, Tissue Engineering and Regenerative Medicine, 2013.

F. Chen and X. Liu, Advancing biomaterials of human origin for tissue engineering, Prog. Polym. Sci, vol.53, pp.86-168, 2016.

V. Parpura, Nanoelectronics for the heart: Tissue engineering, Nat. Nanotechnol, vol.11, pp.738-739, 2016.

K. Sadtler, K. Estrellas, B. W. Allen, M. T. Wolf, H. Fan et al., Developing a pro-regenerative biomaterial scaffold microenvironment requires T helper 2 cells, Science, vol.352, pp.366-370, 2016.

R. Mondschein, A. Kantikar, C. Williams, S. Verbridge, and T. Long, Polymer structure-property requirements for stereolithographic 3D printing of soft tissue engineering scaffolds, Biomaterials, vol.140, pp.170-188

F. T. Moutos, L. E. Freed, and F. Guilak, A biomimetic three-dimensional woven composite scaffold for functional tissue engineering of cartilage, Nat. Mater, vol.6, pp.162-167, 2007.

S. Petit-zeman, The regeneration of tissues and organs offers a radical new approach to the treatment of injury and disease. It's a new medicine for a new millennium, but does the reality match the hype?, Nat. Biotecnol, vol.19, pp.201-206, 2001.

L. L. Hench, Third-Generation Biomedical Materials, Science, vol.295, pp.1014-1017, 2002.

E. Garreta, R. Oria, C. Tarantino, M. Pla-roca, P. Prado et al., Tissue engineering by decellularization and 3D bioprinting, pp.166-178, 2007.

D. A. Grande, Important milestones on the way to clinical translation: Regenerative medicine in 2016, Nat. Rev. Rheumatol, vol.13, pp.67-68, 2017.

M. P. Lutolf and J. A. Hubbell, Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering, Nat. Biotechnol, vol.23, pp.47-55, 2005.

S. Choi, J. Xie, and Y. Xia, Chitosan-Based Inverse Opals: Three-Dimensional Scaffolds with Uniform Pore Structures for Cell Culture, Adv. Mater, vol.21, pp.2997-3001, 2009.

B. G. Childs, H. Li, and J. M. Van-deursen, Senescent cells: a therapeutic target for cardiovascular disease, 2018.

E. Place, J. George, C. Williams, and M. Stevens, Synthetic polymer scaffolds for tissue engineering -Chemical Society Reviews, Che Soc Rev, vol.38, pp.1139-1151, 2009.

E. R. Welsh and D. A. Tirrell, Engineering the Extracellular Matrix: A Novel Approach to Polymeric Biomaterials. I. Control of the Physical Properties of Artificial Protein Matrices Designed to Support Adhesion of Vascular Endothelial Cells, Biomacromolecules, vol.1, pp.23-30, 2000.

A. Panitch, T. Yamaoka, M. J. Fournier, T. L. Mason, and D. A. Tirrell, Design and Biosynthesis of Elastin-like Artificial Extracellular Matrix Proteins Containing Periodically Spaced Fibronectin CS5 Domains, Macromolecules, vol.32, pp.1701-1703, 1999.

B. Seal, Polymeric biomaterials for tissue and organ regeneration, Mater. Sci. Eng. R Rep, vol.34, 2001.

Y. Yao, J. Wang, Y. Cui, R. Xu, Z. Wang et al., Effect of sustained heparin release from PCL/chitosan hybrid small-diameter vascular grafts on antithrombogenic property and endothelialization, Acta Biomater, vol.10, pp.2739-2749, 2014.

A. Cooper, N. Bhattarai, and M. Zhang, Fabrication and cellular compatibility of aligned chitosan-PCL fibers for nerve tissue regeneration, Carbohydr. Polym, vol.85, pp.149-156, 2011.

S. J. Hollister, Porous scaffold design for tissue engineering, Nat. Mater, vol.4, p.518, 2005.

S. Terasaka, Y. Iwasaki, N. Shinya, and T. Uchida, Fibrin Glue and Polyglycolic Acid Nonwoven Fabric as a Biocompatible Dural Substitute, vol.58, 2006.

P. B. Maurus and C. C. Kaeding, Bioabsorbable implant material review, Oper. Tech. Sports Med, vol.12, pp.158-160, 2004.

J. A. Cooper, H. H. Lu, F. K. Ko, J. W. Freeman, and C. T. Laurencin, Fiber-based tissue-engineered scaffold for ligament replacement: design considerations and in vitro evaluation, Biomaterials, vol.26, pp.1523-1532, 2005.

M. Zilberman, K. D. Nelson, and R. C. Eberhart, Mechanical properties andin vitro degradation of bioresorbable fibers and expandable fiber-based stents, J. Biomed. Mater. Res. B Appl. Biomater, vol.74, pp.792-799, 2005.

L. Wu, H. Li, S. Li, X. Li, X. Yuan et al., Composite fibrous membranes of PLGA and chitosan prepared by coelectrospinning and coaxial electrospinning, J. Biomed. Mater. Res. A, vol.92, pp.563-574, 2010.

F. Danhier, E. Ansorena, J. M. Silva, R. Coco, A. L. Breton et al., PLGA-based nanoparticles: An overview of biomedical applications, J. Controlled Release, vol.161, pp.505-522, 2012.

B. Saad and T. ,

M. Hirt and G. Welti,

P. Uhlschmid and U. Neuenschwander,

. Suter, Development of degradable polyesterurethanes for medical applications: In vitro and in vivo evaluations -Saad -1997, Journal of Biomedical Materials Research, vol.36, pp.65-74, 1997.

C. Vauthier, Drug delivery to resistant tumors: the potential of poly(alkyl cyanoacrylate) nanoparticles, J. Controlled Release, vol.93, pp.151-160, 2003.

A. D. Martino, M. Sittinger, and M. V. Risbud, Chitosan: A versatile biopolymer for orthopaedic tissueengineering, Biomaterials, vol.26, pp.5983-5990, 2005.

C. Ceccaldi, S. G. Fullana, C. Alfarano, O. Lairez, D. Calise et al., Alginate Scaffolds for Mesenchymal Stem Cell Cardiac Therapy: Influence of Alginate Composition, Cell Transplant, vol.21, pp.1969-1984, 2012.

U. Rottensteiner, B. Sarker, D. Heusinger, D. Dafinova, S. Rath et al., In vitro and in vivo Biocompatibility of Alginate Dialdehyde/Gelatin Hydrogels with and without Nanoscaled Bioactive Glass for Bone Tissue Engineering Applications, Materials, vol.7, pp.1957-1974, 2014.

P. Catherine, W. Charls, D. David, G. David, and L. Gary, Cross-linking electrospun type II collagen tissue engineering scaffolds with carbodiimide in ethanol, Tissue Eng, vol.13, pp.1593-605, 2007.

W. Friess, Collagen -biomaterial for drug delivery, Eur. J. Pharm. Biopharm, p.24, 1998.

A. O. Elzoghby, Gelatin-based nanoparticles as drug and gene delivery systems: Reviewing three decades of research, J. Controlled Release, vol.172, pp.1075-1091, 2013.

X. Duan, C. Mclaughlin, M. Griffith, and H. Sheardown, Biofunctionalization of collagen for improved biological response: Scaffolds for corneal tissue engineering, Biomaterials, vol.28, pp.78-88, 2007.

D. R. Hunt, S. A. Jovanovic, U. M. Wikesjö, J. M. Wozney, and G. W. Bernard, Hyaluronan Supports Recombinant Human Bone Morphogenetic Protein-2 Induced Bone Reconstruction of Advanced Alveolar Ridge Defects in Dogs. A Pilot Study, J. Periodontol, vol.72, pp.651-658, 2001.

H. Tan, C. R. Chu, K. A. Payne, and K. G. Marra, Injectable in situ forming biodegradable chitosanhyaluronic acid based hydrogels for cartilage tissue engineering, Biomaterials, vol.30, pp.2499-2506, 2009.

F. Du, H. Wang, W. Zhao, D. Li, D. Kong et al., Gradient nanofibrous chitosan/poly ?-caprolactone scaffolds as extracellular microenvironments for vascular tissue engineering, Biomaterials, vol.33, pp.762-770, 2012.

J. Zeng, A. Aigner, F. Czubayko, T. Kissel, J. H. Wendorff et al., Poly(vinyl alcohol) Nanofibers by Electrospinning as a Protein Delivery System and the Retardation of Enzyme Release by Additional Polymer Coatings, Biomacromolecules, vol.6, pp.1484-1488, 2005.

S. J. Pomfret, P. N. Adams, N. P. Comfort, and A. P. Monkman, Electrical and mechanical properties of polyaniline fibres produced by a one-step wet spinning process?, p.5, 2000.

S. Hirano, M. Zhang, M. Nakagawa, and T. Miyata, Wet spun chitosan}collagen "bers, their chemical N-modi"cations, and blood compatibility, p.7, 2000.

K. Kim, C. Lee, I. W. Kim, and J. Kim, Performance modification of a melt-blown filter medium via an additional nano-web layer prepared by electrospinning, Fibers Polym, vol.10, pp.60-64, 2009.

C. J. Ellison, A. Phatak, D. W. Giles, C. W. Macosko, and F. S. Bates, Melt blown nanofibers: Fiber diameter distributions and onset of fiber breakup, vol.48, pp.3306-3316, 2007.

M. J. Wissink, R. Beernink, J. S. Pieper, A. A. Poot, G. H. Engbers et al., Binding and release of basic "broblast growth factor from heparinized collagen matrices, p.9, 2001.

F. Causa, P. A. Netti, and L. Ambrosio, A multi-functional scaffold for tissue regeneration: The need to engineer a tissue analogue, Biomaterials, vol.28, pp.5093-5099, 2007.

A. G. Mikes, G. Sarakinos, S. M. Leite, J. P. Vacant, and R. Langer, Laminated three-dimensional biodegradable foams for use in tissue engineering, vol.14, p.8, 1993.

A. G. Mikos, A. J. Thorsen, L. A. Czerwonka, Y. Bao, R. Langer et al., Preparation and characterization of poly(l-lactic acid) foams, Polymer, vol.35, pp.1068-1077, 1994.

H. G. Kang, S. Y. Kim, and Y. M. Lee, Novel porous gelatin scaffolds by overrun/particle leaching process for tissue engineering applications, J. Biomed. Mater. Res. B Appl. Biomater, vol.79, pp.388-397, 2006.

J. M. Karp, M. S. Shoichet, and J. E. Davies, Bone formation on two-dimensional poly(DL-lactide-coglycolide) (PLGA) films and three-dimensional PLGA tissue engineering scaffoldsin vitro, J. Biomed. Mater. Res, vol.64, pp.388-396, 2003.

D. J. Mooney, D. F. Baldwin, N. P. Suht, J. P. Vacantis, and R. Larger, Novel approach to fabricate porous sponges of poly(o,klactic-co-glycolic acid) without the use of organic solvents, vol.17, p.6, 1996.

W. L. Murphy, R. G. Dennis, J. L. Kileny, and D. J. Mooney, Salt Fusion: An Approach to Improve Pore Interconnectivity within Tissue Engineering Scaffolds, vol.8, pp.43-52, 2002.

B. H. Woo, J. W. Kostanski, S. Gebrekidan, B. A. Dani, B. Thanoo et al., Preparation, characterization and in vivo evaluation of 120-day poly(d,l-lactide) leuprolide microspheres, J. Controlled Release, vol.75, pp.307-315, 2001.

P. B. Malafaya, T. C. Santos, M. Van-griensven, and R. L. Reis, Morphology, mechanical characterization and in vivo neo-vascularization of chitosan particle aggregated scaffolds architectures, Biomaterials, vol.29, pp.3914-3926, 2008.

Y. Ohya, H. Matsunami, and T. Ouchi, Cell growth on the porous sponges prepared from poly(depsipeptide-co-lactide) having various functional groups, J. Biomater. Sci. Polym. Ed, vol.15, pp.111-123, 2004.

Y. Ohya, H. Matsunami, E. Yamabe, and T. Ouchi, Cell attachment and growth on films prepared from poly(depsipeptide-co-lactide) having various functional groups, J. Biomed. Mater. Res, vol.65, pp.79-88, 2003.

M. Borden, M. Attawia, Y. Khan, and C. T. Laurencin, Tissue engineered microsphere-based matrices for bone repair: design and evaluation, p.9, 2002.

J. Guan, K. L. Fujimoto, M. S. Sacks, and W. R. Wagner, Preparation and characterization of highly porous, biodegradable polyurethane scaffolds for soft tissue applications, Biomaterials, vol.26, pp.3961-3971, 2005.

J. Seong, Y. J. Jun, B. Jeong, and Y. S. Sohn, New thermogelling poly(organophosphazenes) with methoxypoly(ethylene glycol) and oligopeptide as side groups, Polymer, vol.46, pp.5075-5081, 2005.

B. Jeong, Y. H. Bae, and S. W. Kim, Thermoreversible Gelation of PEG?PLGA?PEG Triblock Copolymer Aqueous Solutions, Macromolecules, vol.32, pp.7064-7069, 1999.

O. Gauthier, R. Muller, D. Vonstechow, B. Lamy, P. Weiss et al., In vivo bone regeneration with injectable calcium phosphate biomaterial: A three-dimensional microcomputed tomographic, biomechanical and SEM study, Biomaterials, vol.26, pp.5444-5453, 2005.

T. A. Holland, J. K. Tessmar, Y. Tabata, and A. G. Mikos, Transforming growth factor-?1 release from oligo(poly(ethylene glycol) fumarate) hydrogels in conditions that model the cartilage wound healing environment, J. Controlled Release, vol.94, pp.101-114, 2004.

J. Fukuda, A. Khademhosseini, Y. Yeo, X. Yang, J. Yeh et al., Micromolding of photocrosslinkable chitosan hydrogel for spheroid microarray and co-cultures, Biomaterials, vol.27, pp.5259-5267, 2006.

J. Yeh, Y. Ling, J. M. Karp, J. Gantz, A. Chandawarkar et al., Micromolding of shape-controlled, harvestable cell-laden hydrogels, Biomaterials, issue.27, pp.5391-5398, 2006.

D. Dendukuri, D. C. Pregibon, J. Collins, T. A. Hatton, and P. S. Doyle, Continuous-flow lithography for high-throughput microparticle synthesis, Nat. Mater, vol.5, pp.365-369, 2006.

W. Chen, R. H. Lam, and J. Fu, Photolithographic surface micromachining of polydimethylsiloxane (PDMS), Lab. Chip, vol.12, pp.391-395, 2011.

S. N. Bhatia and D. E. Ingber, Microfluidic organs-on-chips, Nat. Biotechnol, vol.32, pp.760-772, 2014.

V. V. Abhyankar, M. Wu, C. Koh, and A. V. Hatch, A Reversibly Sealed, Easy Access, Modular (SEAM) Microfluidic Architecture to Establish In Vitro Tissue Interfaces, PLOS ONE, vol.11, p.156341, 2016.

J. A. Burdick, A. Khademhosseini, and R. Langer, Fabrication of Gradient Hydrogels Using a Microfluidics/Photopolymerization Process, Langmuir, vol.20, pp.5153-5156, 2004.

C. P. Reis, A. J. Ribeiro, R. J. Neufeld, and F. Veiga, Alginate microparticles as novel carrier for oral insulin delivery, Biotechnol. Bioeng, vol.96, pp.977-989, 2007.

G. Steinhoff, U. Stock, N. Karim, H. Mertsching, A. Timke et al., Tissue Engineering of Pulmonary Heart Valves on Allogenic Acellular Matrix Conduits : In Vivo Restoration of Valve Tissue, Circulation, vol.102, 2000.

Q. L. Loh and C. Choong, Three-Dimensional Scaffolds for Tissue Engineering Applications: Role of Porosity and Pore Size, Tissue Eng. Part B Rev, vol.19, pp.485-502, 2013.

L. E. Freed and G. Vunjak-novakovic, Culture of organized cell communities, vol.33, 1998.

T. J. Blokhuis, M. F. Termaat, F. C. Boer, P. Patka, F. C. Bakker et al., Properties of Calcium Phosphate Ceramics in Relation to Their In Vivo Behavior, J. Trauma Acute Care Surg, vol.48, p.179, 2000.

Q. Zhang, H. Lu, N. Kawazoe, and G. Chen, Pore size effect of collagen scaffolds on cartilage regeneration, Acta Biomater, vol.10, pp.2005-2013, 2014.

F. J. O'brien, B. A. Harley, I. V. Yannas, and L. J. Gibson, The effect of pore size on cell adhesion in collagen-GAG scaffolds, Biomaterials, vol.26, pp.433-441, 2005.

C. M. Murphy, M. G. Haugh, and F. J. O'brien, The effect of mean pore size on cell attachment, proliferation and migration in collagen-glycosaminoglycan scaffolds for bone tissue engineering, Biomaterials, vol.31, pp.461-466, 2010.

J. Zeltinger, J. K. Sherwood, D. A. Graham, R. Müeller, and L. G. Griffith, Effect of Pore Size and Void Fraction on Cellular Adhesion, Proliferation, and Matrix Deposition, Tissue Eng, vol.7, pp.557-572, 2001.

A. K. Salem, R. Stevens, R. G. Pearson, M. C. Davies, S. J. Tendler et al., Interactions of 3T3 fibroblasts and endothelial cells with defined pore features, J. Biomed. Mater. Res, vol.61, pp.212-217, 2002.

P. Kasten, I. Beyen, P. Niemeyer, R. Luginbühl, M. Bohner et al., Porosity and pore size of ?-tricalcium phosphate scaffold can influence protein production and osteogenic differentiation of human mesenchymal stem cells: An in vitro and in vivo study, Acta Biomater, vol.4, pp.1904-1915, 2008.

S. Choi, Y. Zhang, and Y. Xia, Three-dimensional Scaffolds for Tissue Engineering: The Importance of Uniformity in Pore Size and Structure, Langmuir ACS J. Surf. Colloids, vol.26, pp.19001-19006, 2010.

P. X. Ma and J. Choi, Biodegradable Polymer Scaffolds with Well-Defined Interconnected Spherical Pore Network, Tissue Eng, vol.7, pp.23-33, 2001.

B. L. Droumaguet, R. Lacombe, H. Ly, B. Carbonnier, and D. Grande, Novel Polymeric Materials with Double Porosity: Synthesis and Characterization, vol.340, pp.18-27, 2014.

M. Dufresne, P. Bacchin, G. Cerino, J. C. Remigy, G. N. Adrianus et al., Human hepatic cell behavior on polysulfone membrane with double porosity level, J. Membr. Sci, vol.428, pp.454-461, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00788387

P. Das, J. Lahitte, J. Remigy, B. Garmy-susini, S. Desclaux et al., Artificial membranes tuning for lymphatic wall repair, Eur. Chapter Meet, p.101, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01360666

B. P. Tripathi, P. Das, F. Simon, and M. Stamm, Ultralow fouling membranes by surface modification with functional polydopamine, Eur. Polym. J, vol.99, pp.80-89, 2018.

S. Salerno, S. Morelli, F. Giordano, A. Gordano, and L. D. Bartolo, Polymeric membranes modulate human keratinocyte differentiation in specific epidermal layers, Colloids Surf. B Biointerfaces, vol.146, pp.352-362, 2016.

M. W. Van-der-helm, M. Odijk, J. Frimat, A. D. Van-der-meer, J. C. Eijkel et al., Direct quantification of transendothelial electrical resistance in organs-on-chips, Biosens. Bioelectron, vol.85, pp.924-929, 2016.

T. Pasman, D. Grijpma, D. Stamatialis, and A. Poot, Flat and microstructured polymeric membranes in organs-on-chips, J. R. Soc. Interface, vol.15, p.20180351, 2018.

A. D. Van-der-meer, A. Van-den, and . Berg, Organs-on-chips: breaking the in vitro impasse, Integr. Biol, vol.4, p.461, 2012.

F. Chen, X. Li, X. Mo, C. He, H. Wang et al., Electrospun chitosan-P(LLA-CL) nanofibers for biomimetic extracellular matrix, J. Biomater. Sci. Polym. Ed, vol.19, pp.677-691, 2008.

S. Hong and G. Kim, Fabrication of electrospun polycaprolactone biocomposites reinforced with chitosan for the proliferation of mesenchymal stem cells, Carbohydr. Polym, vol.83, pp.940-946, 2011.

V. N. Malheiro, S. G. Caridade, N. M. Alves, and J. F. Mano, New poly(?-caprolactone)/chitosan blend fibers for tissue engineering applications, Acta Biomater, vol.6, pp.418-428, 2010.

D. M. Cruz, J. L. Gomez-ribelles, M. Salmerón, and . Sánchez, Blending polysaccharides with biodegradable polymers. I. Properties of chitosan/polycaprolactone blends, J. Biomed. Mater. Res. B Appl. Biomater, vol.85, pp.303-313, 2008.

A. Cooper, N. Bhattarai, F. M. Kievit, M. Rossol, and M. Zhang, Electrospinning of chitosan derivative nanofibers with structural stability in an aqueous environment, Phys. Chem. Chem. Phys, vol.13, pp.9969-9972, 2011.

T. Honma, T. Senda, and Y. Inoue, Thermal properties and crystallization behaviour of blends of poly(?caprolactone) with chitin and chitosan, Polym. Int, vol.52, pp.1839-1846, 2003.

S. D. Vrieze, P. Westbroek, T. V. Camp, and L. V. Langenhove, Electrospinning of chitosan nanofibrous structures: feasibility study, J. Mater. Sci, vol.42, pp.8029-8034, 2007.

R. Jayakumar, M. Prabaharan, S. V. Nair, and H. Tamura, Novel chitin and chitosan nanofibers in biomedical applications, Biotechnol. Adv, vol.28, pp.142-150, 2010.

M. Rahmouni, F. Chouinard, F. Nekka, V. Lenaerts, and J. C. Leroux, Enzymatic degradation of crosslinked high amylose starch tablets and its effect on in vitro release of sodium diclofenac, Eur. J. Pharm. Biopharm, vol.51, pp.191-198, 2001.

T. Honma, L. Zhao, N. Asakawa, and Y. Inoue, Poly(?-Caprolactone)/Chitin and Poly(?-Caprolactone)/Chitosan Blend Films With Compositional Gradients: Fabrication and Their Biodegradability, Macromol. Biosci, vol.6, pp.241-249, 2006.

K. T. Shalumon, K. H. Anulekha, C. M. Girish, R. Prasanth, S. V. Nair et al., Single step electrospinning of chitosan/poly(caprolactone) nanofibers using formic acid/acetone solvent mixture, Carbohydr. Polym, vol.80, pp.413-419, 2010.

I. Olabarrieta, D. Forsström, U. W. Gedde, and M. S. Hedenqvist, Transport properties of chitosan and whey blended with poly(?-caprolactone) assessed by standard permeability measurements and microcalorimetry, Polymer, vol.42, pp.4401-4408, 2001.

A. Sarasam and S. V. Madihally, Characterization of chitosan-polycaprolactone blends for tissue engineering applications, Biomaterials, vol.26, pp.5500-5508, 2005.

A. R. Sarasam, P. Brown, S. S. Khajotia, J. J. Dmytryk, and S. V. Madihally, Antibacterial activity of chitosan-based matrices on oral pathogens, J. Mater. Sci. Mater. Med, vol.19, pp.1083-1090, 2008.

A. R. Sarasam, R. K. Krishnaswamy, and S. V. Madihally, Blending Chitosan with Polycaprolactone: Effects on Physicochemical and Antibacterial Properties, issue.7, pp.1131-1138, 2006.

A. R. Sarasam, A. I. Samli, L. Hess, M. A. Ihnat, and S. V. Madihally, Blending chitosan with polycaprolactone: porous scaffolds and toxicity, Macromol. Biosci, vol.7, pp.1160-1167, 2007.

H. She, X. Xiao, and R. Liu, Preparation and characterization of polycaprolactone-chitosan composites for tissue engineering applications, J. Mater. Sci, vol.42, pp.8113-8119, 2007.

L. Van-der-schueren, B. De, Ö. I. Schoenmaker, K. D. Kalaoglu, and . Clerck, An alternative solvent system for the steady state electrospinning of polycaprolactone, Eur. Polym. J, vol.47, pp.1256-1263, 2011.

L. Van-der-schueren, I. Steyaert, B. De, K. D. Schoenmaker, and . Clerck, Polycaprolactone/chitosan blend nanofibres electrospun from an acetic acid/formic acid solvent system, Carbohydr. Polym, vol.88, pp.1221-1226, 2012.

H. Strathmann, K. Kock, P. Amar, and R. W. Baker, The formation mechanism of asymmetric membranes, Desalination, vol.16, pp.179-203, 1975.

W. S. Rasband and U. S. Imagej, National Institutes of Health, 1997.

M. N. Kumar, R. A. Muzzarelli, C. Muzzarelli, H. Sashiwa, and A. J. Domb, Chitosan Chemistry and Pharmaceutical Perspectives, Chem. Rev, vol.104, pp.6017-6084, 2004.

P. J. Flory, Principles of Polymer Chemistry, 1953.

, Using the ATR for Qualitative and Quantitative Analysis of Samples, AZoM.Com, 2017.

C. Vogel, E. Wessel, and H. W. Siesler, FT-IR Imaging Spectroscopy of Phase Separation in Blends of Poly(3-hydroxybutyrate) with Poly(l-lactic acid) and Poly(?-caprolactone), Biomacromolecules, vol.9, pp.523-527, 2008.

Y. Wan, X. Lu, S. Dalai, and J. Zhang, Thermophysical properties of polycaprolactone/chitosan blend membranes, Thermochim. Acta, vol.487, pp.33-38, 2009.

H. Zhang, X. Luo, X. Lin, X. Lu, Y. Zhou et al., Polycaprolactone/chitosan blends: Simulation and experimental design, Mater. Des, vol.90, pp.396-402, 2016.

M. Borjigin, C. Eskridge, R. Niamat, B. Strouse, P. Bialk et al., Electrospun fiber membranes enable proliferation of genetically modified cells, Int. J. Nanomedicine, vol.8, pp.855-864, 2013.

V. M. Correlo, L. F. Boesel, M. Bhattacharya, J. F. Mano, N. M. Neves et al., Properties of melt processed chitosan and aliphatic polyester blends, Mater. Sci. Eng. A, vol.403, pp.57-68, 2005.

N. Niamsa, A. Puntumchai, V. Sutthikhum, Y. Srisuwan, and Y. Baimark, Preparation and characterization of biodegradable chitosan and methoxy poly(ethylene glycol)-b-poly (?caprolactone) blend homogeneous films, J. Appl. Polym. Sci, vol.109, pp.418-423, 2008.

Y. Chatani, Y. Okita, H. Tadokoro, and Y. Yamashita, Structural Studies of Polyesters. III. Crystal Structure of Poly-?-caprolactone, Polym. J, vol.1, p.555, 1970.

S. Ramakrishna, K. Fujihara, W. E. Teo, T. C. Lim, and Z. Ma, An Introduction to Electrospinning and Nanofibers, World Sci. Publ. Singap, p.10, 2005.

F. S. Kittur, K. V. Harish-prashanth, K. Sankar, and R. N. Tharanathan, Characterization of chitin, chitosan and their carboxymethyl derivatives by differential scanning calorimetry, Carbohydr. Polym, vol.49, pp.185-193, 2002.

M. Mucha and A. Pawlak, Thermal analysis of chitosan and its blends, Thermochim. Acta, vol.427, pp.69-76, 2005.

T. Nishi and T. T. Wang, Melting Point Depression and Kinetic Effects of Cooling on Crystallization in Poly(vinylidene fluoride)-Poly(methyl methacrylate) Mixtures, Macromolecules, vol.8, pp.909-915, 1975.

H. S. Azevedo, F. M. Gama, and R. L. Reis, In Vitro Assessment of the Enzymatic Degradation of Several Starch Based Biomaterials, vol.4, pp.1703-1712, 2003.

H. S. Azevedo and R. L. Reis, Understanding the Enzymatic Degradation of Biodegradable Polymers and Strategies to Control Their Degradation Rate, Biodegrad. Syst. Tissue Eng. Regen. Med, pp.177-201, 2005.

J. S. Chawla and M. M. Amiji, Biodegradable poly(?-caprolactone) nanoparticles for tumor-targeted delivery of tamoxifen, Int. J. Pharm, vol.249, pp.127-138, 2002.

A. M. Ana-r-costa-pinto, M. J. Martins, . Castelhano-carlos, M. Vitor, P. C. Correlo et al., In vitro degradation and in vivo biocompatibility of chitosan-poly(butylene succinate) fiber mesh scaffolds, J. Bioact. Compat. Polym, vol.29, pp.137-151, 2014.

A. M. Martins, Q. P. Pham, P. B. Malafaya, R. A. Sousa, M. E. Gomes et al., The role of lipase and alpha-amylase in the degradation of starch/poly(epsilon-caprolactone) fiber meshes and the osteogenic differentiation of cultured marrow stromal cells, Tissue Eng. Part A, vol.15, pp.295-305, 2009.

K. Tomihata and Y. Ikada, In vitro and in vivo degradation of films of chitin and its deacetylated derivatives, Biomaterials, vol.18, pp.167-173, 1997.

K. M. Vårum, M. M. Myhr, R. J. Hjerde, and O. Smidsrød, In vitro degradation rates of partially N-acetylated chitosans in human serum, Carbohydr. Res, vol.299, issue.96, pp.332-333, 1997.

H. Sashiwa, H. Saimoto, Y. Shigemasa, R. Ogawa, and S. Tokura, Lysozyme susceptibility of partially deacetylated chitin, Int. J. Biol. Macromol, vol.12, pp.90016-90020, 1990.

S. Hirano, H. Tsuchida, and N. Nagao, N-acetylation in chitosan and the rate of its enzymic hydrolysis, Biomaterials, vol.10, pp.90066-90071, 1989.

X. Zhong, C. Ji, A. K. Chan, S. G. Kazarian, A. Ruys et al., Fabrication of chitosan/poly(?-caprolactone) composite hydrogels for tissue engineering applications, J. Mater. Sci. Mater. Med, vol.22, pp.279-288, 2011.

L. Santambrogio, Immunology of the Lymphatic System, vol.16, 2013.

B. Alberts, Molecular Biology of the Cell, 1989.

C. Hansen, Hansen Solubility Parameters: A user's handbook, Second, 2007.

R. Ravindra, K. R. Krovvidi, and A. A. Khan, Solubility parameter of chitin and chitosan, Carbohydr. Polym, vol.36, pp.121-127, 1998.

R. J. Lehnert, A. Kandelbauer, and . Comments-on, Solubility parameter of chitin and chitosan, Carbohydrate Polymers, vol.36, pp.601-602, 1998.

C. Bordes, V. Fréville, E. Ruffin, P. Marote, J. Y. Gauvrit et al., Determination of poly(?-caprolactone) solubility parameters: Application to solvent substitution in a microencapsulation process, Int. J. Pharm, vol.383, pp.236-243, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01958060

C. N. Costa, V. G. Teixeira, M. C. Delpech, J. V. Souza, and M. A. Costa, Viscometric study of chitosan solutions in acetic acid/sodium acetate and acetic acid/sodium chloride, Carbohydr. Polym, vol.133, pp.245-250, 2015.

H. Strathmann and K. Kock, The formation mechanism of phase inversion membranes, Desalination, vol.21, pp.241-255, 1977.

G. R. Guillen, Y. Pan, M. Li, and E. M. Hoek, Preparation and Characterization of Membranes Formed by Nonsolvent Induced Phase Separation: A Review, Ind. Eng. Chem. Res, vol.50, pp.3798-3817, 2011.

J. C. Remigy, M. Meireles, and X. Thibault, Morphological characterization of a polymeric microfiltration membrane by synchrotron radiation computed microtomography, J. Membr. Sci, vol.305, pp.27-35, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00323055

A. Di-luca, B. Ostrowska, I. Lorenzo-moldero, A. Lepedda, W. Swieszkowski et al., Gradients in pore size enhance the osteogenic differentiation of human mesenchymal stromal cells in three-dimensional scaffolds, Sci. Rep, vol.6, 2016.

H. Liu, H. Peng, Y. Wu, C. Zhang, Y. Cai et al., The promotion of bone regeneration by nanofibrous hydroxyapatite/chitosan scaffolds by effects on integrin-BMP/Smad signaling pathway in BMSCs, Biomaterials, vol.34, pp.4404-4417, 2013.

A. I. Caplan, Adult mesenchymal stem cells for tissue engineering versus regenerative medicine, J. Cell. Physiol, vol.213, pp.341-347, 2007.

A. Piscioneri, S. Morelli, M. Mele, M. Canonaco, E. Bilotta et al., Neuroprotective effect of human mesenchymal stem cells in a compartmentalized neuronal membrane system, Acta Biomater, vol.24, pp.297-308, 2015.

R. S. Teotia, D. Kalita, A. K. Singh, S. K. Verma, S. S. Kadam et al., Bifunctional Polysulfone-Chitosan Composite Hollow Fiber Membrane for Bioartificial Liver, ACS Biomater. Sci. Eng, vol.1, pp.372-381, 2015.

M. Prabhahar, M. Rodriguez-perez, J. Saja, and J. Mano, Preparation and characterization of poly(Llactic acid)-chitosan hybrid scaffolds with drug release capability -Prabaharan -2007, Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol.81, pp.427-434

A. Anitha, S. Sowmya, P. T. Kumar, S. Deepthi, K. P. Chennazhi et al., Chitin and chitosan in selected biomedical applications, Prog. Polym. Sci, vol.39, pp.1644-1667, 2014.

M. Dash, F. Chiellini, R. M. Ottenbrite, and E. Chiellini, Chitosan-A versatile semi-synthetic polymer in biomedical applications, Prog. Polym. Sci, vol.36, pp.981-1014, 2011.

A. Atala, F. Kasper, and A. Mikos, Engineering Complex Tissues, Sci Trans Med, vol.4, p.160, 2012.

M. Okamoto, Synthetic biopolymer nanocomposites for tissue engineering scaffolds, Prog. Polym. Sci, p.17, 2013.

Z. Li and B. H. Tan, Towards the development of polycaprolactone based amphiphilic block copolymers: molecular design, self-assembly and biomedical applications, Mater. Sci. Eng. C, p.15, 2014.

S. Morelli, A. Piscioneri, A. Messina, S. Salerno, M. B. Al-fageeh et al., Neuronal growth and differentiation on biodegradable membranes, J. Tissue Eng. Regen. Med, vol.9, pp.106-117, 2015.

Y. Xiao, D. Li, X. Chen, J. Lu, H. Fan et al., Preparation and cytocompatibility of chitosanmodified polylactide, J. Appl. Polym. Sci, vol.110, pp.408-412, 2008.

M. A. Meyers, J. Mckittrick, and P. Chen, Structural Biological Materials: Critical Mechanics-Materials Connections, vol.339, pp.773-779, 2013.

S. Mitragotri and J. Lahann, Physical approaches to biomaterial design, Nat. Mater, vol.8, pp.15-23, 2009.

J. M. Holzwarth and P. X. Ma, Biomimetic nanofibrous scaffolds for bone tissue engineering, Biomaterials, vol.32, pp.9622-9629, 2011.

V. M. Correlo, L. F. Boesel, M. Bhattacharya, J. F. Mano, N. M. Neves et al., Properties of melt processed chitosan and aliphatic polyester blends, Mater. Sci. Eng. A, vol.403, pp.57-68, 2005.

D. Öner and T. J. Mccarthy, Ultrahydrophobic Surfaces. Effects of Topography Length Scales on Wettability, Langmuir, vol.16, pp.7777-7782, 2000.

A. Marmur, The Lotus Effect: Superhydrophobicity and Metastability, Langmuir, vol.20, pp.3517-3519, 2004.

L. Feng, Y. Zhang, J. Xi, Y. Zhu, N. Wang et al., Petal Effect: A Superhydrophobic State with High Adhesive Force, Langmuir, vol.24, pp.4114-4119, 2008.

F. He, S. Li, M. Vert, and R. Zhuo, Enzyme-catalyzed polymerization and degradation of copolymers prepared from ?-caprolactone and poly(ethylene glycol), Polymer, vol.44, pp.5145-5151, 2003.

E. Murray, B. C. Thompson, S. Sayyar, and G. G. Wallace, Enzymatic degradation of graphene/polycaprolactone materials for tissue engineering, Polym. Degrad. Stab, vol.111, pp.71-77, 2015.

X. Kang, Y. Xie, H. M. Powell, L. J. Lee, M. A. Belury et al., Adipogenesis of murine embryonic stem cells in a three-dimensional culture system using electrospun polymer scaffolds, Biomaterials, vol.28, pp.450-458, 2007.

G. F. Muschler, C. Nakamoto, L. G. Griffith, E. Principles, . Clinical-cell-based-tissue et al., J. Bone Jt. Surg.-Am, vol.86, pp.1541-1558, 2004.

W. F. Quirós-solano, N. Gaio, O. M. Stassen, Y. B. Arik, C. Silvestri et al., Microfabricated tuneable and transferable porous PDMS membranes for Organs-on-Chips, vol.8, p.13524, 2018.

M. W. Van-der and . Helm, Electrical and microfluidic technologies for organs-on-chips: Mimicking blood-brain barrier and gut tissues, 2018.

Y. Xia and G. M. Whitesides, Soft Lithography, Annu. Rev. Mater. Sci, vol.28, pp.153-184, 1998.

D. Huh, Y. Torisawa, G. A. Hamilton, H. J. Kim, and D. E. Ingber, Microengineered physiological biomimicry: organs-on-chips, Lab. Chip, vol.12, pp.2156-2164, 2012.

A. K. Capulli, K. Tian, N. Mehandru, A. Bukhta, S. F. Choudhury et al., Approaching the In Vitro Clinical Trial: Engineering Organs on Chips, Lab. Chip, vol.14, pp.3181-3186, 2014.

D. Huh, G. A. Hamilton, and D. E. Ingber, From 3D cell culture to organs-on-chips, Trends Cell Biol, vol.21, pp.745-754, 2011.

D. Huh, H. J. Kim, J. P. Fraser, D. E. Shea, M. Khan et al., Microfabrication of human organs-on-chips, Nat. Protoc, vol.8, pp.2135-2157, 2013.

V. V. Abhyankar, M. Wu, C. Koh, and A. V. Hatch, A Reversibly Sealed, Easy Access, Modular (SEAM) Microfluidic Architecture to Establish In Vitro Tissue Interfaces, PLOS ONE, vol.11, p.156341, 2016.

H. Lee, D. S. Kim, S. K. Ha, I. Choi, J. M. Lee et al., A pumpless multi-organ-on-a-chip (MOC) combined with a pharmacokinetic-pharmacodynamic (PK-PD) model, Biotechnol. Bioeng, vol.114, pp.432-443, 2017.

P. Loskill, T. Sezhian, K. M. Tharp, F. T. Lee-montiel, S. Jeeawoody et al., WAT-on-a-chip: a physiologically relevant microfluidic system incorporating white adipose tissue, Lab. Chip, vol.17, pp.1645-1654, 2017.

K. Shim, D. Lee, J. Han, N. Nguyen, S. Park et al., Microfluidic gut-on-a-chip with three-dimensional villi structure, Biomed. Microdevices, vol.19, p.37, 2017.

L. Zhu, H. Xia, Z. Wang, E. L. Fong, J. Fan et al., A vertical-flow bioreactor array compacts hepatocytes for enhanced polarity and functions, Lab. Chip, vol.16, pp.3898-3908, 2016.

K. J. Pocock, X. Gao, C. Wang, C. Priest, C. A. Prestidge et al., Low-temperature bonding process for the fabrication of hybrid glass-membrane organ-on-a-chip devices, J. MicroNanolithography MEMS MOEMS, vol.15, p.44502, 2016.

B. M. Maoz, A. Herland, O. Y. Henry, W. D. Leineweber, M. Yadid et al., Organs-on-Chips with combined multi-electrode array and transepithelial electrical resistance measurement capabilities, Lab. Chip, vol.17, pp.2294-2302, 2017.

Y. I. Wang, H. E. Abaci, and M. L. Shuler, Microfluidic blood-brain barrier model provides in vivolike barrier properties for drug permeability screening, Biotechnol. Bioeng, vol.114, pp.184-194, 2017.

D. Sticker, M. Rothbauer, S. Lechner, M. Hehenberger, and P. Ertl, Multi-layered, membraneintegrated microfluidics based on replica molding of a thiol-ene epoxy thermoset for organ-on-achip applications, Lab. Chip, vol.15, pp.4542-4554, 2015.

Y. Ma, J. Pan, S. Zhao, Q. Lou, Y. Zhu et al., Microdroplet chain array for cell migration assays, Lab. Chip, vol.16, pp.4658-4665, 2016.

S. Lee, S. Jin, Y. K. Kim, G. Y. Sung, J. H. Chung et al., Construction of 3D multicellular microfluidic chip for an in vitro skin model, Biomed. Microdevices, vol.19, p.22, 2017.

M. Jie, H. Li, L. Lin, J. Zhang, and J. Lin, Integrated microfluidic system for cell co-culture and simulation of drug metabolism, RSC Adv, vol.6, pp.54564-54572, 2016.

J. A. Brown, S. G. Codreanu, M. Shi, S. D. Sherrod, D. A. Markov et al., Metabolic consequences of inflammatory disruption of the blood-brain barrier in an organon-chip model of the human neurovascular unit, J. Neuroinflammation, vol.13, 2016.

C. S. Chen, M. Mrksich, S. Huang, G. M. Whitesides, and D. E. Ingber, Geometric control of cell life and death, Science, vol.276, pp.1425-1428, 1997.

M. Hulsman, F. Hulshof, H. Unadkat, B. J. Papenburg, D. F. Stamatialis et al., Analysis of high-throughput screening reveals the effect of surface topographies on cellular morphology, Acta Biomater, vol.15, pp.29-38, 2015.

M. B. Esch, D. J. Post, M. L. Shuler, and T. Stokol, Characterization of in vitro endothelial linings grown within microfluidic channels, Tissue Eng. Part A, vol.17, pp.2965-2971, 2011.

K. E. Broaders, A. E. Cerchiari, and Z. J. Gartner, Coupling between apical tension and basal adhesion allow epithelia to collectively sense and respond to substrate topography over long distances, Integr. Biol. Quant. Biosci. Nano Macro, vol.7, pp.1611-1621, 2015.

M. Lampin, C. Warocquier-clérout, M. Legris, M. F. Degrange, and . Sigot-luizard, Correlation between substratum roughness and wettability, cell adhesion, and cell migration, J. Biomed. Mater. Res, vol.36, pp.99-108, 1997.

D. P. Dowling, I. S. Miller, M. Ardhaoui, and W. M. Gallagher, Effect of surface wettability and topography on the adhesion of osteosarcoma cells on plasma-modified polystyrene, J. Biomater. Appl, vol.26, pp.327-347, 2011.

T. P. Kunzler, T. Drobek, M. Schuler, and N. D. Spencer, Systematic study of osteoblast and fibroblast response to roughness by means of surface-morphology gradients, Biomaterials, vol.28, pp.2175-2182, 2007.

R. Lange, F. Lüthen, U. Beck, J. Rychly, A. Baumann et al., Cell-extracellular matrix interaction and physico-chemical characteristics of titanium surfaces depend on the roughness of the material, Biomol. Eng, vol.19, pp.255-261, 2002.

J. H. Lee, G. Khang, J. W. Lee, and H. B. Lee, Interaction of Different Types of Cells on Polymer Surfaces with Wettability Gradient, J. Colloid Interface Sci, vol.205, pp.323-330, 1998.

J. Wala, D. Maji, and S. Das, Influence of physico-mechanical properties of elastomeric material for different cell growth, Biomed. Mater. Bristol Engl, vol.12, p.65002, 2017.

A. J. Engler, S. Sen, H. L. Sweeney, and D. E. Discher, Matrix elasticity directs stem cell lineage specification, Cell, vol.126, pp.677-689, 2006.

S. M. Casillo, A. P. Peredo, S. J. Perry, H. H. Chung, and T. R. Gaborski, Membrane Pore Spacing Can Modulate Endothelial Cell-Substrate and Cell-Cell Interactions, ACS Biomater. Sci. Eng, vol.3, pp.243-248, 2017.

M. Y. Kim, D. J. Li, L. K. Pham, B. G. Wong, and E. E. Hui, Microfabrication of High-Resolution Porous Membranes for Cell Culture, J. Membr. Sci, vol.452, pp.460-469, 2014.

M. B. Esch, J. H. Sung, J. Yang, C. Yu, J. Yu et al., On chip porous polymer membranes for integration of gastrointestinal tract epithelium with microfluidic "body-on-a-chip" devices, Biomed. Microdevices, vol.14, pp.895-906, 2012.

H. Wei, B. Chueh, H. Wu, E. W. Hall, C. Li et al., Particle sorting using a porous membrane in a microfluidic device, Lab. Chip, vol.11, pp.238-245, 2011.

V. Pensabene, L. Costa, A. Y. Terekhov, J. S. Gnecco, J. P. Wikswo et al., Ultrathin Polymer Membranes with Patterned, Micrometric Pores for Organs-on-Chips, ACS Appl. Mater. Interfaces, vol.8, pp.22629-22636, 2016.

V. Pensabene, S. W. Crowder, D. A. Balikov, J. B. Lee, and H. J. Sung, Optimization of electrospun fibrous membranes for in vitro modeling of blood-brain barrier, Conf. Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. IEEE Eng. Med. Biol. Soc. Annu. Conf, pp.125-128, 2016.

Q. Cheng, B. L. Lee, K. Komvopoulos, and S. Li, Engineering the Microstructure of Electrospun Fibrous Scaffolds by Microtopography, Biomacromolecules, vol.14, pp.1349-1360, 2013.

J. Garra, T. Long, J. Currie, T. Schneider, R. White et al., Dry etching of polydimethylsiloxane for microfluidic systems, J. Vac. Sci. Technol. A, vol.20, pp.975-982, 2002.

S. J. Hwang, D. J. Oh, P. G. Jung, S. M. Lee, J. S. Go et al., Dry etching of polydimethylsiloxane using microwave plasma, J. Micromechanics Microengineering, vol.19, p.95010, 2009.

M. Prabaharan, M. A. Rodriguez-perez, J. A. De-saja, and J. F. Mano, Preparation and characterization of poly(L-lactic acid)-chitosan hybrid scaffolds with drug release capability, J. Biomed. Mater. Res. B Appl. Biomater, vol.81, pp.427-434, 2007.

M. W. Van-der-helm, M. Odijk, J. Frimat, A. D. Van-der-meer, J. C. Eijkel et al., Fabrication and Validation of an Organ-on-chip System with Integrated Electrodes to Directly Quantify Transendothelial Electrical Resistance, JoVE J. Vis. Exp, pp.56334-56334, 2017.

B. Chueh, D. Huh, C. R. Kyrtsos, T. Houssin, N. Futai et al., Leakage-Free Bonding of Porous Membranes into Layered Microfluidic Array Systems, Anal. Chem, vol.79, pp.3504-3508, 2007.

L. M. Griep, F. Wolbers, B. De-wagenaar, P. M. Ter-braak, B. B. Weksler et al., BBB ON CHIP: microfluidic platform to mechanically and biochemically modulate blood-brain barrier function, Biomed. Microdevices, vol.15, pp.145-150, 2013.

, FRP Flow Sensor: FLOW-RATE PLATFORM | Fluigent, vol.17, 2018.

H. W. Sill, Y. S. Chang, J. R. Artman, J. A. Frangos, T. M. Hollis et al., Shear stress increases hydraulic conductivity of cultured endothelial monolayers, Am. J. Physiol.-Heart Circ. Physiol, vol.268, pp.535-543, 1995.

Z. Pang, D. A. Antonetti, and J. M. Tarbell, Shear stress regulates HUVEC hydraulic conductivity by occludin phosphorylation, Ann. Biomed. Eng, vol.33, pp.1536-1545, 2005.

P. M. Luckett, J. Fischbarg, J. Bhattacharya, and S. C. Silverstein, Hydraulic conductivity of endothelial cell monolayers cultured on human amnion, Am. J. Physiol.-Heart Circ. Physiol, vol.256, pp.1675-1683, 1989.

P. Desmond, J. P. Best, E. Morgenroth, and N. Derlon, Linking composition of extracellular polymeric substances (EPS) to the physical structure and hydraulic resistance of membrane biofilms, Water Res, vol.132, pp.211-221, 2018.

P. Desmond, L. Böni, P. Fischer, E. Morgenroth, and N. Derlon, Stratification in the physical structure and cohesion of membrane biofilms -Implications for hydraulic resistance, J. Membr. Sci, vol.564, pp.897-904, 2018.

E. Fröhlich, G. Bonstingl, A. Höfler, C. Meindl, G. Leitinger et al., Comparison of two in vitro systems to assess cellular effects of nanoparticles-containing aerosols, Toxicol. In Vitro, pp.409-417, 2013.

, Product lines, 2018.

K. Madhavan, W. H. Elliott, W. Bonani, E. Monnet, and W. Tan, Mechanical and biocompatible characterizations of a readily available multilayer vascular graft, J. Biomed. Mater. Res. B Appl. Biomater, vol.101, pp.506-519, 2013.

H. Bazyar, P. Lv, J. A. Wood, S. Porada, D. Lohse et al., Liquid-liquid displacement in slippery liquid-infused membranes (SLIMs), Soft Matter, vol.14, pp.1780-1788, 2018.

R. S. Barhate and S. Ramakrishna, Nanofibrous filtering media: Filtration problems and solutions from tiny materials, J. Membr. Sci, vol.296, pp.1-8, 2007.

D. Bjorge, N. Daels, S. De-vrieze, P. Dejans, T. Van-camp et al., Performance assessment of electrospun nanofibers for filter applications, Desalination, vol.249, pp.942-948, 2009.

A. Cooper, R. Oldinski, H. Ma, J. D. Bryers, and M. Zhang, Chitosan-based nanofibrous membranes for antibacterial filter applications, Carbohydr. Polym, vol.92, pp.254-259, 2013.

P. Premnath, A. Tavangar, B. Tan, and K. Venkatakrishnan, Tuning cell adhesion by direct nanostructuring silicon into cell repulsive/adhesive patterns, Exp. Cell Res, vol.337, pp.44-52, 2015.

X. Xiao, W. Wang, D. Liu, H. Zhang, P. Gao et al., The promotion of angiogenesis induced by three-dimensional porous beta-tricalcium phosphate scaffold with different interconnection sizes via activation of PI3K/Akt pathways, Sci. Rep, vol.5, p.9409, 2015.

M. Mastrogiacomo, S. Scaglione, R. Martinetti, L. Dolcini, F. Beltrame et al., Role of scaffold internal structure on in vivo bone formation in macroporous calcium phosphate bioceramics, Biomaterials, issue.27, pp.3230-3237, 2006.

S. L. Nyberg, R. A. Shatford, M. V. Peshwa, J. G. White, F. B. Cerra et al., Evaluation of a hepatocyte-entrapment hollow fiber bioreactor: A potential bioartificial liver, Biotechnol. Bioeng, vol.41, pp.194-203, 1993.

L. D. Bartolo, S. Salerno, E. Curcio, A. Piscioneri, M. Rende et al., Human hepatocyte functions in a crossed hollow fiber membrane bioreactor, Biomaterials, vol.30, pp.2531-2543, 2009.

D. Falconnet, G. Csucs, H. M. Grandin, and M. Textor, Surface engineering approaches to micropattern surfaces for cell-based assays, Biomaterials, issue.27, pp.3044-3063, 2006.

F. J. Sanz, J. F. Lahitte, and J. Remigy, Membrane synthesis by microemulsion polymerisation stabilised by commercial non-ionic surfactants, pp.127-129, 2006.

M. N. Lee and A. Mohraz, Bicontinuous Macroporous Materials from Bijel Templates, Adv. Mater, vol.22, pp.4836-4841, 2010.

J. ?-pritam-das, J. Remigy, B. Lahitte, C. Garmy-susini, S. Coetsier et al., Double porous poly (?-caprolactone)/chitosan blend membrane as tissue engineering scaffold: from material development to human dermal lymphatic endothelial cell growth

S. ?-pritam-das, J. Salerno, J. Remigy, P. Lahitte, and . Bacchin, Loredana De Bartolo, Double porous, biodegradable poly (?caprolactone)/chitosan 3D scaffolds: understanding hMSCs attachment, proliferation and invasion by varying pore size and morphology of the scaffolds

A. D. ?-pritam-das, A. Van-der-meer, Y. B. Vivas, J. Arik, J. Remigy et al., Fabrication of tuneable microstructured flat sheet membrane in Organ-on-chip to monitor trans-endothelial hydraulic resistance

?. Conferences, J. Remigy, S. Lahitte, L. Salerno, P. De-bartolo et al., Double porous membrane as bio-artificial vascular patch: development, characterization and understanding cellmatrix interaction by varying pore size and morphology, Poster Presentation: Pritam Das, Andries D. van der Meer, 2018.

, Oral Presentation: Pritam Das, Simona Salerno, Patrice Bacchin, Loredana De Bartolo, Development of double porous material by poly (?-caprolactone)/chitosan blends for tissue engineering application, European Society for Biomaterials International conference, 2017.

J. Lahitte, J. C. Remigy, B. G. Susini, S. Desclaux, C. Coetsier et al., Artificial membranes tuning for lymphatic wall repair, Termis-European Chapter International Conference, p.101, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01360666

, Clémence Coietsier, Artificial Membranes Tuning for Controlled Biological Cells Interactions, 2015.