B. D. Fernandes, N. Vilar-vidal, H. Baida, P. Massé, J. Oberlé et al., Acoustic Vibrations of Core-Shell Nanospheres: Probing the Mechanical Contact at the Metal-Dielectric Interface, J. Phys. Chem. C, issue.16, pp.9127-9133, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01811071

,

D. B. Murray and L. Saviot, Phonons in an Inhomogeneous Continuum: Vibrations of an Embedded Nanoparticle, Phys. Rev. B -Condens. Matter Mater. Phys, vol.69, issue.9, pp.1-9, 2004.

H. Portales, L. Saviot, E. Duval, M. Gaudry, E. Cottancin et al., Resonant Raman Scattering by Quadrupolar Vibrations of Ni-Ag Core-Shell Nanoparticles, Phys. Rev. B, issue.16, pp.1-5, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00134663

,

E. M. Lee, A. J. Mork, A. P. Willard, and W. A. Tisdale, Including Surface Ligand Effects in Continuum Elastic Models of Nanocrystal Vibrations, J. Chem. Phys, vol.2017, issue.147, p.44711

A. Crut, P. Maioli, N. Fatti, and . Del,

F. Vallée and F. Parmigiani, Acoustic Vibrations of Metal Nano-Objects: Time-Domain Investigations, Phys. Rep, vol.549, pp.1-43, 2015.

B. W. Goodfellow, Y. Yu, C. A. Bosoy, D. M. Smilgies, and B. A. Korgel, The Role of Ligand Packing Frustration in Body-Centered Cubic (Bcc) Superlattices of Colloidal Nanocrystals, J. Phys. Chem. Lett, vol.6, issue.13, pp.2406-2412, 2015.

,

A. R. Selfridge, Approximate Material Properties in Isotropic Materials, IEEE Trans. Sonics Ultrason, vol.32, issue.3, pp.381-394, 1985.

F. W. Delrio, C. Jaye, D. A. Fischer, and R. F. Cook, Elastic and Adhesive Properties of Alkanethiol Self-Assembled Monolayers on Gold, Appl. Phys. Lett, issue.13, p.131909, 2009.

A. J. Mork, E. M. Lee, and W. A. Tisdale, Temperature Dependence of Acoustic Vibrations of CdSe and CdSe-CdS Core-Shell Nanocrystals Measured by Low-Frequency Raman Spectroscopy, Phys Chem Chem Phys, vol.18, issue.41, pp.28797-28801, 2016.

E. Alonso-redondo, M. Schmitt, Z. Urbach, C. M. Hui, R. Sainidou et al., A New Class of Tunable Hypersonic Phononic Crystals Based on Polymer-Tethered Colloids, Nat. Commun, vol.6, issue.1, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01938757

G. Huang and J. Liu, Effect of Surface Stress and Surface Mass on Elastic Vibrations of Nanoparticles, Acta Mech, vol.224, issue.5, pp.985-994, 2013.

,

A. Girard, L. Saviot, S. Pedetti, M. D. Tessier, J. Margueritat et al., The Mass Load Effect on the Resonant Acoustic Frequencies of Colloidal Semiconductor Nanoplatelets, Nanoscale, vol.8, issue.27, pp.13251-13256, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02108380

, Quentin Martinet, vol.106

, Thèse en physique, 2019.

. Bibliographie,

G. Bachelier, J. Margueritat, A. Mlayah, J. Gonzalo, and C. N. Afonso, Size Dispersion Effects on the Low-Frequency Raman Scattering of Quasispherical Silver Nanoparticles: Experiment and Theory, Phys. Rev. B, issue.23, p.235419, 2007.
URL : https://hal.archives-ouvertes.fr/hal-02108455

H. Portales, L. Saviot, E. Duval, M. Fujii, S. Hayashi et al.,

F. Vallée and F. Vallé, Resonant Raman Scattering by Breathing Modes of Metal Nanoparticles, J. Chem. Phys, vol.115, issue.8, pp.3444-3447, 2001.

K. A. Bosnick, T. L. Haslett, S. Fedrigo, M. Moskovits, W. Chan et al., Tricapped Tetrahedral Ag7: A Structural Determination by Resonance Rama n Spectroscopy and Density Functional Theory, J. Chem. Phys, vol.111, issue.19, pp.8867-8870, 1999.

J. W. Van-der-velden, J. J. Bour, J. J. Steggerda, P. T. Beurskens, M. Roseboom et al., Tetrakis[1,3-Bis(Diphenylphosphino)Propane]Hexagold Dinitrate: Preparation, x-Ray Analysis, and Gold-197 Moessbauer and Phosphorus-31{proton} NMR Spectra, Inorg. Chem, vol.21, issue.12, pp.4321-4324, 1982.

F. Wen, U. Englert, B. Gutrath, U. Simon, and . Structure, Electrochemical and Optical Properties of, Eur. J. Inorg. Chem, issue.1, pp.106-111, 2008.

F. Bertorelle, I. Russier-antoine, C. Comby-zerbino, F. Chirot, P. Dugourd et al., Isomeric Effect of Mercaptobenzoic Acids on the Synthesis , Stability , and Optical Properties of Au 25 ( MBA ) 18 Nanoclusters, ACS Omega, vol.3, issue.11, pp.15635-15642, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02108463

S. Malola, L. Lehtovaara, J. Enkovaara, and H. Häkkinen, Birth of the Localized Surface Plasmon Resonance in Monolayer-Protected Gold Nanoclusters, ACS Nano, vol.7, issue.11, pp.10263-10270, 2013.

A. Campos, N. Troc, E. Cottancin, M. Pellarin, H. Weissker et al., Plasmonic Quantum Size Effects in Silver Nanoparticles Are Dominated by Interfaces and Local Environments, Nat. Phys, vol.2019, issue.3, pp.275-280
URL : https://hal.archives-ouvertes.fr/hal-02003839

R. Jin, Atomically Precise Metal Nanoclusters: Stable Sizes and Optical Properties, Nanoscale, vol.7, issue.5, pp.1549-1565, 2015.

Y. Shichibu and K. Konishi, Electronic Properties of [Core+ Exo ]-Type Gold Clusters: Factors Affecting the Unique Optical Transitions, Inorg. Chem, vol.52, issue.11, pp.6570-6575, 2013.

H. R. Jaw and W. R. Mason, Magnetic Circular Dichroism Spectra for the Au9(PPh3)83+ Ion, Inorg. Chem, vol.30, issue.2, pp.275-278, 1991.

,

, Chapitre 3 : Modes vibrationnels d'agrégats d'or synthétisés par voie chimique Quentin Martinet 107

, Thèse en physique, 2019.

M. W. Heaven, A. Dass, P. S. White, K. M. Holt, and R. W. Murray,

, J. Am. Chem. Soc, vol.130, issue.12, pp.3754-3755, 2008.

O. Varnavski, G. Ramakrishna, J. Kim, D. Lee, and T. Goodson, Optically Excited Acoustic Vibrations in Quantum-Sized Monolayer-Protected Gold Clusters, ACS Nano, vol.2010, issue.6, pp.3406-3412

V. Juvé, A. Crut, P. Maioli, M. Pellarin, M. Broyer et al., Probing Elasticity at the Nanoscale: Terahertz Acoustic Vibration of Small Metal Nanoparticles, Nano Lett, vol.2010, issue.5, pp.1853-1858

P. Maioli, T. Stoll, H. E. Sauceda, I. Valencia, A. Demessence et al., Mechanical Vibrations of Atomically Defined Metal Clusters: From Nano-to Molecular-Size Oscillators, Nano Lett, vol.18, issue.11, pp.6842-6849, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01948506

S. J. Spells and I. W. Shepherd, Low Frequency Raman Modes in Solid Amorphous Polystyrene and Polymethyl Methacrylate, J. Chem. Phys, vol.1977, issue.4, pp.1427-1433

F. Viras and T. A. King, The Universality of Low Frequency Raman Scattering from Amorphous Solids, J. Non-Cryst. Solids, vol.119, issue.1, pp.65-74, 1990.

,

J. R. Neighbours and G. A. Alers, Elastic Constants of Silver and Gold, Phys. Rev, vol.111, issue.3, pp.707-712, 1958.

J. F. Alvino, T. Bennett, D. Anderson, B. Donoeva, D. Ovoshchnikov et al., Far-Infrared Absorption Spectra of Synthetically-Prepared, Ligated Metal Clusters with Au6, Au8, Au9 and Au6Pd Metal Cores, RSC Adv, vol.2013, issue.3, p.22140

A. Tlahuice-flores, R. L. Whetten, and M. Jose-yacaman, Vibrational Normal Modes of Small Thiolate-Protected Gold Clusters, J. Phys. Chem. C, vol.2013, issue.23, pp.12191-12198

J. Jortner, Cluster Size Effects, Z. Für Phys. At. Mol. Clust, vol.24, issue.3, pp.247-275, 1992.

H. E. Sauceda, D. Mongin, P. Maioli, A. Crut, M. Pellarin et al., Vibrational Properties of Metal Nanoparticles: Atomistic Simulation and Comparison with Time-Resolved Investigation, J. Phys. Chem. C, vol.2012, issue.47, pp.25147-25156
URL : https://hal.archives-ouvertes.fr/hal-00761325

P. Ruijgrok, P. V;-zijlstra, A. L. Tchebotareva, and M. Orrit, Damping of Acoustic Vibrations of Single Gold Nanoparticles Optically Trapped in Water, Nano Lett, vol.2012, issue.2, pp.1063-1069

M. A. Van-dijk, M. Lippitz, and M. Orrit, Detection of Acoustic Oscillations of Single Gold Nanospheres by Time-Resolved Interferometry, Phys. Rev. Lett, issue.26, p.95, 2005.

,

, Chapitre 3 : Modes vibrationnels d'agrégats d'or synthétisés par voie chimique Quentin Martinet 108

, Thèse en physique, 2019.

S. A. Miller, J. M. Womick, J. F. Parker, R. W. Murray, and A. M. Moran, Femto second Relaxation Dynamics of Au 25L 18-Monolayer-Protected Clusters, J. Phys. Chem. C, issue.22, pp.9440-9444, 2009.

A. Girard, L. Saviot, S. Pedetti, M. D. Tessier, J. Margueritat et al., The Mass Load Effect on the Resonant Acoustic Frequencies of Colloidal Semiconductor Nanoplatelets, Nanoscale, vol.8, issue.27, pp.13251-13256, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02108380

E. M. Lee, A. J. Mork, A. P. Willard, and W. A. Tisdale, Including Surface Ligand Effects in Continuum Elastic Models of Nanocrystal Vibrations, J. Chem. Phys, vol.2017, issue.4

H. Yu, D. Liu, Z. Dang, D. Wang, and Y. Fu, Accurate Prediction of Au-P Bond Strengths by Density Functional Theory Methods, Chin. J. Chem, vol.2013, issue.2, pp.200-208

Y. Luo, Comprehensive Handbook of Chemical Bond Energies, 2007.

I. León, Z. Yang, and L. S. Wang, High Resolution Photoelectron Imaging of Au2, J. Chem. Phys, vol.2013, issue.18, p.138

Z. Yang, I. Leon, and L. S. Wang, Communication: Vibrational Spectroscopy of Au4 from High Resolution Photoelectron Imaging, J. Chem. Phys, vol.2013, issue.2, p.139

R. C. Salvarezza and P. Carro, The Electrochemical Stability of Thiols on Gold Surfaces, J. Electroanal. Chem, vol.819, pp.234-239, 2018.

,

A. Crut, P. Maioli, N. Fattia, and . Del,

F. Vallée, Anisotropy Effects on the Time-Resolved Spectroscopy of the Acoustic Vibrations of Nanoobjects, Phys. Chem. Chem. Phys, issue.11, pp.5882-5888, 2009.

A. S. Pine and P. E. Tannenwald, Temperature Dependence of Raman Linewidth and Shift in ? -Quartz, Phys. Rev, vol.178, issue.3, pp.1424-1430, 1969.

,

, Chapitre 3 : Modes vibrationnels d'agrégats d'or synthétisés par voie chimique Quentin Martinet 109

, Thèse en physique, 2019.

, Quentin Martinet, vol.145

, Thèse en physique, 2019.

. Bibliographie,

S. Weiner and H. D. Wagner, THE MATERIAL BONE: Structure-Mechanical Function Relations, Annu. Rev. Mater. Sci, vol.28, issue.1, pp.271-298, 1998.

,

G. Bao and S. Suresh, Cell and Molecular Mechanics of Biological Materials, Nat. Mater, vol.2, issue.11, pp.715-725, 2003.

M. R. Mofrad and R. D. Kamm, Cytoskeletal Mechanics: Models and Measurements in Cell Mechanics

L. Ng, H. Hung, A. Sprunt, S. Chubinskaya, C. Ortiz et al., Nanomechanical Properties of Individual Chondrocytes and Their Developing Growth Factor -Stimulated Pericellular Matrix, J. Biomech, vol.40, issue.5, pp.1011-1023, 2007.

,

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky et al., Noncontact Three-Dimensional Mapping of Intracellular Hydromechanical Properties by Brillouin Microscopy, Nat. Methods, vol.12, issue.12, pp.1132-1134, 2015.

K. Elsayad, S. Werner, M. Gallemi, J. Kong, E. R. Sanchez-guajardo et al., Mapping the Subcellular Mechanical Properties of Live Cells in Tissues with Fluorescence Emission-Brillouin Imaging, Sci. Signal, vol.2016, issue.435, pp.5-5

F. Scarponi, S. Mattana, S. Corezzi, S. Caponi, L. Comez et al., High-Performance Versatile Setup for Simultaneous Brillouin-Raman Microspectroscopy, Phys. Rev. X, vol.2017, issue.3, p.31015

M. Nikoli? and G. Scarcelli, Long-Term Brillouin Imaging of Live Cells with Reduced Absorption-Mediated Damage at 660nm Wavelength, Biomed. Opt. Express, vol.2019, issue.4

R. Mercatelli, S. Mattana, L. Capozzoli, F. Ratto, F. Rossi et al., Morpho-Mechanics of Human Collagen Superstructures Revealed by All-Optical Correlative Micro-Spectroscopies, Commun. Biol, vol.2019, issue.1

J. Margueritat, A. Virgone-carlotta, S. Monnier, H. Delanoë-ayari, H. C. Mertani et al., High-Frequency Mechanical Properties of Tumors Measured by Brillouin Light Scattering, Phys. Rev. Lett, vol.2019, issue.1, p.18101
URL : https://hal.archives-ouvertes.fr/hal-02107154

P. Wu, I. V. Kabakova, J. W. Ruberti, J. M. Sherwood, I. E. Dunlop et al., Water Content, Not Stiffness, Dominates Brillouin Spectroscopy Measurements in Hydrated Materials, Nat. Methods, vol.15, issue.8, pp.561-562, 2018.

, Spectroscopie inélastique en milieu liquide et systèmes biologiques : du sphéroïde de cellules tumorales au virus, vol.4

, Quentin Martinet, vol.146

, Thèse en physique, 2019.

G. Scarcelli and S. H. Yun, Reply to 'Water Content, Not Stiffness, Dominates Brillouin Spectroscopy Measurements in Hydrated Materials, Nat. Methods, vol.15, issue.8, pp.562-563, 2018.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych et al., Imaging Intracellular Fluorescent Proteins at Nanometer Resolution, Science, issue.5793, pp.1642-1645, 2006.

S. Mattana, M. Mattarelli, L. Urbanelli, K. Sagini, C. Emiliani et al., Non-Contact Mechanical and Chemical Analysis of Single Living Cells by Microspectroscopic Techniques, Light Sci. Appl, vol.7, issue.2, p.17139, 2018.

D. T. Butcher, T. Alliston, and V. M. Weaver, A Tense Situation: Forcing Tumour Progression, Nat. Rev. Cancer, vol.9, issue.2, pp.108-122, 2009.

M. Shirasaki, Virtually Imaged Phased Array, Fujitsu Sci. Tech. J, 1999.

L. Inc and O. O. , Colonnade Road North. Introduction to the Operating Principles of the HyperFinespectrometer, p.80

G. Scarcelli and S. H. Yun, Multistage VIPA Etalons for High-Extinction Parallel Brillouin Spectroscopy, Opt. Express, vol.19, issue.11, p.10913, 2011.

S. Wäldchen, J. Lehmann, T. Klein, S. Van-de-linde, and M. Sauer, Light-Induced Cell Damage in Live-Cell Super-Resolution Microscopy, Sci. Rep, vol.5, issue.1, p.15348, 2015.

V. Magidson and A. Khodjakov, Circumventing Photodamage in Live-Cell Microscopy, In Methods in Cell Biology, 2013.

S. Mattana, S. Caponi, F. Tamagnini, D. Fioretto, and F. Palombo, Viscoelasticity of Amyloid Plaques in Transgenic Mouse Brain Studied by Brillouin Microspectroscopy and Correlative Raman Analysis, J. Innov. Opt. Health Sci, 2017.

J. P. Munch, S. Candau, R. Duplessix, C. Picot, J. Herz et al., J Polym Sci Part -2 Polym Phys, 1976.

K. Alessandri, B. R. Sarangi, V. V. Gurchenkov, B. Sinha, T. R. Kiessling et al., Cellular Capsules as a Tool for Multicellular Spheroid Production and for Investigating the Mechanics of Tumor Progression in Vitro, Proc. Natl. Acad. Sci. 2013
URL : https://hal.archives-ouvertes.fr/inserm-01356886

B. S. Winters, S. R. Shepard, and R. A. Foty, Biophysical Measurement of Brain Tumor Cohesion, Int. J. Cancer, 2005.

J. K. Krüger, J. Embs, J. Brierley, and R. Jiménez, A New Brillouin Scattering Technique for the Investigation of Acoustic and Opto-Acoustic Properties: Application to Polymers, J. Phys. Appl. Phys, issue.15, pp.1913-1917, 1998.

, Thèse en physique, 2019.

P. G. De-gennes, M. Papoular, and . Polarisation, , pp.243-258, 1969.

J. Witz and F. Brown, Structural Dynamics, an Intrinsic Property of Viral Capsids. Archives of Virology, 2001.

S. Sirotkin, Low Frequency Modes from Small Nanoparticles ( Metal Nanocrystals ) to Large Nanospheres ( Viruses ) : An Inelastic Light Scattering Study, 2010.
URL : https://hal.archives-ouvertes.fr/tel-00573738

B. Stephanidis, S. Adichtchev, P. Gouet, A. Mcpherson, and A. Mermet, Elastic Properties of Viruses, Biophys. J, vol.93, issue.4, pp.1354-1359, 2007.

,

A. Girard, H. Gehan, A. Mermet, C. Bonnet, J. Lermé et al., Acoustic Mode Hybridization in a Single Dimer of Gold Nanoparticles, Nano Lett, vol.18, issue.6, pp.3800-3806, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02107164

,

A. Girard, H. Gehan, A. Crut, A. Mermet, L. Saviot et al., Mechanical Coupling in Gold Nanoparticles Supermolecules Revealed by Plasmon-Enhanced Ultralow Frequency Raman Spectroscopy, Nano Lett, issue.6, pp.3843-3849, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01320916

,

K. T. Tsen, E. C. Dykeman, O. F. Sankey, N. T. Lin, S. W. Tsen et al., Observation of the Low Frequency Vibrational Modes of Bacteriophage M13 in Water by Raman Spectroscopy, Virol. J, 2006.

S. Sirotkin, . Mermet, M. Bergoin, V. Ward, J. L. Etten et al., Viruses as Nanoparticles : Structure versus Collective Dynamics, pp.1-7, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02309416

T. Still, M. Mattarelli, D. Kiefer, G. Fytas, and M. Montagna, Eigenvibrations of Submicrometer Colloidal Spheres, J. Phys. Chem. Lett, vol.2010, issue.16, pp.2440-2444

M. Montagna, Brillouin and Raman Scattering from the Acoustic Vibrations of Spherical Particles with a Size Comparable to the Wavelength of the Light, Phys. Rev. B -Condens. Matter Mater. Phys, 2008.

M. Pelton, D. Chakraborty, E. Malachosky, P. Guyot-sionnest, and J. E. Sader, Viscoelastic Flows in Simple Liquids Generated by Vibrating Nanostructures, Phys. Rev. Lett, 2013.

D. Chakraborty, G. V. Hartland, M. Pelton, and J. E. Sader, When Can the Elastic Properties of Simple Liquids Be Probed Using High-Frequency Nanoparticle Vibrations?, J. Phys. Chem. C, 2018.

P. Ruijgrok, P. V;-zijlstra, A. L. Tchebotareva, and M. Orrit, Damping of Acoustic Vibrations of Single Gold Nanoparticles Optically Trapped in Water, Nano Lett, vol.2012, issue.2, pp.1063-1069

K. Yu, P. Zijlstra, J. E. Sader, Q. H. Xu, and M. Orrit, Damping of Acoustic Vibrations of Immobilized Single Gold Nanorods in Different Environments, Nano Lett, 2013.

, Spectroscopie inélastique en milieu liquide et systèmes biologiques : du sphéroïde de cellules tumorales au virus, vol.4

, Quentin Martinet, vol.148

, Thèse en physique, 2019.

L. Saviot, C. H. Netting, and D. B. Murray, Damping by Bulk and Shear Viscosity of Confined Acoustic Phonons for Nanostructures in Aqueous Solution, J. Phys. Chem. B, issue.25, pp.7457-7461, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00156851

D. B. Murray and L. Saviot, Phonons in an Inhomogeneous Continuum: Vibrations of an Embedded Nanoparticle, Phys. Rev. B, issue.9, p.94305, 2004.

L. Saviot and D. B. Murray, Long Lived Acoustic Vibrational Modes of an Embedded Nanoparticle, Phys. Rev. Lett, issue.5, p.55506, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00112258

P. L. Z.;-a, T. ;. C.;-m.,-g.;-m, and O. , Acoustic Oscillations and Elastic Moduli of Single Gold Nanorods, Nano Lett, 2008.

H. Staleva and G. V. Hartland, Vibrational Dynamics of Silver Nanocubes and Nanowires Studied by Single-Particle Transient Absorption Spectroscopy, Adv. Funct. Mater, 2008.

A. Girard, J. Lermé, H. Gehan, A. Mermet, C. Bonnet et al., Inelastic Light Scattering by Multiple Vibrational Modes in Individual Gold Nanodimers, J. Phys. Chem. C, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02361619

Y. Li, H. S. Lim, S. C. Ng, Z. K. Wang, M. H. Kuok et al., Micro-Brillouin Scattering from a Single Isolated Nanosphere, Appl. Phys. Lett, 2006.

Y. Li, H. S. Lim, Z. K. Wang, S. C. Ng, and M. H. Kuok, Micro-Brillouin Study of the Eigenvibrations of Single Isolated Polymer Nanospheres, J. Nanosci. Nanotechnol, 2008.

S. Wheaton, R. M. Gelfand, and R. Gordon, Probing the Raman-Active Acoustic Vibrations of Nanoparticles with Extraordinary Spectral Resolution, Nat. Photonics, vol.2015, issue.1, pp.68-72

J. Kepler, , 1619.

A. Vindelicorum,

L. Euler, Recherches Physiques Sur La Nature Des Moindres Parties de La Matiere. Opusc. Varii Argum, p.1746

E. F. Nichols and G. F. Hull, The Pressure Due to Radiation, Phys. Rev. Ser. I, 1903.

S. Gaugiran, Microparticles and Cells Manipulation on Optical Waveguides, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00959619

A. Ashkin, Acceleration and Trapping of Particles by Radiation Pressure, Phys. Rev. Lett, 1970.

A. Ashkin, J. M. Dziedzic, and S. Chu, Observation of a Single-Beam Gradient Force Optical Trap for Dielectric Particles, Opt. Lett, 1986.

, Spectroscopie inélastique en milieu liquide et systèmes biologiques : du sphéroïde de cellules tumorales au virus, vol.4

, Quentin Martinet, p.149

, Thèse en physique, 2019.

M. R. Pollard, S. W. Botchway, B. Chichkov, E. Freeman, R. N. Halsall et al., Optically Trapped Probes with Nanometer-Scale Tips for Femto-Newton Force Measurement, New J. Phys, 2010.

P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang et al., Optical Trapping and Integration of Semiconductor Nanowire Assemblies in Water, Nat. Mater, 2006.

P. J. Reece, S. Paiman, O. Abdul-nabi, Q. Gao, M. Gal et al., Combined Optical Trapping and Microphotoluminescence of Single InP Nanowires, Appl. Phys. Lett, 2009.

D. V. Petrov and . Raman, Spectroscopy of Optically Trapped Particles, J. Opt. Pure Appl. Opt, 2007.

K. Svoboda and S. M. Block, Optical Trapping of Metallic Rayleigh Particles, Opt. Lett, 1994.

Y. Tanaka, S. Kaneda, and K. Sasaki, Nanostructured Potential of Optical Trapping Using a Plasmonic Nanoblock Pair, Nano Lett, vol.2013, issue.5, pp.2146-2150

R. Quidant, Plasmonic Tweezers-The Strength of Surface Plasmons, MRS Bull, vol.2012, issue.08, pp.739-744

F. S. Hajizadeh and S. N. Reihani, Optimized Optical Trapping of Gold Nanoparticles, Opt. Express, 2010.

Y. Tsuboi, T. Shoji, N. Kitamura, M. Takase, K. Murakoshi et al., Optical Trapping of Quantum Dots Based on Gap-Mode-Excitation of Localized Surface Plasmon, J. Phys. Chem. Lett, vol.2010, issue.15, pp.2327-2333

,

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, Nanometric Optical Tweezers Based on Nanostructured Substrates, Nat. Photonics, vol.2, issue.6, pp.365-370, 2008.

A. Kotnala and R. Gordon, Quantification of High-Efficiency Trapping of Nanoparticles in a Double Nanohole Optical Tweezer, Nano Lett, vol.14, issue.2, pp.853-856, 2014.

Y. Lu, G. Du, F. Chen, Q. Yang, H. Bian et al., Tunable Potential Well for Plasmonic Trapping of Metallic Particles by Bowtie Nano-Apertures, pp.1-8, 2016.

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, Trapping and Rotating Nanoparticles Using a Plasmonic Nano-Tweezer with an Integrated Heat Sink, Nat. Commun, 2011.

H. A. Bethe, Theory of Diffraction by Small Holes, Phys. Rev, 1944.

, Spectroscopie inélastique en milieu liquide et systèmes biologiques : du sphéroïde de cellules tumorales au virus, vol.4

, Quentin Martinet, vol.150

, Thèse en physique, 2019.

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, Optical Transmission Properties of a Single Subwavelength Aperture in a Real Metal, Opt. Commun, 2004.

C. Genet and T. W. Ebbesen, Light in Tiny Holes, Nature, 2007.

Y. Huang and D. H. Kim, Dark-Field Microscopy Studies of Polarization-Dependent Plasmonic Resonance of Single Gold Nanorods: Rainbow Nanoparticles, Nanoscale, 2011.

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, Self-Induced Back-Action Optical Trapping of Dielectric Nanoparticles, Nat. Phys, vol.5, issue.12, pp.915-919, 2009.

R. D. Hartschuh, S. P. Wargacki, H. Xiong, J. Neiswinger, A. Kisliuk et al., How Rigid Are Viruses, Phys. Rev. E -Stat. Nonlinear Soft Matter Phys, 2008.