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Summary of the thesis in English 
 
Over the last decades, three-dimensional (3D) scaffolds are unfolding many promising applications in 
tissue engineering and regenerative medicine field by providing suitable microenvironment for the 
incorporation of cells or growth factors to regenerate damaged tissues or organs. The three-dimensional 
polymeric porous scaffolds with higher porosities having homogeneous interconnected pore network 
are highly useful for tissue engineering. 
 
In this context, a poly (Ɛ- caprolactone) PCL/chitosan CHT blend membrane with a double porous 
morphology was developed by modified liquid induced phase inversion technique. The membrane 
shows: (i) surface macrovoids (big pores) which could be easily accessible for cells invasion and 
viability; (ii) interconnected microporous (small pores) network to transfer essential nutrients, oxygen, 
growth factors between the macrovoids and throughout the scaffolds. The physico-chemical properties 
(pore size, surface chemistry and biodegradability) of the materials have been characterized. This study 
shows how it is possible to tune the membrane properties by changing the PCL/CHT ratio. 
 
Human mesenchymal stem cell (hMSCs) culture was performed on the membranes and the cell viability 
and proliferation was investigated by MTT assay and oxygen uptake rate experiments. The experiments 
demonstrate that the membranes are biocompatible and can be colonized by the cells at micron scale. 
Confocal microscopy images show that the cells are able to adhere and penetrate inside the macrovoids 
of the membranes. Both cell proliferation and oxygen uptake increase with time especially on 
membranes with lower chitosan concentration. The presence of chitosan in the blend produces an 
increase of porosity that affect the entrapment of the cells inside the porous bulk of the membranes. 
Successful cellular proliferation of hMSCs could be useful to enhance longevity of other primary cells 
by production of corresponding growth factors. 
 
To test the dynamic behavior of cells on the membranes, an organ-on-chip (OOC) device has been 
developed with human umbilical endothelial cells (HUVECs) seeded on the membrane. 
The hydraulic resistance of the cellular barrier on the membrane has been quantified for real time trans-
endothelial pressure (TEP) 20 cmH2O at 37 degree C and with living cells after 1 day and 3 day of post 
seeding. Results suggests this kind of polymeric scaffolds can be useful in future as an in vivo patch to 
repair disrupted vessels. 
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Résumé de la thèse en français 
 
Les matériaux à structure tridimensionnelle laissent entrevoir de nombreuses applications prometteuses 
dans le domaine de l'ingénierie tissulaire et de la médecine régénérative en fournissant un micro-
environnement approprié pour l'incorporation de cellules ou de facteurs de croissance afin de régénérer 
des tissus ou organes endommagés.  
 
Dans ce contexte, une membrane a été élaborée à partir d’un mélange de poly (-caprolactone) PCL / 
chitosan CHT à partir d’une technique d'inversion de phase permettant un apport localisé de non solvent. 
La technique permet d’obtenir une double morphologie poreuse : (i) des macrovides en surface (gros 
pores) facilement accessibles pour l'invasion et la viabilité des cellules; (ii) un réseau macroporeux 
interconnecté (petits pores) pour transférer les nutriments, l'oxygène, le facteur de croissance à travers 
le matériau. Les propriétés physico-chimiques (taille des pores, chimie de surface et biodégradabilité) 
des matériaux ont été caractérisées. Il est montré comment il est possible d’ajuster les propriétés de la 
membrane en modifiant le rapport PCL / CHT. 
 
Des cultures de cellules souches mésenchymateuses humaines (CSMh) ont été réalisées sur la membrane. 
La viabilité et la prolifération cellulaires ont été étudiées par des essais de test au MTT et de taux 
d'absorption d'oxygène. Les expériences démontrent que la membrane est biocompatible et peut être 
colonisée par les cellules. La microscopie confocale montre que les cellules sont capables de pénétrer à 
l'intérieur des macrovides de la membrane. La prolifération cellulaire de CSM dans ce matériau pourrait 
être utile pour augmenter la longévité d'autres cellules primaires en modifiant les CSM pour produire 
des facteurs de croissance. 
  
Pour tester le comportement dynamique des cellules sur la membrane, un dispositif d'organe sur puce a 
été développé avec des cellules endothéliales ombilicales humaines ensemencées sur la membrane. Les 
résistances hydrauliques de la barrière cellulaire sur la membrane ont été quantifiées en temps réel pour 
une pression trans-endothéliale (PTE), 20 cm H2O à 37 ° C et avec des cellules vivantes après 1 jour et 
3 jours après l'ensemencement. Les résultats suggèrent que ce type d'échafaudages polymères peut être 
utile à l'avenir comme patch in vivo pour réparer des vaisseaux endommagés.
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Riassunto della tesi in italiano 

Negli ultimi decenni, scaffolds tridimensionali (3D) si stanno rivelando particolarmente promettenti in 
diverse applicazioni nel campo dell'ingegneria tissutale e della medicina rigenerativa, poiché forniscono 
un microambiente adatto per l'incorporazione di cellule o fattori di crescita per rigenerare tessuti o organi 
danneggiati. Scaffolds porosi polimerici tridimensionali, con porosità più elevate e con un reticolo 
omogeneo di pori interconnessi, sono particolarmente utili per l'ingegneria tissutale. 

A questo proposito è stata realizzata, mediante una modifica della tecnica di inversione di fase indotta 
da non solvente, una membrana da una miscela polimerica di poli(Ɛ-caprolattone) e chitosano 
(PCL/CHT), avente una morfologia con doppia porosità. La membrana sviluppata mostra: (i) 
macrovuoti o macropori di superficie che potrebbero essere facilmente accessibili per l’intrappolamento 
e la vitalità cellulare; (ii) una rete interconnessa microporosa per il trasporto di nutrienti essenziali, 
ossigeno e fattori di crescita tra i macropori ed attraverso la membrana. Sono state caratterizzate le 
proprietà chimico-fisiche (dimensione dei pori, chimica della superficie e biodegradabilità) delle 
membrane realizzate. Questo studio dimostra come sia possibile regolare le proprietà della membrana 
variando il rapporto PCL/CHT. 

E’ stata realizzata una coltura di cellule staminali mesenchimali umane (hMSCs) sulle membrane 
sviluppate e sono state valutate la vitalità e la proliferazione cellulare, mediante dosaggi di vitalità con 
MTT, e mediante esperimenti di valutazione delle velocità di consumo di ossigeno. I risultati ottenuti 
dimostrano che le membrane sono biocompatibili e possono essere colonizzate dalle cellule a livello 
micrometrico. Immagini di microscopia confocale mostrano come le cellule siano in grado di aderire e 
penetrare all'interno dei macropori delle membrane. Sia la proliferazione cellulare che il consumo di 
ossigeno aumentano nel tempo specialmente su membrane con più alte concentrazioni di chitosano. La 
presenza di CHT nella miscela polimerica causa un aumento della porosità che influenza 
l’intrappolamento delle cellule nella matrice porosa delle membrane. Una  proliferazione proficua delle 
hMSC potrebbe essere utile per migliorare la longevità di altre cellule primarie mediante la produzione 
di fattori di crescita corrispondenti. 

Per testare il comportamento dinamico delle cellule sulle membrane, è stato sviluppato un dispositivo 
di organo su chip (OOC) con cellule endoteliali umane ombelicali (HUVEC) seminate sulla membrana. 
La resistenza idraulica della barriera cellulare sulla membrana è stata quantificata per la pressione trans-
endoteliale in tempo reale (TEP) di 20 cm H2O a 37 °C e con cellule vitali dopo 1 e 3 giorni di coltura. 
I risultati suggeriscono che questo tipo di scaffolds polimerici può essere utile in futuro come patch in 
vivo per riparare vasi danneggiati.
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Samenvatting van de scriptie in het Nederlands 

Gedurende de laatste decennia ontvouwen driedimensionale (3D) scaffolds vele veelbelovende 
toepassingen op het gebied van tissue engineering en regeneratieve geneeskunde door het verschaffen 
van een geschikte micro-omgeving voor de opname van cellen of groeifactoren om beschadigde 
weefsels of organen te regenereren. De driedimensionale polymere poreuze scaffolds met hogere 
porositeiten met homogeen onderling verbonden porie-netwerk zijn zeer bruikbaar voor tissue-
engineering. 

In deze context, een poly (Ɛ-caprolacton) PCL / chitosan CHT-blendmembraan met een dubbele poreuze 
morfologie werd gevormd door gemodificeerde vloeistofgeïnduceerde fase-inversietechniek: (i) 
oppervlakte-macroholten (grote poriën) die gemakkelijk toegankelijk zouden kunnen zijn voor invasie 
en levensvatbaarheid van cellen; (ii) onderling verbonden macroporeuze (kleine poriën) netwerk om 
essentiële voedingsstoffen, zuurstof, groeifactor over te dragen tussen de macroholten en door de 
steigers heen. De fysisch-chemische eigenschappen (poriegrootte, oppervlaktechemie en biologische 
afbreekbaarheid) van de materialen zijn gekarakteriseerd. Deze studie laat zien hoe het mogelijk is om 
de membraaneigenschappen af te stemmen door de PCL / CHT-ratio te veranderen. 

Humane mesenchymale stamcel (hMSCs) kweek werd op het membraan uitgevoerd en de 
levensvatbaarheid en proliferatie van de cel werd onderzocht met behulp van MTT-test en 
zuurstofopnamesnelheidsexperimenten. . De experimenten tonen aan dat het membraan biocompatibel 
is en door de cellen kan worden gekoloniseerd. Confocale microscopie toont aan dat de cellen in de 
macroholten (micrometrische poriën) van het membraan kunnen penetreren. Succesvolle cellulaire 
proliferatie van hMSC's zou nuttig kunnen zijn om de levensduur van andere primaire cellen te 
verbeteren door productie van overeenkomstige groeifactoren. 

 Om het dynamische gedrag van cellen op het membraan te testen, is een Organ-on-chip (OOC) -
apparaat ontwikkeld met humane navelstreng endotheelcellen (HUVEC's) die op het membraan zijn 
gezaaid. 

De hydraulische weerstand van de cellulaire barrière op het membraan is gekwantificeerd voor real-time 
trans-endotheliale druk (TEP) 20 cm H2O bij 37 °C en met levende cellen na 1 dag en 3 dagen na 
uitzaaiing. Resultaten suggereren dat dit soort polymere scaffolds in de toekomst bruikbaar kunnen zijn 
als een in vivo patch om verstoorde vaten te repareren. 
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1 Chapter 1 

    Chapter 1: General Introduction 

1.1 Tissue engineering paradigm 

Tissue engineering is an interdisciplinary field that should find many applications to develop tissue 

regeneration or reconstruction via applying the principle of engineering and biology. It also refers to 

regenerative medicine by which biofunctional human tissues can be constructed by cells in a laboratory. 

The ultimate goal of tissue engineering is to use those tissue to replace human organs which were 

damaged by diseases, genetic abnormalities or traumatic injury. Tissue engineering relies on three 

important factors (Fig. 1).  

 

Fig. 1. Role of Biological Science, Material Science and Bioreactors on tissue engineering. 
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Biology; which refers to use the right cells to construct the target tissue and also the right biomolecule 

to keeps those cells healthy and productive. Materials; or biomaterials which refers to provide the right 

environment to support the cellular growth. The material can be sometimes degrade overtime or remains 

inside the body to provide support to the organs. And Bioreactors; where the tissue construct can be 

prepared by using the cells and material with proper conditioning. The bioreactor can be inside the 

laboratory, which called as in vitro condition, or it can be inside the physiological condition, which 

called as in vivo condition [1].  

The rapid reconstruction of biomaterials remains an important challenge, emphasizing the need to 

reproduce smart biomedical device for tissue engineering and regenerative medicine application [2–5]. 

Progress in our conception of regenerative biomaterials and their roles in new tissue formation, can 

potentially open a new frontier in the fast-growing field of regenerative medicine [6–9]. The range and 

degree of biomaterial sophistication have also dramatically increased as more knowledge has 

accumulated through materials science, matrix biology and tissue engineering [10]. Broadly speaking, 

biomaterials can be defined as material devices or implants used to repair/replace native body tissues or 

as scaffolding materials, adopted to construct manmade tissues and organs. 

1.2 General principle of tissue engineering 

The general principle of tissue engineering can be simply defined by seeding living cell on a three-

dimensional porous biomaterial/bioscaffold. Although there are numbers of other technique to do that 

but porous biomaterials always dominates the field in the recent years. The basic role of biomaterials in 

tissue engineering is to provide temporary mechanical support and mass transport to encourage cell 

adhesion, proliferation and differentiation and to control the size and shape of the regenerated tissue. 

Let say, if we prepare a target tissue construct by seed some living cells on three-dimensional porous 

scaffolds in a bioreactors, they will continuously need proper nutrients and conditioning (Fig. 2).  

 

Fig. 2. Three-dimensional porous scaffolds to prepare tissue construct.  
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 Although the development of the tissue construct (let say in month scale) from cells involves number 

of important processes which can be serve by the porous scaffolds (Fig. 3): 

- The cells with the right condition will grow with time 

- The scaffold will degrade (if biodegradable) overtime which allows the cell to replace the 

scaffolds 

- As the scaffolds degrade, the mechanical property will decrease in the initial days but it will 

increase again due to the growing mechanical support by the tissue construct 

- As the cell grow, they will start suffocate themselves to transport oxygen through cellular 

channel. That is how they will prepare the blood vessel rather rapidly by the mechanism called 

angiogenesis. 

- There will be another process which is called the inflammation, a normal process of healing. 

Inflammation will grow due to presence of the scaffold which will go away after certain time. 

At the end, we have the desired tissue construct where the scaffolds will be completely gone.  

 

Fig. 3. Functions involves tissue formation from cells. (Inspired by a talk of Prof. Buddy D Ratner, 
University of Washington, USA) 

Preferably, a bioactive scaffold for tissue engineering should meet the design criteria:  
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- biocompatible (surface should permit cell adhesion and growth, material should produce 

negligible inflammation) 

- cellular transportation and ingrowth (three dimensional porous structure should capable of cell 

migration through the bulk which will avoid overcrowding on the surface)  

- interconnected porosity (to transfer cell signalling and to develop cell-polymer interaction via 

extracellular matrix regeneration) [11] 

- adjustable biodegradability (scaffolds should resorb once it has served its purpose of providing 

a template for the regeneration, the degradation rate should be tuneable to match the rate of 

tissue regeneration by the cell type of interest) 

- mechanical property (suitable for hard or soft tissue grafts e.g. generation of cartilage, bone, 

artificial blood vessel, among others) [12]. 
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1.3 Current Research approach  

Cardiovascular diseases (CVD) refer to a group of diseases involving the heart and blood vessels. Due 

to uncontrolled life, excessive smoking, obesity, diabetes, heart disease is the number one silent killer 

in the world for both men and women [13]. The initial stimulus is damage to the endothelium (Luminal 

side) and followed by damaging the smooth muscle cell layer due to the toxic chemical release in the 

blood stream (Fig. 4).  

 

Fig. 4. Schematic of the current research approach. 

In medical terminology which is referred as a chronic state of Atherosclerosis. The main objective of 

this thesis is to produce and investigate a novel three-dimensional biomaterial that can deliver potential 

tissue engineering scaffolds for cardiovascular system diseases (CVD). Here we intend to regenerate the 

blood vessel by tissue engineering technology where two different kind cells can be seeded strategically. 

Human endothelial cell (ECs) can be seeded on the surface (on the luminal side) and human 
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mesenchymal stem cells (MSCs) inside the bulk. Using of MSCs has two main beneficial effect: once 

the MScs are modified by gene therapy, they can produce the growth factors (VEGFs) to enhance the 

endothelium which is very important as the damaged vessel could not produce the VEGFs naturally. 

MSCs proliferation and viability are highly depend on the environmental cues like material stiffness, 

growth medium and other physical and mechanical forces. With proper environmental condition, they 

can change their phenotype to smooth muscle cells. At the end the scaffold will be completely absorb 

inside the body where we have our blood vessel construct. That will be a perfect mimicking of the human 

blood vascular system.  

1.4 Polymer materials as biomaterials for tissue engineering 

On material point of view, polymeric scaffolds, both synthetic and natural, are of great interest as tissue 

engineering scaffolds due to their wide range of properties that can assuredly meet the above 

specifications via proper tuning to match the desired specific target [5,11,14]. The structure, property 

and application of all the commercially available synthetic/natural polymers are listed in Table. 1.  

The field of biomaterials resulted from a marriage of disciplines in tissue engineering field including the 

life sciences, medicine, materials science, and engineering. The use of biomaterials for tissue and organ 

regeneration is called tissue engineering. Tissue engineers study other materials in addition to polymers, 

and many of these materials, e.g. Polycaprolacton (PCL), Polylactic acid (PLA), Polyglycolic acid 

(PGA), Poly Lactic-co-Glycolic Acid (PLGA), Chitosan (CHT), Collagen (Col), hydroxyapatite, will 

be crucial for the success of the field. The value of polymers is tremendous and polymers with similar 

chemical characteristics behave differently in certain situations. For example, polyethylene and 

ultrahigh molecular weight polyethylene behave differently as orthopaedic biomaterials for knee and 

hip replacement. Ultrahigh molecular weight polyethylene exhibits reduced wearing and debris 

formation compared with polyethylene. This broad spectrum of materials provides scientists and 

engineers with not only many choices of existing polymers, but also the opportunity to design polymers 

better suited to the tissue of interest. In addition to the issues of mechanical properties of the materials, 

we must concern ourselves with the surface morphology, porosity, degradation, and chemistry of the 
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materials. As we will see below, all these parameters play a significant role in cell attachment, 

proliferation, differentiation and secretion of the proper ratios of extracellular matrix molecules. 

We also must consider biological parameters as we design new polymers. Regardless of other inherent 

properties, the material must be biocompatible. This requirement means that the material must not be 

immediately attacked or encapsulated by the body. As a result, there are many questions that need to be 

answered in the search for new and improved materials: 

- Will the body recognize the polymer as grossly foreign and respond by walling off the foreign 

body?  

- Will the material elicit an immune response?  

- Will cells that are able to regenerate the endothelium of the vasculature adhere, proliferate and 

remain differentiated once they are in contact with the polymer?  

- Do we need to include bioactive factors that are covalently attached to the backbone of the 

polymeric material?  

- On the other hand, do we need to consider controlled release of a bioactive factor or factors to 

coax the seeded cells to remain differentiated or secrete proper extracellular matrix molecules?  

All of these questions are design parameters that must be taken into account as we develop new 

scaffolding for tissue regeneration.  

 
Fig. 5. Schematic representation of new tissue formation on a porous biomaterial (source: ACS 

biomaterials and engineering). 
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To this end, material scientists and engineers have a great challenge ahead of them. We must embrace 

not only traditional materials issues, but also biology. Stem cell research has given us a new angle to 

approach tissue engineering. As a result, we may be able to harness the potential of stem cells to develop 

tissues and organs as nature does during foetal development. We will need to create materials that are 

biocompatible, support cell adhesion, growth, and differentiation. These materials will need to 

temporarily replace mechanical function, and degrade at rates appropriate to tissue regeneration. One 

example of the marriage between biology and polymer synthesis involves the use of molecular biology 

to incorporate biological signals into the backbone of polymers [15–17]. 

Table. 1. List of commercial polymer with structure, property and applications. 

Polymer Structure Property Biomedical Application 
Synthetic    
PCL 
[18,19] 

 

High dynamic modulus [20] 
Improved Structure 
Biodegradable form 
Fibre based devices 
Membrane based devices 

Orthopaedic fixation devices 
Tissue engineering application 
(FDA approved) 
Tissue regeneration membrane 
Long-term contraceptive device 
 

PGA 
[21,22] 

 

Regenerate biological tissue 
Useful mechanical properties 

First biodegradable synthetic 
suture in 1969 
Bone internal fixation devices 

PLLA 
[23,24] 

 

High tensile strength 
Improved suture 
Fiber-based devices 
Injectable form 

Orthopaedic fixation devices 
High-strength fibers (FDA 
approved) 
Blood vessel conduits 
 

PLGA 
[25,26] 

 

High degradation 
Form of meshes 

First commercially developed 
monofilament suture 
Skin graft 
Drug delivery vehicle 
 

PU 
[27] 

 High porous & no adverse 
effect 
 

Tissue engineering application 

PCA  
[28] 

 

Absorb or encapsulate a wide 
range of drug or protein 
molecules 
Major component of skin and 
other musculoskeletal tissues 

First biodegradable polymers used 
for developing nanoparticles for 
drug delivery application 
Tissue adhesives for topical skin 
application (FDA approved) 
Wound dressings 
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Natural    
Chitosan 
[18,19,29] 

 

ECM like functionality 
High biodegradation 
High growth factor protein 
affinity 
 

Guided tissue regeneration 
Coatings of orthopaedic implants 
Patterned medical membranes 

Alginate 
[30,31]  

Biodegradation 
Scaffolds based devices 
 

Periodontal tissue regeneration 
Bone tissue engineering 

Collagen 
[32,33] 

See Link [33] Membrane-film based 
devises 
ECM like functionality 
 

Angiogenic properties 
Bone regeneration 

Gelatin 
[31,34] 

See Link [34] Scaffolds based devises 
ECM like functionality  
 

Nerve regeneration 
Bone tissue engineering implants 

HA 
[35,36] 

See Link [37] Promote angiogenesis, 
Sponge as a carrier vehicle 
for osteo-inductive protein 

Wound dressing application 
Synthetic bone graft 

 

 

Table. 2. Scaffolds’ fabrication technique. 

Method Polymers Unique factors 
Fibrous scaffold fabrication 
Nanofiber electrospinning 
process [38,39] 

PCL, PGA, PLA, PLGA 
copolymers, collagen, elastin, 
and so forth 

High surface area, 
biomechanical, and 
biocompatibility, moderate 
degradability 
 

Microfiber wet-spinning 
Process [40,41] 

PLGA, PLA, chitosan, and PCL Biocompatible fibres with good 
mechanical properties 
 

Nonwoven fibre by melt-blown 
Process [42,43] 
 

Polyesters, PGA Submicron fiber size, highly 
porous scaffold 
 

Functional scaffold fabrication 
Growth factor’s release process 
[44,45] 

Collagen, gelatin, alginate, 
chitosan, fibrin, PLGA, PLA, 
and PEG 
 

Membranes, hydrogels, foams, 
microsphere, and particles 

Biodegradable porous scaffold fabrication 
Solvent casting/salt leaching 
Method [46,47] 

Absorbable polymer (PLLA, 
PLGA, collagen, etc.) 
 

Biodegradable controlled 
porous scaffolds 

Ice particle leaching method 
[48,49] 

PLLA & PLGA Control of pore structure and 
production of thicker scaffolds 
 

Gas foaming/salt leaching 
Method [50,51] 

PLLA, PLGA & PDLLA Controlled porosity and pore 
structure sponge 
 

https://www.researchgate.net/publication/8904696_Collagen_fiber_immobilized_Myrica_rubra_tannin_and_its_adsorption_to_UO22
https://www.researchgate.net/publication/257462961_Gelatin-based_nanoparticles_as_drug_and_gene_delivery_systems_Reviewing_three_decades_of_research/figures?lo=1
https://ac.els-cdn.com/S0142961208010752/1-s2.0-S0142961208010752-main.pdf?_tid=cde671f1-859c-486c-a87b-645b041d6ad6&acdnat=1540823979_a8fddfdcd72d0cb3e2e5a299d492058f
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Microsphere fabrication   
Solvent evaporation technique 
[52] 

PLGA, PLAGA High-density cell culture, due to 
the extended surface area 
 

Particle aggregated scaffold 
[53] 

Chitosan, HAP High mechanical stability 
 

Freeze drying method [54,55] PLGA, PLLA, PGA, 
PLGA/PPF, Collagen, and 
Chitosan 
 

3D porous sponge structure, 
durable and flexible 

Thermally induced phase 
Separation [56,57] 

PEG, PLLA Highly porous scaffold for 
cellular transplantation 
 

Injectable gel scaffold fabrication 
Hydrogel-based injectable 
Scaffolds [58,59] 

Hydrophilic/hydrophobic 
diblock and triblock copolymer 
combinations of PLA, PGA, 
PLGA, and PEG. Copolymers 
of PEO and PPO and 
polyoxamer. 
alginates, collagen, chitosan, 
HA, and fibroin 
 

Biomimetically, exhibit 
biocompatibility and cause 
minimal inflammatory 
responses, thrombosis, and 
tissue damage 

Ceramic-based injectable 
Scaffolds [60,61] 

CP ceramics, HAp, TCP, BCP, 
and BG 
 

Porosity and bioresorbability 

Hydrogel scaffold fabrication   
Micromolding [62,63] Alginate, PMMA, HA, PEG Microgels, biologically 

degradable, mechanical and 
physical Complexity 
 

Photolithography 
[64,65] 

Chitosan, fibronectin, HA, 
PEG, PNIAAm, PAA, PMMA, 
PAam, and PDMAEM 
 

Microwells, microarrays, 
controlled size and shape 

Microfluidics [66–68] PGS, PEG, calcium alginate, 
silicon and PDMS 
 

Microbeads, microrods, valves, 
and pumps 

Emulsification [69,70] Gelatin, HA, and collagen Microgels, microsensors, 
cell-based diagnostics 

 

1.5 Advantage of Three-dimensional polymer scaffolds on cellular adhesion 

Over the last decades, three-dimensional (3D) scaffolds are unfolding many promising application in 

tissue engineering and regenerative medicine field by providing suitable microenvironment for the 

incorporation of cells or growth factors to regenerate damaged tissues or organs [71]. Scaffolding is 

essential in this endeavour to act as a three-dimensional template for tissue ingrowths by mimicking 

ECM. These key scaffold characteristics can be tailored to the application by careful selection of the 
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polymers, additional scaffold components, and the fabrication technique. Typical scaffold designs have 

included meshes, fibers, sponges and foams, and so forth. These designs are chosen because they 

promote uniform cell distribution, diffusion of nutrients, and the growth of organized cell communities 

[72]. The fabrication technique for tissue engineering scaffolds depends almost entirely on the bulk and 

surface properties of the material and the proposed function of the scaffold. Most techniques involve the 

application of heat and/or pressure to the polymer or dissolving it in an organic solvent to mould the 

material into its desired shape. While each method presents distinct advantages and disadvantages, the 

appropriate technique must be selected to meet the requirements for the specific type of tissue (listed in 

Table. 2). 

1.5.1 Porous scaffolds and effect of pore size and pore morphology  

The three-dimensional polymeric porous scaffolds with higher porosities having homogeneous 

interconnected pore network are highly useful for tissue engineering. Sponge or foam porous scaffold 

have been used in tissue engineering applications [73], especially for growth of host tissue, bone 

regrowth, or organ vascularization. Their porous network simulates the ECM architecture allowing cells 

to interact effectively with their environment.  

Controlling the porosity and pore size of 3D scaffolds is the key to create an ideal biomaterial scaffold 

[74]. Open porous and interconnected networks have direct implications on their functionality during 

biomedical applications which are essential for cell nutrition, proliferation and invasion inside the bulk 

for tissue vascularization and formation of new tissues. New tissue regeneration and cell morphology 

with particular phenotypic expression depend on the cell type, scaffold composition and most 

significantly on pore size and porosity, facilitating the mechanical interlocking between the cells and 

surrounded scaffold [71,74–76]. If pores are too small, cell proliferation can be limited only on the 

surface and the transfer of nutrients, growth factors and waste product can be reduced throughout the 

bulk. Conversely if the pores are too big there is decrease in effective surface area, limiting the initial 

cell-scaffold interaction which is very important to mediate all subsequent events such as proliferation, 

differentiation and migration within the scaffold [75,76]. Bigger pores are also responsible to reduce the 

scaffolds mechanical strength and can drive a faster degradation in vivo before finishing the tissue 
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construct. Scaffolds should be practically applicable as an implant and consist of sufficient compressive 

moduli of 10-1500 MPa (for hard tissue graft) or 0.4- 350 MPa (for soft tissue graft) [20]. Hence finding 

a balance between the optimal pore size and effective surface area is essential for high cell proliferation 

via both cell attachment on the surface and invasion inside the bulk. Scaffolds with mean pore sizes 

from 20-1500 µm have been reported for bone tissue engineering application [76]. In porous silicon 

nitride scaffolds, endothelial cells favourably bind to scaffolds with pores smaller than 80 µm, while 

fibroblasts favour to bind larger pores (>90 µm). In PLLA scaffolds, vascular smooth muscle cells 

preferentially bind a certain range of pore (63–150 µm) while fibroblasts bind to a wider range (38–150 

µm) [77,78]. Kasten et. al. [79] reported the porosity and pore size effect of  β-tricalcium phosphate 

scaffold with pore diameter 5 µm to 600 µm and porosity 25 % to 75 % for osteogenic differentiation 

of human mesenchymal stem cells where they conclude that the distribution and size of the pores, as 

well as the surface structure might play an important role for osteogenic differentiation in vivo.  

1.5.2 Previous approach to develop porous morphology and it’s limitations 

Several efforts have so far been developed to control the pore structure characteristics of scaffolds such 

as porogen leaching, freeze-drying, gas foaming and rapid prototyping [74–76]. Among them porogen 

leaching offers quite impressive and easy processing technique to control the pore size and porosity. 

Choi et. al. [12,80] developed a uniform pore structure of chitosan based inverse opal scaffolds by PCL 

microspheres as porogen and obtained a high proliferation of mouse preosteoblastic cells. Zhang et. al. 

[74] used a combination of porogen and freeze drying method where they use ice particulate as porogen 

and mixed with collagen aqueous solution followed by freeze dying. By this method, they obtained 

pores structure by removing the ice particulate easily without using any toxic organic solvent for 

leaching. Apart from many possibilities to develop porous 3D scaffolds by porogen leaching, this 

technique has some significant drawbacks. The porogen materials used in this method can leave replica 

pores after leaching, most of the time they cannot initiate the formation of interconnected pores. As a 

result, cells cannot enter the isolated pores and the void space cannot be filled with new tissue. Thus, 

pores remain in the newly regenerated tissues as defects, compromising the mechanical property without 

a purpose. Another reason is that the scaffold consists of only one kind of mean pore size which is 
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responsible to serve both cell invasion and also transfer of nutrients. The nutrients and growth factor 

could be effectively transported through much smaller pore (>1 µm -10µm) and for this use of bigger 

pores are not worthy enough which in term reduce the effective surface area and mechanical property 

and enhance the physiological degradation before target time scale.  

1.5.3 Evolution of double porous morphology 

To overcome these drawbacks, 3D scaffolds with double porosity can be a further step forward where 

the macrovoids (big pores) are responsible for the invasion and proliferation of the cells and the transport 

of nutrients and growth factors can be accomplished by smaller interconnected macropores resulting a 

higher effective surface area than a single big porous surface. Three-dimensional scaffolds with double 

porosity was previously reported by using paraffin as porogen followed by heat treatment to create 

PLLA foam matrix [81]. Another group used double porogen method (two different size of porogen) to 

construct a double porous PHEMA based scaffolds [82]. They used CaCO3 (125 – 160 µm) and PMMA 

(200 – 250 µm) as macroporogen, in conjugation with hydroxyapatite (200 nm) or a solvent as 

nanoporogen. Both of these method they achieved bigger pores interconnected with smaller pores but 

the formation of unutilized big pores inside the bulk were inevitable resulting a reduction of compressive 

moduli (23 -50 KPa) far below than the minimum physiological requirements (0.4 MPa) [81]. Moreover, 

the authors [82] did not report any data with cells.  

 
Fig. 6. Double porous membrane scaffolds prepared by modified liquid induced phase inversion 

method (detail in chapter 2). 

Recently researchers from our group report an innovative and smart idea to create double porous 3-D 

scaffolds via modified liquid induced phase inversion process and found very good results for the 

application in artificial liver with invasion and migration of hepatic (C3A) cells inside the macrovoids 
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[83]. They have used Polysulfone (PSU) as a material and dissolve it in a solvent (NMP) followed by 

casting of the polymer solution. Just before putting inside the non-solvent (water), they have applied a 

commercial PET track etched isoporous (track-etched, diameter 10 µm) membrane on the casted 

solution to create open and interconnected macrovoids on the surface [83,84]. Due to the presence of 

the track-etched membrane, after immersion inside the non-solvent, the solvent exchange was quite 

heterogeneous leading to the formation of macrovoids (50-60 µm) where the non-solvent has a direct 

access through the pores of the track-etched membrane. In addition, the part where the non-solvent could 

not make a direct access, interconnected spongy macropores (1 µm) were formed resulting an overall 

double porous morphology where the macrovoids were open towards the surface for cell invasion. Apart 

from many future possibilities and delicacy of that report, the disadvantages were: the hydrophobic 

properties, lack of functional group and negatively charged surface at physiological pH [85] (repulsion 

could be possible with the negatively charged cell membranes [86]) of PSU membranes are not ideal for 

cell adhesion and spreading in comparison with hydrophilic surface, non-degradability could be a 

problem for the growth of the cells inside the macrovoids and also where we do not want to keep the 

scaffolds for long time and lastly total removal of NMP (carcinogenic) solvents after formation of the 

porous scaffold could be difficult which is not suitable for cell culture application. 

1.6 Necessity of Organ-on-chips (OOCs) for tissue engineering 

The development of new drugs is becoming more difficult, time-consuming and costly. Despite all the 

trials done before approval of a drug, reactions of patients to the drug can differ greatly. In fact, 

individuals can even react adversely to a drug. These responses do not always become apparent in the 

first stages of clinical trials. Participants are often selected on characteristics such as sex, age or ethnicity 

and thus do not represent the entire population. Also, due to ethical reasons, the effects of drugs on 

children are hardly investigated. As a result of these limitations, clinical trials often do not show the 

entire spectrum of responses to a drug. Moreover, many drugs fail during clinical trials, despite showing 

efficacy during preclinical trials. The notion that we cannot fully rely on animal models is growing. 

Despite a considerable resemblance in both genetics and physiology between animal models and 

humans, animal models often do not accurately predict how drugs will perform in humans. 
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In vitro models have the advantage that they often use only human cells. However, they lack the 

physiology of a tissue, and thus cell behaviour may differ from the in vivo situation. Trans-well inserts 

consist of small baskets with a porous, permeable membrane underneath which can be placed in a well 

plate. This way, the membrane is suspended above the bottom of the well. Cells can be placed on the 

membrane and exposed to air, while receiving nutrients through the membrane. This already allows 

more realistic cell culturing than traditional systems. However, the cells do not experience stimuli such 

as air flow or mechanical stretch. In vitro models that better offer suitable stimuli and can account for 

individual differences would address many of the issues in tissue engineering. Because of the need of 

such in vitro models, organs-on-chips (OOCs) have been developed. 

 
Fig. 7. Organ-on-chip device with microfluidic technologies for mimicking blood brain barrier and gut 

tissues (Source: Marinke et. al. [87]) 

These are small microfluidic devices that mimic a particular organ by introducing organ-like features 

such as fluid flow and mechanical stress [88]. These organ-on-chip models, which contain micrometer-

sized, fluid-filled channels in which human cells can be cultured, provide opportunities for engineering 

a controlled culture environment that resembles the microenvironment of a certain organ by tuning 

mechanical, biochemical and geometrical aspects [89]. More physiological behaviour is expected from 

such a combination of cells and engineering, resulting in better predictive value [66]. In addition, organs-

on-chips can be engineered in such a way that they allow direct measurements of organ functions as 

well as pharmacokinetics and pharmacodynamics [66]. Furthermore, as all in vitro models, organs-on-

chips hold the potential of parallelization and high-throughput screening. The goal of organs-on-chips 

is to mimic functional units of a certain organ rather than complete organs, in order to arrive at realistic 

but simple in vitro models [66,89]. Such a functional unit can comprise one or more tissue types, 

depending on the organ function that needs to be mimicked.  
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1.7 Research Framework and outline 

The main objective of the thesis is to produce and investigate a novel three-dimensional biomaterial that 

can deliver potential tissue engineering scaffolds and provide a home like environment for the cells.  

 The bulk microenvironment of the scaffold should be accessible by the cells, it should furnish 

superior characteristics with tuneable parameters like physico-chemical, morphological and 

mechanical property in order to use it as a vascular grafts application. 

 The scaffolds should be highly biocompatible in order to enhance the cell viability and 

bioresorbable in the sense; it will absorb inside the body without releasing any toxic side product 

once its purpose will be served.  

 It will consists of open pores with interconnected network and the porous structure should be 

optimum by providing suitable environment for the cells without compromising the overall 

mechanical property. 

The positioning of the current research work to develop the materials is summarized in the Fig. 8.

 

Fig 8: Positioning of the current work (green full circles) with the possibilities offered by the different 

polymer blend and fabrication techniques to address the ideal key characteristics of a scaffold for tissue 

engineering. 
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We choose a combination of synthetic/natural polymer to develop the 3D microstructural biomaterials 

with modified phase inversion technique in order to obtain the ideal key features. And we progress our 

work in the following chapters as follows: 

Chapter 1: Address the present limitations in the advance biomaterials field for vascular grafts 

applications and define the state of the art from the recent literature survey. By realising the essentiality 

of polymeric scaffolds, we understand that certainly three-dimensional scaffolds with aforementioned 

tuneable features can have a bright outcome not only for the project but also for the upcoming decades.  

Chapter 2: Here we discussed a unique three-dimensional scaffold in term of flat sheet polymeric 

membranes consisting of two different kind of porous structures; so called in the thesis as double porous 

membranes. Solvent mix of polycaprolactone (PCL) and Chitosan (CHT) was chosen as base material. 

Due to different chemical nature of the two polymers many challenges in processing technique has to 

be solve to reach the desired morphology. Furthermore, all the relevant aspects of the material property 

were explored by physico-chemical and morphological experiments. In addition, the formation 

mechanism of the double porous membrane is explained with the fundamental basis of ‘Hansen 

solubility parameter’ and illustrated in details with the ternary phase diagram. 

 Chapter 3: This chapter was mainly focused on the real understanding between the scaffolds 

morphology with cellular adhesion. Human mesenchymal stem cells (hMSCs) were seeded due to its 

powerful multipotent properties, which uphold huge future possibilities to transform into any cell 

lineage or by assisting other cell types by endogenous production of growth factors as discussed in the 

current research approach. Mechanical properties of the scaffolds were observed in dry as well as in wet 

condition and enzymatic degradation was performed in physiological concentration. Cells were seeded 

and all the relevant cellular quantitative/qualitative experiments were thoroughly analyzed.  

Chapter 4: After having the positive outcome of the previous two chapters, finally we define a real time 

performance of the membrane scaffolds in Organ-on-chip system by mimic the human physiological 

condition. Human umbilical vesicle endothelial cells (HUVECs) were used to understand the resistance 
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of cellular barrier developed by the cells upon the polymer membrane scaffolds as potential in vivo 

vascular grafts by varying the membrane morphology, pore size and physicochemical properties.
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1.8 Project funding and collaborations 

The project is funded by Erasmus Mundus Doctorate in Membrane Engineering (EUDIME 5th Ed) – 

EACEA under European Commission. This program allow the collaborations between three universities 

of the consortium as follows- 

 Home University: Laboratoire de genie chimique (LGC) under University Paul Sabatier, France 
(Below called as UPS-3, FR). 

 Host University 1: Institute on membrane technology (ITM-CNR) under University of Calabria, 
Italy (Below called as UNICAL, IT) 

 Host University 2: Applied stem cell technology (AST) and Membrane science technology 
(MST) under University of Twente, The Netherlanfds (Below called as UTWENTE, NL). 

 

 

Fig. 6. Progression of the project from starting M0 (first month) to ending M37 (after 37 months) 
and the key work done in the collaborations. 
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2 Chapter 2: Double porous poly (Ɛ-caprolactone)/chitosan 
membrane as tissue engineering scaffold: development, 
characterization and biodegradation 

2.1 Summary of the Chapter 

Limited capacity of cell hosting and lower dynamic properties are the main problem in membrane based 

biocompatible and bioresorbable vascular grafts. They are mainly produced as a fiber mesh structure by 

electrospinning. For the first time, we are reporting poly (Ɛ- caprolactone)/chitosan (PCL/CHT) blend 

membrane with a double porous morphology which could be potentially applicable in future for tissue 

engineering: (i) surface macrovoids (20 to 110 µm) which can be easily accessible for cell proliferation 

and differentiation; (ii) macroporous spongy network (7 to 20 µm) to transfer essential nutrients, oxygen, 

growth factor between the macroporous and the supernatant. PCL/CHT blends with the ratios 100:0, 

90:10, 80:20, 70:30 (w/w %) were prepared using a mixture of formic acid/ acetic acid as a solvent. 

SEM images of the cross section of scaffolds confirmed that macrovoids are connected with each other 

through the spongy macroporous network. ATR-FTIR, XRD and DSC were performed to check the 

miscibility of the two polymers and characterize the physico-chemical properties. Enzymatic 

degradation was tested by lipase (Pseudomonas cepacia; 7 U/ml) in Phosphate Buffered Saline (PBS 

Buffer) at pH 7.4 and 37oC. The SEM images after degradation and the weight loss (%) were observed 

at predetermined time interval and an almost selective and fast degradation of pure PCL and PCL in the 

blends within 48 hours was obtained. Data suggest that the blend membrane with double porosity level 

could be useful in future as a promising membrane scaffold to provide an inner three-dimensional 

environment for tissue engineering applications. 

2.2 Introduction 

The 3D structure of the material should enable to host the cells but also to distribute the nutrients and to 

favor the removal of the products of their metabolism. In the last decades, various scaffolds have been 

developed more often from an assembly of simple fibers by combining the salient features of 

synthetic/natural polymers (section 1.4). Among them, the combination PCL/CHT has a many 
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promising features by modifying the individual features of each other’s (Fig. 1). The study of PCL/CHT 

blend with electrospinning method is extensively researched and well adaptable for better cell 

attachment with good dynamic properties [18,19,29,38,90–95]. However numerous studies report on 

the difficulties encountered for electrospinning pure chitosan as the structure is mechanically weak, 

limiting practical processing [25,96–98]. Furthermore, it is difficult to manage the multiple functionality 

requirements with an assembly of fibers. The use of membranes appears as an interesting alternative to 

tune the porosity and to manage the mass transport properties. The different level of membrane porosity 

can be adjusted in order to have both macrovoids to host the cells and interconnected macropores (at 

micrometer scale) to ensure the transportation of molecules [83]. Solvent mixing with PCL and CHT 

was more conveniently used compared to melt blending which is quite difficult to perform as CHT 

decomposes before undergoing melting. Although it is also difficult to make a homogeneous blend in 

solvent mixing due to high viscosity of CHT in solvent and also scarcity of good mutual solvents. 

Several efforts were made, like Honma et al. [95,99] produced PCL/CHT blend casting by using 

common solvent as 1,1,1,3,3,3-hexa-fluoro-2-propanol (HFIP) solution. They showed that PCL/CHT 

can be processed by using HFIP but this solvent is very expensive, carcinogenic and difficult to remove 

during washing [100]. Although different approach was reported to find a good mutual solvent [101–

106]. Among them a suitable approach could be to dissolve CHT in 0.5 M acetic acid and PCL in glacial 

acetic acid where the authors [103] were able to obtained a mixture of these two solutions at a low 

concentration of polymer but it was not effective at high concentration [99] as in our case. In another 

study, a solvent mixture of formic acid/acetone was reported to be used to develop PCL/CHT nanofibers 

at high concentration of polymers. In this case, it was forming beads like morphology indicating 

incomplete dissolution of the polymer [107]. Recently, formic acid/acetic acid mixture [108] with certain 

ratio has produced a mutual solvent for both polymers with minimal degradation and phase segregation 

but with faster dissolution. Despite so many combination of solvents, the author [108] have reported that 

the formic acid/acetic acid mixture produced the bead free and least toxic scaffold and the solvent can 

be easily removed during washing. 
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Fig. 1. Solvent mixing of PCL-CHT and their individual properties. 

The objective of this chapter is to develop the flat sheet membrane scaffolds with double porosity (open 

big pores ready to access for cellular invasion and interconnected porous network in order to transfer 

growth factors and nutrients). By understanding the delicacy of the processing, a smart approach for 

liquid induced phase inversion was defined e.g. finding a suitable solvent and reaction condition where 

this two chemically different polymer can be mixed together, maintaining the proper viscosity of the 

polymer solution and ultimately perform the modified phase inversion in order to obtained the desired 

morphology. After formation of the membrane, it was very important to determine and characterize the 

material quality in terms of repeatability and homogeneity. In addition, enzymatic degradation was also 

performed to understand the bioresorbability of the material.  

2.3 Materials 

CHT (MW 190-310 kDa, 75-85% de-acetylation degree, CAS Number 9012-76-4) was purchased from 

Sigma-Aldrich and PCL (MW 80 kDa, CAPATM 6800, CAS Number 24980-41-4) was purchased from 

Perstorp Holding AB, Sweden. Isopore® Polyester (PET) membranes (with 10 µm diameter), used as 

track-etched, were purchased from Sterlitech, USA. Acetic acid, formic acid, sodium hydroxide and 

sodium azide were purchased from Sigma-Aldrich. Lipase from Pseudomonas cepacia (35U/mg, CAS 

Number 9001-62-1) were purchased from Sigma-Aldrich. Phosphate buffer saline (PBS) was purchased 

from Fisher Scientific (CAS Number 7778-77-0).  
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2.4 Methods 

2.4.1 Development of the membrane with a double porosity level 

The membranes were developed by modified version of the conventional liquid induced phase inversion 

method by diffusion between a solvent as formic acid/ acetic acid (FA/AA) mixture and a NaOH 

aqueous solution used as non-solvent. PCL and CHT with a ratio 100/0, 90/10, 80/20 and 70/30 (w/w%) 

were dissolved in FA/AA (w/w%) mixture. The polymer concentration in the solution was expressed in 

wt.% as followed: 

CHT (wt. %)  = 100
MassCHT

MassCHT + MassPCL
                                 (1) 

Polymer (wt. %)  = 100 
MassCHT + MassPCL

MassCHT + MassPCL+ MassSolvents
        (2) 

The polymer solution was casted on a glass plate using a gardener knife in order to achieve a thickness 

around 250 µm at 23o C (room temperature). The casted solution was covered by the isopore®, 

commercially available track-etched membrane of 10 µm pore diameter (Fig. 2), so called in the thesis 

“track-etched membrane” to denote the function taken by this membrane. The track-etched membrane 

was at first immersed in the solvent mixture to fill the pores with solvent mixture and slowly wiped out 

to remove excess solvent.  



 
24 Chapter 2 

 

Fig. 2. Double porosity development, using a track-etched membrane, by modified liquid induced 
phase inversion process with the following steps 1) PCL/CHT membrane casting, 2) application of the 

track-etched membrane before the non-solvent phase inversion, 3) removal of the track-etched 
membrane after full precipitation. SEM images of PCL/CHT 100/0 represent double porosity and 

single porosity membranes on top surface and cross section. 
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The glass plate was then gently immersed in a non-solvent bath containing NaOH solution at room 

temperature. Immediately after the immersion, demixing via neutralization of the acidic casted solution 

was started due to solvent exchange leading to the flat sheet membrane formation within few minutes 

(PCL) to hours (PCL/CHT 70/30). It should be noted that this quenched phase inversion method leads 

to a thermodynamically non-equilibrium state of the polymers in the final membrane. 

The solvent exchange rate was spatially quite homogeneous where the polymer solution was not covered 

by the track-etched membrane leading to single porous structure without enough open pores on the top 

surface. Where the polymer solution was covered by the track-etched membrane, a heterogeneous 

solvent exchange rate was occurred leading to the formation of double porous structure. The macrovoids 

were formed where the non-solvent has a direct access to the polymer solution through the pores of the 

track-etched. A second phase inversion occurs when the non-solvent diffused inside the polymer 

solution and led to the formation of interconnection between the macropores. This mechanism was 

described by Strathmann et al. [109] to explain the formation of skinned membrane with macrovoids 

and sponge structure; the nascent skin playing an equivalent role than our track-etched membrane. 

After the membrane formation, when it was turned opaque and detached from the glass plate, the track-

etched membrane was removed gently and the PCL/CHT membrane was washed several times in 

ultrapure water. After that, the membrane was stored in ultrapure water at 4o C. 

The surface where the macrovoids were open towards the non-solvent (i.e. where the track-etched 

membrane was) is denoted as top surface and the other surface, which was facing the glass plate, is 

denoted as the bottom surface.  

By this way, two different kinds of porous structures were formed in the same condition. The area, of 

the final membrane, which was covered by the track-etched membrane, has shown double porosity. In 

Fig. 2, SEM images of the membrane PCL/CHT 100/0 were indicating the efficient use of the track-

etched membrane for the development of the double porosity. 
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2.4.2 Viscosity measurements of the polymer solution 

The viscosity of the polymer solution was measured by Rheometer Anton Paar Physica MCR 301, 

France. After complete dissolution of the solution, a 0.6 ml volume was injected on a cone plate 

rheometer (diameter 50 mm). The viscosity was measured at a shear rate from 2 to 100 s-1 at 20oC. All 

the measurements were performed inside a close chamber in order to avoid the solvent evaporation and 

dissolution of water from air moisture. 

2.4.3 Scanning electron microscopic (SEM) analysis 

SEM analysis (Phenom XL, Fondis Biotech, France) were done on both double and single porous 

membranes to evaluate all the developed blend morphology from the top surfaces and the cross sections.  

All the samples were coated with gold and analysis were performed at an accelerating voltage of 10kV  

from 500X to 3000X. The surface porosity was also determined from the SEM images by using ImageJ  

[110] software and reported in Table 1. 

2.4.4 Attenuated total reflection (ATR)-Fourier transformed infrared (FTIR) spectroscopic 

analysis and mapping  

FTIR analysis were done by using a Nexus Nicolet (USA) FTIR Microscope system with an ATR 

diamond crystal at 45o angle. Prior to the examination, 1cm2 sample was cut and measurements were 

done on both surfaces (three times) of each sample. Each point was scanned sixteen times with a 

resolution of 8 cm-1 and the spectral range was 650 – 4000 cm-1. The ATR correction was applied on all 

spectra. We have also done a FTIR chemical mapping on either side of the membrane using an infrared 

spectrometer IN10MX Thermoscientific (USA) with an ATR germanium crystal of a 25° angle. A 

square sample of 6 mm2 was studied. Data were analyzed on a 50 µm x 50 µm surface for each point 

(one point was measured every 50 µm) with a spectral resolution of 8 cm-1. Each measurement was 

scanned by sixteen times and the spectral range was 650 – 4000 cm-1. 

2.4.5 X-ray diffraction (XRD) analysis 

The crystalline structure of membrane sample (5 mm x 5 mm) was investigated by XRD analysis using 

a D4 Endeavor X-ray diffractometer (CuKα1 = 0.154056 nm and CuKα2 = 0.154044 nm; generator 40 
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eV; 40 mA, Bruker AXS, Karlsruhe, Germany) from 10° to 100° at a scan speed of 21.7 sec /step that 

is equal to 0.02o (2-theta). 

2.4.6 Differential scanning calorimetric (DSC) measurements  

DSC experiments were conducted (DSC TA instrument Q2000, France) in order to evaluate thermal 

properties of the PCL/CHT blend membranes. The membranes were dried at 37oC and were cut in a 

dimension of 3 mm2. The sample was put inside an aluminum pan and mechanically covered by an 

aluminum cap. The pre-weighted aluminum pan was placed inside the DSC machine and equilibrate at 

20oC. The temperature scanning was performed at a constant heating rate of 10o C min-1, from 20 to 

80oC without preheating step, to observe the change of the melting point (MP) by varying the wt.% of 

CHT in PCL matrix. The change of the melting point of PCL in the blend (pure PCL melting point is 

60oC), the melting temperature, Tm, and melting enthalpy, ΔH, were determined. The crystallinity, 𝑋𝑐, 

can be calculated from the following equation: 

𝑋𝑐 = 𝑊
∆𝐻

∆𝐻𝑢
0 (3) 

Where ∆𝐻𝑢
0

 is the melting enthalpy of 100% crystalline PCL, which is 166 kJ kg-1 [44], 𝑊 is the weight 

fraction of the PCL in the blend and ∆𝐻 is the melting enthalpy of the polymer blend obtained from the 

DSC apparatus. 

2.4.7 Enzymatic degradation of the blend 

The membranes were dried in vacuum at 37oC until constant weight was reached and were cut in 6 mm 

x 6 mm pieces. The initial weight (wi) was taken (in mg up to the fifth decimal point). Then the samples 

were placed in a 5 ml vials containing 3 ml of PBS 1X solution (1X solution at pH 7.4±0.1 contains: 

11.9 mM Phosphates, 137mM NaCl and 2.7 mM KCl), 0.6 mg (7U/ml) of lipase from Pseudomonas 

cepacia (35 U/mg) and NaN3 (0.05 wt.%). The entire procedure was done in a sterile condition and vials 

were sealed and stored in incubator at 37oC. The enzyme solution was changed every day in order to 

maintain the same enzymatic activity during the whole process. The same procedure was done without 

the enzyme as a control. Three consecutive samples were taken out after 6 hours incubation time and 
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every one-day intervals until 10 days. After being washed with copious deionized water, they were dried 

at 37oC in vacuum until constant weight. The final weight, 𝑊𝑓, was taken. 

The weight loss, 𝑊𝑙𝑜𝑠𝑠%, was calculated by the following equation: 

𝑊𝑙𝑜𝑠𝑠% = 100
𝑊𝑖−𝑊𝑓

𝑊𝑖
  (4) 

Where, 𝑊𝑖, is the initial weight and, 𝑊𝑓, the final weight. 

Scanning electron microscopic images of the degraded membranes were taken and the ageing solution 

was collected to observe the change in pH. 

2.5 Results 

2.5.1 Polymer-solvent-nonsolvent optimization  

Regarding the polymer-solvent phase, Chitosan (CHT) and polycaprolactone (PCL) are two polymers 

with very different properties and finding a mutual solvent to develop a flat sheet membrane is an 

important challenge. The solvent optimization have been partially based on viscosity measurement of 

the polymer blend (Fig. 3): the viscosity is an important descriptor of the polymer affinity with the 

solvent. Moreover, maintaining an optimum viscosity is very important to achieve the double porosity 

membrane. During the solvent mixing, a visible reduction of the viscosity has been observed by 

dissolving PCL in the common solvent after 2-3 hours at temperature more than 35-40o C, probably due 

to the breakage of ester bonds. In order to reduce the decrease of viscosity, different factors were tuned 

e.g. CHT was dissolved in the solvent mixture at first at 55o C for 12 h, prior the addition of PCL at a 

temperature below 35o C. As discussed in the background section 2.2, Formic acid/Acetic acid mixture 

at a certain ratio enhances the dissolution [108], but the formic acid is also responsible for the breakage 

of ester bonds of the PCL. For these reasons, the solvent was optimized for each PCL/CHT polymer 

blend according the following composition: PCL/CHT 100/0 in 15 wt.% in FA/AA 70/30 (w/w) %, 

PCL/CHT 90/10 and 80/20 in 14 wt.% in FA/AA 60/40 (w/w) % and PCL/CHT 70/30 of 10 wt.% in 

FA/AA 50/50 (w/w) % (Table 1). In these conditions of composition and temperature, within two hours, 

a clear, faint yellow and viscous solution was obtained. After this dissolution step, the polymer-solvent 
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phase was kept at rest for 10-20 minutes before starting the membrane-casting step. Due to high viscosity 

of CHT in the solvent mixture, we could not go beyond the ratio of PCL/CHT 70/30 as it was difficult 

to make a homogeneous mixture of polymer solution by mechanical stirrer and to avoid phase 

segregation between the two polymer phases. Viscosity of CHT was remarkably high in the solvent 

mixture (Fig. 3): dissolving pure CHT above 4 wt.% was difficult by mechanical stirring and 

concentration lower than 4 wt.% are not sufficient to make a double porous membrane due to a lack of 

good entanglement between the polymer chain or a phase inversion leading to polymer particles.  

The viscosity of the final polymer solution of pure PCL, CHT and the different blends were measured 

and reported in Fig. 3. Results showed that the viscosity of pure CHT of only 4 wt.% solution is 

significantly higher than viscosity of PCL/CHT 100/0 of 15 wt.% solution in mixed solvent. The solution 

viscosity of CHT is considerably higher than PCL due to several factors. First of all, the medium 

molecular weight of CHT (190 kDa – 310 kDa) is higher than the medium molecular weight of PCL (80 

kDa). Second, CHT has higher affinity towards the solvents due to presence of the amine groups which 

interact with acetic acid and formic acid (i.e. solvent) via strong acid/base interactions: CHT polymer 

chains are deployed in the solvent leading to higher viscosity [111]. On contrary, in acidic solvent, the 

viscosity of PCL is decreased to some extent due to a decrease of the polymer chain length via 

breakdown of ester linkages. All these effects are responsible for the high difference of solution viscosity 

between these two polymers.   
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Fig. 3. Viscosity [Pa.s] vs shear rate [1/s] measurement of PCL/CHT 100/0 (15 wt.%), PCL/CHT 
90/10 (14 wt.%), PCL/CHT 80/20 (14 wt.%), PCL/CHT 70/30 (10 wt.%) and PCL/CHT 0/100  (4 

wt.%) scaffolds respectively in solvent FA/AA mixture (Table 1). 

 

Concerning the non-solvent phase, NaOH has been added in the water, used as non-solvent, in order to 

decrease the interaction between CHT and FA/AA and then to reinforce the non-solvent strength as 

basic NaOH solution will break the acid/base interaction between the amine group of CHT and the acidic 

solvent. Concentration of NaOH more than 0.5 M in the non-solvent bath was also responsible to make 

the membrane fragile by breaking the ester bonds in PCL during membrane formation. A NaOH solution 

with a concentration lower than 0.2 M was not sufficiently concentrated to allow the formation of 

macrovoids. We also varied the concentration of the NaOH solution depending upon the viscosity of the 

casted solution in order to get a consistent macrovoids height of about 50-70 % of the total membrane 
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thickness. Finally, a 0.3 M NaOH solution was used for PCL/CHT 100/0 of 15 wt.% and a 0.5 M NaOH 

solution was used for the other PCL/CHT percentage to reduce viscosity. 

To our knowledge, we are reporting for the first time the formation of membrane by phase inversion 

technique with a PCL/CHT blend dissolved in formic acid/acetic acid solvent mixture and precipitated 

in a non-solvent phase consisting in NaOH aqueous solution. The next sections report the influence of 

the polymer-solvent-nonsolvent system on the morphological and physico-chemical behaviors of the 

blends.  

2.5.2 Morphology of the double porous material   

After the membrane fabrication according to the procedure described in section 2.5.1, the top surface 

and the cross section characteristics were measured from the SEM images (Fig. 4.). All the scaffolds, 

which were produced by using the track-etched membrane, are showing double porosity where the 

macrovoids are open towards the top surface and connected with the macroporous network making a 

sponge-like structure. From the cross section view, it was observed that the localized arrival of the non-

solvent were creating an ellipsoidal macrovoid which was increasing by increasing CHT wt.%. The 

major axis of the ellipse is around 20 – 110 µm and minor axis (height) of the ellipse is around 15 – 70 

µm (Table 1). The diameter of interconnected macropores is around 7 ± 3 µm (except the PCL/CHT 

70/30 ratio for which the macropores diameter is 20 ± 5 µm). The mechanisms that lead to this 

morphology are discussed in section 2.6.2. 
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Fig. 4. SEM micrographs of membranes on the top surface and cross section with double porosity after 
removing the track-etched membrane (isopore dia.10µm): (A, B) PCL/CHT 100/0, (C, D) PCL/CHT 
90/10, (E, F) PCL/CHT 80/20, (G, H) PCL/CHT 70/30 and with single porosity (made without the 

track-etched membrane): (I, J) PCL/CHT 100/0, top surface and cross section respectively. 
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Table 1. Summary of the polymer blend membrane properties with distinct concentration in correlation 
with viscosity and pore diameter, melting point. 

  PCL/CHT percentage Ratio 
  100/0 90/10 80/20 70/30 0/100 

 Total Polymer 
Conc. (w/w%) 15 14 14 10 4 

 
Solvents 

HCOOH/AcOH 
(w/w%) 

70/30 60/40 60/40 50/50 50/50 

 Nonsolvent 
NaOH (M) 0.3 0.5 0.5 0.5 - 

Macrovoids 
diameter 
(µm)* 

Major axis 20±3 80±5 90±5 110±5 - 

Minor axis 15±3 40±5 50±5 70±5 - 

 Macropores 
diameter (µm)* 7±3 7±3 7±3 20±5 - 

 Surface 
Porosity (%)* 40±5 50±5 53±5 45±5 - 

 

Viscosity of 
polymer sol. 

(Pa.s) @shear 
rate 2 sec1 (Fig. 

2.) 

0.153 0.293 0.987 0.338 3.89 

 

Degree of 
Crystallinity 

(%) 
(Equ. 3) 

34.97 28.55 34.25 40.19 - 

 

Melting Point 
of PCL in the 

Blend (Tm)  0C 
Fig. 6.B 

61.59 62.78 63.19 61.70 - 

                      *Data were obtained by ImageJ software 
 

2.5.3 Chemical characterization by ATR-FTIR spectra 

The representative FTIR spectra of the bottom surface (i.e. polymer materials) are shown in Fig. 5. (A). 

All the stretching and bending vibrations are found to be well matching with the theoretical values [99]. 

In crude CHT, the broad peak at 3364 cm-1 was due to N–H and intramolecular hydrogen bonded O–H 

stretching. The peak at 2880 cm-1 was due to the asymmetric bending of C–H group. The N–H and –C–



 
34 Chapter 2 

O–C peaks were observed at 1651 and 1070 cm-1 respectively. In PCL, the peaks at 2946 and 1726 cm-

1 represent the characteristic peaks for C–H and ester carbonyl groups (C=O), respectively. In PCL/CHT 

scaffold, by decreasing CHT proportion, the N–H and intramolecular hydrogen bonded O–H stretching 

of CHT shifted towards higher wavenumber region from 3364 cm-1 in PCL/CHT 70/30 to 3437 cm-1 in 

PCL/CHT 90/10. In addition, the C-H stretching of PCL also shifted towards higher wavenumber region 

from 2943 cm-1 in PCL/CHT 70/30 to 2946 cm-1 in PCL/CHT 90/10. From all these results, no additional 

peak was observed indicating that no covalent bonding between the two polymers occurred. However, 

it is clear that CHT and PCL has some secondary interactions between PCL and CHT as intermolecular 

hydrogen bonding, that change constantly with the composition [92,112]. These interactions indicate no 

phase separation occurs between CHT and PCL in accordance with  Sarasam et al. [102] and She et al. 

[106] who observed a negative Flory Huggins parameter for these two polymers.  

   

 

Fig. 5. (A) ATR-FTIR spectra of PCL/CHT scaffold on bottom surface where; PCL/CHT 100/0 in red, 
PCL/CHT 90/10 in green, PCL/CHT 80/20 in purple, PCL/CHT 70/30 in blue and CHT crude in cyne 

color respectively. (B, C, D) ATR-FTIR spectra of PCL/CHT scaffold on either side of same 
membrane where; top surface in red and bottom surface in blue color respectively. 
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The observations are given for first micrometer depth from the bottom surface as the penetration depth 

of ATR-FTIR absorption, 𝑑𝑝, for a sample is given by [113]: 

𝑑𝑝 =
𝜆

2𝜋 √𝑛1
2 sin2 𝜃−𝑛2

2
  (5) 

where, λ and θ are the wavelength and incident angle respectively, 𝑛2, is the refractive index of the 

sample and 𝑛1 is the refractive index of the ATR crystal. By using the above eq. 5, an incident angle of 

45, a refractive index of the polymer of critical angle (θc) 1.5 and that of diamond of 2.4, the penetration 

depths are between 0.5 and 2.0 micrometer, for the wavelength range 1000-4000 cm-1. That means the 

ATR-FTIR spectra only gather the information from the surface of the scaffolds, whose thickness were 

around 80 µm. 

The comparison of ATR-FTIR spectra on the bottom surface and the top surface for a same membrane 

is presented in Fig. 5 (B, C, D) for the different PCL/CHT compositions. One can note that the intensities 

of specific bands of PCL are almost the same on the both surface of PCL/CHT 90/10 and PCL/CHT 

80/20 membrane indicating almost homogeneous blend. Whereas, in the case of PCL/CHT 70/30, the 

spectra are not the same with different bands and intensities indicating a segregation of PCL and CHT 

through the membrane thickness: more CHT is found at the bottom surface than at the top surface. From 

this ATR-FTIR study, one can conclude no phase separation occurs due to the interaction between PCL 

and CHT but a segregation could occur through the membrane thickness from the composition of 

PCL/CHT 70/30.  

This segregation was also observed in the Fig. 6 by ATR-FTIR chemical mapping. Two characteristic 

bands were observed to highlight the difference of the membrane surface chemistry; C=O (1726 cm-1) 

for PCL and intramolecular hydrogen bonded N–H and O–H (3364 cm-1) for CHT [93]. 
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Fig. 6. Chemical mapping of PCL/CHT blends on either surface on the same membrane where; C=O 
for PCL observed at 1726 cm-1 and hydrogen bonded N–H and O–H observed at 3364 cm-1. Red and 

blue colors indicate the intensity of the corresponding bands, high and low intensity, respectively, 
corresponding to high and low concentration. 

 

From the chemical FTIR mapping, on top and bottom surface, we can verify that by increasing the 

concentration of CHT in the blends, the absorbance of C=O decreases and the absorbance of N–H and 

intramolecular hydrogen bonded O–H increases as expected [93,114]. In well agreement with the Fig. 

5. (B, C, D), it appears that PCL intensities of PCL/CHT 100/0 to 80/20 are quite the same on both 

surface as for CHT on PCL/CHT 90/10. For higher concentration of CHT (PCL/CHT 70/30), CHT is 

more concentrated at the bottom surface than at the top surface. Moreover, for the bottom surface, the 

local concentrations of PCL and CHT at the micrometer scale (i.e. each pixel represents a 50x50 µm of 

analyzed surface) is not homogenous, although PCL and CHT interactions were identified in the FTIR 

spectra: the high concentration of CHT zone are complementary of those of PCL indicating a segregation 

of both polymers [102,106,115]. This is less observed on the top surface. The material is thus not 
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completely homogenous due to the phenomena involved during the membrane formation (see section 

2.6). 

2.5.4 Crystalline and thermal properties 

Crystalline properties of the blend were measured on a 1 cm2 dried flat sheet membrane and depicted in 

Fig. 7. (A). As an amorphous polymer, characteristic broad peak of CHT was hardly observed at 19o in 

PCL/CHT 80/20 and PCL/CHT 70/30. Characteristic intense peaks at 21.5o and 23.5o at Bragg angles 2-

Theta corresponding to the (1 1 0) and (2 0 0) planes in PCL can be observed. Moreover, by increasing 

CHT wt.%,  a slight  increase of Bragg angles of the characteristic peak of PCL, indicates an interaction 

with CHT in agreement with the FTIR data [99,116,117]. It could be interesting to correlate this data 

with Honma et al. [99], who found differences in the inter-planar spacing of (1 1 0) planes with 

promoting CHT, the b axes of the PCL orthorhombic cell getting more spread out in the cell. Whereas, 

no difference was found in the spaces of the (2 0 0) planes. From these results, it can be concluded that 

significant molecular interaction occurs between PCL and CHT during solvent mixing ; weaker 

molecular interaction are observed when the blend is produced by melt blending [118] . Generally, in 

most of the cases, it was reported that by increasing the weight fraction of CHT the intensity of the 

characteristic peak of PCL should decrease. It is stated that the conjugation with PCL and CHT chains 

suppresses the crystallization of PCL [99,119–121]. Unlike the other reported data, in our case, this 

effect was not observed and we found a considerable increase of intensity of the PCL specific peak in 

the blend by decreasing PCL wt.% like the 29.5° peak which finally disappear for PCL/CHT 70/30. 

Apart from the characteristic peaks of PCL and CHT, some other intense peaks were also detected due 

to the formation of different type of crystals with different D spacing within the crystal lattice [117]. 

Those gave an overall crystalline behavior to the blend. In the particular case of PCL/CHT 70/30, the 

intensity of other peaks was very low due to the amount of CHT and the amorphousness of CHT. 

  



 
38 Chapter 2 

 
 

 
Fig. 7. (A). X-ray diffraction spectra for the different blends, (B) Differential scanning calorimetric 

study of blends as a function of PCL content in the blend. 

  

This observations were also supported by the DSC analysis in Fig. 7. (B). In correlation with the 

crystallinity, no linear relationship between the wt.% of CHT and the temperature of melting (Tm) of the 

crystalline PCL was found inside the blend, possibly due to the segregation of these two polymers [93]. 

In order to check this phenomenon, we calculate the crystallinity (Xc) of the PCL component by applying 

Eq. 3, and results are presented in Table 1. We found that by introducing CHT and increasing the CHT 

wt.%, the crystallinity of PCL in the blend firstly decreased (PCL/CHT 90/10) then increased up to 40%. 

Generally, pure PCL melts at 60oC and CHT undergoes thermal degradation at around 270oC prior to 

melting [93]. It is still difficult to determine the glass transition (Tg) of CHT by conventional thermal 

technique, although some efforts have been done [118,122,123]. Thus, the variation of the melting point 

of PCL in the blend was monitored by varying the composition of CHT. Unlike other reported data 
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[93,99,100,103], we found that by increasing the weight fraction of CHT, Tm of the blend increased 

[117].  

The PCL/CHT interaction can be analyzed through the Flory-Huggins interaction parameter 12. The 

simplified Nishi-Wang equation [102,124] is used to correlate the melting temperature to the volume 

fraction of PCl and to the Flory-Huggins parameter with high MW crystalline-amorphous polymer 

system: 

  (6) 

where, subscripts 1 and 2 correspond to CHT and PCL polymer, respectively. To 
m and To 

m2 are the 

equilibrium melting temperature (K) of the blend and pure PCL (333.15 K) respectively. R is the 

universal gas constant (1.98 cal/mol K), ΔH2u is the heat of fusion per mole of 100% crystalline PCL 

(3694.67 cal/mol), V2u  (99.65 cm3/mol) and V1u (1546.82 cm3/mol) are molar volumes of the repeating 

unit of polymers and Ψ2 refers to the volume fraction of PCL in the blend.  

 
Fig. 8. Nishi – Wang plot. Where Tm and Tm2 are the equilibrium melting temperature (K) of the 

blend and pure PCL, respectively, and Ψ2 is the volume fraction of PCL in the blend. 

The Nishi-Wang plot (Fig. 8.) shows that our experimental data cannot be represented with a line passing 

through the origin. Although variations in crystallinity and melting temperature indicate an interaction 

between PCL and CHT, our samples do not follow the Nishi-Wang law, which assumes homogeneous 

samples. This result is therefore in agreement with the segregation of the polymers identified by infrared 
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chemical mapping (Fig. 6) which indicates that our samples are heterogeneous: the membranes have a 

variety of crystallinities and melting temperatures.  

2.5.5 Enzymatic degradation  

The enzymatic hydrolysis of polymeric biomaterials is a heterogeneous process that is affected by the 

mode of interaction between the enzymes and polymer chains. It generally involves four steps: (a) 

diffusion of the enzyme from the bulk solution to the solid surface, (b) adsorption of the enzyme on the 

substrate, forming an enzyme–substrate complex, (c) hydrolysis reaction catalyzed by the enzyme, 

forming smaller, soluble polymeric chain and (d) diffusion of the soluble degradation products from the 

solid substrate to the solution [98]. The rate of the overall degradation is controlled by the slowest step. 

The effect of enzymatic degradation by lipase in terms of wt. loss (%) was observed on four batches of 

samples in Fig. 9. (A). A fast and almost selective degradation of PCL from all the blends within 48 

hours was found. The degradation is expected to be faster than in physiological condition as the lipase 

(Pseudomonas cepacia) is concentrated at 7 U/ml while the concentration is about 0.03-0.190 U/ml in 

human serum [125–127].  Moreover, the enzyme can easily diffuse through the bulk of porous scaffolds 

as the size of the bulky protein chains of the enzymes (>10 nm) is more than 100 times smaller than the 

scaffolds pore size (1 to 100 µm) leading to a faster degradation compared to  dense, non-porous 

scaffolds. 

First, it has to be noticed that the degradation of the blend in pure water is significantly low (Fig. 9. (C)) 

[128]. Pure PCL showed the lowest degradation (1.0 % ± 0.1 after 90 days) and the degradation increases 

by increasing the CHT wt.%: PCL/CHT 70/30 showed the highest degradation (3.7 % ± 0.2 after 90 

days).  

The mechanisms leading to the degradation of the PCL and CHT polymers are significantly different. 

Generally, PCL, like polyester, degrades similarly to lipid hydrolysis, which is highly facilitated by 

lipase. Lipases are water-soluble enzymes that hydrolyze ester bonds of water-soluble substrates such 

as triglycerides, phospholipids, and cholesteryl esters [129]. Increasing the CHT wt.% (or decreasing 

PCL wt.%) not only increases the amorphousness and hydrophilicity but also increases the macrovoids 
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size and hence the porous bulk of scaffolds is more accessible by the enzymatic solution leading to faster 

degradation via formation of a smaller soluble enzyme–substrate complex [130]. On the other hand, 

CHT, like polysaccharide, consisting of N-acetyl/deacetyl glucosamine, degrades by oxidative-

reductive chain scission and lipase has very weak effect on CHT degradation [131–134]. When the 

degradation is performed without lipase, the ability of the material to absorb water and its water 

permeability, which was increasing by increasing CHT wt.%, play a key role in the degradation.  

The two different trends obtained from enzymatic and non-enzymatic degradation have a very good 

significance in terms of application and could be highly dependent on the nature of the environment in 

vivo. The diffusion and adsorption of the enzyme in the lymphatic system which is mainly composed of 

interstitial fluid (94% water and 6% solid particle; proteins, fats, carbohydrate) [135] could be more 

favorable by increasing CHT wt.%. Whereas, in the case of more concentrated blood vascular system 

which is mainly composed of 55% plasma (among that 90% is water) and 45% of blood cells and 

platelets [136], could be less favorable by increasing CHT wt.%.  

The surface morphology of degraded membrane after different time intervals is presented in the Fig. 10. 

In case of enzyme degradation, a noticeable damage on surface was observed together with a significant 

weight loss. It is suggesting that the degradation phenomenon not only depends on the surface of the 

material [130] but also on the bulk of the material, as the enzyme can reach any zone inside the bulk 

through the highly porous structure.  
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Fig. 9. (A) Weight loss % of the sample with lipase enzyme (Pseudomonas cepacia; 7 U/ml) at 

different time intervals, (B) pH of the enzyme degraded solution after the study and (C) weight loss % 
of the sample without enzyme after 90 days. 
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Fig. 10. SEM images of degraded PCL/CHT blends after 6 hrs, 1 day and 10 days with lipase enzyme 

(Pseudomonas cepacia; 7 U/ml) and after 90 days without enzyme. 

 

The change in pH measured in the degraded solution is reported in the Fig. 9. (B). PCL/CHT 100/0 has 

shown the lowest pH probably due to the presence of highest amount of ester chain degraded acid. When 

the PCL concentration decreases, the pH increases again but it stays very close to the physiological pH, 

indicating less toxicity of the degraded solution. 

2.6 Discussion 

The previous section was presenting the main physico-chemical properties of the membrane and their 

behavior with the PCL/CHT ratio. From these data, the aim of this section is to discuss the possible 

mechanisms that control the membrane formation at microscopic scale with the PCL/CHT chemical 

structure and at mesoscopic scale with the morphological structuration of the membrane porosity. 
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2.6.1 Microscopic PCL/CHT chemical structure  

The IR results demonstrate the presence of weak interactions between PCL and CHT (with a shift of the 

peak) that allow to avoid phase separation and a total immiscibility between PCL and CHT. The 

presence of these weak interactions is confirmed by the crystalline properties (section 2.5.4) with a 

decrease in crystallinity when mixing PCL and CHT. However, the Nishi - Wang plot (Fig. 8.) shows 

that the blend material cannot be considered as fully homogeneous. The chemical analysis (Fig. 6.) 

demonstrates also a difference in composition along the membrane thickness: the PCL is more 

concentrated at the top surface of the membrane (the membrane side in contact with the non-solvent 

phase). 

The solvent and non-solvent power can be evaluated through the interaction distances using the Hansen 

solubility parameter approach [137]. From the Table 2, the lowest interaction distances are found for 

PCL and the acids indicating good solvents whereas water is a non-solvent of PCL with highest 

interaction distance. The CHT shows high interaction distances in the range of 21.6-23.0 for all solvents 

which are therefore bad solvent (with almost the same non-solvent power) for CHT. However, the 

solubility of CHT in water at low pH as well as in acids is observed due to the formation of strong 

acid/base interaction turning CHT to a polyelectrolyte via the protonation of amine groups. The use of 

NaOH solution as a non-solvent is then crucial, as the base will deprotonate the amine groups leading 

to insoluble CHT. Thus, NaOH solution is a stronger non-solvent of CHT than pure water. 
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Table 2. Hansen solubility parameter of CHT, PCL and solvents and the interaction distance. All value 
are given en MPa1/2. 

   d  p  h Interaction distance  (MPa1/2) 
Ref. 

 MPa1/2 MPa1/2 MPa1/2 MPa1/2 PCL CHT 

CHT 38,8 22,9 16,6 26,6 23,9 - [138,139] 

PCL 20,3 17,7 6,2 7,8 - 23,9 [140] 

water 47,8 15,5 16 42,3 36,1 21,6 [137] 

FA 22,6 14,6 10 14 9,6 21,9 [137] 

AA 21,4 14,5 8 13,5 8,8 23,0 [137] 

 

This heterogeneity along the membrane thickness can be explained (Fig. 12.) by the presence of a NaOH 

gradient along the thickness of the polymer solution during the phase inversion process (with high NaOH 

concentration at the top - in contact with the non-solvent phase - and low concentration at the bottom). 

The NaOH gradient results in an acid concentration gradient along the thickness of the polymer solution 

due to faster neutralization at the top surface than at the bottom surface, leading to the formation of 

conjugate bases (FA- and AA-, which act as stronger non-solvent). The presence of conjugates increases 

the gradient of solvent activity. CHT chains have more affinity for the solvent (FA/AA) than PCL and 

thus the gradient of chemical potential for CHT is more important than the one for PCL [141]. Due to 

these differences in chemical potential gradient, CHT should move towards the bottom surface to some 

extent higher than PCL chains. As water is a strong non solvent of PCL, PCL chains will coagulate 

faster than CHT. The PCL chains will be trapped in contact of water and cannot move anymore. 
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Fig. 12. Schematic representation of the gradient along the thickness and the differential migration of 
PCL (in blue) and CHT (in red) in the blend after phase inversion (where PCL is polycaprolactone, 
CHT is chitosan, FA is formic acid, AA is acetic acid, FA- is formate anion and AA- acetate anion 

respectively). 

2.6.2 Mesoscopic morphological structuration of the membrane 

The equilibrium phase diagram for the ternary system of polymer-solvent-nonsolvent, Fig. 13. (A), can 

be used to understand the route taken during the membrane precipitation process and the possible 

consequences for the macrovoids formation. According to the mixture composition, two phases can exist: 

a one-phase region, where all components are miscible, and a two-phase region, where the system 

separates into viscous polymer-rich and low viscosity polymer-poor phases (i.e. made of solvent and 

non-solvent). The liquid-liquid phase boundary is the so-called binodale curve. Every composition 

inside the binodale curve will demix into two liquid phases which differ in composition but are 

thermodynamically in equilibrium with each other. The tie line connects a pair of equilibrium 

compositions in the phase diagram. Thus, at low polymer concentrations where the tie line intersects the 

binodale, the system is a low viscosity polymer-poor phase dispersed in a high viscosity polymer rich 

phase. As the solvent leaves the polymer rich phase, the concentration of polymer in the polymer rich 

phase increases while the polymer-lean phase growth and coalesce. The viscosity of the polymer rich 

continuously increase up to the gelation point (E), leading to a highly viscous polymer-rich phase where 

further polymer chain movement is not possible [142,143].  
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Two extreme cases can be considered according the PCL/CHT percentage. The case 1 (left column in 

Fig. 13.) corresponds to the pure PCL blend and the case 2 (right column in Fig. 13.) corresponds to the 

lower PCL/CHT percentage. As previously discussed, one difference between these cases is the use of 

higher NaOH solution in the non-solvent phase for higher CHT concentration. In this last case, the 

gelation point should occur for higher polymer concentration, as there is less attractive interaction 

between CHT and solvent in basic solution.   

 
Fig. 13. (A). Schematic phase diagram of the system polymer-solvent-nonsolvent representing the 

membrane macrovoids formation pathway (A-B-C-D), (B). Illustrative representation of the formation of 
macrovoids. Case 1: formation of smaller macrovoids consisting of polymer as PCL, solvent as 

FA/AA and non-solvent as NaOH at low concentration and Case 2: formation of bigger macrovoids 
consisting of polymer as PCL+CHT, solvent as FA/AA and non-solvent as NaOH at high 

concentration (where PCL is polycaprolactone, CHT is chitosan, FA is formic acid, AA is acetic acid 
respectively). 

 

Regarding the triangular diagram (Fig. 13. (A)), the entire membrane formation process follows the path 

(A-B-C-D), where A represents the initial casted solution when it is just immersed inside the non-solvent 
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(t=0), B represents the demixing point where the two liquid phases formation starts. As the two-phase 

formation proceeds, more and more solvent is neutralized and the viscosity of the polymer-rich phase 

increases. At one point, the viscosity is high enough to restrict further polymer chain movement and the 

polymer is considered as solid, representing the solidification point C where it intersects the tie line with 

the gelation point E. From B to C, the polymer lean phase coalesces to form the observed small 

macrovoid: the extent of the coalescence depends of the time need to go from B to C. 

After that, the membrane structure does not evolve and further solvent exchange results in the removal 

of solvent. Some shrinkage of the bulk volume could also happen leading to the final membrane structure 

D [142,144]. The composition D is in equilibrium between the polymer-rich and polymer-poor phase 

and the position of point D on the polymer/non-solvent line of the phase diagram determines the overall 

porosity of the membrane. The phase inversion process takes place differently depending on the position 

of point C as depicted in Fig. 13. (A).  

Due to the presence of the track-etched membrane on the casted solution, just after immersion, the non-

solvent has a restricted access to the polymer solution through the pore of the track-etched membrane, 

initiating a spatially heterogeneous solvent-nonsolvent exchange [83,84]. The phase inversion starts in 

the zone where there is a direct contact between the polymer and the non-solvent as soon as the 

concentration reaches the composition of point B in the Fig. 13. (A). As illustrated in the Fig. 13. (B), 

the phase inversion results in the initiation and growth of a liquid wall (polymer-rich phase). The liquid 

wall, created from the phase separation, expands radially from the non-solvent invasion point at 

polymer-poor phase towards the bulk at polymer-rich phase. During the phase separation, the polymer 

concentration of the liquid wall increases until the liquid gelation (point E in Fig. 13. (A)) and thus 

further polymer chain movement stops [142,144]. In a second time, a secondary phase separation occurs 

through the whole volume of the polymer solution because of the slow diffusion of the non-solvent 

through the liquid and gel walls. The polymer solution area, protected from direct exposure to the non-

solvent due to the presence of the track-etched membrane, undergoes the secondary phase separation. 

This phase inversion takes place at a slower rate and leads to the formation of a uniform spongy 
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macroporous network connected by the macrovoids [83,84,142,144]. These phenomena occur up to the 

point C where the polymer reach phase turn into gel and stop the structure change. 

The polymer blend composition, polymer wt.% and non-solvent concentration play an influential role 

on the macrovoids size and on the membrane porosity. Particularly in the case 2, where CHT is present 

along with PCL inside the polymer solution, the blend has a higher affinity with solvents than PCL alone. 

This is due to higher secondary interaction between the CHT functional groups and solvents, higher 

M.W and the presence of cyclic structure, that result in the CHT chains deployment and high 

entanglement in the solution [108]. In that case and after the demixing point, the non-solvent first has to 

disable the secondary interaction between CHT and solvents followed by solvent exchange via acid-

base reaction, leading to a delay in solidification (t=t2, path B-C). Meantime, more non-solvent invades 

due to a higher non-solvent concentration and lower polymer wt.% (in the case of PCL/CHT 70/30 with 

10 wt.%), leading to further expansion of the liquid wall and eventually coalescence of two neighboring 

nascent liquid walls before reaching the solidification point C : bigger macrovoids are therefore formed 

[142,144]. In case 1, due to the presence of PCL alone, after the demixing phase, the solvent exchange 

starts readily as PCL does not have a strong affinity with the solvents and as water act as a strong non 

solvent, at the contrary of CHT. Moreover, due to the lower nonsolvent concentration and higher 

polymer wt.% (pure PCL with 15 wt.%), the liquid wall reaches the solidification point C (t=t1; where 

t1<t2) before significant expansion, resulting in smaller macrovoids.  

Remigy et al. [144] and, earlier, Strathmann et al. [142] reported that, due to the heterogeneous and 

restricted solvent diffusion, the macrovoid generation can also be achieved by a dense skin formation 

on the polymer solution layer via rapid homogeneous precipitation. In that case, after formation of the 

dense skin, it disrupts by shrinkage of the homogeneous solid layer and the macrovoid formation starts 

from the disruption point due to the heterogeneous and restricted access of the non-solvent. In the present 

work, we cover the polymer solution with track-etched membrane, which acts as a dense skin with 

restricted access of the non-solvent [83,84]. The use of a track-etched membrane and its removal allows 

the generation of largely open macrovoids, which were not obtained using the classical phase inversion 

technique. When no track-etched membrane was used, the membrane material presented single porosity 
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alike conventional liquid-liquid homogeneous phase inversion and pores were not open enough towards 

the top surface (Fig. 4. I, J).  

2.7 Conclusions 

A PCL/CHT membrane with a unique double porosity level has been developed for tissue engineering 

applications. The membrane has been fabricated with a modified phase inversion technique from 

PCL/CHT polymer blends in the ratios 100:0, 90:10, 80:20, 70:30 (w/w%) in a solvent mixture of formic 

acid/acetic acid. Macrovoids at the membrane surface have been formed which are connected through 

membrane macroporous network. The micro-patterning technique was performed by localized access of 

the non-solvent inside the polymer solution via applying isoporous, commercial (track-etched) 

membrane during liquid induced phase inversion. The physico-chemical properties and morphological 

structure of the membrane have been characterized and the mechanisms at the origin of the membrane 

formation have been discussed. This membrane exhibits interesting functionalities for tissue engineering 

applications: 

- The membrane possesses a structure with three dimensional double porosity level, thanks to the micro-

patterning techniques. The SEM images show that plenty of micrometers macrovoids (20 to 110 µm) 

are connected through spongy network. Such a structure could ensure bi-functionality for tissue repair:  

first, macrovoids could act as a holder for the cell and provide better cellular proliferation and 

colonization, and second, macrovoids, connected through a spongy macroporous network, could be used 

to store and to supply essential nutrients, growth factors and oxygen for cell survival. 

-The morphological analysis of the membrane shows that the macrovoids size increased by increasing 

the Chitosan concentration. ATR-FTIR chemical spectra confirm the presence of secondary interaction 

between PCL and Chitosan. From the FTIR chemical mapping, we found a slight segregation of 

polymers along the thickness in case of high Chitosan wt.%, which is quite natural due to the high 

affinity of Chitosan with the solvents and chain length difference between the two polymers. From the 

XRD and DSC studies, we observed an increase of the crystallinity and melting point by increasing 

CHT wt.%. 
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-The biodegradability of the material can be adjusted according to the PCL/CHT ratio. The enzymatic 

degradation of the PCL/CHT double porous scaffold using lipase (from P. cepacia), pointed out a faster 

and almost selective degradation of PCL in the blend. We also measured the pH of the degraded solution 

after enzymatic experiments; pH was very close to the physiological pH independently of the 

composition of the material. The degradation rate could coincide with the rate of tissue regeneration (the 

time scale is between days and months). 
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3 Chapter 3: Double porous, biodegradable poly (Ɛ- 
caprolactone)/chitosan 3D membrane scaffolds: understanding 
hMSCs attachment, proliferation and invasion by varying pore 
size and morphology of the scaffolds 

3.1 Summary of the chapter 

In this paper, we developed membranes scaffolds to mimic the biochemical and biophysical properties 

of human mesenchymal stem cell niches to help direct self-renewal and proliferation providing to cells 

all necessary chemical, mechanical and topographical cues. The strategy was to create membrane 

scaffolds with double porosity able to promote the mass transfer of nutrients and to entrapped cells. We 

developed poly (Ɛ- caprolactone)/chitosan blend membrane by modified liquid induced phase inversion 

technique, consist of double porous morphology: (i) surface macrovoids (big pores) which could be 

easily accessible for hMSCs invasion and viability; (ii) interconnected macroporous (small pores) 

network to transfer essential nutrients, oxygen, growth factor between the macrovoids and throughout 

the scaffolds. The scaffolds were characterized with respect to their composition, structure, mechanical 

properties and they were finally tested in vitro to assess their potential as platform for tissue engineering. 

The bioactivity of a 3D scaffolds used in tissue engineering applications depends on density of the 

available ligands, scaffolds microstructural environment at which specific cell binding occurs. Ligand 

density is defined by the composition of the scaffolds and the ligand density on the surface is inversely 

proportional to the surface macrovoid size or proportional to the effective surface area, surface which is 

exposed for initial attachment of the cells. However, if the macrovoid size is bigger than cell dimension 

of specific interest, cell invasion inside the bulk takes place influencing the overall cell viability. Herein 

we varied the mean macrovoid size, effective surface area and surface morphology by varying the 

PCL/CHT blend composition (100:0, 90:10, 80:20, 70:30). SEM images of the cross section of the 

scaffolds confirmed that the macrovoids are connected with each other through the interconnected 

macroporous network and the size of the macrovoids were increased by increasing the CHT wt.%. The 

cell morphology, viability and oxygen uptake rate (OUR) were evaluated until 21 days.  
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We found a linear relationship between hMSCs viability with surface mean macrovoid size, effective 

surface area and surface morphology. The mechanical properties (tensile strength, young modulus and 

elongation at break) of the membranes observed in dry and in wet condition as well. Enzymatic 

degradation were performed by using Lipase (Aspergillus oryzae) and Lysozyme at the same 

concentrations of the human serum. The obtained results by culturing hMSCs on this double porous 

morphology and the relationship with mean macrovoid size, effective surface area and surface 

morphology will be very useful to advance different aspects of tissue engineering application e.g. to 

create a ‘selective co-culture’ or a 3D cell culture environment for tissue regeneration. 

3.2 Introduction 

An important challenge in tissue engineering and regenerative medicine is the design of a biomaterial 

able to provide all necessary physical, chemical and mechanical cues that promote cell differentiation 

and tissue regeneration. Design approach for biomaterials are driven to the interest to reproduce the 

natural niche of cells that implies cell-cell and cell-extracellular matrix (ECM) contacts in a 3-D 

environment that ensure the maintenance of cell polarity. In this contest, a great interest is focused on 

the development of materials able to boost the proliferation and differentiation of mesenchymal stem 

cells (MSCs), which represent a promising source for cell therapy and regenerative medicine. In 

particular, bone marrow derived human mesenchymal stem cells (hMSCs) are powerful multipotent 

progenitor cells and a promising alternative cell source due to their capacity to differentiate into 

distinctive end-stage cell types, such as those that fabricate specific mesenchymal tissues including bone, 

cartilage, muscle, bone marrow stroma, tendon/ligament, fat, dermis, and other connective tissues [145–

148]. Furthermore MSCs, themselves, secrete a broad spectrum of bioactive macromolecules that are 

both immunoregulatory and serve to structure regenerative microenvironments in fields of tissue injury 

[147]. It has been reported that the hMSCs differentiation depend highly on environmental cues such as 

oxygen and nutrient availability, pore size, scaffold mechanical property, surface morphology and more 

notably the administration of soluble factors [79,145]. All these intrinsic multipotent parameters of 

hMSCs make them a potential candidate for a strategic tissue engineering application with greater level 

of understanding of the interaction between cells and 3D scaffolds mimicking physiological conditions. 
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Microporous membranes with suitable topographical, mechanical, physico-chemical and permeability 

properties can act as an artificial stem cell niche providing a bio-instructive extracellular environment 

characterized by micro- and nano-architecture. Membranes enable to provide an adequate structure in 

terms of porosity and interconnected pores, which is important for the selective mass transfer of nutrients 

and metabolites, and on the other hand favour cell attachment on the surface and invasion inside the 

bulk increasing the effective area for cell accommodation. However, this balance between the optimal 

pore size and effective cell adhesion area is often compromised in the case of small pores suitable for 

the transfer of nutrients, growth factors and waste products that limit the cell proliferation to the surface. 

Conversely, in the case of big pores, it implies an increase of area for cell invasion and migration within 

the bulk limiting the selective transport of molecules and the initial interaction with the surface, which 

is crucial to mediate all subsequent events such as proliferation and differentiation [75,76]. Big pores 

are also responsible to reduce the mechanical strength and can drive a faster degradation in vivo before 

finishing the tissue construct. To overcome these drawbacks, membranes with double porosity [83,84] 

can be a further step forward where the macrovoids (big pores) are responsible for the invasion and 

proliferation of the cells, and the transport of nutrients and growth factors can be accomplished by 

smaller interconnected micropores resulting a higher effective surface area than a single big porous 

surface. Previously, we developed a polysulfone (PSU) membrane with double porosity level for the 

culture of C3A human hepatoma cell line. Although the membrane supported the viability and 

functionality of the cells for 9 days of culture, the hydrophobic properties of the PSU and non-degradable 

character limited the cell adhesion and migration representing a drawback for their use in tissue 

engineering application [83]. Our strategy here is to develop biopolymeric membranes with double 

porosity through the modified liquid induced phase inversion process by using track-etched. Chitosan 

and polycaprolactone are two prominent biopolymers currently under study for the fabrication of tissue 

scaffolds. Chitosan, deliver a crucial subset of biomaterials for use as tissue engineering templates due 

to their bioactive functionality, biocompatibility, tunable degradation and their intrinsic structural 

resemblance of native tissue ECM [90,149,150]. It is highly recognised for its innate ability to promote 

biological recognition in combination with other synthetic biopolymers [90,91,149,150]. It is a linear 

polysaccharide composed of glucosamine and N-acetyl glucosamine units connected through beta (1-4) 
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glycosidic bonds and produced from highly abundant natural polymer chitin which not only support cell 

adhesion and functions, but also provide hydrophilic, non-toxic, high affinity towards proteins, 

antibacterial, haemostatic, fungistatic, antitumoural and anticholesterimic properties [29,151,152]. 

Despite many positive features, there are disadvantages linked to the naturally derived biopolymers that 

include weak mechanical strength in vivo condition, inconsistency in compositions and properties [32] 

and the  inherent variability in the production and the potential, even though small, of the materials to 

evoke an immune response [153].  

Synthetic polyester based polymers such as polycaprolactone (PCL), as matrices and templates in 

bioengineering present several key advantages relative to naturally derived polymers, offering attractive 

options for the control of shape, architecture and chemistry to generate potential alternatives that mimic 

ECM systems with control of biomaterial functions [11,17,154,155]. Another important property of 

synthetic polymers, such as tensile strength, dynamic modulus and the degradation rate, can be easily 

tailored for target applications by altering the synthetic/natural proportions in combination with natural 

polymers. Due to its exceptional qualities, such as its biocompatibility, low immunogenicity, hydrolysis 

under physiological conditions, and FDA approval for clinical use, PCL is a potential candidate among 

them which can provide sufficient biocompatibility and biodegradability without producing any toxic 

side product [155,156]. However, when it used alone, sometimes it lag behind of biofunctional group, 

compromising not only the cell-matrix interaction but also a slower degradation and eventually higher 

retention in physiological condition, triggering a probable risk of inflammation [157]. 

Certainly, a harmonious combination of synthetic/natural biopolymer ratios could be a leading strategy 

in scaffold design, which not only reduce the limitations of a single component but also provide a greater 

level of control over the overall material properties for cell guidance and biocompatibility [158–160]. 

Membranes must have an architecture that must host cells at high density and ensure an adequate 

transport of nutrients and metabolites. To achieve this goal, membranes should have a macrovoids to 

accommodate cells, and a macroporosity for diffusion of nutrients. These requirements are essential for 

cell nutrition, proliferation and invasion inside the bulk for tissue vascularization and formation of new 

tissues. Here for the first time we report about the design and application of a 3D double porous 
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membrane scaffold of PCL-CHT prepared by modified liquid induced phase inversion technique for the 

culture of hMSCs. Considering that the hMSCs proliferation and differentiation strongly depend on 

environmental cues such as oxygen and nutrient availability, pore size, mechanical property, surface 

morphology and more notably the administration of soluble factors [79,145], our strategy was to develop 

membranes with macrovoids (20-110 µm) which are open towards the surface for hMSCs proliferation 

and invasion, and interconnected microporous (1-5 µm) to transfer essential nutrients, growth factors 

and cell catabolites. Membranes were characterised in order to evaluate the structural, mechanical and 

physico-chemical properties before their use in contact with cells. In particular, we investigated the 

efficacy of the double porous membranes to promote adhesion, proliferation and invasion of hMSCs as 

well as the metabolic oxygen requirements. 

3.3 Materials and methods 

3.3.1 Membrane fabrication with 3D double porosity 

The membranes were prepared using a modified liquid induced phase inversion technique using formic 

acid/ acetic acid as solvent and NaOH as non-solvent as stated in section 2.4.1. Briefly, poly (Ɛ- 

caprolactone) (MW 80 KDa, CAPATM 6800, Perstorp Holding AB, Sweden) and CHT (MW 190-310 

KDa, 75-85 % degree of de-acetylaion, Sigma-Aldrich), with a ratio 100/0 (15 wt.%), 90/10 (14 wt.%), 

80/20 (14 wt.%) and 70/30 (10 wt.%) (w/w %) were dissolved in FA/AA (w/w %) mixture and then the 

polymer solution was casted on a glass plate by a gardener knife in order to achieve a thickness around 

250 µm at room temperature. Then the track-etched, a polyethylene terephthalate (PET) isoporous 

membrane (Sterlitech, USA) with pore diameter 10 µm, was rinsed by the solvent, slowly wiped to 

remove excess solvent, and gently applied on the casted polymer solution. The glass plate was then 

slowly immersed inside the non-solvent bath containing NaOH aqueous solution at room temperature.  

After formation of the membrane when it was turned opaque and detached from the glass plate, the 

track-etched membrane was removed gently and the newly formed membrane was washed several times 

in pure water. Then, the membrane was stored in ultrapure water in 4 0C temperature. The surface where 

the macrovoids were open towards the non-solvent are denoted as top surface and the other surface, 

which was facing the glass plate, denoted as the bottom surface. 
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3.3.2 Membrane characterization 

After the preparation, the double porous membranes were characterised in order to determine their 

morphological, physico-chemical and mechanical property. 

The surface morphology and cross section were analyzed by scanning electron microscopy (SEM, 

Quanta 200F, FEI, USA). Diameter of the macrovoids and macropore size distribution were evaluated 

by ImageJ software on the SEM images. The pore size of the passing pores were determined by Capillary 

Flow Porometer (CFP 1500 AEXL, Porous Materials Inc., PMI, Ithaca, New York, USA).  

The membrane surface wettability was assessed by water contact angle measurements and the sessile 

drop method, using CAM 200 contact angle meter (KSV Instruments, Helsinki, Finland).  

The mechanical properties were determined by Zwich/Roell Z2.5 tensile testing machine (Germany), 

by applying a pre-load of 0.05 MPa at constant 4 mm/min elongation rate. Tensile strength (N/mm2), 

Young’s modulus E (N/mm2) and elongation at break ɛ (%) were determined at room temperature on 

ten different samples (1x5 cm) from each batch, considering the different cross-section thickness, in dry 

and wet conditions. Wet samples were analysed after an incubation of 6 hours in PBS buffer. Real-time 

longitudinal deformation measurements were obtained and analysed by testXpert® testing software.  

The membrane biodegradation was evaluated by enzymatic incubation in two different solutions of 

Lipase from Aspergillus oryzae (0.12 U/ml) and human Lysozyme (1300 U/ml), respectively, in PBS 

buffer and 0.5 mg/ml NaN3, to emulate the enzymatic activities of human serum. Before the incubation, 

three different samples (2x1.5 cm) from each batch were dried in vacuum oven at 37° C for 72 hours 

and then their initial weight (wi) precisely measured. Then the samples were immersed in 1ml of 

enzymatic solutions that were freshly changed every seven days. At predetermined time intervals, the 

samples were washed with copious distilled water, dried in vacuum oven at 37 0C for 72 hours, and their 

final weight (wf) precisely measured. The weight loss index (Wloss %) was determined by the following 

equation: 

                                  (Wloss %) = [(Wi-Wf)/ (Wi)] x 100                                               (1) 
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3.3.3 Cell Culture 

Human bone marrow Mesenchymal Stem Cells (hMSCs) StemPro™ BM (Thermo Fisher Scientific) 

were used for cell culture on the double porous membranes. Before the cell seeding, the membrane 

scaffolds were sterilized by incubation in ethanol for 2 hours, extensive washes in sterile water, and UV-

irradiation for 4 hours. Then they were conditioned for 2 hours with culture medium constituted by 

MesenPRO RS™ (Thermo Fisher Scientific) supplemented with 2mM glutamine, 1% gentamycin 

sulphate/amphotericin-B, and 2% serum. hMSCs were seeded at P:6 on the membrane scaffolds at 3,5 

*103 cell/cm2 density, and incubated at 37° C in a 5% CO2/20% O2 atmosphere (v/v) with 95% relative 

humidity. Culture medium was changed every 48 hours, and cells maintained up to 21 days. 

3.3.3.1 Effective surface area (ESA %) for cell viability 

We determine the effective surface area (ESA %) on the SEM images of the scaffolds by imageJ analysis. 

Where we calculate the total area of the macrovoids on a unit surface and subtract it from the total unit 

surface area as follows: 

𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎 (𝐸𝑆𝐴 %) = 

(
𝑇𝑜𝑡𝑎𝑙 𝑢𝑛𝑖𝑡 𝑠𝑢𝑟𝑎𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎 − 𝑇𝑜𝑡𝑎𝑙 𝑎𝑟𝑒𝑎𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑎𝑐𝑟𝑜𝑣𝑜𝑖𝑑𝑠 𝑜𝑛 𝑡ℎ𝑎𝑡 𝑠𝑢𝑟𝑓𝑎𝑐𝑒

𝑇𝑜𝑡𝑎𝑙 𝑢𝑛𝑖𝑡 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎
) × 100 

                                                                                                                                                           (2) 

3.3.3.2 Cell morphology by SEM analysis  

hMSCs after 7 and 21 days of culture on double porous membrane scaffolds were examined by SEM 

(SEM, Quanta 200F, FEI, USA) after proper fixation and dehydration. Samples were gently washed 

with PBS buffer, and then incubated for 30 minute in 3% glutaraldehyde and 1% formaldehyde mixture. 

Successively, they were fixed for 30 minutes in 1% OsO4, and progressively dehydrated in ethanol 

solutions.  
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3.3.3.3 Cell morphology by CLSM 

Confocal Laser Scanning Microscopy (CLSM, Fluoview FV300, Olympus Italia) was used to 

investigate the cell morphology of hMSCs after 7 and 21 days of culture on the double porous 

membranes, after proper immunostaining of specific markers. Cell samples were gently washed with 

PBS buffer, and fixed with 4% paraformaldehyde solution for 30 minutes, and with acetone for 5 

minutes. Successively they were permeabilized in 0.5% Triton-X100, and saturated with 5% donkey 

normal serum. In order to visualize the cell distribution on the double porous membranes, the 

cytoskeleton protein vimentin and cell surface antigen CD90 were stained. Vimentin was stained by 

using a rabbit polyclonal anti-human vimentin (Santa Cruz Biotechnology, Santa Cruz, CA), and a 

Cy™2-conjugated AffiniPure donkey anti-rabbit IgG (Jackson ImmunoResearch Europe Ltd., 

Cambridge, UK); CD90 was marked by using a mouse monoclonal anti-human CD90 (eBioscience, San 

Diego, CA), and a Cy™3-conjugated AffiniPure donkey anti-mouse IgG (Jackson ImmunoResearch 

Europe Ltd., Cambridge, UK). Primary antibodies were incubated overnight at 4° C, the secondary ones 

for 2 hours at room temperature. Counterstaining of nuclei was performed with 0.2 μg/ml of 4′,6-

diamidin-2 phenyl indole (DAPI) (Molecular Probes Inc., Eugene, OR) for 30 min. Finally, the samples 

were washed with PBS, mounted in slide with coverslip, and visualised with CLSM.  

The presence of hMSCs inside the macrovoids of the double porous membranes and the change of cell 

morphology from the surface towards the bulk of the membrane scaffolds was monitored with scan 

depth determination by CLSM in the z-scan mode (step size: 0.5 µm) (Fluoview 5.0 software, Olympus 

Corporation). 

3.3.3.4 Cell Proliferation 

Cell proliferation was assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyl tetrazolium bromide 

(MTT) assay. After 7, 14 and 21 days of culture on the different double porous membranes, hMSCs 

were incubated in 5 mg/ml of MTT solution for 4 hours at 37° C. The yellow tetrazolium MTT salt was 

reduced by the mitochondrial dehydrogenase in living cells to purple formazan crystals. This precipitate 

was extracted by using 1 ml per sample of a lysis solution constituted of 10% sodium dodecyl sulphate, 
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0.6% acetic acid in DMSO, in mild stirring for 30 min at 37° C. Then formazan product was quantified 

by spectrophotometry at 570 nm wavelength. 

3.3.3.5 Oxygen uptake rate (OUR) measurements 

The Oxygen uptake rate (OUR) of hMSCs cultured on the different double porous membrane scaffolds 

was continuously monitored up to 21 days by the pre-calibrated sensor dish reader (SDR; OxoDish®-

DW, PreSens Precision Sensing GmbH), a high-throughput, 24-channel reader for non-invasive 

detection of O2 in special multi-dishes. O2 detecting sensors, placed at the bottom of each well, and 

containing a luminescent dye, were excited every 5 minutes by the SDR placed below the multi-dish. 

The luminescence lifetime was read out noninvasively through the transparent bottom, and the dissolved 

oxygen detected with a resolution of ± 0.4% O2 at 20.9% O2, and a response time <30 sec. Tests were 

done in the 24 well special multi-dishes in which were placed the different samples with cells and 

samples without cells as controls. 

3.3.4 Statistical analysis  

All tests were performed in triplicate and reported as mean ±  standard deviation. Statistical significance 

of collected data was determined according to ANOVA followed by Bonferroni t-test (p < 0.05). 

3.4 Results 

3.4.1 Membrane properties 

The developed membrane scaffolds displayed different morphological, physico-chemical, mechanical 

and biodegradation properties (Table 1). SEM images revealed on the top surface macrovoids that are 

interconnected with a highly porous macropore spongy network (Fig. 1). Macrovoids with mean size of 

13±4 µm were found on PCL double porous membrane. The increase of CHT concentration in the 

polymeric blend increased gradually the mean diameter of macrovoids at the active surface to values of 

15±5 µm, 21±11 µm and 35±25 µm for PCL/CHT 90/10, PCL/CHT 80/20 and PCL/CHT 70/30, 

respectively (Fig. 2, Table 1). The cross section of the membranes revealed inside the bulk macrovoids 

with bigger volume and mean diameters of 22±3 µm, 34±10 µm, 27±13 µm and 46±4 µm for PCL/CHT 

100/0, PCL/CHT 90/10, PCL/CHT 80/20 and PCL/CHT 70/30, respectively. Interconnected micropores 

in the range of 1-5 µm were visible for all the developed membranes and size distribution become wider 
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with the increase of CHT concentration in the blended membranes. Smallest pores of 0.015 µm, 0.034 

µm, 0.026 µm and 1.55 µm were measured for PCL/CHT 100/0, PCL/CHT 90/10, PCL/CHT 80/20 and  

Table. 1. Morphological, physico-chemical and mechanical properties of the PCL/CHT double porous 
membranes. 

 

PCL/CHT 70/30, respectively. Consistently the surface porosity was also depending on the ratio of CHT 

reaching values of 55% for PCL/CHT 70/30 membranes. Depending upon the mean macrovoids size 

and their density on the surface area, we calculated the effective surface area (ESA %) to understand the 

physico-chemical, degradation properties and cell viability on the scaffolds. We found the ESA were 

88±1 %, 84±1 %, 74±2 % and 69±2 % for PCL, PCL/CHT 90/10, PCL/CHT 80/20 and PCL/CHT 70/30 

respectively. 
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Fig. 1. SEM images: top surface (A, C, E, G, I) and cross sections (B, D, F, H, J) of PCL/CHT double 
porous membranes 100/0 (A, B), 90/10 (C, D), 80/20 (E, F), 70/30 (G, H) made by using the track-

etched, and PCL/CHT 90/10 with single porosity (I, J), made without the track-etched. 
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Fig. 2. Small pore size distribution on the top surface of PCL/CHT membranes 100/0 (A), 90/10 (B), 
80/20 (C) and 70/30 (D). All data were analysed on SEM images by imageJ software. 

The mechanical properties of the membranes were evaluated in dry and in wet conditions by measuring 

the tensile modulus E, the ultimate tensile strength and the elongation at break (Table 1). PCL double 

porous membranes displayed stable elastic properties in both dry and wet conditions, as evidenced by 

the moderate tensile modulus E (140.9±14.1 and 131.6 N/mm2 in dry and wet conditions, respectively) 

in combination with elongation at break higher than 100 %. The increase of CHT wt% in the blended 

double porous membranes caused a gradual decrease of the tensile modulus with respect to the pure 

PCL ones, reaching low values of the ultimate tensile strength and the elongation at break on the blended 

membrane of PCL-CHT 70/30, as a result of the gain of more rigid and fragile properties. Passing from 

the dry to the wet conditions, the tensile modulus and the ultimate tensile strength decreased, and the 

elongation at break increased (Table 1). PCL double porous membrane displayed a water contact angle 

of 66.5°. A significant increase of water contact angle was observed increasing CHT wt% in the blended 

double porous membranes (Table 1). 

The biodegradable properties of the membranes were investigated by using separately lipase and 

lysozyme solutions at concentrations similar to human serum. The weight loss of all membranes 
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increased with time as shown in Fig. 3. As expected, the degradation of membranes augmented with the 

decrease of PCL concentration giving rise the highest percentage of weight loss with the PCL/CHT 

70/30 membranes. The membrane weight loss in lipase solution was quite fast and higher than that of 

lysozyme solution. After 10 days of incubation in lipase the PCL/CHT 70/30 membrane was completely 

degraded on the contrary only 8% of weight loss was measured in lysozyme solution.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Weight loss (%) 
of PCL/CHT double 
porous membranes with 
different time interval 
(days) by enzymatic 
degradation in presence 
of Lipase (Aspergillus 
oryzae with 0.112 U/ml) 
(A) and Lysozyme 
(0.013 mg/ml) (B). 
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3.3. Proliferation and invasion of hMSCs in the double porous scaffolds 

The capability of the developed membranes to promote the adhesion and proliferation of mesenchymal 

stem cells was evaluated in the culture time. Cells adhered over the membrane surfaces and appeared 

flattened with elongated filopodia as highlighted by SEM’s images (Fig. 4). During the culture time they 

proliferated covering the membrane surfaces as shown in Fig. 5. In case of PCL/CHT 100/0 and 

PCL/CHT 90/10 the hMSCs exhibited a spindle-like morphology. On the other two blends, by 

increasing the concentration of CHT, the cells became less flattened, showing a spherical-like 

morphology, and remaining confined into the macrovoids of the double porous membranes.  

The expression of specific markers of hMSCs cultured on the different membranes is shown in Fig. 6. 

Cells on all investigated membranes were positive for the cytoskeleton protein vimentin (in green) and 

cell surface protein CD90 (in red). In agreements with the SEM’s observations, here we also found that 

on PCL/CHT 100/0 and PCL/CHT 90/10 cells were only on the surface taking a spindle like morphology. 

On the contrary, on PCL/CHT 80/20 and PCL/CHT 70/30, cells were on the surface by taking a spherical 

or star like morphology and also inside the macrovoids by acquiring a globular morphology due to the 

limited area available for cell adhesion and organization.  

For a deeper understanding of the cell invasion phenomenon inside the scaffolds, we accrued the CLSM 

images in Z-scanning mode from surface towards the bulk (Fig. 7). From the images it can clearly 

observed that for PCL/CHT 100/0 and PCL/CHT 90/10 cells were adhered on the surface and no cells 

were found in the bulk. On the other hand, on PCL/CHT 80/20 and PCL/CHT 70/30 cells were 

distributed on both surface and bulk acquiring a completely globular morphology in the bulk. Moreover, 

the cell invasion in the latter two scaffolds increased from 7 days to 21 days.  

The cell experiment results demonstrated a remarkable effect of macrovoids size and surface 

morphology on cell proliferation and behaviour. Fig. 8 report the quantitative cell viability by MTT 

assay after 7 days 14 days and 21 days. Here we found that PCL/CHT 100/0 was showing a highest rate 

of cell viability after 7 days and 14 days, which is even higher than the control represented by  
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Fig. 4. SEM micrographs of hMSCs after 7 days of culture on PCL/CHT double porous membranes 
100/0 (A, B), 90/10 (C, D) 80/20 (E, F), and 70/30 (G, H) at different magnification. 
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Fig. 5. SEM micrographs of hMSCs after 21 days of culture on PCL/CHT double porous membranes 
100/0 (A, B), 90/10 (C, D) 80/20 (E, F), and 70/30 (G, H) at different magnification. 
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Fig. 6. CLSM images of hMSCs after 7 (a) and 21 (b) days of culture on PCL/CHT double porous 
membranes. Cells were stained for vimentin (green), CD90 (red) and nuclei (blue). 
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Fig. 7 Distribution in the z-axis of vimentin (green), CD90 (red), nuclei (blue) and scaffolds (grey) 
after 7 (a) and 21 (b) days of hMSC culture on PCL/CHT double porous membranes. CLSM images 

were collected at 4 m and 8 m intervals to create a stack in the Z axis. 
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Fig. 8. Cell proliferation of hMSCs at different days of culture on PCL/CHT double porous 
membranes 100/0, 90/10, 80/20, 70/30, and on polystyrene culture dishes (PSCD) as reference 

substrate. Data statistically significant according to ANOVA followed by Bonferroni t’test (p<0.05): 
(* ) vs 7 days, (§) vs 7 and 14 days, on the same substrate; (†) vs PCL/CHT 70/30, (‡) vs all, at the 

same day of culture. 

 

polystyrene culture dishes (PSCD). The cell viability slightly decreased by increasing the CHT wt.% 

after 14 days which is related to the increase of mean macrovoid size and surface porosity. However, 

after 21 days all the membranes (except PCL/CHT 70/30) displayed almost similar cell viability, which 

was even little higher than the control. This result suggest that the scaffolds created a permissive 

microenvironment for hMSCs and after 21 days they reached to confluence.  

Considering that oxygen deficiency is a serious problem for the cells and inadequate oxygenation 

induces a decrease of cell metabolism we evaluated the cellular oxygen uptake rate (OUR) with time 

until 21 days in Fig. 9 Cells on PCL/CHT 100/0 displayed the highest OUR rate followed by PCL/CHT 

90/10, which was also increasing with time compared to the other two blended membranes. For 

PCL/CHT 80/20 and PCL/CHT 70/30 the oxygen consumption remained significantly high throughout  
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Fig. 9. Oxygen uptake rate (µmol/L*min) in the time of hMSCs cultured on PCL/CHT double porous 
membranes 100/0, 90/10, 80/20, 70/30. Data statistically significant according to ANOVA followed 

by Bonferroni t’test (p<0.05): (*) 100/0 vs all, 90/10 vs 80/20 and 70/30, and 80/20 vs 70/30; (§) 
100/0 vs all, 90/10 vs 80/20 and 70/30. 

experiment. The OUR values of the different blends after 20 days reached values of 38±7 µmol/L min, 

33±2 µmol/L min, 15±3 µmol/L min and 10±2 µmol/L min for PCL/CHT 100/0, PCL/CHT 90/10, 

PCL/CHT 80/20 and PCL/CHT 70/30 respectively. 

These results are in agreement with the proliferation data and SEMs images that clearly indicate a very 

high density of the hMSCs on the surface of PCL/CHT 100/0 followed by PCL/CHT 90/10 and no 

significant dead cell fragments were observed.  
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3.5 Discussion 

The design of bioactive membrane scaffolds mimicking the physiologic environment during tissue 

formation is an important challenge in biomaterials and tissue engineering research. Herein, we 

developed double porous polymeric membrane scaffolds that recapitulate the 3D microenvironment able 

to ensure the long-term stem cell viability and metabolism. A distinguishing feature of the scaffolds is 

the combination of macrovoids that allow the cell entrapment with a small interconnected microporous 

network that ensures the selective transfer of oxygen and nutrients and the removal of cell catabolites 

and products. By changing the CHT wt.%, not only the chemical properties of the scaffolds were 

modified, but also their structural and morphological properties like macrovoid size, effective surface 

area (ESA)%, surface porosity% and surface regularity. Finally, all these properties have a direct and 

strong influence on the morpho-functional behaviour of hMSCs. The formation of the unique double 

porous morphology by modified non-solvent induced phase inversion can be clarified by understanding 

the ternary phase diagram triangle (with three component; polymer, solvent and non-solvent) which is 

conveniently used to analyse the thermodynamics of membrane formation process [143]. In particular, 

the track-etched membrane placement on the casted solution induced the double porosity during solvent 

exchange via phase inversion. The pores of the track-etched membrane restricted the non-solvent entry 

inside the casted polymer, leading to the formation of macrovoids [83,84,142,144]. Changing the 

polymer composition by adding and increasing the CHT wt.%, the viscosity of the casted solution 

increased due to the higher molecular weight, cyclic chain [5] and affinity of the natural polymer towards 

the solvents [152]. That let the non-solvent disable the secondary interaction before initiating the solvent 

exchange via acid-base neutralization, leading to a delayed diffusion followed by solidification of the 

polymer chain inside the nascent macrovoids. In the meantime, more non-solvent invasion through the 

pores of the track-etched membrane, before reaching the solidification, was responsible of a further 

macrovoid expansion inside the bulk, resulting in bigger macropores eventually made up by coalescence 

of two nascent neighbouring macrovoids (see section 2.6.2). Consequently, the size of the macrovoids 

in the bulk was higher than that of the opening ones on the surface [142,144]. On the contrary, without 
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the use of the commercial track-etched membrane, the phase inversion was quite homogeneous leading 

to a single porous morphology without macrovoids, followed by dense skin formation [83,143].   

The polymer composition influenced mechanical, physico-chemical (See section 2.5) and degradation 

properties as well the surface morphology and macrovoid size of the developed double porous 

membrane scaffolds. The mechanical behaviour of PCL was modified by introducing and increasing 

CHT wt.%, that leads to an increase of the macrovoids size and the porosity, and consequently to a 

decrease of the polymers bulk density in unit volume. Moreover, the decrease of the tensile strength and 

Young’s modulus is probably due to the thermodynamic miscibility of the two polymers that affects 

their interfacial adhesion in contact surface and the yield strength of the matrix [161]. Additionally, in 

wet condition the mechanical properties dramatically change for double porous blended membranes 

owing to an incorporation of water molecules inside the bulk, through the macrovoids and among the 

polymeric chains. Water incorporation re-established new hydrogen bonds with the CHT polar 

functional groups, by disabling the previous polymer-polymer interaction to some extent and leading 

polymers to slide over another under stress. This phenomenon was previously observed also in CHT 

and CHT-PCL nanoporous membranes, and is responsible for reduced tensile strength and Young’s 

modulus, and for increased elongation at break [86], in wet condition and increasing CHT wt.%. The 

microstructures present on the membrane surface deeply affected their wettability. Indeed, the increase 

of surface macrovoids size and mean diameter of macropores influenced the contact angles according 

to a path irrespective of the chemical hydrophilicity increase that it is expected to be gained increasing 

the percentage of CHT [162]. This behaviour is due to the reduction of the solid-liquid interfacial contact 

in the case of micro- and nano-structured surfaces [163,164].  

The enzymatic degradation in lipase and lysozyme with human serum concentration simulated the 

physiological conditions that would be responsible for enzymatic dissolution of the different double 

porous membrane scaffolds in vivo as artificial patch [126,128,129]. The percentage of membrane 

scaffolds dissolution with the two enzymes was evaluated separately, in order to explore their exclusive 

degradation evolution within the time, considering their different mechanisms of degradation/action. 

Lipase degrades mainly PCL and polymeric chains that consists of lipid or ester-like chemical structure; 
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lysozyme mainly CHT consisting of N-acetyl/deacetyl glucosamine linkages via oxidative-reductive 

chain scission, with a degradation kinetic that is inversely related to the deacetylation degree of CHT 

[128,131,133]. The slower degradation rate in lysozyme is mainly due to the different degradation 

mechanism and the lower CHT wt.% in all blends [99]. Nevertheless, the overall enzymatic degradation 

phenomenon was further governed by the easy accessibility of the enzymatic solution throughout the 

bulk, which could be beneficial for a scaffold with fast cell growth, needing the scaffold to degrade 

faster while being replaced by cell-secreted ECM [5]. In particular, the lower lipase degradation of 

PCL/CHT 100/0 could be due to a higher difficulty of water-soluble enzyme to enter inside the 

hydrophobic and crystalline PCL chains. Decreasing the concentration of PCL wt.% the degradation 

increases as CHT chains decrease the crystallinity of PCL chains and also increase the hydrophilicity of 

the overall blends, creating more space for the enzymatic solution to invade inside the PCL chains 

[128,129,165,166]. Moreover, increasing the macrovoids size and porosity the enzyme can have a direct 

access inside the bulk leading to weight loss of 95% of PCL/CHT 70/30 within 10 days. On the other 

hand, the degradation kinetics by using lysozyme was quite straightforward despite the increase of 

macrovoids, porosity and hydrophilicity.  

The physico-chemical and structural properties of the developed double porous membrane scaffolds, 

ultimately strongly affected the cellular morpho-functional behaviour and invasion in the polymeric 

scaffold bulks. We investigated the cell-material interactions and the cell invasion phenomenon inside 

the macrovoids by culturing hMSCs on the double porous membrane scaffolds. Kang et. al. [167] 

reported the adipogenesis of murine embryonic stem cells in 3D PCL fibre scaffolds with pore size 6-

70 µm. They concluded that the cell viability is determined not only by soluble biomolecules such as 

growth factors, but also by geometry and morphological structure of the scaffolds in which cells are 

grown, which in turn modulate the cell shape and cytoskeletal tension thus regulating cell functions. In 

our case, by increasing CHT wt.% the surface macrovoids size increased leading to a decrease of ESA%. 

Higher effective surface area (ESA) of the membrane scaffolds affect the cell adhesion on the surface 

without to influence the cell invasion into the bulk. The increase of CHT wt.% leads to an increase of 

small pore size distribution and surface porosity that are responsible of higher irregular surface. On 
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PCL/CHT 100/0 and PCL/CHT 90/10 membrane scaffolds, lower surface porosity% conferred more 

regular and smoother surfaces, that in addition to higher ESA, enhanced the adhesion of hMSCs. Indeed, 

on these double porous membrane scaffolds cells adhered on the surface exhibiting their typical spindle-

like morphology, as observed in SEM and CLSM images. On the other hand, on PCL/CHT 80/20 and 

PCL/CHT 70/30 some cells adhered on the surface with wide spreading, others were entrapped inside 

the macrovoids exhibiting a spherical morphology especially on PCL/CHT 70/30. The cell invasion in 

the double porous membrane scaffolds reduced the cell proliferation, that was gradually lower on 

scaffolds with gradual increase of CHT wt.%, as particularly evidenced after 14 days of culture. The 

proliferation rate increased in the time consistently to the scaffold degradation, reaching maximum 

values after 21 days on all membrane scaffolds with except for hMSCs cultured on PCL/CHT 70/30 for 

which the chemical nature of the membrane scaffolds probably plays the pivotal role with respect to the 

morphological and degradation properties. Indeed, the higher CHT wt.% conferred higher 

glycosaminoglycan-like ECM matrix that enhanced the cellular spreading of hMSCs, which is inversely 

related to cell functions and proliferation potential, as it has been already demonstrated for different 

cells cultured on CHT and CHT-PCL blended membranes [86].  

These experimental results suggested that the topographical and physico-chemical properties of the 

membranes considerably influence hMSCs attachment and proliferation offering cues to the cells.  

A further evidence is provided by the OUR data that show a similar trend of cell proliferation by 

increasing CHT wt.%. In particular cellular oxygen consumption is a good indicator of cell viability and 

functions since the oxygen is one of the most important nutrients for cells and play an important role in 

regulating MSC function [168]. The OUR of the hMSCs cultured on the blends increased in the time 

and with the PCL wt.% coherently with cell adhesion and proliferation data highlighting an enhanced 

cellular metabolic activity. These results are in agreement with previous findings reported by O’Brien 

et al. [75] that shown a strong correlation between the scaffold specific surface area and cell attachment 

indicating that cell attachment and viability are primarily influenced by scaffold specific surface area of 

pore sizes for MC3T3 cells. An important effect of pore size on the adhesion of osteoblasts in the early 
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adhesion process has been shown by Murphy et al. [76] suggesting that scaffold specific surface area 

plays an important role on initial cell adhesion.  

Overall the results demonstrated that the scaffolds were able to create a permissive environment for 

hMSC adhesion and invasion affecting their morphology, proliferation and metabolism without to lose 

the stem cell phenotype. The macrovoids enabled the cell invasion into the membrane and the 

microporosity ensured an adequate diffusive mass transfer of nutrients and metabolites, which are 

essential for the long-term maintenance of cell viability and functions.  

3.6 Conclusions 

In this study, we developed new double porous (macrovoids interconnected with microporous) 

membrane scaffolds which consists of variable macrovoids and effective surface area for hMSCs culture 

for specific concern. Polycaprolactone/Chitosan blend (ratios 100:0, 90:10, 80:20, 70:30) membranes 

with different properties were prepared by modified liquid induced phase inversion. We found a linear 

change in scaffolds macrovoids size, effective surface area (ESA)% and surface irregularity by changing 

the Polycaprolactone/Chitosan blend, which has a direct impact on their physico-chemical and 

degradation properties. By increasing the Chitosan wt.%, we found that the mechanical property 

decreased and the surface static contact angle was strikingly increasing which was influenced by the 

surface irregularity. We investigated the enzymatic degradation by Lipase (Aspergillus oryzae) and 

Lysozyme separately, by maintaining their human serum concentration. 

Topographical structure of the membrane scaffolds significantly influences hMSC behavior. We found 

an increase of cell viability and proliferation by decreasing macrovoid size and by increasing the 

effective surface area, which is available for specific integrin-ligand interaction. PCL/CHT 100/0 and 

PCL/CHT 90/10 showed the highest cell viability where the cells proliferated only on the surface with 

high spreading and exhibiting their typical spindle like morphology. On PCL/CHT 80/20 and PCL/CHT 

70/30 some cells adhered on the surface with wide spreading, others were entrapped and proliferated 

inside the macrovoids with a globular morphology. These results provided evidence that double porous 

membrane scaffolds offer niches for hMSCs attachment and proliferation. In particular,  PCL/CHT 
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80/20 membrane is characterised by suitable topographical, mechanical and degradation properties that 

promote high cell viability in long-term cell culture where the cells can invade and proliferate inside the 

macrovoids, opening a new possibility for 3D tissue engineering. However, future studies are necessary 

in order to establish the effect of macrovoid size on the viability and metabolic functions of specific cell 

type. The trend, decreasing cell viability by increasing macrovoid size would not be expected to continue 

if the macrovoid size cross a certain point where larger macrovoids can provide higher integrin-ligand 

interaction, outweighing the consequence of effective surface area. This kind of scaffolds can be highly 

applicable as a ‘selective cell co-culture’ where according to the cellular dimension, cells which are 

smaller than the macrovoids dimension can invade and proliferate inside the macrovoids and the bigger  

cells will be on the surface, eliminating the competition of proliferation between them. Moreover, the 

use of various cell types would be beneficial to understand and model cell behaviour with 3D structure 

and could be very useful in future to design potential bioactive scaffolds for specific tissue culture with 

the cells of interests.  
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4 Chapter 4: Fabrication of tuneable micro-structured flat sheet 
membrane in Organ-on-chip to monitor trans-endothelial 
hydraulic resistance  

4.1 Summary of the chapter 

Tissue engineering is an interdisciplinary field, where scientists from different backgrounds collaborate 

to address the challenge of replacing damaged tissues and organs via the in vitro fabrication of functional 

and transplantable biological structures. Because the development and optimization of tissue 

engineering strategies relies on the complex interaction of cells, materials and the physical-chemical 

tissue microenvironment, there is a need for experimental models that allow controlled studies of these 

aspects. Organs-on-chips have recently emerged as in vitro models that capture the complexity of human 

tissues in a controlled manner, while including functional read-outs related to human organ physiology. 

Organs-on-chips consist of multiple microfluidic cell culture compartments, which are interfaced by 

porous membranes or hydrogels in which human cells can be cultured, thereby providing a controlled 

culture environment that resembles the microenvironment of a certain organ including mechanical, 

biochemical and geometrical aspects. Because organs-on-chips provide both a well-controlled 

microenvironment and functional read-outs, they provide a unique opportunity to incorporate, evaluate 

and optimize materials for tissue engineering. Here we introduce a polymeric blend membrane with a 

three-dimensional double-porous morphology prepared from a poly(ε-caprolactone)/chitosan blends 

(PCL/CHT) by a modified liquid induced phase inversion technique. The membranes have different 

physico-chemical, microstructural and morphological properties depending on different PCL/CHT 

ratios. Big surface pores (macrovoids) provide a suitable microenvironment for the incorporation of 

cells or growth factors, while an interconnected small porous (macroporous) network allows transfer of 

essential nutrients, diffusion of oxygen and removal of waste. Human umbilical vein endothelial cells 

(HUVECs) were seeded on the blend membranes embedded inside an organ-on-chip device. The cellular 

hydraulic resistance was evaluated by perfusing culture medium at a realistic trans-endothelial pressure 

of 20 cmH2O or 2 kPa at 37 °C after one day and three days post-seeding. By introducing and increasing 

CHT weight-percentage, the resistance of the cellular barrier after three days was significantly improved. 
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The high tuneability over the membrane physico-chemical and architectural characteristics might 

potentially allow studies of cell-matrix interaction, cell-transportation and barrier function for 

optimization of vascular scaffolds using organs-on-chips. 

4.2 Introduction 

Tissue engineering is expected to have a significant impact on the prevention and treatment of disease, 

for example through regenerative medicine and the development of artificial organs. The successful 

engineering of biomaterials or engineered tissues that can be applied in a clinical setting relies on the 

control and optimization of many physico-chemical parameters, as well as a deep understanding of cell 

and tissue physiology. To evaluate specific tissue engineered  constructs, current in vitro methods are 

relatively limited, because they either rely on simple monolayer cell culture systems (e.g. for the 

evaluation of cytotoxicity) or on low-throughput bioreactor systems. Because of this, there is a clear 

need of more advanced in vitro models that can be used as tools to evaluate and optimize tissue 

engineered constructs. Organs-on-chips (OOCs) are considered to better predict cellular responses and 

potentially mimic a particular organ by introducing organ-like features such as fluid flow and 

mechanical stress with the corresponding cellular preferences [88,169,170].  

Generally, OOCs consist of polydimethylsiloxane (PDMS)-based structures fabricated using soft 

lithography [171–173] defining microfluidic channels that are often interfaced through a porous 

membrane material in which human cells can be cultured. Depending on the application, the membrane 

normally requires micron-sized pores to allow cellular interaction, while thickness and biocompatibility 

need to closely mimic biological conditions of the human body [174,175]. Moreover, a straightforward 

way to resemble the microenvironment of a certain organ by tuning mechanical, biochemical and 

geometrical aspects [89] leads to better predictions [66]. Like all in vitro models, OOCs hold the 

potential of parallelization and high-throughput screening with very limited resources.  

In spite of the substantial progress in OOC technologies in general (better sensors, pumps and 

microfluidics) with a rapidly expanding library of OOCs of different organs, the progress in the 

development of suitable porous, polymeric membranes is very slow. To date a handful of polymeric 
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membrane such as polycarbonate (PC) and Polyethylene terephthalate (PET), are applied for interfacial 

support in OOCs. These membranes are generally prepared by track-etching and are mainly obtained 

from commercial Transwell inserts [87,176–182] or filter membranes [87,183–188]. Depending on the 

application, they often provide only a basic, non-physiological cell culture microenvironment due to 

their limited biocompatible, structural and mechanical properties. All the material properties of the 

membrane like surface microstructure [189–192], roughness [193–196], hydrophilicity [197,198], 

mechanical strength [198,199], and porosity [71,74,75,80,145,200] have a significant effect on the 

cellular adhesion and biocompatibity.  

Although polymers have been developed to serve as porous membranes for OOCs and microfluidic 

systems, only a few, e.g. parylene [201], SU8 [202], PDMS [65,169,203], polylactic acid (PLA) [204], 

polycaprolactone (PCL) [205] have been reported using electrospinning [206] and conventional 

microfabrication techniques, such as photolithography and dry etching [207,208]. Despite the good 

features achieved by the aforementioned materials and the proof-of-concepts developed using those 

materials, most of them are less suitable for OOCs with specific microstructural requirements and lack 

controlled three-dimensional cellular adhesion. 

Recently, blends of synthetic and natural polymers such as polycaprolactone (PCL) and chitosan (CHT) 

were found to exhibit excellent abilities to match the needs of their specific target tissues via proper 

tuning of their properties [19,38,92,108,161]. CHT is widely recognized for its natural ability to promote 

bioactive functionality, tunable  degradation,  and structural  resemblance  of  native  tissue extra cellular 

matrix (ECM) [90,149,209]. CHT is produced from the highly abundant natural polymer chitin that 

supports cell  adhesion and function, while also providing properties like being hydrophilic, non-toxic, 

having a high affinity for proteins, as well as being antibacterial, haemostatic, fungistatic, antitumoural 

and anticholesterimic [29,151,152]. PCL is approved by the Food and Drug Administration (FDA) for 

clinical use, and is also very suitable for tissue engineering applications [84,91,155–157] by providing 

attractive options for the control of  morphology, architecture, dynamic modulus and degradation rate 

to generate potential alternatives via tuning the synthetic/natural ratio in combination with natural 

polymers [19,38,92,108,161].  
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Here we report a straightforward way to integrate a three-dimensional porous membrane, intended for 

use in vascular tissue engineering, in an OOC system. We demonstrate that endothelial cells can be 

embedded in the scaffolds, and their functionality can be probed by measuring their hydraulic resistance 

with a microfluidic assay. Our study highlights the great potential of applying of OOCs as models for 

in vitro testing in the field of tissue engineering.  

4.3 Materials and Methods: 

4.3.1 Materials 

Poly (Ɛ- caprolactone) with MW 80 KDa (CAPATM 6800, CAS Number 24980-41-4) was obtained from 

Perstorp Holding AB, Sweden. Chitosan with medium MW (190 KDa – 310 KDa) and 75 – 85 % degree 

of de-acetylation (CAS Number 9012-76-4) was purchased from Sigma- Aldrich. Polyethylene 

Terephthalate (PET) isoporous (track-etched) membranes with pore diameter 10 µm were commercially 

obtained from Sterlitech, USA. In the thesis is so called track-etched membrane. Solvents (AcOH, 

HCOOH), NaOH was obtained from Sigma-Aldrich. Polydimethylsiloxane (PDMS) was purchased 

from Dow Corning as a kit containing base and curing agent (Sylgard 184, Midland, MI, USA). Toluene 

was purchased from Merck, Germany. Polyester membrane (8 µm pore size and 10 µm thickness) was 

obtained from GVS Filter Technology. Fluorescent dye (Dextran 4 KDa) was purchased from sigma. 

Human umbilical vesicle endothelial cells (HUVECs) were obtained from Lonza and the corresponding 

culture media (EGM-2: basal media with supplement mix, CC-22011) was obtained from Promocell. 

Collagen-1 (rat-tail), VE-Cadherin goat anti human (Primary antibody) was purchased from Santa Cruz. 

phosphate buffered saline (PBS), Trypsin-EDTA, Formaldehyde, donkey anti-goat IgG Alexa Fluor 546 

(VE-Cadherin secondary antibody), 6-Diamidino-2-Phenylindole (DAPI), and Alexa Fluor 488 

Phalloidin were purchased from TermoFisher. Triton X-100, bovine serum albumin (BSA) were 

purchased from Sigma Aldrich. 
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4.3.2 Methods 

4.3.2.1 Double porous membrane scaffolds fabrication  

The membranes were prepared using a modified liquid induced phase inversion technique using formic 

acid/ acetic acid as solvent and NaOH as non-solvent as stated in section 2.4.1.  

4.3.2.2 Membrane characterization by SEM  

After preparation of the membrane with double porosity, the repeatability of the membrane surface and 

bulk morphology was checked by scanning electron microscopy (JEOL 5600LV) (Fig. 2.). Diameter of 

the macrovoids and small porous size distribution were evaluated by ImageJ software on the SEM 

images.  

4.3.2.3 Organ-on-chip fabrication 

The chip fabrication was reported in the previous publication from our group [87,210]. Briefly, PDMS 

base agent and curing agent were mixed in a 10:1 wt% ratio. After degassing, this mixture was poured 

onto an SU-8 patterned silicon wafer and cured for 4 h at 60 °C. Then the PDMS with channel imprints 

was cut into top and bottom parts, and four inlets were punched (by 0.5 mm diameter biopsy puncher) 

into the top parts containing the top channel. Dust was removed using Scotch tape (3M). To assemble 

the two PDMS parts with an embedded membrane, a PDMS/toluene glue at 5:3 wt ratio [211,212] was 

prepared which ensures complete leakage-free bonding of the two PDMS parts. At first, the glue was 

spin-coated onto a glass coverslip (1500 rpm for 60 s, ramped at 1000 rpm s-1; Spin 150, Polos, the 

Netherlands) and a thin layer was transferred to both PDMS halves using an ink roller. Then the doubled-

porous membrane of 2 mm × 2 mm was cut and placed in the centre of the bottom half. The top part 

was aligned and gently placed on the bottom part without applying pressure, after which the chips were 

baked for 3 days at 30 °C (baking was done in low temperature to avoid unwanted damage of the 

membrane microstructure by melting). The chip design and assembled chip are shown in 3D (by Blender 

v2.78) in Fig. 1. (A). 

After fabrication and before the flux experiments, the chips were verified in order to check good sealing 

between the membranes and the PDMS or for any unwanted leakages. To do that, a fluorescent dye 
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(4 kDa dextran Alexa 488, 1 mg/ml in PBS) was pipetted inside the channel and the chips were inspected 

by performing fluorescence microscopy (EVOS FL, Life Technologies) for one day (Supp. Fig. 6.).  

 

Fig. 1: (A) Organ-on-chip device (inset Picture: BIOS/Lab on a Chip, UTwente); exploded view of the 
PDMS chip with the top channel (TC), membrane (M), bottom channel (BC) and (PT) blocked pipette 

tip. The working area of the membrane suspended between two channels is 500 µm × 500 µm. (B) 
Fluidic set up; determination of volumetric flow rate by perfusion of the cell culture medium (EGM-2) 

through one top channel and collection of the permeate through the bottom channel to the sensor. 

4.3.2.4 Hydraulic resistance measurements in different pressure by Fluigent set up 

To evaluate the membrane hydraulic performance, volume flow rate of the culture medium (EGM-2) 

through the membrane at different pressures was conducted by a fluidic setup (Fig. 1. (B)). The fluidic 

setup was obtained by Fluigent pressure controller to track the flow rate in real time which is consist of 

flow rate platform (FRP) coupled with a flow rate sensor [213]. The experiments were started from 2 

kPa (approximately 20 cmH2O which is within the range of physiological transendothelial pressures or 

TEP [214–216]) and continued up to 20 kPa. The experimental set up was discussed in section 2.2.5.1. 

The obtained flux was plotted against pressure (Fig. 3), and the hydraulic resistance of the membranes 

was determined (Table. 2) from the slope by equations below [85,217,218]. 

           𝐽 = (𝑄/𝑡)/𝐴                                 (1) 

And,  𝐽 =
∆𝑃

µ ×𝑅𝑀𝑒𝑚
                                   (2)                                                                                                                                                                                                      
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Or,   𝑅𝑀𝑒𝑚  =
∆𝑃

𝐽 × µ
                                  (3) 

Where, J is Flux (m/s), (Q/t) is the volume flow rate (m3/s), A is membrane surface area (m2), µ is 6.913 

× 10-4 Pa·s, the dynamic viscosity of water at 37 °C (all the flow experiments were done with EGM-2 

but its viscosity is only 5% higher [214,219], while the resistance of the membrane should not be 

affected by this), ∆𝑃 applied pressure difference (Pa) and RMem is resistance (m-1) of the membrane.  

Polyester membrane (8 µm pore size and 10 µm thickness) [220] was also embedded inside the chip 

system by using the PDMS/toluene glue (which was baked in 60 °C for 4 hours) and the resistance of 

flow was determined as a control with the same procedure. This polyester membrane is typically used 

in Transwell insert systems for cell culture purposes.  

To assess the membrane hydraulic performance in a high-pressure filtration system, flux of all the 

membranes mentioned above were also measured in an Amicon cell at room temperature with deionized 

water at pressure 20 kPa to 60 kPa (Supp. Fig. 7). The hydraulic flux and the resistance for water was 

determined by the above equation where the dynamic viscosity of water at 25 °C was considered as 8.9 

× 10-4 Pa·s. 

4.3.2.5 Flux before and after the cell seeding by Fluigent set up 

The consecutive experiments were done on the same batch of chips with culture medium (EGM-2) at 2 

kPa for one day and three days (Fig. 4). For each batch, three chips were taken. 

4.3.2.5.1 Flux before cell seeding 

Chips were transferred in a plastic culture dish and washed with 70% EtOH thoroughly. Then the chips 

were washed with sterile PBS three times to ensure removal of EtOH from inside of the channel and 

both the channels were filled with endothelial cell culture medium (EGM-2). One top and one bottom 

entrance was blocked with sealed yellow pipette tips. The other top channel inlet was connected with 

the reservoir (30 ml of culture medium) via Tygon tubing. The other bottom channel inlet was connected 

to the flow rate sensor. Before connecting with the chip, all the tubing and the sensor were filled with 
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culture medium. Then the flow was started at 2 kPa pressure and the flow rate was recorded after 2-3 

minutes to ensure a steady-state measurement.  

4.3.2.5.2 Cell seeding 

After the flux measurements the channels were washed three times with sterile PBS and kept in PBS 

suspension for overnight at 4 °C. Then the channels were washed again with sterile PBS and filled with 

0.1 mg/ml collagen I in PBS. The channels were inspected for air bubbles (any air bubbles were flushed 

out by Collagen I solution) and incubated for 30 minutes at 37 °C. Then the chips were taken out from 

the incubator and flushed with culture medium and incubated for 1 hour at 37 °C. In the meantime, 

HUVECs were trypsinized and collected from a confluent T175 flask. Then the chips were placed in the 

sterile hood and 10 µl of cell suspension (4 × 106 cells/ml or 1.5 × 105 cells/cm2) was pipetted slowly 

inside the top channel and inspected for any bubble formation (any bubble was flushed out by the cell 

suspension) and incubated in 37 °C for 2 hours. The chips were taken out from the incubator, inspected 

for complete attachment of the HUVECs by microscope, flushed with fresh culture medium to remove 

non-attached cells and incubated again. The medium in the channels was changed twice every day 

(morning and afternoon). Every time before putting inside the incubator, one drop of culture medium 

was left on top of all the inlets to prevent the channel from drying. 

4.3.2.5.3 Flux after Cell seeding and staining 

The chips with seeded cells were taken one by one from the incubator and the flow rate was recorded 

again like the previous procedure. Directly after the perfusion experiment, the chip was washed with 

PBS and fixed with 4% paraformaldehyde for 15 minutes. Then the channels were washed with PBS 

and kept in permeabilization buffer (PB; 9:1 v:v ratio of 11 mg/ml BSA with 1% Triton X-100 in PBS) 

at room temperature for 15 minutes to block any non-specific protein-binding sites. VE-cadherin 

primary antibody (1:200 in PB) was added inside the channel and incubated at room temperature for 2 

hours. The channels were washed with PBS and VE-cadherin secondary antibody, Phallodin-488 and 

DAPI were added together in the ratio 1:400, 1 drop/ml and 1:4000 in PB, respectively, and incubated 

at room temperature for 1 hour. To prevent photo-bleaching, the chips were protected from light 

exposure from this step onwards. Then the chips were washed with PBS thoroughly and imaged with 
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confocal microscopy (Zeiss LSM 510, Nikon) in 15× and 85× magnification (Fig. 5). The images on 

the membrane were taken at the intersection point of the two channels. For control, cells on the bare 

PDMS channel surfaces were also imaged. 

4.3.2.5.4 Calculation of the hydraulic resistance of HUVECs 

From the flow rate, flux was calculated from Eq. 1 and plotted for different membranes, before cell 

seeding and after cell seeding (Table. 3). In addition, the resistance of the cellular barrier (RCell) was 

calculated from the difference between the total measured resistance (membrane with the cells) and the 

blank membrane resistance (without cells). The equation has shown below [217,218].  

                      𝑅𝑐𝑒𝑙𝑙 = 𝑅𝑇𝑜𝑡 − 𝑅𝑀𝑒𝑚  = (
∆𝑃

µ
× 𝐽𝑇𝑜𝑡) − (

∆𝑃

µ
× 𝐽𝑀𝑒𝑚)              (4) 

4.3.2.5.5 Statistical analysis 

All the experiments were done in triplicate (n=3) and the data are shown as mean ± standard deviation. 

Slope of the blank membrane (Table.2) was determined by using LINST equation. To find the 

significance of flux after cell seeding (Fig. 4), one-way ANOVA analysis with Bonferroni correction 

was done where; ****denotes p<0.0001, ***denotes 0.0001<p<0.001, **denotes 0.001<p<0.01 and 

*denotes 0.01<p<0.05. 
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4.4 Results and discussion:  

4.4.1 Membrane morphological characteristics 

 

Fig. 2. SEM images of membranes on the Top surface and cross section with double porosity;  (A, B) 
PCL/CHT 100/0, (C, D) PCL/CHT 90/10, (E, F) PCL/CHT 80/20, (G, H) PCL/CHT 70/30 

respectively using track-etched membrane (10 µm). All images were taken after removing the track-
etched membrane. 
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Table. 1. Relationship between polymer blend ratio and membrane pore size. 

 PCL/CHT 
100/0 

PCL/CHT 
90/10 

PCL/CHT 
80/20 

PCL/CHT 
70/30 

Surface Big 
Pores Dia. 

(µm) 
 

21.4±5.2 14.3±4.1 15.3±3.4 15.8±5.7 

Bulk Big 
Pores Dia. 

(µm) 
 

30.6±4.9 54.4±7.6 51.9±9.2 56.1±5.5 

*Surface 
Small Pores 
Dia. (µm) 

 

2.3±1.5 0.8±0.3 1.4±0.5 1.7±0.9 

Thickness 
(µm) 

55 85 65 80 

 

After the membrane fabrication, the top surface and the cross section characteristics were analyzed by 

SEM (Fig. 2 and Table 1). It was found that the membrane surface that was covered by the track-etched 

membrane, contained many open big pores which are interconnected with the small pores network as 

evident from the cross section images. In case of pure PCL, surface big pores were around 21 µm in 

diameter and inside the bulk were around 30 µm. On the other hand, all the blend of PCL/CHT, surface 

big pores were around 14 – 16 µm and inside the bulk 51 – 56 µm. The size of the small pores was 

around 0.8 – 2 µm.  Thickness of all the membranes were around 55 – 85 µm. Overall, by this modified 

phase inversion technique, a remarkable difference was found between the big pores and the small pores. 

The morphology also contained some pillars, which were almost the same dimension as the track-etched 

membrane pores. The amount of pillars was decreasing with increasing CHT %.  

The commercial track-etched membrane upon the casted polymer solution triggered a heterogeneous 

solvent exchange during the solvent-nonsolvent exchange. The solvent exchange is faster where the 

nonsolvent has a direct contact with the solution through the pores of the track-etched membrane. By 

introducing and increasing the CHT wt% inside the PCL backbone, several material characteristics can 

be further tuned like surface pore size and morphology, mechanical property, hydrophilicity, 

biodegradable properties.  
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Nonetheless, all these characteristics have direct consequences on cellular viability and adhesion 

phenomena. As stated earlier, the goal of the current work was to study the suitability of these 

membranes in vascular tissue engineering by evaluating the adhesion of HUVECs, as well as their 

functionality in terms of generating hydraulic resistance. 

4.4.2 Permeate flux and Hydraulic resistance of the membrane at different pressure regime 

The OOC was designed in such a way that the membrane scaffolds are embedded in between two 

channels where the culture medium were perfused through the top channel at realistic TEP 

(transendothelial pressure; 2 kPa), mimicking the inner lumen properties. The other end of the top 

channel was blocked so the medium passes through the membrane porous network to the bottom channel. 

One exit of the bottom channel was also blocked such that the cell operates in dead-end filtration mode. 

Firstly, we tested the membrane stand-alone performance, starting from TEP up to 10 times TEP. After 

that we enhanced the resistance by seeding the endothelial cell and quantifying the additional hydraulic 

resistance induced by the cells. This kind of membrane scaffolds loaded with endothelial cells can be 

applied as grafts for disrupted vascular lumen and resist the leakage of fluid from inside of the lumen to 

outside. Due to the biodegradable porous structure, the cell will grow inside the scaffolds by replacing 

the scaffolds material and hence repair the disrupted lumen.  

4.4.2.1 Permeate flux and Hydraulic resistance of the membranes without cells  

The permeate flux of the membranes were plotted (Fig. 3) against pressure starting from realistic TEP 

(2 kPa). All the membranes showed a linear response across the entire pressure range. In the blend, by 

increasing CHT wt%, the flux was increasing. 
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Fig. 3. Flux vs Pressure of four different membrane compare to Polyester membrane (control) measured 
in Organ-on-chip device by fluidic set up.  

The hydraulic resistance of the membrane was obtained from the slopes in Fig. 3 and depicted in Table 

2.  

Table 2. Resistance determined by the slop of the Flux vs Pressure graph. 

 Slope of the Flux vs 
Press graph (1/RMem.µ) 

m/Pa·s × 10
-5

 

Resistance (R) 
m

-1 
× 10

8
 

 
Polyester 
membrane 0.26±0.001 5.48±0.06 

 
PCL/CHT 

100/0 0.1±0.001 14.47±0.39 
 

PCL/CHT 
90/10 0.11±0.002 13.65±0.25 

 
PCL/CHT 

80/20 0.14±0.003 10.48±0.18 
 

PCL/CHT 
70/30 0.19±0.004 7.73±0.19 

 

The pristine membrane does not exhibit any membrane compressibility in the TEP range (2 – 16 kPa) 

[214–216,221], suggesting in the real-time the bulk microstructure of the membrane will be intact while 
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the cellular ingrowth should not be affected. The blend membrane has a higher resistance (or lower flux) 

than the control (Polyester membrane), most probably because the blend membranes have a higher 

hydraulic length (i.e. the membrane thickness) [222] and different pore morphology. These blend 

membranes have higher resistance even without the cellular attachment than the membrane like 

Polyester or Polycarbonate filter membrane which are typically used inside the trans wells inserts 

systems [214,215] or in OOC system [87,210] to asses cellular barrier. The water flux of the control 

(polyester membrane) in the manufacturer’s protocol [220] is given as - 1000 ml/min/cm2 at 10 psi 

pressure, corresponds to a membrane resistance of 6.25 × 108 m-1, which is very close to what we find 

in our OOC system. This good agreement confirms that the system allows determining the resistance 

reliably and that the membrane sealing was intact even up to 10 times TEP. 

The flux is very important to applications of membranes in vascular biology as it dictates the amount of 

fluid flow that can be processed for a given time and dimension at a defined applied pressure without 

damaging the mechanical integrity of the membrane [223]. Particularly in our blend membrane by 

increasing CHT wt% the flux was increased likely due to higher hydrophilicity and improved wetting. 

However, regardless of different chemical property and pore morphology, the resistance of all the blend 

membranes were quite close to each other. Unlike the polyester membrane, the advantage of the blend 

microporous structure is that they consists of big pores which are not all the way through the thickness, 

reducing the flux while facilitate cellular adhesion and incorporation in the same time. Starting from 

TEP, the applied pressure range (2 - 20 kPa) was well within the range of transmembrane pressure for 

microfiltration membrane [224]. Copper et. al [225] evaluated the water flux of a PCL-CHT based 

nanofibrous membranes by electrospining. They found their membranes exhibited flux values in the 

same order of magnitude with our reported data in the similar pressure range. Madhavan et. al [221] 

reported vascular grafts made of thin, dense nanofibrous core composed of poly-ε-caprolactone, and a 

thick, porous, hydrogel sleeve composed of genipin-crosslinked collagen–chitosan. They achieved a 

desired flux 528 ml/cm2/min (corresponds to 0.08 m/s) at average blood pressure of 16 kPa and 

mentioned flux value in that range considered as ideal for immediate grafting and fast healing. They 

also mentioned flux value below that range does not require any preclotting before implantation, but 
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healing could be slower due to limited molecule transport. Whereas unlike the multilayer morphology 

they reported, the single layer morphology with macroporous structure like us could be an added 

advantage with optimum flux property and the fast healing.   

4.4.2.2 Permeate flux and Hydraulic resistance of membranes with cell cultures 

Flux was measured after one and three days of cell culturing and compared with the blank membranes 

at physiological transendothelial pressure (TEP) 2 kPa (Fig. 4). By introducing and increasing the CHT 

wt% in PCL, the %reduction of flux was depicted in the figure, where it can be found there was a 

significant decrease of flux took place after three days compare to one day, most likely due to added 

cellular resistance.  

 

Fig. 4. Flux of four different membranes before cell seeding and after one day and three days of cell 
seeding. All values were measured at physiological transendothelial pressure (2 kPa). The percentages 

denote flux reduction compared to the individual blank membrane. (**** p<0.0001, *** 
0.0001<p<0.001, ** 0.001<p<0.01 and * 0.01<p<0.05 in one-way ANOVA analysis with Bonferroni 

correction). 
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The primary point of interest of this work was to evaluate the additional hydraulic resistance induced by 

the HUVECs during the flux measurements. These values were derived from the mean flux after one 

day and three days of cell culture from Eq. 4 and listed in Table. 3. 

Table 3. Resistance of HUVECs cellular barrier determined by eq. 4 after 1 and 3 day. 

 Resistance of 
HUVECs (RCell) 

m-1 x108 
 

 1 Day 3 Day 
PCL/CHT 100/0 4.8 5.8 
PCL/CHT 90/10 7.7 11.8 
PCL/CHT 80/20 4.5 10.5 
PCL/CHT 70/30 2.5 7.4 

 

The cellular resistance (RCell) increased the total cell-membrane resistance in the OOC system. After one 

day, by increasing CHT wt%, the cellular resistance of the membrane scaffolds were decreasing perhaps 

due to enhanced flux property induced by the CHT moieties as discussed above. However, a notable 

increase in cellular resistance (RCell) after three days of seeding was observed presumably due to higher 

numbers of adherent cells and the increase is likely to be more significant by increasing CHT wt%. After 

three days %RCell increase compare to one day was as follows; PCL/CHT 100/0 (+20 %), PCL/CHT 

90/10 (+50 %), PCL/CHT 80/20 (+130 %) and PCL/CHT 70/30 (+200 %). This could be due to 

combination of better morphological property or pore spacing as evident from the SEM images (Fig. 2) 

where it was observed that, by increasing CHT wt% the membrane surface has more continuous and 

smooth space between the pores. Casillo et al. [200] grew endothelial cells on non-porous and porous 

SiO2 membranes. The porous membranes had different pore sizes and corresponding pore spacing, and 

they found membranes with higher pore spacing give better focal adhesion formation. In contrast, they 

measured cell-cell interactions in the form of tight junctions by ZO-1, which showed an opposite trend. 

Porosity especially with smaller pore spacing, could thus limit cell adhesion, but enhance barrier 

function of cells.  

By increasing CHT wt%, the hydrophilicity of the membrane was also increased which could have a 

positive influence on protein adsorption and hence cell adhesion [193,197]. Wala et al. [198] prepared 



 
94 Chapter 4  

poly(dimethyl siloxane) (PDMS) films with different hydrophilicity and reported that cell attachment, 

spreading and growth of 3T3 fibroblasts and HaCaT keratinocytes increased with increasing 

hydrophilicity of the films. Others found that moderate hydrophilicity often yields the best cell response 

[197,226]. Adsorption of serum proteins also showed an optimum on films with moderate hydrophilicity 

[197] which could be the main cause of the increased cell response. 

Above all, the big pores inside the scaffold are likely to play a significant role to increase the cellular 

resistance. During the cell seeding the HUVECs could block the big pores as they have a globular shape 

of around 15-20 µm in diameter which is almost similar in dimension to the big pores on the surface of 

the scaffold. Chen et al. [189] showed that pore sizes similar or larger than a single cell have significant 

influence on clusters formation by involving multiple cells together. 



 

 

95 Chapter 4 

 
4.4.3 Microscopic observation of cells on the membrane 

 

Fig. 5. LCSM representative images of HUVECs on different blends of membranes after staining three 
different parameters (nucleus by DAPI in blue, cell cytoskeleton by phalloidin 488 in green and cell 
junctions by VE-Cadherin in red) taken after permeability experiments inside OOC systems after 1 
day and 3 day of cell seeding. Bars; 200 µm in inset view (15× mag.) and 20 µm in enlarged view 

(85× mag.). 
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The cellular adhesion was observed after the flux experiments in the confocal images (Fig. 5). After one 

day (in 15× Mag.) all four batches of membranes showed good cellular adhesion and compatibility. The 

cellular adhesion was increasing by increasing CHT wt%, which could be due to an increase of surface 

hydrophilicity and functional property like enhanced collagen coating. Whereas in 85× magnification 

images, the cell-cell interactions looks better on PCL/CHT 100/0 and PCL/CHT 90/10 scaffolds by 

expressing VE-Cadherin stronger than the other two scaffolds. The cellular morphology was the best on 

PDMS by strongly expressing VE-Cadherin with confluent cell-cell interactions and cortical F-actin, 

presumably because the cells prefer a smoother surface during the initial attachments [200]. 

After three days, the cellular adhesion was clearly higher for PCL/CHT 80/20 and PCL/CHT 70/30 

scaffolds than PCL/CHT 100/0 and PCL/CHT 90/10. On PDMS (control) the cellular attachments 

decreased compared to our membrane scaffolds. This could be due to detachment of the collagen layer 

from hydrophobic PDMS which eventually detaches the cellular layer. The detachment of the collagen 

from the PDMS likely occurred due to shear stress during medium changing followed by flux 

experiments. Normally to establish a strong bonding between PDMS and the collagen layer, chemical 

modification by amino-silane surface treatment is used inside the chips before collagen coating [169]. 

In our case, we skipped this chemical surface modification step purposely in order to compare cellular 

attachment exclusively on the membrane scaffolds and the control (PDMS surface) during long-term 

cell culture. In 85× magnification, HUVECs on all the scaffolds strongly express junctional VE-cadherin 

indicating better cell-cell connectivity compared to day one. In addition, the cells were spreading on the 

surface by increasing CHT wt%, presumably due to its higher hydrophilicity and better pore spacing of 

the scaffolds which is evident in the confocal images with spreading of actin filament bundles stained 

by Phalloidin. For comparison, Xiao et. al. [227] seeded HUVECs in three-dimensional β-tricalcium 

phosphate scaffolds with big pores connected with different interconnection sizes and studied 

cytoskeletal proteins such as actin to illustrate the spreading and attachment of cells on scaffolds. They 

found the scaffolds with higher pore spacing exhibited uniform and homogenous actin distribution of 

cytoplasm. This phenomenon is understandable, as the big pores mainly provide the space for cell 

growth, whereas the interconnections function as the doorway for cell-cell interaction and eventually 
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cell growth into the scaffold [227,228]. Du, et al. [38] reported the viability of HUVECs on a gradient 

nano-fibrous PCL-CHT membrane scaffolds for vascular tissue engineering. They found that the 

HUVECs have a tendency for high proliferation and adhesion on the luminal side (CHT rich) of the 

gradient scaffolds due to a better ECM proteoglycan-like structure and adsorption of essential growth 

factors (VEGF) by the CHT matrix. Our data showed that by increasing CHT wt% in PCL-CHT 

membranes, the microporous structure was significantly improved promoting higher endothelial cell 

types growth on the scaffolds. The entire layer of endothelial cell adhesion on the membrane top surface 

(lumen side) and the scaffold itself as the adventitial side is a potential match to the natural structure of 

blood vessels.  

In the past, several experiments were reported to monitor the hydraulic transportation phenomena across 

the endothelial cell layer seeded on membrane at TEP range [214–216]. Almost all those experiments 

were conducted in a trans-well insert system with the conventional track-etched filter membranes. The 

current study is a further step forward in vascular tissue engineering by demonstrating how these three-

dimensional membranes are more convenient candidates with tunable physico-chemical and 

microstructural properties when analyzed within OOCs. 

4.5 Conclusion 

We showed a straightforward and simple process to quantify the additional hydraulic resistance of 

HUVECs seeded on three-dimensional membrane scaffolds in an OOC system. The membrane scaffolds 

were developed by a modified version of liquid induced phase inversion, using different ratios of 

polycaprolactone-chitosan. At first, the flux and the corresponding resistance of the membranes were 

evaluated in the OOC system, starting from realistic trans-endothelial pressure (TEP). The flux was 

found to increase with increasing CHT content in the blend. The additional hydraulic resistance induced 

by the living HUVECs was quantified in the same set-up seeded on the membranes after one day and 

three days using EGM-2 culture medium. Results suggest that by increasing the CHT wt%, the 

microstructural morphology and the chemical properties are significantly improved leading to an 

increased hydraulic resistance of the cells due to enhanced cellular adhesion. 



 
98 Chapter 4  

Overall, our study demonstrates that OOC systems can be used as in vitro platforms to optimize and 

evaluate the morphology and functionality of various tissue engineering constructs. We anticipate that 

the use of OOC technology in tissue engineering will increase, because the unique properties of OOCs, 

with their small size, engineered microenvironments and tissue-level or organ-level functional read-outs. 

Thus could greatly facilitate the development and optimization of new tissue engineered constructs for 

regenerative medicine. 
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4.7 Supplementary materials 

4.7.1 Verification of the absence of leakage with fluorescent dye  

To verify the sealing efficiency of the chip, fluorescent dye was added inside the chip by pipetting with 

normal hand pressure. 

 

Fig. 6. Leakage test inside the channels by pipetting Fluorescent (Dextran 4 KDa, 1 mg/ml in PBS) 
dye. Scale bar 2000 µm. 
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For this experiment, chips with different batch of membrane were taken and they were imaged in EVOS, 

where no leakage out of the channel was found just after pipetting the dye. Then the chip were kept in 

room temperature for one day and imaged again. This time the fluorescent dye was slightly dispersed 

out of channel from inside the membrane area. The normal hand pressure of pipetting inside the channel 

must be much higher than the pressure of interests (TEP at 2-16 kPa), suggesting at real time 

Transendothelial pressure (TEP) the probability of leakage inside the channel is almost none. 

4.7.2 Permeate flux of the membrane in Amicon cell  

The water flux and the corresponding hydraulic resistance was also performed in high-pressure Amicon 

system where the flux was found much lower than the OOC system at pressure 20 kPa. 

 

Fig. 7. Flux vs Pressure graph of four different membrane compare to Polyester membrane (control) 
measured in Amicon cell at 25 0C. 
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The overall flux of all the membranes follow the similar trend. By increasing CHT wt% flux is increasing 

due to higher hydrophilicity and improved wetting. Unlike the OOC system, flux was not increasing 

linearly with pressure due to membrane compaction as big pores are present inside the bulk resulting 

collapsing of the pores through the thickness. By increasing CHT wt% membrane compaction is 

increasing as CHT in wet condition is mechanically less stable than PCL, wreaking the PCL structural 

integrity. PCL/CHT 90/10 has shown the highest compressibility due to smallest small pores. Flux of a 

Polyester membrane (8 µm pore size and 10 µm thickness) was also measured as a control which is 

around 30 – 100 times higher than the blend membrane.  

Table. 4. Hydraulic resistance (RMem) of the blend membranes with distilled water at 25 °C by the Eq. 
3. 

  Resistance (RMem) m-1  
Pressure (kPa)  PCL/CHT 

100/0 
PCL/CHT 

90/10 
PCL/CHT 

80/20 
PCL/CHT 

70/30 
 

20 
 

1.33 × 1011 ± 
0.82 × 1010 

1.41 × 1011 ± 
0.92 × 1010 

5.99 × 1010 ± 
3.2 × 109 

4.52 × 1010 ± 
3.6 × 109 

 
40 

 
1.91 × 1011  ± 

1.4 × 1010 
3.03 × 1011 ± 

2.3 × 1010 
6.47 × 1010  ± 

2.4 × 109 
5.85 × 1010 ± 

2.2 × 109 
 

60 
 

2.26 × 1011 ±  
1.1 × 1010 

3.67 × 1011 ± 
2.7 × 1010 

7.23 × 1010 ± 
2.2×X 109 

7.49 × 1010 ± 
2.5 × 109 

 

Due to the non-linearity of the flux vs pressure graph in the blend membrane, the hydraulic resistance 

was determined in each corresponding pressure (and water viscosity at 25 OC) by Eq. 3 and listed in 

Table. 4. 

Comparison of hydraulic resistance obtained in Fluigent and Amicon cell: 

Below is the Resistance (m-1) of the Polyester membrane by different report - 

Manufacturer protocol [220] 4.6 × 108 m-1 (at press 70 kPa or 10 psi and Vis. Water in 25 °C) 

                      Amicon cell 15.2 × 108 m-1 (from slop in Fig. 8, using Vis. Water in 25 °C) 

                               In OOC 5.5 × 108 m-1 (from slop in Fig. 4, using Vis. Culture medium in 37 °C) 
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For the polyester membrane (as control), the resistance that obtained from OOC system was quite similar 

that has been reported in the manufacturer protocol whereas the value in the amicon cell was 3 times 

higher from the manufacturer protocol. Whereas, in case of PCL-CHT membrane, the resistance in the 

amicon cell was 100 times higher than that have been obtained in the fluigent system. 

Unlike the PCL-CHT membrane, hydraulic flux in the polyester membrane was simpler due to lower 

hydraulic length (membrane thickness 10 µm) and smooth surface with pores all the way through the 

membrane thickness. In spite of that, the resistance value in the polyester membrane obtained in the 

Amicon cell was increasing could be due to added internal instrumental resistance. Whereas PCL-CHT 

membranes has more complicated surface and bulk morphology than the polyester membrane. Moreover, 

the blend membrane surface was heterogeneous with combination of pores and pillars where the pillar 

was decreasing by increasing CHT wt% (the exact proportion of the pores and pillars was unknown). 

Hence, the resistance that obtained from the Amicon cell is combination of pores and with some pillars. 

Although similar thing should happen in the OOC system but here the flux experiment was started from 

10 times lower pressure and 1256 times lower membrane surface area where it possible that membrane 

surface majorly faced Pillar (which was giving zero reading and was discarded) and pores (which was 

giving reading and considered). And as the reading in the OOC was considered majorly from the pores, 

the resistance should be much lower than the reading of Amicon cell. 
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5 General conclusion and perspectives 

5.1 General conclusion 

The aim of the work was to develop three-dimensional biomaterial with unique microstructure properties 

in term of flat sheet polymeric membranes. Moreover, to understand the cell-matrix interaction by tuning 

the key material parameter in order to find out the optimum membrane scaffolds for vascular graft and 

application tissue engineering application. Polymeric membranes as biomaterials have played an 

increasingly prominent role in the success of biomedical devices and in the development of tissue 

engineering, which seeks to unlock the regenerative potential innate to human tissues/organs in a state 

of deterioration and to restore or reestablish normal bodily function. In the last few decades there are 

many biomaterial have been synthesized and reported to be potentially support the tissue culture and 

engineering field but in the recent period of time the ever growing demanding for more advance 

biomaterial will need more detail understanding of material science and their effect on cellular biology. 

Thus in chapter 1 was completely dedicated for the bibliography to find the recent progress of the 

biomaterials in tissue engineering and in biomedical applications in combination of biology, technology 

and chemical engineering. It was found that the polymeric materials are the great choice as biomaterials 

due to their different potential varieties leading the option of high tunability in terms of any tissue 

specific applications. Although there are many natural polymers are already proved for their inbuilt 

ability to provide ECM like environment. But the combination of synthetic/natural polymers produced 

today routinely incorporate biologically active components to define the best artificial in vivo milieu 

with complex and dynamic interactions that foster and regulate cellular adhesion with better material 

architecture, mechanical and biological properties. The range and degree of polymeric biomaterial have 

also dramatically increased as more knowledge has accumulated through materials science, matrix 

biology and tissue engineering. However, achieving clinical translation and commercial success requires 

regenerative biomatrials to be not only efficacious and safe but also cost-effective and convenient for 

use and production. In particular, there is increasing interest to use polymeric flat sheet membranes into 

simplified functional domains and/or biopolymeric assemblies so that these materials can be discretely 

exploited and manipulated for the production of advance biomimetic biomaterials. In spite of that, tissue-
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engineering applications commonly encompass the use of three-dimensional (3D) membrane scaffolds 

to provide a suitable microenvironment for the incorporation of cells or growth factors to regenerate 

damaged tissues or organs. In chapter 1, all the combination of synthetic/natural polymer used in tissue 

engineering purposes and the fabrication methods are listed. Those processing technique produce some 

good porous scaffolds and among them electrospinning, porogen leaching, gas foaming and 

conversional phase inversion were the technique which were mostly reported. But they still have some 

limitations as very often those membrane scaffolds produce porosity including non-

interconnected/unutilized pores, compromising the mechanical properties with moderate cell culture 

efficiency.   

The research work presented in this dissertation answers to some of these technical and scientific 

challenges inside the tryptic material/biology as discussed in the introduction. Hence, in Chapter 2, we 

decided to go for further modification of the membrane fabrication technique in order to obtain the 

optimum porosity to provide the potential architectural environments without compromising the other 

important mechanical property. It was found that the open pores inside the scaffolds are very important 

not only to access the bulk microenvirment and tissue ingrowth but also to provide essential nutrients 

and oxygen inside the bulk. But the big pores are not worthy enough to transfer of the small active 

molecules inside the bulk. And for that purpose much smaller interconnected pores should be introduced 

which will not only intact the strength of the materials but also provide suitable microstructural 

morphology. Thus the idea of double porous membrane scaffolds came, which can readily solve the 

aforementioned limitations. We found a nice way to produce the double porous morphology by 

modifying the liquid induced phase inversion by using track-etched commercial membranes. The 

combination of polycaprolactone and chitosan was chosen as synthetic/natural polymer due to their 

reputed biocompatibility, biodegradation and ease of tenability. However, the fabrication technique 

required high polymer/solvent ratio and for that one pot polymer solution in a common solvent was 

inevitable. But these two polymers are chemically quite different that finding a common solvent and 

make a polymer solution with optimum viscosity was our preliminary challenge. Thusly for the first 

time we dissolved two chemically distinct polymer in a common solvent (formic acid/acetic acid 
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mixture) and successfully produce the flat sheet double porous morphology. The low chemical 

interaction between the two polymers was responsible to initiate little phase segregation in high CHT% 

but act also as a plus point to vary the big pore size and overall pore morphology which was evident 

from the phase inversion diagram. The distinguished architectural properties somewhat overwhelm the 

scaffolds chemical properties which has a direct impact on the HMSCs viability as well as mechanical 

and enzymatic biodegradation properties observe in chapter 3. These membrane scaffolds serve to 

mimic the actual in vivo microenvironment where cells interact and behave according to the architectural 

cues obtained from the surrounding 3D environment. Hence, the material properties of the scaffolds are 

vital in determining cellular response and fate. 3D scaffolds are generally highly porous with 

interconnected pore networks to facilitate nutrient and oxygen diffusion and waste removal. We 

understand that to obtain a high cellular viability the initial cell-matrix attachment is very important 

which can be attribute by the continuous space between the pore or the pore spacing. But that also 

depend on the particular cell type. For example in chapter 3, we found by increasing CHT wt% the pore 

spacing or the continuous space upon the membrane surface was not favorable for good initial 

attachment. Whearas in case of chapter 4, the opposite phenomena was observed with the HUVECs. 

But by increasing CHT wt% both the cell types have shown the similar change in cell structure and 

morphology which can be manifested by the material chemical property. And the most importantly in 

chapter 3, HMSCs invasion was also observed which was highly depend upon the big pore size on the 

scaffolds resulting the difference in cell shape and morphology between the cell inside the bulk and 

upon the surface. The cellular experiments on the membranes were quite promising which indicate this 

kind of scaffolds will be highly biocompatible for selective co culture and could be useful for different 

cell culture experiments by changing the phenotype or by providing growth factors to other cell types. 

Finally, in chapter 4, the potential of the membrane scaffolds were tested as a real time vascular patch 

for biomedical application. HUVECs were seeded on the membranes and their hydraulic resistance were 

determined in microfluidic organ-on-chip system. These organ-on-chip models, which contain 

micrometer-sized, fluid-filled channels in which human cells can be cultured, provide opportunities for 

engineering a controlled culture environment that resembles the microenvironment of a certain organ 

by tuning mechanical, biochemical and geometrical aspects. The hydraulic resistance was determined 
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by measuring the flux of the EGM 2 media in real time transmural pressure through the membrane 

seeded with the cell. By increasing CHT wt% the cellular resistance was increasing due to combination 

of better morphological-chemical property and also by blocking the big pores. The confocal images was 

also coherent with flux experiments where higher cell adhesion and cell surface spreading was observed 

upon the surface with increasing CHT wt%. Results suggests that the membrane scaffold were highly 

potential to be useful as a in vivo endothelial vessel repairment. As stated earlier, the efficiency of the 

other cell type like HUVECs could be enhanced by providing growth factors, produced from MSCs 

where the MSCs could be transduced by genetic engineering. That will be a perfect mimicking of the 

human physiological condition by indicating that these kind of membrane scaffolds will be highly useful 

in biomedical industries for advance applications.  

5.2 Perspectives 

 On a material point of view, the research work done during this thesis allows to develop and 

characterize a new material that can be useful for tissue engineering. However, the development have 

been done for a planar surface. It could be interesting to consider also the development of such double 

porosities membrane in hollow fiber configuration. The hollow fiber configuration is of great interest 

for the development of bioreactor for cell culture usually made with non-biodegradable membrane 

[229,230] but can also be interesting with biodegradable membrane to mimic the shape of vessels. In 

these perspectives, it could be useful to study how the modified phase inversion techniques used in this 

work could be adapted for the production of hollow fibers. Others methods of micropatterning could 

also be studied i) by using template mask obtained by photolithography [231], ii)   by microemulsion 

polymerization [232], iii) by hydrogel formation with Bijels technique [233], iv) by micro-patterning 

like membrane 3D printing (3D localized additive deposit of polymer solution precipitated with a 

temperature induced phase separation TIPS) 

On a biological point of view, new strategies to favour the cell adhesion can be investigated and 

different application field could be considered. The studies in the thesis proves the biocompatibility of 

the materials and its ability to host the cells in the macroporosities. In comparison to electrospun 

materials made of an assembly of fibers, the membrane materials consist of macrovoids that can host 
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the cells but also of a “spongeous” nanostructure that can act as a reservoir of molecules to deliver 

multiple molecules. This last property can represent an interest for some tissue engineering application. 

To investigate this potential benefit, experiments could be performed in the presence of indigenous 

production of growth factors inside the membrane. For example for the repair of lymphatic wall after 

lymphatic injuries including chylothorax and lymphedema, bone marrow-derived MSC can be 

transduced with lentivector to produce lymphangiogenic growth factors: VEGF-C and –D. A strategy 

could be to pre-load the membrane with MSC expressing lymphangiogenic growth factors to accumulate 

VEGF-C and/or VEGF-D in the mesopores of the membrane. In a second culture, the adhesion and the 

growth of the lymphatic endothelial cell (LEC) could be done. This kind of co-culture could allow to 

produce continuously the growth factor molecules and could be an interesting strategy for “short life” 

endothelial cells.  

The biological properties could then benefit from the specific transport properties of the materials. 

For example, biomolecular sensing that relies on transport properties like has been defined as the new 

paradigm to consider for scaffolds [20]. It open up interesting perspectives of studies between chemical 

engineering, materials science and biology. The use of microfluidic devices or organ in chip devices 

could help to study the interplay between hydrodynamic and mass transport through cells assemblies. 

Such devices can give the possibility to study the dynamic of the cells adhesion and growth and the 

impact of the external operating conditions (flow and concentration). In the microfluidic devices 

developed in the chapter 4, it could be interesting to study the transport of small active molecules or 

migration of cell through the membrane and the accumulation at the surface. These microfluidic devices 

could also be useful to have an idea of the flow rate on the adhesion-detachment kinetics of cells on the 

surface. It could then help to see if there is an interest in having macrovoid that can host the cells and 

protect the cells from the shear rate.   

In general, increasing evidence suggests that membranes as biomaterials regenerative medicine purposes 

are yielding an ever-growing list of products and successful clinical approaches to maintain, enhance or 

restore tissues and organs. These “raw materials” continue to demonstrate great potential and will have 

an increasingly remarkable impact on synthetic biology, tissue engineering and clinical regenerative 
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therapies in the future. In addition, synthesized membranes by combining synthetic/natural polymers 

are directing our nascent understanding of the cellular milieu and  how the basic building blocks (e.g., 

biomacromolecules) of human systems are correctly integrated into the dynamic landscape that 

represents tissue physiology. Unfortunately, the science of human ECM biology remains in its infancy, 

with all current and emerging macromolecular assemblies or ECM mimics having serious limitations. 

As we advance the science of cell–ECM interactions, we will become more precise in our ability to 

dictate regenerative processes based on tissue ECM materials or information coded within the material, 

which provides signposts for advanced biomaterial design. Elucidating the molecular pathways through 

which cells discriminate signals from their ECM will reveal important signposts in designing new 

biomimetic polymers tuned for a more defined cellular response, allowing for more controlled and 

efficient tissue regeneration if progress continues. Additionally, materials science strategies are bridging 

the gaps in various but interrelated scientific fields, and these strategies have become a comprehensive 

suite of essential tools in the fields of tissue engineering and regenerative medicine. Although several 

pivotal questions still need to be addressed, and particularly those concerning cell recruitment and 

functional integration of recruited cells. Meeting the challenge of unravelling these complex 

mechanisms will be rewarded with therapeutic potential across the field of tissue engineering. A constant 

influx of new knowledge from biological systems and new structural, chemical, and physical insights 

into human-derived biomaterials, complemented by recent advances in synthetic technology and 

biological science, will yield new and more sophisticated biomaterial designs and inspiration in the 

future. The effect of the field will continue to grow and evolve with the collaborative development of 

tissue-engineered products that offer simple solutions to complex problems.
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