, Analyse numérique des défauts de fabrication

, Etude de la performance thermique du composite MAFP

P. De-fusion-de-la-paraffine and .. .. , 169 3.2 Procédé de fusion du composite mousse d'aluminium/paraffine

. Effet and . .. Dans-le-composite, , p.172

, Analyse numérique des performances thermiques du composite MAHP/MCP, p.176

. .. Modèle-physique,

, Méthodes d'amélioration de l'efficacité thermique efficace du composite, p.179

, 181 5.2 Optimisation des paramètres de la structure modifiée

, Etude préliminaire de la mousse d'aluminium élaborée par impression 3D, p.185

. .. Conclusion,

B. Sosnick, Process for making foamlike mass of metal, 1948.

G. J. Davies and S. Zhen, Metallic foams: their production, properties and applications, Journal of Materials Science, vol.18, pp.1899-1911, 1983.

S. Mahjoob and K. Vafai, A synthesis of fluid and thermal transport models for metal foam heat exchangers, International Journal of Heat and Mass Transfer, vol.51, pp.3701-3711, 2008.

X. Wang and T. J. Lu, Optimized acoustic properties of cellular solids, The Journal of the Acoustical Society of America, vol.106, pp.756-765, 1999.

M. A. Benvenuto, Industrial Chemistry, 2014.

H. N. Wadley, Cellular metals manufacturing, Advanced Engineering Materials, vol.4, pp.726-733, 2002.

N. Garsot, Y. Liu, A. Cherouat, and X. Gong, Compressive behavior of porous metal/polymer composite: experiment and numerical modeling, 2008.

K. Berchem, U. Mohr, and W. Bleck, Controlling the degree of pore opening of metal sponges, prepared by the infiltration preparation method, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, vol.323, pp.52-57, 2002.

Y. Su, Analytical and numerical modeling of structure of metal porous polymer composite and its mechanical behaviors, 2011.

P. Liu and G. F. Chen, Porous Materials: Processing and Applications, 2014.

B. Jiang, N. Q. Zhao, C. S. Shi, and J. J. Li, Processing of open cell aluminum foams with tailored porous morphology, Scripta Materialia, vol.53, pp.781-785, 2005.

I. Kroupova, V. Bednarova, T. Elbel, and F. Radkovsky, Proposal of method of removal of mould material from the fine structure of metallic foams used as filters, Archives of Metallurgy and Materials, vol.59, pp.727-730, 2014.

S. S. Feng, J. J. Kuang, T. Wen, T. J. Lu, and K. Ichimiya, An experimental and numerical study of finned metal foam heat sinks under impinging air jet cooling, International Journal of Heat and Mass Transfer, vol.77, pp.1063-1074, 2014.

M. F. Ashby, Metal Foams: A Design Guide, 2000.

X. Yang, W. Wang, C. Yang, L. Jin, and T. J. Lu, Solidification of fluid saturated in open-cell metallic foams with graded morphologies, International Journal of Heat and Mass Transfer, vol.98, pp.60-69, 2016.

J. Banhart, Manufacture, characterisation and application of cellular metals and metal foams, Progress in Materials Science, vol.46, pp.559-632, 2001.

S. Mellouli, H. Dhaou, F. Askri, A. Jemni, and S. B. Nasrallah, Hydrogen storage in metal hydride tanks equipped with metal foam heat exchanger, International Journal of Hydrogen Energy, vol.34, pp.9393-9401, 2009.

K. Boomsma, D. Poulikakos, and F. Zwick, Metal foams as compact high performance heat exchangers, Mechanics of Materials, vol.35, pp.1161-1176, 2003.

C. Y. Zhao, Review on thermal transport in high porosity cellular metal foams with open cells, International Journal of Heat and Mass Transfer, vol.55, pp.3618-3632, 2012.

M. Wang and N. Pan, Modeling and prediction of the effective thermal conductivity of random open-cell porous foams, International Journal of Heat and Mass Transfer, vol.51, pp.1325-1331, 2008.

J. Song and S. He, The heat transfer perfomance of porous aluminum foam, Jiangsu Metallurgy, vol.36, pp.28-30, 2008.

V. V. Calmidi and R. L. Mahajan, Effective thermal conductivity of high porosity fibrous metal foams, Journal of Heat Transfer, vol.121, pp.466-471, 1999.

C. Y. Zhao, T. J. Lu, H. P. Hodson, and J. D. Jackson, The temperature dependence of effective thermal conductivity of open-celled steel alloy foams, Materials Science and Engineering: A, vol.367, pp.123-131, 2004.

A. Bhattacharya, V. V. Calmidi, and R. L. Mahajan, Thermophysical properties of high porosity metal foams, International Journal of Heat and Mass Transfer, vol.45, pp.1017-1031, 2002.

K. Boomsma and D. Poulikakos, On the effective thermal conductivity of a three-dimensionally structured fluid-saturated metal foam, International Journal of Heat and Mass Transfer, vol.44, pp.827-836, 2001.

D. A. Nield and A. Bejan, Convection in Porous Media, 2006.

D. B. Ingham and I. Pop, Transport Phenomena in Porous Media, 1998.

P. Nithiarasu, K. N. Seetharamu, and T. Sundararajan, Natural convective heat transfer in a fluid saturated variable porosity medium, International Journal of Heat and Mass Transfer, vol.40, pp.3955-3967, 1997.

S. Ergun, Fluid flow through packed columns, Chemical engineering progress, vol.48, pp.89-94, 1952.

J. Despois and A. Mortensen, Permeability of open-pore microcellular materials, Acta Materialia, vol.53, pp.1381-1388, 2005.

V. V. Calmidi and R. L. Mahajan, Forced convection in high porosity metal foams, Journal of Heat Transfer-Transactions of the Asme, vol.122, pp.557-565, 2000.

A. J. Otaru and A. R. Kennedy, The permeability of virtual macroporous structures generated by sphere packing models: Comparison with analytical models, Scripta Materialia, vol.124, pp.30-33, 2016.

S. Gomez, M. D. Vlad, J. Lopez, and E. Fernqndez, Design and properties of 3D scaffolds for bone tissue engineering, Acta Biomaterialia, vol.42, pp.341-350, 2016.

S. Krishnan, J. Y. Murthy, and S. V. Garimella, A two-temperature model for solid-liquid phase change in metal foams, Journal of Heat Transfer-Transactions of the Asme, vol.127, pp.995-1004, 2005.

S. W. Churchill and H. H. Chu, Correlating equations for laminar and turbulent free convection from a horizontal cylinder, International Journal of Heat and Mass Transfer, vol.18, pp.1049-1053, 1975.

K. Saxby, T. D. Hadley, J. Orellana, Y. Pan, and K. Lim, Comparative analysis of heat transfer in a counter-current moving bed, pp.182-191, 2013.

X. Zhu, S. Ai, X. Lu, X. Ling, L. Zhu et al., Thermal conductivity of closed-cell aluminum foam based on the 3D geometrical reconstruction, International Journal of Heat and Mass Transfer, vol.72, pp.242-249, 2014.

C. Alkan and A. Sari, Fatty acid/poly(methyl methacrylate) (PMMA) blends as form-stable phase change materials for latent heat thermal energy storage, Solar Energy, vol.82, pp.118-124, 2008.

M. M. Farid, A. M. Khudhair, S. A. Razack, and S. Al-hallaj, A review on phase change energy storage: Materials and applications, Energy Conversion and Management, vol.45, pp.1597-1615, 2004.

M. Kenisarin and K. Mahkamov, Solar energy storage using phase change materials, Renewable and Sustainable Energy Reviews, vol.11, pp.1913-1965, 2007.

P. Verma, S. K. Varun, and . Singal, Review of mathematical modeling on latent heat thermal energy storage systems using phase-change material, Renewable and Sustainable Energy Reviews, vol.12, pp.999-1031, 2008.

X. Wang, Y. Zhang, W. Xiao, R. Zeng, Q. Zhang et al., Review on thermal performance of phase change energy storage building envelope, Chinese Science Bulletin, vol.54, pp.920-928, 2009.

R. Kandasamy, X. Wang, and A. S. Mujumdar, Transient cooling of electronics using phase change material (PCM)-based heat sinks, Applied Thermal Engineering, vol.28, pp.1047-1057, 2008.

A. Abhat, Low temperature latent heat thermal energy storage: Heat storage materials, Solar Energy, vol.30, pp.313-332, 1983.

R. Velraj, R. V. Seeniraj, B. Hafner, C. Faber, and K. Schwarzer, Heat transfer enhancement in a latent heat storage system, Solar Energy, vol.65, pp.171-180, 1999.

J. T. Williams, Textiles for Cold Weather Apparel, 2009.

B. Zalba, J. M. Marin, L. F. Cabeza, and H. Mehling, Review on thermal energy storage with phase change: materials, heat transfer analysis and applications, Applied Thermal Engineering, vol.23, pp.251-283, 2003.

S. Jegadheeswaran and S. D. Pohekar, Performance enhancement in latent heat thermal storage system: A review, Renewable and Sustainable Energy Reviews, vol.13, pp.2225-2244, 2009.

M. N. Hawlader, M. S. Uddin, and M. M. Khin, Microencapsulated PCM thermal-energy storage system, Applied Energy, vol.74, pp.195-202, 2003.

L. F. Cabeza, C. Castellon, M. Nogues, M. Medrano, R. Leppers et al., Use of microencapsulated PCM in concrete walls for energy savings, Energy and Buildings, vol.39, pp.113-119, 2007.

A. Castell, I. Martorell, M. Medrano, G. Perez, and L. F. Cabeza, Experimental study of using PCM in brick constructive solutions for passive cooling, Energy and Buildings, vol.42, pp.534-540, 2010.

V. V. Tyagi, S. C. Kaushik, S. K. Tyagi, and T. Akiyama, Development of phase change materials based microencapsulated technology for buildings: A review, Renewable and Sustainable Energy Reviews, vol.15, pp.1373-1391, 2011.

H. Inaba, C. Dai, and A. Horibe, Numerical simulation of Rayleigh-Benard convection in non-Newtonian phase-change-material slurries, International Journal of Thermal Sciences, vol.42, pp.471-480, 2003.

X. Hu and Y. Zhang, Novel insight and numerical analysis of convective heat transfer enhancement with microencapsulated phase change material slurries: laminar flow in a circular tube with constant heat flux, International Journal of Heat and Mass Transfer, vol.45, pp.3163-3172, 2002.

P. Charunyakorn, S. Sengupta, and S. K. Roy, Forced convection heat transfer in microencapsulated phase change material slurries: flow in circular ducts, International Journal of Heat and Mass Transfer, vol.34, pp.819-833, 1991.

A. F. Regin, S. C. Solanki, and J. S. Saini, Heat transfer characteristics of thermal energy storage system using PCM capsules: A review, Renewable and Sustainable Energy Reviews, vol.12, pp.2438-2458, 2008.

A. Sar? and A. Karaipekli, Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material, Applied Thermal Engineering, vol.27, pp.1271-1277, 2007.

C. J. Ho and J. Y. Gao, Preparation and thermophysical properties of nanoparticle-in-paraffin emulsion as phase change material, International Communications in Heat and Mass Transfer, vol.36, pp.467-470, 2009.

J. Fukai, Y. Hamada, Y. Morozumi, and O. Miyatake, Effect of carbon-fiber brushes on conductive heat transfer in phase change materials, International Journal of Heat and Mass Transfer, vol.45, pp.4781-4792, 2002.

A. Elgafy and K. Lafdi, Effect of carbon nanofiber additives on thermal behavior of phase change materials, Carbon, vol.43, pp.3067-3074, 2005.

S. Wu, D. Zhu, X. Zhang, and J. Huang, Preparation and Melting/Freezing Characteristics of Cu/Paraffin Nanofluid as Phase-Change Material (PCM), 2010.

Y. Cui, C. Liu, S. Hu, and X. Yu, The experimental exploration of carbon nanofiber and carbon nanotube additives on thermal behavior of phase change materials, Solar Energy Materials and Solar Cells, vol.95, pp.1208-1212, 2011.

J. Fukai, M. Kanou, Y. Kodama, and O. Miyatake, Thermal conductivity enhancement of energy storage media using carbon fibers, Energy Conversion and Management, vol.41, pp.1543-1556, 2000.

F. Frusteri, V. Leonardi, S. Vasta, and G. Restuccia, Thermal conductivity measurement of a PCM based storage system containing carbon fibers, Applied Thermal Engineering, vol.25, pp.1623-1633, 2005.

W. D. Steinmann and R. Tamme, Latent heat storage for solar steam systems, Journal of Solar Energy Engineering, vol.130, pp.110041-0110045, 2008.

K. Chintakrinda, R. D. Weinstein, and A. S. Fleischer, A direct comparison of three different material enhancement methods on the transient thermal response of paraffin phase change material exposed to high heat fluxes, International Journal of Thermal Sciences, vol.50, pp.1639-1647, 2011.

P. Lamberg and K. Siren, Approximate analytical model for solidification in a finite PCM storage with internal fins, Applied Mathematical Modelling, vol.27, pp.491-513, 2003.

A. Caron-soupart, J. Fourmigue, P. Marty, and R. Couturier, Performance analysis of thermal energy storage systems using phase change material, Applied Thermal Engineering, vol.98, pp.1286-1296, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01332456

M. Lacroix and M. Benmadda, Numerical simulation of natural convection-dominated melting and solidification from a finned vertical wall, Numerical Heat Transfer, vol.31, pp.71-86, 1997.

M. Gharebaghi and I. Sezai, Enhancement of heat transfer in latent heat storage modules with internal fins, Numerical Heat Transfer; Part A: Applications, vol.53, pp.749-765, 2008.

G. Karamanis and M. Hodes, Longitudinal-fin heat sink optimization capturing conjugate effects under fully developed conditions, Journal of Thermal Science and Engineering Applications, vol.8, 2016.

K. J. Kim, Performance of hybrid fin heat sinks for thermal control of light emitting diode lighting modules, Journal of Electronic Packaging, vol.136, 2014.

A. Mustaffar, A. Harvey, and D. Reay, Melting of phase change material assisted by expanded metal mesh, Applied Thermal Engineering, 2015.

C. Liu, R. E. Murray, D. Groulx, and A. , Experimental study of cylindrical latent heat energy storage systems using lauric acid as the phase change material, Proceedings of the Asme Summer Heat Transfer Conference, vol.2, pp.447-456, 2012.

D. Zhou and C. Y. Zhao, Experimental investigations on heat transfer in phase change materials (PCMs) embedded in porous materials, Applied Thermal Engineering, vol.31, pp.970-977, 2011.

K. Lafdi, O. Mesalhy, and S. Shaikh, Experimental study on the influence of foam porosity and pore size on the melting of phase change materials, Journal of Applied Physics, p.102, 2007.

S. S. Sundarram and W. Li, The effect of pore size and porosity on thermal management performance of phase change material infiltrated microcellular metal foams, Applied Thermal Engineering, vol.64, pp.147-154, 2014.

C. Y. Zhao, W. Lu, and Y. Tian, Heat transfer enhancement for thermal energy storage using metal foams embedded within phase change materials (PCMs), Solar Energy, vol.84, pp.1402-1412, 2010.

Z. Liu, Y. Yao, and H. Wu, Numerical modeling for solid-liquid phase change phenomena in porous media: Shell-and-tube type latent heat thermal energy storage, Applied Energy, vol.112, pp.1222-1232, 2013.

Z. Q. Yu, Y. L. Feng, W. J. Zhou, Y. Jin, M. J. Li et al., Study on flow and heat transfer characteristics of composite porous material and its performance analysis by FSP and EDEP, Applied Energy, vol.112, pp.1367-1375, 2013.

Z. G. Xu and C. Y. Zhao, Enhanced boiling heat transfer by gradient porous metals in saturated pure water and surfactant solutions, Applied Thermal Engineering, vol.100, pp.68-77, 2016.

S. Feng, Y. Zhang, M. Shi, T. Wen, and T. J. Lu, Unidirectional freezing of phase change materials saturated in open-cell metal foams, Applied Thermal Engineering, 2014.

A. H. Brothers and D. C. Dunand, Density-graded cellular aluminum, Advanced Engineering Materials, vol.8, pp.805-809, 2006.

J. L. Yang, L. J. Yang, C. Xu, and X. Z. Du, Numerical analysis on thermal behavior of solid-liquid phase change within copper foam with varying porosity, International Journal of Heat and Mass Transfer, vol.84, pp.1008-1018, 2015.

Y. B. Tao, Y. You, and Y. L. He, Lattice Boltzmann simulation on phase change heat transfer in metal foams/paraffin composite phase change material, Applied Thermal Engineering, vol.93, pp.476-485, 2016.

Y. Su and X. Gong, Mechanical properties of open-cell metal foams under low-velocity impact loading, World Journal of Engineering, vol.9, pp.285-292, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02279281

M. Iasiello, S. Cunsolo, M. Oliviero, W. M. Harris, N. Bianco et al., Numerical Analysis of Heat Transfer and Pressure Drop in Metal Foams for Different Morphological Models, Journal of Heat Transfer, vol.136, p.112601, 2014.

A. Kopanidis, A. Theodorakakos, E. Gavaises, and D. Bouris, 3D numerical simulation of flow and conjugate heat transfer through a pore scale model of high porosity open cell metal foam, International Journal of Heat and Mass Transfer, vol.53, pp.2539-2550, 2010.

T. J. Lu, H. A. Stone, and M. F. Ashby, Heat transfer in open-cell metal foams, Acta Materialia, vol.46, pp.3619-3635, 1998.

P. Kumar and F. Topin, Simultaneous determination of intrinsic solid phase conductivity and effective thermal conductivity of Kelvin like foams, Applied Thermal Engineering, vol.71, pp.536-547, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01459316

E. Fleming, S. Wen, L. Shi, and A. K. Da-silva, Experimental and theoretical analysis of an aluminum foam enhanced phase change thermal storage unit, International Journal of Heat and Mass Transfer, vol.82, pp.273-281, 2015.

S. Krishnan, S. V. Garimella, and J. Y. Murthy, Simulation of thermal transport in open-cell metal foams: Effect of periodic unit-cell structure, Journal of Heat Transfer, p.130, 2008.

X. Hu and S. S. Patnaik, Modeling phase change material in micro-foam under constant temperature condition, International Journal of Heat and Mass Transfer, vol.68, pp.677-682, 2014.

Y. Tian and C. Y. Zhao, A numerical investigation of heat transfer in phase change materials (PCMs) embedded in porous metals, Energy, vol.36, pp.5539-5546, 2011.

W. Lu, C. Y. Zhao, and S. A. Tassou, Thermal analysis on metal-foam filled heat exchangers. Part I: Metal-foam filled pipes, International Journal of Heat and Mass Transfer, vol.49, pp.2751-2761, 2006.

L. A. Caffarelli and L. C. Evans, Continuity of the temperature in the two-phase Stefan problem, Archive for Rational Mechanics and Analysis, vol.81, pp.199-220, 1983.

V. , Mathematical Modeling Of Melting And Freezing Processes, 1992.

G. W. Evans, A. Note, . The, . Of-a-solution, . To et al., Quarterly of Applied Mathematics, vol.9, pp.185-193, 1951.

J. Douglas, A uniqueness theorem for the solution of a stefan problem, Proceedings of the American Mathematical Society, vol.8, pp.402-408, 1957.

Y. Dutil, D. R. Rousse, N. Ben, S. Salah, L. Lassue et al., A review on phase-change materials: Mathematical modeling and simulations, vol.15, pp.112-130, 2011.

V. R. Voller and C. Prakash, A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems, International Journal of Heat and Mass Transfer, vol.30, pp.1709-1719, 1987.

A. Sharma, V. V. Tyagi, C. R. Chen, and D. Buddhi, Review on thermal energy storage with phase change materials and applications, Renewable and Sustainable Energy Reviews, vol.13, pp.318-345, 2009.

C. R. Swaminathan and V. R. Voller, On the enthalpy method, International Journal of Numerical Methods for Heat & Fluid Flow, vol.3, pp.233-244, 1993.

G. Worster, Mathematical Modeling of Melting and Freezing Processes. By V. Alexiades and

. Francis, Journal of Fluid Mechanics, vol.323, issue.35, pp.719-720, 1993.

Z. Jie, Z. Dongqi, W. Pengwei, W. Gang, L. Feng et al., Numerical Simulation Research of Investment Casting for TiB2/A356 Aluminum Base Composite, Rare Metal Materials and Engineering, vol.43, pp.47-51, 2014.

Y. Liu, Manufacture and mechanical properties of alumium foams and metal porous polymeric composites, 2007.

E. Lacoste, O. Mantaux, and M. Danis, Numerical simulation of metal matrix composites and polymer matrix composites processing by infiltration: a review, Composites Part A: Applied Science and Manufacturing, vol.33, pp.1605-1614, 2002.

V. J. Michaud, L. M. Compton, and A. Mortensen, Capillarity in isothermal infiltration of alumina fiber preforms with aluminum, Metallurgical and Materials Transactions A, vol.25, pp.2145-2152, 1994.

A. Mortensen and T. Wong, Infiltration of fibrous preforms by a pure metal: Part III. capillary phenomena, Metallurgical Transactions A, vol.21, pp.2257-2263, 1990.

A. Mortensen, L. J. Masur, J. A. Cornie, and M. C. Flemings, Infiltration of fibrous preforms by a pure metal: Part I. Theory, Metallurgical Transactions A, vol.20, pp.2535-2547, 1989.

L. J. Masur, A. Mortensen, J. A. Cornie, and M. C. Flemings, Infiltration of fibrous preforms by a pure metal: Part II. Experiment, Metallurgical Transactions A, vol.20, pp.2549-2557, 1989.

C. Garcia-cordovilla, E. Louis, and J. Narciso, Pressure infiltration of packed ceramic particulates by liquid metals, Acta Materialia, vol.47, pp.4461-4479, 1999.

J. Goicoechea, C. Garcia-cordovilla, E. Louis, and A. Pamies, Surface tension of binary and ternary aluminium alloys of the systems Al-Si-Mg and Al-Zn-Mg, Journal of Materials Science, vol.27, pp.5247-5252, 1992.

K. Berchem, U. Mohr, and W. Bleck, Controlling the degree of pore opening of metal sponges, prepared by the infiltration preparation method, Materials Science and Engineering: A, vol.323, pp.52-57, 2002.

J. M. Molina, E. Piñero, J. Narciso, C. García-cordovilla, and E. Louis, Liquid metal infiltration into ceramic particle preforms with bimodal size distributions, Current Opinion in Solid State and Materials Science, vol.9, pp.202-210, 2005.

T. Dopler, A. Modaressi, and V. Michaud, Simulation of metal-matrix composite isothermal infiltration processing, Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, vol.31, pp.225-234, 2000.

S. Y. He, Metallci foam and metal porou polymer composite (MPPC): manufacture and mechanical behavior, 2004.

H. Chattopadhyay, Simulation of transport processes in squeeze casting, Journal of Materials Processing Technology, vol.186, pp.174-178, 2007.

Z. Sun, H. Hu, X. Chen, Q. Wang, and W. Yang, Gating system design for a magnesium alloy casting, Journal of Materials Science & Technology, vol.24, pp.93-95, 2008.

S. Hong and D. R. Herling, Open-cell aluminum foams filled with phase change materials as compact heat sinks, Scripta Materialia, vol.55, pp.887-890, 2006.

B. He and F. Setterwall, Technical grade paraffin waxes as phase change materials for cool thermal storage and cool storage systems capital cost estimation, Energy Conversion and Management, vol.43, pp.1709-1723, 2002.

T. Kousksou, A. Jamil, T. E. Rhafiki, and Y. Zeraouli, Paraffin wax mixtures as phase change materials, Solar Energy Materials and Solar Cells, vol.94, pp.2158-2165, 2010.

H. Inaba and P. Tu, Evaluation of thermophysical characteristics on shape-stabilized paraffin as a solid-liquid phase change material, vol.32, pp.307-312, 1997.

N. Ukrainczyk, S. Kurajica, and J. ?ipu?i?, Thermophysical Comparison of Five Commercial Paraffin Waxes as Latent Heat Storage Materials, Chemical and biochemical engineering quarterly, vol.24, pp.129-137, 2010.

T. Kousksou, M. Mahdaoui, A. Ahmed, and A. A. Msaad, Melting over a wavy surface in a rectangular cavity heated from below, vol.64, pp.212-219, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02153525

L. A. Diaz and R. Viskanta, Visualization of the solid-liquid interface morphology formed by natural convection during melting of a solid from below, International Communications in Heat and Mass Transfer, vol.11, pp.35-43, 1984.

C. Beckermann and R. Viskanta, Natural convection solid/liquid phase change in porous media, International Journal of Heat and Mass Transfer, vol.31, pp.35-46, 1988.

B. Kamkari, H. Shokouhmand, and F. Bruno, Experimental investigation of the effect of inclination angle on convection-driven melting of phase change material in a rectangular enclosure, International Journal of Heat and Mass Transfer, vol.72, pp.186-200, 2014.

M. Sedeh and J. M. Khodadadi, Thermal conductivity improvement of phase change materials/graphite foam composites, Carbon, pp.117-128, 2013.

J. W. Paek, B. H. Kang, S. Y. Kim, and J. M. Hyun, Effective thermal conductivity and permeability of aluminum foam materials, International Journal of Thermophysics, vol.21, pp.453-464, 2000.

W. Q. Li, Z. G. Qu, B. L. Zhang, K. Zhao, and W. Q. Tao, Thermal behavior of porous stainless-steel fiber felt saturated with phase change material, vol.55, pp.846-852, 2013.

J. Yang, L. Yang, C. Xu, and X. Du, Experimental study on enhancement of thermal energy storage with phase-change material, Applied Energy, vol.169, pp.164-176, 2016.

M. Alipanah and X. Li, Numerical studies of lithium-ion battery thermal management systems using phase change materials and metal foams, International Journal of Heat and Mass Transfer, vol.102, pp.1159-1168, 2016.

W. Q. Li, Z. G. Qu, Y. L. He, and W. Q. Tao, Experimental and numerical studies on melting phase change heat transfer in open-cell metallic foams filled with paraffin, Applied Thermal Engineering, vol.37, pp.1-9, 2012.

J. W. Paek, B. H. Kang, S. Y. Kim, and J. M. Hyun, Effective Thermal Conductivity and Permeability of Aluminum Foam Materials1, International Journal of Thermophysics, vol.21, pp.453-464, 2000.

E. Solórzano, J. Reglero, M. Rodríguez-pérez, D. Lehmhus, M. Wichmann et al., An experimental study on the thermal conductivity of aluminium foams by using the transient plane source method, International Journal of Heat and Mass Transfer, vol.51, pp.6259-6267, 2008.

J. F. Despois and A. Mortensen, Permeability of open-pore microcellular materials, Acta Materialia, vol.53, pp.1381-1388, 2005.

F. Kuwahara, M. Shirota, and A. Nakayama, A numerical study of interfacial convective heat transfer coefficient in two-energy equation model for convection in porous media, International Journal of Heat and Mass Transfer, vol.44, pp.1153-1159, 2001.

P. S. Liu, A new method for calculating the specific surface area of porous metal foams, Philosophical Magazine Letters, vol.90, pp.447-453, 2010.

X. Xiao, P. Zhang, and M. Li, Preparation and thermal characterization of paraffin/metal foam composite phase change material, Applied Energy, vol.112, pp.1357-1366, 2013.

A. Atal, Y. Wang, M. Harsha, and S. Sengupta, Effect of porosity of conducting matrix on a phase change energy storage device, International Journal of Heat and Mass Transfer, vol.93, pp.9-16, 2016.

H. Shmueli, G. Ziskind, and R. Letan, Melting in a vertical cylindrical tube: Numerical investigation and comparison with experiments, International Journal of Heat and Mass Transfer, vol.53, pp.4082-4091, 2010.

N. Wakao, S. Kaguei, and T. Funazkri, Effect of fluid dispersion coefficients on particle-to-fluid heat transfer coefficients in packed beds: Correlation of nusselt numbers, Chemical Engineering Science, vol.34, pp.325-336, 1979.

A. A. Zukauskas, Heat Transfer from Tubes in Cross Flow, 1972.

N. Dukhan and P. Patel, Equivalent particle diameter and length scale for pressure drop in porous metals, Experimental Thermal and Fluid Science, vol.32, pp.1059-1067, 2008.

S. Wei and C. Ming-hsiung, Steady-state natural convection with phase change, International Journal of Heat and Mass Transfer, pp.2545-2563, 1990.

B. Binet and M. Lacroix, Numerical study of natural-convection-dominated melting inside uniformly and discretely heated rectangular cavities, Numerical Heat Transfer

, Part A: Applications, vol.33, pp.207-224, 1998.

P. Jany and A. Bejan, Scaling theory of melting with natural convection in an enclosure, International Journal of Heat and Mass Transfer, vol.31, pp.1221-1235, 1988.

C. Barat and J. P. Garandet, The effect of natural convection in liquid phase mass transport coefficient measurements: the case of thermosolutal convection, International Journal of Heat and Mass Transfer, vol.39, pp.2177-2182, 1996.

J. C. Choi, S. Kim, and G. Y. Han, Heat transfer characteristics in low-temperature latent heat storage systems using salt-hydrates at heat recovery stage, Solar Energy Materials and Solar Cells, vol.40, pp.71-87, 1996.

A. Najafian, F. Haghighat, and A. Moreau, Integration of PCM in domestic hot water tanks: Optimization for shifting peak demand, Energy and Buildings, vol.106, pp.59-64, 2015.

F. Zhu, C. Zhang, and X. Gong, Numerical analysis and comparison of the thermal performance enhancement methods for metal foam/phase change material composite, Applied Thermal Engineering, vol.109, pp.373-383, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02279698

C. Li and G. Peterson, Experimental study of enhanced nucleate boiling heat transfer on uniform and modulated porous structures, Frontiers in Heat and Mass Transfer (FHMT), p.1, 2010.

C. H. Li, T. Li, P. Hodgins, C. N. Hunter, A. A. Voevodin et al., Comparison study of liquid replenishing impacts on critical heat flux and heat transfer coefficient of nucleate pool boiling on multiscale modulated porous structures, International Journal of Heat and Mass Transfer, vol.54, pp.3146-3155, 2011.

R. Stamp, P. Fox, W. O'neill, E. Jones, and C. Sutcliffe, The development of a scanning strategy for the manufacture of porous biomaterials by selective laser melting, Journal of Materials Science: Materials in Medicine, vol.20, p.1839, 2009.

J. Gardan, Additive manufacturing technologies: state of the art and trends, International Journal of Production Research, vol.54, pp.3118-3132, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02276028

C. Hutter, D. Büchi, V. Zuber, and P. Rudolf-von-rohr, Heat transfer in metal foams and designed porous media, Chemical Engineering Science, vol.66, pp.3806-3814, 2011.

A. Inayat, J. Schwerdtfeger, H. Freund, C. Körner, R. F. Singer et al., Periodic open-cell foams: Pressure drop measurements and modeling of an ideal tetrakaidecahedra packing, Chemical Engineering Science, vol.66, pp.2758-2763, 2011.

D. A. Hollander, M. Walter, T. Wirtz, R. Sellei, B. Schmidt-rohlfing et al., Structural, mechanical and in vitro characterization of individually structured Ti-6Al-4V produced by direct laser forming, Biomaterials, vol.27, pp.955-963, 2006.

K. Maeda and T. H. Childs, Laser sintering (SLS) of hard metal powders for abrasion resistant coatings, Journal of Materials Processing Technology, vol.149, pp.609-615, 2004.

S. Jegadheeswaran and S. D. Pohekar, Performance enhancement in latent heat thermal storage system: A review, Renewable & Sustainable Energy Reviews, vol.13, pp.2225-2244, 2009.

S. Feng, M. Shi, Y. Li, and T. J. Lu, Pore-scale and volume-averaged numerical simulations of melting phase change heat transfer in finned metal foam, International Journal of Heat and Mass Transfer, vol.90, pp.838-847, 2015.

Z. Chen, D. Gao, and J. Shi, Experimental and numerical study on melting of phase change materials in metal foams at pore scale, International Journal of Heat and Mass Transfer, vol.72, pp.646-655, 2014.