] to use the global criterion CA on A (cf. Appendix B). The
data matrices being drawn randomly, each experiment was performed several times
(typically 25 times) and the median of CA over the experiments will be displayed.

C.2 Modeling block minimization

In this section, a simple model is introduced to describe the behavior of the
warm-up stage of the bGMCA algorithm. As described in section B.2, updating a
given block is performed at each iteration from the residual RI = X− ÂIC ŜIC (to
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lighten the notations, we dropped the iteration number l−1). If the estimation were
perfect, the residual would be equal to the part of the data explained by the true
sources in the current block indexed by I, which would read : RI = AI∗S∗I .
It is nevertheless mandatory to take into account the noise N, as well as a variety
of flaws in the estimation by adding a term E to model the estimation error. This
entails :

RI = X− ÂIC ŜIC = AI∗S∗I + E + N (V.6)

A way to further describe the structure of E is to decompose the estimated ŜI matrix
in the true matrix plus an error : ŜI = S∗I + sI and ŜIC = S∗

IC
+ sIC , where s is

the error on S∗. Assuming that the errors are small and neglecting the second-order
terms, the residual RI can now be written as :

RI = X− ÂIC ŜIC = AI∗S∗I + AIC∗S∗IC − ÂIC Ŝ∗IC − ÂICsIC + N (V.7)

This implies that :

E = (AIC∗ − ÂIC )S∗IC − ÂICsIC (V.8)

Equation (V.8) highlights two terms. The first term can be qualified as interferences
in that it comes from a leakage of the true sources that are outside the currently
updated block. This term vanishes when ÂIC is perfectly estimated. The second
term corresponds to interferences as well as artefacts. It originates indeed from the
error on the sources outside the block I. The artefacts comprehend in particular the
errors on the sources induced by the soft thresholding corresponding to the `1-norm.
Equation (V.8) also allows us to understand how the choice of a given block size
r 6 n will impact the separation process :

- Updating small-size blocks can be recast as a small-size source separation
problem where the actual number of sources is equal to r. As testified by
Fig. V.1, updating small-size block problems should be easier to tackle.

- Small-size blocks should also yield larger errors E . It is intuitively due to the
fact that many potentially badly estimated sources in IC are used for the
estimation of AI∗ and S∗I through the residual, deteriorating this estimation.
It can be explained in more details using equation (V.8) : with more sources
in IC , the energy of AIC , ÂIC∗ , S∗

IC
and εIC increases, yielding bigger error

terms (AIC∗ − ÂIC )S∗
IC

and −ÂICsIC . Therefore the errors E become higher,
deteriorating the results.

C.3 Experiment

In this section, we investigate the behavior of the proposed block-based GMCA
algorithm with respect to various parameters such as the block size r, the number
of sources n, the conditioning of the mixing matrix Cd and the sparsity level of the
sources p.
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C.3.1 Study of the impact of r and n

In this subsection, bGMCA is evaluated for different numbers of sources n =

20, 50, 100. Each time the block sizes vary in the range 1 ≤ r ≤ n. In this expe-
riment and to complete the description of section C.1, the parameters for the matrix
generation were : p = 0.1, t = 1 000, Cd = 1, m = n, with a Bernoulli-Gaussian
distribution for the sources. These results are displayed in Fig. V.2a. Interestingly,
three different regimes characterize the behavior of the bGMCA algorithm :

- For intermediate and relatively large block sizes (typically r > 5 and r < n−5) :
we first observe that after an initial deterioration around r = 5 , the separation
quality does not vary significantly for increasing block sizes. A degradation of
several dB can then be observed for r close to n. In all this part of the curve,
the error term E is composed of residuals of sparse sources, and thus E will be
rather sparse when the block size is large. Based on the MAD, the thresholds
are set according to dense and not to sparse noise. Consequently the automatic
thresholding strategy of the bGMCA algorithm will not be sensitive to the
estimation errors.

- A very prominent peak can be observed when the block size is of the order of
3. Interestingly, the maximum yields a mixing matrix criterion of about 10−16,
which means that perfect separation is reached up to numerical errors. This
value of 160 dB is at least 80 dB larger than in the standard case r = n, for
which the values for the different n are all below 80 dB. In this regime, error
propagation is composed of the mixture of a larger number of sparse sources,
which eventually entails a densely distributed contribution that can be measu-
red by the MAD-based thresholding procedure. Therefore, the threshold used
to estimate the sources is able to filter out both the noise and the estimation
errors. Moreover, r = 5 is quite small compared to n. Following the modeling
introduced in section C.2, small block sizes can be recast as a sequence of
low-dimensional blind source separation problems, which are simpler to solve.

- For small block sizes (typically r < 4), the separation quality is deteriorated
when the block size decreases, especially for large n values. In this regime,
the level of estimation error E becomes large, which entails large values for the
thresholds Λ. Consequently, the bias induced by the soft-thresholding operator
increases, which eventually hampers the performance quality. Furthermore, for
a fixed block size r, E increases with the number of sources n, making this
phenomenon more pronounced for higher n values.

C.3.2 Condition number of the mixing matrix

In this section, we investigate the role played by the conditioning of the mixing
matrix on the performances of the bGMCA algorithm. Fig. V.2b displays the empi-
rical results for several condition numbers Cd of the A∗ matrix. There are n = 50

sources generated in the same way as in the previous experiment : with a Bernoulli-
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Figure V.2 – Up : mixing matrix criterion as a function of r for different n. Right :
mixing matrix criterion as a function of r for different Cd.

Gaussian distribution and p = 0.1, t = 1000. One can observe that when Cd in-
creases, the peak present for r close to 5 tends to be flattened, which is probably
due to higher projection errors. At some iteration l, the sources are estimated by
projecting X−ÂIC ŜIC onto the subspace spanned by ÂI . In the orthogonal case, the
projection error is low since ÂIC and ÂI are close to orthogonality at the solution.
However, this error increases with the condition number Cd.
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Figure V.3 – Mixing matrix criterion as a function of r for different sparsity degrees.

C.3.3 Sparsity level p

In this section, the impact of the sparsity level of the sources is investigated. The
sources are still following a Bernoulli-Gaussian distribution. The parameters are :
n = 50, t = 1 000, Cd = 1. As featured in Figure V.3, the separation performances
at the maximum value decrease slightly with larger p, while a slow shift of the tran-
sition between the small/large block size regimes towards larger block sizes operates.
Furthermore, the results tend to deteriorate quickly for small block sizes (r < 4).
Indeed, owing to the model of subsection C.2, the contribution of S∗

IC
and sIC in the

error term (V.8) increases with p, this effect being even more important for small r
(which could also explain the shift of the peak for p = 0.3, by a deterioration of the
results at its beginning, r = 3). When p increases, the sources in ŜI become denser.
Instead of being mainly sensitive to the noise and E , the MAD-based thresholding
tends to be perturbated by ŜI , resulting in more artefacts, which eventually ham-
pers the separation performances. This effect increases when the sparsity level of
the sources decreases.

C.3.4 Number of iterations and computation time

We have already seen in Section B.2.5 that the bGMCA algorithm enables a
gain in terms of computational complexity of each iteration (roughly speaking, this
gain is almost linear if t is much larger than m and r). We here further empirically
assess the actual number of iterations required by the warm-up stage to yield a good
initialization. To this end, the following experiment has been conducted :

1. First, the algorithm is launched with a large number of iterations (e.g. 10 000)
to give good Â and Ŝ matrices. The corresponding value of CA is saved and
called C∗A.
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Figure V.4 – Right : number of iterations in logarithmic scale as a function of r.

2. Using the same initial conditions, the warm-up stage is re-launched and stops
when the mixing matrix criterion reaches 1.05× C∗A (i.e. 5% of the “optimal”
solution for a given setting).

The number of iterations needed to reach the 5% accuracy is reported in Fig. V.4.
Intuitively, one would expect that when the block size decreases, the required num-
ber of iterations should increase by about n/r to keep the number of updates per
source constant. This trend is displayed with the straight green curve of Fig. V.4.
Interestingly, Fig. V.4 shows that the actual number of iterations to reach the 5%

accuracy criterion almost does not vary with r. Consequently, on top of leading to
computationally cheaper iterations, using small block sizes almost requires the same
number of iterations for the warm-up stage to give a good initialization. Therefore,
the use of blocks allows a huge decrease of the computational cost of the warm-up
stage and thus of sparse BSS.

D Validation of the approach on realistic sources

D.1 Context

The goal of this part is to evaluate the behavior of bGMCA and show its efficiency
in a more realistic setting. Our data come from a simulated LC - 1H NMR (Liquid
Chromatography - 1H Nuclear Magnetic Resonance) experiment. The objective of
such a experiment is to identify each of the chemicals compounds present in a fluid,
as well as their concentrations. As explained in Chapter II-A.1.2 (the principles of
LC - 1H NMR and LC - MS experiments are the same), the LC - 1H NMR experiment
enables a first physical imperfect separation during which the fluid goes through a
chromatography column and its chemicals are separated according to their speeds
(which themselves depend on their physical properties). Then, the spectrum of the
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output of the column is measured at a given time frequency. These measurements
of the spectra at different times can be used to feed a bGMCA algorithm to refine
the imperfect physical separation.
The fluids on which we worked could for instance correspond to drinks. The goal
of bGMCA is then to identify the spectra of each compound (e.g. caffeine, sucrose,
menthone...) and the mixing coefficients (which are proportional to their concentra-
tions) from the LC - 1HNMR data. BSS has already been successfully applied [Toumi
et al. 2013] to similar problems but generally with lower number of sources n.
The sources (n = 40 sources with each t = 10 000 samples) are composed of elemen-
tary sparse non-negative theoretical spectra of chemical compounds taken from the
SDBS database 1, which are further convolved with a Laplacian having a width of
3 samples to simulate a given spectral resolution. Therefore, each convolved source
becomes an approximately sparse non-negative row of S∗ (cf. Fig. V.6). The mixing
matrix A∗ of size (m,n) = (320, 40) is composed of Gaussians (see Fig. V.5), the
objective being to have a matrix that could be consistent with the first imperfect
physical separation. It is designed in two parts : the first columns have relatively
spaced Gaussian means while the others have a larger overlap to simulate com-
pounds for which the physical separation is less discriminative. More precisely, an
index m̄ ∈ [1,m] is chosen, with m̄ > m/2 (typically, m̄ = d0.75me). A set of bn/2c
indices (mi)i=1...bn/2c is then uniformly chosen in [0, m̄] and another set of dn/2e
indices (mi)i=dn/2e...n is chosen in [m̄+ 1,m]. Each column of A∗ is then created as
a Gaussian whose mean is mi. Monte-Carlo simulations have been carried out by

Figure V.5 – Exemple of A∗ matrix with 8 columns : the four first columns have
spaced means, while the last ones are more correlated

1. National Institute of Advanced Industrial Science and Technology (AIST), Spectral database
for organic compounds : http://sdbs.db.aist.go.jp

http://sdbs.db.aist.go.jp
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randomly assigning the sources and the mixing matrix columns. The median over
the results of the different experiments will be displayed.

D.2 Experiments

There are two main differences with the previous experiments of section C : i)
the sources are sparse in the undecimated wavelet domain ΦS, which is chosen as
the starlet transform [Starck et al. 2007] in the following, and ii) the non-negativity
of S and A is enforced. Fig. V.6 (left) displays the evolution of the mixing matrix
criterion with varying block sizes with and without the non-negativity constraints.
The algorithm was launched with 2 000 iterations.
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Figure V.6 – Up : mixing criterion on realistic sources, with and without a non-
negativity constraint. Down : example of a retrieved source, which is almost perfectly
superimposed on the true source, therefore showing the quality of the results.

These results show that non-negativity yields a huge improvement for all block sizes
r, which is expected since the problem is more constrained. This is probably due to
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the fact that all the small negative coefficients are set to 0, thus artificially allowing
lower thresholds and therefore less artefacts. This is especially advantageous in the
present context with very low noise 2 (the Signal to Noise Ratio - SNR - has a value
of 120 dB) where the thresholds do not need to be high to remove noise.

Furthermore, the separation quality tends to be constant for r ≥ 10. In this
particular setting, non-negativity helps curing the failure of sparse BSS when large
blocks are used. However, using smaller block sizes still allows reducing the compu-
tation cost while preserving the separation quality. The bGMCA with non-negativity
also compares favorably with respect to other tested standard BSS methods, yiel-
ding better results for all values of r. A single original source is displayed in the right
panel of Fig. V.6 after its convolution with a Laplacian. Its estimation using bGMCA
with a non-negativity constraint is plotted in dashed line on the same graph, sho-
wing the high separation quality because of the nearly perfect overlap between the
two curves. Both sources are drawn in the direct domain.

The robustness of the bGMCA algorithm with respect to additive Gaussian noise
has further been tested. Fig. V.7 reports the evolution of the mixing matrix criterion
for varying values of the signal-to-noise ratio. It can be observed that bGMCA yields
the best performances for all values of SNR. Although it seems to particularly benefit
from high SNR compared to HALS and EFICA, it still yields better results than
the other algorithms for low SNR despite the small block size used (r = 10), which
could have been particularly prone to error propagations.

SNR (logarithmic scale)

C
A
(d
B
)

Figure V.7 – Mixing criterion on realistic sources, using a non-negative constraint
with r = 10.

2. Depending on the instrumentation, high SNR values can be reached in such an experiment.
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Conclusion

While being central in numerous applications, tackling sparse BSS problems
when the number of sources is large is highly challenging. In this chapter, we des-
cribed the block-GMCA algorithm, which is specifically tailored to solve sparse
BSS in such a large-scale regime. In contrast to other state-of-the-art algorithms,
bGMCA builds upon block-coordinate optimization with intermediate-size blocks.
The mechanisms enabling bGMCA to have improved performances compared to its
full-size block counterparts are explained both using exactly sparse simulated data
and a mathematical modeling. While on such exactly sparse data bGMCA can lead
to numerically perfect separations, comparisons have also been carried on simulated
spectroscopic data, which demonstrates the reliability of the proposed algorithm in
a realistic setting and its superior performances for high SNR. All the numerical
comparisons conducted show that bGMCA performs at least as well as standard
sparse BSS on mixtures of a high number of sources and most of the experiments
even show dramatically enhanced separation performances. As a byproduct, the pro-
posed block-based strategy yields a significant decrease of the computational cost
of the separation process.





Chapitre VI

Tackling large-scale datasets :
mini-batch optimization with

aggregation on Riemannian
manifold

The above chapter proposed a way to handle problems involving a high number
of sources n, that is matrix factorization problems with a large inner dimension.
In this chapter, we introduce a scalable sparse BSS algorithm enabling to handle
large-scale datasets X, which is of uttermost importance due to current ever growing
data-sizes.
The proposed distributedGMCA (dGMCA) combines a robust projected alternating
least-squares method with mini-batches, which enables to both handle large-scale
datasets and to benefit from the efficiency, reliability and versatility of pALS (see
Chapter IV). The originality lies in the use of a manifold-based aggregation of the
different estimates of the mixing matrices. This approach is showed to maintain
high performances compared to full-batch methods, which are in contrast not dis-
tributed. Remarkably, dGMCA can further outperform such algorithms when the
sources have highly sparse distributions. Numerical experiments are carried out on
synthetic data as well as realistic simulations of spectroscopic data.

This work has been started by the internship of Tobias Liaudat, which was pro-
posed during the present PhD.

A Introduction

As explained in Chapter II, the challenges implied by huge datasets X are two-
fold : time computational issues (the dataset sizes make that it is currently impossible
to perform BSS in a decent amount of time) and memory limitation issues (datasets
are even too large to fit into memory). To give an order of the magnitude at stake,
one could expect from astronomical devices such as the SKA data of up to m ' 104

observations and t ' 109 samples.
In this context, the GMCA algorithm [Bobin et al. 2007,Bobin et al. 2015], which
was shown in Chapter IV to perform well for handling small-scale to middle [Bobin
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et al. 2013] size datasets X, is not anymore usable. Indeed, it needs at each iteration
both an inversion of the factors A and S and multiplications with X, which is parti-
cularly costly. This is furthermore an issue for the two-step approach of Chapter IV,
that at least required a few iterations of GMCA as a warm-up stage for PALM.
In this chapter, we will focus on the largest dimension of X : we will propose a
new sparse BSS method enabling to cope with datasets X comprehending
a large number of samples t. Before detailing the method, we will present the
context by reviewing other related works. Then, we explain the challenges and our
contribution.

A.1 Sparse matrix factorization for large-scale datasets X

The sparse BSS problem of Eq. (II.8) can be seen as a generic sparse matrix
factorization problem, for which some works have been dedicated to large-scale da-
tasets. A classical idea to tackle such an issue is to use only a submatrix (a set of
columns) of X at each iteration, that is to use mini-batches. In contrast to success-
ful small scale sparse BSS algorithms, most of the corresponding works do not use
pALS.
Among them, one can distinguish the ones that :

— builds on stochastic gradient descent (SGD – [Bottou 2010]) : for instance, [Da-
vis et al. 2016] extended the use of PALM to mini-batches, making it possible
to tackle large datasets. Such a (potentially asynchronous) approach has also
been extended to the case of hyperspectral imaging [Thouvenin et al. 2018]. In
this work, the authors use the framework of [Cannelli et al. 2016], arguing a
higher flexibility than in [Davis et al. 2016] in which the asynchronicity has a
high impact on the allowable step sizes, counter-balancing its positive effects ;

— builds upon stochastic approximations. In the context of dictionary learning,
[Mairal et al. 2009] proposed an online algorithm in which the dictionary is
computed only minimizing an upperbound of the empirical cost. While the
online setting is a special case with mini-batches size of tb = 1, the algorithm
is generalized to arbitrary tb values. More recently, this algorithm has been
extended in [Mensch et al. 2018] to tackle datasets that, in our context, would
be huge both in the number of samples t and number of observations m. An
extension has also been envisioned in the context of hyperspectral imaging
with spectral variability [Thouvenin et al. 2016].

A.2 Challenges and contributions

A.2.1 Challenges

While the approaches of the previous subsection using mini-batches might sound
appealing for large-scale sparse BSS, it must be highlighted that they have been
elaborated for different kind of problems. In these, they generally do not aim at re-
trieving physical factors A∗ and S∗, which might not even exist. As such, algorithms
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based on stochastic approximations as in [Mairal et al. 2009,Mensch et al. 2018] were
initially targeting the dictionary learning problem and thus focus only on finding
factors yielding good results for a given application (e.g. denoising...). Therefore,
they generally do not provide accurate results in the context of sparse BSS (this
claim will be further backed by the comparisons performed throughout this whole
work). On the other hand, it has been shown in Chapter IV that gradient descent
(GD) methods usually suffer from a low reliability in the sparse BSS context. In-
deed, and in contrast to the pALS scheme of [Bobin et al. 2007], the use of GD
methods makes automatic hyper-parameter choice much more difficult. Therefore,
the mini-batches SGD methods are not expected to work well either (at least cur-
rently without requiring a warm-up stage based on pALS).
This leaves sparse BSS with very few satisfying options, as :

— Large-scale optimization algorithms using mini-batches yield bad physical fac-
tors Â and Ŝ in practice ;

— Usual sparse BSS algorithms working well on small-scale problems are not
scalable.

Consequently, the solution we propose for large-scale BSS is to introduce mini-
batches in the GMCA algorithm of [Bobin et al. 2007], which would enable to benefit
from the best of the two worlds : re-using the mini-batch approach enabling scalable
algorithms ; benefiting from the automatic parameter choice yielded by the pALS
scheme and its reliability.

A.2.2 Other related works

The ALS algorithm has already been studied in the large-scale setting, but in the
different application of recommendation systems. In [Zhou et al. 2008], the authors
proposed a parallel ALS with weighted-λ-regularization to solve a low-rank matrix
factorization problem. To do that, they split the X matrix, the factors A and S ac-
cordingly, and each node processes its own submatrices, in an approach reminiscent
to mini-batches. The method was extended by [Teflioudi et al. 2012] to a distributed
(shared nothing) setting. The works of [Hastie et al. 2015,Kampffmeyer 2015] also
tackle a similar issue. However, several differences between such a problem and ours
must be highlighted as : i) The application is different from ours : in particular, as
X is sparse (due to the high number of missing entries), it is much easier to work on
smaller submatrices and the mini-batches are much more naturally chosen ; ii) As
a consequence, no aggregation (see below) is used since during each iteration each
matrix Â and Ŝ (or more specifically, a submatrix of Â and Ŝ) is updated once ; iii)
The cost function is different from ours, as there is no `1 sparsity promoting term.
As such, while the main idea of using mini-batches within an ALS scheme will be
re-used in this Chapter, the similarities with these works are limited.
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A.2.3 Contributions

In this Chapter, we propose to extend sparse BSS to the large-scale setting, en-
abling to tackle datasets X with a huge number of columns t. Our approach consists
in introducing a mini-batch (stochastic) version of [Bobin et al. 2007] coined distri-
butedGMCA (dGMCA). The algorithm enables to tackle datasets that would not
even fit into the memory of one computer. The approach is furthermore robustified
through the introduction of an aggregation step based on a robust weighted mean
on a Riemannian manifold, enabling to aggregate several estimators of the mixing
matrix A. Beyond enabling scalability, the introduction of such a step is empirically
shown to improve in some experiments the results of dGMCA over the full batch
version of the algorithm. Lastly, realistic experiments are carried out to demonstrate
the quality of the approach, and relationship to SGD methods in machine learning
are highlighted to explain the results.

B Distributed sparse Alternating Least-Squares

B.1 Distributing the GMCA algorithm

B.1.1 Naive approach

A simple approach to deal with large-scale data would be to split the large
dataset X into B submatrices. As such, the t columns would be split into B disjoint
submatrices, each of them having tb = t/B columns (for the moment, t is assumed to
be a multiple ofB). Each of the corresponding submatrix is denoted as XJb , b ∈ [1, B]

and the corresponding indices of the columns as Jb, b ∈ [0, B] (#Jb = tb).
A naive approach would then be to work independently on each submatrix XJb , b ∈
[1, B]. As such, instead of looking for an (approximate) minimizer of Eq. (II.8) using
GMCA, we would rather tackle small-scale subproblems :

argmin
A[Jb]∈Rm×n,SJb∈Rn×tb

1

2

∥∥XJb −A[Jb]S
Jb
∥∥2
F

+
∥∥RSJb � SJb

∥∥
1
+ι{∀i∈[1,n],‖A[Jb]i‖2`2=1}(A[Jb]),

(VI.1)
where, for the sake of simplicity, the ΦS has been omitted and taken equal to identity.
The final estimate of S∗ is straightforwardly obtained through the concatenation of
the columns of the different final estimates ŜJb , b ∈ [1, B].
The question is however more intricate concerning the mixing matrix, as each sub-
matrix XJb yields a different estimate A[Jb] of the same full matrix A∗. At this
point, we should make clear that the A[Jb] are different despite the assumed statio-
narity of the signals, as they rely on a specific small-case realization XJb . As such,
some will be better estimates of the true underlying A∗ than others. To get the
final estimate Â, we thus need to resort to an aggregation step that will merge the
information yielded by the various A[Jb] to yield a final Â :

Â = AGGREGATE(A[J1],A[J2], ...,A[JB]), (VI.2)
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where the AGGREGATE function is used as a generic term for the aggregation. As a
simple example of such a function, one could for instance use the coefficient-wise
Euclidean mean of the different A[Jb], b ∈ [1, B]. This option is however simplistic
and can be enhanced (cf. Sec. B.2). The naive version of dGMCA is summarized in
Algorithm 5.

Algorithm 5 Naive dGMCA
1: procedure NAIVE dGMCA(X,Â(0))
2: Choose J1, J2, · · · , JB as a partition of [1, t]

3: for b = 1, · · · , B do
4: A[Jb], Ŝ

Jb = GMCA(XJb ,Â(0))
5: end for
6: Â = AGGREGATE(A[J1],A[J2], ...,A[JB])

7: return Â, Ŝ

8: end procedure

Nevertheless, one of the main flaws of the naive dGMCA is that the information
yielded by a given submatrix XJb1 is not shared at all to enhance the mixing matrix
A[Jb] found from another submatrix XJb , b 6= b1. Said differently, processing each
submatrix XJb fully independently makes that much less information than using the
whole matrix X is used to estimate each of the A[Jb]. It could be argued that this
is not a real issue, as we are not directly interested by each of the A[Jb], b ∈ [1, B],
but rather by the final Â obtained after the aggregation step, which goal is precisely
to merge the information between the subproblems. Unfortunately, this is not fully
accurate and practical experiments further tend to hinder such arguments. Indeed,
performing independent GMCA makes that none of the estimated A[Jb] is descent
(as only too small submatrices of the original data X are used). As such, the aggre-
gation step – said differently, information sharing among subproblems – is applied
“too late” on only badly estimated A[Jb] : since Â is estimated from mainly bad
A[Jb], it is also bad.

B.1.2 dGMCA algorithm

To alleviate the previous difficulty induced by working independently on subpro-
blems of the form Eq. (VI.1), we propose to enable the estimation of each A[Jb1 ] to
share information with the other A[Jb], b 6= b1 during the iterations of GMCA. To
do that, we propose to apply the aggregation step during each iteration of GMCA
(following the machine learning terminology, we can now speak of epochs of GMCA),
in contrast to the naive approach in which it was performed only after the end of
GMCA.
Using such an approach, the indices Jb may now change during GMCA iterations,
as well as the corresponding submatrices XJb . As such, we will rather write for each
epoch Jb(l). By analogy with the works of [Mairal et al. 2009, Davis et al. 2016,
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Mensch et al. 2018], we will further call XJb(l) a mini-batch of X 1.
A last remaining question before detailing the algorithm is how to choose the re-
gularization parameters RS within dGMCA, to keep the advantage of the adaptive
parameter tuning of GMCA 2. Indeed, we will here aim at extending the most recent
parameter choice of GMCA 3, based on using an increasing percentile of the whole
distribution of the currently estimated Ŝ(l), which is difficult to distribute for large
t values. As such, we propose to rather use an exponential decay of the parameters
of the form :

R
i(l)
iSi

= κσi +
(∥∥∥Ŝ(l)

i

∥∥∥
∞
− κσi

)
exp(−lαi), (VI.3)

where R
i(l)
iSi

is the estimated regularization parameter at epoch l for source Si,
σi is an estimation of the noise back-projected on source Si, κ is chosen accor-
ding to the fixed point Gaussian noise removal argument (here κ = 3),

∥∥∥Ŝ(l)
i

∥∥∥
∞

is

the maximum absolute value of Ŝ
(l)
i and αi is a parameter controlling the expo-

nential decay decrease 4. An interesting property of the parameter choice of (VI.3)
is that it is highly distributable :

∥∥∥Ŝ(l)
i

∥∥∥
∞

is the maximum over each mini-batch

(
∥∥∥Ŝ(l)

i

∥∥∥
∞

= maxb∈[1,B]

∥∥∥ŜJb(l)i

∥∥∥
∞
), and σi can be chosen as the median of its estima-

tions over the mini-batches : σi = medianb∈[1,b] σi[Jb(l)]. Each estimation σi[Jb(l)]

is in turn performed according to the usual method used in GMCA, based on the
MAD operator (cf. Chapter II [Bobin et al. 2007]).

B.1.3 Summary of the algorithm

B.2 Manifold-based mixing matrix aggregation

We now detail the aggregation step used to build the estimate Â(l) from the
various A(l)[Jb], b ∈ [1, B]. To lighten the notations, we will drop in this subsection
the l index, but the aggregation is of course performed at each iteration. We propose
to define Â as the barycenter of the different estimates according to some φ as
follows :

1. Note that in these works, the aggregation step enabling to share the information between
mini-batches is however implicit and made simpler due to the fact that the algorithms use only
local updates such as gradient steps instead of least-square solutions.

2. While in the naive dGMCA approach the answer to such a question was straightforward, it
is important to emphasize that choosing the regularization parameters using small XJb could lead
to estimate them badly.

3. The reader might wonder why we are not implementing here the regularization parameter
choice used in Chapter IV, which was fully based on the MAD. This is due to the fact that while
this would is easier to distribute, the use of the percentile decrease generally provides better results
in GMCA. In contrast, the experiments we perform in the Appendix E show that the percentile
does not seem to work well within PALM, thus our choice to use the MAD.

4. The αi parameter intrinsically depends on the sparsity level of Si. As such, it can be estimated
by fitting a generalized Gaussian distribution to the current estimation Ŝ

(l)
i and using a maximum

likelihood estimator. However, we experimentally found out that the final result of dGMCA is quite
robust to the estimation of αi, enabling to rather use a value fixed beforehand.
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Algorithm 6 dGMCA
1: procedure dGMCA(X,Â(0))
2: for l = 1, · · · , L do
3: Choose J1, J2, · · · , JB as a partition of [1, t]

4: for b = 1, · · · , B do
5: ŜJb(l) = SRS

(l)(Â(l−1)†XJb(l)) . Use Eq. (VI.3) for RS choice
6: A[Jb(l)] = Π‖.‖2=1(XJb(l)ŜJb(l)†)

7: end for
8: Â(l) = AGGREGATE(A[J1(l)],A[J2(l)], ...,A[JB(l)])

9: end for
10: return Â(L), Ŝ(L)

11: end procedure

Â = argmin
A∈Rm×n

B∑
b=1

ωbφ (A,A[Jb]) , (VI.4)

where the barycentric weights are positive and sum to one : ∀b ∈ [1, b];ωb ≥ 0

and
∑B

b=1 ωb = 1.
A straightforward example amounts to choose φ as the standard Euclidean distance
applied on each column : φ (A,A[Jb]) =

∑n
j=1 ‖Aj − Aj [Jb]‖2`2 . This choice will

eventually define the aggregated estimator as a weighted sum of the different mini-
batch estimators :

Â =

B∑
b=1

ωbA[Jb]. (VI.5)

However, in the context of BSS, the mixing matrix is assumed to belong to the
Oblique ensemble. In the limit of small angular distances between the different
estimators, the Euclidean metric is likely an aggregated estimate that fulfills the
Oblique constraint, which can be further constrained by projecting Â onto Ob. In
the general case, this is unlikely to hold true, especially when considering small size
mini-batches, that can lead to more larger angular deviations. This implies that the
Oblique constraint has to be preserved in the aggregation step.

Fréchet mean on the hypersphere

Recall that the Oblique constraint implies that each column of the mixing matrix
A belongs to the m-dimensional hypersphere Sm orm-sphere, which is a Riemannian
manifold. We assume the reader to be familiar with some basic notions about opti-
mization on Riemannian manifolds. If it is not the case, we refer to [Absil et al. 2009]
or to the Appendix F for a summary of useful elements for this work.

A natural approach to take into account the Oblique constraint consists in buil-
ding an aggregated estimator by defining each of the estimate Â column as being
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the Fréchet mean of the corresponding columns in the estimators A[Jb] :

∀j ∈ [1, n], Âj = argmin
a∈Rm

∑
b∈[1,B]

ωb d
β
(
a,A[Jb]

j
)
, (VI.6)

where 1 ≤ β < +∞. The case β = 2 corresponds to the `2 norm along the geodesics
of the manifold Sm.
Following [Afsari 2011], it is possible to find a local critical point of this problem
using an iterative gradient descent algorithm on the m-sphere presented in Algo-
rithm 7. The parameter ρ is the step size 5. The term ∇J β(Âj

(lf )

), where lf is
the iteration number in the Fréchet mean algorithm, is the gradient of the mean
cost function J β(Âj

(lf )

) =
∑B

b=1 ωb d
β
(
Âj

(lf )

,Aj [Jb]
)
, which takes the following

expression for β ≥ 1 :

∇J β(Âj
(lf )

) = −
B∑
b=1

ωbd
β−2

(
Âj

(lf )

,Aj [Jb]
)
log

Âj
(lf )

(
Aj [Jb]

)
. (VI.7)

Algorithm 7 Fréchet mean
1: procedure Fréchet mean on the Oblique ensemble Ob (m)

2: Correct for permutations
3: for j = 1, · · · , n do . Loop over all the sources
4: while Convergence is not reached do
5: ∇J β(Âj

(lf )

) = −
∑B

b=1 ωblogÂj
(lf )

(
Aj [Jb]

)
. Gradient

6: Âj
(lf+1)

= exp
Âj

(lf )

(
−ρ∇J β(Âj

(lf )

))
)

7: lf ← lf + 1

8: end while
9: end for
10: Return Â(Lf )

11: end procedure

Robust Fréchet mean on the hypersphere

The use of small mini-batches makes the separation process more sensitive to
several factors. In practice, this will tend to generate outliers in the estimated A[Jb]

for some mini-batches, which is discussed in more details in Section B.3 and sup-
ported by several numerical experiments in Section C. Unfortunately, the Fréchet
mean is not robust to such outliers [Fletcher et al. 2008,Arnaudon et al. 2013]. In
this case, a natural choice would be to choose β = 1, which corresponds to the
usual `1 norm. However, the `1 norm is not differentiable about 0 and the gradient
of the cost function depends on the inverse of the distance d1 as highlighted in
Equation (VI.7), which makes it quite unstable in practice. To alleviate this issue,

5. It can possibly vary during the optimization process. It will be kept fixed in this Chapter.
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we propose to build a differentiable approximation of d1 based on Nesterov’s smoo-
thing technique [Nesterov 2005]. Such a smooth approximation of d1 can be built as
follows [Becker et al. 2011] for a,b ∈ Rm :

d1
ν(a,b) = argmax

‖u‖∞≤1
< a− b,u > −ν

2
‖u‖2`2 . (VI.8)

This approximated distance is differentiable and its gradient is ν-Lipschitz. This
entails that the gradient of the cost function takes the form :

∇J β(Âj
(lf )

) = −
B∑
b=1

ωp∇d1
ν

(
Âj

(lf )

,Aj [Jb]
)
log

Âj
(lf )

(
Aj [Jb]

)
, (VI.9)

where the gradient of d1
ν is given by [Becker et al. 2011] for all i ∈ [1,m] :

∇d1
ν(Âj

(lf )

)i =

ν−1 Âj
(lf )

i , if |Âj
(lf )

i | < ν,

sign(Âj
(lf )

i ), otherwise.
(VI.10)

Algorithm 8 robust Fréchet mean
1: procedure Fréchet mean on the Oblique ensemble Ob (m)

2: Correct for permutations
3: for j = 1, · · · , n do . Loop over all the sources
4: while Convergence is not reached do
5: ∇J β(Âj

(lf )

) = −
∑

b∈[1,B] ω
j
b∇d

1
ν

(
Âj

(lf )

,Aj [Jb]
)
log

Âj
(lf )

(
Aj [Jb]

)
6: Âj

(lf+1)

= exp
Âj

(lf )

(
−ρ∇J β(Âj

(lf )

)
)

7: lf ← lf + 1

8: end while
9: end for

10: Return Â(Lf )

11: end procedure

From Fréchet mean to barycenter

In practical settings, the data are assumed to be contaminated with Gaussian
noise. As pointed out in the previous paragraph, the use of small size mini-batches
might lead to very diverse estimates of the mixing matrix. These estimates could
yield sources with largely different signal-to-noise ratio. A first solution could be to
choose weights {ωb}b∈[1,B] that penalize mini-batches with smaller SNR. However
this would not take into account the actual noise that would contaminate the esti-
mated sources. Therefore, we propose to choose these weights as being a function of
the SNR of the estimated sources. Assuming that the data noise covariance matrix



112
Chapitre VI. Tackling large-scale datasets : mini-batch optimization

with aggregation on Riemannian manifold

is denoted ΣN, the weights are defined as :

∀b ∈ [1, B]; ωjb =

(
W[Jb]

jΣNW[Jb]
jT
)−1

∑B
p=1

(
W[Jb]jΣNW[Jb]j

T
)−1 (VI.11)

where W[Jb]
j = [A[Jb]

+]j . In the numerical experiments, this weighting strategy
will be applied to both the Fréchet mean and its robust version.

B.3 Another point of view about dGMCA : connections with sto-
chastic gradient descent

To give a better insight of dGMCA principle, we aim in this subsection to high-
light some connections with works on SGD.

From GD to ALS

Beyond matrix factorization problems, GD is a very popular approach in machine
learning. In the scope of BSS and forgetting the oblique constraint, estimating A∗

using GD would yield the following update rule at epoch l for estimate Ŝ of the
sources :

Â(l+1) = Â(l) + η(l)∆ (VI.12)

= Â(l) + η(l)
(
X− Â(l)Ŝ

)
ŜT (VI.13)

where ∆ is the gradient of the data-fidelity term of Eq. (II.8) with respect to Ŝ and
η(l) the learning rate (i.e. the gradient step size when using the machine learning
terminology).
On the other hand, it is possible to incorporate second order information, which
amounts to write a Newton update as follows :

Â(l+1) = Â(l) + η(l)
(
X− Â(l)Ŝ

)
ŜTH−1 (VI.14)

= Â(l) + η(l)
(
X− Â(l)Ŝ

)
ŜT
(
ŜŜT

)−1
(VI.15)

where H =
(
ŜŜT

)−1
is the Hessian of the data fidelity term with respect to A. As-

suming the sources to be decorrelated yields a diagonal Hessian, which is equivalent
to a single iteration of the standard GD algorithm up to a scaling factor and with

η(l) = 1. More generally, fixing η(l) = 1 entails : Â(l+1) = XŜT
(
ŜŜT

)−1
. In this

setting, ALS can be regarded as a special type of GD when curvature or second-
order information is used.
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From SGD to mini-batch ALS

However, when it turns to mini-batch optimization the connections become
slightly delicate : whether in Newton descent algorithm or in ALS, the Hessian
matrix ŜJbŜJbT becomes mini-batch dependent. Small size mini-batches entail extra
errors on the estimated Hessian, which eventually leads to more stochasticity on the
estimated mixing matrices. Therefore, ALS leads to more stochasticity on the esti-
mates than standard SGD, which can be detrimental to the optimization procedure
when the mini-batch size becomes very small 6.

From averaged SGD to aggregated stochastic ALS

The parallel between mini-batch ALS and SGD can be prolonged to give an
insight concerning the aggregation step. More precisely, it is well known that the
stochasticity of SGD can lead to an optimization path with more fluctuations and
decreased rates of convergence in comparison to full-batch GD updates. To bypass
this issue, a classical modification of SGD is to average the iterates of the estimates
(Polyak-Rupper averaging [Ruppert 1988,Polyak & Juditsky 1992]), improving the
convergence rates and reducing the impact of noise. In such an averaging process,
the estimate of a variable Â(l) at iteration l is chosen as the mean over the pre-
vious iterations : Â(l) = 1

l

∑l
i=1 Â(i), which resembles the Euclidean aggregation

step discussed in Section B.2. Recent works [Tripuraneni et al. 2018] have extended
the Polyak-Rupper averaging to a Riemannian setting, creating links with the ag-
gregation step we use in dGMCA : instead of using a mere average of the previous
iterates, the averaging is performed on a manifold. This parallel must however be
tempered as : i) we apply a weighted Polyak-Rupper averaging : in particular, the
weights are zero for the estimates found before the current epoch l 7 ; ii) we do not
aggregate after each mini-batch, but rather once per epoch, which helps distributing
the algorithm ; iii) [Tripuraneni et al. 2018] explores SGD, and we deal with pALS,
implying the differences evoked above. However, we highlight that as pALS might
increase the discrepancy between the different estimations compared to GD, such
an aggregation might be particularly relevant to smooth the optimization path.
As a side remark, while more different from the dGMCA aggregation, we would like
to point out the works of [Sato et al. 2017,Zhang et al. 2016], which are also variance
reduced Riemannian optimization methods.

C Numerical experiments

In the following experiments, the performances of the dGMCA algorithm are
evaluated in various experimental settings, on both simulated and realistic sources.

6. On the other hand, we shall see later that such stochasticity can also have benefits to some
extent.

7. Note that using specific weights has been proved in some different settings to lead to inter-
esting results through creating an implicit regularization [Neu & Rosasco 2018].
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C.1 Experiments on simulated data

Comparison set-up

In this subsection, we first make use of synthetic random data, which allows to
perform Monte-Carlo simulations to assess the robustness of the different methods
and to study the performances of dGMCA when varying the experimental parame-
ters. More precisely, we will look at the influence of different numbers of sources n
and observations m, as well as the one of mixing matrices A∗ with different condi-
tion numbers and sources with various sparsity levels p. To that end, the data are
synthesized as follows :

— The sources S∗j , j ∈ [1, n] have entries which are distributed independently and
identically according to a Generalized Gaussian distribution with parameter
0 < α ≤ 1.

— The mixing matrix A∗ is picked at random from a Gaussian distribution,
and further processed to have columns with unit `2 norm and a pre-defined
condition number.

Unless stated differently, each single experimental result will be given as the mean
over 10 Monte-Carlo simulations with different mixing matrices, sources and noise
realizations.

Beyond the proposed two versions of the dGMCA algorithm, namely the one using
as aggregation the Fréchet mean and the one using the robust Fréchet mean, com-
parisons will be carried out with :

— GMCA : This algorithm is used as a baseline to compare its parallelized
dGMCA counterpart.

— Online dictionary learning : see Section A.1 and [Mairal et al. 2009]. This
algorithm is a classical one for solving large-scale sparse matrix factorization
problems. 8

To assess the separation quality, we will use the mixing matrix criterion CA.

Studying the impact of the number of observations m

In this paragraph, we evaluate the performances of the dGMCA with respect
to the number of observations m. The role played by this parameter is twofold.
First, for a fixed signal-to-noise ratio, the source SNR roughly evolves as the ratio
m/n and therefore improves with m. Second, the manifold-based aggregation may
behave quite differently when the dimensionality of the ambient space changes : for
some fixed entry-wise error on the estimated mixing matrices, the angular error (i.e.
that is proportional to the distance used in the tangent space of the hypersphere)
decreases when the number of observations increases.

8. When using ODL, the regularization parameter choice has to be performed by the user. In
the simulations we propose, we tried several values and kept only the best results.
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Figure VI.1 shows the evolution of the mixing matrix criterion as a function of the
mini-batch size for m = 5 (which corresponds to the determined case, as there are
n = 5 sources) and m = 20. The sparsity level is fixed to p = 0.1 and the condition
number of the mixing matrix A∗ is equal to 3. The SNR is fixed to 40 dB.
At first glance, it is interesting to observe that the dGMCA - Fréchet mean algo-
rithm provides in both experiments decent results when the mini-batch size tb is
lower than 80 : here, using small mini-batches enables to alleviate the computatio-
nal burden while not deteriorating too much the results over GMCA. Being more
specific, dGMCA slightly benefits from a larger number of observations m when
the mini-batch size is small. This is very likely the consequence of lower errors as
measured by the angular distance. Furthermore, for small tb some mini-batches are
likely to have a too small number of statistics to be well estimated when m is small.
To that regards, the results of the robust Fréchet mean algorithm are particularly
informative : while for the smallest mini-batches and small m the results yielded by
the mere Fréchet mean were deteriorated, it is not anymore the case. This probably
means that the deterioration previously observed with small tb was likely to stem
from a small number of badly estimated mini-batches, that is outliers. The use of
a robust aggregation lowers their impact, enabling an improvement of about 1 or-
der of magnitude for very small mini-batch sizes (tb < 20). Unexpectedly, equipped
with this aggregation procedure, the dGMCA algorithm further allows to improve
the separation process with a gain of up to about a factor 2 with respect to the
standard GMCA algorithm. We will propose an explanation of such a phenomenon
in Section C.3.
Lastly, the reader might wonder why dGMCA does not seem to reach the accuracy
of GMCA for the largest mini-batch sizes. To explain this, let us recall that the
thresholding strategy differs from GMCA to dGMCA : in the case of GMCA, it
adapts to the actual distribution of the estimated sources using a percentile. Since
such an automatic regularization parameter choice was not applicable in dGMCA,
we rather chose a fixed deterministic strategy which is likely to be less effective.
When the mini-batch size tb becomes a relatively large fraction of the full number
of samples t, the strategy used on GMCA should be also implemented in dGMCA
(note that in this setting, it is assumed that the computational burden is not a main
issue).

Condition number

The ill-conditioning of the mixing matrix A∗, measured by its condition number,
plays an important role in the difficulty of a given BSS problem. Mixing matrices
with large condition numbers will lead to two major challenges : i) an increased
noise level in the source domain 9, and ii) mixtures that are more colinear.
In these experiments, the noise level is fixed to 40 dB and the sparsity level is
p = 0.1. Figure VI.2 shows the evolution of CA as a function of the mini-batch

9. To that regards, it is expected to see similarities between an increased condition number and
a small number of observations.
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Figure VI.1 – Evolution of the mixing matrix criterion with respect to the mini-
batch size for left : m = 5 and right : m = 20. The number of sources is fixed to
n = 5.

size tb for two values of the condition numbers : left panel 2.5 and right panel 7.
Alternatively, Figure VI.3 shows the same kind of results but as a function of the
condition number for tb = 10 and tb = 100.
A general comment is that as expected the separation quality of all the methods
decrease when the condition number increases. Similarly to the tests performed in
the previous section, the dGMCA algorithm has better results for relatively small
mini-batch sizes (but when the Fréchet mean is used, it eventually deteriorates for
tb < 25, cf. Fig. VI.2). The use of small-batches along with the robust Fréchet mean
leads to an improvement for tb < 25, which becomes more significant when the
condition number increases and leads to a gain of about one order of magnitude.
This was to be expected, as higher condition number lead to more diversity and less
stability among the mini-batches. Similarly, when the mini-batch size decreases, the
discrepancy between the two methods increases.
Furthermore, while the GMCA results are the best ones when A∗ is close to or-
thogonality, the robust dGMCA tends to deteriorate slower as a function of the
condition number (cf. Fig VI.3) : that is, here again the aggregation is able to reject
the outliers that impede GMCA use (such outliers probably comes from a specific
bad noise realization in some mini-batches, which is amplified by high condition
numbers). As such, the gain of robust dGMCA over GMCA is very significant for
conditions number of about 5. Beyond 10, the curves tends to merge to give bad
results, as most of the mini-batches are badly estimated.

Number of sources n

As seen in Chapter V, the number of sources is one of the elements that drive
the complexity of blind source separation, as higher n values imply more difficult
unmixing problems.
In these experiments, the sparsity level is fixed to 0.1, the number of observations
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Figure VI.2 – Evolution of the mixing matrix criterion as a function of the mini-
batch size for two distinct values of the mixing matrix condition number.
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Figure VI.3 – Evolution of mixing matrix criterion as a function of the condition
number for mini-batch sizes tb = 10 and tb = 25.

to 20 and the SNR to 40 dB. The number of sources evolves from 5 (right panel of
Fig. VI.1) to 15 sources (Fig. VI.4).
For a large number of sources, a general comment is that GMCA obtains degraded
performances, consistently with Chapter V. Then, a striking element is that equip-
ped with the Fréchet mean the dGMCA algorithm no more exhibits the peak of
improved performances for tb around 20 − 50, and eventually does not reach the
quality of GMCA in the setting. In contrast, making use of the robust aggregation
allows preserving very good separation results for tb < 100, with a gain of almost
one order of magnitude with respect to the other methods. These results were to
be expected : with a fixed number of observations, finding an increasing number of
sources n is more and more difficult, which makes that some mini-batches are stron-
gly badly unmixed. Furthermore, an increasing number of sources also implies an
increasing number of partial correlations (i.e. coefficients for which multiple sources
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are active), which are notoriously difficult to handle and make most sparse BSS
algorithm deteriorate [Bobin et al. 2015].
From an alternative point of view, a larger number of sources generally increases
the number of potential spurious local critical points of the cost function, making
robust dGMCA more successful. A more detailed discussion concerning this aspect
will be developed in Section C.3.

tb

C
A

Figure VI.4 – Evolution of the mixing matrix criterion as a function of the mini-
batch size for 15 sources.

Sparsity level p

In these experiments, the impact of the sparsity level of the sources p is assessed.
Such an impact can be twofold :

— The sources are statistically stationary. However, when they are very sparse
(e.g. p = 0.1), the values taken by a single small mini-batch may largely
change between two realizations, which can lead to outliers that will impact
the aggregation process. In contrast, mildly sparse sources should lead to a
more stable aggregation procedure ;

— Very sparse sources tend to lead to hard-to-escape local minima, which are
further smoothed out when sparsity level decreases.

Figure VI.5 displays the evolution of CA with respect to the mini-batch size for two
values of the sparsity level of the mixing matrix : p = 0.25 in the left panel and
p = 0.5 in the right panel. The case p = 0.1 is featured in the left panel of Fig. VI.1.
These results seem to reveal three distinct regimes :

i) For very sparse sources (left panel of Fig. VI.1), the GMCA algorithm yields
decent results, but the robust dGMCA algorithm performs significantly better
when small mini-batch sizes are used. In this regime, the realizations of the
sources are very different for different mini-batches, explaining the discrepancy
between a) robust dGMCA and b) GMCA and Fréchet mean dGMCA ;

ii) For mildly sparse sources (left panel of Fig. VI.5), the GMCA algorithm yields
better results and there is far less discrepancy between the two dGMCA me-
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thods. This highlights that equipped with the (robust) Fréchet mean, com-
bining mini-batch optimization and aggregation leads no performance loss :
parallelization allows to go faster and large-scale without diminishing the se-
paration quality. This can be explained by the fact that in this regime the
realization of the sources is smoother among mini-batches.

iii) For still less sparse sources (cf. right panel of Fig. VI.5), the results of robust
dGMCA are consistent with the previous regime : since the mini-batches are on
average still more similar, robust dGMCA obtains a separation quality closer
to GMCA for still smaller mini-batches. One of the differences with regime ii)
is that GMCA obtains slightly worse results. This is expected, as more partial
correlations occur. Furthermore, the discrepancy between Fréchet mean and
its robust counterpart increases again strongly. This might also be due to an
increased number of partial correlations : a few small mini-batches containing
such samples might be much more difficult to unmix.

However, such arguments do not fully answer several observations for the very sparse
regime. In particular, why are the results of GMCA enhanced when going from
p = 0.1 to p = 0.25 ? Furthermore, why is the robust dGMCA better working than
GMCA when p = 0.1 ? Indeed, it should be the opposite, as very large mini-batches
should offer in a very sparse regime more stationarity of the precise realization of the
sources. To answer to these questions, we will first confirm in the next subsection
such observations with a realistic experiment in which the sources are very sparse. In
Section C.3, we will then propose an explanation. In brief, the hypothesis we propose
is that highly sparse sources induce a less smooth optimization landscape (which is
further backed by Fig. VI.6 : the error bars of GMCA are larger for lower p values –
at least when the results are still acceptable), with potentially more spurious critical
points. Using mini-batches enables a deeper exploration of such a landscape, and
thus to find a better solution.
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A

(b) p = 0.5

Figure VI.5 – Evolution of the mixing matrix criterion as a function of the sparsity
level with p = 0.25 (left panel) and p = 0.5.
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Figure VI.6 – Evolution of mixing matrix criterion as a function of the sparsity
level for mini-batch sizes tb = 10 and tb = 25.

C.2 Application to γ-ray spectroscopy realistic simulations : sparse
case

In this section, the behavior of the dGMCA algorithm is evaluated in the context
of γ-ray spectroscopy. This is one of the main methods used for measuring the acti-
vity concentrations of radionuclides in environmental samples. It particularly plays
a key role to monitor the radiological environment or perform radioecology studies
and nuclear incident preparedness. A γ-ray spectrum is the histogram of the number
of detected γ-ray photons in the sensors. In this context, an observation is formed
by the linear combination of the contributions from various radionuclides. Each one
is described by a signature in energy which is composed of one or several emission
lines to which a Compton continuum is associated, as displayed in Figure VI.7. The
goal of this experiment is to jointly estimate the activity of each radionuclide (a.k.a.
the mixing matrix) as well as their signature (a.k.a. the sources) from several obser-
vations. These simulations are composed of 5 radionuclides : 7Be, 22Na, 40K, 137Cs,
210Pb, which are representative of aerosol samples [Xu et al. 2019] and featured in
Figure VI.7. The number of observations is fixed to m = 20 and the number of
samples per source is equal to 16240.
The goal of this section is to evaluate the performances of dGMCA in a setting where
the samples are non-stationary, highly sparse and with a large dynamic range ; the
information content of a single signature basically spans 2 to 3 orders of magnitude.
The sources are modeled in the wavelet domain : γ-ray observations are first decom-
posed into an undecimated unidimensional wavelet frame [Starck et al. 2010] before
applying any BSS method. The number of scales is fixed to 5, which yields a number
of wavelet coefficients equal to 81200 ; these are obviously not large-scale data but
it already allows to highlight some remarkable results.
Figure VI.8 shows the reconstructed solution with GMCA, ODL and dGMCA equip-
ped with the robust Fréchet mean with tb = 10 ; it also displays the estimation error
in transparent solid line. This figure first shows that dGMCA provides a very good
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reconstruction of 2
2Na signature, while both GMCA and ODL exhibit clear leakage

from other sources. The estimation error of the dGMCA solution does not present
any structure and is mainly dominated by noise.
Figure VI.9 features the evolution of the mixing matrix criterion as a function of
the mini-batch size for two different levels of the signal-to-noise ratio : 40 and 80

dB. These values might seem very large but it has to be recalled that the dynamic
range is very large ; a small amount of noise might already erase a significant part of
the Compton continuum while leaving only the photon peaks. This experiment first
shows that GMCA, ODL and dGMCA with the standard Fréchet mean performs
rather poorly. In agreement with the results of the previous subsection studying the
impact of the sparsity level p, the use of the robust aggregation makes the dGMCA
algorithm largely outperforms these methods, especially when the mini-batch size
is smaller than tb = 50. Further randomizing the mini-batches entails an extra im-
provement, especially for middle-size mini-batches for 100 < tb < 1000. The gain is
particularly large when the noise level is small.
To explain the results of such a setting, we advocate the fact that the sources are
by a large extent dominated by few photon peaks, which is likely to create spurious
hard to escape critical points. This might explain why neither the GMCA algorithm
nor the dGMCA algorithm without the robust aggregation are able to perform cor-
rectly. The use of the robust Fréchet mean along with ALS clearly yields empirical
robustness to the algorithm as testified by the very small scatter of the results (the
shaded areas). As such, it is likely that the proposed minimization scheme generate
some implicit regularization that is beneficial to efficiently tackle sparse BSS pro-
blems by making the optimization easier. More concerning this topic is said in the
following.

C.3 Discussion - robustness and implicit regularization

During the last few years, understanding the impact of optimization in ma-
trix factorization problems [Gunasekar et al. 2017] or learning (deep) neural net-
works [Neyshabur 2017] has attracted a lot of interest. More specifically, it has been
emphasized in many works that a specific optimization method might enable implicit
regularization. In this subsection, we first detail the notion of implicit regularization
and then highlight links to such works in order to better understand the behavior
of dGMCA. Our hypothesis is backed through further experiments.

Optimization landscape and implicit regularization

Most of the investigations studying the optimization landscape of learning pro-
blems focus on the underdetermined or over-parameterized case [Gunasekar et al. 2017,
Neyshabur et al. 2017]. In this regime, it has been showed that under some conditions
local minimizers are likely to be global. However, such a claim does not help concer-
ning the quality of these critical points [Neyshabur et al. 2017]. In sparse BSS, the
factorization problem at play is furthermore determined or over-determined, which
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Figure VI.7 – Experiment in γ-ray spectroscopy : example of a single observation
and the contribution of each of the radionuclide sources.
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Figure VI.8 – Experiment in γ-ray spectroscopy : 2
2Na radionuclide estimated with

GMCA, ODL and dGMCA equipped with the robust Fréchet mean. Errors with
respect to the input spectrum are displayed in transparent solid lines.

means that the optimization landscape is likely to be largely different and probably
less smooth due to the presence of spurious local minimizers. In this setting, regu-
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Figure VI.9 – Experiment in γ-ray spectroscopy : evolution of the mixing matrix
criterion CA as a function of the mini-batch size for SNR 40 dB and 80 dB.

larization, either being it explicit or implicit, is of paramount importance.
By explicit regularization, we mean a regularization appearing in the cost function
(e.g. the sparsity promoting term of Eq. (II.8)). By implicit, we denote an exis-
ting regularization only due to the optimization scheme, that is which does not
appear explicitly. To give an example of implicit regularization in general matrix
factorization problems, one can cite the role induced by gradient descent in many
algorithms [Gunasekar et al. 2017]. To tell a long story short, using GD for under-
determined problems implies a regularization penalizing the complexity of the learnt
model (e.g. with low nuclear norm) 10.
In our case, while such regularization might appear because of the analogy made
between ALS and GD in Section B.3, we rather study more specifically the implicit
regularization implied by the use of mini-batches.

Regularization induced by mini-batches in machine learning

To that respect, the case of highly sparse sources and more particularly the γ-
spectroscopy example is particularly illustrative : dGMCA performs very well as the
batch-size decreases, while GMCA does not. Such a phenomenon is well known in
the context of machine learning, where it has been noticed for long that using small
stochastic mini-batches can indeed improve the results over full batch methods [Le-
Cun et al. 2012,Keskar et al. 2016,Hardt et al. 2015]. A common interpretation is
that using small size mini-batches is important as it injects noise in the optimization
process, which is essential to escape certain types of minimizers.
Very closely related to dGMCA, several articles have recently emphasized the in-
terest of using non-vanishing learning rates [Smith et al. 2017, Xing et al. 2018].

10. Note that beyond matrix factorization, similar implicit regularizations have been studied in
machine learning and it has been emphasized that in contrast to standard belief GD algorithm leads
to minima [Lee et al. 2016] that surprisingly generalize well [Gunasekar et al. 2017,Neyshabur 2017,
Gidel et al. 2019,Azizan et al. 2019]
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This is appealing, as following our analogy with ALS we are specifically in a regime
where such a rate is constant over the iterations (set to η(l) = 1). More specifically,
and beyond a potential computation gain in terms of the number of parameter
updates [Smith et al. 2017], it has been empirically shown by [Xing et al. 2018]
that using stochastic mini-batches (respectively high learning rate) enables to ex-
plore broader areas (respectively to jump optimization landscape borders and escape
bad areas), thus finding results further from the initialization. The authors argue
that the stochasticity introduced by small size mini-batches through a structured
noise strongly favors flat minimizers that are akin to generalize better [Hochreiter
& Schmidhuber 1997], since the introduced noise would be roughly aligned with the
sharpest loss directions 11.

Links to dGMCA

A similar phenomenon is very likely to be at play within dGMCA, for which
the generalization notion would translate into minimizers that are less sensitive
to a given realization of the sources. Indeed, the algorithm performs much better
in the highly sparse case, where spurious minima tend to be sharper and more
difficult to escape. The stochasticity induced by mini-batches then helps exploring
the optimization landscape.
To further investigate such an exploratory ability within the experimental setting
of Section C.2, Figure VI.11 displays the histograms of the mixing matrix criterion
after 250 iterations of dGMCA (close to “convergence”) when the Fréchet mean (left
panel) or its robust version (right panel) is used. In the first case, it is interesting to
notice that using large mini-batches tends to provide more stable solutions, with a
smaller scatter of the criterion across mini-batches. In contrast, using smaller mini-
batches leads to a broader exploration of the parameter space as testified by more
widespread values of the mixing matrix criterion. As most of the values are bad
(close to 10 dB), the aggregated estimate is rather poor.
Switching to robust aggregation (right panel Figure VI.11), the results might seem
to go against the previous hypothesis of exploratory power : while in accordance
to the previous experiments the separation with small mini-batches is good, the
scatter is however smaller than when using large mini-batches. Nevertheless, we are
here looking at the results after 250 iterations. That is, it seems that at this point
dGMCA already found a good minimum of the optimization landscape. As such :

— The fact that the scatter with small tb values is smaller that with high tb va-
lues indicates that most of the mini-batches are contained within a basin of
attraction of a good minimum. This is relieving, as it means that the noise
introduced by small mini-batches (and also the high learning rate η(l)) is not
high enough to make most of the mini-batches “jump out” of the good mini-

11. Note that for similar reasons, some authors have been injecting noise in their algorithm to
benefit from such a better exploration of the optimization landscape [Neelakantan et al. 2015] –
see [Rapin 2014] in sparse BSS.
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mum. As such, the few outliers present in the histogram are easily handled by
the robust aggregation (there is much less than 50 % of them) ;

— The fact that on the other hand the scatter is non-zero, nor even negligible
might further highlight that the local minimum we are looking for is rather
flat.

Figure VI.10 gives a last interesting insight concerning the optimization landscape
of Eq. (II.8). It shows the evolution of the mixing matrix criterion of dGMCA with
the robust Fréchet mean as a function of the number of mini-batches B (i.e. this is
somehow unrealistic in applications since the limiting factor is the total number of
samples). The best quartile of the large mini-batches obtains in general almost as
good performances as the small ones. Therefore, the lack of exploratory power with
large B seems to impede the separation because most of the large mini-batches are
unable to move from bad minima. However, some of them are still able to find good
solutions, but they are too few for the aggregation to highlight them.

To sum up, an optimization landscape exploratory phenomenon related to the
stochasticity of mini-batch optimization occurs when small mini-batches are consi-
dered (typically a few times the number of sources n). In this regime, the separation
quality will improve when the number of mini-batches increases. This phenomenon
will vanish when the mini-batch size is too large.

B
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A

Figure VI.10 – Evolution of the mixing matrix criterion as a function of the number
of mini-batches for B = 10, B = 25 and B = 100.

C.4 Computation time

We now conclude this experimental section with the computation time of dGMCA,
which depends both on the complexity of one epoch and the number of required
epochs.

Complexity of one epoch

Consistently with Chapter V, each iteration of the GMCA algorithm has a com-
plexity of O(t(mn+ n2 +m)). The complexity of one epoch of dGMCA is similar,
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Figure VI.11 – Histogram of the mixing matrix criterion across mini-batches with
left the Fréchet mean and right the robust Fréchet mean and B = 500 and B = 10.

once the cost of the Frechet mean as been taken into account :

O
(
b(mn+ n2 +m) +

t

b
nmLf

)
, (VI.16)

where the last term correspond to the Fréchet mean and Lf corresponds to the
number of iterations required for its computation. As such, except for very small
mini-batches, the linear gain of using dGMCA over GMCA dominates. This is ex-
perimentally confirmed (see Fig. VI.12) : in practice the computation time for a
given number of iterations does not deviate much from linearity (in particular, the
transfer costs between the nodes are negligible in comparison to the computation
time).
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Figure VI.12 – Computational time gain of the dGMCA algorithm with respect
to the GMCA algorithm as a function of the reduction gain t/tb. The dGMCA
algorithm has been run on a PC cluster equipped with 8 Amd CPUs, each one has
6 cores Istanbul Opteron 8431 at 2, 4Ghz.
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Number of epochs

Concerning the number of epochs, an interesting observation can be drawn from
Figure VI.13, which shows the evolution of the mixing matrix as a function of
the epoch number for the γ-ray spectroscopy experiment. It highlights that the
smaller mini-batches are, the faster the algorithm is. It is very striking to remark
that dGMCA almost reaches its stationary regime (up to noise related to stochastic
mini-batch optimization) in about 25 iterations, which further makes the algorithm
very interesting to provide a fast estimate from large-scale data.

Iteration number

C
A

Figure VI.13 – Evolution of the mixing matrix criterion along the separation process
for tb = 10, 100 and 1 000. The dGMCA algorithm is used with the robust Fréchet
mean

C.5 Experimental results : summing-up

The previous results concerning the computation time have validated the fact
that the dGMCA enables to work with large-scale datasets, as there is a linear gain
in the complexity of each iteration, and the number of iterations can further be
highly reduced in some experimental settings.
It was however expected that switching to a distributed version of the GMCA al-
gorithm would not have come at no cost : using mini-batches should have led to
larger estimation errors. Seen from the distance, the experiments tend to highlight
two distinct regimes :
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— Mildly sparse sources : in this setting, a key result is that the robust
dGMCA and GMCA algorithms perform similarly ; going distributed comes at
almost no cost as soon as the mini-batch size is large enough. This shows that
the proposed dGMCA is an useful approach for the separation of large-scale
mildly sparse signals, which describe numerous natural signals represented in
multiscale representations.

— Sparse to very sparse sources : mini-batch optimization with very sparse
sources cause a series of problems. In particular, small-size mini-batches tend
to be less homogeneous, which is likely to lead to more outliers and degrade the
aggregation procedure. In this case, the robust Fréchet mean is an interesting
aggregation procedure. Unexpectedly, it can further continue to improve for
very small mini-batch sizes, the best solutions being reached for sizes of the
order of the number of sources. Strikingly, the results are then more accurate
than the ones of the GMCA algorithm. The explanation we proposed is that
dGMCA enables a better exploration of the optimization landscape : if the
randomness introduced by the mini-batches is well handled by the aggregation,
it makes that the final unmixings are better.

Conclusion

To tackle the large-scale sparse BSS problem, we introduced in this work the
dGMCA algorithm, which uses mini-batches in a projected Alternating Least-Square
framework. The different estimations of the mixing matrix are aggregated taking
into account the Riemannian manifold structure of the problem constraints. To per-
form such an aggregation, we proposed to use a robust Fréchet mean, which further
improve the separation quality. While for mildly sparse sources the approach is expe-
rimentally demonstrated to yield a huge gain in computation time at almost no cost
in terms of separation accuracy, dGMCA can even improve the separation results
over its full batch counterpart when used for very sparse sources. The explanation
we propose is that using stochastic mini-batches enables a better exploration of
the optimization landscape. Many numerical experiments are proposed to show the
relevance of the approach.



Chapitre VII

Sparse BSS : from Linear to
Non-Linear Mixtures

In this last chapter, we extend the previous work by departing from the usual
linear setting and tackling the case in which the sources are mixed by an unknown
non-linear function. We propose a stacked sparse BSS method enabling a sequential
decomposition of the data through a linear-by-part approximation. In this context,
non-linear BSS can be seen has solving a potentially large number of linear BSS sub-
problems. Therefore, an automatic hyper-parameter choice for each sub-problem is
mandatory due to the computational burden (cf. Chapter IV 1), and optimization
strategies such as block-coordinate methods (see blockGMCA in Chapter V) or
mini-batches (see dGMCA in Chapter VI)) could yield improved performances.
Beyond separating non-linearly mixed sources and despite increased indeterminacies
compared to linear BSS (cf. Chapter II-A.2.2), the introduced StackedAMCA can
under discussed conditions further learn an approximation of the inverse of the
unknown non-linear mixing, enabling to reconstruct the sources. The quality of the
method is experimentally demonstrated, and a comparison is performed with state-
of-the art non-linear BSS algorithms. We also propose an in-depth discussion of
StackedAMCA required hypotheses.

A Non-Linear BSS

A.1 Mixing model

In this chapter, the BSS model will change into the non-linear one presented in
chapter II-A.2.2 :

X = f∗(S∗) + N (VII.1)

Where f∗ is an unknown non-linear function from Rn×t to Rm×t (here, n ≤ m). We
will here consider general functions f∗, by mostly assuming that f∗ is invertible and
symmetrical around the origin, as well as regular enough. Regular means that f∗ is
L-Lipschitz with L small enough and that f∗ does not deviate from a linear mixing
too fast as a function of the input amplitude (which can for instance be the case
with sensor saturations, or chemical sensors etc.) ; see Fig. VII.1 for examples of
mixings StackedAMCA can or cannot handle. The other required hypotheses, both

1. Note that we however only use only the warm-up stage ; the introduction of a refinement
step is left for future work.



130 Chapitre VII. Sparse BSS : from Linear to Non-Linear Mixtures

on the mixing and the sources, are discussed in Sec. E.

A.2 Previous work

In this subsection, we present some previous works concerning non-linear BSS.
A summary of the different algorithm families is displayed in Figure VII.2.

A.3 Independent component analysis

While most of the previous work has been devoted to ICA, the independence
prior is not sufficient to ensure source separation in the general non-linear setting
[Comon & Jutten 2010]. A first possibility to bypass this separability issue is to
explicitly focus on a special kind of mixing f∗, for which separability can be shown
(under conditions that are not discussed here for the sake of compactness). Among
the most well-known kind of mixings, one can cite [Deville & Duarte 2015] :

— Post Non-Linear – PNL. In these, each observed mixture Xi, i ∈ [1,m] is an
univariate nonlinear function of a linear mixture of the sources :

Xi = f∗i

 n∑
j=1

A∗ji S∗j

 (VII.2)

— Linear Quadractic mixtures – LQ. In these, each observed mixture Xi, i ∈
[1,m] is a polynomial function of second degree of the sources :

Xi =
n∑
j=1

A∗ji S∗j +
n∑
j=1

n∑
k=j

B∗ji S∗jS
∗
k (VII.3)

Where B∗ is, similarly to A∗, a mixing matrix. Another possibility is to use an
explicit or implicit regularization making the problem better posed. For explicit
regularization, one can cite additional priors on the sources such as temporal depen-
dencies [Hyvarinen & Morioka 2017,Ehsandoust et al. 2017]. However, in this work
we will not assume any such additional explicit prior. In such situations, several algo-
rithms use an implicit regularization. Among the most well-known, one can cite [Al-
meida 2003,Honkela et al. 2007,Brakel & Bengio 2017]. The work of [Almeida 2003]
is an extension of INFOMAX to the case of non-linear mixtures, in which a neural
network is learnt by minimizing the mutual information. The difference with the li-
near case is that the functions enabling to approximate the cumulative distribution
functions of the sources have to be learnt accurately and not chosen a priori, since
the non-linear problem is much less constrained. [Honkela et al. 2007] summarizes
several works using a variational Bayesian approach bringing the required additio-
nal regularization. The derived cost function is used to train a non-linear model of
the mixing f∗ (e.g. a Multi-Layer Perceptron). In [Brakel & Bengio 2017], the au-
thors use a Generative Adversarial Network : the idea is to maximize independency
measures implicitly thanks to adversarial objectives. The goal of the generator is
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Figure VII.1 – Examples of three different mixings on Up : non-sparse (uniformly
distributed) sources ; down : Sparse (Bernoulli-Gaussian) sources. Left : Mixing
highly deviating from non-linearity, for which StackedAMCA would not work :
Xi

0 = cos(α(i))5S∗i0 −sin(α(i))5S∗i1 and Xi
1 = sin(α(i))5S∗i0 +cos(α(i))5S∗i1 ; Middle :

Mixing deviating from linearity, but regular enough for StackedAMCA to work
well : Xi

0 = cos(α(i))S∗i0 − sin(α(i))S∗i1 and Xi
1 = sin(α(i))S∗i0 + cos(α(i))S∗i1 , with

α(i) = π
2 (1−

√
S∗i

2

0 + S∗i
2

1 ) ; Right : Linear mixing : X = A∗S∗.
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Figure VII.2 – Summary of the different families of algorithms. In red, settings we
study in this chapter. The “YES” mention for separability might be subject to other
assumptions. The “CLAIMED” refers to the work of [Ehsandoust et al. 2016].

then to produce samples reconstructing the data well (therefore, a reconstruction is
performed through a decoder) and which are undistinguishable by the discrimina-
tor of independent samples. The implicit additional prior thus comes here from the
network structure itself.

A.4 Sparsity

Concerning works based on the sparsity of the sources, [Theis & Amari 2004,
Van Vaerenbergh & Santamaría 2006, Duarte et al. 2015] attempted the problem
of PNL mixtures, and [Duarte et al. 2012] the problem of LQ mixtures. General
settings similar to the framework of the current article have mainly been studied in
[Ehsandoust et al. 2016,Puigt et al. 2012] and focus on the geometric interpretation.
In [Ehsandoust et al. 2016] the authors claimed the separability of the sources when
using a sparsity prior, if only one source is active for each sample. Note that the
mere sparsity prior is however in general not sufficient for source reconstruction. The
algorithm they propose uses a clustering approach, followed by a manifold unfolding
(which, in particular aims at tackling the partially correlated samples if additional
information is known – e.g. source regularity). However, they do not propose a
specific method to perform the clustering in the case of more than n > 2 sources.
In [Puigt et al. 2012], the authors first propose to find zones in the observation
domain in which only a single source is active. This gives a scattered representation of
the mixing non-linearities. As several zones may correspond to the same source, these
are then aggregated to get more statistics for estimating the mixing. Unfortunately,
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the experiments also only focus on the case n = 2.

A.5 Contribution

We propose to tackle the general problem of non-linear BSS presented in Eq. (II.3)
by using a sparsity prior on the sources, without assuming any additional explicit
priors on them. To the best of our knowledge, our method is the first attempting to
find a linear-by-part approximation of the underlying non-linearities using a stacked
sparse BSS approach. This departs from usual methods as :

— In contrast to neural network approaches [Almeida 2003,Brakel & Bengio 2017],
we explicitly use the geometric interpretation in terms of 1-dimensional (1D)
manifolds (cf. Sec. B) existing in the case of sparse sources ;

— In contrast to clustering approaches [Ehsandoust et al. 2016,Puigt et al. 2012],
the clustering we use is only local and linear-by-part. As such, it is easier in
settings with a high number of sources : in particular, we will apply it in the
case of more than n > 2 sources contrary to [Ehsandoust et al. 2016, Puigt
et al. 2012]. Furthermore, it is based on usual sparse linear BSS algorithms,
enabling to re-use much of the corresponding work in terms of optimization
and automatic hyper-parameter choice, which has lead to enhanced separation
quality [Bobin et al. 2015] (cf. previous Chapters).

Beyond separating sources, the algorithm yields a possible source reconstruction
by inverting the estimated linear-by-part model. Despite the usual non-linear BSS
indeterminacies, this reconstruction is empirically shown to estimate well the true
sources under some discussed hypotheses. In Sec. B, the method is further described.
In Sec. D, some experiments are conducted on three different mixings, two of them
with a high number of sources. In Sec. E, the required hypotheses for the proposed
approach are studied.

B Proposed Approach

B.1 A Geometrical Perspective on Sparse Non-Linear BSS

The proposed method is first described by adopting a geometric point of view
in the case of n = 2 sources. The principle can however be generalized to higher
values, and the relevance of the method will be empirically testified on such difficult
settings in Section D.
When plotting S∗1 as a function of S∗2, most of the source samples lie on the axes
due to the morphological diversity hypothesis ( [Bobin et al. 2007] – cf. Chap. III-
C.4.2). In this chapter, we will even assume that all the source samples lie on the
axes (cf. Fig VII.3, left) – this disjoint support hypothesis is further discussed in
Sec. E. Once mixed through the non-linear f∗ function, the source samples on the
axes are transformed into n non-linear 1D manifolds [Ehsandoust et al. 2016,Puigt
et al. 2012], each corresponding to one source (see Fig VII.3, right).
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Figure VII.3 – Left : Scatter plot of n = 2 sources. The red color is associated with
samples where only source 1 is active. Yellow is associated with source 2 ; Right :
A non-linear mixing of n = 2 sparse sources. The dashed arrows correspond to the
mixing directions found by a linear model. The colors, corresponding to each source,
are displayed for explaining the distortion introduced by the mixing f∗ of the source
samples but are unknown in a blind setting.

To perform source separation, BSS then geometrically aims at back-projecting
each manifold on one of the axes. As evoked in Chapter II-A.2.2, we then obtain
separated sources which are an approximation of the true ones S∗ up to the non-
linear indeterminacy function h. Source reconstruction, on the other hand, amounts
at finding a specific non-linear back-projection, which corresponds to a h being only
a scale factor.
In the context of StackedAMCA, we propose to perform the back-projection on
the axes by approximating the 1D-manifolds by a linear-by-part function (see the
example of Fig. VII.4 corresponding to the data of Fig VII.3), which is inverted.

B.2 Overview of The Proposed Approach

More specifically, the lowest amplitude samples of the data X can be well ap-
proximated by a classical linear model (cf. Fig. VII.3, right) because of the regularity
assumption on f∗ stating that the mixing must not deviate from linearity too fast
as a function of the amplitude (cf. Sec. E). Thus, it is possible to find a first linear
model for the low-amplitude samples using a sparse linear BSS algorithm, pro-
vided that this one is robust to the higher amplitude non-linearities.
However, this approximation is too rough for higher amplitude samples, for which
the mixing deviates strongly from linearity. It is nevertheless possible to improve it
through the introduction of another linear model fitted to higher amplitude samples,
thus creating a linear-by-part approximation (with initially two segments). This is
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Figure VII.4 – Linear-by-part approximation of the non-linearities.

done by introducing a non-linear step that first selects the (highly non-linear)
samples that are not currently well linearly separated and then creates a new data-
set comprehending only them. A new linear model can next be fitted to the lowest
amplitude samples of this new dataset. A graphical example of a naive version of
StackedAMCA showing the main ideas and the corresponding challenges is shown
in Fig. VII.5.

B.3 StackedAMCA, detailed description and notations

The whole algorithm iterates the process described in the previous subsection
by alternating at each iteration l a linear BSS step and a non-linear step. The first
step computes a linear model Â(l) on the current residual R(l). The second one
paves the way for the next iterations by computing a new residual R(l+1). This
is done by finding for each source i a maximum amplitude value τ (l)

i above which
the non-linearities are too high to be considered as currently well estimated, and
then shrinking the current data using the τ (l)

1..n (cf. Fig. VII.6 for the first residual
computation). This shrinkage enables to sequentially reduce the amplitudes of the
originally higher non-linearities, and therefore to compute linear models describing
them. Thus, at each iteration a new linear model is fitted to increasingly higher
amplitude samples of the original data X.

More details concerning the two main steps are given below. The algorithm as
well as the notations are summarized in Fig. VII.7 and an illustration on a concrete
example is given in Fig VII.8.

B.4 Linear Sparse BSS Step : AMCA

The main requirement for the linear sparse BSS algorithm is its abillity to find
a linear model representing well the lowest amplitude samples of the residual R(l),
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Figure VII.5 – Summary of the challenges faced by StackedAMCA on Fig. VII.3
data. Note that here, only the naive approach described in Sec. B.5.1 is shown, and
thus it corresponds to the final version of StackedAMCA for the first iteration only.
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Figure VII.6 – Left : In blue, output of the manifold unfolding at the first iteration
(for which it coincides to an inversion of the linear model of Fig. VII.3 to align
the found dashed arrows with the axes). In addition, the red square delimits the
low amplitude sample areas where the linear model is a good approximation – the
corresponding maximum amplitudes are denoted as τ (1)

1..n – which means the areas
where the samples almost lie on the axes. Right : Residual R(2). The residual R(l+1)

is computed from the left figure data X
(l)
u by shrinking the amplitudes of the samples

by τ (1)
1..n. .

StackedAMCA(X)

R(1) = X

for l in 1...L :

— Linear step : estimates Â(l) with AMCA through the minimization of (cf.
Sec. III-C.5 for more details) :

min
Â(l),Ŝ

1

2
Tr[(R(l) − Â(l)Ŝ)M(R(l) − Â(l)Ŝ)T ] +

n∑
i=1

∥∥∥λi � Ŝi

∥∥∥
1

+ ι‖Âi‖
`2

=1(Â)

(VII.4)

— Non-linear selection step : compute R(l+1)

— Unroll manifolds in X using Â(1)...Â(l) : result denoted X
(l)
u

— From X
(l)
u , select highly non-linear samples : find τ (l)

1..n

— Compute R(l+1) through soft-thresholding R(l+1) = S
τ

(l)
1..n

(X
(l)
u )

return Â(1)... Â(L)

Figure VII.7 – StackedAMCA algorithm summary.
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Figure VII.8 – Illustration of the iteration l = 4 of the final version of Stacke-
dAMCA. In red : proposed solutions to the challenges of Fig. VII.5.
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Figure VII.9 – Illustration of the AMCA step at the first iteration l = 1. Left :
Residual R(1) (note that at the first iteration, R(1) = X) ; Right : Inversion of the
linear model found by AMCA : the lowest amplitude samples are well aligned with
the axes.

while being insensitive to the higher amplitude samples that are more affected by the
non-linearities. Indeed, such highly non-linear samples are detrimental to most usual
linear sparse BSS algorithms, as i) they behave as partially correlated samples (i.e.
samples for which multiple sources are simultaneously active), while many linear
BSS algorithms assume disjoint supports of the sources ; ii) they correspond to high
amplitude samples, which hinder the use of the Morphological Diversity hypothe-
sis ( [Starck et al. 2010], cf. Chapter III-C.4.2), stating that the highest amplitude
samples are the most discriminative for BSS.
Due to these two issues, we propose to use the Adaptive Morphological Component
Analysis (AMCA - [Bobin et al. 2015], cf. Chap. III-C.5) algorithm, which enables
a linear separation of sources having samples with both partial correlations and
large amplitudes. In the case of non-linear mixings, the weights M in AMCA enable
to discard the samples with high amplitudes which are the most affected by the
non-linearities, because these are considered as partial correlations. At iteration l,
the algorithm is thus able to find a good linear model Â(l) of the lowest amplitude
samples of R(l).

B.5 Non-linear step : computing R(l+1)

B.5.1 Issues for R(l+1) computation

The goal of the selection function is to create a new dataset R(l+1) containing
only the samples that are not well explained by the current linear-by-part Â(1..l)

model, thus paving the way for the next iteration.
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For selecting only such contributions, there are two issues :

i) Determine which samples are well separated by the current linear-by-part mo-
del ;

ii) Actually compute a new residual R(l+1) containing the currently badly separa-
ted samples, which is done through shrinking their amplitude towards zero.

Solving these two issues is however non-trivial. We could have a fully-sequential
naive approach, in which we would re-use at iteration l the previous residual R(l) to
compute the new one R(l+1) (this naive approach is illustrated in Fig. VII.5). Issue i)
would then be solved by inverting the current linear model found by AMCA, which
would align the lowest amplitude samples of R(l) with the axes (cf. Fig. VII.9, where
the inversion is performed in the right plot). The badly estimated samples would
then be the ones far from the axes, making their selection quite straightforward (cf.
Fig. VII.6 left : the badly estimated samples are the ones outside the red square).
The difficulty with such a naive approach however arises when attempting to solve
issue ii). Indeed, for each sample the amplitude shrinkage must be performed in the
direction of the axis corresponding to the source associated to the sample manifold.
For low and middle amplitude samples, this is not a major difficulty : since these
are supposed to be well or at least decently unmixed respectively, we can quite relia-
bly assume to which source they belong, and thus in the direction of which axis to
shrink. For high amplitude samples, things are however completely different as we
have almost no clue concerning the unmixing. Consequently, these can be shrunk in
parallel to wrong axes. While this is not a direct issue in the following iteration l+1,
during which the linear BSS step will aim only at unmixing the lowest amplitude
samples of R(l+1), this will definitely impact the algorithm through error propaga-
tion after several iterations, as R(l+1) will be used to compute R(l+2), R(l+3)...
In Figure VII.10, we illustrate such a shrinking issue with an example. To deter-
mine in which direction each sample must be shrinked, we use an angular criterion
(θ = π/4) to associate the samples with the closest axis. In the left plot, the samples
in red are associated with the horizontal axis and the samples in yellow with the
vertical axis. The shrinking is then operated in the corresponding direction. As can
be seen in Figure VII.10 right, the subsequent residual is good for low amplitude
samples but bad for higher amplitudes, for which the shrinkage has been performed
in the direction of the wrong axis. This will create error propagation in a few ite-
rations, when the algorithm will try to fit a linear model on these high amplitude
samples.

B.5.2 Selection Function : proposed solution for computing R(l+1)

To bypass the error propagation issue that would appear in the previous naive
fully sequential approach, we introduce at each iteration a preliminary step, that is
first presented. The whole solution to issue i) and ii) is then detailed.
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Figure VII.10 – Example of the residual computation difficulty, which is illustrated
when working on more difficult examples than the one of Fig. VII.3. Left : Data
obtained after the inversion of AMCA linear model. To know in which direction to
shrink each sample, we associate each sample to the closest axis. Red corresponds to
the samples associated with the horizontal axis and yellow to the vertical axis. This
method works well for low amplitude samples, that are well unmixed by the linear
step, but not for high amplitude ones. Right : Residual resulting from a shrinking of
the left plot data with the directions corresponding to the colors. While the residual
is relevant for low amplitudes, enabling to work on it at iteration l+1, it is bad for the
extremities of the manifolds, potentially creating errors in the following iterations.
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Figure VII.11 – Unfolded manifolds at the iteration l = 1 (left) and l = 3 (right),
showing the interest of such an unfolding to enhance the first guesses about the
unmixing. The sample in red can be seen to lie much closer to the good axis after
the l = 3 iterations, justifying the simple use of an angular distance to the different
axes to make a decent first guess in the residual R(l+1) computation.

Preliminary step : unfolding the manifolds. Instead of working directly on the pre-
vious residual, at each iteration l the algorithm starts back from the raw data X

and unfolds the manifolds using all the previously computed linear models Â(1..l)

and τ (1..l−1) (cf. Fig. VII.11 for an illustration of the unfolding at iteration l = 1

and l = 3). The unrolled data is denoted X
(l)
u . This approach has two advantages 2 :

— Less error propagation occurs in the iterative process, as at each iteration we
start back from the raw data X, instead of R(l) ;

— The contrast between the sources for high amplitude samples is increased,
which makes that the separation is easier. For instance, in Fig. VII.11, the red
dot is naturally made closer to the good axis after l = 3 iterations through
the re-use of all the previously computed linear models.

Solution to problem i) StackedAMCA uses for each sample of X
(l)
u the distance

(or more specifically the angle) to the axes. If such a distance is small enough, it is
assumed that the sample is well separated by the current linear-by-part model. For
each source i, we denote τ (l)

i the maximum amplitude of the samples close 3 enough
to the axis of i. In practice, the choice of the τ (l)

i is made much more robust by using
a clustering method based on the amplitude of the samples and enabling to discard

2. In addition to these two advantages, the unrolled X
(l)
u is also used to correct possible per-

mutations between the different linear models Â(1..l), cf. Section B.6
3. Such a closeness criterion depends on the manifold regularity, and is one of the few algorithm

hyper-parameters to be tuned by the user.
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potential outliers or samples that would be too much affected by noise .

Solution to problem ii) X
(l)
u can then be shrunk using the values τ (l)

1..n to obtain
the residual R(l+1). For high amplitude samples, as evoked above the current un-
mixing is bad and we thus do not know in which direction to threshold and which
threshold τ (l)

i , i ∈ [1..n] to use. Therefore, for these we need to resort to a first guess
based on their angular distance to each axis (similarly to Fig. VII.10). While this
potentially introduces temporary errors, these are in practice strongly limited due
to the two advantages of using the unfolded data X

(l)
u instead of merely working

sequentially and re-using the previous residual R(l).

B.6 Enhancements

In this subsection, we shortly detail several major enhancements of Stacke-
dAMCA that makes it much more robust in practice and enabling to work on more
difficult datasets X.

— Correction of the permutations between the linear models Â(1..l) :
The issue is here due to the permutation indeterminacy in usual linear BSS. In
our approach, multiple permutations between the linear models Â(1..l) could
create a remixing between the sources if they were not properly corrected.
In StackedAMCA, the linear model Â(l−1) found in the previous iteration is
used to initialize AMCA at iteration l. Thus, if the mixing f∗ is regular en-
ough, one can hope that the permutations will not be an issue as the output
of AMCA will resemble the input. However, we can introduce a much bet-
ter permutation correction through re-using the unrolled X

(l)
u . To do so, we

compare after the AMCA step the angle with the axes of the samples that
are well linearly separated (i.e. the ones in the red square of Fig. VII.6) to
the angle of the corresponding samples with the axes in the unrolled manifold
of the previous iteration X

(l−1)
u . The permutation correction is then done by

minimizing the discrepancy. Note that such a correction is only made possible
due to the regularity hypotheses detailed in Section E. It has furthermore been
extensively experimentally tested, showing good practical results as confirmed
in Section D.

— Determining the sign of the samples on the manifold :
In Sec. B.5, we explained how the direction in which to threshold was deter-
mined. A simple approach to determine the way (e.g. from right to left for the
samples in the upper right quadrant of Fig. VII.10 but from left to right for
the ones in the lower left quadrant) in which to shrink would be to use the
sample signs. However, this approach would lead to errors for mixing highly
deviating from linearity : in these, the manifolds could cross the axes, ma-
king the source sample signs in Rn to differ from the ones on the manifold.
Therefore, in practice we compute the sign on the manifold of each sample :
the process is similar to the one for attributing a source to each sample (cf.
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solution to problem ii) in the residual computation), but in addition we also
attribute a sign.

— Handling non-negative data :
Several extensions of NMF to non-linear mixtures have been proposed. In
these, the sources are assumed to have non-negative coefficients. Examples of
applications are hyperspectral imaging [Meganem et al. 2011,Eches & Guillaume 2013,
Meganem et al. 2014] or show-through removal [Liu & Wang 2013]. A possible
extension of StackedAMCA is therefore to handle properly the case of non-
linear sparse non-negative sources (for realistic examples of such sources, see
e.g. [Rapin 2014]). Due to the linear-by-part structure of the algorithm, such
an enhancement is quite straightforward as it mostly amounts to transform
the sparse linear BSS step into a NMF sparse linear one, making it possible
to re-use all the corresponding literature (see e.g. [Rapin et al. 2013, Rapin
et al. 2014]). Therefore, instead of looking for a minimizer of Eq. (VII.4),
AMCA will here aim at minimizing :

min
Â(l),Ŝ

1

2
Tr[(R(l) − Â(l)Ŝ)M(R(l) − Â(l)Ŝ)T ] +

n∑
i=1

∥∥∥λi � Ŝi

∥∥∥
1

+ ι‖Âi‖
`2

=1(Â)

+ι.<0(Ŝ)

(VII.5)

Where the last term enforces an elementwise non-negativity of the coefficients
of Ŝ. The rest of the algorithm is the same, except that we only focus on the
positive branches of the manifolds when determining the sign of the samples
on the manifold 4.

— Enabling different regularities for each manifold :
In the current form of the algorithm, all the manifolds must have the same
regularity. That is, their curvature radius must be similar. Otherwise, the most
regular manifolds would need less linear models to be well estimated than the
other ones. Thus, in the last iterations less sources would need to be separated
as the whole most regular manifolds would already have been handled (cf.
Fig. VII.12 for a concrete example). We propose to bypass this issue by limiting
at each iteration l the amplitude of the thresholds τ (l)

1..n and rather use τ ′(l)1..n =

mini∈[1,n](τ
(l)
i ) (cf. Fig. VII.12 - right for the resulting threshold choice). As

such, the condition of equal regularity is transformed into an equal length
condition (cf. more about this limitation in Sec. B.6).

C Neural Network Interpretation

StackedAMCA can be interpreted as the multilayer neural network of Fig. VII.13.
The different network layers correspond to the iterations l and each layer computes
a linear approximation of some part of the data.

4. Note that in this case, the symmetry of the mixing is not anymore required.
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Figure VII.12 – Regularity issue. Left : The two manifolds do not have the same
regularity, as the horizontal one is almost linear. The thresholds found by Stacke-
dAMCA without any enhancement after the first iteration are displayed in magenta.
Therefore, the horizontal manifold is fully handled during the first iteration, while
the vertical manifold would need at least two linear models to be well estimated.
Middle : Residual after the first iteration : only one manifold is left, making the
search for two sources irrelevant ; Right : Proposed solution for the threshold choice,
to be compared with the left plot.

Slightly altering the notations and writing W(l) = Â(l)†, each neuron layer
corresponds to the estimate Â(l) yielded by the linear BSS step. In Fig. VII.13, the
non-linear step corresponds to the residual computation. Due to the thresholding,
this step has similarities with classical non-linearities in neural networks such as the
Rectified Linear Unit (ReLU – [Maas et al. 2013]). This similarity is in particular
stronger for the case of sparse non-negative sources described in Sec. B.6, for which a
ReLU is truly used to compute the residual. When no non-negativity is enforced, the
soft-thresholding operator used resembles a symmetrical ReLU. The network thus
roughly possesses the classical alternating between neuron layers and non-linearities.
We further need skip connections to complete the transcription of the algorithm. In
particular, these enable to re-use X directly, reducing the error propagations and
improving the results similarly as usual skip connections [Huang et al. 2017]).

However, contrary to many learning processes the layers are trained one-by-one,
each of them minimizing the cost function of AMCA. This would correspond to a
greedy training. A global refinement step could however be added. Furthermore,
while the non-linear step encompasses a classical non-linearity, it first requires an
unfolding of the manifolds, which is different from usual neural networks. Another
difference is also that the thresholds τ (1..l)

1..n are not learnt by minimizing a global
cost function through backpropagation but roughly speaking directly from the data
itself.
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Figure VII.13 – StackedAMCA as neural network

D Experiments

D.1 Metrics

Before demonstrating the relevance of the method with three experiments, we
present the metrics used to assess the result quality, as these are slightly less usual
than in the linear case. Due to the indeterminacy by the non-linear function h in non-
linear BSS, it is important to differentiate measures about the reconstruction of the
sources and their separation. The reconstruction metrics are the usual linear ones :
the Mean Error (ME), or the more accurate SDR (capturing both the separation
and reconstruction quality) [Vincent et al. 2006], or SAR (focusing only on the
reconstruction).
Concerning the separation quality, a classical approach is to estimate h [Ehsandoust
et al. 2017] by fitting a non-linear curve P to the 1D-manifold of the scatter plot
of each estimated source Ŝi as a function of the true one S∗i , and to look at the
thickness of the manifold around P. Here, we use for P a polynomial function of
degree 20 and the thickness is measured by the :

— logarithmic median absolute distance to P :

Cmed = −10 log(
n∑
i=1

median
j

(|Ŝji − P(S∗ji ))|) (VII.6)

— logarithmic mean absolute distance to P :

Cmean = −10 log(

n∑
i=1

1

t

t∑
j=1

|Ŝji − P(S∗ji )|) (VII.7)

However, the results of these metrics are sensitive to the choice of P. We thus propose
to introduce for exactly sparse sources a new metric based on the angular distance
to the axes :

Cang = −10 log

 1

n(n− 1)

n∑
i=1

 n∑
i′=1
i′ 6=i

1− 1

#Z

∑
j∈Z

S∗ji′√
Ŝj2

i + S∗j
2

i′


 (VII.8)

where Z = {j ∈ [1, t]|Sji′ 6= 0}.
Lastly, for the first linear-by-part experiment, it is also possible to use the mixing
criterion CA [Bobin et al. 2008], as true underlying linear models exist.
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D.2 Linear-By-Part Mixing

The objective of the first experiment is to study StackedAMCA main mecha-
nisms and test it in a ideal setting where it should be able to separate and reconstruct
the sources well. The mixing is indeed linear-by-part, thus perfectly matching the
unmixing process of StackedAMCA. More specifically, they have t = 10000 samples,
with disjoints support and a sparsity level of p = 10%. There is m = n = 2 ob-
servations, obtained with a linear-by-part f∗ (no noise N is added). Each part is
an orthogonal A∗(l) matrix. The data X is shown in Fig. VII.14 (while the mixing
might seem simplistic, it however deviates much from the linearity). Since both the
true mixing matrices A∗(1..l) and the optimal thresholds are known, it is possible to
assess the quality of their estimation by StackedAMCA.
Qualitatively and as shown in Figure VII.15 - left, the data reconstruction is al-
most perfect (except for 2 outliers – likely to come from a thresholding in the
wrong direction). This however does not guarantee the separation of the sources.
Fig. VII.15-right therefore also displays the scatter plot of X with colors correspon-
ding to the estimated different sources : each manifold is correctly labeled with only
one source. Furthermore, the thresholds τ (1..l)

1..n in violet seem to be well estimated
(the cumulated error is 4.9× 10−3).
Quantitively, Fig. VII.15 displays the evolution of CA and the SDR as a function
of the iterations. The high values of CA confirms that the separation is good, while
the decent SDR shows that despite the non-linear setting, the source reconstruction
is correct. The high quality results for the first iteration indicates as expected that
AMCA is robust enough to discard the highly non-linear high amplitude samples.
The decrease of both CA and the SDR with the iteration number is not strictly
monotonic, probably due to the fact that some errors done at a given layer l can be
compensated at the following layer (e.g. by still finding the good thresholds τ (l+1)

1..n ).

D.3 Star Mixing and Comparison to Other Methods

We now compare the results of our algorithm to other existing ones on a much
more complicated experiment. Only a few algorithms for non-linear BSS are open
source, and we mostly found three of them : MISEP [Almeida 2003], NFA [Honkela
et al. 2007] and ANICA [Brakel & Bengio 2017]. The experiment itself is inspired
from [Ehsandoust et al. 2016] but is made much more difficult due to a) the presence
of noise N with a SNR = 30 dB ; b) a high number of sources (the original experiment
being restricted to n = 2).
The sources follow a Bernoulli-Uniform distribution, p = 10% of the t = 9500

samples being non-zeros and drawn according to a uniform distribution in [-0.5,
0.5]. We further ensure that the supports of the n = 6 sources are disjoint and there
are m = 6 observations. These are computed recursively through the application
15 times on each element j ∈ [1, t] of a mixing of the form Uj

d = cos(α(j))Uj
d −

sin(α(j))Uj
f and Uj

f = sin(α(j))Uj
d+cos(α(j))Uj

f , with α(j) = π
2 (1−

√
Uj2

d + Uj2

f ),
for random d, f ∈ [1, 6] and with the initial Ud = S∗d and Uf = S∗f . The data X is
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Figure VII.14 – Left : Reconstruction of the data from the model estimated by
StackedAMCA, superimposed on the true data X ; Right : True data, with the colors
coming from the demixing : red corresponds to source one and yellow to source two.
Points in violet correspond to the samples used to compute the thresholds τ (1..l)
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Figure VII.15 – Left : CA as a function of the iteration l ; Right : SDR as a function
of l.
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Figure VII.16 – A 3-dimensional projection of a non-linear mixing with n = m = 6

sparse sources.

taken equal to U after the 15 iterations plus the noise N. A 3-dimensional projection
of the mixing is displayed in Fig. VII.16.

The different separation and reconstruction metrics are displayed in Table VII.1
and VII.2. The corresponding results are shown in Fig. VII.17, where the scatter
plot of one estimated source is drawn as a function of the true one for each method.
First, it seems that neither ANICA nor NFA truly separate the sources (concerning
ANICA, the results seem however to improve when no noise is added). This bad
separation is translated into plots that do not resemble a 1D-manifold. It is in par-
ticular visible by looking at the estimated values for S∗1 = 0 : many samples are
such that Ŝ1 6= 0, which corresponds to high interferences and a leakage of the other
sources in Ŝ1. Although such bad unmixings could come from our lack of familiarity
with the parameter tuning of these methods, it is possible that the regularization
introduced by the network structure for ANICA and the Bayesian setting for NFA
is not sufficient to enable the separation of the sources (since the independence is
not either, cf. Sec A). On the contrary, MISEP separates the sources well, pro-
bably due to a good implicit regularization. StackedAMCA displays a very small
number of outliers (a single one in Fig. VII.17). While these probably come from
small remaining error propagations due to the temporary first guess in the residual
computation (cf. Sec. B), their small numbers shows the interest of the manifold
unfolding from the raw data X at each iteration. Therefore, looking at the various
metrics the sources are still in general much better separated by StackedAMCA :
Cmean improves by almost 7 dB compared to MISEP. The good separation of Sta-
ckedAMCA is confirmed by the best Cang.
Second, MISEP does not reconstruct well the sources as StackedAMCA does and
Fig. VII.17 clearly indicates that it did not invert the non-linearity h. On the
contrary, the scatter plot yielded by stackedAMCA resembles the identity and the
good ME (and best SAR, despite the outliers) indicates that the algorithm structure
was sufficient to regularize well the reconstruction problem. Some non-linearities f∗
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Tableau VII.1 – Separation quality of 4 methods : StackedAMCA, MISEP, NFA
and ANICA. The curve P fitted to the scatter plots displayed in Fig. VII.17 is chosen
as a polynomial function of degree 20.

Method Cmed Cmean Cang

StackedAMCA 41.4 28.1 41.2

MISEP 22.6 21.8 20.6

NFA 15.8 10.8 11.1

ANICA 17.9 11.7 4.0

Tableau VII.2 – Reconstruction quality of StackedAMCA, MISEP, NFA and
ANICA.

Method -10log(ME) SAR

StackedAMCA 26.4 19.4

MISEP 21.7 17.2

NFA 12.9 8.1

ANICA 0.52 −18.8

for which StackedAMCA is able to perform such a good reconstruction are charac-
terized in Sec. E.

D.4 Experiment without source reconstruction

The objective is here to try stackedAMCA on a mixing for which it should not
be able to reconstruct the sources well.
The experimental setting is relatively similar to the one of the previous subsection :
the sources follow a Bernoulli-Uniform distribution, p = 10% of the t = 9 500

samples being non-zeros and drawn according to a uniform distribution in [-0.65,
0.65]. We further ensure that the supports of the n = 6 sources are disjoint and there
is m = 6 observations. The mixing is computed recursively through the application
9 times on each element j ∈ [1, t] of Uj

d = cos(α(j)2) exp(α(j))Uj
d/2− sin(α(j)2)Uj

f

and Uj
f = sin(α(j)2) exp(α(j))Uj

d/2 + cos(α(j)2)Uj
f , where all the variables where

defined in the previous subsection. The most important difference is due to the
presence of the exp(α(j))/2 factor, making that the first column of the corresponding
mixing matrix is not anymore unitary, and thus stackedAMCA cannot be expected
to perform source reconstruction (cf. Sec. E). Furthermore, the presence of this term
on the first column only makes that the different manifolds do not have anymore the
same regularity, enabling also to test StackedAMCA in this setting. A 3D-projection
of the mixing is displayed in Fig. VII.18.
Concerning the separation quality presented in Table VII.3, all the methods obtain
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Figure VII.17 – Scatter plot of one estimated source as a function of the true
source : a) StackedAMCA ; b) MISEP ; c) NFA ; d) ANICA.
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Figure VII.18 – A 3-dimensional projection of a non-linear mixing with n = m = 6

sparse sources.

Tableau VII.3 – Separation quality of 4 methods : StackedAMCA, MISEP, NFA
and ANICA. The curve P fitted to the scatter plots displayed in Fig. VII.19 is chosen
as a polynomial function of degree 20.

Method Cmed Cmean Cang

StackedAMCA 37.4 27.3 38.1

MISEP 23.0 22.2 21.2

NFA 18.4 11.4 12.2

ANICA 16.7 12.0 4.14

slightly worst results compared to the previous subsection, as the problem is more
complicated due to the different manifold regularities. StackedAMCA however still
obtains the best ones, which are good as testified by Figure VII.19. Therefore, as
expected the algorithm is still able to perform the separation.
Concerning the reconstruction, it can already be seen in Figure VII.19 that the non-
linearity is not well inverted. This is confirmed by a decrease of 8.4 dB of the SAR
and a loss of 3.1 dB for the ME (to be compared with a loss of only 0.8 dB for
Cmean).
In conclusion, even in this experimental setting where the source reconstruction
cannot be expected from StackedAMCA and is indeed bad in practice, the algorithm
is still able to separate the sources well.

E Discussion : required Hypotheses for StackedAMCA
and possible enhancements

In this section, we discuss some required hypotheses for StackedAMCA to work.
While such hypotheses might seem restrictive, we however emphasize again the
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Figure VII.19 – Scatter plot of one estimated source as a function of the true source.
In contrast to Fig. VII.17, the scatter plot of the source obtained by Stacked AMCA
does not resemble identity : a) StackedAMCA ; b) MISEP ; c) NFA ; d) ANICA.
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Tableau VII.4 – Reconstruction quality of StackedAMCA, MISEP, NFA and
ANICA.

Method -10log(ME) SAR

StackedAMCA 23.3 11.0

MISEP 20.9 7.46

NFA 13.7 5.51

ANICA 2.09 −16.9

difficulty of the problem at hand and the fact that most of the previous works based
on ICA and general mixings did not provide required conditions under which the
source separation can be hoped [Almeida 2003,Brakel & Bengio 2017]. In contrast,
the geometric interpretation of StackedAMCA enables to perform such a discussion.
Concerning the other works based on sparsity, the works making the hypotheses
explicit also used strong ones (cf. e.g. [Puigt et al. 2012]).
Furthermore, most of the discussed conditions are either intrinsic to the problem
or can be mitigated. Hypotheses E.1 and E.2 are intrinsic to sparse non-linear BSS
based on clustering (at least, without any additional explicit priors), as well as
E.5 (with the regularity potentially depending on the specific clustering algorithm
used). While conditions E.3, E.4 and E.6 are specifically required by our algorithm,
we propose exploratory paths for alleviating E.3 and E.6. Assumptions E.7 and E.8
must be seen as advantages of StackedAMCA over most other existing algorithms.
Concerning E.7, most algorithms do not incorporate any noise in the mixing process.
Thus, being able to deal with noise is a progress, even if this one should be limited
to some extent. Concerning E.8, to the best of our knowledge StackedAMCA is the
first non-linear BSS algorithm for which the source reconstruction of the sources can
be hoped for a characterized class of non-trivial mixings.

E.1 Sparsity of the sources and disjoint supports

The sparsity of the sources S∗ in the direct domain is assumed for regularizing
problem (II.3). Such an assumption can for instance be verified in realistic experi-
ments such as spectrometry.

We have furthermore assumed the supports of the sources to be disjoint. While
this is not very realistic in practical cases, it seems difficult to bypass this condi-
tion as we only explore the span of f∗ that the 1D-manifolds created by the sparse
sources uncover. By the morphological diversity assumption, the points outside these
manifolds are too rare to enable a proper estimation of f∗ without either further
conditions on the mixing (e.g. the separability over the different sources) or additio-
nal priors on the sources (cf. Fig. VII.20). Similarly to the results of [Hyvarinen &
Morioka 2017], a promising prior could be to use potential temporal dependencies,
which is left for future work.
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Figure VII.20 – Illustration of the difficulty to estimate the partially correlated
samples in non-linear BSS. Note that with more than n = 2 sources, it is not even
possible to determine which sources are active. a) Non-sparse sources : the samples
in red are the only ones to correspond to disjoint supports of the sources. All the
other ones are partially correlated ; b) A dataset corresponding to the mixing of
the sources in a). Since the mixing is not separable, the manifolds in red are not
sufficient to estimate the non-linear mixing for the samples in green (the green and
red manifolds are not parallel). The non-linearity thus would need to be estimated
using the information yielded by the green samples ; c) Sparse sources : the partially
correlated samples are in much smaller number ; d) The number of green samples is
now too small to estimate the mixing far from the disjoint support samples.
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We however did some tests without disjoint supports. The samples with mul-
tiple active sources were badly separated but the estimation of the 1D-manifolds
by StackedAMCA was not much perturbated, which is due to AMCA robustness to
multiple active sources. For instance, re-doing the experiment of Section D.3 without
enforcing disjoint supports in the data creation, we obtain similar results : Cmed = 42

dB, Cmean = 26 dB, Cang = 37 dB and -10log(ME) = 27 dB. Note that these me-
trics were computed on the disjoint samples only since we do not claim to handle
well the joint ones, but only that these do not perturbate much the unmixing.

E.2 Density of the 1D-manifolds

For StackedAMCA to work, the manifolds must be continuous, which is to be
related with the clustering nature of the algorithm. In particular, this entails that
the sources must be dense enough within their support, to avoid any “gap” in the
manifolds. The size of affordable gaps depends on the manifold regularity. Further-
more, for each linear BSS step a sufficient number of samples must be non-zero in
order to have enough statistics for solving each linear sub-problem (cf. [Gribonval &
Schnass 2010,Gribonval et al. 2015] for more detailed conditions concerning sparse
linear BSS identifiability).

E.3 Symmetry of f∗ around the origin

StackedAMCA currently needs the symmetry of the mixing around the origin.
Indeed, after the non-linear shrinkage step, the residual must be almost linear around
zero. This might not be verified for non-symmetrical mixings (cf. Fig. VII.21 – the
residual is not interpretable as a mixture with n = 2 sources). Such an assumption
could in principle be leveraged. First, the data can be symmetrical around a different
point as long as a preprocessing step is introduced to center it. Then, tackling non-
symmetrical data could probably be dealt with by introducing non symmetrical
non-linear steps (i.e. using a soft-thresholding function with two different thresholds
for the positive and negative parts) and using the non-negativity constraint in the
linear BSS step. As such, the positive and negative parts of each manifold could be
treated separately, and aggregated at the end.

E.4 Well-conditioned linear sub-problems

Each linear sub-problem to be solved by StackedAMCAmust be well-conditioned.
That is, the corresponding underlying linear model A∗(l) must have a high enough
condition number so that AMCA can find a good unmixing, which is to be linked
with the classical performances of the algorithm in the linear case [Bobin et al. 2015].
Note that however the re-use of the linear model of the previous iteration l−1 as an
initialization of AMCA can help it though re-using past knowledge to find a good
linear model at the current iteration.
An extreme case of badly conditioned (and even colinear) sub-problem at the second
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Figure VII.21 – Example of non-symmetric case. Left : Data X. Right : corres-
ponding residual R(2). The non-symmetrical manifold cannot be tackled as a single
source, as it is not linear in zero.
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Figure VII.22 – Example of badly conditioned case. Left : Data X ; Right : Residual
at iteration l = 2. The two manifolds are not anymore distinguishable.

iteration is given in Fig. VII.22. In this one, StackedAMCA cannot be expected to
yield good results, as at the second iteration the residual is colinear.

E.5 Regularity of the Mixing f∗

The mixing function f∗ is assumed to be instantaneous, injective, and to depend
on the sample amplitude (which is for instance the case with LQ mixtures [Hosseini
& Deville 2003,Duarte et al. 2015,Deville & Duarte 2015]). We have furthermore
assumed that f∗ does not deviate too fast from linearity as a function of the am-
plitude. For differentiable curves, it mathematically means that at every point of
the 1D-manifolds described by the mixing X, the local curvature radius must be
large enough. This condition is of primary importance to enable StackedAMCA
to separate the sources and alleviate the issue of potential permutations between
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layers (the permutation correction during the iterations is furthermore based on this
assumption). For a similar reason, f∗ must also be L-Lipschitz with L small enough.

E.6 Same length for all the manifolds

All the manifolds must currently have the same length. Otherwise, one could be
fully estimated in less iterations than the others. Thus, the residual would compre-
hend less sources in the last iterations than in the first ones.
A possible solution would be to re-estimate at each iteration the number of sources.
While the estimation of such a number is a difficult question in BSS, the problem
would here be made easier as we would only need to test a smaller number at
each iteration. More specifically, at each iteration StackedAMCA could try reduce
the number of sources to be estimated by checking if there are enough remaining
samples for each manifold in the residual R(l) to perform the separation.

E.7 Low noise

It is important to emphasize that in general, most non-linear BSS algorithm
do not assume the mixing to be contaminated by noise (to the notable exception
of [Honkela et al. 2007]). While in our approach the noise must be relatively low
(cf. [Gribonval et al. 2015] for conditions on the noise concerning the separability
of each linear sub-problems), our algorithm seems to be empirically quite robust as
demonstrated in Section D. This is mainly due the use of AMCA, which is itself
fairly robust [Bobin et al. 2015].

E.8 What Sources can StackedAMCA Reconstruct Well ?

In contrast to other methods, it is further possible to characterize at least one
non-trivial type of mixings for which StackedAMCA approximately reconstructs
the true sources up to a simple scaling and permutation indeterminacy. A sufficient
condition (in addition to the ones required for separability) is that for each sample
of the mixing indexed by j, the mixing f∗ can be written as a product of an unitary
matrix and the sources :

G = {f∗ : Rn×t → Rm×t‖∀j ∈ [1, t],Xj = A∗(Sj) S∗j ,A∗(Sj) ∈ O} (VII.9)

where O is the oblique set. The function A∗(.) : Rn → Rm×n is potentially non-
linearly depending on S∗. Since in AMCA the scale of the matrices Â(l) is fixed
to 1, if f∗ ∈ G there is no ambiguity left for the scale of each layer. Due to the
regularity assumption, it will then be possible to backproject linearly for each layer
the manifold on the axes with small errors and get an approximate reconstruction.

F Conclusion

We have introduced in this Chapter StackedAMCA, a new algorithm tackling
the sparse non-linear BSS problem. Based on a new stacked sparse BSS approach,
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this method enables to sequentially compute a linear-by-part approximation of the
underlying non-linearities. Each linear part is estimated by a robust linear BSS al-
gorithm step, which is followed by a non-linear step . The non-linear step enables to
work on increasingly higher non-linearities and is itself composed of an unfolding of
the source 1D-manifolds and then a thresholding. We show the relevance of Stacke-
dAMCA compared to other state-of-art methods. Beyond separating the sources, in
some experiments the algorithm is also able to reconstruct them well despite a se-
verely ill-posed problem. A discussion of the required hypotheses for StackedAMCA
to work is furthermore proposed, as well as a characterization of some datasets for
which it should be able to reconstruct the sources well.
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Conclusion and perspectives

Although sparse Blind Source Separation has well established over the last two
decades its capacity to extract meaningful information from multivalued data, most
algorithms do not handle properly large-scale problems. The objective of this PhD
was to tackle such an issue.

In Chapter IV, we aimed at introducing a robust sparse BSS method using
modern-art optimization frameworks such as PALM. While the difficulties to be
tackled by such an approach were first discussed, the proposed method enables an
automatic choice of the regularization parameters and an increased reliability with
regards to the initialization, potentially obviating any relaunch of PALM that would
be precluded in the large-scale setting.
Chapter V handled mixings comprehending a high number of sources. This problem
is especially challenging, as many usual algorithms suffer from decreased separation
qualities in such a setting. The introduced bGMCA, based on intermediate-size block
coordinate optimization, enables to maintain high quality results while reducing the
computational cost.
The case of large-scale datasets is dealt with in Chapter VI, in which we introduce
mini-batches in GMCA, improving its scalability both in terms of computation time
and memory burden. Strikingly, such a method can also in some settings improve
the separation quality over full batch ones.
Lastly, Chapter VII is an extension of the previous work to the non-linear BSS pro-
blem. The proposed StackedAMCA method constructs a linear-by-part approxima-
tion of the underlying non-linearities. Numerical experiments highlight its capacity
to separate the sources, as well as to reconstruct them in some settings.

The methods have been extensively tested, both on simulated and realistic
experiments. As such, they are shown to work well in a wide range of settings.
To foster reproducible research, the codes will be made available online at http:
//www.cosmostat.org/software/gmcalab.

Perspectives

The work presented in this thesis have raised several questions, some of which
are still open and might be the subject of future research.

http://www.cosmostat.org/software/gmcalab
http://www.cosmostat.org/software/gmcalab
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Algorithmic framework and regularization parameter choice

The work presented in Chapter. IV could be prolongated. Although the proposed
2-step approach was shown to work well in many settings, several pathways could
be explored :

— Study other optimization schemes. While the use of BCD is shortly discussed
in the Appendix E, more work could be dedicated to determine potential
differences with PALM, which might appear in more difficult settings than
the studied ones (e.g. with Poisson noise, more sources...).

— Use alternative regularization parameter choices than the MAD. In particular,
a proper extension of the Stein Unbiased Risk Estimator (SURE) to the sparse
BSS problem could be envisioned, as it has led to good results in other inverse
problems [Eldar 2009, Giryes et al. 2011]. Preliminary results (in which an
already existing SURE method is applied without any further adaptation to
the sparse BSS problem) are shown in Appendix E ;

— Beyond the regularization parameter choice, use machine learning tools to
enhance the separation.

Use of intermediate block-sizes in sparse BSS

The introduction of bGMCA leads to several questions :

— For the moment, the block choice at each iteration is still relatively unexplored.
While we proposed three strategies in Chapter V, they would deserve more
work. Finding a good (or even optimal) bloc size is still an open question ;

— Giving more mathematical grounding to the approach. In particular, links with
recent works on dropout in matrix factorization [Cavazza et al. 2017,Mianjy
et al. 2018] can be highlighted. In these, it is shown that using dropout intro-
duces an implicit regularization promoting low-rank solutions. It has however
to be emphasized that bGMCA is quite different from the aforementioned
works (in particular, due to the fact that it works on a residual and it is not
based on gradient descent but rather on least-squares) ;

— Estimation of the number of sources : such an issue might be difficult in BSS.
However, re-using bGMCA and the above remark, it might be possible to
perform such an estimation (first results have been obtained in this direction,
but are still yet too preliminary to be discussed and must be confirmed) ;

Use of mini-batches in sparse BSS

The use of mini-batches in dGMCA has shown surprising results, making this
approach particularly appealing and calling for further extensions :

— Handle datasets with a large number of observations, that is a high number
of lines. This is reminiscent in the context of dictionary learning of the recent
ODL extension [Mensch et al. 2018]. The main question would then be how to
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aggregate the different estimations of the sources. The performances of using
mini-batches both for the lines and columns would also need to be studied ;

— Combine mini-batches and blocks and study the performances of the resulting
algorithm. In particular, this might call for a good block choice, as all the
sources might not be present in a given mini-batch ;

— Introduce a refinement stage, akin to what is done the 2-step approach. This
should be relatively straightforward as an asynchronous version of PALM has
already been proposed in [Davies 2004].

Non-linear sparse BSS

In Chapter VII, we already highlighted some limitations of the current approach
and some corresponding possible enhancements. To summarize and add a few ele-
ments :

— Building on the geometrical interpretation, we derived required hypotheses for
StackedAMCA to work. It would be attractive to mathematically demonstrate
these conditions to be sufficient for the separation and the reconstruction (or
to find new ones that are) ;

— While similarly to most other works numerical experiments were here conduc-
ted on simulations, it would be interesting to apply StackedAMCA on concrete
real-life problems ;

— A major issue of the current approach is its inability to handle partially cor-
related samples properly. To alleviate such an issue, we could use, if they are
verified, additional explicit priors on the sources such as temporal dependen-
cies.





Annexe A

Proximal operators

Definition of proximal operators

The proximal operator of an extended-valued proper and lower semi-continuous
convex function f : Rt → (−∞,∞] is defined as :

proxf (u) = argmin
y∈Rt

f(y) +
1

2
‖u− y‖2`2 (A.1)

Where u ∈ Rt.

Definition of the soft thresholding operator

For two scalar λ and b, the soft thresholding operator Sλ(.) is defined as :

∀b ∈ R, ∀λ ∈ R+,Sλ(b) =

{
b− λ× sign(b) if |b| > λ

0 otherwise
(A.2)

For two matrices Λ and U, we extend our notation to :

∀U ∈ Rn×t,∀Λ ∈ R+n×t ,∀i ∈ [1, n], ∀j ∈ [1, t],SΛ(U)ij = SΛij (Uij) (A.3)

Definition of the projection of the columns of a matrix on the `2

unit hypersphere

We define the projection of a column vector u on the `2 unit hypersphere as :

∀u ∈ Rm, π‖.‖`2=1(u) =

{
u/ ‖u‖`2 if ‖u‖`2 6= 0

undefined otherwise
(A.4)

We extend the notation to a matrix U by projecting all its columns on the `2 unit
hypersphere :

∀U ∈ Rm×n, ∀j ∈ [1, n],Π‖.‖`2=1(U)j = π‖.‖`2=1(Uj) (A.5)

Definition of the projection of a matrix on the positive orthant K+

∀U ∈ Rm×t,∀i ∈ [1,m],∀j ∈ [1, t],ΠK+(Uij) =

{
Uij if Uij > 0

0 otherwise
(A.6)





Annexe B

Performance metrics for Blind
Source Separation

The choice of a performance metric is key to quantitively assess the quality of a
given separation. In this Appendix, we summarize the criteria used in this thesis.
First, we highlight that finding such a criterion might not be trivial, and has lead to
several propositions [Bobin et al. 2015,Vincent et al. 2006,Ehsandoust et al. 2017].
For instance, a mere recovery of the data (e.g. X ' ÂŜ) does not mean that A∗

and S∗ are well estimated. Second, we will categorize the metrics into two families :
the ones used for linear BSS, and the one used in the non-linear setting, for which
the separation and reconstruction quality are distinct.

Linear BSS

The most largely used metric in this work is the mixing matrix criterion CA
[Bobin et al. 2015] :

CA = mean(|PÂ†A∗| − Id) (B.1)

With A∗ the true mixing matrix and PÂ
†
the pseudo-inverse of an estimate cor-

rected through P for the scale and permutation indeterminacies. The mean is the
average of all the elements inside the matrix. The smaller CA, the better the sepa-
ration. However, in most of this work we used for the sake of clarity a logarithmic
criterion : −10 log10(CA).
Note that due to the use of the pseudo-inverse of Â, this metric might be sensitive.
Furthermore, CA does not allow to distinguish between a fair but not fully accurate
estimate of A∗ and a good estimate in which for instance only one column is badly
estimated. As such, an angular criterion between the columns of Â and A∗ might
be sometimes preferred [Chenot 2017].

Originally introduced in the context of audio BSS, the SDR, SAR, SIR, SNR
[Vincent et al. 2006] are also of interest. In brief, the authors decompose each of the
estimated source Ŝi, i ∈ [1, n] in :

Ŝi = Ŝitarget + ŝiinterferences + ŝinoise + ŝiartifacts (B.2)

Where the four terms should be seen as respectively the part of Ŝi coming from the
wanted source Ŝ∗i , the one coming from other sources, from noise and from other
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causes (e.g. distortions). More specifically :

Ŝitarget = ΠS∗i
(Ŝi)

ŝiinterferences = ΠS∗(Ŝi)−ΠS∗i
(Ŝi)

ŝinoise = ΠS∗,N(Ŝi)−ΠS∗(Ŝi)

ŝiartifacts = Ŝi −ΠS∗,N(Ŝi)

This decomposition is then used to derive the following metrics :

— Signal-to-Distortion-Ratio : SDR(Ŝi) = 10 log10

‖Ŝitarget‖
2

`2∥∥∥ŝiinterferences+ŝinoise+ŝiartifacts

∥∥∥2

`2

— Signal-to-Interferences-Ratio : SIR(Ŝi) = 10 log10

‖Ŝitarget‖
2

`2∥∥∥ŝiinterferences∥∥∥2

`2

— Signal-to-Noise-Ratio : SNR(Ŝi) = 10 log10

∥∥∥Ŝitarget+ŝiinterferences

∥∥∥2

`2

‖ŝinoise‖
2

`2

— Signal-to-Artifacts-Ratio : SAR(Ŝi) = 10 log10

∥∥∥Ŝitarget+ŝiinterferences+ŝinoise

∥∥∥2

`2∥∥∥ŝiartifacts∥∥∥2

`2

The median over all the sources Ŝi, i ∈ [1, n] can then be taken to obtain a global
criterion. As a side remark, we would like to highlight that such metrics can be highly
sensitive to a few badly estimated samples due to the use of a squared `2-norm.

Non-linear BSS

Metrics for source separation

A classical approach is to estimate the indeterminacy function h [Ehsandoust
et al. 2017] by fitting a non-linear curve P to the 1D-manifold of the scatter plot
of each estimated source Ŝi as a function of the true one S∗i , and to look at the
thickness of the manifold around P. The thickness can then be measured by the :

— logarithmic median absolute distance to P :

Cmed = −10 log(
n∑
i=1

median
j∈[1,t]

(|Ŝji − P(S∗ji ))|) (B.3)

— logarithmic mean absolute distance to P :

Cmean = −10 log(

n∑
i=1

1

t

t∑
j=1

|Ŝji − P(S∗ji )|) (B.4)
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However, the results of these metrics are sensitive to the choice of P. We thus used
for exactly sparse sources a new metric based on the angular distance to the axes :

Cang = −10 log

 1

n(n− 1)

n∑
i=1

 n∑
i′=1
i′ 6=i

1− 1

#Z

∑
j∈Z

S∗ji′√
Ŝj2

i + S∗j
2

i′


 (B.5)

where Z = {j ∈ [1, t]|Sji′ 6= 0}.

Metrics for source reconstruction

The reconstruction metrics are the usual linear ones, once the scale indetermi-
nacy corrected : the SDR, SAR... In addition, we also used the Median absolute
Error (ME) :

ME(Ŝ) =
n∑
i=1

t∑
j=1

|S∗ji − Ŝji | (B.6)

and the Mean Square Error (MSE) :

MSE(Ŝ) =
n∑
i=1

t∑
j=1

∥∥∥S∗ji − Ŝji

∥∥∥
`2

(B.7)





Annexe C

Convergence conditions

We here detail the conditions ensuring that the algorithms we use converge, if
it is the case. Since this work is not new and is not the focus of this thesis, such
details were omitted into the main text.

A BCD

Problems of the form of Eq. II.8 can be shown to (almost 1) follow the conditions
of Lemma 3.1 a) and Theorem 4.1 b) of [Tseng 2001] (cf. example 6.4 therein) :

— The domain of h(A,S) = 1
2 ‖X−AS‖2F is open, and h is differentiable on it.

— Writing f(A,S) = 1
2 ‖X−AS‖2F +

∥∥RS � (SΦT
S )
∥∥

1
+ ι{∀i∈[1,n];‖Ai‖2`2=1}(A)

and taking feasible points 2 for the initialization (Â(0), Ŝ(0)), the level set U =

{(A,S);h(A,S) ≤ h(Â(0), Ŝ(0))} is compact, and h is continuous on it.

— f(A,S) = f(A,S1
1,S

1
2, ...,S

t
n) is convex in (S1

1,S
1
2, ...,S

t
n) and convex in A.

The function f is also regular on U .
— The updates are essentially cyclic, ensuring that each variable is updated en-

ough time. More specifically, in our case the updates are cyclic.

B PALM

It can be proved that our cost function follows the convergence condition of [Bolte
et al. 2014].

— The function f defined above follows the Kurdyka-Lojasiewicz property [Bolte
et al. 2014]. In brief, such property mainly implies that f is sharp (in particular,
close to the critical points) up to a reparameterization of its values (there
exists a function φ such that the sub-gradients of u→ φ ◦ (f(u)− f(ū)) have
a norm greater than 1, no matter how u is close to the critical point ū). More
specifically, all the terms of Eq. II.8 are semi-algebraic functions – the data

1. To be more precise, the use of ι{∀i∈[1,n];‖Ai‖22=1}(A) makes that the required conditions
do not hold, since in particular f is no more convex in A. This is however not an important
issue, since the problem only stems for the specific point where A is a matrix having one (or
more) columns filled with 0, which is not likely to occur in our context. For more mathematical
accuracy, the hyper-sphere constraint ι{∀i∈[1,n];‖Ai‖2

`2
=1}(A) can be replaced by the ball constraint

ι{∀i∈[1,n];‖Ai‖2
`2
≤1}(A).

2. That is, the initialization respects the conditions enforced by the indicator function.
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fidelity term is a polynomial function, ‖.‖p is semi-algebraic whenever p is a
rational number and the indicator functions are semi-algebraic, making that
the sum is semi-algebraic and thus follows the Kurdyka-Lojasiewicz property.

— Both the sparsity and the oblique constraints are proximable.

— The data fidelity term h is C2. As such, its gradients ∇h with respect to A

and S are Lipschitz continuous on bounded subsets. Furthermore, the corres-
ponding Lipschitz constants are bounded (and non-zeros).

— We use a cyclic update of the variables.

C pALS

The pALS algorithm cannot be proved to converge and can even diverge. In this
section, we aim at giving an understanding of such an issue with a simple (historical)
example related to NMF. Let us assume that we want to solve the problem, with
A ∈ Rm×n and x ∈ Rm :

argmin
s∈Rn

1

2
‖x−As‖2F + ιs∈K+(s) (C.1)

The pALS solution is :

ŝ = ΠK+ [A†x] = ΠK+ [(ATA)−1ATx], (C.2)

which can be, as explained in [Kim et al. 2008], rewritten as :

ŝ = ΠK+ [ŝ− (ATA)−1(ATAŝ−ATx)] = ΠK+ [ŝ− 1×H−1(ATAŝ−ATx)] (C.3)

with H the Hessian of the data fidelity term. Thus, instead of performing a gradient
step as it would be the case in PALM, the pALS algorithm performs a quasi-Newton
step with projection, but with an arbitrary step 1. Such an update can however
increase the cost function as displayed in Fig. C.1, which precludes any convergence
guarantee. As a side remark, it is however intuitively visible that the weaker the
enforced constraints, the easier for pALS to be able to converge. For instance, when
confronted to a sparse minimization problem of the following form :

argmin
s∈Rn

1

2
‖x−As‖2F + ‖RS � S‖1 , (C.4)

pALS is more likely to converge when RS coefficients are small (and in the limit,
if ‖RS‖ = 0, it converges). This explains why in practice GMCA tends to stabilize
in most cases thanks to its decreasing hyper-parameter strategy, since the hyper-
parameters are low during the last iterations.
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Figure C.1 – A graphical example of an iteration of pALS, during which the cost
function does not decrease. The gray ellipses represent the level sets of the data-
fidelity term. The algorithm starts at the current iterate ŝ(k). The update before
thresholding s̃ reaches the minimum of the data fidelity term. However, the projec-
tion of s̃ on the non-negativity constraint increases the whole cost function (which is
confounded with the data-fidelity term for feasible points) since the new estimation
s̃(k+1) goes from an inner ellipse towards an outer one. Figure inspired from [Kim
et al. 2008].





Annexe D

Variants of GMCA thresholding
strategy

We here present a few variants of the originally-proposed GMCA automatic
parameter choice based on the use of the κ-MAD. The main idea is the same, and
all these strategies aim at accentuating the decrease of the parameters to still further
benefit from the morphological diversity assumption.

A κ-MAD with varying κ

In this strategy, the hyper-parameters are chosen as described in chapter III on
the κ-MAD rule : (

µ
(l)
1 , µ

(l)
2 , ..., µ(l)

n

)T
= κ×MAD(Â(l−1)†X) (D.1)

However and contrary to what was described, in this strategy κ is not chosen fixed
with a value of κ = 3 but decreases linearly during the iterations, starting for
instance from a value of 7 and finishing to a value of 3. This enables to better take
into account the morphological diversity, since the hyper-parameters now start from
higher values.

B Increasing percentile

The value of κ = 7 of the previous strategy might seem somewhat arbitrary.
Therefore, this method is fully based on the estimated S̃

(l)
i coefficients :

— First the support of S̃
(l)
i is determined, keeping only the samples of S̃

(l)
i larger

than κMAD(S̃
(l)
i ) (with κ = 3) ;

— Denoting L the maximum number of iterations, the threshold value µ(l)
i at

iteration l is set as the 100 × L−l
L percentile of S̃

(l)
i entries in the support :

|S̃(l)
i ||S̃

(l)
i ≥|κMAD(S̃

(l)
i )|.

Compared to the previous one, this strategy has two advantages : i) it avoids the
need for setting κ to an arbitrary value ; ii) it enables to take into account the
distribution of the sources.
However, it has to be highlighted that since the thresholds values are dependent on
the final number of iterations L, the results are in general much more dependent to
L than with the previous strategy.





Annexe E

Other exploratory ways of
performing a 2 steps strategy

In this appendix, we shortly discuss some alternatives for the refinement step of
the 2-step strategy of Chapter IV. This must not be understood as a fully accom-
plished work, but rather as preliminary results that could pave the way for future
research.

A Discussion about BCD

In sparse NMF, the use of a two-step strategy using as refinement a BCD algo-
rithm instead of PALM was proposed in [Rapin 2014]. While using BCD can lead to
a computational overload [Chenot 2017,Xu & Yin 2013] which would not be suitable
in our large-scale setting, we tried it on relatively small problems to determine whe-
ther this approach could lead to a potential improvement of the separation quality.
This section is structured similarly as Chapter IV : we first study the results of an
isolated BCD with fixed parameters, and then its behavior as a refinement stage
equipped with the MAD heuristic within a two-step approach.

A.1 Fixed parameters

In this section, we use a similar approach as in Chapter IV-C to assess the
separation quality of a single BCD. Such a task is again performed using a grid
search on the regularization parameters for the data of case 1 and case 2. The
protocol is exactly the same as the one we used for PALM. Figure E.1, which is
to be compared with Fig. IV.1, indicates very similar results between BCD and
PALM and does not seem to suggest that BCD has a better efficiency than PALM
when coupled with a grid-search regularization parameter choice : that is, the hyper-
parameter choice is not less sensitive when using BCD. Fig. E.2 and Fig. E.3, which
are compared with Fig. IV.3 in the right plots, tend to show that the versatility of
BCD is further similar as the one of PALM, at least close to the diagonal where the
best results are achieved.
As a conclusion, such results seem to clearly indicate that a BCD suffers from the
same difficult regularization parameter choice than a PALM. This was fully expected
on such simple experiments, where the local minima seem to be rare (the standard
deviation over the initialization of both PALM and BCD is low). Indeed, since both
algorithms are minimizing the same cost function, the only source of discrepancy
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λ1

λ
2

(a)

λ1
λ
2

(b)

Figure E.1 – Median of CA (dB) for 5 initializations of BCD algorithm as a 2D
function of the 2 thresholds corresponding to the n = 2 sources. To be compared
with Fig. IV.1. Left : Case 1, Right : Case 2.

between both must come from such potential spurious minima.
Such preliminary conclusions must however be mitigated, and should be confirmed
in more complicated settings with realistic sources, for which such spurious minima
could appear, as well as with a higher number of sources n. 1

A.2 BCD as a refinement stage

In this section, we investigate the behavior of BCD within a 2-step strategy as
a refinement stage. Similarly to PALM, we use both an initialization by a warm-up
GMCA stage and the MAD as an automatic regularization parameter choice within
the BCD refinement. The results we obtain in Fig. E.4 for the 2-step BCD do not
vary much 2 from the ones of the 2-step PALM of Fig. IV.5. As such, using a BCD
does not yield an improvement that would justify the higher computational cost.
As a side remark, while for some rare experiments and initializations using the
MAD directly within a single PALM could yield decent results as testified by the
right plot of Figure IV.5, it does not seem to be the case for BCD. Indeed, in BCD
the thresholds computed from a bad initialization are re-used for the whole update
of the S matrix, making them more important than in PALM, where they are used
only for one proximal gradient step and then updated. This seems to highlight that
using a good initialization for a BCD based on a MAD strategy for the regularization

1. As a side remark, changing the structure of the noise and using a Poisson noise instead of a
Gaussian one seems also to create discrepancies between BCD and PALM results.

2. Note that in the previous subsection the only source of differences between BCD and PALM
was spurious minima. In contrast, this is not anymore the case here because using the MAD within
BCD leads to different regularization parameter choices than using it in PALM.
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Figure E.2 – Dynamic of CA for BCD over different random realizations of A∗, S∗

and N in case 1. To be compared with Fig. IV.3 left plot, in the case of PALM. Left :
BCD results ; Right : Absolute difference between left plot and the corresponding
one for PALM of Fig. IV.3.
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λ1
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2

(b)

Figure E.3 – Dynamic of CA for BCD over different random realizations of A∗, S∗

and N in case 2. To be compared with Fig. IV.3 right plot, in the case of PALM. Left :
BCD results ; Right : Absolute difference between left plot and the corresponding
one for PALM of Fig. IV.3.
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(b)

Figure E.4 – Results of a two-step approach with a BCD refinement stage on Case
1. For the sake of completness, the results of an isolated BCD equipped with a
MAD strategy is also displayed. This figure is to be compared with the left and
right plots of Fig. IV.5. Left : the dashed line is the median of CA over the different
A∗,S∗ and N, and the error bars corresponds to the quartiles of the criterion over
the initialization ; Right : the dashed line corresponds to the median of CA over the
initializations, and the error bars to the quartiles of the criterion over the realizations
of A∗,S∗ and N.

parameter choice is even more important than in the case of PALM.

B Decreasing thresholds based on the source distribu-
tion

Recent improvements of GMCA enforce more strongly decreasing thresholds by
basing their choice on the estimated source distribution (for more details, see pre-
vious Appendix). A natural extension of the 2-step strategy is then to replace the
MAD by such an enhanced threshold choice based on an increasing percentile of the
estimated sources.
Preliminary to using it inside of a 2-step approach, a test on a single PALM yields
decent results (at least, for a large number of maximal iterations, implying very
slowly decreasing regularization parameters – cf. Fig. E.5). The robustness with
regards to the initialization is however low compared to the one of the two step
approach 3. Furthermore, a single PALM always gives worse results than the two
step algorithm (probably in part due to the fact that the lowering of the high thre-
sholds implies high interferences – this seems to be confirmed by the bad results of

3. While such decent results could suggest to use a two-step PALM - PALM with the first stage
using a threshold choice based on the decreasing strategy, and the second one using a MAD strategy
in addition to reweighted `1, the results would likely be unstable with regards to the initialization
similarly to the first step.



C. Decreasing by steps threshold 181
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(b)

Figure E.5 – Results of a isolated PALM and BCD with a percentile threshold choice
on case 2. For comparison, the results of the usual two-step approach are displayed.
Left : the dashed line is the median of CA over the different A∗,S∗ and N, and
the error bars corresponds to the quartiles of the criterion over the initialization ;
Right : the dashed line correspond to the median of CA over the initializations, and
the error bars to the quartiles of the criterion over the realizations of A∗,S∗ and N.

a decreasing threshold strategy within PALM with exactly sparse S∗ sources, for
which the decrease is faster).
Such a strategy is however made more robust to the initialization when used within
a 2-step approach. Indeed, the choice of the initial regularization parameters is then
made on a decently estimated Ŝ matrix, making it much better. Since GMCA is
robust to the initialization, so do the threshold choice. The final results are however
slightly worse (2.5 dB on average) than the ones of the 2-step κ-MAD approach
presented in chapter IV.
An interesting result is furthermore given when using a 2-step strategy with a re-
finement stage based on BCD instead of PALM and a threshold choice based on
the percentile instead of the MAD. In this setting, BCD yields better results than a
refinement stage based on the PALM. This can be explained by the fact that in BCD
S is updated until convergence with fixed thresholds before updating A. Thus, the
interferences implied by the gradient step are partially removed before updating A,
implying better results. While we do not aim at performing a full study of BCD, this
result suggests to use within PALM a decreasing by steps threshold choice, aiming
at partially mimicking BCD.

C Decreasing by steps threshold

This new strategy is based on the previous remark that a decreasing threshold
choice based on an increasing percentile of the estimated sources worked better
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Figure E.6 – Results on case 2 of PALM and BCD used as refinement stage within
a two-step approach with a percentile threshold choice. For comparison, the results
of the usual two-step approach are displayed. Left : the dashed line is the median of
CA over the different A∗,S∗ and N, and the error bars corresponds to the quartiles
of the criterion over the initialization ; Right : the dashed line corresponds to the
median of CA over the initializations, and the error bars to the quartiles of the
criterion over the realizations of A∗,S∗ and N.

within a 2-step BCD than a 2-step PALM, and that it might be linked to lower
interferences in BCD. More specifically, high thresholds creates high artifacts due
to the use of the `1 norm. If the thresholds decrease quickly, such artifacts will be
directly partially transformed into interferences due to the PALM gradient step on
S. In turns, these interferences will impact the estimation of A, deteriorating it,
which is limited by the use of BCD.
While this seems to be relatively intrinsic to the PALM scheme, we can at least
try to limit the deterioration by improving the threshold choice and not choosing
it on a solution containing a high level of interferences. More specifically, instead of
decreasing the threshold at each iteration, we will compute a new threshold only after
several iterations, when the interferences become low. That is, we will decrease the
thresholds by step, by choosing when to change the thresholds using a convergence
criterion on Ŝ. The results of this method are displayed in Fig. E.7.
Such a strategy yields deteriorated results with a single PALM compared to the
previous decreasing strategy. This is understandable, since at the beginning of the
algorithm the bad initialization implies bad thresholds, which are kept during more
iterations in a decreasing by steps scheme.
On the other hand, this strategy gives similar results as the usual κ-MAD rule (while
they are in fact slightly better, the difference is not significative with respect to the
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error bars). Compared to a continuous decrease, the gain is not as high as expected 4,
which is to be explained by the fact that the reweighting already cancels out most of
the interferences appearing due to the gradient step. As such, the strategy by step
only brings a limited gain (it however seems to robustify the process with respect
to the realization of A∗,S∗ and N, which was expected since the good thresholds
found through GMCA solution are kept during more iterations).

D SURE

The Stein Unbiased Risk Estimator (SURE) is an automatic regularization pa-
rameter tuning method based on an unbiased estimate of the MSE of a candidate
solution Ŝ [Giryes et al. 2011]. The hyper-parameter is chosen as minimizing such
an estimation of the MSE. While originally restricted to additional white Gaussian
noise [Stein 1981], it has been generalized to models having the form of an exponen-
tial family distribution [Eldar 2009], extending its use to much more various inverse
problems.
We propose in this subsection to test this approach on the sparse BSS problem.
Note that SURE is usually used on non-blind problems, that is problems where
Â = A∗ is known in advance, which is not our case here. A full extension of SURE
methods to the sparse BSS problem, while interesting, is out of the scope of this
work. We rather propose to use the SURE method within the 2-step approach. Fol-
lowing [Giryes et al. 2011], the computation of the threshold 5 could then be based
on the currently estimated – at iteration l – Â, which would be supposed to be a
decent guess of A∗. The SURE estimated parameter should then correspond to an
approximation of the best corresponding Ŝ(l+1) in terms of MSE. The hope is that
such a Ŝ(l+1) in turns corresponds to a good Â(l+1) and that the refinement step
will enter a virtuous circle.
Unfortunately this strategy, although itself a cheaper iterative approximation [Gi-
ryes et al. 2011] of what a classical SURE method would do, is already too expensive
for the large-scale setting since it requires to test many regularization parameters at
each iteration. Therefore, we approximated it in our experiments by computing the
thresholds only once at the beginning of the refinement stage, based on the first up-
date of GMCA solution 6. The results of such a method are given in Fig. E.8. While
this methods gives relatively decent solutions, the results are deteriorated compa-
red to the κ-MAD two-step approach. This can be understood by the fact that the
method does not take explicitly into account the estimation of the unmixing ma-
trix Â and thus the threshold choice is only based on noise removal. As such, the

4. Note that the discrepancy increases when the decrease of the thresholds is quicker in PALM
– that is, when the number of maximal iterations is smaller.

5. Here, the regularization parameters are the same for all the sources.
6. This strategy thus corresponds to the first update of the thresholds in the iterations of [Giryes

et al. 2011]. However, instead of using an initialization based on the golden rule, we here use a
pseudo-inverse S̃(0) = Â†GMCAX instead of S̃(0) = ÂT

GMCAX, consistently to GMCA solution and
giving much better results.
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Figure E.7 – Results on case 2 of PALM with a percentile-by-step threshold choice.
For comparison, the results of PALM with a continuous percentile decrease of the
thresholds are displayed, as well as the usual 2-step κ-MAD algorithm. The upper
plots correspond to isolated PALMs and the lower ones to PALMs included in a
two-step algorithm. Left : the dashed line is the median of CA over the different
A∗,S∗ and N, and the error bars corresponds to the quartiles of the criterion over
the initialization ; Right : the dashed line corresponds to the median of CA over the
initializations, and the error bars to the quartiles of the criterion over the realizations
of A∗,S∗ and N.
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Figure E.8 – Results on Case 2 of PALM used as refinement stage within a 2-step
approach with a SURE threshold choice. For comparison, the results of the usual
two-step approach are displayed. Left : the dashed line is the median of CA over
the different A∗, S∗ and N, and the error bars corresponds to the quartiles of the
criterion over the initialization ; Right : the dashed line corresponds to the median
of CA over the initializations, and the error bars to the quartiles of the criterion over
the realizations of A∗, S∗ and N.

thresholds are much too low for a high quality unmixing. It therefore confirms that
in high SNR experiments, the interferences plays a non-negligible role compared to
the noise and thus the threshold choice fully based on noise removal would not be
efficient 7.

7. Which confirms that the use of MAD, while having a fixed-point noise removal interpretation,
rather draws much of its interest from the morphological diversity assumption.





Annexe F

Elements of Riemannian geometry

Let defineM some Riemannian manifold equipped with the metric < , >. One
can define for every point x0 its tangent space TM (x0) as displayed Fig. F.1. The
geodesic between two points x0 and x1 is defined as its shortest path on the manifold,
which then turns to generalize the concept of straight lines on manifolds. In this
thesis, the manifold M is assumed to be geodesically complete, which means that
there always exists a minimal length geodesic between any two points x0 and x1.
The length of the geodesic is then the distance d(x0, x1) between these two points.
This also entails that one can define for any point x0 ∈ M the exponential map
expx0

. This function maps any point of the tangent space at x0 toM. Under some
conditions, the exponential map is bijective and invertible ; its inverse is defined as
the logarithm map logx0

(x1) = expx0
(x1)−1.

For some smooth function J : M → R (e.g. the square geodesic distance to only
name one), one can define uniquely its gradient at any point x0 : ∇J (x0) ∈ TM(x0).

Figure F.1 – Sketch of some Riemannian manifoldM and its tangent space at the
point x0.
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Titre : Stratégies d’optimisation pour la séparation aveugle de sources parcimonieuses grande échelle

Mots clés : Séparation Aveugle de Sources Grande Échelle, Représentations Parcimonieuses, Optimisa-
tion Multi-Convexe, Choix de Paramètres de Régularisation, Agrégation d’Estimateurs sur Variétés Rieman-
niennes, Séparation Aveugle de Sources Non-Linéaire.

Résumé : Lors des dernières décennies, la
Séparation Aveugle de Sources (BSS) est deve-
nue un outil de premier plan pour le traitement de
données multi-valuées. L’objectif de ce doctorat est
cependant d’étudier les cas grande échelle, pour
lesquels la plupart des algorithmes classiques ob-
tiennent des performances dégradées. Ce document
s’articule en quatre parties, traitant chacune un as-
pect du problème: i) l’introduction d’algorithmes ro-
bustes de BSS parcimonieuse ne nécessitant qu’un
seul lancement (malgré un choix d’hyper-paramètres
délicat) et fortement étayés mathématiquement; ii) la

proposition d’une méthode permettant de maintenir
une haute qualité de séparation malgré un nombre
de sources important: iii) la modification d’un algo-
rithme classique de BSS parcimonieuse pour l’appli-
cation sur des données de grandes tailles; et iv) une
extension au problème de BSS parcimonieuse non-
linéaire.
Les méthodes proposées ont été amplement testées,
tant sur données simulées que réalistes, pour
démontrer leur qualité. Des interprétations détaillées
des résultats sont proposées.

Title : Optimization framework for large-scale sparse blind source separation

Keywords : Large-Scale Blind Source Separation, Sparse Representations, Multi-Convex Optimization and
Block Coordinate Methods, Regularization Parameter Choice, Estimator Aggregation on Riemannian Mani-
folds, Non-Linear Blind Source Separation.

Abstract : During the last decades, Blind Source
Separation (BSS) has become a key analysis tool to
study multi-valued data. The objective of this thesis
is however to focus on large-scale settings, for which
most classical algorithms fail. More specifically, it is
subdivided into four sub-problems taking their roots
around the large-scale sparse BSS issue: i) introduce
a mathematically sound robust sparse BSS algorithm
which does not require any relaunch (despite a diffi-
cult hyper-parameter choice); ii) introduce a method

being able to maintain high quality separations even
when a large-number of sources needs to be estima-
ted; iii) make a classical sparse BSS algorithm sca-
lable to large-scale datasets; and iv) an extension to
the non-linear sparse BSS problem.
The methods we propose are extensively tested on
both simulated and realistic experiments to demons-
trate their quality. In-depth interpretations of the re-
sults are proposed.

Université Paris-Saclay
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Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France
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