K. R. Seddon, Ionic Liquids for Clean Technology, Chem. Technol. Biotechnol, vol.68, pp.351-356, 1997.

R. E. Baltus, B. H. Culbertson, S. Dai, H. Luo, and D. W. Depaoli, Low-Pressure Solubility of Carbon Dioxide in Room-Temperature Ionic Liquids Measured with a Quartz Crystal Microbalance, J. Phys. Chem. B, vol.108, pp.721-727, 2004.

H. Zhang, Q. Cai, and D. Ma, Amino Acid Promoted CuI-Catal zed C?N Bo d Fo atio et ee A l Halides a d Amines or N-Containing Heterocycles, J. Org. Chem, vol.70, pp.5164-5173, 2005.

D. Enders, O. Niemeier, and A. Henseler, Organocatalysis by N-Heterocyclic Carbenes, Chem. Rev, vol.107, pp.5606-5655, 2007.

T. Schulz, C. Torborg, B. Schäffner, J. Huang, A. Zapf et al., Practical imidazole-based phosphine ligands for selective palladium-catalyzed hydroxylation of aryl halides, Angew. Chem. Int. Ed. Engl, vol.48, pp.918-921, 2009.

R. Marcilla, M. De-geus, D. Mecerreyes, C. J. Duxbury, C. E. Koning et al., Enzymatic polyester synthesis in ionic liquids, Eur. Polym

J. , , vol.42, pp.1215-1221, 2006.

J. S. Wilkes, (b) Osada, I.; de Vries, H.; Scrosati, B.; Passerini, S. Ionic Liquid-Based Polymer Electrolytes for Battery Applications, Angew. Chem. Int. Ed, vol.4, pp.500-513, 2002.

H. Ohno, Molten salt type polymer electrolytes, Electrochim. Acta, vol.46, pp.1407-1411, 2001.

W. Adam, R. Curci, and J. Edwards, Dioxiranes: a new class of powerful oxidants, Acc. Chem. Res, vol.22, pp.205-211, 1989.

R. W. Murray, R. Jeyaraman, R. W. Murray, W. Adam, and L. Hadjarapoglou, Dioxiranes: synthesis and reactions of methyldioxiranes, Chemistry of dioxiranes. 12. Dioxiranes. Chem. Rev, vol.50, pp.1187-1201, 1985.

W. Adam, J. Bialas, and L. Hadjiarapoglou, A convenient Preparation of Acetone Solutions of Dimethyldioxirane, Chem. Ber, vol.124, 1991.

D. Taber, P. W. Dematteo, and R. A. Hassan, Simplified Preparation of Dimethyldioxirane (DMDO), Org. Synth, vol.90, pp.350-357, 2013.

M. Kazemnejadi, A. Shakeri, M. Nikookar, R. Shademani, and M. Mohammadi, Selective and metal-free epoxidation of terminal alkenes by heterogeneous polydioxirane in mild conditions, Royal Society open science, vol.5, 2018.

C. Dai, J. Zhang, C. Huang, and Z. Lei, Ionic Liquids in Selective Oxidation: Catalysts and Solvents, Chem. Rev, vol.117, pp.6929-6983, 2017.

K. Tong, K. Wong, T. H. Chan, K. Ho, K. Wong et al., Manganese/Bicarbonate-Catalyzed Epoxidation of Lipophilic Alkenes with Hydrogen Peroxide in Ionic Liquids, Tetrahedron, vol.5, pp.6650-6658, 2003.

S. Tangestaninejad, M. Moghadam, V. Mirkhani, I. Mohammadpoor-baltork, and R. Hajian, Efficient Epoxidation of Alkenes with Sodium Periodate Catalyzed by Manganese Porphyrins in Ionic Liquid: Investigation of Catalyst Reusability, Inorg. Chem. Commun, vol.13, pp.1501-1503, 2010.

L. Gharnati, O. Walter, U. Arnold, and M. Döring, Guanidinium-based Phosphotungstates and Ionic Liquids as Catalysts and Solvents for the Epoxidation of Olefins with Hydrogen Peroxide, Eur. J. Inorg. Chem, pp.2756-2762, 2011.

P. Zawadzki, K. Matuszek, W. Czardybon, and A. Chrobok, A Versatile Method of Epoxide Formation with the Support of Peroxy Ionic Liquids, New J. Chem, vol.39, pp.5282-5286, 2015.

J. Wang, Y. Zou, Y. Sun, M. Hemgesberg, D. Schaffner et al., Amphiphilic Porous Polyhedral Oligomeric Silsesquioxanes (POSS) Incorporated Polyoxometalate-paired Polymeric Hybrids: Interfacial Catalysts for Epoxidation Reactions, Chin. J. Catal, vol.35, issue.14, pp.3354-3364, 2014.

R. Hajian, S. Tangestaninejad, M. Moghadam, V. Mirkhani, I. Mohammadpoor-baltork et al., Green Oxidation of Alkenes in Ionic Liquid Solvent by Hydrogen Peroxide over High Performance Fe(III) Schiff base Complexes Immobilized on MCM-41, Z. Immobilization of Polyoxometalatebased Ionic Liquid on Carboxymethyl Cellulose for Epoxidation of Olefins. New J. Chem, vol.64, pp.3953-3959, 2011.

E. R. Nezhad, S. Sajjadifar, F. Heidarizadeh, and S. Karimian, Task specific ionic liquid as solvent, catalyst and reagent for regioselective ring opening of epoxides in water, Arab. J. Chem, 2015.

J. Sun, S. Fujita, and M. Arai, Development in the green synthesis of cyclic carbonate from carbon dioxide using ionic liquids

J. Sun, L. Wang, S. Zhang, Z. Li, X. Zhang et al., ZnCl2/phosphonium halide: An efficient Lewis acid/base catalyst for the synthesis of cyclic carbonate, J. Mol. Catal. A: Chem, vol.690, pp.295-300, 2005.

T. Patra, S. Nandi, S. K. Sahoo, and D. Maiti, Copper mediated decarboxylative direct C-H arylation of heteroarenes with benzoic acids

, Chem. Commun, vol.52, pp.1432-1435, 2016.

G. J. Perry, J. M. Quibell, and A. Panigrahi, Larrosa, I. Transition-Metal-Free Decarboxylative Iodination: New Routes for Decarboxylative Oxidative Cross-Couplings, J. Am. Chem. Soc, vol.139, pp.11527-11536, 2017.

Z. Fu, Z. Li, Y. Song, R. Yang, Y. Liu et al., Decarboxylative Halogenation and Cyanation of Electron-Deficient Aryl Carboxylic Acids via Cu Mediator as Well as Electron-Rich Ones through Pd Catalyst under Aerobic Conditions, J. Org. Chem, vol.81, pp.2794-2803, 2016.

T. Kubo, C. Katoh, K. Yamada, K. Okano, H. Tokuyama et al., A mild inter-and intramolecular amination of aryl halides with a combination of CuI and CsOAc, Tetrahedron, vol.64, pp.11230-11236, 2008.

H. Han, K. Liu, S. Feng, S. Zhou, W. Feng et al., Ionic liquid electrolytes based on multi-methoxyethyl substituted ammoniums and perfluorinated sulfonimides: Preparation, characterization, and properties, Electrochim. Acta, vol.55, pp.1221-1226, 2010.

H. Matsumoto, N. Terasawa, T. Umecky, S. Tsuzuki, H. Sakaebe et al., Low Melting and Electrochemically Stable Ionic Liquids Based on Asymmetric Fluorosulfonyl(trifluoromethylsulfonyl)amide, J. Phys. Chem. B, vol.37, pp.39-51, 2008.

H. Matsumoto, N. Terasawa, S. Tsuzuki, H. Sakaebe, . Charge et al., Anodic stability of aluminum current collectors in an ionic liquid based on the (fluorosulfonyl)(trifluoromethanesulfonyl)imide anion and its implication on high voltage supercapacitors, Trifluoromethylsulfonyl) Amide. ECS Trans, vol.33, pp.625-633, 2011.

K. Liu, Y. Zhou, H. Han, S. Zhou, W. Feng et al., Ionic liquids based on (fluorosulfonyl)(pentafluoroethanesulfonyl)imide with various oniums, Electrochim. Acta, vol.55, pp.7145-7151, 2010.

C. Liu, F. Xu, S. Feng, L. Zheng, H. Zhang et al., New hydrophobic ionic liquids based on (fluorosulfonyl)(polyfluorooxaalkanesulfonyl)imides with various oniums, Electrochim. Acta, vol.99, pp.262-272, 2013.

C. Qun, Method for preparing bis(fluorosulfonyl)imide onium salt. WO2015149502A1, 2015. (b) Poshusta, J. C.; Tracy, R. Process for producing hydrogen bis(fluorosulfonyl)imide. US20170183230A1, 2017.

R. Appel, M. Becke-goehring, G. Eisenhauer, J. Hartenstein, K. Imidobisschwefelsäurechlorid-;-xu et al., Effect of N-substituents on protonation chemistry of trichlorophosphazenes, Inorg. Chim. Acta, vol.95, pp.16-23, 1962.

M. Becke-goehring, E. Fluck, A. Failli, and T. Moeller, Imidodisulfuric Acid Chloride. Inorg. Synth, vol.8, pp.105-107, 1966.

Y. Gareau, J. Pellicelli, S. Laliberté, and D. Gauvreau, Oxidation of aromatic and aliphatic triisopropylsilanylsulfanyls to sulfonyl chlorides: preparation of sulfonamides, Tetrahedron Lett, vol.44, pp.7821-7824, 2003.

Z. Yang, Y. Zheng, and J. Xu, Simple Synthesis of Sulfonyl Chlorides from Thiol Precursors and Derivatives by NaClO2-Mediated Oxidative Chlorosulfonation, Synlett, vol.24, pp.2165-2169, 2013.

Z. Yang, B. Zhou, and J. Xu, Clean and Economic Synthesis of Alkanesulfonyl Chlorides from S-Alkyl Isothiourea Salts via Bleach Oxidative Chlorosulfonation, Synthesis, vol.46, pp.225-229, 2014.

Z. Yang and J. Xu, Convenient and Environment-Friendly Synthesis of Sulfonyl Chlorides from S-Alkylisothiourea Salts via N-Chlorosuccinimide Chlorosulfonation, Synthesis, vol.45, pp.1675-1682, 2013.

M. C. Monnee, M. F. Marijne, A. J. Brouwer, and R. M. Liskamp, A practical solid phase synthesis of oligopeptidosulfonamide foldamers, Tetrahedron Lett, vol.41, pp.7991-7995, 2000.

M. Kirihara, S. Naito, Y. Nishimura, Y. Ishizuka, T. Iwai et al., Oxidation of disulfides with electrophilic halogenating reagents: concise methods for preparation of thiosulfonates and sulfonyl halides, Tetrahedron, vol.70, pp.2464-2471, 2014.

T. Kataoka, T. Iwama, T. Setta, and A. Takagi, Preparation of Sulfonamides from Sodium Sulfonates: Ph3P ? Br2 and Ph3P ? Cl2 as a Mild Halogenating Reagent for Sulfonyl Bromides and Sulfonyl Chlorides, Synthesis, vol.4, pp.423-426, 1998.

G. Blotny, A new, mild preparation of sulfonyl chlorides, Tetrahedron Lett, vol.44, pp.1499-1501, 2003.

T. Okada, H. Matsumuro, T. Iwai, S. Kitagawa, K. Yamazaki et al., An Efficient Method for the Preparation of Sulfonyl Chlorides: Reaction of Disulfides or Thiols with Sodium Hypochlorite Pentahydrate (NaOCl·5H2O) Crystals, Chem. Lett, vol.44, pp.185-187, 2015.

K. Bahrami and . Tapc-, Promoted Synthesis of Sulfonyl Chlorides from Sulfonic Acids, Synlett, vol.18, 2011.

O. Chantarasriwong, D. O. Jang, and W. Chavasiri, A practical and efficient method for the preparation of sulfonamides utilizing Cl3CCN/PPh3, Tetrahedron Lett, vol.47, pp.7489-7492, 2006.

R. Pandya, T. Murashima, L. Tedeschi, and A. G. Barrett, Facile one-pot synthesis of aromatic and heteroaromatic sulfonamides

. Org, H. Chem-;-woolven, C. Gonzalez-rodriguez, I. Marco, A. L. Thompson et al., DABSO, as a Convenient Source of Sulfur Dioxide for Organic Synthesis: Utility in Sulfonamide and Sulfamide Preparation, Org. Lett, vol.68, pp.4876-4878, 2003.

P. Vedso, P. H. Olesen, and T. Hoeg-jensen, Synthesis of Sulfonyl Chlorides of Phenylboronic Acids. Synlett, vol.5, pp.892-894, 2004.

H. Meerwein, G. Dittmar, R. Göllner, K. Hafner, F. Mensch et al., Untersuchungen über aromatische Diazoverbindungen, II. Verfahren zur Herstellung Aromatischer Sulfonsäurechloride, Eine Neue Modifikation der Sandmeyerschen Reaktion, Chem. Ber, vol.90, pp.841-852, 1957.

. Mini-rev, Med. Chem, vol.5, pp.409-424, 2005.

E. G. , Ri g Nit oge a d Ke Bio ole ules

E. Klu, D. Brevet, C. Jouannin, C. Tourné-péteilh, J. Devoisselle et al., Self-encapsulation of a drugcontaining ionic liquid into mesoporous silica monoliths or nanoparticles by a sol-gel process, 1998.

. Adv, , vol.6, pp.82916-82923, 2016.

B. Narasimhan, D. Sharma, and P. Kumar, Biological importance of imidazole nucleus in the new millennium, Med. Chem. Res, vol.20, 2011.

H. Greenblatt,

D. J. Greenblatt, . Clin, and . Pharma, Liver injury associated with ketoconazole: Review of the published evidence, vol.54, pp.1321-1329, 2014.

D. Zampieri, M. G. Mamolo, L. Vio, E. Banfi, G. Scialino et al.,

, Synthesis, antifungal and antimycobacterial activities of new bis-imidazole derivatives, and prediction of their binding to P45014DM by molecular docking and MM/PBSA method, Bioorg. Med. Chem, vol.15, pp.7444-7458, 2007.

H. M. Refaat, Synthesis and anticancer activity of some novel 2-substituted benzimidazole derivatives, Eur. J. Med. Chem, vol.45, pp.2949-2956, 2010.

K. E-el, H. Koehle, and A. O. Ga-e, Jä kh, R. I idazole a d De i ati es. Ull a 's E lopedia of Industrial Chemistry, 2000.

D. Demberelnyamba, K. S. Kim, S. Choi, S. Y. Park, H. Lee et al., Synthesis and antimicrobial properties of imidazolium and pyrrolidinonium salts, Bioorg. Med. Chem, vol.12, pp.853-857, 2004.

K. R. Seddon, Ionic Liquids for Clean Technology, Chem. Technol. Biotechnol, vol.68, pp.351-356, 1997.

R. E. Baltus, B. H. Culbertson, S. Dai, H. Luo, and D. W. Depaoli, Low-Pressure Solubility of Carbon Dioxide in Room-Temperature Ionic Liquids Measured with a Quartz Crystal Microbalance, J. Phys

. Chem, , vol.108, 2004.

H. Zhang, Q. Cai, and D. Ma, Amino Acid Promoted CuI-Catal zed C?N Bo d Fo atio et ee A l Halides and Amines or N-Containing Heterocycles, J. Org. Chem, vol.70, pp.5164-5173, 2005.

D. Enders, O. Niemeier, and A. Henseler, Organocatalysis by N-Heterocyclic Carbenes, Chem. Rev, vol.107, pp.5606-5655, 2007.

T. Schulz, C. Torborg, B. Schäffner, J. Huang, A. Zapf et al., Practical imidazole-based phosphine ligands for selective palladium-catalyzed hydroxylation of aryl halides

, Angew. Chem. Int. Ed. Engl, vol.48, pp.918-921, 2009.

R. Marcilla, M. De-geus, D. Mecerreyes, C. J. Duxbury, C. E. Koning et al., Enzymatic polyester synthesis in ionic liquids, Eur. Polym. J, vol.42, pp.1215-1221, 2006.

J. S. Wilkes, (b) Osada, I.; de Vries, H.; Scrosati, B.; Passerini, S. Ionic Liquid-Based Polymer Electrolytes for Battery Applications, Angew. Chem. Int. Ed, vol.4, pp.500-513, 2002.

H. Ohno, Molten salt type polymer electrolytes, Electrochim. Acta, vol.46, pp.1407-1411, 2001.

P. Wasserscheid, T. Welton, J. Dupont, R. F. De-souza, and P. A. Suarez, Ionic Liquid (Molten Salt) Phase Organometallic Catalysis, Chem. Rev, vol.ISBNs, pp.3667-3692, 2002.

A. Aupoix, B. Pégot, and G. Vo-thanh, Synthesis of imidazolium and pyridinium-based ionic liquids and application of 1-alkyl-3-methylimidazolium salts as pre-catalysts for the benzoin condensation using solvent-free and microwave activation, Tetrahedron, vol.66, pp.1352-1356, 2010.

L. Hintermann, Expedient syntheses of the N-heterocyclic carbene precursor imidazolium salts

. Ipr·hcl, Beilstein J. Org. Chem, vol.3, 2007.

K. Hirano, S. Urban, C. Wang, and F. Glorius, A Modular Synthesis of Highly Substituted Imidazolium Salts, Org. Lett, vol.11, issue.4, pp.1019-1022, 2009.

P. De-frémont, N. Marion, and S. P. Nolan, Carbenes: Synthesis, properties, and organometallic chemistry, Coord. Chem. Rew, vol.253, pp.862-892, 2009.

A. Klapars, J. C. Antilla, X. Huang, S. L. Buchwald, A. Correa et al., A General and Efficient Copper Catalyst for the Amidation of Aryl Halides and the N-Arylation of Nitrogen Heterocycles, Beilstein J. Org. Chem, vol.123, pp.4326-4329, 2001.

I. P. Beletskaya and A. V. Cheprakov, The Complementary Competitors: Palladium and Copper in C-N Cross-Coupling Reactions, Organometallics, vol.31, pp.7753-7808, 2012.

G. Evano and N. Blanchard, Copper-Mediated Cross-Coupling Reactions, 2014.

M. M. Heravi, Z. Kheilkordi, V. Zadsirjan, M. Heydari, and M. Malmir, Buchwald-Hartwig reaction: An overwiew, J. Organomet. Chem, vol.861, pp.17-104, 2018.

S. Roy, M. J. Sarma, B. Kashyap, P. Phukan, C. Quick-chan-lam et al., ]I as a catalyst, Chem. Commun, vol.52, pp.1170-1173, 2016.

P. E. Fanta, . The, . Synthesis, and . Biaryls, (b) Fanta, P. E. The Ullmann Synthesis of Biaryls, Chem. Rev, vol.64, pp.9-21, 1964.

E. Sperotto, G. P. Van-klink, G. Van-koten, and J. G. De-vries, The mechanism of the modified Ullmann reaction, Dalton Trans, pp.39-10338, 2010.

F. Monnier, M. Taillefer, C. Catalytic, C. , and C. Ullmann, Type Coupling Reactions: Copper Makes a Difference, vol.47, pp.3096-3099, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00271866

D. Ma, Y. Zhang, J. Yao, S. Wu, and F. Tao, Accelerating Effect Induced by the Structure of ?

D. Ma, Q. Cai, H. Zhang, B. Zou, Q. Yuan et al., Mild Method for Ullmann Coupling Reaction of Amines and Aryl Halides, Amino Acid in the Copper-Catalyzed Coupling Reaction of Aryl Halides with ?-Amino Acids, vol.120, pp.2453-2455, 1998.

L. Kürti and B. Czako, Strategic Applications of Named Reactions in Organic Synthesis, Angew. Chem., Int. Ed, vol.46, pp.2598-2601, 2005.

J. Hassan, M. Sévignon, C. Gozzi, E. Schulz, and M. Lemaire, Aryl-Aryl Bond Formation One Century after the Discovery of the Ullmann Reaction, Chem. Rev, vol.102, pp.1359-1469, 2002.

J. Corbet, G. Mignani, F. Monnier, M. Taillefer, C. Catalytic et al., Selected Patented Cross-Coupling Reaction Technologies, Type Coupling Reactions, vol.106, pp.6954-6971, 2006.

M. Taillefer, H. Cristau, P. P. Cellier, J. Spindler, and . Env,

M. Taillefer, H. Cristau, P. P. Cellier, J. Spindler, and A. Ouali, patents Fr2833947-WO0353225 (Pr. Nb. Fr, 2840303.

J. C. Antilla, J. M. Baskin, T. E. Barder, and S. L. Buchwald, Copper-Diamine-Catalyzed N-Arylation of

P. Pyrroles, I. Indazoles, and T. , J. Org. Chem, vol.69, pp.5578-5587, 2004.

Z. Wang, W. Bao, and Y. Jiang, L-Proline promoted Ullmann-type reaction of vinyl bromides with imidazoles in ionic liquids, Chem. Commun, pp.2849-2851, 2005.

T. Jerphagnon, G. P. Van-klink, J. G. De-vries, G. Van-koten, and . Aminoarenethiolate-copper,

, Catalyzed Amination of Aryl Bromides, Org. Lett, vol.7, pp.5241-5244, 2005.

L. Zhu, G. Li, L. Luo, P. Guo, J. Lan et al., Highly Functional Group Tolerance in Copper-Catalyzed N-Arylation of Nitrogen-Containing Heterocycles under Mild Conditions, J. Org. Chem, vol.74, pp.2200-2202, 2009.

F. Xue, C. Cai, H. Sun, Q. Shen, J. Rui et al., Ketoimine as an efficient ligand for copper-catalyzed N-arylation of nitrogen-containing heterocycles with aryl halides, Int. J. Org. Chem, vol.49, pp.185-189, 2007.

A. R. Muci and S. L. Buchwald, Pratical Palladium Catalysts for C-N and C-O Bond Formation. Cross-Coupling Reactions, vol.219, pp.131-209, 2002.

M. Kosugi, M. Kameyama, and T. Migita, Palladium-Catalyzed aromatic amination of aryl bromides with N,N-di-ethylaminotributyltin, Chem. Lett, vol.12, pp.927-928, 1983.

A. S. Guram and S. L. Buchwald, Palladium-Catalyzed Aromatic Aminations with in situ Generated Aminostannanes, J. Am. Chem. Soc, vol.116, pp.7901-7902, 1994.

A. S. Guram, R. A. Rennels, and S. L. Buchwald, A simple Catalytic Method for the Conversion of Aryl Bromides to Arylamines, Angew. Chem. Int. Ed. Eng, vol.34, pp.1348-1350, 1995.

J. Louie and J. F. Hartwig, Mechanistic studies lead to coupling in the absence of tin reagents, Tetrahedron Lett, vol.36, pp.3609-3612, 1995.

S. Ueda, M. Su, and S. L. Buchwald, Completely N 1 -Selective Palladium-Catalyzed Arylation of Unsymmetric Imidazoles: Application to the Synthesis of Nilotinib, J. Am. Chem. Soc, vol.134, pp.700-706, 2012.

P. Ruiz-castillo and S. L. Buchwald, Applications of Palladium-Catalyzed C-N Cross-Coupling Reactions

, Chem. Rev, vol.116, pp.12564-12649, 2016.

D. M. Chan, K. L. Monaco, R. Wang, M. P. Winters, N. New et al.,

, Phenylboronic Acids and Cupric Acetate, Tetrahedron Lett, vol.39, pp.2933-2936, 1998.

P. Y. Lam, C. G. Clark, S. Saubern, J. Adams, M. P. Winters et al.,

C. Aryl/heteroaryl and . Bond, Cross-coupling Reactions via Arylboronic Acid/Cupric Acetate Arylation

P. Y. Lam, C. G. Clark, S. Saubern, J. Adams, K. M. Averill et al., Copper Promoted Aryl/Saturated Heterocyclic C-N Bond Cross-Coupling with Arylboronic Acid and Arylstannane, Tetrahedron Lett, vol.39, pp.674-676, 1998.

D. G. Hall, Boronic Acids: Preparation and Applications in Organic Synthesis Medicine and Materials, pp.978-981, 2011.

T. Leermann, F. R. Leroux, and F. Colobert, Highly Efficient One-Pot Access to Functionalized Arylboronic Acids via Noncryogenic Bromine/Magnesium Exchanges, Org. Lett, vol.13, pp.4479-4481, 2001.
URL : https://hal.archives-ouvertes.fr/hal-02305220

G. A. Molander, S. L. Trice, S. D. Dreher, G. A. Palladium-catalyzed-;-molander, S. L. Trice et al., Direct Boronic Acid Synthesis from Aryl Chlorides: A simplified Route to Diverse Boronate Ester Derivatives, Scope of the Palladium-Catalyzed Aryl Borylation Utilizing Bis-Boronic Acid. J. Am, vol.132, pp.17701-17703, 2010.

, Chem. Soc, vol.134, pp.11667-11673, 2012.

L. D. Marciasini, N. Richy, M. Vaultier, and M. Pucheault, Iron-Catalysed Borylation of Arenediazonium Salts to Give Access to Arylboron Derivatives via Aryl(amino)boranes at Room Temperature

. Synth, , vol.355, 2013.

T. Ishiyama, M. Murata, N. Miyaura, W. K. Palladium-;-chow, O. Y. Yuen et al., palladium-catalyzed borylation of aryl halides or triflates with dialkoxyborane: A novel and facile synthetic route to arylboronates, )-catalyzed Cross-Coupling Reaction of Alkoxydiboron with Haloarenes: A direct Procedure for Arylboronic Esters, vol.60, pp.5589-5591, 1995.

H. C. Brown, T. E. Cole, and . Organoboranes, A simple preparation of boronic esters from organolithium reagents and selected trialkoxyboranes, Organometallics, vol.31, pp.1316-1319, 1983.

T. Ishiyama, J. Takagi, K. Ishida, N. Miyaura, N. R. Anastasi et al., Mild Iridium-Catalyzed Borylation of Arenes. High Turnover Numbers, Room Temperature Reactions, and Isolation of a Potential Intermediate, J. Am. Chem. Soc, vol.124, pp.390-391, 2002.

G. A. Chotana, M. A. Rak, M. R. Smith, I. A. Mkhalid, J. H. Barnard et al., Sterically Directed Functionalization of Aromatic C-H Bonds: Selective Borylation Ortho to Cyano Groups in Arenes and Heterocycles, J. Am. Chem. Soc, vol.127, pp.890-931, 2005.

D. Qiu, L. Jin, Z. Zheng, H. Meng, F. Mo et al., Direct Conversion of Arylamines to Pinacol Boronates: A Metal-Free Borylation Process, Angew. Chem. Int. Ed, vol.78, pp.1846-1849, 2010.

A. P. Combs, S. Saubern, M. Rafalski, and P. Y. Lam, Solid Supported Aryl/heteroaryl C-N Crosscoupling Reactions, Tetrahedron Lett, vol.40, pp.1623-1626, 1999.

J. P. Collman and M. Zhong, An Efficient Diamine·Copper Complex-Catalyzed Coupling of Arylboronic Acids with Imidazoles, Org. Lett, vol.2, pp.1233-1236, 2000.

J. P. Collman, M. Zhong, L. Zeng, S. Costanzo, and . The, Cu(OH).TMEDA] 2 Cl 2 -Catalyzed Coupling of

, Arylboronic Acids with Imidazoles in Water, J. Org. Chem, vol.66, 2001.

J. Lan, L. Chen, X. Yu, J. You, and R. Xie, A simple copper salt catalysed the coupling of imidazole with arylboronic acids in protic solvent, Chem. Commun, pp.188-189, 2004.

B. Sreedhar, G. T. Venkanna, K. B. Kumar, and V. Balasubrahmanyam, Copper(I) Oxide Catalyzed N-Arylation of Azoles and Amines with Arylboronic Acid at Room Temperature under Base-Free Conditions, Synthesis, vol.5, pp.795-799, 2008.

M. L. Kantam, G. T. Venkanna, C. Sridhar, B. Sreedhar, and B. M. Choudary, An Efficient Base-Free N-Arylation of Imidazoles and Amines with Arylboronic Acids Using Copper-Exchanged Fluorapatite

, Org. Chem, vol.71, pp.9522-9524, 2006.

M. T. Wentzel, J. B. Hewgley, R. M. Kamble, P. D. Wall, and M. C. Kozlowski, Copper-Catalyzed N-Arylation of Hindered Substrates Under Mild Conditions, Adv. Synth. Catal, vol.351, pp.931-937, 2009.

C. Guan, Y. Feng, G. Zou, and J. Tang, Base-assisted, copper-catalyzed N-arylation of (benz)imidazoles and amines with diarylborinic acids, Tetrahedron, vol.73, pp.6906-6913, 2017.

W. Erb, A. Hellal, M. Albini, J. Rouden, and J. Blanchet, An Easy Route to (Hetero)arylboronic Acids
URL : https://hal.archives-ouvertes.fr/hal-01793145

, Chem. Eur. J, vol.20, pp.6608-6612, 2014.

N. Devarajan and P. Suresh, Framework-Copper-Catalyzed C_N Cross-Coupling of Arylboronic Acids with Imidazole: Convenient and Ligand-Free Synthesis of N-Arylimidazoles, ChemCatChem, vol.8, pp.2953-2960, 2016.

G. R. Newcome and W. W. Paudler, Contemporary Heterocyclic Chemistry: Syntheses, Reactions and Applications, 1982.

R. Milcent and F. Chau, Chimie organique hétérocyclique (Structures fondamentales), p.9782759801749, 2003.

M. Begtrup and P. Larsen, Alkylation, acylation and silylation of azoles, Acta Chem. Scand, vol.44, pp.1050-1057, 1990.

K. Hofmann, Imidazole and Its derivatives, Partie 1. The Chemistry of Heterocyclic Compounds

P. Wasserchied and T. Welton, Ionic Liquids in Synthesis, 2003.

P. Pillai, N. Pal, and A. Mandal, Synthesis, Characterization, Surface Properties and Micellization Behaviour of Imidazolium-based Ionic Liquids, J. Surfact. Deterg, vol.20, pp.1321-1335, 2017.

D. Meyer and T. Strassner, 1,2,4-Triazole-Based Tunable Aryl/Alkyl Ionic Liquids, J. Org. Chem, vol.76, pp.305-308, 2011.

S. Demir, Y. Damarhan, and I. Özdemir, Functionalized ionic liquids based on imidazolium cation: Synthesis, characterization and catalytic activity for N-alkylation reaction, J. Mol. Liq, vol.204, pp.210-215, 2015.

M. T. Garcia, I. Ribosa, L. Perez, A. Manresa, F. Comelles et al., Aggregation behavior and antimicrobial activity of ester-functionalized imidazolium-and pyridinium-based ionic liquids in aqueous solution, Eur. J. Inorg. Chem, vol.29, pp.1380-1386, 2004.

M. Kaji, K. Nakahara, T. Endo, F. Jin, X. Li et al., Synthesis of a bifunctional Epoxy Monomer Containing Biphenyl Moiety and Properties of Its Cured Polymer with Phenol Novolac, J. Appl. Polym. Sci, vol.74, pp.1-11, 1999.

M. Mahyari, A. Shaabani, Y. Bide, H. Kazerooni, and B. Nassernejad, Gold nanoparticles supported on supramolecular ionic liquid grafted graphene: a bifunctional catalyst for the selective aerobic oxidation of alcohols, RSC Adv, vol.3, pp.34604-34609, 2013.

D. Demberelnyamba, S. J. Yoon, and H. Lee, New Epoxide Molten Salts: Key Intermediates for Designing Novel Ionic Liquids, Chem. Lett, vol.33, pp.560-561, 2004.

L. E. Overman and L. A. Flippin, Facile aminolysis of epoxides with diethylaluminum amides

, Tetrahydron Lett, vol.22, pp.195-198, 1981.

M. Chini, P. Crotti, and F. Macchia, Metal salts as new catalysts for mild and efficient aminolysis of oxiranes, Angew. Chem. Int. Ed. Engl, vol.32, pp.487-496, 1978.

Z. Zhu, S. Xiang, Q. Chen, C. Chen, Z. Zeng et al., Novel low-melting salts with donor-acceptor substituents as targets for second-order nonlinear optical applications

. Commun, , pp.5016-5018, 2008.

H. Yoshida, S. Sugiura, and A. Kunai, Facile Synthesis of N-Alkyl-N -arylimidazolium Salts via Addition of Imidazoles to Arynes, Org. Lett, vol.4, pp.2767-2769, 2002.

V. V. Zhdankin, P. J. Stang, V. V. Zhdankin, and P. J. Stang, Recent Developments in the Chemistry of Polyvalent Iodine Compounds, Chem. Rev, vol.102, pp.5299-5358, 2002.

J. V. Crivello, J. H. Lam, and . Salts, A new Class of Photoinitiators for Cationic Polymerization, Macromolecules, vol.10, pp.1307-1315, 1997.

M. Ochiai, M. Toyonari, T. Sueda, Y. Kitagawa, D. Chen et al., Boron-iodine(III) exchange reaction: Direct synthesis of diaryliodonium tetraarylborates from (diacetoxyiodo)arenes by the reaction with alkali metal tetraarylborates in acetic acid, Tetrahedron Lett, vol.37, issue.96, pp.6709-6712, 1996.

M. A. Carroll, V. W. Pike, and D. A. Widdowson, New synthesis of diaryliodonium sulfonates from arylboronic acids, Tetrahedron Lett, vol.41, pp.5393-5396, 2000.

M. Yoshida, K. Osafune, and S. Hara, Facile synthesis of Iodonium Salts by Reaction of Organotrifluoroborates with p-Iodotoluene Difluoride, Synthesis, vol.10, pp.1542-1546, 2007.

T. Dohi, M. Ito, K. Morimoto, Y. Minamitsuji, N. Takenaga et al., Versatile direct dehydrative approach for diaryliodonium(III) salts in fluoroalcohol media, Chem. Commun, pp.4152-4154, 2007.

G. F. Koser, R. H. Wettach, C. S. Carman, and G. F. Koser, Regiospecific synthesis of aryl(2-furyl)iodonium tosylates, a new class of iodonium salts, from [hydroxy(tosyloxy)iodo]arenes and 2-(trimethylsilyl)furans in organic solvents, J. Org. Chem, vol.45, pp.2534-2539, 1980.

V. W. Pike, F. Butt, A. Shah, D. A. Widdowson, M. Zhang et al., Strategies for the Labeling of Halogen-Substituted Peroxisome Proliferator-Activated Receptor Ligands: Potential Positron Emission Tomography and Single Photon Emission Computed Tomography Imaging Agents, DOI: 10.1039/A809349K. (b), vol.18, pp.514-523, 1999.

M. Bielawski, M. Zhu, B. Olofsson, M. Shu, N. Jalalian et al., One-Pot Synthesis of Diaryliodonium Salts Using Toluenesulfonic Acid: A Fast Entry to Electron-Rich Diaryliodonium Tosylates and Triflates, Effi ie t a d Ge e al O e-Pot S thesis of Dia liodo iu Triflates: Optimization, Scope and Limitations, vol.349, pp.592-596, 2007.

E. A. Merritt, J. Malmgren, F. J. Klinke, and B. Olofsson, Synthesis of Diaryliodonium Triflates Using Environmentally Benign Oxidizing Agents, Synlett, vol.14, pp.2277-2280, 2009.

M. Bielawski, D. Aili, and B. Olofsson, Regiospecific One-Pot Synthesis of Diaryliodonium Tetrafluoroborates from Arylboronic Acids and Aryl Iodides, J. Org. Chem, vol.73, pp.5793-5800, 2008.

E. A. Merritt and B. Olofsson, Diaryliodonium Salts: A Journey From obscurity to Fame, Angew. Chem

. Int and . Ed, , vol.48, 2009.

T. Lv, Z. Wang, J. You, J. Lan, and G. Gao, Copper-Catalyzed Direct Aryl Quaternization of N-Substituted Imidazoles to Form Imidazolium Salts, J. Org. Chem, vol.78, 2013.

T. Lv, L. Yang, Y. Zhao, F. Song, J. Lan et al., One-pot synthesis of diarylimidazolium salts from 1H-imidazole, Chinese Chem. Lett, vol.24, pp.773-776, 2013.

S. Li, F. Yang, T. Lv, J. Lan, G. Gao et al., Synthesis of unsymmetrical imidazolium salts by direct quaternization of N-substituted imidazoles using arylboronic acids, Chem. Commun, vol.50, pp.3941-3943, 2014.

M. R. Grimmett, Imidazole and Benzimidazole Synthesis, pp.978-978, 1997.

I. Arduengo and A. J. , Preparation of 1,3-disubstituted imidazolium salts, vol.5077414, 1991.

I. Arduengo, A. J. Krafczyk, R. Schmutzler, R. Craig, H. A. Goerlich et al., Unverzagt, M. Imidazolylidenes, imidazolinylidenes and imidazolidines, vol.55, pp.14523-14534, 1999.

G. W. Parshall and S. D. Itell, Homogeneous Catalysis: The Applications and Chemistry of Catalysis by Soluble Transition Metal Complexes, 1992.

L. Jafarpour, E. D. Stevens, and S. P. Nolan, A sterically demanding nucleophilic carbene: 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene). Thermochemistry and catalytic application in olefin metathesis, J. Organomet. Chem, vol.606, pp.49-54, 2000.

L. Delaude, M. Szypa, A. Demonceau, and A. F. Noels, New In situ Generated Ruthenium Catalysts Bearing N-Heterocyclic Carbene Ligands for the Ring-Opening Metathesis Polymerization of Cyclooctene, Adv. Synth. Catal, vol.344, pp.749-756, 2002.

S. P. Nolan, Synthesis of 1,3 disubstituted imidazolium salts. WO2008036084A1, 2008.

L. Hintermann, Expedient syntheses of the N-heterocyclic carbene precursor imidazolium salts

. Ipr·hcl, Beilstein J. Org. Chem, vol.3, pp.1-5, 2007.

J. Suisse, S. Bellemin-laponnaz, L. Douce, A. Maisse-françois, and R. Welter, A new liquid crystal compound based on an ionic imidazolium salt, Tetrahedron Lett, vol.46, pp.4303-4305, 2005.

E. M. Higgins, J. A. Sherwood, A. G. Lindsay, J. Armstrong, R. S. Massey et al., pKas of the conjugate acids of N-heterocyclic carbenes in water, Chem. Commun, vol.47, 2011.

S. Meiries and S. P. Nolan, A New Synthetic Route to p-Methoxy-2,6-disubstituted Anilines and their Conversion into N-Heterocyclic Carbene Precursors, Synlett, vol.25, pp.393-398, 2014.

Y. Wan, W. Zhang, H. Cui, L. Zhang, Q. Zhou et al., Silica Sulfuric Acid-Catalyzed One-Pot Synthesis of 1,3-Diarylimidazolium Tetrafluoroborate, Asian J. Chem, vol.27, pp.3107-3110, 2015.

J. L. Krinsky, A. Martinez, C. Godard, S. Catillon, and C. Claver, Modular Synthesis of Functionalisable Alkoxy-Tethered N-Heterocyclic Carbene Ligands and an Active Catalyst for Buchwald-Hartwig Aminations, Adv. Synth. Catal, vol.356, pp.460-474, 2014.

F. Glorius, G. Altenhoff, R. Goddard, and C. Lehmann, Oxazolines as chiral building blocks for imidazolium salts and N-heterocyclic carbene ligands, Chem. Commun, pp.2704-2705, 2002.

L. Hintermann, Expedient syntheses of the N-heterocyclic carbene precursor imidazolium salts

. Ipr and . Hcl, IMes.HCl and IXy.HCl. Beilstein J. Org. Chem, vol.3, 2007.

R. S. Crees, M. L. Cole, L. R. Hanton, and C. J. Sumby, Synthesis of a Zinc(II) Imidazolium Dicarboxylate Ligand Metal-Organic Framework (MOF): a Potential Precursor to MOF-Tethered N-Heterocyclic Carbene Compounds, Inorg. Chem, vol.49, pp.1712-1719, 2010.

S. Sen, N. N. Nair, T. Yamada, H. Kitagawa, and K. P. Bharadwaj, High Proton Conductivity by a Metal-Organic Framework Incorporating Zn 8 O Clusters with Aligned Imidazolium Groups Decorating the Channels, J. Am. Chem. Soc, vol.134, pp.19432-19437, 2012.

S. Sen, S. Neogi, A. Aijaz, Q. Xu, and P. K. Bharadwaj, Construction of Non-Interpenetrated Charged Metal-Organic Frameworks with Doubly Pillared Layers: Pore Modification and Selective Gas Adsorption, Inorg. Chem, vol.53, pp.7591-7598, 2014.

J. Chun, I. G. Jung, H. J. Kim, M. Park, M. S. Lah et al., Concomitant Formation of N-Heterocyclic Carbene-Copper Complexes within a Supramolecular Network in the Self-Assembly of Imidazolium Dicarboxylate with Metal Ions, Inorg. Chem, vol.48, pp.6353-6355, 2009.

R. Kyan, K. Sato, N. Mase, and N. Watanabe,

, Imidazolylidene Catalysts through Substituent Effects on the N-Aryl Groups, Org. Lett, vol.19, pp.2750-2753, 2017.

H. Zhao, Y. Wang, and R. Wang, In situ formation of well-dispersed palladium nanoparticles immobilized in imidazolium-based organic ionic polymers, Chem. Commun, vol.50, pp.10871-10874, 2014.

S. Leuthäußer, V. Schmidts, C. M. Thiele, and H. Plenio, -Fa e Do o P ope ties of N-Hete o li Carbenes in Grubbs II Complexes, Chem. Eur. J, vol.14, p.206, 2008.

M. H. Dunn, N. Konstandaras, M. L. Cole, and J. B. Harper, Targeted and Systematic Approach to the Study of pK a Values of Imidazolium Salts in Dimethyl Sulfoxide, J. Org. Chem, vol.82, pp.7324-7331, 2017.

C. Fleckenstein, S. Roy, S. Leuthäußer, and H. Plenio, Sulfonated N-heterocyclic carbenes for Suzuki coupling in water, Chem. Commun, pp.2870-2872, 2007.

K. Belger, N. Krause, X. He, Y. Li, B. Ma et al., Sterically Encumbered Tetraarylimidazolium Carbene Pd-PEPPSI Complexes: Highly Efficient Direct Arylation of Imidazoles with Aryl Bromides under Aerobic Conditions, Eur. J. Org. Chem, vol.35, pp.2655-2663, 2015.

A. Beillard, X. Bantreil, T. Métro, J. Martinez, and F. Lamaty, A more sustainable and efficient access to IMes·HCl and IPr·HCl by ball-milling, Green Chem, vol.20, pp.964-968, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02326212

A. Wang, J. Xie, L. Wang, and Q. Zhou, Triaryl phosphine-functionalized N-heterocyclic carbene ligands for Heck reaction, Tetrahedron, vol.61, pp.259-266, 2005.

C. Yang, H. M. Lee, and S. P. Nolan, Highly Efficient Heck Reactions of Aryl Bromides with n-Butyl A late Mediated a Palladiu / Phosphi e?I idazoliu Salt S ste, Org. Lett, vol.3, pp.1511-1514, 2001.

N. Hadei, E. A. Ka-t-he, C. J. ;-o'b-ie, M. G. ;-o-ga, A. W. Waltman et al., Roo -Temperature Negishi Cross-Coupling of Unactivated Alkyl Bromides with Alkyl Organozinc Reagents Utilizing a Pd/ N-Heterocyclic Carbene Catalyst, Organometallics, vol.70, pp.3105-3107, 2004.

H. Clavier, L. Coutable, L. Toupet, J. Guillemin, and M. Mauduit, Design and synthesis of new bidentate alkoxy-NHC ligands for enantioselective copper-catalyzed conjugate addition, Chem. Eur. J, vol.21, pp.5237-5254, 2005.

A. Fürstner, M. Alcarazo, V. César, and C. W. Lehmann, Convenient, scalable and flexible method for the preparation of imidazolium salts with previously inaccessible substitution patterns

, Commun, pp.2176-2178, 2006.

Q. Xia, H. Ge, C. Ye, Z. Liu, and K. Su, Advances in Homogeneous and Heterogeneous Catalytic Asymmetric Epoxidation, Chem. Rev, vol.105, pp.1603-1662, 2005.

T. Katsuki and K. B. Sharpless, The first practical method for asymmetric epoxidation, J. Am. Chem

R. A. Soc-;-johnson and K. B. Sharpless, 3.2-Addition Reactions with Formation of Carbon-Oxygen Bonds: (ii) Asymmetric Methods of Epoxidation, Comp. Org. Syn, vol.102, pp.389-436, 1980.

T. Katsuki and V. Martin, Asymmetric Epoxidation of Allylic Alcohols: the Katsuki-Sharpless Epoxidation Reaction, Org. React, vol.48, pp.1-299, 1996.

W. Zhang, J. L. Loebach, S. R. Wilson, and E. N. Jacobsen, Enantioselective epoxidation of unfunctionalized olefins catalyzed by salen manganese complexes, Angew. Chem. Int. Ed. Engl, vol.112, pp.2060-2062, 1990.

N. Mizuno, . Yamaguchi, and K. Kamata, Epoxidation of olefins with hydrogen peroxide catalyzed by polyoxometalates, Coordination Chemistry Reviews, vol.249, pp.1944-1956, 2005.

R. A. Sheldon, J. A. Van-doorn, C. W. Schram, A. J. De-jong, L. F. Veiros et al., Asymmetric epoxidation of alkenes with tert-butyl hydroperoxide catalyzed by a novel chiral complex of manganese(III) containing a sugar based tridentate Schiff-base ligand, Catal. Commun, vol.31, issue.73, pp.1345-1348, 1973.

M. Ballester, B. Li, and C. Li, Darzens Reaction Rate Enhancement Using Aqueous Media Leading to a High Level of Kinetically Controlled Diastereoselective Synthesis of Steroidal Epoxyketones, J. Org. Chem, vol.55, pp.8271-8277, 1955.

E. J. Corey, M. D. Chaykovsky, and . Methylide,

D. Methylide, CH 3 ) 2 SCH 2 ). Formation and Application to Organic Synthesis, J. Am

A. Piccinini, S. A. Kavanagh, P. B. Connon, and S. J. Connon, Catalytic (Asymmetric) Methylene Transfer to Aldehydes, Chem. Soc, vol.87, pp.608-611, 1965.

S. Chandrasekhar, C. Narasihmulu, V. Jagadeshwar, and K. V. Reddy, The first Corey-Chaykovsky epoxidation and cyclopropanation in ionic liquids, Tetrahedron Lett, vol.44, 2003.

B. M. Trost, (b) Bäckwall, J-E. Modern Oxidation Methods. Wile -VCH Ve lag G H & Co. KGaA, Comprehensive Organic Synthesis, vol.7, pp.357-387, 1991.

Z. Wang, Comprehensive Organic Name Reactions and Reagents, 2010.

A. P. James, R. A. Johnstone, M. Mccarron, J. P. Sankey, and B. Trenbirth, 5-hydroperoxycarbonylphthalimide: a new reagent for epoxidation, Chem. Commun, vol.3, 1998.

W. M. Mcdanel, M. G. Cowan, T. K. Carlisle, A. K. Swanson, R. D. Noble et al., Cross-linked ionic resins and gels from epoxide-functionalized imidazolium ionic liquid monomers, Polymer, vol.55, pp.3305-3313, 2014.

W. M. Mcdanel, M. G. Cowan, J. A. Barton, D. L. Gin, and R. D. Noble, Effects of Monomer Structure on Curing Behavior, CO2 Solubility, and Gas Permeability of Ionic Liquid-Based Epoxy-Amine Resins and Ion-gels, Ind. Eng. Chem. Res, vol.54, pp.4396-4406, 2015.

A. Williamson and . Xlv, Theory of Etherification. Phylogical Magazine, Structure and Properties of Condensed Matter. 1850, vol.37, pp.350-356

R. J. Ouellette and J. D. Rawn, 16-Ethers and Epoxides. Organic Chemistry Study Guide, pp.277-297, 2015.

J. W. Bijsterbosch, A. Das, and F. P. Kerkhof, Clean technology in the production of epichlorohydrin, J. Cleaner Prod, vol.2, pp.90041-90049, 1994.

W. Adam, R. Curci, and J. Edwards, Dioxiranes: a new class of powerful oxidants, Acc. Chem. Res, vol.22, pp.205-211, 1989.

R. W. Murray and R. Jeyaraman, Dioxiranes: synthesis and reactions of methyldioxiranes, J. Org

R. W. Chem-;-murray, Chemistry of dioxiranes, vol.50, pp.2847-2853, 1985.

W. Dioxiranes-;-adam and L. Hadjarapoglou, Dioxiranes: Oxidation Chemistry Made Easy, Topics in Current Chemistry, vol.89, pp.1187-1201, 1989.

W. Adam, J. Bialas, and L. Hadjiarapoglou, A convenient Preparation of Acetone Solutions of Dimethyldioxirane, Chem. Ber, vol.124, 1991.

H. Mikula, D. Svatunek, D. Lumpi, F. Glöcklhofer, C. Hametner et al., Practical and Efficient Large-Scale Preparation of Dimethyldioxirane, Org. Process Res. Dev, vol.17, pp.313-316, 2013.

D. Taber, P. W. Dematteo, and R. A. Hassan, Simplified Preparation of Dimethyldioxirane (DMDO)

, Org. Synth, vol.90, pp.350-357, 2013.

M. Kazemnejadi, A. Shakeri, M. Nikookar, R. Shademani, and M. Mohammadi, Selective and metalfree epoxidation of terminal alkenes by heterogeneous polydioxirane in mild conditions, Royal Society open science, vol.5, 2018.

C. Dai, J. Zhang, C. Huang, and Z. Lei, Ionic Liquids in Selective Oxidation: Catalysts and Solvents

, Chem. Rev, vol.117, pp.6929-6983, 2017.

K. Tong and K. Wong,

K. Ho, K. Wong, T. H. Chan, S. Tangestaninejad, M. Moghadam et al., Mohammadpoor-Baltork, I.; Hajian, R. Efficient Epoxidation of Alkenes with Sodium Periodate Catalyzed by Manganese Porphyrins in Ionic Liquid: Investigation of Catalyst Reusability, Lipophilic Alkenes with Hydrogen Peroxide in Ionic Liquids, vol.5, pp.1501-1503, 2003.

L. Gharnati, O. Walter, U. Arnold, and M. Döring, Guanidinium-based Phosphotungstates and Ionic Liquids as Catalysts and Solvents for the Epoxidation of Olefins with Hydrogen Peroxide, Eur. J. Inorg

. Chem, , pp.2756-2762, 2011.

P. Zawadzki, K. Matuszek, W. Czardybon, and A. Chrobok, A Versatile Method of Epoxide Formation with the Support of Peroxy Ionic Liquids, New J. Chem, vol.39, pp.5282-5286, 2015.

K. Ho, W. Wong, L. Y. Lee, K. Lam, T. H. Chan et al.,

, Pyrrolidinium Ionic Liquid as a Robust and Efficient Catalytic System for Epoxidation of Aliphatic Terminal Alkenes, Chem. Asian J, vol.5, pp.1970-1973, 2010.

M. Herbert, A. Galindo, and F. Montilla, Catalytic Epoxidation of Cyclooctene using

, Molybdenum(VI) Compounds and Urea-hydrogen Peroxide in the Ionic Liquid [bmim]PF 6 . Catal

. Commun, , vol.8, pp.987-990, 2007.

M. Herbert, F. Montilla, R. Moyano, A. Pastor, E. Álvarez et al., Catalysed by Oxodiperoxomolybdenum Species in situ Generated from Molybdenum Trioxide and Urea-hydrogen Peroxide: The Synthesis and Molecular Structure of [Mo(O)(O 2 ) 2 (4-MepyO) 2 ]·H 2 O, Polyhedron, vol.28, pp.3929-3934, 2009.

M. Herbert, E. Álvarez, D. J. Cole-hamilton, F. Montilla, and A. Galindo, Olefin Epoxidation by Hydrogen Peroxide Catalysed by Molybdenum Complexes in Ionic Liquids and Structural Characterisation of the Proposed Intermediate Dioxoperoxomolybdenum Species, Chem. Commun, vol.46, pp.5933-5935, 2010.

L. Liu, C. Chen, X. Hu, T. Mohamood, W. Ma et al., A role of ionic liquid as an activator for efficient olefin epoxidation catalyzed by polyoxometalate, New J. Chem, vol.32, pp.283-289, 2008.

S. Zhang, G. Zhao, S. Gao, Z. Xi, and J. Xu, Secondary alcohols oxidation with hydrogen peroxide catalyzed by [n-C 16 H 33 N(CH 3 ) 3 ] 3 PW 12 O 40 : Transform-and-retransform process between catalytic precursor and catalytic activity species, J. Mol. Catal. A: Chem, vol.289, pp.22-27, 2008.

D. C. Duncan, R. C. Chambers, E. Hecht, and C. L. Hill, Mechanism and Dynamics in the H 3

, Catalyzed Selective Epoxidation of Terminal Olefins by H 2 O 2 . Formation, Reactivity, and Stability of { PO 4 [WO(O 2 ) 2 ] 4 } 3, J. Am. Chem. Soc, vol.117, pp.681-691, 1995.

H. Li, Z. Hou, Y. Qiao, B. Feng, Y. Hu et al., Peroxopolyoxometalate-based Room Temperature Ionic Liquid as a Self-separation Catalyst for Epoxidation of Olefins, Catal. Commun, vol.11, pp.470-475, 2010.

M. Vafaeezadeh and M. M. Hashemi, A Non-cyanide Route for Glutaric Acid Synthesis from Oxidation of Cyclopentene in the Ionic Liquid Media, Process Saf. Environ. Prot, vol.100, pp.203-207, 2016.

J. Wang, Y. Zou, Y. Sun, M. Hemgesberg, D. Schaffner et al., Amphiphilic Porous Polyhedral Oligomeric Silsesquioxanes (POSS) Incorporated Polyoxometalate-paired Polymeric Hybrids: Interfacial Catalysts for Epoxidation Reactions, Chin. J. Catal, vol.35, pp.17709-17715, 2014.

, Ionic Copolymer?polyoxometalate Catalysts with a Surfactant Function for Epoxidation Reactions

C. Chen, H. Yuan, H. Wang, Y. Yao, W. Ma et al., Highly Efficient Epoxidation of Allylic Alcohols with Hydrogen Peroxide Catalyzed by Peroxoniobate-based Ionic Liquids, An Efficient Recyclable Peroxometalate-based Polymer-immobilised Ionic Liquid Phase (PIILP) Catalyst for Hydrogen Peroxide-mediated Oxidation, vol.40, pp.3354-3364, 2011.

C. Yuan, Z. Huang, J. Chen, M. T. Goldani, A. Mohammadi et al., Green Oxidation of Alkenes in Ionic Liquid Solvent by Hydrogen Peroxide over High Performance Fe(III) Schiff base Complexes Immobilized on MCM-41, Catal. Commun, vol.14, pp.3953-3959, 2012.

E. R. Nezhad, S. Sajjadifar, F. Heidarizadeh, and S. Karimian, Task specific ionic liquid as solvent, catalyst and reagent for regioselective ring opening of epoxides in water, Arab. J. Chem, 2015.

J. Sun, S. Fujita, M. Arai, J. Sun, L. Wang et al., Development in the green synthesis of cyclic carbonate from carbon dioxide using ionic liquids, J. Organomet. Chem, vol.690, pp.3490-3497, 2005.

, J. Mol. Catal. A: Chem, vol.256, 2006.

V. Calo, A. Nacci, A. Monopoli, and A. Fanizzi, Cyclic carbonate formation from carbon dioxide and oxiranes in tetrabutylammonium halides as solvents and catalysts, Org. Lett, vol.4, pp.2561-2563, 2002.

H. Kawanami, A. Sasaki, K. Matsui, and Y. Ikushima, A rapid and effective synthesis of propylene carbonate using a supercritical CO 2 -ionic liquid system, Chem. Commun, vol.0, pp.896-897, 2003.

H. Yoshino, K. Nomura, S. Matsubara, K. Oshima, K. Matsumoto et al., A mild ring opening fluorination of epoxide with ionic liquid 1-ethyl-3-methylimidazorium oligo hydrogenfluoride (EMIMF(HF) 2.3 ), J. Fluorine Chem, vol.125, pp.1127-1129, 2004.

B. C. Ranu and S. Banerjee, Ionic Liquid as Reagent. A Green Procedure for the Regioselective Conversion of Epoxides to Vicinal-Halohydrins Using [AcMIm]X under Catalyst-and Solvent-Free Conditions, J. Org. Chem, vol.70, pp.4517-4519, 2005.

C. Kim, T. G. Traylor, and C. L. Perrin, MCPBA Epo idatio of Alke es: Rei estigatio of Co elatio between Rate and Ionization Potential, J. Am. Chem. Soc, vol.120, pp.9513-9516, 1998.

B. H. Lipshutz, S. Ghorai, and W. W. Leong, Deprotection of Homoallyl ( h Allyl) Derivatives of

A. Phenols, A. , and A. , J. Org. Chem, vol.74, pp.2854-2857, 2009.

N. E. Leadbeater, H. M. Torenius, H. Tye, M. Milen, A. Grün et al., Solid-Liquid Phase Alkylation of N-Heterocycles: Microwave-Assisted Synthesis as an Environmentally Friendly Alternative, Comb. Chem. High Throughput Screen, vol.7, pp.3-25, 2004.

J. S. Wilkes, J. A. Levisky, R. A. Wilson, and C. L. Hussey, Dialkylimidazolium chloroaluminate melts: a new class of room-temperature ionic liquids for electrochemistry, spectroscopy and synthesis

. Chem, , vol.21, pp.1263-1264, 1982.

K. Takao and S. Takao, Efficient and Versatile Anion Metathesis Reaction for Ionic Liquid Preparation by Using Conjugate Acid and Ortho Ester, Bull. Chem. Soc. Jpn, vol.87, pp.974-981, 2014.

, MCPBA (m-Chloroperoxybenzoic Acid) Technical Bulletin AL-116

W. Ogihara, S. Washiro, H. Nakajima, and H. Ohno, Effect of cation structure on the electrochemical and thermal properties of ion conductive polymers obtained from polymerizable ionic liquids

, Electrochim. Acta, vol.51, pp.2614-2619, 2006.

S. Cuadrado-prado, M. Domínguez-pérez, E. Rilo, S. García-garabal, L. Segade et al., Experimental measurement of the hygroscopic grade on eight imidazolium based ionic liquids, Fluid Phase Equilibria, vol.278, pp.36-40, 2009.

D. Mecerreyes, Polymeric ionic liquids: Broadening the properties and applications of polyelectrolytes, Prog. Polym. Sci, vol.36, 2011.

W. Qian, J. Texter, and F. Yan, Frontiers in poly(ionic liquid)s: syntheses and applications, Chem. Soc. Rev, vol.46, pp.1124-1159, 2017.

M. M. Obadia, E. Drockenmuller, and . Poly, 3-triazolium)s: a new class of functional polymer electrolytes, Chem. Commun, vol.2, issue.1, pp.2433-2450, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01396450

F. Graf and L. Hupfer, Preparation of 1-substituted imidazoles, US, vol.4450277, 1984.

M. Yang, K. Stappert, and A. Mudring, Bis-cationic ionic liquid crystals, J. mater. Chem. C, vol.2, pp.458-473, 2014.

C. Kim, T. G. Traylor, C. L. Perrin, N. K. Mcpba-;-jana, and J. G. Verkade, Phase-Vanishing Methodology for Efficient Bromination, Alkylation, Epoxidation, and Oxidation Reactions of Organic Substrates, J. Am. Chem. Soc, vol.120, pp.3787-3790, 1998.

, Architecture. Org. Lett, vol.13, pp.5164-5167, 2011.

M. Krannich, F. Heym, and A. Jess, Characterization of Six Hygroscopic Ionic Liquids with Regard to Their Suitability for Gas Dehydration: Density, Viscosity, Thermal and Oxidative Stability, Vapor Pressure, Diffusion Coefficient, and Activity Coefficient of Water, J. Chem. Eng. Data, vol.61, pp.1162-1176, 2016.

W. M. Mcdanel, M. G. Cowan, J. A. Barton, D. L. Gin, and R. D. Noble, Effects of Monomer Structure on Curing Behavior, CO2 Solubility, and Gas Permeability of Ionic Liquid-Based Epoxy-Amine Resins and Ion-gels, Ind. Eng. Chem. Res, vol.54, 2015.

C. Chardin, J. Rouden, S. Livi, and J. Baudoux,

, ethoxy]benzyl}imidazolium bis(Trifluoromethane)sulfonimide. Molbank, 2018.

M. A. Bigi and M. C. White, Terminal Olefins to Linear ?,?-Unsaturated Ketones: Pd(II)/Hypervalent Iodine Co-catalyzed Wacker Oxidation-Dehydrogenation, J. Am. Chem. Soc, vol.135, pp.7831-7834, 2013.

R. Liu, Z. Lu, X. Hu, J. Li, and X. Yang,

, Butenylated Arenes via Palladium-Catalyzed C-H Activation Process, Org. Lett, vol.17, pp.1489-1492, 2015.

Z. N. Yu, H. L. Tu, X. H. Wan, X. F. Chen, and Q. F. Zhou, Synthesis and Properties of Liquid Crystalline, Mol. Cryst. Liq. Cryst, vol.391, pp.41-55, 2002.

S. Weng, C. Ke, F. Chen, and Y. Lyu,

G. Lin, Transesterification catalyzed by iron(III) ?diketonate species, Tetrahedron, vol.67, pp.1640-1648, 2011.

G. Cahiez, O. Gager, A. Moyeux, and T. Delacroix, Efficient Procedures to Prepare Primary and Secondary Alkyl Halides from Alkanols via the Corresponding Sulfonates under Mild Conditions

. Synth, , vol.354, pp.1519-1528, 2012.

H. M. Lee, C. Y. Lu, C. Y. Chen, W. L. Chen, H. C. Lin et al., Palladium complexes with ethylene-bridged bis(N-heterocyclic carbene) for C-C coupling reactions, Tetrahedron, vol.60, pp.5807-5825, 2004.

C. P. Fredlake, J. M. Crosthwaite, D. G. Hert, S. N. Aki, and J. F. Brennecke, Thermophysical Properties of Imidazolium-Based Ionic Liquids, J. Chem. Eng. Data, vol.49, pp.954-964, 2004.

Y. Zhang, S. Patel, and N. Mainolfi, Copper-catalyzed decarboxylative C-N coupling for N-arylation

, DOI: 10.1039/C2SC20606D. heteroarenes with benzoic acids, vol.3, pp.1432-1435, 2012.

G. J. Perry, J. M. Quibell, and A. Panigrahi, Larrosa, I. Transition-Metal-Free Decarboxylative Iodination: New Routes for Decarboxylative Oxidative Cross-Couplings, J. Am. Chem. Soc, vol.139, pp.11527-11536, 2017.

Z. Fu, Z. Li, Y. Song, R. Yang, Y. Liu et al., Decarboxylative Halogenation and Cyanation of Electron-Deficient Aryl Carboxylic Acids via Cu Mediator as Well as Electron-Rich Ones through Pd Catalyst under Aerobic Conditions, J. Org. Chem, vol.81, pp.2794-2803, 2016.

T. Kubo, C. Katoh, K. Yamada, K. Okano, H. Tokuyama et al., A mild inter-and intramolecular amination of aryl halides with a combination of CuI and CsOAc, Tetrahedron, vol.64, pp.11230-11236, 2008.

J. Schiller, J. V. Alegre-requena, E. Marqués-lopez, R. P. Herrera, J. Casanovas et al., Self-assembled fibrillar networks of a multifaceted chiral squaramide: supramolecular multistimuli-responsive alcogels, Soft Matter, vol.12, pp.4361-4374, 2016.

R. Prohens, A. Portell, M. Font-bardia, A. Bauza, A. Frontera et al., A combined crystallographic and theoretical study of weak intermolecular interactions in crystalline squaric acid esters and amides, Chem. Eur. J, vol.19, pp.7533-7542, 2012.

M. M. Obadia, E. Drockenmuller, and . Poly, 3-triazolium)s: a neuw class of functional polymer electrolytes, Chem. Commun, vol.2, issue.1, pp.2433-2450, 2016.

H. L. Ricks-laskoski, A. W. Snow, H. Ohno, M. Yoshizawa, and W. Ogihara, (c) Ohno, H.; Ito, K. Room-Temperature Molten Salt Polymers as a Matrix for Fast Ion Conduction, J. Am. Chem. Soc, vol.128, pp.751-752, 1998.

J. Juger, F. Meyer, F. Vidal, C. Chevrot, D. Teyssié et al., Novel ion conductive matrix via dehydrocoupling polymerization of imidazolium-type ionic liquid and lithium 9, Tetrahedron Lett, vol.50, pp.109-114, 2006.

P. Bonhôte, A. Dias, N. Papageorgiou, K. Kalyanasundaram, M. Grätzel et al., Highly Conductive Ambient-Temperature Molten Salts, Inorg. Chem, vol.35, pp.1168-1178, 1996.

K. Ito, N. Nishina, and H. Ohno, Enhanced ion conduction in imidazolium-type molten salts

R. Marcilla, J. A. Blazquez, R. Fernandez, H. Grande, J. A. Pomposo et al., Novel polymeric ionic liquid membranes as solid polymer electrolytes with, Macromol. Chem. Phys, vol.45, pp.299-304, 2000.

. Membr and . Sci, , vol.366, pp.245-250, 2011.

M. T. Hunley, J. P. England, and T. E. Long, Influence of Counteranion on the Thermal and Solution Behavior of Poly(2-(dimethylamino)ethyl methacrylate)-Based Polyelectrolytes, Macromolecules, vol.43, pp.9998-10005, 2010.

Y. S. Vygodskii, O. A. Mel'nik, A. S. Shaplov, E. I. Lozinskaya, I. A. Malyshkina et al., Synthesis and ionic conductivity of plymer ionic liquids, Polym. Sci. Ser. A, vol.49, pp.256-261, 2007.

H. Ohno, S. Shaplov, R. Marcilla, and D. Mecerreyes, Recent Advances in Innovative Polymer Electrolytes based on Poly (ionic liquid)s, Electrochim. Acta, vol.175, pp.18-34, 2005.

H. Ohno, Y. Kohno, S. Saita, Y. Men, J. Yuan et al., Thermoresponsive polyelectrolytes derived from ionic liquids, Macromol. Symp, vol.6, pp.2163-2178, 2007.

Y. Kohno, H. Ohno, Y. Kohno, Y. Deguchi, and H. Ohno, Key Factors to Prepare Polyelectrolytes Showing Temperature-Sensitive Lower Critical Solution Temperature-type Phase Transitions in Water, Aust. J. Chem, vol.65, pp.91-94, 2012.

. Commun, , vol.48, pp.11883-11885, 2012.

A. S. Shaplov, P. S. Vlasov, M. Armand, E. I. Lozinskaya, D. O. Ponkratov et al., Design and s thesis of e a io i pol e i io i li uids ith high ha ge delo alizatio, Polym. Sci. Ser. B, vol.2, pp.122-138, 2011.

H. Han, K. Liu, S. Feng, S. Zhou, W. Feng et al., Ionic liquid electrolytes based on multi-methoxyethyl substituted ammoniums and perfluorinated sulfonimides: Preparation, characterization

H. Han, J. Nie, R. Kühnel, J. Reiter, S. Jeong et al., Anodic stability of aluminum current collectors in an ionic liquid based on the (fluorosulfonyl)(trifluoromethanesulfonyl)imide anion and its implication on high voltage supercapacitors, Electrochem. Commun, vol.55, pp.117-119, 2010.

P. Meister, V. Siozios, J. Reiter, S. Klamor, S. Rothermel et al., Dual-Ion Cells based on the Electrochemical Intercalation of Asymmetric Fluorosulfonyl-(trifluoromethanesulfonyl) imide Anions into Graphite, Electrochim. Acta, vol.130, pp.625-633, 2014.

K. Liu, Y. Zhou, H. Han, S. Zhou, W. Feng et al., Ionic liquids based on (fluorosulfonyl)(pentafluoroethanesulfonyl)imide with various oniums, Electrochim. Acta, vol.55, pp.7145-7151, 2010.

C. Liu, F. Xu, S. Feng, L. Zheng, H. Zhang et al., New hydrophobic ionic liquids based on (fluorosulfonyl)(polyfluorooxaalkanesulfonyl)imides with various oniums, Electrochim. Acta, vol.99, pp.262-272, 2013.

C. Qun, Method for preparing bis(fluorosulfonyl)imide onium salt. WO2015149502A1, 2015.

J. C. Poshusta and R. Tracy, Process for producing hydrogen bis(fluorosulfonyl)imide

R. Appel, M. Becke-goehring, G. Eisenhauer, J. Hartenstein, and . Imidobisschwefelsäurechlorid,

K. Xu and C. A. Angell, Effect of Nsubstituents on protonation chemistry of trichlorophosphazenes, Inorg. Chim. Acta, vol.95, pp.16-23, 1962.

M. Becke-goehring, E. Fluck, A. Failli, and T. Moeller, Imidodisulfuric Acid Chloride. Inorg. Synth, vol.8, pp.105-107, 1966.

M. Be-a and J. P?-hoda, A New Method of the Preparation of Imido-bis(sulfuric acid) Dihalogenide, (F, Cl), and the Potassium Salt of Imido-bis(sulfuric acid) Difluoride, Z. Anorg. Allg. Chem, vol.631, pp.55-59, 2005.

A. Hammami and B. Marsan, Process for preparing sulfonylimides and derivatives thereof, 2007.

R. Appel and G. Eisenhauer, Die Synthese des Imidobisschwefelsäurefluorids, HN(SO 2 F) 2 . Chem

. Ber, (b) Ruff, J. K. The Imidodisulfuryl Fluoride Ion, Inorg. Chem, vol.95, pp.1446-1449, 1962.

J. K. Ruff, M. Lustig, A. E. Pavlath, J. P. Guertin, and . Fluoride, Cesium Imidodisulfuryl Fluoride, and Fluoroimidodisulfuryl Fluoride: [Imidobis(Sulfuryl Fluoride), Cesium Imidobis(Sulfuryl Fluoride), and Fluoroirnidobis

. Inorg and . Synth, , vol.11, pp.138-143, 1968.

O. Hiemisch, D. Henschel, A. Blaschette, P. G. Jones, . Polysulfonylamine et al., Synthese eue T io ga oele e t IV -di fluo sulfo l a ide R 3 EN(SO 2 F) 2 (E = Si

B. Krumm, A. Vij, R. L. Kirchmeier, and J. M. Shreeve, Synthesis of Polyand the First Perfluoroalkyl-N(SO 2 F) 2 De i ati es: I p o ed Methods fo the P epa atio of XN(SO 2 F) 2 (X = H, Cl) and Single-Crystal Diffraction Studies of HN(SO 2 Cl) 2 , HN(SO 2 F) 2 , and CF 3 CH 2 N(SO 2 F) 2, Z. Anorg. Allg. Chem, vol.623, pp.6295-6303, 1997.

R. Appel and H. Rittersbacher, Ü e die Reaktio o Sulfu l-di-iso a at it Haloge o-s h efelsäu e . Ei einfaches Verfahren zur Herstellung von Fluorsulfonylisocyanat und I ido-is-s h efelsäu efluo id, Chem. Ber, vol.97, pp.849-851, 1964.

J. K. Ruff, Chemistry of trichlorophosphazosulfuryl chloride, Inorg. Chem, vol.6, pp.2108-2110, 1967.

R. P. Singh, J. L. Martin, and J. C. Poshusta, Synthesis of bis(fluorosulfonyl)imide. US 8377406B1, Boulder Ionics Corporation, 2013.

C. Michot, Sulphonyl-1,2,4-triazole salts. US7919629B2, 2011.

J. C. Poshusta, J. L. Martin, and R. P. Singh,

, US8722005B1, 2014.

Y. Liu, S. Zhou, H. Han, H. Li, J. Nie et al., Improved Performances of Nanosilicon Electrodes Using the Salt LiFSI: A Photoelectron Spectroscopy Study, Electrochim. Acta, vol.105, pp.9829-9842, 2013.

Y. Tominaga and K. Yamazaki, Fast Li-ion conduction in poly(ethylene carbonate)-based electrolytes and composites filled with TiO 2 nanoparticles, Chem. Commun, vol.50, pp.4448-4450, 2014.

P. Liu, Y. Du, L. Song, J. Shen, and Q. Li, Novel, potent, selective and cellular active ABC type PTP1B inhibitors containing (methanesulfonyl-phenyl-amino)-acetic acid methyl ester phosphotyrosine mimetic, Bioorg. Med. Chem, vol.23, pp.7079-7088, 2015.

R. Adams, C. S. Marvel, H. T. Clarke, G. S. Babcock, T. F. Murray et al.,

, Org. Synth, vol.1, 1921.

L. A. Ford, D. D. Desmarteau, and D. W. Smith, Perfluorocyclobutyl (PFCB) aromatic polyethers: Synthesis and characterization of new sulfonimide containing monomers and fluoropolymers

. Fluor and . Chem, , vol.126, pp.653-660, 2005.

H. Veisi, R. Ghorbani-vaghei, S. Hemmati, and J. Mahmoodi, Convenient One-Pot Synthesis of Sulfonamides and Sulfonyl Azides from Thiols Using N-Chlorosuccinimide, Synlett, vol.16, 2011.

H. Veisi, Convenient One-Pot Synthesis of Sulfonamides from Thiols and Disulfides Using 1,3-Dichloro-5,5-dimethylhydantoin (DCH), Bull. Korean Chem. Soc, vol.33, pp.383-386, 2012.

K. Bahrami, M. M. Khodaei, M. Soheilizad, and . Novel, Practical Synthesis of Sulfonyl Chlorides from Thiol and Disulfide Derivatives, Synlett, vol.17, pp.2773-2776, 2009.

K. Bahrami, M. M. Khodaei, and D. Khaledian, Synthesis of sulfonyl chlorides and thiosulfonates from H 2 O 2 -TiCl 4, Tetrahedron Lett, vol.53, pp.354-358, 2012.

K. Bahrami, M. M. Khodaei, and M. Soheilizad, Direct Conversion of Thiols to Sulfonyl Chlorides and Sulfonamides, J. Org. Chem, vol.74, pp.9287-9291, 2009.

S. W. Wright and K. N. Hallstrom, A Convenient Preparation of Heteroaryl Sulfonamides and Sulfonyl Fluorides from Heteroaryl Thiols, J. Org. Chem, vol.71, pp.1080-1084, 2006.

S. Madabhushi, R. Jillella, V. Sriramoju, and R. Singh, Oxyhalogenation of thiols and disulfides into sulfonyl chlorides/bromides using oxone-KX (X = Cl or Br) in water, Green Chem, vol.16, pp.3125-3131, 2014.

T. Okada, H. Matsumuro, T. Iwai, S. Kitagawa, K. Yamazaki et al., An Efficient Method for the Preparation of Sulfonyl Chlorides: Reaction of Disulfides or Thiols with Sodium Hypochlorite Pentahydrate (NaOCl·5H 2 O) Crystals, Chem. Lett, vol.44, pp.185-187, 2015.

A. R. Massah, S. Sayadi, and S. Ebrahimi, A green, mild and efficient one-pot method for the synthesis of sulfonamides from thiols and disulfides in water, vol.2, pp.6606-6616, 2012.

Y. Pu, A. Christesen, and Y. Ku, A simple and highly effective oxidative chlorination protocol for the preparation of arenesulfonyl chlorides, Tetrahedron Lett, vol.51, pp.418-421, 2010.

O. M. Lezina, S. A. Rubtsova, and A. V. Kuchin, New synthesis of alkane-and arylsulfonyl chlorides by oxidation of thiols and disulfides with chlorine dioxide, Russ. J. Org. Chem, vol.47, 2011.

C. Silva-cuevas, C. Perez-arrieta, L. A. Polindara-garcía, and J. A. Lujan-montelongo, Sulfonyl halide synthesis by thiol oxyhalogenation using NBS/NCS -iPrOH, Tetrahedron Lett, vol.58, pp.2244-2247, 2017.

M. Jereb and L. Hribernik, Conversion of thiols into sulfonyl halogenides under aerobic and metal-free conditions, vol.19, pp.2286-2295, 2017.

A. Nishiguchi, K. Maeda, and S. Miki, Sulfonyl Chloride Formation from Thiol Derivatives by N-Chlorosuccinimide Mediated Oxidation, Synthesis, vol.24, pp.4131-4134, 2006.

V. Percec, T. K. Bera, B. B. De, Y. Sanai, J. Smith et al., Synthesis of Functional Aromatic Multisulfonyl Chlorides and Their Masked Precursors, J. Org. Chem, vol.66, pp.2104-2117, 2001.

Y. Gareau, J. Pellicelli, S. Laliberté, and D. Gauvreau, Oxidation of aromatic and aliphatic triisopropylsilanylsulfanyls to sulfonyl chlorides: preparation of sulfonamides, Tetrahedron Lett, vol.44, pp.7821-7824, 2003.

Z. Yang, Y. Zheng, and J. Xu, Simple Synthesis of Sulfonyl Chlorides from Thiol Precursors and Derivatives by NaClO 2 -Mediated Oxidative Chlorosulfonation, Synlett, vol.24, pp.2165-2169, 2013.

Z. Yang, B. Zhou, and J. Xu, Clean and Economic Synthesis of Alkanesulfonyl Chlorides from S-Alkyl Isothiourea Salts via Bleach Oxidative Chlorosulfonation, Synthesis, vol.46, pp.225-229, 2014.

Z. Yang and J. Xu, Convenient and Environment-Friendly Synthesis of Sulfonyl Chlorides from S-Alkylisothiourea Salts via N-Chlorosuccinimide Chlorosulfonation, Synthesis, vol.45, pp.1675-1682, 2013.

M. C. Monnee, M. F. Marijne, A. J. Brouwer, and R. M. Liskamp, A practical solid phase synthesis of oligopeptidosulfonamide foldamers, Tetrahedron Lett, vol.41, pp.1387-1390, 2000.

M. Kirihara, S. Naito, Y. Nishimura, Y. Ishizuka, T. Iwai et al., Oxidation of disulfides with electrophilic halogenating reagents: concise methods for preparation of thiosulfonates and sulfonyl halides, Tetrahedron, vol.70, pp.2464-2471, 2014.

T. Kataoka, T. Iwama, T. Setta, and A. Takagi, Preparation of Sulfonamides from Sodium Sulfonates: Ph 3 P ? Br 2 and Ph 3 P ? Cl 2 as a Mild Halogenating Reagent for Sulfonyl Bromides and Sulfonyl Chlorides, Synthesis, vol.4, pp.423-426, 1998.

G. Blotny, T. Okada, H. Matsumuro, T. Iwai, S. Kitagawa et al., An Efficient Method for the Preparation of Sulfonyl Chlorides: Reaction of Disulfides or Thiols with Sodium Hypochlorite Pentahydrate (NaOCl·5H 2 O) Crystals, Tetrahedron Lett, vol.44, pp.185-187, 2003.

K. Bahrami and . Tapc-, Promoted Synthesis of Sulfonyl Chlorides from Sulfonic Acids, Synlett, vol.18, 2011.

O. Chantarasriwong, D. O. Jang, and W. Chavasiri, A practical and efficient method for the preparation of sulfonamides utilizing Cl 3 CCN/PPh 3, Tetrahedron Lett, vol.47, pp.7489-7492, 2006.

R. Pandya, T. Murashima, L. Tedeschi, and A. G. Barrett, Facile one-pot synthesis of aromatic and heteroaromatic sulfonamides, J. Org. Chem, vol.68, pp.8274-8276, 2003.

H. Woolven, C. Gonzalez-rodriguez, I. Marco, A. L. Thompson, M. C. Willis et al., DABSO, as a Convenient Source of Sulfur Dioxide for Organic Synthesis: Utility in Sulfonamide and Sulfamide Preparation, Org. Lett, vol.13, pp.4876-4878, 2011.

P. Vedso, P. H. Olesen, and T. Hoeg-jensen, Synthesis of Sulfonyl Chlorides of Phenylboronic Acids. Synlett, vol.5, pp.892-894, 2004.

H. Meerwein, G. Dittmar, R. Göllner, K. Hafner, F. Mensch et al., Untersuchungen über aromatische Diazoverbindungen, II. Verfahren zur Herstellung Aromatischer Sulfonsäurechloride, Eine Neue Modifikation der Sandmeyerschen Reaktion, Chem. Ber, vol.90, pp.841-852, 1957.

L. Malet-sanz, J. Madrzak, S. V. Leya, and I. R. Baxendale, Preparation of arylsulfonyl chlorides by chlorosulfonylation of in situ generated diazonium salts using a continuous flow reactor, Org. Biomol

. Chem, , vol.8, pp.5324-5332, 2010.

M. Májek, M. Neumeier, and A. J. Wangelin, Aromatic Chlorosulfonylation by Photoredox Catalysis, vol.10, pp.151-155, 2017.

B. Cornelio, M. Laronze-cochard, M. Ceruso, M. Ferraroni, G. A. Rance et al.,

A. Fontana, C. T. Supuran, and J. Sapi, 4-Arylbenzenesulfonamides as Human Carbonic Anhydrase Inhibitors (hCAIs): Synthesis by Pd Nanocatalyst-Mediated Suzuki-Miyaura Reaction, Enzyme Inhibition, and X-ray Crystallographic Studies, J. Med. Chem, vol.59, pp.721-732, 2016.

W. Zhang, J. Xie, B. Rao, and M. Luo, Iron-Catalyzed N-Arylsulfonamide Formation through Directly Using Nitroarenes as Nitrogen Sources, J. Org. Chem, vol.80, pp.3504-3511, 2015.

E. F. Flegeau, J. M. Harrison, and M. C. Willis, One-Pot Sulfonamide Synthesis Exploiting the Palladium-Catalyzed Sulfination of Aryl Iodides, Synlett, vol.27, pp.101-105, 2016.

G. M. Reddy, P. R. Reddy, V. Padmavathi, and A. Padmaja, Synthesis and Antioxidant Activity of a Ne Class of Mo o-a d Bis-Hete o les, Arch. Pharm. Chem. Life Sci, vol.346, pp.154-162, 2013.

M. Butschies, M. M. Neidhardt, M. Mansueto, S. Laschat, and S. Tussetschläger, Synthesis of guanidinium-sulfonimide ion pairs: towards novel ionic liquid crystals

. Chem, , vol.9, pp.1093-1101, 2013.

Y. Zhang, C. A. Lim, W. Cai, R. Rohan, G. Xu et al., Design and synthesis of a single ion conducting block copolymer electrolyte with multifunctionality for lithium ion batteries, RSC Adv, vol.4, pp.43857-43864, 2014.

H. Sakaguchi, F. Fujii, S. Sakai, Y. Kobayashi, and Y. Kita, Method of preparing sulfonimide or its salt

, US5723664A, 1998.

K. Matsumoto and T. Endo, Synthesis of Networked Polymers by Copolymerization of Monoepoxy-Substituted Lithium Sulfonylimide and Diepoxy-Substituted Poly(ethylene glycol), and Their Properties, J. Polym. Sci.Part A: Polym. Chem, vol.49, 2011.

K. Matsumoto and T. Endo, Design and synthesis of ionic-conductive epoxy-based networked polymers, Reactive & Functional Polymers, vol.73, 2013.

K. Matsumoto and T. Endo, Synthesis of Networked Polymers bu Copolymerization of Monoepoxy-Substituted Lithium Sulfonylimide and Diepoxy-Substitued Poly(ethylene glycol), and Their Properties, J. Polym. Sci. Part A: Polym. Chem, vol.49, 2011.

K. Matsumoto and T. Endo, Synthesis of Networked Polymers with Lithium Counter Cations from a Difunctional Epoxide Containing Poly(ethylene glycol) and an Epoxide Monomer Carrying a Lithium Sulfonate Salt Moiety, J. Polym. Sci. Part A: Polym. Chem, vol.48, pp.3113-3118, 2010.

T. Welton, Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis, Chem. Rev, vol.99, pp.2071-2083, 1999.

S. Keskin, D. Kayrak-talay, U. Akman, and Ö. Hortaçsu, A review of ionic liquids towards supercritical fluid applications, J. Supercrit. Fluids, vol.43, pp.150-180, 2007.

M. Be-a and J. P?-hoda, A Ne Method of the P epa atio of I ido-bis(sulfuric acid) Dihalogenide, (F, Cl), and the Potassium Salt of Imido-bis(sulfuric acid) Difluoride, Z. Anorg. Allg. Chem, vol.631, pp.55-59, 2005.

A. Berkessel, P. Christ, N. Leconte, J. Neudörfl, M. Schäfer et al., Synthesis and Structural Characterization of a New Class of Strong Chiral Bronsted Acids: 1,1'-Binaphthyl-2,2'-bis(sulfuryl)imides (JINGLEs), Eur. J. Org. Chem, vol.9, pp.431-433, 2007.

J. R. Harjani, J. Farrell, M. T. Garcia, R. D. Singer, P. J. Scammells et al., Mononuclear and dinuclear bromo bridged iridium(I) complexes with N-allyl substituted imidazolin-2-ylidene ligands, Inorg. Chim. Acta, vol.11, pp.4840-4846, 2006.

Z. Fei, D. Kuang, D. Zhao, C. Klein, W. H. Ang et al.,

, Supercooled Imidazolium Iodide Ionic Liquid as a Low-Viscosity Electrolyte for Dye-Sensitized Solar Cells, Inorg. Chem, vol.45, pp.10407-10409, 2006.

C. P. Owen, S. Dhanani, C. H. Patel, I. Shahid, and S. Ahmed, Synthesis and biochemical evaluation of a range of potent benzyl imidazole-based compounds as potential inhibitors of the enzyme complex 17?-hydroxylase/17,20-lyase (P450 17? ), Bioorg. Med. Chem. Lett, vol.16, pp.4011-4015, 2006.

W. Ku-osa-a, H. Ko-a-ashi, and T. Ka, Fuku a a, T. Total s thesis of ? -ephedradine A: an efficient construction of optically active dihydrobenzofuran-ring via C-H insertion reaction

, Tetrahedron, vol.60, pp.9615-9628, 2004.

S. Sen, N. N. Nair, T. Yamada, H. Kitagawa, P. K. Bharadwaj et al., High Proton Conductivity by a Metal-Organic Framework Incorporating Zn 8 O Clusters with Aligned Imidazolium Groups Decorating the Channels, J. Am. Chem. Soc, vol.134, pp.445-454, 2012.

S. Sen, S. Neogi, A. Aijaz, Q. Xu, and P. K. Bharadwaj, Construction of Non-Interpenetrated Charged Metal-Organic Frameworks with Doubly Pillared Layers: Pore Modification and Selective Gas Adsorption, Inorg. Chem, vol.53, pp.7591-7598, 2014.

C. Martín-santos, C. Jarava-barrera, S. Del-pozo, A. Parra, S. Díaz-tendero et al., Highly Enantioselective Construction of Tricyclic Derivatives by the Desymmetrization of Cyclohexadienones, Angew. Chem. Int. Ed, vol.53, pp.8184-8189, 2014.

D. Mecerreyes, W. Qian, J. Texter, and F. Yan, Polymeric ionic liquids: Broadening the properties and applications of polyelectrolytes, Prog. Polym. Sci, vol.36, pp.1124-1159, 2011.

P. Hapiot and C. Lagrost, Electrochemical Reactivity in Room-Temperature Ionic Liquids, Chem. Rev, vol.108, pp.2238-2264, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01151567

M. Yoshizawa, H. Ohno, M. Hirao, K. Ito, and H. Ohno, Preparation and polymerization of new organic molten salts; N-alkylimidazolium salt derivatives, Electrochim. Acta, vol.28, pp.1291-1294, 1999.

S. Gonzalez, M. V. Sauvant, J. Vallet, M. Armand, F. Endres et al., Composition durcissable gélifiée chimiquement à base de résines époxy-amine et de liquide ionique, Brevet WO2010037918. 8 avril 2010. (b), vol.8, pp.621-629, 2009.

J. M. Tarascon and M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature, vol.414, pp.359-367, 2001.

R. Dowbenko, C. C. Anderson, and W. Chang, Imidazole Complexes as Hardeners for Epoxy Adhesives, Ind. Eng. Chem. Prod. Res. Dev, vol.10, pp.344-351, 1971.

M. S. Heise and G. C. Martin, Curing mechanism and thermal properties of epoxy-imidazole systems, Macromolecules, vol.22, pp.99-104, 1989.

Y. R. Ham, S. H. Kim, Y. J. Shin, D. H. Lee, M. Yang et al., A comparison of some imidazoles in the curing of epoxy resin, J. Ind. Eng. Chem, vol.16, pp.556-559, 2010.

D. Lei, W. Ma, L. Wang, and D. Zhang, Preparation of 2-ethyl-4-methylimidazole derivatives as latent curing agents and their application in curing epoxy resin, J. Appl. Polym. Sci, vol.132, 2015.

K. Arimitsu, S. Fuse, K. Kudo, and M. Furutani, Imidazole derivatives as latent curing agents for epoxy thermosetting resins, Mater. Lett, vol.161, pp.408-410, 2015.

A. Sabra, T. M. Lam, J. P. Pascault, M. F. Grenier-loustalot, P. Grenier et al., (d) Charlesworth, J. An Analysis of the Substitution Effects Involved in Diepoxide-Diamine Copolymerization Reactions, J. Polym. Sci.: Polym. Chem. Ed, vol.28, pp.1357-1372, 1975.

, J. Appl. Polym. Sci, vol.43, pp.2267-2277, 1991.

C. C. Riccardi and R. J. Williams, A kinetic scheme for an amine-epoxy reaction with simultaneous etherification, J. Appl. Polym. Sci, vol.32, pp.3445-3456, 1986.

R. Mezzenga, L. Boogh, J. A. Manson, and B. Pettersson, Effects of the branching architecture on the reactivity of epoxy-amine groups, Macromolecules, vol.33, pp.4373-4379, 2000.

B. A. Roze-e-g, Ki eti s, the od a i s a d e ha is of ea tio s of epo oligo e s ith a i es. I : Du?ek K. eds Epo Resins and Composites II, Advances in Polymer Science, vol.75, 1986.

J. A. Ramos, N. Pagani, C. C. Riccardi, J. Borrajo, S. N. Goyanes et al., Cure kinetics and shrinkage model for epoxy-amine systems, Polymer, vol.46, pp.3323-3328, 2005.

C. Barrère and F. Dal-maso, Résines époxy réticulées par des polyamines : structure et propriétés, vol.52, p.59, 1997.

M. Leclere, Synthèse de (poly)électrolytes pour accumulateur Li-ion à haute densité d'énergie, 2016.

Y. Ye, J. Rick, and B. Hwang, Ionic liquid polymer electrolytes, J. Mater. Chem. A, vol.1, pp.2719-2743, 2013.

D. Mecerreyes, Applications of Ionic Liquids in Polymer Science and Technology, 2015.

G. Kim, G. B. Appetecchi, F. Alessandrini, and S. Passerini, Solvent-free, PYR1ATFSI ionic liquid-based ternary polymer electrolyte systems I. Electrochemical characterization, J. Power Sources, vol.171, pp.861-869, 2007.

G. Kim, S. S. Jeong, M. Xue, A. Balducci, M. Winter et al., Development of ionic liquidbased lithium battery prototypes, J. Power Sources, vol.199, pp.239-246, 2012.

A. Yongxin, C. Xinqun, Z. Pengjian, L. Lixia, and Y. Geping, Improved properties of polymer electrolyte by ionic liquid PP1.3TFSI for secondary lithium ion battery, J. Solid State Electrochem, vol.16, pp.383-389, 2012.

A. S. Fisher, M. B. Khalid, M. Widstrom, and P. Kofinas, Solid polymer electrolytes with sulfur based ionic liquid for lithium batteries, J. Power Sources, vol.196, pp.9767-9773, 2011.

J. Choi, G. Cheruvally, Y. Kim, J. Kim, J. Manuel et al., Poly(ethylene oxide)-based polymer electrolyte incorporating room-temperature ionic liquid for lithium batteries, Solid State Ionics, vol.178, pp.1235-1241, 2007.

S. Ferrari, E. Quartarone, P. Mustarelli, A. Magistris, M. Fagnoni et al., Lithium ion conducting PVdF-HFP composite gel electrolytes based on N-methoxyethyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)-imide ionic liquid, J. Power Sources, vol.195, pp.559-566, 2010.

C. Sirisopanaporn, A. Fernicola, and B. Scrosati, New ionic liquid-based membranes for lithium battery application, J. Power Sources, vol.186, pp.490-495, 2009.

P. Yang, W. Cui, L. Li, L. Liu, and M. An, Characterization and properties of ternary P(VdF-HFP)-LiTFSI-EMITFSI ionic liquid polymer electrolytes, Solid State Sciences, vol.14, pp.598-606, 2012.

P. Yang, L. Liu, L. Li, J. Hou, Y. Xu et al., Gel polymer electrolyte based on polyvinylidenefluoride-cohexafluoropropylene and ionic liquid for lithium ion battery, Electrochim. Acta, vol.115, pp.454-460, 2014.

K. Kimura, H. Matsumoto, J. Hassoun, S. Panero, B. Scrosati et al., Lithium Bis(trifluoromethanesulfonyl)imide-Ionic Liquid-Silica Fiber Composite Polymer Electrolyte for Lithium Batteries, Electrochim. Acta, vol.175, pp.134-140, 2015.

R. Bhandary and M. Schönhoff, Polymer effect on lithium ion dynamics in gel polymer electrolytes: Cationic versus acrylate polymer

, Electrochim. Acta, vol.174, pp.753-761, 2015.

T. Feng, F. Wu, C. Wu, X. Wang, G. Feng et al., A free-standing, self-assembly ternary membrane with high conductivity for lithiumion batteries. Solid State Ionics, vol.221, pp.28-34, 2012.

G. B. Appetecchi, G. Kim, M. Montanino, M. Carewska, R. Marcilla et al., De Meatza, I. Ternary polymer electrolytes containing pyrrolidinium-based polymeric ionic liquids for lithium batteries, J. Power Sources, vol.195, pp.3668-3675, 2010.

M. Li, L. Yang, S. Fang, S. Dong, S. Hirano et al., Polymer electrolytes containing guanidinium-based polymeric ionic liquids for rechargeable lithium batteries, J. Power Sources, vol.196, pp.8662-8668, 2011.

K. Yin, Z. Zhang, L. Yang, and S. Hirano, An imidazolium-based polymerized ionic liquid via novel synthetic strategy as polymer electrolytes for lithium ion batteries, J. Power Sources, vol.258, pp.150-154, 2014.

M. Li, L. Wang, B. Yang, T. Du, and Y. Zhang, Facile preparation of polymer electrolytes based on the polymerized ionic liquid poly((4-vinylbenzyl)trimethylammonium bis(trifluoromethanesulfonylimide)) for lithium secondary batteries, Electrochim. Acta, vol.123, pp.296-302, 2014.

J. Rymarczyk, M. Carewska, G. B. Appetecchi, D. Zane, F. Alessandrini et al., A novel ternary polymer electrolyte for LMP batteries based on thermal cross-linked poly(urethane acrylate) in presence of a lithium salt and an ionic liquid, Eur. Polym. J, vol.44, pp.2153-2161, 2008.

G. T. Kim, G. B. Appetecchi, M. Carewska, M. Joost, A. Balducci et al., UV cross-linked, lithium-conducting ternary polymer electrolytes containing ionic liquids, J. Power Sources, vol.195, pp.6130-6137, 2010.

D. M. Tigelaar, M. A. Meador, and W. R. Bennett, Composite Electrolytes for Lithium Batteries: Ionic Liquids in APTES Cross-Linked Polymers, Macromolecules, vol.40, pp.4159-4164, 2007.

D. Sotta, J. Bernard, and V. Sauvant-moynot, Application of electrochemical impedance spectroscopy to the study of ionic transport in polymer-based electrolytes, Prog. Org. Coat, vol.69, pp.207-214, 2010.

I. Stepniak, Compatibility of poly(bisAEA4)-LiTFSIeMPPipTFSI ionic liquid gel polymer electrolyte with Li4Ti5O12 lithium ion battery anode

, J. Power Sources, vol.247, pp.112-116, 2014.

I. Stepniak, E. Andrzejewska, A. Dembna, and M. Galinski, Characterization and application of N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide ionic liquid-based gel polymer electrolyte prepared in situ by photopolymerization method in lithium ion batteries, Electrochim. Acta, vol.121, pp.27-33, 2014.

C. Liao, X. Sun, and S. Dai, Crosslinked gel polymer electrolytes based on polyethylene glycol methacrylate and ionic liquid for lithium ion battery applications, Electrochim. Acta, vol.87, pp.889-894, 2013.

L. Libo, L. Jiesi, Y. Shuo, G. Shaowen, and Y. Peixia, Gel polymer electrolytes containing ionic liquids prepared by radical polymerization, Colloids and Surfaces A: Physicochem. Eng. Aspects, vol.459, pp.136-141, 2014.

J. Choi, Y. Kang, and D. Kim, Lithium polymer cell assembled by in situ chemical cross-linking of ionic liquid electrolyte with phosphazene-based cross-linking agent, Electrochim. Acta, vol.89, pp.359-364, 2013.

J. Shin, W. A. Henderson, and S. Passerini, PEO-Based Polymer Electrolytes with Ionic Liquids and Their Use in Lithium Metal-Polymer Electrolyte Batteries, J. Electrochem. Soc, vol.152, 2005.

J. Yuan and M. Antonietti, Poly(ionic liquid)s: Polymers expanding classical property profiles, Polymer, vol.52, 2011.

K. Vijayakrishna, S. K. Jewrajka, A. Ruiz, R. Marcilla, J. A. Pomposo et al., Synthesis by RAFT and ionic responsiveness of double hydrophilic block copolymers based on ionic liquid monomer units, Macromolecules, vol.41, pp.6299-6308, 2008.

N. V. Tsarevsky and K. Matyjaszewski, Green" atom transfer radical polymerization: From process design to preparation of well-defined environmentally friendly polymeric materials, Chem. Rev, vol.107, pp.2270-2299, 2007.

Y. S. Vygodskii, A. S. Shaplov, E. I. Lozinskaya, K. A. Lyssenko, D. G. Golovanov et al., Conductive polymer electrolytes derived from poly(norbornene)s with pendant ionic imidazolium moieties, Macromol. Chem. Phys, vol.209, pp.40-51, 2008.

J. C. Salamone, S. C. Israel, P. Taylor, and B. Snider, Synthesis and homopolymerization of vinylimidazolium salts, Polymer, vol.14, pp.90039-90045, 1973.

J. C. Salamone, S. C. Israel, P. Taylor, and B. Snider, Polyvinylimidazolium salts of varying hydrophilic-hydrophobic character, J. Polymer Sci.: Symposium, vol.45, pp.65-73, 1974.

U. P. Strauss, N. L. Gershfeld, U. P. Strauss, N. L. Gershfeld, and E. H. Crook, The Transition from Typical Polyelectrolyte to Polysoap. I. Viscosity and Solubilization Studies on Copolymers of 4-Vinyl-N-ethylpyridinium Bromide and 4-Vinyl-N-n-dodecylpyridinium Bromide, J. Phys. Chem, vol.58, pp.577-584, 1954.

H. Ohno, Design of ion conductive polymers based on ionic liquids, Macromol. Symp, pp.249-250, 2007.

H. Ohno and K. Ito, Room-temperature molten salt polymers as a matrix for fast ion conduction, Chem. Lett, vol.27, pp.751-752, 1998.

Y. Luo, J. Guo, C. Wang, D. Chu, W. Li et al., Novel anion exchange membranes based on polymerizable imidazolium salt for alkaline fuel cell applications, J. Mater. Chem, vol.5, pp.11340-11346, 2011.

B. Lin, L. Qiu, J. Lu, and F. Yan, Cross-linked alkaline ionic liquid-based polymer electrolytes for alkaline fuel cell applications

. Mater, B. Qiu, B. Lin, Z. ;. Si, L. Qiu et al., Alkaline imidazolium-and quaternary ammonium-functionalized anion exchange membranes for alkaline fuel cell applications, J. Power Sources, vol.22, pp.1040-1045, 2010.

E. Azaceta, R. Marcilla, A. Sanchez-diaz, E. Palomares, D. Mecerreyes et al., Synthesis and characterization of poly(1-vinyl-3-alkylimidazolium) iodide polymers for quasi-solid electrolytes in dye sensitized solar cells, Electrochimica Acta, vol.56, pp.42-46, 2010.

X. Chen, J. Zhao, J. Zhang, L. Qiu, D. Xu et al., Bis-imidazolium based poly(ionic liquid) electrolytes for quasi-solid-state dye-sensitized solar cells, J. Mater. Chem, vol.22, pp.18018-18024, 2012.

M. Li, L. Yang, S. Fang, S. Dong, S. Hirano et al., Polymerized ionic liquids with guanidinium cations as host for gel polymer electrolytes in lithium metal batteries, Polym. Int, vol.61, pp.259-264, 2012.

O. Green, S. Grubjesic, S. Lee, and M. A. Firestone, The design of polymeric ionic liquids for the preparation of functional materials, Polymer Reviews, vol.49, pp.339-360, 2009.

J. Lu, F. Yan, and J. Texter, Advanced applications of ionic liquids in polymer science, Prog. Polym. Sci, vol.34, pp.431-448, 2009.

J. Texter, Anion responsive imidazolium-based polymers, Macromol. Rapid Commun, vol.33, 2012.

M. Allen, M. D. Green, H. K. Getaneh, K. M. Miller, and T. E. Long, Tailoring charge density and hydrogen bonding of imidazolium copolymers for efficient gene delivery, Biomacromolecules, vol.12, 2011.

S. T. Hemp, M. H. Allen, M. D. Green, and T. E. Long, Phosphonium-containing polyelectrolytes for nonviral gene delivery, Biomacromolecules, vol.13, pp.231-238, 2012.

M. S. Lopez, -. Mecerreyes, D. Lopez-cabarcos, E. Lopez-ruiz, and B. , Amperometric glucose biosensor based on polymerized ionic liquid microparticles, Biosens. Bioelectron, vol.21, pp.2320-2328, 2006.

C. Xiao, X. Chu, B. Wu, H. Pang, X. Zhang et al., Polymerized ionic liquid-wrapped carbon nanotubes: the promising composites for direct electrochemistry and biosensing of redox protein, Talanta, vol.80, pp.1719-1724, 2010.

X. Chu, B. Wu, C. Xiao, X. Zhang, and J. Chen, A new amperometric glucose biosensor based on platinum nanoparticles/polymerized ionic liquid-carbon nanotubes nanocomposites, Electrochim. Acta, vol.55, pp.2848-2852, 2010.

Q. Zhao and J. L. Anderson, Highly selective GC stationary phases consisting of binary mixtures of polymeric ionic liquids, J. Sep. Sci, vol.33, pp.79-87, 2010.

Y. Hsieh, W. Ho, R. S. Horng, P. Huang, C. Hsu et al., Study of Anion Effects on Separation Phenomenon for the Vinyloctylimidazolium Based Ionic Liquid Polymer Stationary Phases in GC, Chromatographia, vol.66, pp.607-611, 2007.

J. López-darias, V. Pinoa, Y. Meng, and J. Anderson,

A. M. Afonsoa, Utilization of a benzyl functionalized polymeric ionic liquid for the sensitive determination of polycyclic aromatic hydrocarbons; parabens and alkylphenols in waters using solid-phase microextraction coupled to gas chromatography-flame ionization detection, J. Chromatogr. A, pp.7189-7197, 2010.

J. Li, H. Han, Q. Wang, X. Liu, and S. Jiang, Polymeric ionic liquid as a dynamic coating additive for separation of basic proteins by capillary electrophoresis, Anal. Chim. Acta, vol.674, pp.243-248, 2010.

Q. Zhao, M. Yin, A. P. Zhang, S. Prescher, M. Antonietti et al., Hierarchically Structured Nanoporous Poly(Ionic Liquid) Membranes: Facile Preparation and Application in Fiber-Optic pH Sensing, J. Am. Chem. Soc, vol.135, pp.5549-5552, 2013.

Y. Li, G. Li, X. Wang, Z. Zhu, H. Ma et al., Poly(ionic liquid)-wrapped single-walled carbon nanotubes for sub-ppb detection of CO2, Chem. Commun, vol.48, pp.8222-8224, 2012.

Z. Dai, R. D. Noble, D. L. Gin, X. Zhang, and L. Deng, Combination of ionic liquids with membrane technology: A new approach for CO2 separation, J. Membrane Sci, vol.497, pp.1-20, 2016.

M. L. Jue and R. P. Lively, Targeted gas separations through polymer membrane functionalization, React. Funct. Polym, vol.86, 2015.

S. Zulfiqar, M. I. Sarwar, and D. Mecerreyes, Polymeric ionic liquids for CO2 capture and separation: Potential, progress and challenges, Polym. Chem, vol.6, pp.6435-6451, 2015.

Y. Xie, Z. Zhang, T. Jiang, J. He, B. Han et al., CO2 Cycloaddition Reactions Catalyzed by an Ionic Liquid Grafted onto a Highly Cross-Linked Polymer Matrix, Angew. Chem. Int. Ed, vol.46, 2007.

Y. Xiong, Y. Wang, H. Wang, and R. Wang, A facile one-step synthesis to ionic liquid-based cross-linked polymeric nanoparticles and their application for CO2 fixation, Polym. Chem, vol.2, 2011.

D. Kuzmicz, P. Coupillaud, Y. Men, J. Vignolle, G. Vendraminetto et al., Functional mesoporous poly(ionic liquid)-based copolymer monoliths: From synthesis to catalysis and microporous carbon production, Polymer, vol.55, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01373031

J. Pinaud, J. Vignolle, Y. Gnanou, and D. Taton, Poly(N-heterocyclic-carbene)s and their CO2 Adducts as Recyclable Polymer-Supported Organocatalysts for Benzoin Condensation and Transesterification Reactions, Macromolecules, vol.44, 1900.
URL : https://hal.archives-ouvertes.fr/hal-00677776

P. Coupillaud, J. Pinaud, N. Guidolin, J. Vignolle, M. Fèvre et al., Poly(ionic liquid)s Based on Imidazolium Hydrogen Carbonate Monomer Units as Recyclable Polymer Supported N-Heterocyclic Carbenes: Use in Organocatalysis, J. Polym. Sci. Part A: Polym. Chem, vol.51, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00931021

P. Coupillaud, J. Vignolle, D. Mecerreyes, and D. Taton, Post-polymerization modification and organocatalysis using reactive statistical poly(ionic liquid)-based copolymers, Polymer, vol.55, pp.3404-3414, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01373014

X. Mu, J. Meng, Z. Li, and Y. Kou, Rhodium Nanoparticles Stabilized by Ionic Copolymers in Ionic Liquids: Long Lifetime Nanocluster Catalysts for Benzene Hydrogenation, J. Am. Chem. Soc, vol.127, pp.9694-9695, 2005.

J. Yang, L. Qiu, B. Liu, Y. Peng, F. Yan et al., Synthesis of Polymeric Ionic Liquid Microsphere/Pt Nanoparticle Hybrids for Electrocatalytic Oxidation of Methanol and Catalytic Oxidation of Benzyl Alcohol, J. Polym. Sci. Part A: Polym. Chem, vol.49, pp.4531-4538, 2011.

Q. Zhao, P. Zhang, M. Antonietti, and J. Yuan, Poly(ionic liquid) Complex with Spontaneous Micro-/Mesoporosity: Template-Free Synthesis and Application as Catalyst Support, J. Am. Chem. Soc, vol.134, pp.11852-11855, 2012.

Y. Gu, I. Favier, C. Pradel, D. L. Gin, J. Lahitte et al., High catalytic efficiency of palladium nanoparticles immobilized in a polymer membrane containing poly(ionic liquid) in Suzuki-Miyaura cross-coupling reaction, J. Membrane Sci, vol.492, pp.331-339, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01286001

Y. Gu, S. Zhang, L. Martinetti, K. H. Lee, L. D. Mcintosh et al., High Conductivity Ion Gels by Sequential Triblock Copolymer Self-Assembly and Chemical Cross-Linking, J. Am. Chem. Soc, vol.135, pp.9652-9655, 2013.

S. Saricilar, D. Antiohos, K. Shu, P. G. Whitten, K. Wagner et al., High strain stretchable solid electrolytes

, Electrochem. Commun, vol.32, pp.47-50, 2013.

A. A. Silva, S. Livi, D. B. Netto, B. G. Soares, J. Duchet et al., Nanostructured thermosets from ionic liquid building block-epoxy prepolymer mixtures, RSC Adv, vol.54, pp.28099-28106, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01019123

M. A. Rahmathullah, . Jeyarajasingam, B. Merritt, M. Vanlandingham, S. H. Mcknight et al., Room temperature ionic liquids as thermally latent initiators for polymerization of epoxy resins, Macromolecules, vol.42, pp.3219-3221, 2009.

K. Kowalczyk and T. Spychaj, Ionic liquids as convenient latent hardeners of epoxy resins, vol.48, pp.32-2725, 2003.

X. Andrieu, J. P. Boeuve, and T. Vicédo, New conducting polymer networks, J. Power Sources, vol.44, issue.93, p.80187, 1993.

W. Liang, T. Chen, and P. Kuo, Solide polymer electrolytes. VII. Preparation and ionic conductivity of gelled polymer electrolytes ased o pol eth le e gl ol digl id l ethe u ed ith ?,?-diamino poly(propylene oxide), J. Appl. Polym. Sci, vol.92, 2004.

B. Unal, R. J. Klein, K. R. Yocca, and R. C. Hedden, Influence of DGEBA crosslinking on Li + ion conduction in poly(ethyleneimine) gels. Polymer, vol.48, pp.6077-6085, 2007.

K. Matsumoto and T. Endo, Synthesis of Ion Conductive Networked Polymers Based on an Ionic Liquid Epoxide Having a Quaternary Ammonium Salt Structure, Macromolecules, vol.42, pp.4580-4584, 2009.

K. Matsumoto and T. Endo, Synthesis of Networked Polymers with Lithium Counter Cations from a Difunctional Epoxide Containing Poly(ethylene glycol) and an Epoxide Monomer Carrying a Lithium Sulfonate Salt Moiety, J. Polym. Sci. Part A: Polym. Chem, vol.48, pp.3113-3118, 2010.

K. Matsumoto and T. Endo, Synthesis of Networked Polymers by Copolymerization of Monoepoxy-Substituted Lithium Sulfonylimide and Diepoxy-Substituted Poly(ethylene glycol), and Their Properties, J. Polym. Sci. Part A: Polym. Chem, vol.49, 2011.

S. Washiro, M. Yoshizawa, H. Nakajima, and H. Ohno, Highly ion conductive flexible films composed of network polymers based on polymerizable ionic liquids, Polymer, vol.45, pp.1577-1582, 2004.

B. Altava, V. Compañ, A. Andrio, L. F. Del-castillo, S. Mollá et al., Conductive films based on composite polymers containing ionic liquids absorbed on crosslinked polymeric ionic-like liquids (SILLPs), Polymer, vol.72, pp.69-81, 2015.

A. S. Shaplov, D. O. Ponkratov, and P. Vlasov,

E. Lozinskaya,

L. V. Gumileva, C. Surcin, M. Morcrette, M. Armand, P. Aubert et al., Ionic semi-interpenetrating networks as a new approach for highly conductive and stretchable polymer materials, J. Mater. Chem. A, vol.3, pp.2188-2198, 2015.

T. K. Nguyen, S. Livi, S. Pruvost, B. G. Soares, and J. Duchet-rumeau, Ionic Liquids as Reactive Additives for the Preparation and Modification of Epoxy Networks, J. Polym. Sci., Part A: Polym. Chem, vol.52, pp.3463-3471, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01094040

W. M. Mcdanel, M. G. Cowan, T. K. Carlisle, A. K. Swanson, R. D. Noble et al., Cross-linked ionic resins and gels from epoxidefunctionalized imidazolium ionic liquid monomers, Polymer, vol.55, pp.3305-3313, 2014.

W. M. Mcdanel, M. G. Cowan, J. A. Barton, D. L. Gin, and R. D. Noble, Effect of Monomer Structure on Curing Behavior, CO2 Solubility, and Gas permeability of Ionic Liquid-Based Epoxy-Amine Resins and Ion-gels, Ind. Eng. Chem. Res, vol.54, pp.4396-4406, 2015.

V. R. Koch, C. Nanjundiah, G. B. Appetecchi, and B. Scrosati, The interfacial stability of Li with two new solvent-free ionic liquids: 1, 2-dimethyl-3-propylimidazolium imide and methide, J. Electrochem Soc, vol.142, pp.116-118, 1995.

N. Papageorgiou, Y. Athanassov, M. Armand, P. Bonhote, H. Pettersson et al., The performance and stability of ambient temperature molten salts for solar cell applications, J. Electrochem Soc, vol.143, pp.3099-3108, 1996.

M. Joo, J. Shin, J. Kim, J. B. You, Y. Yoo et al., One-Step Synthesis of Cross-Linked Ionic Polymer Thin Films in Vapor Phase and Its Application to an Oil/Water Separation Membrane, ACS Appl. Mater. Interfaces, vol.139, pp.13963-13974, 2017.

J. Yuan, D. Mecerreyes, and M. Antonietti, Poly(ionic liquid)s: An update, Prog. Polym. Sci, vol.38, 2013.

H. Tang, J. Tang, S. Ding, M. Radosz, and Y. Shen, Atom transfer radical polymerization of styrenic ionic liquid monomers and carbon dioxide absorption of the polymerized ionic liquids, J. Polym. Sci., Part A: Polym. Chem, vol.43, pp.1432-1443, 2005.

Y. Gu, T. P. Lodge, M. D. Green, J. H. Choi, K. I. Winey et al., Synthesis of imidazolium-containing ABA triblock copolymers: role of charge placement, charge density, and ionic liquid incorporation, J. Polym. Sci. Part A: Polym. Chem, vol.44, pp.1720-1726, 2011.

W. Liang, C. Kuo, C. Lin, and P. Kuo, Solid polymer electrolytes. IV. Preparation and characterization of novel crosslinked epoxy-siloxane polymer complexes as polymer electrolytes, J. Polym. Sci. A: Polym. Chem, vol.40, pp.1226-1235, 2002.

, Macromol. Rapid Commun, vol.37, pp.1124-1129, 2016.

C. Chardin, J. Rouden, S. Livi, and J. Baudoux, Dimethyldioxirane (DMDO) as a valuable oxidant for the synthesis of polyfunctional aromatic imidazolium monomers bearing epoxides, vol.19, pp.5054-5059, 2017.

C. R. Amaral, R. J. Rodriguez, F. G. Garcia, L. P. Junior, and E. A. Carvalho, Impact of Aliphatic Amine Comonomers on DGEBA Epoxy Network Properties, Polym. Eng. Sci, vol.54, pp.2132-2138, 2014.

L. Shechter, J. Wynstra, and R. P. Kurkjy, (b) Smith, I. T. The mechanism of the crosslinking of epoxide resins by amines, Ind. Eng. Chem, vol.48, pp.90010-90016, 1956.

H. Maka, T. Spychaj, R. Pilawka, H. Maka, T. Spychaj et al., Epoxy Resin/Ionic Liquid Systems: The Influence of Imidazolium Cation Size and Anion Type on Reactivity and Thermomechanical Properties, Ind. Eng. Chem. Res, vol.51, pp.192-198, 2012.

, époxy a été déterminée par la méthode de la goutte posée à l'aide d'un goniomètre GBX. A partir des mesures des angles de contact avec l'eau et le diiodométhane en tant que liquides sondes sur les échantillons, les composantes polaire et dispersive de l'énergie de surface ont été déterminées en utilisant la théorie

, Le spectre d'absorption infrarouge à transformée de Fourier a été obtenu à l'aide d'un

, Analyse mécanique dynamique (AMD)

, L'analyse mécanique dynamique est effectuée sur des échantillons rectangulaires avec une

, Caractérisations diélectriques La caractérisation diélectrique du réseau époxy a été effectuée sur un spectromètre diélectrique AMETEK Solartron analytical (Modulab XM MTS), équipé d'une sonde de température complexe *. La conductivité AC (? AC ) peut être extrapolée à partir d'une partie réelle de la conductivité ?'(?) = ? 0 ''(?) pour ? ?

, Etude du comportement à la réticulation du système époxyde-amine 5.1. Etude de la réactivité du système La réticulation du système époxy/amine

, Thermogramme DSC du mélange époxyde 45b/Jeffamine D230, vol.40

, Comme le montre le thermogramme de la Figure 40, l'utilisation de la Jeffamine D230 en tant qu'agent durcisseur du monomère LI (45b) a montré un pic exothermique à 103 °C comparé à une valeur de 120 °C classiquement obtenue dans le cas d'un système époxy-amine composé du diglycidyl éther de bisphénol A (DGEBA) (n=0,14) avec la même diamine aliphatique

, Dans ce cas présent, le monomère LI 45b semble particulièrement réactif comparé à la DGEBA. Concernant la largeur du pic exothermique comprise entre 50 et 195 °C dans le cas du monomère LI, elle est similaire à celle des systèmes époxy-amine classiques

. Néanmoins, En effet, l'exothermie du système DGEBA-D230 'état initial, l'énergie d'activation d'un système DGEBA/D230 diminue pour un degré de polymérisation (?)

C. S. Triantafillidis, P. C. Lebaron, and T. J. Pinnavaia, Homostructured Mixed I o ga i ?O ga i Io Cla s: A Ne App oa h to Epo Pol e ?E foliated Cla Na o o posites ith a Redu ed O ga i Modifie Co te t, Chem. Mater, vol.14, pp.4088-4095, 2002.

F. F. De-nograro, P. Guerrero, M. A. Corcuera, and I. Mondragon, Effects of chemical structure of hardener on curing evolution and on the dynamic mechanical behavior of epoxy resins, J. Appl. Polym. Sci, vol.56, pp.177-192, 1995.

H. Cai, P. Li, G. Sui, Y. Yu, G. Li et al., Curing kinetics study of epoxy resin/flexible amine toughness systems by dynamic and isothermal DSC, Thermochim. Acta, vol.473, pp.302-310, 2007.

, Température (°C)

T. K. Nguyen, S. Livi, B. G. Soares, S. Pruvost, J. Duchet-rumeau et al., Ionic liquids: A new route for the design of epoxy networks, ACS Sustainable Chem. Eng, vol.4, pp.481-490, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01396548

H. F. Almeida, J. A. Lopes-da-silva, M. G. Freire, and J. A. Coutinho, Surface tension and refractive index of pure and watersaturated tetradecyltrihexylphosphonium-based ionic liquids, J. Chem. Thermodyn, vol.57, pp.372-379, 2013.

P. J. Carvalho, C. M. Neves, and J. A. Coutinho, Surface tensions of bis (trifluoromethylsulfonyl)imide anion-based ionic liquids, J. Chem. Eng. Data, vol.55, pp.3807-3812, 2010.

L. C. Lins, S. Livi, J. Duchet-rumeau, J. Gérard, S. Livi et al., Phosphonium ionic liquids as new compatibilizing agents of biopolymer blends composed of poly(butylene-adipate-co-terephtalate)/poly(lactic acid) (PBAT/PLA), Green Chem, vol.5, pp.3758-3762, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01221473

. Finalement, ces résultats prometteurs permettent d'ouvrir de nouvelles perspectives dans la préparation de revêtements hydrophobes voire anti-corrosion par le remplacement des prépolymères époxydes communs

, Conductivité ionique du réseau époxy Depuis plusieurs années, beaucoup de travaux sont dédiés au développement d'électrolytes polymères gélifiés ou solides pour des applications énergétiques. 203 Ainsi, de nombreux polymères sont utilisés en tant qu'« hôte » tels que l'oxyde de polyéthylène (PEO), le poly(fluorure de vinylidène) (PVDF) et de nombreux PILs. 6b,204 Néanmoins, la majorité des électrolytes basés sur des

. Par-exemple and . Drockenmuller,

, S.m -1 à 30 °C. 207 Récemment, Porcarelli et al. ont synthétisé de nouveaux LI comme des monomères méthacryliques copolymérisés avec le poly(éthylène glycol) méthyl éther méthacrylate et ont obtenu des polymères électrolytes solides avec, °C. 206 D'autres auteurs ont mis au point un poly(diallylammonium) chlorure contenant 10 % en masse de LI et montrant une conductivité ionique de 9, pp.10-17

, Dans le but de déterminer le potentiel du nouveau réseau époxy 45b/D230 en tant qu'électrolyte polymère, la conductivité ionique de ce réseau a ainsi été mesurée à différentes températures en fonction de la fréquence, vol.47

X. Chen, J. Pan, Y. Zhao, M. Liao, and H. Peng, Gel Polymer Electrolytes for Electrochemical Energy Storage, Adv. Energy. Mater, vol.8, 2018.

A. M. Stephan and W. H. Meyer, Review on gel polymer electrolytes for lithium batteries, Eur. Polym. J, vol.42, pp.439-448, 1998.

J. Pitawala, J. Kim, P. Jacobsson, V. Koch, F. Croce et al., Phase behaviour, transport properties, and interactions in Li-salt doped ionic liquids. Faraday Discuss, J. Phys. Chem. Lett, vol.154, pp.2396-2401, 2011.

M. M. Obadia, B. P. Mudraboyina, A. Serghei, D. Montarnal, E. Drockenmuller et al., Reprocessing and Recycling of Highly Cross-Linked Ion-Conducting Networks through Transalkylation Exchanges of C-N Bonds, J. Am. Chem. Soc, vol.137, pp.658-662, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01155095

X. Wang, H. Zhu, G. M. Girard, R. Yunis, D. R. Macfarlane et al., Preparation and characterization of gel polymer electrolytes using poly(ionic liquids) and high lithium salt concentration ionic liquids, J. Mater. Chem. A, vol.5, pp.23844-23852, 2017.

L. Porcarelli, P. S. Vlasov, D. O. Ponkratov, E. I. Lozinskaya, D. Y. Antonov et al., Design of ionic liquid like monomers towards easy-accessible single-ion conducting polymer electrolytes, Eur. Pol. J, vol.107, pp.218-228, 2018.

H. Nmr-(meod-;-m,-4h, H. -ar-;-m,-6h, 4. , and H. , (m, 6H, H-4, H-4', H-5), 2.11-2.27 (m, 2H, H-2, H-2'), 1.87-1.98 (m, 2H, H-2, H-2'), 1.40-1.50 (m, 2H, H-6), 1.25-1.36 (m, 2H, 500 MHz) . -8.08 (m, 2H, N-CH), 7.83-7.86 (m, 2H, N-CH), vol.123, 1051.

H. Nmr-(meod, 500 MHz) . 5-8.09 (m,1H, N-CH), 7.84-7.88 (m, 1H, N-CH), vol.7

, m, 1H, H-2), 1.88-1.98 (m, 1H, H-2), 1.04 (t, J = 6.7 Hz, 6H, H-6). 13 C NMR (126 MHz, CDCl 3 . C q, vol.2

Q. and J. Cf-=-322, 3 (2C, C-1, C-5), vol.48, pp.60-63, 1052.

H. Nmr-;-m,-1h and N. , m, 6H, H-5), 2.24-2.32 (m, 1H, H-2, 131.3 (C ar ), 131.1 (C ar ), 129.8 (C q ) 124.5 (N-CH), vol.500, pp.5-12, 1051.

H. Nmr-;-m,-1h and N. , H-3, H-6), 3.32-3.69 (m, 10H, H-4, H-5, H-8), 2.01-2.26 (m, 2H, H-2), 1.18-1.32 (m, 3H, H-7). 13 C NMR MHz, MeOD . C ar ), 130.1 (C ar ), 500 MHz, MeOD) . -7.79 (m, 5H, H-ar), 7.05-7.14 (m, 1H, vol.2, 1052.

T. Muhizi, N. ;-n-(n, P. J. Glucosylamine-;-b)-kreke, L. J. Magid, J. C. Gee et al., 1 H and 13 C NMR Studies of Mi ed Cou te io , Cet lt i eth la o iu B o ide/Cet lt i eth la o iu Di hlo o e zoate, Su fa ta t Solutio s: The Intercalation of Aromatic Counterions, Synthesis and Evaluation of the Antimicrobial Activity of Dodecyl Trimethyl Ammonium, vol.30, pp.8506-8510, 1996.

H. Nmr, 87 (d, J = 2.02 Hz, 500 MHz, MeOD) 8.08 (d, J = 2.0 Hz, 1H, N-CH), vol.7

2. Hz, H. , 4. , and H. , 32 (s, 3H, CH 3 ), 2.15-2.24 (m, 1H, h-2), 1.89-2.02 (m, 1H, H-2). 13 C NMR MHz, 131.5 (C ar ), 131.3 (C ar ), 124.7 (N-CH), vol.2

F. Nmr-mhz, HRMS m/z (ESI) : calcd. for C 16 H 24 N 3 O 2 [M] + : 290.1869, found: 290.1873. IR spectrum of P 8 : HRMS m/z (ESI) : calcd. for C16H24N3O2, pp.290-1873, 1052.

, Reaction with the 2,2'-oxybis(ethylamine) First protocol : Monoepoxide 7a (0.3 g, 0.6056 mmol, 1.0 eq.) and 2,2'-oxybis(ethylamine, vol.33

1. and H. , (m, 2H, H-3), 3.46-3.64 (m, 4H, H-6), 2.73-2.92 (m, 4H, 13 C NMR (126 MHz, MeOD 136.4 (C q ), vol.131

. Ir, HRMS m/z (ESI) : calcd. for C 30 H 42 N 6 O 3, 1051.

H. Nmr, 56 (s, 1H, .23 (m, 4H, N-CH), 7. 96-8.01 (m, 4H, N-CH), 7.75-7.83 (m, 8H, H-ar, vol.500, pp.17-25

C. Nmr, 3 (C ar ), 131.2 (C ar ), vol.126

F. Nmr, IR (neat) cm -1 3422, Références Partie II, vol.471, 1132.

K. Matsumoto, B. Talukdar, and T. Endo, Preparation of networked polymer electrolytes by copolymerization of a methacrylate with an imidazolium salt structure and an ethyleneglycol dimethacrylate in the presence of lithium bis(trifluoromethanesulfonyl)imide, Angew. Chem. Int. Ed, vol.66, pp.500-513, 2011.

M. S. Whittingham, Lithium Batteries and Cathode Materials, Chem. Rev, vol.104, pp.4271-4301, 2004.

D. Djian, F. Alloin, S. Martinet, H. Lignier, and J. Y. Sanchez, Lithium-ion batteries with high charge rate capacity: Influence of the porous separator, J. Power Sources, vol.172, pp.416-421, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00386372

B. Scrosati and J. Garche, Lithium batteries: Status, prospects and future, J. Power Sources, vol.195, 2010.

Y. Saito, M. Okano, T. Sakai, and T. Kamada, Lithium Polymer Gel Electrolytes Designed to Control Ionic Mobility, J. Phys. Chem. C, vol.118, pp.6064-6068, 2014.

D. Mecerreyes, Polymeric ionic liquids: Broadening the properties and applications of polyelectrolytes, Prog. Polym. Sci, vol.36, 2011.

W. Qian, J. Texter, and F. Yan, Frontiers in poly(ionic liquid)s: syntheses and applications, Chem. Soc. Rev, vol.46, pp.1124-1159, 2017.

P. Hapiot and C. Lagrost, Electrochemical Reactivity in Room-Temperature Ionic Liquids, Chem. Rev, vol.108, pp.2238-2264, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01151567

M. Yoshizawa and H. Ohno, Molecular Brush Having Molten Salt Domain for Fast Ion Conduction

M. Hirao, K. Ito, and H. Ohno, Preparation and polymerization of new organic molten salts; N-alkylimidazolium salt derivatives, Electrochim. Acta, vol.28, pp.1291-1294, 1999.

S. Gonzalez, M. V. Sauvant, J. Vallet, M. Armand, F. Endres et al., Composition durcissable gélifiée chimiquement à base de résines époxy-amine et de liquide ionique, Brevet WO2010037918. 8 avril 2010. (b), vol.8, pp.621-629, 2009.

J. M. Tarascon and M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature, vol.414, pp.359-367, 2001.

P. Castan, Process for the manufacture of thermosetting synthetic resins by the polymerization of alkylene oxide derivatives. US Patent 2, 444, p.333, 1948.

P. Mohan, A Critical Review: The Modification, Properties, and Applications of Epoxy Resins

. Plast, . Technol, and . Eng, , vol.52, 2013.

B. Dewprashad and E. Eisenbraun, J. Fundamentals of Epoxy Formulation J. Chem. Educ, vol.71, pp.290-294, 1994.

H. Q. Pham, M. J. Marks, and . Epoxy-resins, Ullmann's Encyclopedia of Industrial Chemistry, 2012.

J. Pascault and R. J. Williams, Epoxy Polymers: New Materials and Innovations
URL : https://hal.archives-ouvertes.fr/hal-00452965

&. Verlag-gmbh, . Co, and . Kgaa, , 2010.

K. Shree-meenakshi and E. Pradeep-jaya-sudhan, Development of novel TGDDM epoxy nanocomposites for aerospace and high performance applications -Study of their thermal and electrical behaviour, Arabian J. Chem, vol.9, pp.79-85, 2016.

G. L. Hagnauer and P. J. Pearce, Effects of Impurities on Hydrolytic Stability and Curing Behavior

, Epoxy Resin Chemistry II, ACS Symposium Series, vol.221, pp.193-209, 1983.

D. Poussin, R. Daviaud, and M. Vignollet, Matériau composite comportant une matrice de réseaux polymériques interpénétrés. FR2577169A1, 1986.

F. Jin, X. Li, and S. Park, Synthesis and application of epoxy resins: A review, J. Ind. Eng. Chem, vol.29, pp.1-11, 2015.

F. G. Garcia, B. G. Soares, V. J. Pita, R. Sánchez, and J. Rieumont, Mechanical Properties of Epoxy Networks Based on DGEBA and Aliphatic Amines, J. Appl. Polym. Sci, vol.106, pp.2047-2055, 2007.

E. F. Oleinik and . Epoxy-ope-ties, Epoxy Resins and Composites IV. Advances in Polymer Science, vol.80, pp.49-99, 1986.

B. G. Soares, S. Livi, J. Duchet-rumeau, and J. Gerard, Synthesis and Characterization

/. Epoxy and . Mcdea, Networks Modified with Imidazolium-Based Ionic Liquids, Macromol. Mater. Eng, vol.296, 2011.

P. Moy, F. E. Karasz, and . Rowland, The Interactions of Water with Epoxy Resins, ACS Symposium Series, vol.127, pp.505-513, 1980.

H. Okuhira, T. Kii, M. Ochi, and H. Takeyama, Characterization of epoxy resin hardening with ketimine latent hardeners, J. Adhesion Sci. Technol, vol.18, pp.205-211, 2004.

B. K. Bordoloi, C. A. Khatri, and J. Zavatsky, Matériau adhésif ou d'étanchéité à durcissement latent activé par l'humidité. EP2049166B1, 2010.

K. Suzuki, N. Matsu-ura, H. Horii, Y. Sugita, F. Sanda et al., Diethyl Ketone-Based Imine as Efficient Latent Hardener for Epoxy Resin, J. Appl. Polym. Sci, vol.83, pp.1744-1749, 2002.

E. B. Ripplinger and R. H. Turakhia, Polyamide hardeners for epoxy resins, 2015.

O. Hara, . Tree-bond-co, and . Ldt, Three Bond Technical News Issued, 1990.

S. Hong and C. Kuo, The curing behavior of the epoxy/dicyandiamide (DICY)/2-methylimidazole system with intercalated clays. e-Polymers, vol.8, p.134, 2008.

I. Hamerton, Recent Developments in Epoxy Resins. iSmithers Rapra Publishing, vol.8, pp.889-3144, 1996.

A. Vàsquez, D. Bentaleb, R. J. Williams, and J. , Curing of diepoxides with ternary amines: Influence of temperature and initiator concentration on polymerization rate

A. Vàsquez, R. Deza, R. J. Williams, J. Matejka, L. Podzimek et al., Differences in structure growth in amine curing of diglycidyl ether of bisphenol a and N,N-diglycidylaniline epoxy resins: Bifunctional models, J. Polym. Sci. Part A: Polym. Chem, vol.43, pp.473-480, 1991.

L. Matejka and K. Du?ek, Curing of diglycidylamine-based epoxides with amines: kinetic model and simultion of structure development, J. Polym. Sci. Part A: Polym. Chem, vol.33, pp.461-472, 1995.

M. J. Galante, A. Vàsquez, and R. J. Williams, Macro-and microgelation in the homopolymerization of diepoxides initiated by tertiary amines, Polym. Bull, vol.27, pp.9-15, 1991.

R. Dowbenko, C. C. Anderson, and W. Chang, Imidazole Complexes as Hardeners for Epoxy Adhesives, Ind. Eng. Chem. Prod. Res. Dev, vol.10, pp.344-351, 1971.

M. S. Heise and G. C. Martin, Curing mechanism and thermal properties of epoxy-imidazole systems, Macromolecules, vol.22, pp.99-104, 1989.

Y. R. Ham, S. H. Kim, Y. J. Shin, D. H. Lee, M. Yang et al., A comparison of some imidazoles in the curing of epoxy resin, J. Ind. Eng. Chem, vol.16, pp.556-559, 2010.

D. Lei, W. Ma, L. Wang, and D. Zhang, Preparation of 2-ethyl-4-methylimidazole derivatives as latent curing agents and their application in curing epoxy resin, J. Appl. Polym. Sci, vol.132, 2015.

K. Arimitsu, S. Fuse, K. Kudo, and M. Furutani, Imidazole derivatives as latent curing agents for epoxy thermosetting resins, Mater. Lett, vol.161, pp.408-410, 2015.

Y. Wang, W. Liu, Y. Qiu, and Y. Wei, A One-Component, Fast-Cure, and Economical Epoxy Resin System Suitable for Liquid Molding of, Automotive Composite Parts. Materials, vol.11, 2018.

J. J. Harris and S. C. Temin, Proposed Mechanism for the Curing of Epoxy Resins with Amine-Lewis Acid Complexes or Salts, J. Appl. Polym. Sci, vol.10, pp.523-534, 1966.

A. Sabra, T. M. Lam, J. P. Pascault, M. F. Grenier-loustalot, P. Grenier et al., (d) Charlesworth, J. An Analysis of the Substitution Effects Involved in Diepoxide-Diamine Copolymerization Reactions, Cu i g of isphe ol a diglycidyl ether with diamines. J. Polym. Sci.: Symp, vol.28, pp.45-55, 1975.

K. Horie, H. Hiura, M. Sawada, I. Mita, and H. Kambe, Calorimetric investigation of polymerization reactions. III. Curing reaction of epoxides with amines, J. Polym. Sci.: Part 1-A, vol.8, pp.1357-1372, 1970.

X. Wang and J. K. Gillham, Competitive primary amine/epoxy and secondary amine/epoxy reactions: Effect on the isothermal time-to-vitrify, J. Appl. Polym. Sci, vol.43, pp.2267-2277, 1991.

C. C. Riccardi and R. J. Williams, A kinetic scheme for an amine-epoxy reaction with simultaneous etherification, J. Appl. Polym. Sci, vol.32, pp.3445-3456, 1986.

R. Mezzenga, L. Boogh, J. A. Manson, and B. Pettersson, Effects of the branching architecture on the reactivity of epoxy-amine groups, Macromolecules, vol.33, pp.4373-4379, 2000.

B. A. Rozenberg and . Kinetics, thermodynamics and mechanism of reactions of epoxy oligomers with a i es

. Springer, , 1986.

J. A. Ramos, N. Pagani, C. C. Riccardi, J. Borrajo, S. N. Goyanes et al., Cure kinetics and shrinkage model for epoxy-amine systems, Polymer, vol.46, pp.3323-3328, 2005.

C. Barrère and F. Dal-maso, Résines époxy réticulées par des polyamines : structure et propriétés

, , vol.52, pp.317-335, 1997.

A. Viretto and J. Galy, Development of Biobased Epoxy Matrices for the Preparation of Green Composite Materials for Civil Engineering Applications Macromol, Mater. Eng, 2018.

L. Bouteiller and P. Le-barny, Polymer-dispersed liquid crystals: Preparation, operation and application, Liq. Cryst, vol.21, pp.157-174, 1996.

A. D. Kiselev, O. V. Yaroshchuk, and L. Dolgov, Ordering of droplets and light scattering in polymer dispersed liquid crystal films, J. Phys.: Condens. Matter, vol.16, pp.7183-7197, 2004.

S. Eladak, T. Grisin, D. Moison, M. Guerquin, T. ;-n'tumba-byn et al., A new chapter in the bisphenol A story: bisphenol S and bisphenol F are not safe alternatives to this compound, Fertility and Sterility, vol.103, pp.11-21, 2015.

A. K. Rosenmai, M. Dybdahl, M. Pedersen, B. M. Van-vugt-lussenburg, E. B. Wedebye et al., Bio-Based Alternative to the Diglycidyl Ether of Bisphenol A with Controlled Materials Properties, Toxicological Sciences, vol.139, pp.1021-1031, 2014.

, EPOXY RESINS IN MARINE COATINGS ASSESSMENT OF POTENTIAL BPA EMISSIONS, 2015.

Y. Hao, F. Liu, and E. Han, Protection of epoxy coatings containing polyaniline modified ultra-short glass fibers, Progress in Organic Coatings, vol.76, 2013.

G. P. Johari, Electrical properties of epoxy resins, Chemistry and Technology of Epoxy Resins, pp.175-205, 1993.

F. El-tantawy, K. Kamada, and H. Ohnabe, In situ network structure, electrical and thermal properties of conductive epoxy resin-carbon black composites for electrical heater applications, Mater. Lett, vol.56, pp.112-126, 2002.

L. Yan, Plain concrete cylinders and beams externally strengthened with natural flax fabric reinforced epoxy composites, vol.49, pp.2083-2095

J. Cinquin, Les composites en aérospatiale. Techniques de l'ingénieur, traité plastiques et composites, 2002.

E. M. Petrie, Epoxy Adhesives Formulations, 2006.

K. Matsumoto and T. Endo, Confinement of Ionic Liquid by Networked Polymers Based on Multifunctional Epoxy Resins, Macromolecules, vol.41, pp.6981-6986, 2008.

G. R. Deen, T. T. Wei, and L. Fatt, New stimuli-responsive polyampholyte: Effect of chemical structure and composition on solution properties and swelling mechanism, Polymer, vol.104, pp.91-103, 2016.

C. Fasciani, S. Panero, J. Hassoun, and B. Scrosati, Novel configuration of poly(vinylidenedifluoride)-based gel polymer electrolyte for application in lithium-ion batteries, J. Power Sources, vol.294, pp.180-186, 2015.

Z. Xue, D. Heb, and X. Xie, Poly(ethylene oxide)-based electrolytes for lithium-ion batteries, J. Mater

, Chem. A, vol.3, 2015.

L. Yang, D. Wei, M. Xu, Y. Yao, and Q. Chen, Transferring Lithium Ions in Nanochannels: A PEO/Li + Solid Polymer Electrolyte Design, Angew. Chem. Int. Ed, vol.53, pp.3631-3635, 2014.

M. Armand, Polymer solid electrolytes -an overview, Solid State Ionics, pp.9-10, 1983.

M. Leclere, Synthèse de (poly)électrolytes pour accumulateur Li-ion à haute densité d'énergie, 2016.

Y. Ye, J. Rick, and B. Hwang, Ionic liquid polymer electrolytes, J. Mater. Chem. A, vol.1, pp.2719-2743, 2013.

D. Mecerreyes, Applications of Ionic Liquids in Polymer Science and Technology, 2015.

G. Kim, G. B. Appetecchi, F. Alessandrini, and S. Passerini, Solvent-free, PYR 1A TFSI ionic liquid-based ternary polymer electrolyte systems I. Electrochemical characterization, J. Power Sources, vol.171, pp.861-869, 2007.

G. Kim, S. S. Jeong, M. Xue, A. Balducci, M. Winter et al., Development of ionic liquid-based lithium battery prototypes, J. Power Sources, vol.199, pp.239-246, 2012.

A. Yongxin, C. Xinqun, Z. Pengjian, L. Lixia, and Y. Geping, Improved properties of polymer electrolyte by ionic liquid PP1.3TFSI for secondary lithium ion battery, J. Solid State Electrochem, vol.16, pp.383-389, 2012.

A. S. Fisher, M. B. Khalid, M. Widstrom, and P. Kofinas, Solid polymer electrolytes with sulfur based ionic liquid for lithium batteries, J. Power Sources, vol.196, pp.9767-9773, 2011.

J. Choi, G. Cheruvally, Y. Kim, J. Kim, J. Manuel et al., Poly(ethylene oxide)-based polymer electrolyte incorporating roomtemperature ionic liquid for lithium batteries, Solid State Ionics, vol.178, pp.1235-1241, 2007.

S. Ferrari, E. Quartarone, P. Mustarelli, A. Magistris, M. Fagnoni et al., Lithium ion conducting PVdF-HFP composite gel electrolytes based on N-methoxyethyl-Nmethylpyrrolidinium bis(trifluoromethanesulfonyl)-imide ionic liquid, J. Power Sources, vol.195, pp.559-566, 2010.

C. Sirisopanaporn, A. Fernicola, and B. Scrosati, New ionic liquid-based membranes for lithium battery application, J. Power Sources, vol.186, pp.490-495, 2009.

P. Yang, W. Cui, L. Li, L. Liu, and M. An, Characterization and properties of ternary P(VdF-HFP)-LiTFSI-EMITFSI ionic liquid polymer electrolytes, Solid State Sciences, vol.14, pp.598-606, 2012.

P. Yang, L. Liu, L. Li, J. Hou, Y. Xu et al., Gel polymer electrolyte based on polyvinylidenefluoride-co-hexafluoropropylene and ionic liquid for lithium ion battery, Electrochim. Acta, vol.115, pp.454-460, 2014.

K. Kimura, H. Matsumoto, J. Hassoun, S. Panero, B. Scrosati et al.,

. Quaternarypoly, Lithium Bis(trifluoromethanesulfonyl)imide-Ionic Liquid-Silica Fiber Composite Polymer Electrolyte for Lithium Batteries, Electrochim. Acta, vol.175, 2015.

R. Bhandary and M. Schönhoff, Polymer effect on lithium ion dynamics in gel polymer electrolytes: Cationic versus acrylate polymer, Electrochim. Acta, vol.174, 2015.

T. Feng, F. Wu, C. Wu, X. Wang, G. Feng et al., A free-standing, self-assembly ternary membrane with high conductivity for lithium-ion batteries. Solid State Ionics, vol.221, pp.28-34, 2012.

G. B. Appetecchi, G. Kim, M. Montanino, M. Carewska, R. Marcilla et al., De Meatza, I. Ternary polymer electrolytes containing pyrrolidinium-based polymeric ionic liquids for lithium batteries, J. Power Sources, vol.195, pp.3668-3675, 2010.

M. Li, L. Yang, S. Fang, S. Dong, S. Hirano et al., Polymer electrolytes containing guanidinium-based polymeric ionic liquids for rechargeable lithium batteries, J. Power Sources, vol.196, pp.8662-8668, 2011.

K. Yin, Z. Zhang, L. Yang, and S. Hirano, An imidazolium-based polymerized ionic liquid via novel synthetic strategy as polymer electrolytes for lithium ion batteries, J. Power Sources, vol.258, pp.150-154, 2014.

M. Li, L. Wang, B. Yang, T. Du, and Y. Zhang, Facile preparation of polymer electrolytes based on the polymerized ionic liquid poly((4-vinylbenzyl)trimethylammonium bis(trifluoromethanesulfonylimide)) for lithium secondary batteries, Electrochim. Acta, vol.123, pp.296-302, 2014.

J. Rymarczyk, M. Carewska, G. B. Appetecchi, D. Zane, F. Alessandrini et al., A novel ternary polymer electrolyte for LMP batteries based on thermal cross-linked poly(urethane acrylate) in presence of a lithium salt and an ionic liquid, Eur. Polym. J, vol.44, pp.2153-2161, 2008.

B. Rupp, M. Schmuck, A. Balducci, M. Winter, and W. Kern, Polymer electrolyte for lithium batteries based on photochemically crosslinked poly(ethylene oxide) and ionic liquid, Eur. Polym. J, vol.44, pp.2986-2990, 2008.

G. T. Kim, G. B. Appetecchi, M. Carewska, M. Joost, A. Balducci et al., UV cross-linked, lithium-conducting ternary polymer electrolytes containing ionic liquids, J. Power Sources, vol.195, pp.6130-6137, 2010.

D. M. Tigelaar, M. A. Meador, and W. R. Bennett, Composite Electrolytes for Lithium Batteries: Ionic Liquids in APTES Cross-Linked Polymers, Macromolecules, vol.40, pp.4159-4164, 2007.

D. Sotta, J. Bernard, and V. Sauvant-moynot, Application of electrochemical impedance spectroscopy to the study of ionic transport in polymer-based electrolytes, Prog. Org. Coat, vol.69, pp.207-214, 2010.

I. Stepniak, Compatibility of poly(bisAEA4)-LiTFSIeMPPipTFSI ionic liquid gel polymer electrolyte with Li 4 Ti 5 O 12 lithium ion battery anode, J. Power Sources, vol.247, pp.112-116, 2014.

I. Stepniak, E. Andrzejewska, A. Dembna, and M. Galinski, Characterization and application of Nmethyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide ionic liquid-based gel polymer electrolyte prepared in situ by photopolymerization method in lithium ion batteries, Electrochim. Acta, vol.121, pp.27-33, 2014.

C. Liao, X. Sun, and S. Dai, Crosslinked gel polymer electrolytes based on polyethylene glycol methacrylate and ionic liquid for lithium ion battery applications, Electrochim. Acta, vol.87, pp.889-894, 2013.

L. Libo, L. Jiesi, Y. Shuo, G. Shaowen, and Y. Peixia, Gel polymer electrolytes containing ionic liquids prepared by radical polymerization, Colloids and Surfaces A: Physicochem. Eng. Aspects, vol.459, pp.136-141, 2014.

J. Choi, Y. Kang, and D. Kim, Lithium polymer cell assembled by in situ chemical cross-linking of ionic liquid electrolyte with phosphazene-based cross-linking agent, Electrochim. Acta, vol.89, pp.359-364, 2013.

J. Shin, W. A. Henderson, and S. Passerini, PEO-Based Polymer Electrolytes with Ionic Liquids and Their Use in Lithium Metal-Polymer Electrolyte Batteries, J. Electrochem. Soc, vol.152, 2005.

N. Shirshova, A. Bismarck, S. Carreyette, Q. P. Fontana, E. S. Greenhalgh et al., Structural supercapacitor electrolytes based on bicontinuous ionic liquid-epoxy resin systems, J. Mater. Chem. A, issue.1, pp.15300-15309, 2013.

N. Nishimura and H. Ohno, 15th anniversary of polymerised ionic liquids, Polymer, vol.55, pp.3289-3297, 2014.

H. Jia, P. Lian, Y. Liang, Y. Zhu, P. Huang et al., Systematic Investigation of the Effects of Zwitterionic Surface-Active Ionic Liquids on the Interfacial Tension of a Water/Crude Oil System and Their Application To Enhance Crude Oil Recovery, J. Memb. Sci, vol.32, pp.188-199, 2015.

J. Yuan and M. Antonietti, Poly(ionic liquid)s: Polymers expanding classical property profiles, Polymer, vol.52, 2011.

K. Vijayakrishna, S. K. Jewrajka, A. Ruiz, R. Marcilla, J. A. Pomposo et al., Synthesis by RAFT and ionic responsiveness of double hydrophilic block copolymers based on ionic liquid monomer units, Macromolecules, vol.41, pp.6299-6308, 2008.

N. V. Tsarevsky and K. Matyjaszewski, Green" atom transfer radical polymerization: From process design to preparation of well-defined environmentally friendly polymeric materials, Chem. Rev, vol.107, pp.2270-2299, 2007.

Y. S. Vygodskii, A. S. Shaplov, E. I. Lozinskaya, K. A. Lyssenko, D. G. Golovanov et al., Conductive polymer electrolytes derived from poly(norbornene)s with pendant ionic imidazolium moieties, Macromol. Chem. Phys, vol.209, pp.40-51, 2008.

J. C. Salamone, S. C. Israel, P. Taylor, and B. Snider, Synthesis and homopolymerization of vinylimidazolium salts, Polymer, vol.14, pp.90039-90045, 1973.

J. C. Salamone, S. C. Israel, P. Taylor, and B. Snider, Polyvinylimidazolium salts of varying hydrophilichydrophobic character, J. Polymer Sci.: Symposium, vol.45, pp.65-73, 1974.

U. P. Strauss and N. L. Gershfeld, The Transition from Typical Polyelectrolyte to Polysoap. I. Viscosity and Solubilization Studies on Copolymers

. N-n-dodecylpyridinium-bromide, J. Phys. Chem, vol.58, pp.747-753, 1954.

U. P. Strauss, N. L. Gershfeld, and E. H. Crook, The Transition from Typical Polyelectrolyte to Polysoap. II. Viscosity Studies of Poly-4-vinylpyridine Derivatives in Aqueous KBr Solutions, J. Phys. Chem, vol.60, pp.577-584, 1956.

H. Ohno, Design of ion conductive polymers based on ionic liquids, Macromol. Symp, pp.551-556, 2007.

H. Ohno and K. Ito, Room-temperature molten salt polymers as a matrix for fast ion conduction. Chem

. Lett, , vol.27, pp.751-752, 1998.

M. Yoshizawa, M. Hirao, K. Ito-akita, and H. Ohno, Ion conduction in zwitterionic-type molten salts and their polymers, J. Mater. Chem, vol.11, pp.1057-1062, 2001.

M. Yoshizawa, W. Ogihara, and H. Ohno, Novel polymer electrolytes prepared by copolymerization of ionic liquid monomers, Polym. Adv. Technol, vol.13, pp.589-594, 2002.

W. Ogihara, S. Washiro, H. Nakajima, and H. Ohno, Effect of cation structure on the electrochemical and thermal properties of ion conductive polymers obtained from polymerizable ionic liquids

, Electrochim. Acta, vol.51, pp.2614-2619, 2006.

I. Odriozola, Synthesis of pyrrolidinium based poly(ionic liquid) electrolytes with poly(ethylene glycol) side chains, Chem. Mater, vol.24, pp.1583-1590, 2012.

P. Dimitrov-raytchev, S. Beghdadi, A. Serghei, and E. Drockenmuller, Main-chain 1,2,3-triazoliumbased poly(ionic liquid)s issued from AB + AB click chemistry polyaddition, J. Polym. Sci. Part A: Polym. Chem, vol.51, pp.34-38, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00867621

Y. Zhang, L. Zhao, P. K. Patra, D. Hu, J. Y. Ying et al., Synthesis and characterization of branched polymeric ionic liquids with imidazolium chloride segments, Polym. Bull, vol.4, pp.901-908, 2009.

F. Schüler, B. Kerscher, F. Beckert, R. Thomann, and R. Mülhaupt, Hyperbranched polymeric ionic liquids with onion-like topology as transporters and compartmentalized systems, Angew. Chem. Int

, , vol.52, pp.455-458, 2013.

H. Ohno, M. Yoshizawa, and W. Ogihara, Development of new class of ion conductive polymers based on ionic liquids, Electrochim. Acta, vol.50, pp.255-261, 2004.

Y. Kohno, H. Ohno, Y. Kohno, Y. Deguchi, and H. Ohno, Key Factors to Prepare Polyelectrolytes Showing Temperature-Sensitive Lower Critical Solution Temperature-type Phase Transitions in Water, Aust. J. Chem, vol.65, 2011.

. Commun, , vol.48, pp.11883-11885, 2012.

Y. Men, X. Li, M. Antonietti, and J. Yuan, Poly(tetrabutylphosphonium 4-styrenesulfonate): a poly(ionic liquid) stabilizer for graphene being multi-responsive, Polym. Chem, vol.3, pp.871-873, 2012.

Y. Kohno, S. Saita, Y. Men, J. Yuan, and H. Ohno, Thermoresponsive polyelectrolytes derived from ionic liquids, Polym. Chem, vol.6, pp.2163-2178, 2015.

J. Juger, F. Meyer, F. Vidal, C. Chevrot, and D. Teyssié, Synthesis, polymerization and conducting properties of an ionic liquid-type anionic monomer, Tetrahedron Lett, vol.50, pp.128-131, 2009.

A. S. Shaplov, P. S. Vlasov, M. Armand, E. I. Lozinskaya, D. O. Ponkratov et al., Design and synthesis of e a io i pol e i io i li uids ith high charge delocalization, Polym. Chem, vol.2, 2011.

A. S. Shaplov, D. O. Ponkratov, P. S. Vlasov, E. I. Lozinskaya, L. I. Komarova et al., Synthesis and Properties of Polymeric Analogs of Ionic Liquids, Polym. Sci. Ser. B, vol.55, pp.122-138, 2013.

O. I. Deavin, S. Murphy, A. L. Ong, S. D. Poynton, R. Zeng et al., Anionexchange membranes for alkaline polymer electrolyte fuel cells: comparison of pendent benzyltrimethylammonium-and benzylmethylimidazolium-head-groups, Energy Environ. Sci, vol.5, pp.11340-11346, 2011.

B. Lin, L. Qiu, J. Lu, F. Yan, B. Qiu et al., Cross-linked alkaline ionic liquid-based polymer electrolytes for alkaline fuel cell applications, J. Power Sources, vol.22, pp.329-335, 2010.

B. Qiu, B. Lin, L. Qiu, and F. Yan, Alkaline imidazolium-and quaternary ammonium-functionalized anion exchange membranes for alkaline fuel cell applications, J. Mater. Chem, vol.22, pp.1040-1045, 2012.

E. Azaceta, R. Marcilla, A. Sanchez-diaz, E. Palomares, and D. Mecerreyes, Synthesis and characterization of poly(1-vinyl-3-alkylimidazolium) iodide polymers for quasi-solid electrolytes in dye sensitized solar cells, Electrochimica Acta, vol.56, pp.42-46, 2010.

J. Zhao, X. Shen, F. Yan, L. Qiu, S. Lee et al., Solvent-free ionic liquid/poly(ionic liquid) electrolytes for quasi-solid-state dye-sensitized solar cells, J. Mater.Chem, vol.21, 2011.

X. Chen, J. Zhao, J. Zhang, L. Qiu, D. Xu et al., Bisimidazolium based poly(ionic liquid) electrolytes for quasi-solid-state dye-sensitized solar cells

. Mater and . Chem, , vol.22, 2012.

M. Li, L. Yang, S. Fang, S. Dong, S. Hirano et al., Polymerized ionic liquids with guanidinium cations as host for gel polymer electrolytes in lithium metal batteries, Polym. Int, vol.61, pp.259-264, 2012.

O. Green, S. Grubjesic, S. Lee, and M. A. Firestone, The design of polymeric ionic liquids for the preparation of functional materials, Polymer Reviews, vol.49, pp.339-360, 2009.

J. Lu, F. Yan, and J. Texter, Advanced applications of ionic liquids in polymer science, Prog. Polym. Sci, vol.34, pp.431-448, 2009.

J. Texter, Anion responsive imidazolium-based polymers, Macromol. Rapid Commun, vol.33, 2012.

Y. Zhang, X. Chen, J. Lan, J. You, and L. Chen, Synthesis and biological applications of imidazoliumbased polymerized ionic liquid as a gene delivery vector, Chem. Biol. Drug. Des, vol.74, pp.282-288, 2009.

M. Allen, M. D. Green, H. K. Getaneh, K. M. Miller, and T. E. Long, Tailoring charge density and hydrogen bonding of imidazolium copolymers for efficient gene delivery, Biomacromolecules, vol.12, 2011.

S. T. Hemp, M. H. Allen, M. D. Green, and T. E. Long, Phosphonium-containing polyelectrolytes for nonviral gene delivery, Biomacromolecules, vol.13, pp.231-238, 2012.

M. S. Lopez, -. Mecerreyes, D. Lopez-cabarcos, E. Lopez-ruiz, and B. , Amperometric glucose biosensor based on polymerized ionic liquid microparticles, Biosens. Bioelectron, vol.21, pp.2320-2328, 2006.

C. Xiao, X. Chu, B. Wu, H. Pang, X. Zhang et al., Polymerized ionic liquid-wrapped carbon nanotubes: the promising composites for direct electrochemistry and biosensing of redox protein, Talanta, vol.80, pp.1719-1724, 2010.

X. Chu, B. Wu, C. Xiao, X. Zhang, and J. Chen, A new amperometric glucose biosensor based on platinum nanoparticles/polymerized ionic liquid-carbon nanotubes nanocomposites, Electrochim. Acta, vol.55, pp.2848-2852, 2010.

Q. Zhao and J. L. Anderson, Highly selective GC stationary phases consisting of binary mixtures of polymeric ionic liquids, J. Sep. Sci, vol.33, pp.79-87, 2010.

Y. Hsieh, W. Ho, R. S. Horng, P. Huang, C. Hsu et al.,

, Anion Effects on Separation Phenomenon for the Vinyloctylimidazolium Based Ionic Liquid Polymer Stationary Phases in GC, Chromatographia, vol.66, pp.607-611, 2007.

J. López-darias, V. Pinoa, Y. Meng, and J. Anderson,

A. M. Afonsoa, Utilization of a benzyl functionalized polymeric ionic liquid for the sensitive determination of polycyclic aromatic hydrocarbons; parabens and alkylphenols in waters using solid-phase microextraction coupled to gas chromatography-flame ionization detection, J. Chromatogr. A, pp.7189-7197, 2010.

J. Li, H. Han, Q. Wang, X. Liu, and S. Jiang, Polymeric ionic liquid as a dynamic coating additive for separation of basic proteins by capillary electrophoresis, Anal. Chim. Acta, vol.674, pp.243-248, 2010.

Q. Zhao, M. Yin, A. P. Zhang, S. Prescher, M. Antonietti et al., Hierarchically Structured Nanoporous Poly(Ionic Liquid) Membranes: Facile Preparation and Application in Fiber-Optic pH Sensing, J. Am. Chem. Soc, vol.135, pp.5549-5552, 2013.

Y. Li, G. Li, X. Wang, Z. Zhu, H. Ma et al., Poly(ionic liquid)-wrapped single-walled carbon nanotubes for sub-ppb detection of CO 2, Chem. Commun, vol.48, pp.8222-8224, 2012.

Z. Dai, R. D. Noble, D. L. Gin, X. Zhang, and L. Deng, Combination of ionic liquids with membrane technology: A new approach for CO 2 separation, J. Membrane Sci, vol.497, pp.1-20, 2016.

M. L. Jue and R. P. Lively, Targeted gas separations through polymer membrane functionalization

, React. Funct. Polym, vol.86, pp.88-110, 2015.

S. Zulfiqar, M. I. Sarwar, and D. Mecerreyes, Polymeric ionic liquids for CO 2 capture and separation: Potential, progress and challenges, Polym. Chem, vol.6, pp.6435-6451, 2015.

Y. Xie, Z. Zhang, T. Jiang, J. He, B. Han et al., CO 2 Cycloaddition Reactions Catalyzed by an Ionic Liquid Grafted onto a Highly Cross-Linked Polymer Matrix, Angew. Chem. Int. Ed, vol.46, 2007.

Y. Xiong, Y. Wang, H. Wang, and R. Wang, A facile one-step synthesis to ionic liquid-based crosslinked polymeric nanoparticles and their application for CO2 fixation, Polym. Chem, vol.2, 2011.

D. Kuzmicz, P. Coupillaud, Y. Men, J. Vignolle, G. Vendraminetto et al., Functional mesoporous poly(ionic liquid)-based copolymer monoliths: From synthesis to catalysis and microporous carbon production, Polymer, vol.55, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01373031

J. Pinaud, J. Vignolle, Y. Gnanou, and D. Taton, Poly(N-heterocyclic-carbene)s and their CO 2 Adducts as Recyclable Polymer-Supported Organocatalysts for Benzoin Condensation and Transesterification Reactions, Macromolecules, vol.44, 1900.
URL : https://hal.archives-ouvertes.fr/hal-00677776

P. Coupillaud, J. Pinaud, N. Guidolin, J. Vignolle, M. Fèvre et al., Poly(ionic liquid)s Based on Imidazolium Hydrogen Carbonate Monomer Units as Recyclable Polymer Supported N-Heterocyclic Carbenes: Use in Organocatalysis, J. Polym. Sci. Part A
URL : https://hal.archives-ouvertes.fr/hal-00931021

. Chem, , vol.51, pp.4530-4540, 2013.

P. Coupillaud, J. Vignolle, D. Mecerreyes, and D. Taton, Post-polymerization modification and organocatalysis using reactive statistical poly(ionic liquid)-based copolymers, Polymer, vol.55, pp.3404-3414, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01373014

X. Mu, J. Meng, Z. Li, and Y. Kou, Rhodium Nanoparticles Stabilized by Ionic Copolymers in Ionic Liquids: Long Lifetime Nanocluster Catalysts for Benzene Hydrogenation, J. Am. Chem. Soc, vol.127, pp.9694-9695, 2005.

J. Yang, L. Qiu, B. Liu, Y. Peng, F. Yan et al., Synthesis of Polymeric Ionic Liquid

/. Microsphere and . Pt, Nanoparticle Hybrids for Electrocatalytic Oxidation of Methanol and Catalytic Oxidation of Benzyl Alcohol, J. Polym. Sci. Part A: Polym. Chem, vol.49, pp.4531-4538, 2011.

Q. Zhao, P. Zhang, M. Antonietti, and J. Yuan, Poly(ionic liquid) Complex with Spontaneous Micro-/Mesoporosity: Template-Free Synthesis and Application as Catalyst Support, J. Am. Chem. Soc, vol.134, pp.11852-11855, 2012.

Y. Gu, I. Favier, C. Pradel, D. L. Gin, J. Lahitte et al., High catalytic efficiency of palladium nanoparticles immobilized in a polymer membrane containing poly(ionic liquid) in Suzuki-Miyaura cross-coupling reaction, J. Membrane Sci, vol.492, pp.331-339, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01286001

Y. Gu, S. Zhang, L. Martinetti, K. H. Lee, L. D. Mcintosh et al., High Conductivity Ion Gels by Sequential Triblock Copolymer Self-Assembly and Chemical Cross-Linking, J. Am. Chem. Soc, vol.135, pp.9652-9655, 2013.

S. Saricilar, D. Antiohos, K. Shu, P. G. Whitten, K. Wagner et al., High strain stretchable solid electrolytes, Electrochem. Commun, vol.32, pp.47-50, 2013.

B. Tang, S. P. White, C. D. Frisbie, and T. P. Lodge, Synergistic Increase in Ionic Conductivity and Modulus of Triblock Copolymer Ion Gels, Macromolecules, vol.48, pp.4942-4950, 2015.

B. G. Soares, S. Livi, J. Duchet-rumeau, and J. Gerard, Preparation of epoxy/MCDEA networks modified with ionic liquids, Polymer, vol.53, pp.60-66, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00657893

B. G. Soares, A. A. Silva, S. Livi, J. Duchet-rumeau, and J. Gérard, New Epoxy/Jeffamine networks modified with ionic liquids, J. Appl. Polym. Sci, vol.131, p.39834, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00870554

A. A. Silva, S. Livi, D. B. Netto, B. G. Soares, J. Duchet et al., Nanostructured thermosets from ionic liquid building block-epoxy prepolymer mixtures, RSC Adv, vol.54, pp.28099-28106, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01019123

M. A. Rahmathullah, . Jeyarajasingam, B. Merritt, M. Vanlandingham, S. H. Mcknight et al., Room temperature ionic liquids as thermally latent initiators for polymerization of epoxy resins, Macromolecules, vol.42, pp.3219-3221, 2009.

K. Kowalczyk and T. Spychaj, Ionic liquids as convenient latent hardeners of epoxy resins, vol.48, pp.32-2725, 2003.

X. Andrieu, J. P. Boeuve, and T. Vicédo, New conducting polymer networks, J. Power Sources, vol.44, pp.445-451, 1993.

W. Liang, T. Chen, and P. Kuo, Solide polymer electrolytes. VII. Preparation and ionic conductivity of gelled polymer electrolytes based on poly(ethylene glycol) diglycidyl ether cured with ?,?-diamino poly(propylene oxide), J. Appl. Polym. Sci, vol.92, 2004.

B. Unal, R. J. Klein, K. R. Yocca, and R. C. Hedden, Influence of DGEBA crosslinking on Li + ion conduction in poly(ethyleneimine) gels. Polymer, vol.48, pp.6077-6085, 2007.

K. Matsumoto and T. Endo, Synthesis of Ion Conductive Networked Polymers Based on an Ionic Liquid Epoxide Having a Quaternary Ammonium Salt Structure, Macromolecules, vol.42, pp.4580-4584, 2009.

K. Matsumoto and T. Endo, Synthesis of Networked Polymers with Lithium Counter Cations from a Difunctional Epoxide Containing Poly(ethylene glycol) and an Epoxide Monomer Carrying a Lithium Sulfonate Salt Moiety, J. Polym. Sci. Part A: Polym. Chem, vol.48, pp.3113-3118, 2010.

K. Matsumoto and T. Endo, Synthesis of Networked Polymers by Copolymerization of Monoepoxy-Substituted Lithium Sulfonylimide and Diepoxy-Substituted Poly(ethylene glycol), and Their Properties, J. Polym. Sci. Part A: Polym. Chem, vol.49, 2011.

S. Washiro, M. Yoshizawa, H. Nakajima, and H. Ohno, Highly ion conductive flexible films composed of network polymers based on polymerizable ionic liquids, Polymer, vol.45, pp.1577-1582, 2004.

B. Altava, V. Compañ, A. Andrio, L. F. Del-castillo, S. Mollá et al., Conductive films based on composite polymers containing ionic liquids absorbed on crosslinked polymeric ionic-like liquids (SILLPs), Polymer, vol.72, pp.69-81, 2015.

A. S. Shaplov, D. O. Ponkratov, P. Vlasov, E. Lozinskaya, L. V. Gumileva et al., Ionic semi-interpenetrating networks as a new approach for highly conductive and stretchable polymer materials, J. Mater. Chem. A, vol.3, pp.2188-2198, 2015.

T. K. Nguyen, S. Livi, S. Pruvost, B. G. Soares, and J. Duchet-rumeau, Ionic Liquids as Reactive Additives for the Preparation and Modification of Epoxy Networks, J. Polym. Sci
URL : https://hal.archives-ouvertes.fr/hal-01094040

. Chem, , vol.52, pp.3463-3471, 2014.

M. Leclère, S. Livi, M. Maréchal, L. Picard, and J. Duchet-rumeau, The properties of new epoxy networks swollen with ionic liquids, RSC Adv, vol.6, pp.56193-56204, 2016.

M. Leclère, L. Bernard, S. Livi, M. Bardet, A. Guillermo et al., Gelled Electrolyte Containing Phosphonium Ionic Liquids for Lithium-Ion Batteries, Nanomaterials, vol.8, p.435, 2018.

K. Matsumoto and T. Endo, Design and synthesis of ionic-conductive epoxy-based networked polymers, React. Funct. Polym, vol.73, 2013.

K. Matsumoto and T. Endo, Synthesis of Networked Polymers by Copolymerizationof Monoepoxy-Substituted Lithium Sulfonylimide and Diepoxy-Substituted Poly(ethylene glycol), and Their Properties, J. Polym. Sci. Part A: Polym. Chem, vol.49, 2011.

K. Matsumoto and T. Endo, Preparation and Properties of Ionic-Liquid-Containing Poly(ethylene glycol)-Based Networked Polymer Films Having Lithium Salt Structures, J. Polym. Sci. Part A

. Chem, , vol.49, pp.3582-3587, 2011.

W. M. Mcdanel, M. G. Cowan, T. K. Carlisle, A. K. Swanson, R. D. Noble et al., Cross-linked ionic resins and gels from epoxide-functionalized imidazolium ionic liquid monomers, Polymer, vol.55, pp.3305-3313, 2014.

W. M. Mcdanel, M. G. Cowan, J. A. Barton, D. L. Gin, and R. D. Noble, Effect of Monomer Structure on Curing Behavior, CO2 Solubility, and Gas permeability of Ionic Liquid-Based Epoxy-Amine Resins and Ion-gels, Ind. Eng. Chem. Res, vol.54, pp.4396-4406, 2015.

T. K. Nguyen, M. M. Obadia, A. Serghei, S. Livi, J. Duchet-rumeau et al., 3-Triazolium-Based Epoxy-Amine Networks: Ion-Conducting Polymer Electrolytes, Macromol. Rapid Commun, vol.2, pp.1168-1174, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01398470

V. R. Koch, C. Nanjundiah, G. B. Appetecchi, and B. Scrosati, The interfacial stability of Li with two new solvent-free ionic liquids: 1, 2-dimethyl-3-propylimidazolium imide and methide, J. Electrochem Soc, vol.142, pp.116-118, 1995.

N. Papageorgiou, Y. Athanassov, M. Armand, P. Bonhote, H. Pettersson et al., The performance and stability of ambient temperature molten salts for solar cell applications

, , vol.143, pp.3099-3108, 1996.

M. Joo, J. Shin, J. Kim, J. B. You, Y. Yoo et al., One-Step Synthesis of Cross-Linked Ionic Polymer Thin Films in Vapor Phase and Its Application to an Oil/Water Separation Membrane, ACS Appl. Mater. Interfaces, vol.139, pp.13963-13974, 2017.

J. Yuan, D. Mecerreyes, and M. Antonietti, Poly(ionic liquid)s: An update, Prog. Polym. Sci, vol.38, 2013.

H. Tang, J. Tang, S. Ding, M. Radosz, and Y. Shen, Atom transfer radical polymerization of styrenic ionic liquid monomers and carbon dioxide absorption of the polymerized ionic liquids, J. Polym. Sci., Part A: Polym. Chem, vol.43, pp.1432-1443, 2005.

Y. Gu, T. P. Lodge, M. D. Green, J. H. Choi, K. I. Winey et al., Synthesis of imidazoliumcontaining ABA triblock copolymers: role of charge placement, charge density, and ionic liquid incorporation, Drockenmuller, E. Main-chain, vol.44, issue.3, pp.4749-4757, 2011.

B. P. Chem-;-mudraboyina, M. M. Obadia, I. Allaoua, R. Sood, and A. Serghei, Drockenmuller, E. 1,2,3-Triazolium-Based Poly(ionic liquid)s with Enhanced Ion Conducting Properties Obtained through a Click Chemistry Polyaddition Strategy, Chem. Mater, vol.51, pp.1720-1726, 2013.

W. Liang, C. Kuo, C. Lin, and P. Kuo, Solid polymer electrolytes. IV. Preparation and characterization of novel crosslinked epoxy-siloxane polymer complexes as polymer electrolytes

, Polym. Sci. A: Polym. Chem, vol.40, pp.1226-1235, 2002.

W. Zhang and J. Yuan, Poly (1-Vinyl-1,2,4-triazolium) Poly (Ionic Liquid)s: Synthesis and the Unique Behavior in Loading Metal Ions, Macromol. Rapid Commun, vol.37, pp.5054-5059, 2016.

C. R. Amaral, R. J. Rodriguez, F. G. Garcia, L. P. Junior, and E. A. Carvalho, Impact of Aliphatic Amine Comonomers on DGEBA Epoxy Network Properties, Polym. Eng. Sci, vol.54, pp.2132-2138, 2014.

L. Shechter, J. Wynstra, and R. P. Kurkjy, (b) Smith, I. T. The mechanism of the crosslinking of epoxide resins by amines, Ind. Eng. Chem, vol.48, pp.90010-90016, 1956.

H. Maka, T. Spychaj, and R. Pilawka, Epoxy Resin/Ionic Liquid Systems: The Influence of

, Imidazolium Cation Size and Anion Type on Reactivity and Thermomechanical Properties, Ind. Eng

H. Maka, T. Spychaj, and M. Zencker, High performance epoxy composites cured with ionic liquids, J. Ind. Eng. Chem, vol.51, pp.192-198, 2012.

T. Muhizi, P. J. Kreke, L. J. Magid, and J. C. Gee, 1 H and 13 C NMR Studies of Mixed Counterion, Cetyltrimethylammonium Bromide/Cetyltrimethylammonium Dichlorobenzoate, Su fa ta t Solutio s: The I te alatio of A o ati Cou te io s, Synthesis and Evaluation of the Antimicrobial Activity of Dodecyl Trimethyl Ammonium and N-(N, vol.30, pp.699-705, 1996.

J. Yu, F. Wu, Y. Zhou, Y. Zheng, and Z. Yu, Selective recognition induced nanostructures in a cucurbit[7]uril-based host-guest system: micelles, nanorods, and nanosheets, Phys. Chem. Chem. Phys, vol.14, pp.8506-8510, 2012.

D. K. Owens and R. C. Wendt, Estimation of the Surface Free Energy of Polymers, J. Appl. Polym. Sci, vol.13, pp.1741-1747, 1969.

C. S. Triantafillidis, P. C. Lebaron, and T. J. Pinnavaia, Homostructured Mixed I o ga i ?O ga i Io Cla s: A Ne App oa h to Epo Pol e ?E foliated Cla Na

F. F. De-nograro, P. Guerrero, M. A. Corcuera, and I. Mondragon, Effects of chemical structure of hardener on curing evolution and on the dynamic mechanical behavior of epoxy resins, J. Appl. Polym. Sci, vol.14, pp.177-192, 1995.

H. Cai, P. Li, G. Sui, Y. Yu, G. Li et al., Curing kinetics study of epoxy resin/flexible amine toughness systems by dynamic and isothermal DSC, Thermochim. Acta, vol.473, pp.302-310, 2007.

. J. Park and S. C. Jana, Adverse effects of thermal dissociation of alkyl ammonium ions on nanoclay exfoliation in epoxy-clay systems, Polymer, vol.45, pp.7673-7679, 2004.

W. M. Mcdanel, M. G. Cowan, J. A. Barton, D. L. Gin, and R. D. Noble, Effect of Monomer Structure on Curing Behavior, CO 2 Solubility, and Gas Permeability of Ionic Liquid-Based Epoxy-Amine Resins and Ion-Gels, Ind. Eng. Chem. Res, vol.54, pp.1621-1631, 2013.

S. Livi, J. Duchet-rumeau, T. Pham, J. Gérard, W. Xie et al., A comparative study on different ionic liquids used as surfactants: Effect on thermal and mechanical properties of high-density polyethylene nanocomposites, J. Coll. Int. Sci, vol.349, pp.2979-2990, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00600165

K. Stoeffler, P. G. Lafleur, and J. Denault, Thermal decomposition of various alkyl onium organoclays: Effect on polyethylene terephthalate nanocomposites' properties, Polym. Degrad. Stab, vol.93, pp.1332-1350, 2008.

T. K. Nguyen, S. Livi, B. G. Soares, S. Pruvost, J. Duchet-rumeau et al., Ionic liquids: A new route for the design of epoxy networks, ACS Sustainable Chem. Eng, vol.4, pp.481-490, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01396548

H. F. Almeida, J. A. Lopes-da-silva, M. G. Freire, and J. A. Coutinho, Surface tension and refractive index of pure and water-saturated tetradecyltrihexylphosphonium-based ionic liquids

. Chem, P. J. Carvalho, C. M. Neves, and J. A. Coutinho, Surface tensions of bis (trifluoromethylsulfonyl)imide anion-based ionic liquids, J. Chem. Eng. Data, vol.57, pp.3807-3812, 2010.

L. C. Lins, S. Livi, J. Duchet-rumeau, J. Gérard, S. Livi et al., Structuration of ionic liquids in a poly(butylene-adipate-co-terephthalate) matrix: its influence on the water vapour permeability and mechanical properties, Green Chem, vol.5, pp.3758-3762, 2014.

X. Chen, J. Pan, Y. Zhao, M. Liao, and H. Peng, Gel Polymer Electrolytes for Electrochemical Energy Storage, Adv. Energy. Mater, vol.8, 2018.

A. M. Stephan and W. H. Meyer, Review on gel polymer electrolytes for lithium batteries, Eur. Polym. J, vol.42, pp.439-448, 1998.

J. Pitawala, J. Kim, P. Jacobsson, V. Koch, F. Croce et al., Phase behaviour, transport properties, and interactions in Li-salt doped ionic liquids. Faraday Discuss, J. Phys. Chem. Lett, vol.154, pp.2396-2401, 2011.

M. M. Obadia, B. P. Mudraboyina, A. Serghei, D. Montarnal, E. Drockenmuller et al., Reprocessing and Recycling of Highly Cross-Linked Ion-Conducting Networks through Transalkylation Exchanges of C-N Bonds, J. Am. Chem. Soc, vol.137, pp.658-662, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01155095

X. Wang, H. Zhu, G. M. Girard, R. Yunis, D. R. Macfarlane et al., Preparation and characterization of gel polymer electrolytes using poly(ionic liquids) and high lithium salt concentration ionic liquids, J. Mater. Chem. A, vol.5, pp.23844-23852, 2017.

L. Porcarelli, P. S. Vlasov, D. O. Ponkratov, E. I. Lozinskaya, D. Y. Antonov et al., Design of ionic liquid like monomers towards easy-accessible single-ion conducting polymer electrolytes, Eur. Pol. J, vol.107, pp.218-228, 2018.