C. Abate, R. Blanco, D. Garg, C. Hri?cu, M. Patrignani et al., Journey beyond full abstraction: Exploring robust property preservation for secure compilation, CSF, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02398915

J. Adámek, S. Milius, N. Bowler, and P. B. Levy, Coproducts of monads on set

A. Aguirre, G. Barthe, M. Gaboardi, D. Garg, and P. Strub, A relational logic for higher-order programs, vol.6, p.111, 2017.

D. Ahman and T. Uustalu, Update monads: Cointerpreting directed containers, 19th International Conference on Types for Proofs and Programs, TYPES 2013, vol.17, p.24, 2013.

D. Ahman, C. Hri?cu, K. Maillard, G. Martínez, G. Plotkin et al., Dijkstra monads for free, vol.63, p.89, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01424794

D. Ahman, C. Fournet, C. Hri?cu, K. Maillard, A. Rastogi et al., Recalling a witness: Foundations and applications of monotonic state. PACMPL, 2(POPL):65:1-65:30, vol.79, p.89, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01672733

A. Ahmed, D. Dreyer, and A. Rossberg, State-dependent representation independence, p.113, 2009.

T. Altenkirch and A. Kaposi, Type theory in type theory using quotient inductive types, Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, p.15, 2016.

T. Altenkirch, J. Chapman, and T. Uustalu, Monads need not be endofunctors, LMCS, vol.11, issue.1, p.96, 1929.

T. Altenkirch, N. A. Danielsson, and N. Kraus, Partiality, revisited -the partiality monad as a quotient inductive-inductive type. FOSSACS, 2017.

R. M. Amadio and P. Curien, of Cambridge tracts in theoretical computer science, vol.46, p.12, 1998.

J. Andrianopoulos, Remarks on units of skew monoidal categories, Applied Categorical Structures, vol.25, issue.5, p.50, 2017.

T. Antonopoulos, P. Gazzillo, M. Hicks, E. Koskinen, T. Terauchi et al., Decomposition instead of self-composition for proving the absence of timing channels, vol.5, p.112, 2017.

R. Atkey, Syntax for free: Representing syntax with binding using parametricity, Typed Lambda Calculi and Applications, 9th International Conference, p.65, 2009.

R. Atkey, S. Lindley, and J. Yallop, Unembedding domain-speci c languages, Proceedings of the 2nd ACM SIGPLAN Symposium on Haskell, p.64, 2009.

P. Audebaud and C. Paulin-mohring, Proofs of randomized algorithms in coq, Mathematics of Program Construction, 1920.
URL : https://hal.archives-ouvertes.fr/inria-00431771

A. Banerjee, D. A. Naumann, and M. Nikouei, Relational logic with framing and hypotheses. FSTTCS. 2016. 5, vol.6, p.111

G. Barthe, B. Grégoire, and S. Zanella-béguelin, Formal certi cation of code-based cryptographic proofs, POPL, vol.5, p.111, 2009.

G. Barthe, P. R. D'argenio, and T. Rezk, Secure information ow by self-composition, MSCS, vol.21, issue.6, p.112, 2011.

G. Barthe, F. Dupressoir, B. Grégoire, C. Kunz, B. Schmidt et al., EasyCrypt: A tutorial, Foundations of Security Analysis and Design VII -FOSAD 2012/2013 Tutorial Lectures, vol.5, p.111, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01114366

G. Barthe, B. Köpf, F. Olmedo, and S. Zanella-béguelin, Probabilistic relational reasoning for di erential privacy, TOPLAS, vol.35, issue.3, p.111, 2013.

G. Barthe, C. Fournet, B. Grégoire, P. Strub, N. Swamy et al., Probabilistic relational veri cation for cryptographic implementations, POPL, vol.5, p.111, 2014.

G. Barthe, M. Gaboardi, E. J. Arias, J. Hsu, A. Roth et al., Higher-order approximate relational re nement types for mechanism design and di erential privacy, vol.5, p.112, 2015.

G. Barthe, J. M. Crespo, and C. Kunz, Product programs and relational program logics, JLAMP, vol.85, issue.5, p.112, 1997.

G. Barthe, B. Grégoire, J. Hsu, and P. Strub, Coupling proofs are probabilistic product programs, p.111, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01649028

G. Barthe, R. Eilers, P. Georgiou, B. Gleiss, L. Kovács et al., Verifying relational properties using trace logic. Draft, 2019.

D. A. Basin, A. Lochbihler, and S. R. Se, CryptHOL: Game-based proofs in higher-order logic, IACR Cryptology ePrint Archive, p.111, 2017.

J. Beck, Distributive laws, Seminar on Triples and Categorical Homology Theory, p.15, 1969.

J. Bénabou, Introduction to bicategories, Reports of the Midwest Category Seminar, vol.29, p.49, 1967.

J. Benabou, Distributors at work, p.36, 2000.

N. Benton, Simple relational correctness proofs for static analyses and program transformations, POPL, vol.5, p.111, 2004.

N. Benton, J. Hughes, and E. Moggi, Monads and e ects, APPSEM, vol.12, p.25, 2000.

N. Benton, A. Kennedy, L. Beringer, and M. Hofmann, Relational semantics for e ect-based program transformations: higher-order store

N. Benton, M. Hofmann, and V. Nigam, Proof-relevant logical relations for name generation

N. Benton, M. Hofmann, and V. Nigam, Abstract e ects and proof-relevant logical relations

N. Benton, A. Kennedy, M. Hofmann, and V. Nigam, Counting successes: E ects and transformations for non-deterministic programs, A List of Successes That Can Change the World -Essays Dedicated to Philip Wadler on the Occasion of His 60th Birthday, p.113, 2016.

C. Berger, P. Melliès, and M. Weber, New introduction; Section 1 shortened and redispatched with Section 2; Subsections on symmetric operads (3.14) and symmetric simplicial sets, Journal of Pure and Applied Algebra, vol.216, issue.8-9, p.113, 2012.

J. Bernardy and M. Lasson, Realizability and parametricity in pure type systems, FOSSACS, p.112, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00589893

J. Bernardy and G. Moulin, Type-theory in color, ACM SIGPLAN International Conference on Functional Programming, ICFP'13, 2013.

J. Bernardy, T. Coquand, and G. Moulin, A presheaf model of parametric type theory, Electr. Notes Theor. Comput. Sci, vol.319, p.65, 2015.

K. Bhargavan, B. Bond, A. Delignat-lavaud, C. Fournet, C. Hawblitzel et al., Everest: Towards a veri ed, drop-in replacement of HTTPS. SNAPL, 2017.

B. Blanchet, M. Abadi, and C. Fournet, Automated veri cation of selected equivalences for security protocols, J. Log. Algebr. Program, vol.75, issue.1, p.113, 2008.

A. Blass, Words, free algebras, and coequalizers, Fundamenta Mathematicae, vol.117, issue.2, p.15, 1983.

S. Boulier, P. Pédrot, and N. Tabareau, The next 700 syntactical models of type theory, CPP, vol.25, p.102, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01445835

J. Bourke and S. Lack, Free skew monoidal categories, Journal of Pure and Applied Algebra, vol.222, issue.10, p.50, 2018.

J. Bourke and S. Lack, Skew monoidal categories and skew multicategories, Journal of Algebra, vol.506, p.50, 2018.

N. Bowler, S. Goncharov, P. B. Levy, and L. Schröder, Exploring the boundaries of monad tensorability on set, Logical Methods in Computer Science, vol.9, issue.3, p.98, 2013.

M. Carbin, D. Kim, S. Misailovic, and M. C. Rinard, Proving acceptability properties of relaxed nondeterministic approximate programs, PLDI . 2012, vol.5, p.111

C. Casinghino, V. Sjöberg, and S. Weirich, Combining proofs and programs in a dependently typed language, The 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL '14, p.27, 2014.

E. Cavallo and R. Harper, Parametric cubical type theory, ICFP, p.112, 2019.

R. Chadha, V. Cheval, ?. Ciobâc?, and S. Kremer, Automated veri cation of equivalence properties of cryptographic protocols, ACM Trans. Comput. Log, vol.17, issue.4, p.113, 2016.

A. Chlipala, Parametric higher-order abstract syntax for mechanized semantics, ICFP, vol.64, p.65, 2008.

E. Çiçek, G. Barthe, M. Gaboardi, D. Garg, and J. Ho-mann, , vol.5, p.112, 2017.

M. R. Clarkson and F. B. Schneider, Hyperproperties. J. Comput. Secur, vol.18, issue.6, p.112, 2010.

D. ?tefan-ciobâc?, V. Lucanu, G. Rusu, and . Rosu, A language-independent proof system for full program equivalence, Formal Asp. Comput, vol.28, issue.3, p.113, 2016.

P. Curien, R. Garner, and M. Hofmann, Revisiting the categorical interpretation of dependent type theory, Theor. Comput. Sci, vol.546, p.30, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01114033

U. Lago, F. Gavazzo, and P. B. Levy, E ectful applicative bisimilarity: Monads, relators, and Howe's method. LICS, p.113, 2017.

G. A. Delbianco and A. Nanevski, Hoare-style reasoning with (algebraic) continuations. ICFP, vol.3, p.13, 2013.

I. , D. Liberti, and F. Loregian, On the unicity of formal category theories, p.50, 2019.

E. W. Dijkstra, Guarded commands, nondeterminacy and formal derivation of programs, CACM, vol.18, issue.8, p.4, 1975.

D. Dreyer, G. Neis, A. Rossberg, and L. Birkedal, A relational modal logic for higher-order stateful ADTs

D. Dreyer, A. Ahmed, and L. Birkedal, Logical step-indexed logical relations, Logical Methods in Computer Science, vol.7, issue.2, p.113, 2011.

D. Dreyer, G. Neis, and L. Birkedal, The impact of higher-order state and control e ects on local relational reasoning, J. Funct. Program, vol.22, p.113, 2012.

J. Egger, R. E. Møgelberg, and A. Simpson, The enriched e ect calculus: syntax and semantics, LogCom, vol.24, issue.3, p.60, 2014.

M. Eilers, P. Müller, and S. Hitz, Modular product programs, Held as Part of the European Joint Conferences on Theory and Practice of Software, p.112, 2018.

A. Farzan and A. Vandikas, Automated hypersafety veri cation, Computer Aided Veri cation -31st International Conference, CAV 2019, p.112, 2019.

M. Fiore, N. Gambino, M. Hyland, and G. Winskel, Relative pseudomonads, kleisli bicategories, and substitution monoidal structures, Selecta Mathematica, vol.24, issue.3, p.50, 2018.

R. W. Floyd, Nondeterministic algorithms, J. ACM, vol.14, issue.4, pp.636-644, 1967.

C. Führmann, Varieties of e ects. FOSSACS, p.98, 2002.

S. Fujii, S. Katsumata, and P. Melliès, Towards a formal theory of graded monads, Foundations of Software Science and Computation Structures -19th International Conference, FOSSACS 2016, Held as Part of the European Joint Conferences on Theory and Practice of Software, vol.86, p.87, 2009.

M. Gaboardi, A. Haeberlen, J. Hsu, A. Narayan, and B. C. Pierce, Linear dependent types for di erential privacy

F. Gavazzo, Quantitative behavioural reasoning for higher-order e ectful programs: Applicative distances. LICS, vol.5, p.113, 2018.

T. Girka, D. Mentré, and Y. Régis-gianas, A mechanically checked generation of correlating programs directed by structured syntactic di erences, Automated Technology for Veri cation and Analysis -13th International Symposium, 2015.

T. Girka, D. Mentré, and Y. Régis-gianas, Veri able semantic di erence languages, Proceedings of the 19th International Symposium on Principles and Practice of Declarative Programming, 2017.

M. Giry, A categorical approach to probability theory. Categorical Aspects of Topology and Analysis, p.15, 1982.

B. Godlin and O. Strichman, Inference rules for proving the equivalence of recursive procedures, vol.5, p.113, 2010.

N. Grimm, K. Maillard, C. Fournet, C. Hri?cu, M. Ma-ei et al., A monadic framework for relational veri cation: Applied to information security, program equivalence, and optimizations, CPP, vol.7, p.26, 2018.

I. Hasuo, Generic weakest precondition semantics from monads enriched with order, Theor. Comput. Sci, vol.604, p.25, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01408750

S. He, S. K. Lahiri, and Z. Rakamaric, Verifying relative safety, accuracy, and termination for program approximations, J. Autom. Reasoning, vol.60, issue.1, p.112, 2018.

C. Hermida, U. S. Reddy, and E. P. Robinson, Logical relations and parametricity -A reynolds programme for category theory and programming languages, Electr. Notes Theor. Comput. Sci, vol.303, p.58, 2014.

C. A. Hoare, An axiomatic basis for computer programming, Commun. ACM, vol.12, issue.10, pp.576-580, 1969.

C. Hur, D. Dreyer, G. Neis, and V. Vafeiadis, The marriage of bisimulations and kripke logical relations, POPL, vol.5, p.113, 2012.

C. Hur, G. Neis, D. Dreyer, and V. Vafeiadis, A logical step forward in parametric bisimulations, vol.5, p.113, 2014.

M. Hyland, G. D. Plotkin, and J. Power, Combining e ects: Sum and tensor, Theor. Comput. Sci, vol.357, issue.1-3, p.25, 2006.

M. Hyland, P. B. Levy, G. D. Plotkin, and J. Power, Combining algebraic e ects with continuations, Theor. Comput. Sci, vol.375, issue.1-3, p.25, 2007.

G. Jaber, N. Tabareau, and M. Sozeau, Extending type theory with forcing, Proceedings of the 27th Annual IEEE Symposium on Logic in Computer Science, LICS 2012, p.25, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00685150

G. Jaber, G. Lewertowski, P. Pédrot, M. Sozeau, and N. Tabareau, The de nitional side of the forcing, Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science, LICS '16, p.25, 2016.

B. Jacobs, Dijkstra monads in monadic computation, CMCS, vol.4, p.25, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01408757

B. Jacobs, Dijkstra and Hoare monads in monadic computation, Theor. Comput. Sci, vol.604, p.25, 2015.

B. Jacobs, A recipe for state-and-e ect triangles, Logical Methods in Computer Science, vol.13, issue.2

M. Jaskelio and E. Moggi, Monad transformers as monoid transformers, Theor. Comput. Sci, vol.411, p.73, 2010.

A. Joyal and R. Street, The geometry of tensor calculus, i, Advances in Mathematics, vol.88, issue.1, p.31, 1991.

R. Jung, R. Krebbers, J. Jourdan, A. Bizjak, L. Birkedal et al., Iris from the ground up: A modular foundation for higher-order concurrent separation logic, J. Funct. Program, vol.28, issue.20, p.79, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01945446

B. L. Kaminski, J. Katoen, C. Matheja, and F. Olmedo, Weakest precondition reasoning for expected run-times of probabilistic programs, Programming Languages and Systems -25th

, Held as Part of the European Joint Conferences on Theory and Practice of Software, 1920.

O. Kammar, P. B. Levy, S. K. Moss, and S. Staton, A monad for full ground reference cells, p.32

, Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, 1925.

A. Kaposi and A. Kovács, Signatures and induction principles for higher inductive-inductive types, p.89, 2019.

A. Kaposi, A. Kovács, and T. Altenkirch, Constructing quotient inductive-inductive types, PACMPL, vol.3, p.72, 2019.

C. Kapulkin and P. L. Lumsdaine, Homotopical inverse diagrams in categories with attributes, p.103, 2018.

S. Katsumata, A semantic formulation of tt-lifting and logical predicates for computational metalanguage, Computer Science Logic, 19th International Workshop, CSL 2005, 14th Annual Conference of the EACSL, vol.87, 2005.

S. Katsumata, Relating computational e ects by -lifting, Inf. Comput, vol.222, p.89, 2013.

S. Katsumata, Parametric e ect monads and semantics of e ect systems, POPL, vol.86, p.89, 2014.

S. Katsumata and T. Sato, Preorders on monads and coalgebraic simulations. FOSSACS, p.42, 2013.

S. Katsumata, T. Sato, and T. Uustalu, Codensity lifting of monads and its dual, Logical Methods in Computer Science, vol.14, issue.4, p.89, 2018.

G. Kelly, Lecture note series / London mathematical society, vol.33, p.36, 1982.

G. M. Kelly and R. Street, Review of the elements of 2-categories, vol.29, p.49, 1974.

O. Kiselyov, A. Sabry, and C. Swords, Extensible e ects: an alternative to monad transformers, Proceedings of the 2013 ACM SIGPLAN Symposium on Haskell, 2013.

V. Koutavas and M. Wand, Small bisimulations for reasoning about higher-order imperative programs, p.113, 2006.

S. Kundu, Z. Tatlock, and S. Lerner, Proving optimizations correct using parameterized program equivalence, PLDI, vol.5, p.113, 2009.

S. Lack, A 2-categories companion. Institute for Mathematics and its Applications, p.29, 2009.

S. Lack and R. Street, Special Volume celebrating the 70th birthday of Professor Max Kelly, Journal of Pure and Applied Algebra, vol.175, issue.1, p.49, 2002.

S. Lack and R. Street, Skew-monoidal re ection and lifting theorems. Theory and Applications of Categories, vol.30, p.50, 2015.

S. K. Lahiri, C. Hawblitzel, M. Kawaguchi, and H. Rebêlo, SYMDIFF: A language-agnostic semantic di tool for imperative programs, CAV, vol.5, p.112, 2012.

K. R. Leino, E cient weakest preconditions, Inf. Process. Lett, vol.93, issue.6, p.18, 2005.

T. Letan, Y. Régis-gianas, P. Chi, and G. Hiet, Modular veri cation of programs with e ects and e ect handlers in coq. FM, p.26, 2018.

P. B. Levy, Call-By-Push-Value: A Functional/Imperative Synthesis, volume 2 of Semantics Structures in Computation, p.25, 2004.

S. Liang, P. Hudak, and M. P. Jones, Monad transformers and modular interpreters, vol.51, p.72, 1995.

S. Lindley and I. Stark, Reducibility and -lifting for computation types

A. Lochbihler, E ect polymorphism in higher-order logic (proof pearl). JAR, vol.26, p.112, 2018.

D. Lucanu and V. Rusu, Program equivalence by circular reasoning, Formal Asp. Comput, vol.27, issue.4, p.113, 2015.
URL : https://hal.archives-ouvertes.fr/hal-00820871

C. Lüth and N. Ghani, Composing monads using coproducts, vol.52, p.108, 2002.

K. Maillard and P. Melliès, A brational account of local states, 30th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2015, vol.25, p.68, 2015.

K. Maillard, D. Ahman, R. Atkey, G. Martínez, C. Hri?cu et al., Dijkstra monads for all, ICFP, issue.7, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02398919

K. Maillard, C. Hri?cu, E. Rivas, and A. V. Muylder, The next 700 relational program logics, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02398927

G. Malecha, G. Morrisett, and R. Wisnesky, Trace-based veri cation of imperative programs with I/O, J. Symb. Comput, vol.46, issue.2, p.24, 2011.

C. Matache and S. Staton, A sound and complete logic for algebraic e ects, FoSSaCS, p.26, 2019.

C. Mcbride, Turing-completeness totally free, vol.13, p.81, 2015.

P. Melliès, Held as Part of the Vienna Summer of Logic, Rewriting and Typed Lambda Calculi -Joint International Conference, p.25, 2014.

J. C. Mitchell, Representation independence and data abstraction

E. Moggi, Computational lambda-calculus and monads, LICS, vol.25, p.26, 1989.

E. Moggi, A semantics for evaluation logic, Fundam. Inform, vol.22, issue.1/2, p.26, 1995.

C. Morgan, Programming from Speci cations, 1926.

G. Munch-maccagnoni, Syntax and Models of a non-Associative Composition of Programs and Proofs. (Syntaxe et modèles d'une composition non-associative des programmes et des preuves), p.60, 2013.
URL : https://hal.archives-ouvertes.fr/tel-00918642

D. Myers and J. , String diagrams for double catgeories and equipments, p.37, 2016.

A. Nanevski, G. Morrisett, A. Shinnar, P. Govereau, and L. Birkedal, Ynot: dependent types for imperative programs, ICFP, vol.2, p.3, 2008.

A. Nanevski, J. G. Morrisett, and L. Birkedal, Hoare type theory, polymorphism and separation, JFP, vol.18, issue.5-6, pp.865-911, 2008.

A. Nanevski, A. Banerjee, and D. Garg, Dependent type theory for veri cation of information ow and access control policies, TOPLAS, vol.35, issue.2, p.111, 2005.

D. A. Naumann, From coupling relations to mated invariants for checking information ow, p.112, 2006.

A. Nuyts and D. Devriese, Degrees of relatedness: A uni ed framework for parametricity, irrelevance, ad hoc polymorphism, intersections, unions and algebra in dependent type theory, Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS, p.112, 2018.

S. S. Owicki and D. Gries, Verifying properties of parallel programs: An axiomatic approach, CACM, vol.19, issue.5, pp.279-285, 1976.

P. Pédrot and N. Tabareau, Failure is not an option -an exceptional type theory, ESOP, p.27, 2018.

A. Petcher and G. Morrisett, The foundational cryptography framework, vol.6, p.111

F. Pfenning and C. Elliott, Higher-order abstract syntax, Proceedings of the ACM SIGPLAN'88

, Conference on Programming Language Design and Implementation (PLDI), p.64, 1988.

M. Piróg, T. Schrijvers, N. Wu, and M. Jaskelio, Syntax and semantics for operations with scopes, Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2018, p.12, 2018.

A. M. Pitts, Evaluation logic, IV Higher Order Workshop, vol.23, p.26, 1990.

G. D. Plotkin and J. Power, Notions of computation determine monads. FOSSACS, vol.12, p.25, 2002.

G. D. Plotkin and M. Pretnar, A logic for algebraic e ects, LICS, 1926.

G. D. Plotkin and M. Pretnar, , p.12, 2009.

A. Power, A general coherence result, Journal of Pure and Applied Algebra, vol.57, issue.2, p.30, 1989.

J. Power, Semantics for local computational e ects, Electr. Notes Theor. Comput. Sci, vol.158, p.25, 2006.

J. Protzenko, J. Zinzindohoué, A. Rastogi, T. Ramananandro, P. Wang et al., , p.79, 2017.

W. Qu, M. Gaboardi, and D. Garg, Relational cost analysis for functional-imperative programs, ICFP, vol.6, issue.5, p.112, 2019.

I. Radicek, G. Barthe, M. Gaboardi, D. Garg, and F. Zuleger, Monadic re nements for relational cost analysis, PACMPL, vol.2, issue.5, p.111, 2018.

C. Rauch, S. Goncharov, and L. Schröder, Generic Hoare logic for order-enriched e ects with exceptions, WADT, vol.26, p.42, 2016.

A. Sabelfeld and A. C. Myers, Language-based information-ow security, IEEE Journal on Selected Areas in Communications, vol.21, issue.1, p.112, 2003.

D. Sangiorgi, N. Kobayashi, and E. Sumii, Environmental bisimulations for higher-order languages, ACM Trans. Program. Lang. Syst, vol.33, issue.1, p.113, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01337665

T. Sato, A. Aguirre, G. Barthe, M. Gaboardi, D. Garg et al., Formal veri cation of higherorder probabilistic programs: reasoning about approximation, convergence, bayesian inference, and optimization, vol.3, p.111, 2019.

T. Schrijvers, M. Piróg, N. Wu, and M. Jaskelio, Monad transformers and modular algebraic e ects: what binds them together, Proceedings of the 12th ACM SIGPLAN International Symposium on Haskell, p.72, 2019.

M. Shulman, Framed bicategories and monoidal brations, vol.20, p.49, 2008.

M. Shulman, Univalence for inverse diagrams and homotopy canonicity, Mathematical Structures in Computer Science, vol.25, p.103, 2014.

A. Simpson and N. F. Voorneveld, Behavioural equivalence via modalities for algebraic e ects, ESOP, p.26, 2018.

M. Sousa and I. Dillig, Cartesian Hoare logic for verifying k-safety properties, PLDI, vol.111, p.112, 2006.

M. Sozeau and C. Mangin, Equations reloaded: High-level dependently-typed functional programming and proving in coq, Proc. ACM Program. Lang, vol.3, p.64, 2019.

S. Staton, Completeness for algebraic theories of local state, Foundations of Software Science and Computational Structures, 13th International Conference, FOSSACS 2010, Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2010, p.25, 2010.

S. Staton, Algebraic e ects, linearity, and quantum programming languages, Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, p.25, 2015.

R. Street, The formal theory of monads, Journal of Pure and Applied Algebra, vol.2, p.49, 1972.

R. Street and R. Walters, Yoneda structures on 2-categories, Journal of Algebra, vol.50, issue.2, p.50, 1978.

E. Sumii, A complete characterization of observational equivalence in polymorphic lambdacalculus with general references. CSL, p.113, 2009.

N. Swamy, J. Weinberger, C. Schlesinger, J. Chen, and B. Livshits, Verifying higher-order programs with the Dijkstra monad, vol.17, p.89, 2004.

N. Swamy, C. Hri?cu, C. Keller, A. Rastogi, A. Delignat-lavaud et al., Dependent types and multi-monadic e ects in F*. POPL, vol.75, p.89, 2016.

W. Swierstra and T. Baanen, A predicate transformer semantics for e ects, p.26, 2019.

K. Szlachányi, Skew-monoidal categories and bialgebroids, Advances in Mathematics, vol.231, issue.3, p.50, 2012.

T. Terauchi and A. Aiken, Secure information ow as a safety problem, SAS, p.112, 2005.

A. Timany and L. Birkedal, Mechanized relational veri cation of concurrent programs with continuations, ICFP, vol.5, p.113, 2019.

A. Timany and B. Jacobs, Category theory in Coq 8.5. FSCD, p.64, 2016.

A. Timany, L. Stefanesco, M. Krogh-jespersen, and L. Birkedal, A logical relation for monadic encapsulation of state: proving contextual equivalences in the presence of runST, PACMPL, vol.2, issue.5, 2018.

S. Tonelli, Investigations into a model of type theory based on the concept of basic pair, supervisors Erik Palmgren and Giovanni Sambin, vol.95, p.102, 2013.

T. Univalent, Foundations Program. Homotopy Type Theory: Univalent Foundations of Mathematics, p.76, 2013.

D. Unruh, Quantum relational Hoare logic, vol.PACMPL, p.111, 2019.

T. Uustalu, N. Veltri, and N. Zeilberger, The sequent calculus of skew monoidal categories, Proceedings of the Thirty-Fourth Conference on the Mathematical Foundations of Programming Semantics, vol.341, p.50, 2018.

N. Voorneveld, Quantitative logics for equivalence of e ectful programs

P. Wadler, Comprehending monads, Proceedings of the 1990 ACM Conference on LISP and Functional Programming, 1925.

Y. Wang, I. Dillig, S. K. Lahiri, and W. R. Cook, Verifying equivalence of database-driven applications, vol.2, p.113, 2018.

D. Winograd-cort, A. Haeberlen, A. Roth, and B. C. Pierce, A framework for adaptive di erential privacy, PACMPL, vol.1, p.112, 2017.

R. J. Wood, Abstract pro arrows i. Cahiers de Topologie et Géométrie Di érentielle Catégoriques, vol.23, p.50, 1982.

R. J. Wood, Proarrows ii. Cahiers de Topologie et Géométrie Di érentielle Catégoriques, vol.26, p.50, 1985.

H. Yang, Relational separation logic, Theor. Comput. Sci, vol.375, issue.1-3, p.111, 2007.

H. Yasuoka and T. Terauchi, Quantitative information ow as safety and liveness hyperproperties, Theor. Comput. Sci, vol.538, p.112, 2014.

A. Zaks and A. Pnueli, CoVaC: Compiler validation by program analysis of the cross-product. FM, p.112, 2008.

N. Zeilberger, The Logical Basis of Evaluation Order and Pattern-Matching, p.113, 2009.

D. Zhang and D. Kifer, LightDP: towards automating di erential privacy proofs, vol.5, p.112, 2017.

H. Zhang, E. Roth, A. Haeberlen, B. C. Pierce, and A. Roth, Fuzzi: A three-level logic for di erential privacy, p.112, 2019.