A. Agorio and P. Vera, ARGONAUTE4 is required for resistance to Pseudomonas syringae in Arabidopsis, Plant Cell, vol.19, pp.3778-3790, 2007.

M. Albert, Peptides as triggers of plant defence, Journal of experimental botany, vol.64, pp.5269-5279, 2013.

Y. Amano, H. Tsubouchi, H. Shinohara, M. Ogawa, and Y. Matsubayashi, Tyrosinesulfated glycopeptide involved in cellular proliferation and expansion in Arabidopsis, Proceedings of the National Academy of Sciences of the United States of America, vol.104, pp.18333-18338, 2007.

K. Apel and H. Hirt, Reactive oxygen species: Metabolism, oxidative stress, and signal transduction, Annual Review of Plant Biology, vol.55, pp.373-399, 2004.

T. Araya, M. Miyamoto, J. Wibowo, A. Suzuki, S. Kojima et al., CLE-CLAVATA1 peptide-receptor signaling module regulates the expansion of plant root systems in a nitrogendependent manner, Proc Natl Acad Sci U S A, vol.111, pp.2029-2034, 2014.

S. A. Arisz and T. Munnik, Distinguishing phosphatidic acid pools from de novo synthesis, PLD, and DGK, Methods Mol Biol, vol.1009, pp.55-62, 2013.

S. Asai and K. Shirasu, Plant cells under siege: plant immune system versus pathogen effectors, Curr Opin Plant Biol, vol.28, pp.1-8, 2015.

S. Asai, K. Ohta, and H. Yoshioka, MAPK Signaling Regulates Nitric Oxide and NADPH Oxidase-Dependent Oxidative Bursts in Nicotiana benthamiana, The Plant Cell Online, vol.20, pp.1390-1406, 2008.

T. Asai, G. Tena, J. Plotnikova, M. R. Willmann, W. L. Chiu et al., MAP kinase signalling cascade in Arabidopsis innate immunity, Nature, vol.415, pp.977-983, 2002.

N. J. Atkinson, C. J. Lilley, and P. E. Urwin, Identification of genes involved in the response of Arabidopsis to simultaneous biotic and abiotic stresses, Plant Physiol, vol.162, pp.2028-2041, 2013.

S. Aubourg, M. L. Martin-magniette, V. Brunaud, L. Taconnat, F. Bitton et al., Analysis of CATMA transcriptome data identifies hundreds of novel functional genes and improves gene models in the Arabidopsis genome, BMC Genomics, vol.8, p.401, 2007.

I. Baccelli and B. Mauch-mani, Beta-aminobutyric acid priming of plant defense: the role of ABA and other hormones, Plant Mol Biol, vol.91, pp.703-711, 2016.

T. L. Bailey, J. Johnson, C. E. Grant, and W. S. Noble, The MEME Suite, Nucleic Acids Res, vol.43, pp.39-49, 2015.

A. Balmer, V. Pastor, J. Gamir, V. Flors, and B. Mauch-mani, The 'prime-ome': towards a holistic approach to priming, Trends Plant Sci, vol.20, pp.443-452, 2015.

R. Bari and J. Jones, Role of plant hormones in plant defence responses, Plant Molecular Biology, vol.69, pp.473-488, 2009.

S. Bartels and T. Boller, Quo vadis, Pep? Plant elicitor peptides at the crossroads of immunity, stress, and development, J Exp Bot, vol.66, pp.5183-5193, 2015.

S. Bartels, M. Lori, M. Mbengue, M. Van-verk, D. Klauser et al., The family of Peps and their precursors in Arabidopsis: differential expression and localization but similar induction of pattern-triggered immune responses, Journal of experimental botany, vol.64, pp.5309-5321, 2013.

Z. Bauer, L. Gomez-gomez, T. Boller, F. , and G. , Sensitivity of different ecotypes and mutants of Arabidopsis thaliana toward the bacterial elicitor flagellin correlates with the presence of receptor-binding sites, Journal of Biological Chemistry, vol.276, pp.45669-45676, 2001.

G. J. Beckers and U. Conrath, Priming for stress resistance: from the lab to the field, Curr Opin Plant Biol, vol.10, pp.425-431, 2007.

G. J. Beckers, M. Jaskiewicz, Y. D. Liu, W. R. Underwood, S. Y. He et al., Mitogen-activated protein kinases 3 and 6 are required for full priming of stress responses in Arabidopsis thaliana, The Plant Cell, vol.21, pp.944-953, 2009.

Y. Bektas, T. Eulgem, R. E. Beloshistov, K. Dreizler, R. A. Galiullina et al., Phytaspase-mediated precursor processing and maturation of the wound hormone systemin, Front Plant Sci, vol.5, pp.1167-1178, 2014.

S. Ben-khaled, J. Postma, and S. Robatzek, A moving view: subcellular trafficking processes in pattern recognition receptor-triggered plant immunity, Annu Rev Phytopathol, vol.53, pp.379-402, 2015.

M. L. Berens, H. M. Berry, A. Mine, C. T. Argueso, and K. Tsuda, Evolution of Hormone Signaling Networks in Plant Defense, Annu Rev Phytopathol, vol.55, pp.401-425, 2017.

A. Berr, R. Ménard, T. Heitz, and W. H. Shen, Chromatin modification and remodelling: a regulatory landscape for the control of Arabidopsis defence responses upon pathogen attack, Cell Microbiol, vol.14, pp.829-839, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00701299

S. Betsuyaku, S. Sawa, and M. Yamada, The Function of the CLE Peptides in Plant Development and Plant-Microbe Interactions, p.149, 2011.

J. Bigeard, J. Colcombet, and H. Hirt, Signaling mechanisms in pattern-triggered immunity (PTI), Mol Plant, vol.8, pp.521-539, 2015.

R. P. Birkenbihl, S. Liu, and I. E. Somssich, Transcriptional events defining plant immune responses, Curr Opin Plant Biol, vol.38, pp.1-9, 2017.

T. Boller, Chemoperception of Microbial Signals in Plant Cells, Annual Review of Plant Physiology and Plant Molecular Biology, vol.46, pp.189-214, 1995.

T. Boller and S. Y. He, Innate Immunity in Plants: An Arms Race Between Pattern Recognition Receptors in Plants and Effectors in Microbial Pathogens, Science, vol.324, pp.742-744, 2009.

T. Boller, F. , and G. , A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors, Annual Review of Plant Biology, vol.60, pp.379-406, 2009.

G. P. Bolwell, L. V. Bindschedler, K. A. Blee, V. S. Butt, D. R. Davies et al., The apoplastic oxidative burst in response to biotic stress in plants: a three-component system, Journal of Experimental Botany, vol.53, pp.1367-1376, 2002.

O. Borsani, J. Zhu, P. E. Verslues, R. Sunkar, and J. K. Zhu, Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis, Cell, vol.123, pp.1279-1291, 2005.

R. M. Bostock, Signal crosstalk and induced resistance: Straddling the line between cost and benefit, Annual Review of Phytopathology, vol.43, pp.545-580, 2005.

S. Gagnot, J. P. Tamby, M. L. Martin-magniette, F. Bitton, L. Taconnat et al., CATdb: a public access to Arabidopsis transcriptome data from the URGV-CATMA platform, Nucleic Acids Res, vol.36, pp.986-990, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01203869

R. Galletti, S. Ferrari, D. Lorenzo, and G. , Arabidopsis MPK3 and MPK6 Play Different Roles in Basal and Oligogalacturonide-or Flagellin-Induced Resistance against Botrytis cinerea, Plant Physiology, vol.157, pp.804-814, 2011.

Q. M. Gao, S. Zhu, P. Kachroo, and A. Kachroo, Signal regulators of systemic acquired resistance, Front Plant Sci, vol.6, p.228, 2015.

S. Gianinazzi and B. Kassanis, Virus Resistance Induced in Plants by Polyacrylic Acid, Journal of General Virology, vol.23, pp.1-9, 1974.

C. H. Goh, H. G. Nam, and Y. S. Park, Stress memory in plants: a negative regulation of stomatal response and transient induction of rd22 gene to light in abscisic acidentrained Arabidopsis plants, Plant J, vol.36, pp.240-255, 2003.

L. Gomez-gomez and T. Boller, FLS2: An LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis, Molecular Cell, vol.5, pp.1003-1011, 2000.

L. Gomez-gomez and T. Boller, Flagellin perception: a paradigm for innate immunity, Trends in Plant Science, vol.7, pp.251-256, 2002.

L. Gomez-gomez, G. Felix, and T. Boller, A single locus determines sensitivity to bacterial flagellin in Arabidopsis thaliana, Plant Journal, vol.18, pp.277-284, 1999.

R. K. Goyal and A. K. Mattoo, Multitasking antimicrobial peptides in plant development and host defense against biotic/abiotic stress, Plant Sci, vol.228, pp.135-149, 2014.

J. T. Greenberg and N. Yao, The role and regulation of programmed cell death in plant-pathogen interactions, Cellular Microbiology, vol.6, pp.201-211, 2004.

K. Gully, T. Hander, T. Boller, and S. Bartels, Perception of Arabidopsis AtPep peptides, but not bacterial elicitors, accelerates starvation-induced senescence. Frontiers in plant science 6, 2015.

H. Guo, W. Zhang, H. Tian, K. Zheng, X. Dai et al., An auxin responsive CLE gene regulates shoot apical meristem development in Arabidopsis, Front Plant Sci, vol.6, p.295, 2015.

C. L. Gupta, S. Akhtar, and P. Bajpai, In silico protein modeling: possibilities and limitations, EXCLI J, vol.13, pp.513-515, 2014.

S. Gupta, D. Chakraborti, A. Sengupta, D. Basu, and S. Das, Primary metabolism of chickpea is the initial target of wound inducing early sensed Fusarium oxysporum f. sp. ciceri race I, PLoS One, vol.5, p.9030, 2010.

A. A. Gust, R. Pruitt, and T. Nürnberger, Sensing Danger: Key to Activating Plant Immunity, Trends Plant Sci, vol.22, pp.779-791, 2017.

J. Görlach, S. Volrath, G. Knauf-beiter, G. Hengy, U. Beckhove et al., Benzothiadiazole, a novel class of inducers of systemic acquired resistance, activates gene expression and disease resistance in wheat, Plant Cell, vol.8, pp.629-643, 1996.

I. A. Hajam, P. A. Dar, I. Shahnawaz, J. C. Jaume, and J. H. Lee, Bacterial flagellin-a potent immunomodulatory agent, Exp Mol Med, vol.49, p.373, 2017.

D. R. Hann and J. P. Rathjen, Early events in the pathogenicity of Pseudomonas syringae on Nicotiana benthamiana, Plant J, vol.49, pp.607-618, 2007.

, CLE Polypeptide Signaling Gene Expression and Overexpression Activity in Arabidopsis, Plant Physiology, vol.154, pp.1721-1736

Y. Katsuragi, R. Takai, T. Furukawa, H. Hirai, T. Morimoto et al., CD2-1, the C-Terminal Region of Flagellin, Modulates the Induction of Immune Responses in Rice, Mol Plant Microbe Interact, vol.28, pp.648-658, 2015.

V. A. Katz, O. U. Thulke, and U. Conrath, A benzothiadiazole primes parsley cells for augmented elicitation of defense responses, Plant Physiol, vol.117, pp.1333-1339, 1998.

A. Kereszt, P. Mergaert, J. Montiel, G. Endre, É. Kondorosi et al., Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants, Frontiers in Plant Science, vol.9, pp.137-148, 1026.

A. Kinoshita, Y. Nakamura, E. Sasaki, J. Kyozuka, H. Fukuda et al., Gain-offunction phenotypes of chemically synthetic CLAVATA3/ESR-related (CLE) peptides in Arabidopsis thaliana and Oryza sativa, Plant Cell Physiol, vol.48, pp.1821-1825, 2007.

A. Kinoshita, S. Betsuyaku, Y. Osakabe, S. Mizuno, S. Nagawa et al., RPK2 is an essential receptor-like kinase that transmits the CLV3 signal in Arabidopsis, Development, vol.137, pp.3911-3920, 2010.

R. L. Klemptner, J. S. Sherwood, F. Tugizimana, I. A. Dubery, and L. A. Piater, , 2014.

, Ergosterol, an orphan fungal microbe-associated molecular pattern (MAMP), Mol Plant Pathol, vol.15, pp.747-761

D. F. Klessig, H. W. Choi, and D. A. Dempsey, Systemic Acquired Resistance and Salicylic Acid: Past, Present, and Future, Mol Plant Microbe Interact, p.3180067, 2018.

M. Kobayashi, I. Ohura, K. Kawakita, N. Yokota, M. Fujiwara et al., Calcium-dependent protein kinases regulate the production of reactive oxygen species by potato NADPH oxidase, The Plant Cell, vol.19, pp.1065-1080, 2007.

A. Kohler, S. Schwindling, and U. Conrath, Benzothiadiazole-induced priming for potentiated responses to pathogen infection, wounding, and infiltration of water into leaves requires the NPR1/NIM1 gene in Arabidopsis, Plant Physiology, vol.128, pp.1046-1056, 2002.

T. Kondo, S. Sawa, A. Kinoshita, S. Mizuno, T. Kakimoto et al., A plant peptide encoded by CLV3 identified by in situ MALDI-TOF MS analysis, Science, vol.313, pp.845-848, 2006.

Y. Kondo, Y. Hirakawa, J. J. Kieber, and H. Fukuda, CLE peptides can negatively regulate protoxylem vessel formation via cytokinin signaling, Plant Cell Physiol, vol.52, pp.37-48, 2011.

Y. Kondo, T. Ito, H. Nakagami, Y. Hirakawa, M. Saito et al., Plant GSK3 proteins regulate xylem cell differentiation downstream of TDIF-TDR signalling, Nat Commun, vol.5, p.3504, 2014.

A. Koornneef, K. Rindermann, C. Gatz, and C. M. Pieterse, Histone modifications do not play a major role in salicylate-mediated suppression of jasmonate-induced PDF1.2 gene expression, Commun Integr Biol, vol.1, pp.143-145, 2008.

T. Kouzarides, Chromatin modifications and their function, Cell, vol.128, pp.693-705, 2007.

A. Krapp, R. Berthome, M. Orsel, S. Mercey-boutet, A. Yu et al., Arabidopsis Roots and Shoots Show Distinct Temporal Adaptation Patterns toward Nitrogen Starvation, Plant Physiology, vol.157, pp.1255-1282, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01001248

E. Krol, T. Mentzel, D. Chinchilla, T. Boller, G. Felix et al., Perception of the Arabidopsis danger signal peptide 1 involves the pattern recognition receptor AtPEPR1 and its close homologue AtPEPR2, Journal of Biological Chemistry, vol.285, pp.13471-13479, 2010.

X. Kuai, C. Barraco, and C. Després, Combining Fungicides and Prospective NPR1-Based "Just-in-Time, Immunomodulating Chemistries for Crop Protection. Front Plant Sci, vol.8, p.1715, 2017.

G. Kunze, C. Zipfel, S. Robatzek, K. Niehaus, T. Boller et al., The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants, The Plant Cell, vol.16, pp.3496-3507, 2004.

A. Kutschmar, G. Rzewuski, N. Stuhrwohldt, G. T. Beemster, D. Inze et al., PSK-alpha promotes root growth in Arabidopsis, New Phytologist, vol.181, pp.820-831, 2009.

J. Ku?, Translocated Signals for Plant Immunizationa, Annals of the New York Academy of Sciences, vol.494, pp.221-223, 1987.

F. Ladwig, R. I. Dahlke, N. Stührwohldt, J. Hartmann, K. Harter et al., Phytosulfokine Regulates Growth in Arabidopsis through a Response Module at the Plasma Membrane That Includes CYCLIC NUCLEOTIDE-GATED CHANNEL17, H+-ATPase, and BAK1, vol.27, pp.1718-1729, 2015.

K. A. Lease and J. C. Walker, The Arabidopsis unannotated secreted peptide database, a resource for plant peptidomics, Plant Physiol, vol.142, pp.831-838, 2006.

K. A. Lease and J. C. Walker, Bioinformatic identification of plant peptides, Methods Mol Biol, vol.615, pp.375-383, 2010.

D. Lecourieux, R. Raneva, and A. Pugin, Calcium in plant defence-signalling pathways, New Phytologist, vol.171, pp.249-269, 2006.

D. Lecourieux, C. Mazars, N. Pauly, R. Ranjeva, and A. Pugin, Analysis and effects of cytosolic free calcium increases in response to elicitors in Nicotiana plumbaginifolia cells, Plant Cell, vol.14, pp.2627-2641, 2002.

H. Lee, O. Chah, and J. Sheen, Stem-cell-triggered immunity through CLV3p-FLS2 singalling, Nature, vol.473, pp.376-379, 2011.

S. Lee, F. Fu, S. Xu, S. Y. Lee, D. J. Yun et al., Global Regulation of Plant Immunity by Histone Lysine Methyl Transferases, Plant Cell, vol.28, pp.1640-1661, 2016.

. Lespinasse, Haploidy in apple and pear, Acta Horticulturae, vol.484, 1998.

L. A. Lewis, K. Polanski, M. De-torres-zabala, S. Jayaraman, L. Bowden et al., , 2015.

, Transcriptional Dynamics Driving MAMP-Triggered Immunity and Pathogen Effector-Mediated Immunosuppression in Arabidopsis Leaves Following Infection with Pseudomonas syringae pv tomato DC3000, Plant Cell, vol.27, pp.3038-3064

B. Li, X. Meng, L. Shan, and P. He, Transcriptional Regulation of Pattern-Triggered Immunity in Plants, Cell Host Microbe, vol.19, pp.641-650, 2016.

G. Pearce, D. S. Moura, J. Stratmann, and C. A. Ryan, RALF, a 5-kDa ubiquitous polypeptide in plants, arrests root growth and development, Proc Natl Acad Sci U S A, vol.98, pp.12843-12847, 2001.

G. Pearce, D. S. Moura, J. Stratmann, and C. A. Ryan, Production of multiple plant hormones from a single polyprotein precursor, Nature, vol.411, pp.817-820, 2001.

G. Pearce, R. Bhattacharya, Y. C. Chen, G. Barona, Y. Yamaguchi et al., Isolation and Characterization of Hydroxyproline-Rich Glycopeptide Signals in Black Nightshade Leaves, Plant Physiology, vol.150, pp.1422-1433, 2009.

C. M. Pieterse, A. Leon-reyes, S. Van-der-ent, and S. C. Van-wees, Networking by small-molecule hormones in plant immunity, Nat Chem Biol, vol.5, pp.308-316, 2009.

A. Pitzschke, A. Schikora, and H. Hirt, MAPK cascade signalling networks in plant defence, Curr Opin Plant Biol, vol.12, pp.421-426, 2009.

C. Po-wen, P. Singh, and L. Zimmerli, Priming of the Arabidopsis pattern-triggered immunity response upon infection by necrotrophic Pectobacterium carotovorum bacteria, Molecular Plant Pathology, vol.14, pp.58-70, 2013.

L. Poncini, I. Wyrsch, V. Dénervaud-tendon, T. Vorley, T. Boller et al., In roots of Arabidopsis thaliana, the damage-associated molecular pattern AtPep1 is a stronger elicitor of immune signalling than flg22 or the chitin heptamer, Trends Plant Sci, vol.12, pp.98-105, 2007.

S. Proietti, C. Giangrande, A. Amoresano, P. Pucci, A. Molinaro et al., Xanthomonas campestris lipooligosaccharides trigger innate immunity and oxidative burst in Arabidopsis, Plant Physiol Biochem, vol.85, pp.51-62, 2014.

E. Quintana-rodriguez, D. Duran-flores, M. Heil, and X. Camacho-coronel, , 2018.

, Damage-associated molecular patterns (DAMPs) as future plant vaccines that protect crops from pests, Scientia Horticulturae, vol.237, pp.207-220

I. C. Raacke, U. Von-rad, M. J. Mueller, and S. Berger, Yeast increases resistance in Arabidopsis against Pseudomonas syringae and Botrytis cinerea by salicylic aciddependent as well as -independent mechanisms, Mol Plant Microbe Interact, vol.19, pp.1138-1146, 2006.

J. S. Ramirez-prado, A. A. Abulfaraj, N. Rayapuram, M. Benhamed, and H. Hirt, Plant Immunity: From Signaling to Epigenetic Control of Defense, Trends Plant Sci, 2018.

G. Ramírez-carrasco, K. Martínez-aguilar, and R. Alvarez-venegas, Transgenerational Defense Priming for Crop Protection against Plant Pathogens: A Hypothesis, Front Plant Sci, vol.8, p.696, 2017.

S. Rasmann, M. De-vos, C. L. Casteel, D. Tian, R. Halitschke et al., Herbivory in the previous generation primes plants for enhanced insect resistance, Plant Physiol, vol.158, pp.854-863, 2012.

E. M. Reimer-michalski and U. Conrath, Innate immune memory in plants, Semin Immunol, vol.28, pp.319-327, 2016.

P. Reymond and E. E. Farmer, Jasmonate and salicylate as global signals for defense gene expression, Curr Opin Plant Biol, vol.1, pp.404-411, 1998.

S. Robatzek, P. Bittel, D. Chinchilla, P. Kochner, G. Felix et al., Molecular identification and characterization of the tomato flagellin receptor LeFLS2, an orthologue of Arabidopsis FLS2 exhibiting characteristically different perception specificities, Plant Molecular Biology, vol.64, pp.539-547, 2007.

D. A. Roberts, Acquired resistance to tobacco mosaic virus transmitted to the progeny of hypersensitive tobacco, Virology, vol.124, pp.161-163, 1983.

I. Roberts, S. Smith, B. De-rybel, J. Van-den-broeke, W. Smet et al., The CEP family in land plants: evolutionary analyses, expression studies, and role in Arabidopsis shoot development, J Exp Bot, vol.64, pp.5371-5381, 2013.

I. Roberts, S. Smith, E. Stes, B. De-rybel, A. Staes et al., CEP5 and XIP1/CEPR1 regulate lateral root initiation in Arabidopsis, J Exp Bot, vol.67, pp.4889-4899, 2016.

N. Rodiuc, X. Barlet, S. Hok, L. Perfus-barbeoch, V. Allasia et al., Evolutionarily distant pathogens require the Arabidopsis phytosulfokine signalling pathway to establish disease, Plant Cell Environ, vol.39, pp.1396-1407, 2016.

M. C. Rodriguez, M. Petersen, and J. Mundy, Mitogen-Activated Protein Kinase Signaling in Plants, Annual Review of Plant Biology, vol.61, pp.621-649, 2010.

T. Romeis, A. A. Ludwig, R. Martin, and J. D. Jones, Calcium-dependent protein kinases play an essential role in a plant defence response, EMBO J, vol.20, pp.5556-5567, 2001.

A. Ross, K. Yamada, K. Hiruma, M. Yamashita-yamada, X. Lu et al., The Arabidopsis PEPR pathway couples local and systemic plant immunity, The EMBO journal, vol.33, pp.62-75, 2014.

A. F. Ross, SYSTEMIC ACQUIRED RESISTANCE INDUCED BY LOCALIZED VIRUS INFECTIONS IN PLANTS, Virology, vol.14, p.340, 1961.

F. Roudier, I. Ahmed, C. Bérard, A. Sarazin, T. Mary-huard et al., Integrative epigenomic mapping defines four main chromatin states in Arabidopsis, EMBO J, vol.30, pp.1928-1938, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00999846

M. Roux, B. Schwessinger, C. Albrecht, D. Chinchilla, A. Jones et al., The Arabidopsis leucine-rich repeat receptor-like kinases BAK1/SERK3 and BKK1/SERK4 are required for innate immunity to hemibiotrophic and biotrophic pathogens, The Plant Cell, vol.23, pp.2440-2455, 2011.

C. Ruiz, A. Nadal, E. Montesinos, and M. Pla, Novel Rosaceae plant elicitor peptides as sustainable tools to control Xanthomonas arboricola pv. pruni in Prunus spp, Mol Plant Pathol, vol.19, pp.418-431, 2018.

C. Ruiz, A. Nadal, L. Foix, L. Montesinos, E. Montesinos et al., Diversity of plant defense elicitor peptides within the Rosaceae, BMC Genet, vol.19, p.11, 2018.

C. A. Ryan, P. , and G. , Systemins: A functionally defined family of peptide signal that regulate defensive genes in Solanaceae species, Proceedings of the National Academy of Sciences of the United States of America, vol.100, pp.14577-14580, 2003.

H. Saze, O. Mittelsten-scheid, and J. Paszkowski, Maintenance of CpG methylation is essential for epigenetic inheritance during plant gametogenesis, Nat Genet, vol.34, pp.65-69, 2003.

A. Scala, S. Allmann, R. Mirabella, M. A. Haring, and R. C. Schuurink, Green leaf volatiles: a plant's multifunctional weapon against herbivores and pathogens, Int J Mol Sci, vol.14, pp.17781-17811, 2013.

L. Scarponi, R. Buonaurio, and L. Martinetti, Persistence and translocation of a benzothiadiazole derivative in tomato plants in relation to systemic acquired resistance against Pseudomonas syringae pv tomato, Pest Manag Sci, vol.57, pp.262-268, 2001.

A. L. Schilmiller and G. A. Howe, Systemic signaling in the wound response, Current opinion in plant biology, vol.8, pp.369-377, 2005.

B. Schulze, T. Mentzel, A. Jehle, K. Mueller, S. Beeler et al., Rapid heteromerization and phosphorylation of ligand-activated plant transmembrane receptors and their associated kinase BAK1, Journal of Biological Chemistry, vol.285, pp.9444-9451, 2010.

B. Schwessinger, R. , and P. C. , Plant Innate Immunity: Perception of Conserved Microbial Signatures, Annual Review of Plant Biology, vol.63, pp.451-482, 2012.

B. Schwessinger, M. Roux, Y. Kadota, V. Ntoukakis, J. Sklenar et al., Phosphorylation-dependent differential regulation of plant growth, cell death, and innate immunity by the regulatory receptor-like kinase BAK1, PLoS Genet, vol.7, 2011.

G. Sclep, J. Allemeersch, R. Liechti, B. De-meyer, J. Beynon et al., CATMA, a comprehensive genome-scale resource for silencing and transcript profiling of Arabidopsis genes, BMC Bioinformatics, vol.8, p.400, 2007.

L. Shabala, T. Ross, T. Mcmeekin, and S. Shabala, Non-invasive microelectrode ion flux measurements to study adaptive responses of microorganisms to the environment, FEMS Microbiology Reviews, vol.30, pp.472-486, 2006.

J. Shah and J. Zeier, Long-distance communication and signal amplification in systemic acquired resistance, Front Plant Sci, vol.4, p.30, 2013.

A. Sharma, A. Hussain, B. G. Mun, Q. M. Imran, N. Falak et al., Comprehensive analysis of plant rapid alkalization factor (RALF) genes, Plant Physiol Biochem, vol.106, pp.82-90, 2016.

Y. Shen and A. C. Diener, Arabidopsis thaliana resistance to fusarium oxysporum 2 implicates tyrosine-sulfated peptide signaling in susceptibility and resistance to root infection, PLoS Genet, vol.9, 2013.

A. M. Shigenaga and C. T. Argueso, No hormone to rule them all: Interactions of plant hormones during the responses of plants to pathogens, Semin Cell Dev Biol, vol.56, pp.174-189, 2016.

H. Shinohara, A. Mori, N. Yasue, K. Sumida, and Y. Matsubayashi, Identification of three LRR-RKs involved in perception of root meristem growth factor in Arabidopsis, Proc Natl Acad Sci U S A, vol.113, pp.3897-3902, 2016.

S. H. Shiu and A. B. Bleecker, Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases, Proceedings of the National Academy of Sciences of the United States of America, vol.98, pp.10763-10768, 2001.

S. H. Shiu and A. B. Bleecker, Expansion of the receptor-like kinase/Pelle gene family and receptor-like proteins in Arabidopsis, Plant Physiol, vol.132, pp.530-543, 2003.

S. H. Shiu, W. M. Karlowski, R. S. Pan, Y. H. Tzeng, K. F. Mayer et al., Comparative analysis of the receptor-like kinase family in Arabidopsis and rice, The Plant Cell, vol.16, pp.1220-1234, 2004.

K. A. Silverstein, W. A. Moskal, H. C. Wu, B. A. Underwood, M. A. Graham et al., Small cysteine-rich peptides resembling antimicrobial peptides have been under-predicted in plants, Plant J, vol.51, pp.262-280, 2007.

A. Singh, G. H. Lim, and P. Kachroo, Transport of chemical signals in systemic acquired resistance, J Integr Plant Biol, vol.59, pp.336-344, 2017.

P. Singh, S. Yekondi, P. Chen, C. Tsai, C. Yu et al., Environmental History Modulates Arabidopsis Pattern-Triggered Immunity in a HISTONE ACETYLTRANSFERASE1-Dependent Manner, The Plant Cell, vol.26, pp.2676-2688, 2014.

A. Slaughter, X. Daniel, V. Flors, E. Luna, B. Hohn et al., Descendants of primed Arabidopsis plants exhibit resistance to biotic stress, Plant Physiol, vol.158, pp.835-843, 2012.

M. Sleiman, P. De-sainte-claire, R. , and C. , Heterogeneous Photochemistry of Agrochemicals at the Leaf Surface: A Case Study of Plant Activator Acibenzolar-Smethyl, J Agric Food Chem, vol.65, pp.7653-7660, 2017.

E. Smakowska-luzan, G. A. Mott, K. Parys, M. Stegmann, T. C. Howton et al., An extracellular network of Arabidopsis leucine-rich repeat receptor kinases, Nature, vol.553, pp.342-346, 2018.

K. D. Smith, E. Andersen-nissen, F. Hayashi, K. Strobe, M. A. Bergman et al., Toll-like receptor 5 recognizes a conserved site on flagellin required for protofilament formation and bacterial motility, vol.4, pp.451-451, 2003.

G. K. Smyth, J. Michaud, and H. S. Scott, Use of within-array replicate spots for assessing differential expression in microarray experiments, Bioinformatics, vol.21, pp.2067-2075, 2005.

C. Somerville, S. Bauer, G. Brininstool, M. Facette, T. Hamann et al., Toward a systems approach to understanding plant cell walls, Science, vol.306, pp.2206-2211, 2004.

Y. Stahl and R. Simon, Is the Arabidopsis root niche protected by sequestration of the CLE40 signal by its putative receptor ACR4?, Plant Signaling & Behavior, vol.4, pp.634-635, 2009.

Y. Stahl, R. H. Wink, G. C. Ingram, and R. Simon, A signaling module controlling the stem cell niche in Arabidopsis root meristems, Curr Biol, vol.19, pp.909-914, 2009.

D. Stanley, M. Anna, K. J. Fitzgerald, A. Farnden-&-elspeth, and . Macrae, Characterisation of putative ?-amylases from apple (Malus domestica) and Arabidopsis thaliana, Biologia, pp.137-148, 2002.

M. Stegmann and C. Zipfel, Complex regulation of plant sex by peptides, Science, vol.358, pp.1544-1545, 2017.

M. Stegmann, J. Monaghan, E. Smakowska-luzan, H. Rovenich, A. Lehner et al., The receptor kinase FER is a RALF-regulated scaffold controlling plant immune signaling, Science, vol.355, pp.287-289, 2017.

A. Stief, K. Brzezinka, J. Lämke, I. Bäurle, N. Stührwohldt et al., Epigenetic responses to heat stress at different time scales and the involvement of small RNAs, Plant Signal Behav, vol.9, 2011.

, Phytosulfokine-? controls hypocotyl length and cell expansion in Arabidopsis thaliana through phytosulfokine receptor 1. PLoS One 6, e21054. receptor VvFLS2 differentially recognizes flagellin-derived epitopes from the endophytic growth-promoting bacterium Burkholderia phytofirmans and plant pathogenic bacteria, New Phytol, vol.201, pp.1371-1384

D. Tripathi, Y. L. Jiang, and D. Kumar, SABP2, a methyl salicylate esterase is required for the systemic acquired resistance induced by acibenzolar-S-methyl in plants, FEBS Lett, vol.584, pp.3458-3463, 2010.

D. Tripathi, T. Zhang, A. J. Koo, G. Stacey, and K. Tanaka, Extracellular ATP Acts on Jasmonate Signaling to Reinforce Plant Defense, Plant Physiol, vol.176, pp.511-523, 2018.

A. P. Trivilin, S. Hartke, and M. G. Moraes, Components of different signalling pathways regulated by a new orthologue of AtPROPEP1 in tomato following infection by pathogens, Plant Pathology, vol.63, pp.1110-1118, 2014.

W. Truman, M. T. De-zabala, and M. Grant, Type III effectors orchestrate a complex interplay between transcriptional networks to modify basal defence responses during pathogenesis and resistance, Plant J, vol.46, pp.14-33, 2006.

C. H. Tsai, P. Singh, C. W. Chen, J. Thomas, J. Weber et al., Priming for enhanced defence responses by specific inhibition of the Arabidopsis response to coronatine, Plant J, vol.65, pp.469-479, 2011.

K. Tsuda and F. Katagiri, Comparing signaling mechanisms engaged in patterntriggered and effector-triggered immunity, Curr Opin Plant Biol, vol.13, pp.459-465, 2010.

K. Tsuda and I. E. Somssich, Transcriptional networks in plant immunity, New Phytol, vol.206, pp.932-947, 2015.

S. Tuzun and J. Ku?, Movement of a factor in tobacco infected with Peronospora tabacina Adam which systemically protects against blue mold, Physiological Plant Pathology, vol.26, pp.321-330, 1985.

M. Tör, M. T. Lotze, N. Holton, H. A. Van-den-burg, F. L. Takken et al., Elicitation of suspension-cultured tomato cells triggers the formation of phosphatidic acid and diacylglycerol pyrophosphate, Trends in Plant Science, vol.60, pp.40-44, 2000.

M. Van-hulten, M. Pelser, L. C. Van-loon, C. M. Pieterse, and J. Ton, Costs and benefits of priming for defense in Arabidopsis, Proceedings of the National Academy of Sciences of the United States of America, vol.103, pp.5602-5607, 2006.

L. C. Van-loon and E. A. Van-strien, The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins, Physiological and Molecular Plant Pathology, vol.55, pp.85-97, 1999.

L. C. Van-loon, M. Rep, and C. M. Pieterse, Significance of inducible defense-related proteins in infected plants, Annual Review of Phytopathology, vol.44, pp.135-162, 2006.

C. Vanhée-brossollet and C. Vaquero, Do natural antisense transcripts make sense in eukaryotes, Gene, vol.211, pp.1-9, 1998.

S. Veluchamy, S. R. Hind, D. M. Dunham, G. B. Martin, and D. R. Panthee, Natural variation for responsiveness to flg22, flgII-28, and csp22 and Pseudomonas syringae pv. tomato in heirloom tomatoes, PLoS One, vol.9, 2014.

M. Versluys, ?. Tarkowski, W. Van-den-ende, A. K. Vie, J. Najafi et al., The IDA/IDA-LIKE and PIP/PIP-LIKE gene families in Arabidopsis: phylogenetic relationship, expression patterns, and transcriptional effect of the PIPL3 peptide, Front Plant Sci, vol.7, pp.5351-5365, 2015.

A. C. Vlot, D. F. Klessig, and S. W. Park, Systemic acquired resistance: the elusive signal(s). Current opinion in plant biology 11, pp.436-442, 2008.

A. C. Vlot, D. M. Dempsey, and D. F. Klessig, Salicylic Acid, a Multifaceted Hormone to Combat Disease, Annual Review of Phytopathology, vol.47, pp.177-206, 2009.

C. A. Voigt, Callose-mediated resistance to pathogenic intruders in plant defenserelated papillae, Front Plant Sci, vol.5, p.168, 2014.

A. G. Volkov and C. L. Brown, Electrochemistry of Plant Life, Plant Electrophysiology: Theory and Methods, A.G. Volkov, pp.437-459, 2006.

C. H. Waddington, The epigenotype. 1942, Int J Epidemiol, vol.41, pp.10-13, 2012.

E. G. Wagner and R. W. Simons, Antisense RNA control in bacteria, phages, and plasmids, Annu Rev Microbiol, vol.48, pp.713-742, 1994.

D. Walters and M. Heil, Costs and trade-offs associated with induced resistance, Physiological and Molecular Plant Pathology, vol.71, pp.3-17, 2007.

D. R. Walters, Are plants in the field already induced? Implications for practical disease control, Crop Protection, vol.28, pp.459-465, 2009.

J. R. Wan, X. C. Zhang, D. Neece, K. M. Ramonell, S. Clough et al., A LysM receptor-like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis, The Plant Cell, vol.20, pp.471-481, 2008.

D. Wang, N. Amornsiripanitch, D. , and X. , A genomic approach to identify regulatory nodes in the transcriptional network of systemic acquired resistance in plants, PLoS Pathog, vol.2, p.123, 2006.

G. Wang, G. Zhang, and M. Wu, CLE Peptide Signaling and Crosstalk with Phytohormones and Environmental Stimuli, Front Plant Sci, vol.6, p.1211, 2015.

G. D. Wang and M. Fiers, CLE peptide signaling during plant development, Protoplasma, vol.240, pp.33-43, 2010.

J. Wang, X. Meng, O. B. Dobrovolskaya, Y. L. Orlov, C. et al., Non-coding RNAs and Their Roles in Stress Response in Plants, Genomics Proteomics Bioinformatics, vol.15, pp.301-312, 2017.

X. J. Wang, T. Gaasterland, N. H. Chua, E. R. Ward, S. J. Uknes et al., Genome-wide prediction and identification of cis-natural antisense transcripts in Arabidopsis thaliana, Coordinate Gene Activity in Response to Agents That Induce Systemic Acquired Resistance. Plant Cell, vol.6, pp.1085-1094, 1991.

C. Wasternack, Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development, Ann Bot, vol.100, pp.681-697, 2007.

C. Wasternack and B. Hause, Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany, Ann Bot, vol.111, pp.1021-1058, 2013.

J. H. Waterborg, Plant histone acetylation: in the beginning, 2011.

, Biochim Biophys Acta, vol.1809, pp.353-359

R. F. White, ACETYLSALICYLIC-ACID (ASPIRIN) INDUCES RESISTANCE TO TOBACCO MOSAIC-VIRUS IN TOBACCO, Virology, vol.99, pp.410-412, 1979.

R. Whitford, A. Fernandez, R. De-groodt, E. Ortega, and P. Hilson, Plant CLE peptides from two distinct functional classes synergistically induce division of vascular cells, Proc Natl Acad Sci U S A, vol.105, pp.18625-18630, 2008.

R. Whitford, A. Fernandez, R. Tejos, A. C. Perez, J. Kleine-vehn et al., GOLVEN Secretory Peptides Regulate Auxin Carrier Turnover during Plant Gravitropic Responses, Developmental Cell, vol.22, pp.678-685, 2012.

A. Wibowo, C. Becker, G. Marconi, J. Durr, J. Price et al., Hyperosmotic stress memory in Arabidopsis is mediated by distinct epigenetically labile sites in the genome and is restricted in the male germline by DNA glycosylase activity, 2016.

Y. Wu, D. Zhang, J. Y. Chu, P. Boyle, Y. Wang et al., The Arabidopsis NPR1 protein is a receptor for the plant defense hormone salicylic acid, Cell Rep, vol.1, pp.639-647, 2012.

Y. Yamaguchi and A. Huffaker, Endogenous peptide elicitors in higher plants, Current Opinion in Plant Biology, vol.14, pp.351-357, 2011.

Y. Yamaguchi, G. Pearce, and C. A. Ryan, The cell surface leucine-rich repeat receptor for AtPep1, an endogenous peptide elicitor in Arabidopsis, is functional in transgenic tobacco cells, Proceedings of the National Academy of Sciences of the United States of America, vol.103, pp.10104-10109, 2006.

Y. Yamaguchi, A. Huffaker, A. C. Bryan, F. E. Tax, and C. A. Ryan, PEPR2 is a second receptor for the Pep1 and Pep2 peptides and contributes to defense responses in Arabidopsis, The Plant Cell, vol.22, pp.508-522, 2010.

K. Yamasaki, Y. Motomura, Y. Yagi, H. Nomura, S. Kikuchi et al., Chloroplast envelope localization of EDS5, an essential factor for salicylic acid biosynthesis in Arabidopsis thaliana, Plant Signal Behav, vol.8, 2013.

S. Yan, D. , and X. , Perception of the plant immune signal salicylic acid, Curr Opin Plant Biol, vol.20, pp.64-68, 2014.

H. Yang, Y. Matsubayashi, K. Nakamura, and Y. Sakagami, Oryza sativa PSK gene encodes a precursor of phytosulfokine-alpha, a sulfated peptide growth factor found in plants, Proc Natl Acad Sci U S A, vol.96, pp.13560-13565, 1999.

H. P. Yang, Y. Matsubayashi, K. Nakamura, and Y. Sakagami, Diversity of Arabidopsis genes encoding precursors for phytosulfokine, a peptide growth factor, Plant Physiology, vol.127, pp.842-851, 2001.

S. Yasuda, K. Okada, and Y. Saijo, A look at plant immunity through the window of the multitasking coreceptor BAK1, Curr Opin Plant Biol, vol.38, pp.10-18, 2017.

T. H. Yeats and J. K. Rose, The formation and function of plant cuticles, Plant Physiol, vol.163, pp.5-20, 2013.

H. S. Yi, M. Heil, R. M. Adame-alvarez, D. J. Ballhorn, and C. M. Ryu, Airborne induction and priming of plant defenses against a bacterial pathogen, Plant Physiol, vol.151, pp.2152-2161, 2009.

L. Zimmerli, G. Jakab, J. P. Metraux, and B. Mauch-mani, Potentiation of pathogenspecific defense mechanisms in Arabidopsis by beta -aminobutyric acid, Proc Natl Acad Sci U S A, vol.97, pp.12920-12925, 2000.

L. Zimmerli, B. Hou, C. Tsai, G. Jakab, B. Mauch-mani et al., The xenobiotic ?-aminobutyric acid enhances Arabidopsis thermotolerance, The Plant Journal, vol.53, pp.144-156, 2007.

C. Zipfel, Plant pattern-recognition receptors, Trends Immunol, vol.35, pp.345-351, 2014.

C. Zipfel, S. Robatzek, L. Navarro, E. J. Oakeley, J. D. Jones et al., Bacterial disease resistance in Arabidopsis through flagellin perception, Nature, vol.428, pp.764-767, 2004.

C. Zipfel, G. Kunze, D. Chinchilla, A. Caniard, J. D. Jones et al., Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacteriummediated transformation, Cell, vol.125, pp.749-760, 2006.

, Appendix: Scientific publication (Gully et, Journal, 2018.

, Université d'Angers, SFR 4207 QuaSaV, Beaucouzé F-49071, France. kay.gully@inra.fr, sandra.pelletier@inra.fr, marie-charlotte.guillou@inra.fr, sophie.aligon@agrocampus-ouest.fr, adrien.perrin@inra.fr, emilie.vergne@inra.fr, philippe.grappin@agrocampus-ouest.fr, etienne.bucher@inra.fr, jean-pierre, UMR 1345, INRA, Agrocampus-Ouest

I. Jean-pierre-bourgin, . Inra, C. Agroparistech, and U. Paris,

I. Murphy, 61 avenue du général de Gaulle, Créteil F-94000, France. CLE and RGF PTMP families, 2010.

. Whitford, Furthermore, our co-expression network approach identified a co-expression of PROSCOOP12 with FRK1 (Fig. S2). Therefore, we measured the to controls, AtPep1 and SCOOP12 treatments resulted in a 15-fold and 8.5-fold increase in FRK1 expression, respectively (Fig. 6B). The deposition of callose is also known to be triggered by DAMPs, Treatment of plants with SCOOP12 induced a wide range of long-and short-term immune responses (Fig. 6), 2002.

M. Albert, Peptides as triggers of plant defence, Journal of Experimental Botany, vol.64, pp.5269-5279, 2013.

A. Armenteros, J. J. Sønderby, C. K. Sønderby, S. K. Nielsen, H. Winther et al., DeepLoc: prediction of protein subcellular localization using deep learning, Bioinformatics, vol.33, pp.3387-3395, 2017.

Y. Amano, H. Tsubouchi, H. Shinohara, M. Ogawa, and Y. Matsubayashi, Tyrosine-sulfated glycopeptide involved in cellular proliferation and expansion in Arabidopsis, Proceedings of the National Academy of Sciences of the United States of America, vol.104, pp.18333-18338, 2007.

, Evidence for network evolution in an Arabidopsis interactome map, Science, vol.333, pp.601-607, 2011.

S. A. Arisz, T. ;. Munnik, and D. Pld, Distinguishing Phosphatidic Acid Pools from De Novo Synthesis, Plant Lipid Signaling Protocols, pp.55-62, 2013.

T. Asai, G. Tena, J. Plotnikova, M. R. Willmann, W. L. Chiu et al., MAP kinase signalling cascade in Arabidopsis innate immunity, Nature, vol.415, pp.977-983, 2002.

S. Aubourg, M. L. Martin-magniette, and V. Brunaud, Analysis of CATMA transcriptome data identifies hundreds of novel functional genes and improves gene models in the Arabidopsis genome, BMC Genomics, vol.8, p.401, 2007.

T. L. Bailey, J. Johnson, C. E. Grant, and W. S. Noble, The MEME Suite, vol.43, pp.39-49, 2015.

S. Bartels and T. Boller, Quo vadis, Pep? Plant elicitor peptides at the crossroads of immunity, stress, and development, Journal of Experimental Botany, vol.66, pp.5183-5193, 2015.

S. Betsuyaku, S. Sawa, and M. Yamada, The Function of the CLE Peptides in Plant Development and Plant-Microbe Interactions, vol.9, p.149, 2011.

T. Boller and G. Felix, A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by patternrecognition receptors, Annual Review of Plant Biology, vol.60, pp.379-406, 2009.

M. Boudsocq, M. R. Willmann, M. Mccormack, H. Lee, L. B. Shan et al., Differential innate immune signalling via Ca 2+ sensor protein kinases, Nature, vol.464, pp.418-422, 2010.

P. Buscaill and S. Rivas, Transcriptional control of plant defence responses, Current Opinion in Plant Biology, vol.20, pp.35-46, 2014.

D. Chinchilla, L. Shan, P. He, S. De-vries, and B. Kemmerling, One for all: the receptor-associated kinase BAK1, Trends in Plant Science, vol.14, pp.535-541, 2009.

A. Degrave, M. Fagard, C. Perino, M. N. Brisset, S. Gaubert et al., Erwinia amylovora type three-secreted proteins trigger cell death and defense responses in Arabidopsis thaliana, Molecular Plant Microbe Interaction, vol.21, pp.1076-1086, 2008.

D. Lorenzo, G. Brutus, A. Savatin, D. V. Sicilia, F. Cervone et al., Engineering plant resistance by constructing chimeric receptors that recognize damage-associated molecular patterns (DAMPs), FEBS Letters, vol.585, pp.1521-1528, 2011.

S. Dèrozier, F. Samson, and J. P. Tamby, Exploration of plant genomes in the FLAGdb ++ environment, Plant Methods, vol.7, issue.8, 2001.

A. Dobón, J. V. Canet, J. García-andrade, C. Angulo, L. Neumetzler et al., Novel disease susceptibility factors for fungal necrotrophic pathogens in Arabidopsis, PLoS Pathogens, vol.11, 2015.

C. Dunand, M. Crèvecoeur, and C. Penel, Distribution of superoxide and hydrogen peroxide in Arabidopsis root and their influence on root development: possible interaction with peroxidases, New Phytologist, vol.174, pp.332-341, 2007.

M. Fauth, P. Schweizer, A. Buchala, C. Markstadter, M. Riederer et al., Cutin monomers and surface wax constituents elicit H2O2 in conditioned cucumber hypocotyl segments and enhance the activity of other H2O2 elicitors, Plant Physiology, vol.117, pp.1373-1380, 1998.

S. Ferrari, R. Galletti, C. Denoux, D. Lorenzo, G. Ausubel et al., Resistance to Botrytis cinerea induced in Arabidopsis by elicitors is independent of salicylic acid, ethylene, or jasmonate signaling but requires PHYTOALEXIN DEFICIENT3, Plant Physiology, vol.144, pp.367-379, 2007.

P. Flury, D. Klauser, B. Schulze, T. Boller, and S. Bartels, The anticipation of danger: MAMP perception enhances AtPep-triggered oxidative burst, Plant Physiology, vol.161, pp.2023-2035, 2013.

S. Gagnot, J. P. Tamby, M. L. Martin-magniette, F. Bitton, L. Taconnat et al., CATdb: a public access to Arabidopsis transcriptome data from the URGV-CATMA platform, Nucleic Acids Research, vol.36, pp.986-990, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01203869

H. B. Gao, Y. Chu, and H. Xue, Phosphatidic Acid (PA) Binds PP2AA1 to Regulate PP2A Activity and PIN1 Polar Localization, Molecular Plant, vol.6, pp.1692-1702, 2013.

L. Gomez-gomez and T. Boller, FLS2: An LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis, Molecular Cell, vol.5, pp.1003-1011, 2000.

F. C. Gómez-merino, F. A. Arana-ceballos, L. I. Trejo-téllez, A. Skirycz, C. A. Brearley et al., Displays Unique Biochemical Features and Saturates at Low Substrate Concentration: The DGK Inhibitor R59022 differentially affects AtDGK2 and AtDGK7 activity in vitro and alters plant growth and development, Journal of Biological Chemistry, vol.280, pp.34888-34899, 2005.

R. K. Goyal and A. K. Mattoo, Multitasking antimicrobial peptides in plant development and host defense against biotic/abiotic stress, Plant Science, vol.228, pp.135-184, 2014.

A. A. Gust, R. Pruitt, and T. Nürnberger, Sensing danger: Key to activating plant immunity, Trends in Plant Science, vol.22, pp.779-791, 2017.

M. Heil, E. Ibarra-laclette, R. M. Adame-alvarez, O. Martinez, E. Ramirez-chavez et al., How Plants Sense Wounds: Damaged-Self Recognition Is Based on Plant-Derived Elicitors and Induces Octadecanoid Signaling, PLoS One, vol.7, p.30537, 2012.

P. Hilson, J. Allemeersch, and T. Altmann, Versatile gene-specific sequence tags for Arabidopsis functional genomics: transcript profiling and reverse genetics applications, Genome Research, vol.14, pp.2176-2189, 2004.

S. Hou, X. Wang, D. Chen, X. Yang, M. Wang et al., The secreted peptide PIP1 amplifies immunity through receptor-like kinase 7, PLoS Pathogens, vol.10, 2014.

A. Huffaker and C. A. Ryan, Endogenous peptide defense signals in Arabidopsis differentially amplify signaling for the innate immune response, Proceedings of the National Academy of Sciences of the United States of America, vol.104, pp.10732-10736, 2007.

A. Huffaker, G. Pearce, and C. A. Ryan, An endogenous peptide signal in Arabidopsis activates components of the innate immune response, Proceedings of the National Academy of Sciences of the United States of America, vol.103, pp.10098-10103, 2006.

T. Hruz, O. Laule, G. Szabo, F. Wessendorp, S. Bleuler et al., Genevestigator v3: a reference expression database for the meta-analysis of transcriptomes, Advances in Bioinformatics, p.420747, 2008.

A. Krapp, R. Berthomé, M. Orsel, S. Mercey-boutet, Y. A. Castaings et al., Arabidopsis roots and shoots show distinct temporal adaptation patterns toward nitrogen starvation, Plant Physiology, vol.157, pp.1255-1282, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01001248

O. Krinke, M. Flemr, and C. Vergnolle, Phospholipase D Activation Is an Early Component of the Salicylic Acid Signaling Pathway in Arabidopsis Cell Suspensions, Plant Physiology, vol.150, pp.424-436, 2009.

E. Krol, T. Mentzel, and D. Chinchilla, Perception of the Arabidopsis danger signal peptide 1 involves the pattern recognition receptor AtPEPR1 and its close homologue AtPEPR2, Journal of Biological Chemistry, vol.285, pp.13471-13479, 2010.

K. A. Lease and J. C. Walker, The Arabidopsis unannotated secreted peptide database, a resource for plant peptidomics, Plant Physiology, vol.142, pp.831-838, 2006.

K. A. Lease and J. C. Walker, Bioinformatic identification of plant peptides, Methods in Molecular Biology, vol.615, pp.375-383, 2010.

H. Lee, O. K. Chah, and J. Sheen, Stem-cell-triggered immunity through CLV3p-FLS2 signalling, Nature, vol.473, pp.376-379, 2011.

M. Lepage, Identification and composition of turnip root lipids, Lipids, vol.2, pp.244-250, 1967.

J. Li, G. Brader, and E. T. Palva, The WRKY70 transcription factor: a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense, Plant Cell, vol.16, pp.319-331, 2004.

J. Liu, S. Chen, L. Chen, Q. Zhou, M. Wang et al., BIK1 cooperates with BAK1 to regulate constitutive immunity and cell death in Arabidopsis, Journal of Integrative Plant Biology, vol.59, pp.234-239, 2017.

E. Luna, V. Pastor, J. Robert, V. Flors, B. Mauch-mani et al., Callose deposition: a multifaceted plant defense response, Mol. Plant Microbe Interactions, vol.24, pp.183-193, 2011.

C. Lurin, C. Andrés, and S. Aubourg, Genome-wide analysis of Arabidopsis pentatricopeptide repeat proteins reveals their essential role in organelle biogenesis, Plant Cell, vol.16, pp.2089-2103, 2004.

N. Marmiroli and E. Maestri, Plant peptides in defense and signaling, Peptides, vol.56, pp.30-44, 2014.

Y. Matsubayashi, Small post-translationally modified peptide signals in Arabidopsis, vol.9, p.150, 2011.

Y. Matsubayashi, Small-peptide signals in plants, Annual Review of Plant Biology, vol.65, pp.385-413, 2014.

Y. Matsuzaki, M. Ogawa-ohnishi, A. Mori, and Y. Matsubayashi, Secreted peptide signals required for maintenance of root stem cell niche in Arabidopsis, Science, vol.329, pp.1065-1067, 2010.

C. Maugis, G. Celeux, and M. , Variable selection in model-based clustering: A general variable role modeling, Computational Statistics & Data Analysis, vol.53, pp.3872-3882, 2009.
URL : https://hal.archives-ouvertes.fr/inria-00342108

M. Moreau, A. Degrave, R. Vedel, F. Bitton, O. Patrit et al., EDS1 contributes to nonhost resistance of Arabidopsis thaliana against Erwinia amylovora, Molecular Plant Microbe Interactions, vol.25, pp.421-430, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00921325

S. Mosher, H. Seybold, and P. Rodriguez, The tyrosine-sulfated peptide receptors PSKR1 and PSY1R modify the immunity of Arabidopsis to biotrophic and necrotrophic pathogens in an antagonistic manner, Plant Journal, vol.73, pp.469-482, 2013.

P. Y. Muller, H. Janovjak, A. R. Miserez, and Z. Dobbie, Processing of gene expression data generated by quantitative real-time RT-PCR, Biotechniques, vol.32, pp.1372-1374, 2002.

T. Munnik, A. Musgrave, and T. De-vrije, Rapid turnover of polyphosphoinositides in carnation flower petals, Planta, vol.193, pp.89-98, 1994.

E. Murphy, S. Smith, D. Smet, and I. , Small signaling peptides in Arabidopsis development: how cells communicate over a short distance, Plant Cell, vol.24, pp.3198-3217, 2012.

H. Nielsen, Predicting secretory proteins with SignalP, Methods in Molecular Biology, vol.1611, pp.59-73, 2017.

S. Pochon, E. Terrasson, G. T. Iacomi-vasilescu, B. Georgeault, S. Juchaux et al., The Arabidopsis thaliana-Alternaria brassicicola pathosystem: a model interaction for investigating seed transmission of necrotrophic fungi, Plant Methods, vol.8, p.16, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01190780

I. Pokotylo, V. Kravets, J. Martinec, and E. Ruelland, The phosphatidic acid paradox: Too many actions for one molecule class? Lessons from plants, Progress in Lipid Research, vol.71, pp.43-53, 2018.

L. Poncini, I. Wyrsch, D. Tendon, V. Vorley, T. Boller et al., In roots of Arabidopsis thaliana, the damage-associated molecular pattern AtPep1 is a stronger elicitor of immune signalling than flg22 or the chitin heptamer, PLoS One, vol.12, 2017.

I. C. Raacke, U. Von-rad, M. J. Mueller, and S. Berger, Yeast increases resistance in Arabidopsis against Pseudomonas syringae and Botrytis cinerea by salicylic acid-dependent as well as -independent mechanisms, Molecular Plant-Microbe Interactions, vol.19, pp.1138-1146, 2006.

I. Roberts, S. Smith, D. Rybel, B. Van-den-broeke, J. Smet et al., The CEP family in land plants: evolutionary analyses, expression studies, and role in Arabidopsis shoot development, Journal of Experimental Botany, vol.64, pp.5371-5381, 2013.

N. Rodiuc, X. Barlet, and S. Hok, Evolutionarily distant pathogens require the Arabidopsis phytosulfokine signalling pathway to establish disease, Plant Cell Environment, vol.39, pp.1396-1407, 2015.

D. Schöner, S. Barkow, S. Bleuler, A. Wille, P. Zimmermann et al., Network analysis of systems elements, Experientia Supplementum, vol.97, pp.331-351, 2007.

B. Schulze, T. Mentzel, A. K. Jehle, K. Mueller, S. Beeler et al., Rapid heteromerization and phosphorylation of ligand-activated plant transmembrane receptors and their associated kinase BAK1, Journal of Biological Chemistry, vol.285, pp.9444-9451, 2010.

C. Segonzac, A. P. Macho, M. Sanmartín, V. Ntoukakis, J. J. Sánchez-serrano et al., Negative control of BAK1 by protein phosphatase 2A during plant innate immunity, EMBO Journal, vol.33, pp.2069-2079, 2014.

Y. Shen and A. C. Diener, Arabidopsis thaliana resistance to fusarium oxysporum 2 implicates tyrosine-sulfated peptide signaling in susceptibility and resistance to root infection, PLoS Genetics, vol.9, 2013.

K. A. Silverstein, . Wa, H. C. Wu, B. A. Underwood, M. A. Graham et al., Small cysteine-rich peptides resembling antimicrobial peptides have been under-predicted in plants, Plant Journal, vol.51, pp.262-280, 2007.

I. Small, N. Peeters, F. Legeai, and C. Lurin, Predotar: A tool for rapidly screening proteomes for N-terminal targeting sequences, Proteomics, vol.4, pp.1581-1590, 2004.

D. Szklarczyk, J. H. Morris, and H. Cook, The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible, Nucleic Acids Research, vol.45, pp.362-368, 2017.

P. Tavormina, D. Coninck, B. Nikonorova, N. , D. Smet et al., The plant peptidome: an expanding repertoire of structural features and biological functions, Plant Cell, vol.27, pp.2095-2118, 2015.

M. A. Torres, J. Jones, and J. L. Dangl, Reactive oxygen species signaling in response to pathogens, Plant Physiology, vol.141, pp.373-378, 2006.

H. Tsukagoshi, W. Busch, and P. N. Benfey, Transcriptional regulation of ROS controls transition from proliferation to differentiation in the root, Cell, vol.143, pp.606-616, 2010.

A. H. Van-der-luit, T. Piatti, A. Van-doorn, A. Musgrave, G. Felix et al., Elicitation of Suspension-Cultured Tomato Cells Triggers the Formation of Phosphatidic Acid and Diacylglycerol Pyrophosphate, Plant Physiology, vol.123, pp.1507-1516, 2000.

J. S. Venisse, G. Gullner, and M. N. Brisset, Evidence for the involvement of an oxidative stress in the initiation of infection of pear by Erwinia amylovora, Plant Physiology, vol.125, pp.2164-2172, 2001.

A. K. Vie, J. Najafi, B. Liu, P. Winge, M. A. Butenko et al., The IDA/IDA-LIKE and PIP/PIP-LIKE gene families in Arabidopsis: phylogenetic relationship, expression patterns, and transcriptional effect of the PIPL3 peptide, Journal of Experimental Botany, vol.66, pp.5351-5365, 2015.

D. Walters and M. Heil, Costs and trade-offs associated with induced resistance, Physiological and Molecular Plant Pathology, vol.71, pp.3-17, 2007.

R. Whitford, A. Fernandez, and R. Tejos, GOLVEN secretory peptides regulate auxin carrier turnover during plant gravitropic responses, Developmental Cell, vol.22, pp.678-685, 2012.

R. Zaag, J. P. Tamby, and C. Guichard, GEM2Net: from gene expression modeling to -omics networks, a new CATdb module to investigate Arabidopsis thaliana genes involved in stress response, Nucleic Acids Research, vol.43, pp.1010-1017, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01137554

Y. Zhang, H. Zhu, Q. Zhang, M. Li, M. Yan et al., Phospholipase D?1 and Phosphatidic Acid Regulate NADPH Oxidase Activity and Production of Reactive Oxygen Species in ABA-Mediated Stomatal Closure in Arabidopsis, Plant Cell, vol.21, pp.2357-2377, 2009.