R. Ross, Fu the otes o leish a 's odies, B Med J

U. Bari and U. , Chronology of cutaneous leishmaniasis: An overview of the history of the disease, J Pakist Assoc Dermatol, vol.16, pp.24-27, 2006.

D. D. Cunningham, On the presence of peculiar parasitic organisms in the tissue of a specimen of Delhi boil, Sci Mem Med Ic Army India, vol.1, pp.21-31, 1885.

W. B. Leishman, On the possibility of the occurrence of trypanosomiasis in India, Br Med J, vol.i, pp.1252-1256, 1903.

C. Donovan, The etiology of the heterogeneous fevers in India, Br Med J. ii, 1401.

. Who_trs_949_eng, , 2016.

. Oms-|-leishmaniose, , 2016.

M. Akhoundi, K. Kuhls, A. Cannet, J. Votýpka, P. Marty et al., A Historical Overview of the Classification, Evolution, and Dispersion of Leishmania Parasites and Sandflies, PLoS Negl Trop Dis, vol.10, issue.3, p.4349, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01947736

O. A. Espinosa, M. G. Serrano, E. P. Camargo, M. Teixeira, and J. J. Shaw, An appraisal of the taxonomy and nomenclature of trypanosomatids presently classified as Leishmania and Endotrypanum, Parasitology, pp.1-13, 2016.

J. Dedet, F. Pratlong, G. Lanotte, and C. Ravel, The parasite, Clin Dermatol, vol.17, issue.3, pp.261-269, 1999.
URL : https://hal.archives-ouvertes.fr/hal-01978074

C. Prevention, .. Dc, and . Cdc--leishmaniasis--biology, , 2016.

, WHO Weekly epidemiological record, vol.22, pp.285-296, 2016.

J. Alvar, I. D. Vélez, C. Bern, M. Herrero, P. Desjeux et al., Leishmaniasis Worldwide and Global Estimates of Its Incidence, PLoS ONE, vol.7, issue.5, 2012.

, Leishmaniasis_2013_VL.png (Image PNG, 3508 × 2477 pixels) -Redimensionnée (34%), 2016.

J. Gangneux, S. Belaz, and F. Robert-gangneux, Mise au point et actualités sur la leishmaniose viscérale méditerranéenne, J Anti-Infect, vol.17, issue.1, pp.25-33, 2015.

F. Pratlong, J. P. Dedet, P. Marty, M. Portús, M. Deniau et al., Leishmania-Human Immunodeficiency Virus Coinfection in the

, Characterization of 100 Isolates of the Leishmania infantum Complex, J Infect Dis, vol.172, issue.1, pp.323-329, 1995.

P. Marty, F. Pratlong, B. Marcelet, A. Adda, L. Fichoux et al., Leishmania infantum variant MON-isol, vol.1, issue.2, pp.175-181, 1994.

, Leishmaniasis_2013_CL.png (Image PNG, 3508 × 2477 pixels) -Redimensionnée (34%), 2016.

, Sacks DL. Leishmania-sand fly interactions controlling species-specific vector competence, Cell Microbiol, vol.3, issue.4, pp.189-96, 2001.

S. Kamhawi, M. Ramalho-ortigao, V. M. Pham, S. Kumar, P. G. Lawyer et al., A role for insect galectins in parasite survival, Cell, vol.119, issue.3, pp.329-370, 2004.

D. Sacks and S. Kamhawi, Molecular Aspects of Parasite-Vector and Vector-Host Interactions in Leishmaniasis, Annu Rev Microbiol, vol.55, issue.1, pp.453-83, 2001.

S. M. Gossage, M. E. Rogers, and P. A. Bates, Two separate growth phases during the development of Leishmania in sand flies: implications for understanding the life cycle, Int J Parasitol, vol.33, issue.10, pp.1027-1061, 2003.

N. C. Peters and D. L. Sacks, The impact of vector mediated neutrophil recruitment on cutaneous leishmaniasis, Cell Microbiol, vol.11, issue.9, pp.1290-1296, 2009.

F. Tacchini-cottier, C. Zweifel, Y. Belkaid, C. Mukankundiye, M. Vasei et al., An Immunomodulatory Function for Neutrophils During the Induction of a CD4+ Th2 Response in BALB/c Mice Infected with Leishmania major, J Immunol, vol.165, issue.5, pp.2628-2664, 2000.

F. Real, M. Pouchelet, and R. M. Leishmania, ) amazonensis: Fusion between parasitophorous vacuoles in infected bone-marrow derived mouse macrophages, Exp Parasitol, vol.119, issue.1, pp.15-23, 2008.

N. Courret, C. Fréhel, N. Gouhier, M. Pouchelet, E. Prina et al., Biogenesis of Leishmania-harbouring parasitophorous vacuoles following phagocytosis of the metacyclic promastigote or amastigote stages of the parasites, J Cell Sci, vol.115, pp.2303-2319, 2002.

M. Hartley, S. Drexler, C. Ronet, S. M. Beverley, and N. Fasel, The immunological, environmental, and phylogenetic perpetrators of metastatic leishmaniasis, Trends Parasitol, vol.30, issue.8, pp.412-434, 2014.

L. P. Carvalho, S. Passos, O. Bacellar, M. Lessa, R. P. Almeida et al., Differential immune regulation of activated T cells between cutaneous and mucosal leishmaniasis as a model for pathogenesis, Parasite Immunol, vol.29, issue.5, pp.251-259, 2007.

D. R. Faria, K. J. Gollob, J. Barbosa, A. Schriefer, P. Machado et al., Decreased In Situ Expression of Interleukin-10 Receptor Is Correlated with the Exacerbated Inflammatory and Cytotoxic Responses Observed in Mucosal Leishmaniasis, Infect Immun, vol.73, issue.12, pp.7853-7862, 2005.

C. Bogdan, A. Gessner, S. Werner, and R. Martin, Invasion, control and persistence of Leishmania parasites, Curr Opin Immunol, vol.8, issue.4, pp.517-542, 1996.

C. Bogdan, N. Donhauser, R. Döring, M. Röllinghoff, A. Diefenbach et al., Fibroblasts as host cells in latent leishmaniosis, J Exp Med, vol.191, issue.12, pp.2121-2151, 2000.

J. Gangneux, O. Lemenand, Y. Reinhard, C. Guiguen, C. Guguen-guillouzo et al., In Vitro and Ex Vivo Permissivity of Hepatocytes for Leishmania donovani, J Eukaryot Microbiol, vol.52, issue.6, pp.489-91, 2005.

M. Yebra, Disseminated-to-Skin Kala-azar and the Acquired Immunodeficiency Syndrome, Ann Intern Med, vol.108, issue.3, p.490, 1988.

P. Desjeux and J. Alvar, Leishmania/HIV co-infections: epidemiology in Europe, Ann Trop Med Parasitol, vol.97, issue.sup1, pp.3-15, 2003.

N. Carré, M. Collot, P. Guillard, M. Horellou, J. Gangneux et al., J Pharm Clin, vol.29, issue.3, pp.121-169, 2010.

S. Kausalya, N. Malla, N. K. Ganguly, and R. C. Mahajan, Leishmania donovani: In Vitro Evidence of Hepatocyte Damage by Kupffer Cells and Immigrant Macrophages in a Murine Model, Exp Parasitol, vol.77, issue.3, pp.326-359, 1993.

. Has, , 2017.

C. Riera, R. Fisa, P. Lopez, E. Ribera, J. Carrió et al., Evaluation of a latex agglutination test (KAtex) for detection of Leishmania antigen in urine of patients with HIV-Leishmania coinfection: value in diagnosis and post-treatment follow-up, Eur J Clin Microbiol Infect Dis Off Publ Eur Soc Clin Microbiol, vol.23, issue.12, pp.899-904, 2004.

M. R. Rodgers, S. J. Popper, and D. F. Wirth, Amplification of kinetoplast DNA as a tool in the detection and diagnosis of Leishmania, Exp Parasitol, vol.71, issue.3, pp.267-75, 1990.

J. Disch, M. J. Pedras, M. Orsini, C. Pirmez, M. C. De-oliveira et al., Leishmania (Viannia) subgenus kDNA amplification for the diagnosis of mucosal leishmaniasis, Diagn Microbiol Infect Dis, vol.51, issue.3, pp.185-90, 2005.

C. Mary, F. Faraut, L. Lascombe, and H. Dumon, Quantification of Leishmania infantum DNA by a Real-Time PCR Assay with High Sensitivity, J Clin Microbiol, vol.42, issue.11, pp.5249-55, 2004.

L. Lachaud, E. Chabbert, P. Dubessay, J. Reynes, J. Lamothe et al., Comparison of Various Sample Preparation Methods for PCR Diagnosis of Visceral Leishmaniasis Using Peripheral Blood, J Clin Microbiol, vol.39, issue.2, pp.613-620, 2001.

G. Van-der-auwera, I. Maes, D. Doncker, S. Ravel, C. Cnops et al., Heatshock protein 70 gene sequencing for Leishmania species typing in European tropical infectious disease clinics, Euro Surveill Bull Eur Sur Mal Transm Eur Commun Dis Bull, vol.18, issue.30, p.20543, 2013.

A. M. Montalvo, J. Fraga, L. Monzote, I. Montano, S. D. Doncker et al., Heatshock protein 70 PCR-RFLP: a universal simple tool for Leishmania species discrimination in the New and Old World, Parasitology, vol.137, issue.8, pp.1159-68, 2010.

H. W. Murray, Mononuclear Cell Recruitment, Granuloma Assembly, and Response to Treatment in Experimental Visceral Leishmaniasis: Intracellular Adhesion Molecule 1-Dependent and -Independent Regulation, Infect Immun, vol.68, issue.11, pp.6294-6303, 2000.

S. L. Croft, S. Sundar, and A. H. Fairlamb, Drug Resistance in Leishmaniasis, Clin Microbiol Rev, vol.19, issue.1, pp.111-137, 2006.

B. Gourbal, N. Sonuc, H. Bhattacharjee, D. Legare, S. Sundar et al., Drug Uptake and Modulation of Drug Resistance in Leishmania by an Aquaglyceroporin, J Biol Chem, vol.279, issue.30, pp.31010-31017, 2004.

M. Ouellette, J. Drummelsmith, and B. Papadopoulou, Leishmaniasis: drugs in the clinic, resistance and new developments, Drug Resist Updat, vol.7, issue.4-5, pp.257-66, 2004.

S. Ferreira-c-dos, P. S. Martins, C. Demicheli, C. Brochu, M. Ouellette et al., Thiolinduced reduction of antimony(V) into antimony(III): a comparative study with trypanothione, cysteinyl-glycine, cysteine and glutathione, Biometals Int J Role Met Ions Biol Biochem Med, vol.16, issue.3, pp.441-447, 2003.

Y. Zhou, N. Messier, M. Ouellette, B. P. Rosen, and R. Mukhopadhyay, Leishmania major LmACR2 Is a Pentavalent Antimony Reductase That Confers Sensitivity to the Drug Pentostam, J Biol Chem, vol.279, issue.36, pp.37445-51, 2004.

W. L. Roberts and P. M. Rainey, Antileishmanial activity of sodium stibogluconate fractions, Antimicrob Agents Chemother, vol.37, issue.9, pp.1842-1848, 1993.

P. Shaked-mishan, N. Ulrich, M. Ephros, and D. Zilberstein, Novel Intracellular SbV Reducing Activity Correlates with Antimony Susceptibility in Leishmania donovani, J Biol Chem, vol.276, issue.6, pp.3971-3977, 2001.

D. Sereno, M. Cavaleyra, K. Zemzoumi, S. Maquaire, A. Ouaissi et al., Axenically grown amastigotes of Leishmania infantum used as an in vitro model to investigate the pentavalent antimony mode of action, Antimicrob Agents Chemother, vol.42, issue.12, pp.3097-102, 1998.

V. Gutiérrez, A. B. Seabra, R. M. Reguera, J. Khandare, and M. Calderón, New approaches from nanomedicine for treating leishmaniasis, Chem Soc Rev, vol.45, issue.1, pp.152-68, 2015.

J. Lindoso, M. A. Cunha, I. T. Queiroz, and C. Moreira, Leishmaniasis-HIV coinfection: current challenges, HIVAIDS Auckl NZ, vol.8, pp.147-56, 2016.

S. Burza, R. Mahajan, P. K. Sinha, J. Van-griensven, K. Pandey et al., Visceral Leishmaniasis and HIV Co-infection in Bihar, India: Long-term Effectiveness and Treatment Outcomes with Liposomal Amphotericin B (AmBisome), PLoS Negl Trop Dis, vol.8, issue.8, 2014.

R. Mahajan, P. Das, P. Isaakidis, T. Sunyoto, K. D. Sagili et al., Combination Treatment for Visceral Leishmaniasis Patients Coinfected with Human Immunodeficiency Virus in India, Clin Infect Dis Off Publ Infect Dis Soc Am, vol.61, issue.8, pp.1255-62, 2015.

, A : Leish a iasis

H. Sindermann, S. L. Croft, K. R. Engel, W. Bommer, H. J. Eibl et al., Miltefosine (Impavido): the first oral treatment against leishmaniasis, Med Microbiol Immunol (Berl), vol.193, issue.4, pp.173-80, 2004.

J. A. Urbina, Lipid biosynthesis pathways as chemotherapeutic targets in kinetoplastid parasites, Parasitology, vol.114, pp.91-99, 1997.

G. A. Ruiter, S. F. Zerp, H. Bartelink, W. J. Van-blitterswijk, and M. Verheij, Anti-cancer alkyllysophospholipids inhibit the phosphatidylinositol 3-kinase-Akt/PKB survival pathway, Anticancer Drugs, vol.14, issue.2, pp.167-73, 2003.

H. W. Murray and S. Delph-etienne, Visceral leishmanicidal activity of hexadecylphosphocholine (miltefosine) in mice deficient in T cells and activated macrophage microbicidal mechanisms, J Infect Dis, vol.181, issue.2, pp.795-804, 2000.

T. K. Jha, S. Sundar, C. P. Thakur, P. Bachmann, J. Karbwang et al., Miltefosine, an Oral Agent, for the Treatment of Indian Visceral Leishmaniasis, N Engl J Med, vol.341, issue.24, pp.1795-800, 1999.

P. Desjeux, Options thérapeutiques pour la leishmaniose viscérale. Médecine Mal Infect, vol.35, pp.74-80, 2005.

F. J. Pérez-victoria, M. P. Sánchez-cañete, K. Seifert, S. L. Croft, S. Sundar et al., Mechanisms of experimental resistance of Leishmania to miltefosine: Implications for clinical use, Drug Resist Updat, vol.9, issue.1-2, pp.26-39, 2006.

R. A. Briccaman, The Aromatic Diamidines, Int J Dermatol, vol.16, issue.3, pp.155-62, 1977.

M. Wang, Y. Yu, C. Liang, A. Lu, and G. Zhang, Recent Advances in Developing Small Molecules Targeting Nucleic Acid, Int J Mol Sci, vol.17, issue.6, 2016.

M. Roussel, M. Nacher, G. Frémont, B. Rotureau, E. Clyti et al., Comparison between one and two injections of pentamidine isethionate, at 7 mg/kg in each injection, in the treatment of cutaneous leishmaniasis in French Guiana, Ann Trop Med Parasitol, vol.100, issue.4, pp.307-321, 2006.

S. Sundar and A. Singh, Recent developments and future prospects in the treatment of visceral leishmaniasis, Ther Adv Infect Dis, vol.3, issue.3-4, pp.98-109, 2016.

P. W. Nassif, T. Mello, T. R. Navasconi, C. A. Mota, I. G. Demarchi et al., Safety and efficacy of current alternatives in the topical treatment of cutaneous leishmaniasis: a systematic review, Parasitology, vol.144, issue.8, pp.995-1004, 2017.

D. Torrús, V. Boix, B. Massa, J. Portilla, and M. Pérez-mateo, Fluconazole plus allopurinol in treatment of visceral leishmaniasis, J Antimicrob Chemother, vol.37, issue.5, pp.1042-1045, 1996.

B. B. Jha, Fluconazole in visceral leishmaniasis, Indian Pediatr, vol.35, issue.3, pp.268-277, 1998.

J. Gangneux, M. Dullin, A. Sulahian, Y. Garin, and F. Derouin, Experimental Evaluation of Second-Line Oral Treatments of Visceral Leishmaniasis Caused by Leishmania infantum, Antimicrob Agents Chemother, vol.43, issue.1, pp.172-176, 1999.

S. Sundar, V. P. Singh, N. K. Agrawal, D. L. Gibbs, and H. W. Murray, Treatment of kala-azar with oral fluconazole. The Lancet, vol.348, p.614, 1996.

N. Aronson, B. L. Herwaldt, M. Libman, R. Pearson, R. Lopez-velez et al., Diagnosis and Treatment of Leishmaniasis: Clinical Practice Guidelines by the Infectious Diseases Society of America (IDSA) and the, Clin Infect Dis, vol.63, issue.12, pp.202-64, 2016.

J. Blum, P. Buffet, L. Visser, G. Harms, M. S. Bailey et al., LeishMan Recommendations for Treatment of Cutaneous and Mucosal Leishmaniasis in Travelers, J Travel Med, vol.21, issue.2, pp.116-145, 2014.

P. A. Buffet, É. Rosenthal, J. Gangneux, E. Lightburne, P. Couppié et al., Traitement des leishmanioses en France : p opositio d'u f e tiel o se suel

P. Médicale, , vol.40, pp.173-84, 2011.

B. Sukumaran and R. Madhubala, Leishmaniasis: current status of vaccine development, Curr Mol Med, vol.4, issue.6, pp.667-79, 2004.

C. L. Greenblatt, Cutaneous leishmaniasis: The prospects for a killed vaccine, Parasitol Today Pers Ed, vol.4, issue.2, pp.53-57, 1988.

M. C. Duarte, D. P. Lage, V. T. Martins, M. A. Chávez-fumagalli, B. M. Roatt et al., Recent updates and perspectives on approaches for the development of vaccines against visceral leishmaniasis, Rev Soc Bras Med Trop, vol.49, issue.4, pp.398-407, 2016.

G. Bourdoiseau, C. Hugnet, R. B. Gonçalves, F. Vézilier, E. Petit-didier et al., Effective humoral and cellular immunoprotective responses in Li ESAp-MDP vaccinated protected dogs, Vet Immunol Immunopathol, vol.128, issue.1, pp.71-79, 2009.

J. Moreno, I. Vouldoukis, V. Martin, D. Mcgahie, A. Cuisinier et al., Use of a LiESP/QA-21 vaccine (CaniLeish) stimulates an appropriate Th1-dominated cellmediated immune response in dogs, PLoS Negl Trop Dis, vol.6, issue.6, p.1683, 2012.

L. Gradoni, Canine Leishmania vaccines: still a long way to go, Vet Parasitol, vol.208, issue.1-2, pp.94-100, 2015.

C. R. Teixeira, M. J. Teixeira, R. Gomes, C. S. Santos, B. B. Andrade et al., Saliva from Lutzomyia longipalpis induces CC chemokine ligand 2/monocyte chemoattractant protein-1 expression and macrophage recruitment, J Immunol Baltim Md, vol.175, issue.12, pp.8346-53, 1950.

M. Rogers, P. Kropf, B. Choi, R. Dillon, M. Podinovskaia et al., Proteophosophoglycans Regurgitated by Leishmania-Infected Sand Flies Target the L-Arginine Metabolism of Host Macrophages to Promote Parasite Survival, PLOS Pathog. 2009 août, vol.5, issue.8, p.1000555

G. Van-zandbergen, N. Hermann, H. Laufs, W. Solbach, and T. Laskay, Leishmania Promastigotes Release a Granulocyte Chemotactic Factor and Induce Interleukin-8 Release but Inhibit Gamma Interferon-Inducible Protein 10 Production by Neutrophil Granulocytes, Infect Immun, vol.70, issue.8, pp.4177-84, 2002.

B. P. Hurrell, I. B. Regli, and F. Tacchini-cottier, Different Leishmania Species Drive Distinct Neutrophil Functions, Trends Parasitol, vol.32, issue.5, pp.392-401, 2016.

C. Gabriel, W. R. Mcmaster, D. Girard, and A. Descoteaux, Leishmania donovani Promastigotes Evade the Antimicrobial Activity of Neutrophil Extracellular Traps, J Immunol, vol.185, issue.7, pp.4319-4346, 2010.
URL : https://hal.archives-ouvertes.fr/pasteur-00819577

U. Ritter, F. Frischknecht, and G. Van-zandbergen, Are neutrophils important host cells for Leishmania parasites? Trends Parasitol, vol.25, pp.505-515, 2009.

F. L. Ribeiro-gomes and D. Sacks, The influence of early neutrophil-Leishmania interactions on the host immune response to infection, Front Cell Infect Microbiol, vol.2, p.59, 2012.

H. Moll, H. Fuchs, C. Blank, and M. Röllinghoff, Langerhans cells transport Leishmania major from the infected skin to the draining lymph node for presentation to antigen-specific T cells, Eur J Immunol, vol.23, issue.7, pp.1595-601, 1993.

E. Caparrós, D. Serrano, A. Puig-kröger, L. Riol, F. Lasala et al., Role of the Ctype lectins DC-SIGN and L-SIGN in Leishmania interaction with host phagocytes, Immunobiology, vol.210, issue.2-4, pp.185-93, 2005.

M. Colmenares, A. L. Corbí, S. J. Turco, and L. Rivas, The Dendritic Cell Receptor DC-SIGN Discriminates among Species and Life Cycle Forms of Leishmania, J Immunol, vol.172, issue.2, pp.1186-90, 2004.

S. M. Puentes, D. M. Dwyer, P. A. Bates, and K. A. Joiner, Binding and release of C3 from Leishmania donovani promastigotes during incubation in normal human serum, J Immunol Baltim Md, vol.143, issue.11, pp.3743-3752, 1950.

D. G. Russell, The macrophage-attachment glycoprotein gp63 is the predominant C3-acceptor site on Leishmania mexicana promastigotes, Eur J Biochem, vol.164, issue.1, pp.213-234, 1987.

A. Brittingham, C. J. Morrison, W. R. Mcmaster, B. S. Mcgwire, K. P. Chang et al., Role of the Leishmania surface protease gp63 in complement fixation, cell adhesion, and resistance to complement-mediated lysis, J Immunol, vol.155, issue.6, pp.3102-3113, 1995.

N. Ueno, C. L. Bratt, N. E. Rodriguez, and M. E. Wilson, Differences in human macrophage receptor usage, lysosomal fusion kinetics and survival between logarithmic and metacyclic Leishmania infantum chagasi promastigotes, Cell Microbiol, vol.11, issue.12, pp.1827-1868, 2009.

A. O. Wozencraft, G. Sayers, and J. M. Blackwell, Macrophage type 3 complement receptors mediate serum-independent binding of Leishmania donovani. Detection of macrophage-derived complement on the parasite surface by immunoelectron microscopy, J Exp Med, vol.164, issue.4, pp.1332-1339, 1986.

F. J. Culley, R. A. Harris, P. M. Kaye, K. P. Mcadam, and J. G. Raynes, C-reactive protein binds to a novel ligand on Leishmania donovani and increases uptake into human macrophages, J Immunol Baltim Md, vol.156, issue.12, pp.4691-4697, 1950.

K. B. Bodman-smith, M. Mbuchi, F. J. Culley, P. A. Bates, and J. G. Raynes, C-reactive proteinmediated phagocytosis of Leishmania donovani promastigotes does not alter parasite survival or macrophage responses, Parasite Immunol, vol.24, issue.9, pp.447-54, 2002.

D. Di-s-m, Bioge esis of phagol soso es: the kiss a d u h pothesis, T e ds Cell Biol, vol.5, issue.5, pp.183-189, 1995.

L. A. Rosenthal, F. S. Sutterwala, M. E. Kehrli, and D. M. Mosser, Leishmania major-human macrophage interactions: cooperation between Mac-1 (CD11b/CD18) and complement receptor type 1 (CD35) in promastigote adhesion, Infect Immun, vol.64, issue.6, pp.2206-2221, 1996.

M. M. Kane and D. M. Mosser, Leishmania parasites and their ploys to disrupt macrophage activation, Curr Opin Hematol, vol.7, issue.1, pp.26-31, 2000.

J. M. Blackwell, Role of macrophage complement and lectin-like receptors in binding Leishmania parasites to host macrophages, Immunol Lett, vol.11, issue.3, pp.227-259, 1985.

M. E. Wilson and R. D. Pearson, Roles of CR3 and mannose receptors in the attachment and ingestion of Leishmania donovani by human mononuclear phagocytes, Infect Immun, vol.56, issue.2, pp.363-372, 1988.

L. Kedzierski, J. Montgomery, D. Bullen, J. Curtis, E. Gardiner et al., A Leucine-Rich Repeat Motif of Leishmania Parasite Surface Antigen 2 Binds to Macrophages through the Complement Receptor 3, J Immunol, vol.172, issue.8, pp.4902-4908, 2004.

D. M. Mosser and P. J. Edelson, The mouse macrophage receptor for C3bi (CR3) is a major mechanism in the phagocytosis of Leishmania promastigotes, J Immunol, vol.135, issue.4, pp.2785-2794, 1985.

A. Cooper, H. Rosen, and J. M. Blackwell, Monoclonal antibodies that recognize distinct epitopes of the macrophage type three complement receptor differ in their ability to inhibit binding of Leishmania promastigotes harvested at different phases of their growth cycle, Immunology, vol.65, issue.4, pp.511-515, 1988.

C. Forestier, C. Machu, C. Loussert, P. Pescher, and G. F. Späth, Imaging Host Cell-Leishmania Interaction Dynamics Implicates Parasite Motility, Lysosome Recruitment, and Host Cell Wounding in the Infection Process, Cell Host Microbe, vol.9, issue.4, pp.319-349, 2011.
URL : https://hal.archives-ouvertes.fr/pasteur-01433561

N. Ueno and M. E. Wilson, Receptor-mediated phagocytosis of Leishmania: implications for intracellular survival, Trends Parasitol, vol.28, issue.8, pp.335-379, 2012.

L. Lefèvre, G. Lugo-villarino, E. Meunier, A. Valentin, D. Olagnier et al., The C-type Lectin Receptors Dectin-1, MR, and SIGNR3 Contribute Both Positively and Negatively to the Macrophage Response to Leishmania infantum, Immunity, vol.38, issue.5, pp.1038-1087, 2013.

A. Descoteaux and S. J. Turco, Glycoconjugates in Leishmania infectivity, Biochim Biophys Acta BBA -Mol Basis Dis, vol.1455, issue.2, pp.341-52, 1999.

I. Becker, N. Salaiza, M. Aguirre, J. Delgado, N. Carrillo-carrasco et al., Leishmania lipophosphoglycan (LPG) activates NK cells through toll-like receptor-2, Mol Biochem Parasitol, vol.130, issue.2, pp.65-74, 2003.

J. Flandin, F. Chano, and A. Descoteaux, RNA interference reveals a role for TLR2 and TLR3 in the recognition of Leishmania donovani promastigotes by interferon-gammaprimed macrophages, Eur J Immunol, vol.36, issue.2, pp.411-431, 2006.

P. M. Nogueira, R. R. Assis, A. C. Torrecilhas, E. M. Saraiva, N. L. Pessoa et al., Lipophosphoglycans from Leishmania amazonensis Strains Display Immunomodulatory Properties via TLR4 and Do Not Affect Sand Fly Infection, PLoS Negl Trop Dis, vol.10, issue.8, 2016.

P. Kropf, M. A. Freudenberg, M. Modolell, H. P. Price, S. Herath et al., Toll-like receptor 4 contributes to efficient control of infection with the protozoan parasite Leishmania major, Infect Immun, vol.72, issue.4, pp.1920-1928, 2004.

S. Srivastava, S. P. Pandey, M. K. Jha, H. S. Chandel, and B. Saha, Leishmania expressed lipophosphoglycan interacts with Toll-like receptor (TLR)-2 to decrease TLR-9 expression and reduce anti-leishmanial responses, Clin Exp Immunol, vol.172, issue.3, pp.403-409, 2013.

C. Peters, T. Aebischer, Y. D. Stierhof, M. Fuchs, and P. Overath, The role of macrophage receptors in adhesion and uptake of Leishmania mexicana amastigotes, J Cell Sci, vol.108, issue.12, pp.3715-3739, 1995.

C. Hsiao, N. Ueno, J. Q. Shao, K. R. Schroeder, K. C. Moore et al., The effects of macrophage source on the mechanism of phagocytosis and intracellular survival of Leishmania. Microbes Infect, vol.13, pp.1033-1077, 2011.

A. Vázquez-mendoza, J. C. Carrero, and M. Rodriguez-sosa, Parasitic infections: a role for Ctype lectins receptors, BioMed Res Int, p.456352, 2013.

D. J. Wyler, J. P. Sypek, and J. A. Mcdonald, In vitro parasite-monocyte interactions in human leishmaniasis: possible role of fibronectin in parasite attachment, Infect Immun, vol.49, issue.2, pp.305-316, 1985.

F. S. Rizvi, M. A. Ouaissi, M. B. Santoro, F. Capron, and A. , The major surface protein of leishmania promastigotes is a fibronectin-like molecule, Eur J Immunol, vol.18, issue.3, pp.473-479, 1988.

T. J. Pucadyil and A. Chattopadhyay, Cholesterol: a potential therapeutic target in Leishmania infection? Trends Parasitol, vol.23, pp.49-53, 2007.

M. Null and E. London, Ceramide selectively displaces cholesterol from ordered lipid domains (rafts): implications for lipid raft structure and function, J Biol Chem, vol.279, issue.11, pp.9997-10004, 2004.

D. Chakraborty, S. Banerjee, A. Sen, K. K. Banerjee, P. Das et al., Leishmania donovani affects antigen presentation of macrophage by disrupting lipid rafts, J Immunol Baltim Md, vol.175, issue.5, pp.3214-3238, 1950.

S. Majumder, R. Dey, S. Bhattacharjee, A. Rub, G. Gupta et al., Leishmania-Induced Biphasic Ceramide Generation in Macrophages Is Crucial for Uptake and Survival of the Parasite, J Infect Dis, vol.205, issue.10, pp.1607-1623, 2012.

R. A. Guy and M. Belosevic, Comparison of receptors required for entry of Leishmania major amastigotes into macrophages, Infect Immun, vol.61, issue.4, pp.1553-1561, 1993.

J. Alexander, A. R. Satoskar, and D. G. Russell, Leishmania species: models of intracellular parasitism, J Cell Sci, vol.112, issue.18, pp.2993-3002, 1999.

M. C. Bosetto and G. S. , Leishmania amazonensis: Multiple receptor-ligand interactions are involved in amastigote infection of human dendritic cells, Exp Parasitol, vol.116, issue.3, pp.306-316, 2007.

M. M. Kulkarni, E. A. Jones, W. R. Mcmaster, and B. S. Mcgwire, Fibronectin Binding and Proteolytic Degradation by Leishmania and Effects on Macrophage Activation, Infect Immun, vol.76, issue.4, pp.1738-1785, 2008.

E. Suzuki, A. K. Tanaka, M. S. Toledo, H. K. Takahashi, and A. H. Straus, Role of ?-d-Galactofuranose in Leishmania major Macrophage Invasion, Infect Immun, vol.70, issue.12, pp.6592-6598, 2002.

N. E. Rodríguez, U. Gaur, and M. E. Wilson, Role of caveolae in Leishmania chagasi phagocytosis and intracellular survival in macrophages, Cell Microbiol, vol.8, issue.7, pp.1106-1126, 2006.

J. K. Verma, R. Rastogi, and A. Mukhopadhyay, Leishmania donovani resides in modified early endosomes by upregulating Rab5a expression via the downregulation of miR-494, PLoS Pathog, vol.13, issue.6, p.1006459, 2017.

S. Scianimanico, M. Desrosiers, J. F. Dermine, S. Méresse, A. Descoteaux et al., Impaired recruitment of the small GTPase rab7 correlates with the inhibition of phagosome maturation by Leishmania donovani promastigotes, Cell Microbiol, vol.1, issue.1, pp.19-32, 1999.

D. L. Tolson, S. J. Turco, and T. W. Pearson, Expression of a repeating phosphorylated disaccharide lipophosphoglycan epitope on the surface of macrophages infected with Leishmania donovani, Infect Immun, vol.58, issue.11, pp.3500-3507, 1990.

J. A. Streit, J. E. Donelson, M. W. Agey, and M. E. Wilson, Developmental changes in the expression of Leishmania chagasi gp63 and heat shock protein in a human macrophage cell line, Infect Immun, vol.64, issue.5, pp.1810-1818, 1996.

A. C. Cunningham, Parasitic Adaptive Mechanisms in Infection by Leishmania, Exp Mol Pathol, vol.72, issue.2, pp.132-173, 2002.

M. K. Basu and M. Ray, Macrophage and Leishmania: An Unacceptable Coexistence, Crit Rev Microbiol, vol.31, issue.3, pp.145-54, 2005.

C. Bogdan, M. Röllinghoff, and A. Diefenbach, The role of nitric oxide in innate immunity, Immunol Rev, vol.173, issue.1, pp.17-26, 2000.

H. W. Murray, Cell-mediated immune response in experimental visceral leishmaniasis. II. Oxygen-dependent killing of intracellular Leishmania donovani amastigotes, J Immunol Baltim Md, vol.129, issue.1, pp.351-358, 1950.

F. Y. Liew, Y. Li, and S. Millott, Tumor necrosis factor-alpha synergizes with IFN-gamma in mediating killing of Leishmania major through the induction of nitric oxide, J Immunol Baltim Md, vol.145, issue.12, pp.4306-4316, 1950.

L. Malherbe, C. Filippi, J. V. Foucras, G. Moro, M. Appel et al., Selective activation and expansion of high-affinity CD4+ T cells in resistant mice upon infection with Leishmania major, Immunity, vol.13, issue.6, pp.771-82, 2000.

M. Huber, E. Timms, T. W. Mak, M. Röllinghoff, and M. Lohoff, Effective and long-lasting immunity against the parasite Leishmania major in CD8-deficient mice, Infect Immun, vol.66, issue.8, pp.3968-70, 1998.

. S-l-reiner, Locksley and RM. The Regulation of Immunity to Leishmania Major, Annu Rev Immunol, vol.13, issue.1, pp.151-77, 1995.

K. A. Markey, K. H. Gartlan, R. D. Kuns, K. Macdonald, and G. R. Hill, Imaging the immunological synapse between dendritic cells and T cells, J Immunol Methods, vol.423, pp.40-44, 2015.

A. Lanzavecchia and F. Sallusto, Antigen decoding by T lymphocytes: from synapses to fate determination, Nat Immunol, vol.2, issue.6, pp.487-92, 2001.

D. B. Corry, S. L. Reiner, P. S. Linsley, and R. M. Locksley, Differential effects of blockade of CD28-B7 on the development of Th1 or Th2 effector cells in experimental leishmaniasis, J Immunol Baltim Md, vol.153, issue.9, pp.4142-4150, 1950.

K. A. Campbell, P. J. Ovendale, M. K. Kennedy, W. C. Fanslow, S. G. Reed et al., CD40 ligand is required for protective cell-mediated immunity to Leishmania major, Immunity, vol.4, issue.3, pp.283-292, 1996.

J. Argueta-donohué, N. Carrillo, L. Valdés-reyes, A. Zentella, M. Aguirre-garcía et al., Leishmania mexicana: Participation of NF-?B in the differential production of IL-12 in dendritic cells and monocytes induced by lipophosphoglycan (LPG), Exp Parasitol, vol.120, issue.1, pp.1-9, 2008.

L. Passero, R. R. Assis, T. Da-silva, P. M. Nogueira, D. H. Macedo et al., Differential modulation of macrophage response elicited by glycoinositolphospholipids and lipophosphoglycan from Leishmania (Viannia) shawi, Parasitol Int, vol.64, issue.4, pp.32-37, 2015.

T. Scharton-kersten, L. C. Afonso, M. Wysocka, G. Trinchieri, and P. Scott, IL-12 is required for natural killer cell activation and subsequent T helper 1 cell development in experimental leishmaniasis, J Immunol Baltim Md, vol.154, issue.10, pp.5320-5350, 1950.

L. M. Stamm, A. A. Satoskar, S. K. Ghosh, J. R. David, and A. R. Satoskar, STAT-4 mediated IL-12 signaling pathway is critical for the development of protective immunity in cutaneous leishmaniasis, Eur J Immunol, vol.29, issue.8, pp.2524-2533, 1999.

J. Liese, U. Schleicher, and C. Bogdan, The innate immune response against Leishmania parasites, Immunobiology, vol.213, issue.3-4, pp.377-87, 2008.

K. Kohno, J. Kataoka, T. Ohtsuki, Y. Suemoto, I. Okamoto et al., IFN-gammainducing factor (IGIF) is a costimulatory factor on the activation of Th1 but not Th2 cells and exerts its effect independently of IL-12, J Immunol Baltim Md, vol.158, issue.4, pp.1541-50, 1950.

D. Robinson, K. Shibuya, A. Mui, F. Zonin, E. Murphy et al., IGIF does not drive Th1 development but synergizes with IL-12 for interferon-gamma production and activates IRAK and NFkappaB, Immunity, vol.7, issue.4, pp.571-81, 1997.

T. Yoshimoto, K. Takeda, T. Tanaka, K. Ohkusu, S. Kashiwamura et al., IL-12 up-regulates IL-18 receptor expression on T cells, Th1 cells, and B cells: synergism with IL-18 for IFN-gamma production, J Immunol Baltim Md, vol.161, issue.7, pp.3400-3407, 1950.

F. Conceição-silva, M. Hahne, M. Schröter, J. Louis, and J. Tschopp, The resolution of lesions induced by Leishmania major in mice requires a functional Fas (APO-1, CD95) pathway of cytotoxicity, Eur J Immunol, vol.28, issue.1, pp.237-282, 1998.

M. F. Horta, B. P. Mendes, E. H. Roma, F. Noronha, J. P. Macêdo et al., Reactive Oxygen Species and Nitric Oxide in Cutaneous Leishmaniasis, Journal of Parasitology Research, 2012.

H. W. Murray and C. F. Nathan, Macrophage Microbicidal Mechanisms In Vivo: Reactive Nitrogen versus Oxygen Intermediates in the Killing of Intracellular visceral Leishmania donovani, J Exp Med, vol.189, issue.4, pp.741-747, 1999.

X. Q. Wei, I. G. Charles, A. Smith, J. Ure, G. J. Feng et al., Altered immune responses in mice lacking inducible nitric oxide synthase, Nature, vol.375, issue.6530, pp.408-419, 1995.

J. Alexander and K. Bryson, T helper(h)1/Th2 and Leishmania: paradox rather than paradigm, Immunol Lett, vol.99, issue.1, pp.17-23, 2005.

J. Chan, T. Fujiwara, P. Brennan, M. Mcneil, S. J. Turco et al., Microbial glycolipids: possible virulence factors that scavenge oxygen radicals, Proc Natl Acad Sci, vol.86, issue.7, pp.2453-2460, 1989.

T. B. Mcneely and S. J. Turco, Requirement of lipophosphoglycan for intracellular survival of Leishmania donovani within human monocytes, J Immunol Baltim Md, vol.144, issue.7, pp.2745-50, 1950.

A. Isnard, M. T. Shio, and M. Olivier, Impact of Leishmania metalloprotease GP63 on macrophage signaling. Front Cell Infect Microbiol, vol.2, 2012.

S. Ghosh, S. Goswami, and S. Adhya, Role of superoxide dismutase in survival of Leishmania within the macrophage, Biochem J, vol.369, pp.447-52, 2003.

M. A. Vannier-santos, E. M. Saraiva, A. Martiny, A. Neves, and W. De-souza, Fibronectin shedding by Leishmania may influence the parasite-macrophage interaction, Eur J Cell Biol, vol.59, issue.2, pp.389-97, 1992.

D. S. Lima-junior, T. Mineo, V. Calich, and D. S. Zamboni, Dectin-1 Activation during Leishmania amazonensis Phagocytosis Prompts Syk-Dependent Reactive Oxygen Species Production To Trigger Inflammasome Assembly and Restriction of Parasite Replication, J Immunol, vol.199, issue.6, pp.2055-68, 2017.

D. M. Mosser and P. J. Edelson, The third component of complement (C3) is responsible for the intracellular survival of Leishmania major, Nature, vol.327, issue.6120, pp.329-360, 1987.

S. J. Turco, Adversarial relationship between the leishmania lipophosphoglycan and protein kinase C of host macrophages, Parasite Immunol, vol.21, issue.12, pp.597-600, 1999.

M. T. Shio, J. G. Christian, J. Y. Jung, K. Chang, and M. Olivier, PKC/ROS-Mediated NLRP3 Inflammasome Activation Is Attenuated by Leishmania Zinc-Metalloprotease during Infection, PLoS Negl Trop Dis, vol.9, issue.6, p.3868, 2015.

R. Lodge, T. O. Diallo, and A. Descoteaux, Leish a ia do o a i lipophosphoglycan blocks NADPH oxidase assembly at the phagosome membrane, Cell Microbiol, vol.8, issue.12, pp.1922-1953, 2006.

K. Roy, K. Naskar, M. Ghosh, and S. Roy, Class II MHC/Peptide Interaction in Leishmania donovani Infection: Implications in Vaccine Design, J Immunol, vol.192, issue.12, pp.5873-80, 2014.

N. E. Reiner, W. Ng, T. Ma, and W. R. Mcmaster, Kinetics of gamma interferon binding and induction of major histocompatibility complex class II mRNA in Leishmania-infected macrophages, Proc Natl Acad Sci, vol.85, issue.12, pp.4330-4334, 1988.

U. Fruth, N. Solioz, and J. A. Louis, Leishmania major interferes with antigen presentation by infected macrophages, J Immunol Baltim Md, vol.150, issue.5, pp.1857-64, 1950.

P. E. Kima, L. Soong, C. Chicharro, N. H. Ruddle, and D. Mcmahon-pratt, Leishmania-infected macrophages sequester endogenously synthesized parasite antigens from presentation to CD4+ T cells, Eur J Immunol, vol.26, issue.12, pp.3163-3172, 1996.

U. A. Wenzel, E. Bank, C. Florian, S. Förster, N. Zimara et al., Leishmania major parasite stage-dependent host cell invasion and immune evasion, FASEB J Off Publ Fed Am Soc Exp Biol, vol.26, issue.1, pp.29-39, 2012.

R. R. Assis, I. C. Ibraim, F. S. Noronha, S. J. Turco, and R. P. Soares, Glycoinositolphospholipids from Leishmania braziliensis and L. infantum: Modulation of Innate Immune System and Variations in Carbohydrate Structure, PLoS Negl Trop Dis, vol.6, issue.2, 2012.

L. U. Buxbaum, Leishmania mexicana infection induces IgG to parasite surface glycoinositol phospholipids that can induce IL-10 in mice and humans, PLoS Negl Trop Dis, vol.7, issue.5, p.2224, 2013.

P. Gallo, R. Gonçalves, and D. M. Mosser, The influence of IgG Density and Macrophage Fc (gamma) Receptor Cross-linking on Phagocytosis and IL-10 Production, Immunol Lett, vol.133, issue.2, pp.70-77, 2010.

P. J. Maglione, N. Simchoni, and C. Cunningham-rundles, Toll-like receptor signaling in primary immune deficiencies, Ann N Y Acad Sci, vol.1356, issue.1, pp.1-21, 2015.

M. J. Mcconville, L. F. Schnur, C. Jaffe, and P. Schneider, Structure of Leishmania lipophosphoglycan: inter-and intra-specific polymorphism in Old World species, Biochem J, vol.310, pp.807-825, 1995.

R. R. De-assis, I. C. Ibraim, P. M. Nogueira, R. P. Soares, and S. J. Turco, Glycoconjugates in New World species of Leishmania: Polymorphisms in lipophosphoglycan and glycoinositolphospholipids and interaction with hosts, Biochim Biophys Acta BBA -Gen Subj, vol.1820, issue.9, pp.1354-65, 2012.

D. L. King, Y. Chang, and S. J. Turco, Cell surface lipophosphoglycan of Leishmania donovani, Mol Biochem Parasitol, vol.24, issue.1, pp.47-53, 1987.

P. Pimenta, E. Saraiva, and D. L. Sacks, The comparative fine structure and surface glycoconjugate expression of three life stages of Leishmania major, Exp Parasitol, vol.72, issue.2, pp.191-204, 1991.

Y. Cabezas, L. Legentil, F. Robert-gangneux, F. Daligault, S. Belaz et al., Leishmania cell wall as a potent target for antiparasitic drugs. A focus on the glycoconjugates, Org Biomol Chem, vol.13, issue.31, pp.8393-404, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01174899

K. Zhang, T. Barron, S. J. Turco, and S. M. Beverley, The LPG1 gene family of Leishmania major, Mol Biochem Parasitol, vol.136, issue.1, pp.11-23, 2004.

J. R. Thomas, M. J. Mcconville, J. E. Thomas-oates, S. W. Homans, M. A. Ferguson et al., Refined structure of the lipophosphoglycan of Leishmania donovani, J Biol Chem, vol.267, issue.10, pp.6829-6862, 1992.

M. J. Mcconville, J. E. Thomas-oates, M. A. Ferguson, and S. W. Homans, Structure of the lipophosphoglycan from Leishmania major, J Biol Chem, vol.265, issue.32, pp.19611-19634, 1990.

T. Ilg, R. Etges, P. Overath, M. J. Mcconville, J. Thomas-oates et al., Structure of Leishmania mexicana lipophosphoglycan, J Biol Chem, vol.267, issue.10, pp.6834-6874, 1992.

R. Soares, M. E. Macedo, C. Ropert, N. F. Gontijo, I. C. Almeida et al., Leishmania chagasi: lipophosphoglycan characterization and binding to the midgut of the sand fly vector Lutzomyia longipalpis, Mol Biochem Parasitol, vol.121, issue.2, pp.213-237, 2002.

R. Soares, T. L. Cardoso, T. Barron, M. Araújo, P. Pimenta et al., Leishmania braziliensis: a novel mechanism in the lipophosphoglycan regulation during metacyclogenesis, Int J Parasitol, vol.35, issue.3, pp.245-53, 2005.

D. L. Sacks, P. Pimenta, M. J. Mcconville, P. Schneider, and S. J. Turco, Stage-specific binding of Leishmania donovani to the sand fly vector midgut is regulated by conformational changes in the abundant surface lipophosphoglycan, J Exp Med, vol.181, issue.2, pp.685-97, 1995.

M. J. Mcconville, S. J. Turco, M. A. Ferguson, and D. L. Sacks, Developmental modification of lipophosphoglycan during the differentiation of Leishmania major promastigotes to an infectious stage, EMBO J, vol.11, issue.10, pp.3593-600, 1992.

R. Soares and S. J. Turco, Lutzomyia longipalpis (Diptera: Psychodidae: Phlebotominae): a review. An Acad Bras Cienc, vol.75, pp.301-331, 2003.

R. J. Dillon, A. C. Ivens, C. Churcher, N. Holroyd, M. A. Quail et al., Analysis of ESTs from Lutzomyia longipalpis sand flies and their contribution toward understanding the insect-parasite relationship, Genomics, vol.88, issue.6, pp.831-871, 2006.

T. Ilg, Lipophosphoglycan of the protozoan parasite Leishmania: stage-and speciesspecific importance for colonization of the sandfly vector, transmission and virulence to mammals, Med Microbiol Immunol (Berl), vol.190, issue.1-2, pp.13-20, 2001.

G. F. Späth, L. A. Garraway, S. J. Turco, and S. M. Beverley, The role(s) of lipophosphoglycan (LPG) in the establishment of Leishmania major infections in mammalian hosts, Proc Natl Acad Sci, vol.100, issue.16, pp.9536-9577, 2003.

G. Winter, M. Fuchs, M. J. Mcconville, Y. D. Stierhof, and P. Overath, Surface antigens of Leishmania mexicana amastigotes: characterization of glycoinositol phospholipids and a macrophage-derived glycosphingolipid, J Cell Sci, vol.107, issue.9, pp.2471-82, 1994.

M. J. Mcconville and M. A. Ferguson, The structure, biosynthesis and function of glycosylated phosphatidylinositols in the parasitic protozoa and higher eukaryotes, Biochem J, vol.294, issue.2, pp.305-329, 1993.

E. P. Wright and E. R. El-amin, Leishmania infection: surfaces and immunity, Biochem Cell Biol Biochim Biol Cell, vol.67, issue.9, pp.525-561, 1989.

N. M. Novozhilova and N. V. Bovin, Structure, functions, and biosynthesis of glycoconjugates of Leishmania spp. cell surface, Biochem Biokhimiia, vol.75, issue.6, pp.686-94, 2010.

M. M. Kulkarni, W. R. Mcmaster, E. Kamysz, W. Kamysz, D. M. Engman et al., The major surface-metalloprotease of the parasitic protozoan, Leishmania, protects against antimicrobial peptide-induced apoptotic killing, Mol Microbiol, vol.62, issue.5, pp.1484-97, 2006.

N. Secundino, N. Kimblin, N. C. Peters, P. Lawyer, A. A. Capul et al., Proteophosphoglycan confers resistance of Leishmania major to midgut digestive enzymes induced by blood feeding in vector sand flies, Cell Microbiol, vol.12, issue.7, pp.906-924, 2010.

C. Peters, M. Kawakami, M. Kaul, T. Ilg, P. Overath et al., Secreted proteophosphoglycan of Leishmania mexicana amastigotes activates complement by triggering the mannan binding lectin pathway, Eur J Immunol, vol.27, issue.10, pp.2666-72, 1997.

T. Ilg, Lipophosphoglycan is not required for infection of macrophages or mice by Leishmania mexicana, EMBO J, vol.19, issue.9, pp.1953-62, 2000.

M. Olivier, V. D. Atayde, A. Isnard, K. Hassani, and M. T. Shio, Leishmania virulence factors: focus on the metalloprotease GP63. Microbes Infect, vol.14, pp.1377-89, 2012.

P. A. Bates and D. M. Dwyer, Biosynthesis and secretion of acid phosphatase by Leishmania donovani promastigotes, Mol Biochem Parasitol, vol.26, issue.3, pp.289-96, 1987.

A. Fernandes, D. C. Soares, E. M. Saraiva, J. R. Meyer-fernandes, and T. Souto-padrón, Different secreted phosphatase activities in Leishmania amazonensis, FEMS Microbiol Lett, vol.340, issue.2, pp.117-145, 2013.

D. N. Lippert, D. W. Dwyer, F. Li, and R. W. Olafson, Phosphoglycosylation of a secreted acid phosphatase from Leishmania donovani, Glycobiology, vol.9, issue.6, pp.627-663, 1999.

T. Ilg, Y. D. Stierhof, M. Wiese, M. J. Mcconville, and P. Overath, Characterization of phosphoglycan-containing secretory products of Leishmania, Parasitology, vol.108, pp.63-71, 1994.

J. K. Lovelace, D. M. Dwyer, and M. Gottlieb, Purification and characterization of the extracellular acid phosphatase of Leishmania donovani, Mol Biochem Parasitol, vol.20, issue.3, pp.243-51, 1986.

J. K. Lovelace and M. Gottlieb, Comparison of extracellular acid phosphatases from various isolates of Leishmania, Am J Trop Med Hyg, vol.35, issue.6, pp.1121-1129, 1986.

I. C. Ibraim, R. R. De-assis, N. L. Pessoa, M. A. Campos, M. N. Melo et al., Two biochemically distinct lipophosphoglycans from Leishmania braziliensis and Leishmania infantum trigger different innate immune responses in murine macrophages, Parasit Vectors, vol.6, p.54, 2013.

S. J. Turco, M. A. Wilkerson, and D. R. Clawson, Expression of an unusual acidic glycoconjugate in Leishmania donovani, J Biol Chem, vol.259, issue.6, pp.3883-3892, 1984.

M. Oppenheimer, A. L. Valenciano, and P. Sobrado, Biosynthesis of Galactofuranose in Ki etoplastids: No el The apeuti Ta gets fo T eati g Leish a iasis a d Chagas' Disease, Enzyme Res, 2011.

S. Damerow, C. Hoppe, G. Bandini, P. Zarnovican, F. Buettner et al., Leishmania major UDP-sugar pyrophosphorylase salvages galactose for glycoconjugate biosynthesis, Int J Parasitol, vol.45, issue.12, pp.783-90, 2015.

S. M. Beverley, K. L. Owens, M. Showalter, C. L. Griffith, T. L. Doering et al., Eukaryotic UDP-galactopyranose mutase (GLF gene) in microbial and metazoal pathogens, Eukaryot Cell, vol.4, issue.6, pp.1147-54, 2005.

M. J. Mcconville, S. W. Homans, J. E. Thomas-oates, A. Dell, and A. Bacic, Structures of the glycoinositolphospholipids from Leishmania major. A family of novel galactofuranosecontaining glycolipids, J Biol Chem, vol.265, issue.13, pp.7385-94, 1990.

G. Eppe, P. Peltier, R. Daniellou, C. Nugier-chauvin, V. Ferrières et al., Probing UDP-galactopyranose mutase binding pocket: A dramatic effect on substitution of the 6-position of UDP-galactofuranose, Bioorg Med Chem Lett, vol.19, issue.3, pp.814-820, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00405250

A. Cavalli, F. Lizzi, S. Bongarzone, F. Belluti, L. Piazzi et al., Complementary medicinal chemistry-driven strategies toward new antitrypanosomal and antileishmanial lead drug candidates, FEMS Immunol Med Microbiol, vol.58, issue.1, pp.51-60, 2010.

R. Dureau, F. Robert-gangneux, J. Gangneux, C. Nugier-chauvin, L. Legentil et al., Synthetic UDP-furanoses inhibit the growth of the parasite Leishmania, Carbohydr Res, vol.345, issue.10, pp.1299-305, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00660320

S. C. Ilgoutz and M. J. Mcconville, Function and assembly of the Leishmania surface coat, Int J Parasitol, vol.31, issue.9, pp.899-908, 2001.

J. Van-grevenynghe, S. Rion, L. Ferrec, E. , L. Vee et al., Polycyclic aromatic hydrocarbons inhibit differentiation of human monocytes into macrophages, J Immunol Baltim Md, vol.170, issue.5, pp.2374-81, 1950.

F. Robert-gangneux, A. Drogoul, O. Rostan, C. Piquet-pellorce, J. Cayon et al., Invariant NKT cells drive hepatic cytokinic microenvironment favoring efficient granuloma formation and early control of Leishmania donovani infection, PloS One, vol.7, issue.3, p.33413, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00696897

A. Sali and T. L. Blundell, Comparative protein modelling by satisfaction of spatial restraints, J Mol Biol, vol.234, issue.3, pp.779-815, 1993.

J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid et al., Scalable molecular dynamics with NAMD, J Comput Chem, vol.26, issue.16, pp.1781-802, 2005.

C. Steentoft, S. Y. Vakhrushev, H. J. Joshi, Y. Kong, M. B. Vester-christensen et al., Precision mapping of the human O-GalNAc glycoproteome through SimpleCell technology, EMBO J, vol.32, issue.10, pp.1478-88, 2013.

J. S. Chauhan, A. Rao, and G. Raghava, In silico platform for prediction of N-, O-and Cglycosites in eukaryotic protein sequences, PloS One, vol.8, issue.6, p.67008, 2013.

G. F. Späth, L. Epstein, B. Leader, S. M. Singer, H. A. Avila et al., Lipophosphoglycan is a virulence factor distinct from related glycoconjugates in the protozoan parasite Leishmania major, Proc Natl Acad Sci, vol.97, issue.16, pp.9258-63, 2000.

L. H. Franco, S. M. Beverley, and D. S. Zamboni, Innate Immune Activation and Subversion of Mammalian Functions by Leishmania Lipophosphoglycan, J Parasitol Res, 2012.

C. Forestier, Q. Gao, and G. Boons, Leishmania lipophosphoglycan: how to establish structure-activity relationships for this highly complex and multifunctional glycoconjugate?, Front Cell Infect Microbiol, vol.4, 2015.

M. A. Favila, N. S. Geraci, A. Jayakumar, S. Hickerson, J. Mostrom et al., Differential Impact of LPG-and PG-Deficient Leishmania major Mutants on the Immune Response of Human Dendritic Cells, PLoS Negl Trop Dis, vol.9, issue.12, 2015.

A. A. Capul, T. Barron, D. E. Dobson, S. J. Turco, and S. M. Beverley, Two Functionally Divergent UDP-Gal Nucleotide Sugar Transporters Participate in Phosphoglycan Synthesis in Leishmania major, J Biol Chem, vol.282, pp.14006-14023, 2007.

U. Gaur, M. Showalter, S. Hickerson, R. Dalvi, S. J. Turco et al., Leishmania donovani lacking the Golgi GDP-Man transporter LPG2 exhibit attenuated virulence in mammalian hosts, Exp Parasitol, vol.122, issue.3, pp.182-91, 2009.

D. Liu, C. Kebaier, N. Pakpour, A. A. Capul, S. M. Beverley et al., Leishmania major phosphoglycans influence the host early immune response by modulating dendritic cell functions, Infect Immun, vol.77, issue.8, pp.3272-83, 2009.

V. K. Prajapati, S. Sharma, M. Rai, B. Ostyn, P. Salotra et al., In vitro Susceptibility of Leishmania donovani to Miltefosine in Indian Visceral Leishmaniasis, Am J Trop Med Hyg, vol.89, issue.4, pp.750-754, 2009.

M. Mayer and B. Meyer, Characterization of Ligand Binding by Saturation Transfer Difference NMR Spectroscopy, Angew Chem Int Ed, vol.38, issue.12, pp.1784-1792, 1999.

J. Guégan and R. Daniellou, An Introduction to Drug Discovery by Probing Protein-Substrate Interactions Using Saturation Transfer Difference-Nuclear Magnetic Resonance (STD-NMR), J Chem Educ, vol.89, issue.8, pp.1071-1074, 2012.

C. Sgherri, A. Porta, S. Castellano, C. Pinzino, M. F. Quartacci et al., Effects of azole treatments on the physical properties of Candida albicans plasma membrane: A spin probe EPR study, Biochim Biophys Acta BBA -Biomembr, issue.1, pp.465-73, 1838.

R. Ogura, M. Sugiyama, T. Sakanashi, and T. Ninomiya, ESR Spin-Labeling Method of Determining Membrane Fluidity in Biological Materials, Kurume Med J, vol.35, issue.4, pp.171-82, 1988.

J. M. Harrington, C. Scelsi, A. Hartel, N. G. Jones, M. Engstler et al., Novel African Trypanocidal Agents: Membrane Rigidifying Peptides, PLoS ONE, vol.7, issue.9, 2012.

T. S. Tiuman, T. Ueda-nakamura, A. A. Nakamura, and C. V. , Cell death in amastigote forms of Leishmania amazonensis induced by parthenolide, BMC Microbiol, vol.14, p.152, 2014.

M. Amorim, G. Da-costa, R. M. Lopes, C. Bastos, and M. , Sesquiterpene lactones: adverse health effects and toxicity mechanisms, Crit Rev Toxicol, vol.43, issue.7, pp.559-79, 2013.

R. B. Vaughan, The romantic rationalist a study of Elie Metchnikoff, Med Hist, vol.9, issue.3, pp.201-216, 1965.

T. Geijtenbeek and S. I. Gringhuis, Signalling through C-type lectin receptors: shaping immune responses, Nat Rev Immunol, vol.9, issue.7, pp.465-79, 2009.

M. Y. Pepino, O. Kuda, D. Samovski, and N. A. Abumrad, Structure-Function of CD36 and Importance of Fatty Acid Signal Transduction in Fat Metabolism, Annu Rev Nutr, vol.34, pp.281-303, 2014.

B. O. Fabriek, C. D. Dijkstra, and T. K. Van-den-berg, The macrophage scavenger receptor CD163, Immunobiology, vol.210, issue.2-4, pp.153-60, 2005.

F. Hsieh, L. Turner, J. R. Bolla, C. V. Robinson, T. Lavstsen et al., The structural basis for CD36 binding by the malaria parasite, Nat Commun, vol.7, p.12837, 2016.

J. F. Turrens, Mitochondrial formation of reactive oxygen species, J Physiol, vol.552, issue.2, pp.335-379, 2003.

U. Förstermann and W. C. Sessa, Nitric oxide synthases: regulation and function, Eur Heart J, vol.33, issue.7, pp.829-866, 2012.

A. Broad, D. Jones, and J. A. Kirby, Toll-like receptor (TLR) response tolerance: a key physiological da age li itatio effe t a d a i po ta t pote tial oppo tu it fo therapy, Curr Med Chem, vol.13, issue.21, pp.2487-502, 2006.

D. M. Mosser and J. P. Edwards, Exploring the full spectrum of macrophage activation, Nat Rev Immunol, vol.8, issue.12, pp.958-69, 2008.

S. Gordon, Alternative activation of macrophages, Nat Rev Immunol, vol.3, issue.1, pp.23-35, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00474829

P. J. Murray, J. E. Allen, S. K. Biswas, E. A. Fisher, D. W. Gilroy et al., Macrophage activation and polarization: nomenclature and experimental guidelines, Immunity, vol.41, issue.1, pp.14-20, 2014.

A. Mantovani, A. Sica, and M. Locati, New vistas on macrophage differentiation and activation, Eur J Immunol, vol.37, issue.1, pp.14-20, 2007.

M. Podinovskaia and A. Descoteaux, Leishmania and the macrophage: a multifaceted interaction, Future Microbiol, vol.10, issue.1, pp.111-140, 2015.
URL : https://hal.archives-ouvertes.fr/pasteur-01123316

N. Moradin and A. Descoteaux, Leishmania promastigotes: building a safe niche within macrophages. Front Cell Infect Microbiol, vol.2, 2012.

R. Lodge and A. Descoteaux, Leishmania invasion and phagosome biogenesis, Subcell Biochem, vol.47, pp.174-81, 2008.

M. Jaguin, N. Houlbert, O. Fardel, and V. Lecureur, Polarization profiles of human M-CSFgenerated macrophages and comparison of M1-markers in classically activated macrophages from GM-CSF and M-CSF origin, vol.281, pp.51-61, 2013.

A. I. Saeed, V. Sharov, J. White, J. Li, W. Liang et al., TM4: a free, opensource system for microarray data management and analysis, BioTechniques, vol.34, issue.2, pp.374-382, 2003.

D. Szklarczyk, A. Franceschini, S. Wyder, K. Forslund, D. Heller et al., STRING v10: protein-protein interaction networks, integrated over the tree of life, Nucleic Acids Res, vol.43, pp.447-52, 2015.

, UniProt: the universal protein knowledgebase, Nucleic Acids Res, vol.45, issue.D1, pp.158-69, 2017.

H. W. Murray, A. D. Luster, H. Zheng, and X. Ma, Gamma Interferon-Regulated Chemokines in Leishmania donovani Infection in the Liver, Infect Immun, vol.85, issue.1, 2017.

A. Duque, G. Descoteaux, and A. , Macrophage Cytokines: Involvement in Immunity and Infectious Diseases. Front Immunol, 2005.
URL : https://hal.archives-ouvertes.fr/pasteur-01134410

A. Ives, S. Masina, P. Castiglioni, F. Prével, M. Revaz-breton et al., MyD88 and TLR9 dependent immune responses mediate resistance to Leishmania guyanensis infections, irrespective of Leishmania RNA virus burden, PloS One, vol.9, issue.5, p.96766, 2014.

M. Liu, F. Luo, C. Ding, S. Albeituni, X. Hu et al., Dectin-1 Activation by a Natural Product ?-Glucan Converts Immunosuppressive Macrophages into an M1-like Phenotype, J Immunol Baltim Md, vol.195, issue.10, pp.5055-65, 1950.

L. Lefèvre, A. Galès, D. Olagnier, J. Bernad, L. Perez et al., PPAR? Ligands Switched High Fat Diet-Induced Macrophage M2b Polarization toward M2a Thereby Improving Intestinal Candida Elimination, PLoS ONE, vol.5, issue.9, p.12828, 2010.

A. Galès, A. Conduché, J. Bernad, L. Lefevre, D. Olagnier et al., PPAR? controls Dectin-1 expression required for host antifungal defense against Candida albicans, PLoS Pathog, vol.6, issue.1, p.1000714, 2010.

G. J. Churchyard, G. Kaplan, D. Fallows, R. S. Wallis, P. Onyebujoh et al., Advances in Immunotherapy for Tuberculosis Treatment, Clin Chest Med, vol.30, issue.4, pp.769-82, 2009.

, Report of the expert consultation on immunotherapeutic interventions for tuberculosis Geneva, pp.29-31, 2007.

S. M. Holland, Cytokine therapy of mycobacterial infections, Adv Intern Med, vol.45, pp.431-52, 2000.

P. Chandrasekaran, N. Saravanan, R. Bethunaickan, and S. Tripathy, Malnutrition: Modulator of Immune Responses in Tuberculosis. Front Immunol, vol.8, 2017.

G. Solgi, A. Kariminia, K. Abdi, M. Darabi, and B. Ghareghozloo, Effects of combined therapy with thalidomide and glucantime on leishmaniasis induced by Leishmania major in BALB/c mice, Korean J Parasitol, vol.44, issue.1, pp.55-61, 2006.

E. E. Zijlstra, The immunology of post-kala-azar dermal leishmaniasis (PKDL). Parasit Vectors, vol.9, 2016.

O. Rostan, F. Robert-gangneux, M. Lambert, M. Samson, and J. P. Gangneux, Human hepatic stellate cells in primary culture are safe targets for Leishmania donovani, Parasitology, vol.140, issue.4, pp.471-81, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-00825803