A. N. Kolmogorov, Dokl. Akad. Nauk SSSR, vol.30, p.301, 1941.

A. N. Kolmogorov, J. Fluid Mech, vol.13, p.82, 1962.

A. M. Oboukhov, J. Fluid Mech, vol.13, p.77, 1962.

R. H. Kraichnan, J. Fluid Mech, vol.62, p.305, 1974.

C. Meneveau, J. Fluid Mech, vol.232, p.469, 1991.

G. L. Eyink, J. Stat. Phys, vol.78, p.335, 1995.

L. Onsager, Il Nuovo Cimento, vol.6, p.279, 1949.

U. Frisch, Turbulence: The Legacy of A. N. Kolmogorov, 1995.

G. L. Eyink, J. Stat. Phys, vol.78, p.353, 1995.

U. Frisch and G. Parisi, Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics, pp.84-88, 1985.

J. Duchon and R. Robert, Nonlinearity, vol.13, p.249, 2000.

G. L. Eyink, Turbulence Theory, course notes, The Johns Hopkins University, 2007.

M. Farge and K. Schneider,

T. D. Drivas and G. L. Eyink, Commun. Math. Phys, vol.359, p.733, 2018.

A. A. Mailybaev, Phys. Rev. E, vol.87, p.53011, 2013.

E. W. Saw, Nat. Commun, vol.7, p.12466, 2016.

E. W. Saw, J. Fluid Mech, vol.837, p.657, 2018.

J. F. Pinton and R. Labbé, J. Phys. II, vol.4, p.1461, 1994.

G. Zocchi, P. Tabeling, J. Maurer, and H. Willaime, Phys. Rev. E, vol.50, p.3693, 1994.

P. Kestener and A. Arneodo, Phys. Rev. Lett, vol.93, p.44501, 2004.

A. Arneodo, Europhys. Lett, vol.34, p.411, 1996.

D. Kuzzay, Nonlinearity, vol.30, p.2381, 2017.

B. Dubrulle, Phys. Rev. Lett, vol.73, p.959, 1994.

J. F. Muzy, E. Bacry, and A. Kozhemyak, Phys. Rev. E, vol.73, p.66114, 2006.

P. Abry, V. Pipiras, and H. Wendt, Proc. GRETSI Symposium Signal and Image Processing, 2007.

B. Castaing, J. Phys, vol.50, p.147, 1989.

B. Castaing, Y. Gagne, and E. J. Hopfinger, Phys. D (Amsterdam, Neth.), vol.46, p.177, 1990.

B. Dubrulle and F. Graner, Phys. Rev. E, vol.56, p.6435, 1997.

M. R. Leadbetter, G. Lindgren, and H. Rootzén, Extremes and Related Properties of Random Sequences and Processes, 2012.

D. Faranda, V. Lembo, M. Iyer, D. Kuzzay, S. Chibbaro et al., J. Atmos. Sci, 2018.

R. H. Kraichnan, Adv. Math, vol.16, p.305, 1975.

B. Saint-michel, Phys. Fluids, vol.26, p.125109, 2014.

F. Ravelet, A. Chiffaudel, and F. Daviaud, J. Fluid Mech, vol.601, p.339, 2008.

J. Pickands, Ann. Stat, vol.3, p.119, 1975.

G. Table, 13: f acq (Hz) for contra and anti (symmetrical) rotation directions, several Reynolds numbers and several magnications in the case of pure glycerol lling the tank, vol.10

G. Table and R. Adrian, 14: f acq (Hz) for contra and anti (symmetrical) rotation directions, several Reynolds numbers and several magnications in the case of air lling the tank. c = 10 µm, Measurement Science and Technology, vol.8, p.1393, 1997.

. Atkinson, The accuracy of tomographic particle image velocimetry for measurements of a turbulent boundary layer, Experiments in Fluids, vol.50, p.10311056, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00701461

[. Beale, Remarks on the breakdown of smooth solutions for the 3D Euler equations, Communications in Mathematical Physics, vol.94, p.6166, 1984.

M. Brachet, Direct simulation of three-dimensional turbulence in the Taylor-Green vortex, Fluid Dyn. Res, vol.8, p.1, 1991.

[. Brachet, Numerical evidence of smooth self-similar dynamics and possibility of subsequent collapse for three-dimensional ideal ows, Phys. Fluids. A, vol.4, p.12, 1992.

J. M. Burgers, A mathematical model illustrating the theory of turbulence, Advances in Applied Mechanics, vol.1, p.171199, 1948.

[. Cafarelli, Partial regularity of suitable weak solutions of the Navier-Stokes equations, Comm. Pure and Appl. Math, vol.35, p.771831, 1982.

C. Campolina and A. Mailybaev, Chaotic blowup in the 3D incompressible Euler equations on a logarithmic lattice, Campolina and Mailybaev, vol.121, p.64501, 2018.

[. Cappanera, Turbulence in realistic geometries with moving boundaries : when simulations meet experiments, 2019.

L. Chevillard and C. Meneveau, Lagrangian dynamics and statistical geometric structure of turbulence, Physical Review Letters, vol.97, p.174501, 2006.

[. Chevillard, Modeling the pressure Hessian and viscous Laplacian in turbulence : comparisons with direct numerical simulation and implications on velocity gradient dynamics, Physics of Fluids, vol.20, p.5, 1990.

P. Constantin, Euler and Navier-Stokes equations, Publicacions Matemàtiques, vol.52, issue.2, p.235265, 2008.

C. Cuvier and J. Foucaut, PIV noise estimation derived from spectrum analyses, Proceedings of the 5th International Conference on Experimental Fluid Mechanics, p.247252, 2018.

M. Danish, C. Meneveau, and . Debue, Experimental test of the crossover between the inertial and the dissipative range in a turbulent swirling ow, Physical Review uids, vol.3, p.24602, 2018.

[. Debue, Dissipation, intermittency, and singularities in incompressible turbulent ows, Physical Review E, vol.97, p.53101, 2018.

[. Douady, Inertial energy dissipation for weak solutions of incompressible Euler and Navier-Stokes equations, Phys. Rev. Lett, vol.67, p.249255, 1991.

M. Elsinga, G. E. Elsinga, and I. Marusic, Universal aspects of small-scale motions in turbulence, J. Fluid Mech, vol.662, p.514539, 2010.

[. Elsinga, Tomographic particle image velocimetry, Exp Fluids, vol.41, p.933947, 2006.

G. L. Eyink and G. L. Eyink, Locality of turbulent cascades, Turbulence theory, course notes. The John Hopkins University, vol.207, p.91116, 2005.

[. Foucaut, PIV optimization for the study of turbulent ow using spectral analysis, Measurement Science and Technology, vol.15, 2004.

U. Frisch, Turbulence : the legacy of A. N. Kolmogorov, 1995.

U. Frisch and R. Morf, Intermittency in nonlinear dynamics and singularities at complex times, Phys. Rev. A, vol.23, p.26732705, 1981.

. Gan, An experimental investigation of forced steady rotating turbulence, European Journal of Mechanics B/Fluids, vol.238, pp.325-336, 1992.

[. Gomit, , 2018.

, estimation des incertitudes en PIV basée sur la méthode GUM

L. ;. Hou, T. Hou, and C. Li, Dynamic stability of the 3D axisymmetric Navier-Stokes equations with swirl, Comm. Pure Appl. Math, vol.61, p.661, 2008.

, Evaluation of measurement data -Guide to the expression of uncertainty in measurement, Joint Committee for Guides in Metrology-Working Group, vol.1, 2008.

A. ;. Keane, R. Keane, and R. Adrian, Theory of cross-correlation analysis of PIV images, Applied Scientic Research, vol.49, 1992.

A. N. Kolmogorov, Dissipation of energy in locally isotropic turbulence, Dokl. Akad. Nauk SSSR, vol.32, p.1618, 1941.

A. N. Kolmogorov, A renement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible uid at high Reynolds number, J. Fluid. Mech, vol.13, p.8285, 1962.

[. Kuzzay, New method for detecting singularities in experimental incompressible ows, Nonlinearity, vol.30, issue.6, p.23812402, 2017.

O. Ladyzhenskaya, Unique global solvability of the three-dimensional Cauchy problem for the Navier-Stokes equations in the presence of axial symmetry, Zap. Nauecn. Sem. Leningrad. Otdel. Mat. Inst. Steklov, vol.7, p.155, 1968.

O. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flows, 1969.

J. Leray-;-leray, Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math. J, vol.63, 1934.

[. Li, Homogeneous solutions of stationary Navier-Stokes equations with isolated singularities on the unit sphere, Archive for Rational Mechanics and Analysis, vol.227, p.10911163, 2018.

;. Scarano, K. P. Lynch, and F. Scarano, Experimental determination of tomographic PIV accuracy by a 12-camera system, Measurement Science and Technology, vol.25, p.84003, 2014.

L. Marié-;-marié, Transport de moment cinétique et de champ magnétique par un écoulement tourbillonnaire turbulent : inuence de la rotation, 2003.

F. Martins-;-martins and R. Monchaux, Caractérisation des écoulements turbulents à proximité d'une paroi par PIV tomographique, 2007.

H. Nobach and E. Bodenschatz, Limitations of accuracy in PIV due to individual variations of particle image intensities, Exp Fluids, vol.47, p.2738, 2009.

[. Nogueira, Local eld correction PIV, implemented by means of simple algorithms, and multigrid versions, Measurement Science and Technology, vol.12, 2001.

[. Nogueira, Limits on the resolution of correlation PIV iterative methods. 12th international symposium on applications of laser techniques to uid mechanics, 2004.

[. Nogueira, Limits on the resolution of correlation PIV iterative methods, Fundamentals. Experiments in Fluids, vol.39, pp.305-313, 2005.

[. Nogueira, , 2002.

, Analysis and alternatives in two-dimensional multigrid particle image velocimetry methods : application of a dedicated weighting function and symmetric direct correlation, Measurement Science and Technology, vol.13, p.963974

[. Novara, Motion trackingenhanced MART for tomographic PIV, Measurement Science and Technology, vol.21, issue.3, p.35401, 2010.

L. Onsager, Statistical hydrodynamics. Nuovo Cimento, vol.6, pp.279-287, 1949.

[. Ouellette, Smallscale anisotropy in Lagrangian turbulence, New. J. Phys, vol.8, p.102, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00184171

G. Parisi and U. Frisch, On the singularity structure of fully developed turbulence. Turbulence and Predictability in Geophysical Fluid Dynamics, Proceed. Intern. School of Physics 'E. Fermi, p.8487, 1983.

. Prasad, Eect of resolution on the speed and accuracy of particle image velocimetry interrogation, Exp. Fluids, vol.13, p.105116, 1992.

A. Pumir, E. Siggia, and F. Ravelet, Collapsing solutions in the 3D Euler equations, Topological Fluid Mechanics, p.469411, 1990.

, Bifurcations globales hydrodynamiques et magnétohydrodynamiques dans un écoulement de von Kármán turbulent

[. Ravelet, Supercritical transition to turbulence in an inertially driven von Kármán closed ow, J. Fluid. Mech, vol.601, p.339364, 2008.

[. Ravelet, An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels, Proceedings of the Royal Society of London, vol.35, p.224226, 1883.

M. Rhodes and B. Saint-michel, L'écoulement de von Kármán comme paradigme de la physique statistique hors-équilibre, 2008.

. Saint-michel, Probing quantum and classical turbulence analogy in von Kármán liquid helium, nitrogen, and water experiments, Physics of Fluids, vol.26, p.125109, 2014.

[. Saw, Experimental characterization of extreme events of inertial dissipation in a turbulent swirling ow, Nature Communications, vol.7, p.657669, 2016.

F. Scarano, Tomographic PIV : principles and practice, Measurement Science and Technology, p.24, 2013.

, Shake-the-box : Lagrangian particle tracking at high particle image densities, Exp. Fluids, p.5770, 2016.

[. Sciacchitano, Collaborative framework for PIV uncertainty quantication : comparative assessment of methods, Measurement Science and Technology, vol.26, p.74004, 2015.

A. Sciacchitano and B. Wieneke, PIV uncertainty propagation, Measurement Science and Technology, vol.27, p.84006, 2016.

[. She, Intermittent vortex structures in homogeneous isotropic turbulence, Nature, vol.344, p.226228, 1990.

A. Shnirelman, On the non-uniqueness of weak solutions of the Euler equation, Comm. Pure and Appl. Math, vol.50, p.12601286, 1997.

[. Solo, Distortion compensation for generalized stereoscopic particle image velocimetry, Measurement Science and Technology, vol.8, issue.12, p.1441, 1997.

[. Sulem, Tracing complex singularities with spectral methods, J. Comput. Phys, vol.50, p.138161, 1983.

R. Tsai-;-tsai and P. Vieillefosse, An ecient and accurate camera calibration technique for 3D machine vision, Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. BIBLIOGRAPHY [Vieillefosse, vol.125, p.150162, 1983.

M. Vincent, A. Vincent, and M. Meneguzzi, The spatial structure and statistical properties of homogeneous turbulence, J. Fluid Mech, vol.225, p.120, 1991.

M. Vincent, A. Vincent, and M. Meneguzzi, The dynamics of vorticity tubes in homogeneous turbulence, J. Fluid Mech, vol.258, p.245254, 1994.

[. Westerweel, Particle image velocimetry for complex and turbulent ows, Annu. Rev. Fluid. Mech, vol.45, p.40936, 2013.

S. Westerweel, J. Westerweel, and F. Scarano, Universal outlier detection for PIV data, Experiments in Fluids, vol.39, p.10961100, 2005.

B. Wieneke-;-wieneke, Volume self-calibration for 3D particle image velocimetry, Exp Fluids, vol.45, p.549556, 2008.

B. Wieneke and B. Wieneke, PIV uncertainty quantication from correlation statistics, Measurement Science and Technology, vol.26, p.74002, 2015.

, Measurement Science and Technology, vol.29, p.84002

C. E. Willert and M. Gharib, Digital particle image velocimetry, Experiments in Fluids, vol.10, p.181193, 1991.

[. Worth, A tomographic PIV resolution study based on homogeneous isotropic turbulence DNS data, Experiments in Fluids, vol.49, p.637656, 2010.

[. Yeung, Eects of nite spatial and temporal resolution in direct numerical simulations of incompressible isotropic turbulence, vol.3, p.64603, 2018.

[. Yeung, Extreme events in computational turbulence, PNAS, vol.112, p.1263312638, 2015.

Y. Yudovich, Non-stationary ow of an ideal incompressible liquid, Zh. Vych. Mat, vol.3, p.10321066, 1963.

[. Zhang, Turbulent ow measurement in a square duct with hybrid holographic PIV, Experiments in Fluids, vol.23, p.373381, 1997.