R. Warren, J. Price, A. Fischlin, S. La-nava-santos, and G. Midgley, Increasing impacts of climate change upon ecosystems with increasing global mean temperature rise, Clim. Change, vol.106, issue.2, pp.141-177, 2011.

B. K. Bose, Global Warming: Energy, Environmental Pollution, and the Impact of Power Electronics, IEEE Ind. Electron. Mag, vol.4, issue.1, pp.6-17, 2010.

W. P. Van-swaaij and S. R. , Biomass power for the world: transformations to effective use, 2015.

J. Bridgwater, The dynamics of granular materials -towards grasping the fundamentals, Granul. Matter, vol.4, issue.4, pp.175-181, 2003.

S. Koynov, B. Glasser, and F. Muzzio, Comparison of three rotational shear cell testers: Powder flowability and bulk density, Powder Technol, vol.283, pp.103-112, 2015.

P. Mckendry, Energy production from biomass (part 1): overview of biomass, Bioresour. Technol, issue.83, pp.37-46, 2002.

W. Chen, J. Peng, and X. T. Bi, A state-of-the-art review of biomass torrefaction, densification and applications, Renew. Sustain. Energy Rev, vol.44, pp.847-866, 2015.

J. J. Harrington, R. Booker, and R. J. Astley, Modelling the elastic properties of softwood. Part I: The cell-wall lamellae, Holz Als Roh-Werkst, issue.56, pp.37-41, 1998.

E. Sjöström, Wood chemistry: Fundamentals and Applications, 1993.

G. Henriksson, J. Li, L. Zhang, and M. E. Lindström, Thermochemical Conversion of Biomass to Liquid Fuels and Chemicals, vol.9, 2010.

P. F. Harmsen, W. J. Huijgen, L. M. Bermúdez-lópez, and R. R. Bakker, Literature Review of Physical and Chemical Pretreatment Processes for Lignocellulosic Biomass, Energy Research Centre of the Netherlands, 2010.

B. Andreotti, Y. Forterre, and O. Pouliquen, Les Milieux Granulaires Entre Fluide Et Solide. EDP Sciences, 2011.

P. Evesque, Eléments de mécanique quasi-statique des milieux granulaires mouillés ou secs, ResearchGate, 2000.

R. Condotta, Coulabilité des poudres cohésives : mesures aux faibles contraintes, granulaires humides et application à une poudre industrielle, p.2, 2005.

A. W. Alexander, B. Chaudhuri, A. Faqih, F. J. Muzzio, C. Davies et al., Avalanching flow of cohesive powders, Powder Technol, vol.164, issue.1, pp.13-21, 2006.

G. Lumay, Measuring the flowing properties of powders and grains, Powder Technol, vol.224, pp.19-27, 2012.

O. Reynolds, On the dilatancy of media composed of rigid particles in contact, Lond. Edinb. Dublin Philos. Mag. J. Sci, vol.20, issue.127, pp.469-481, 1885.

J. M. Rodriguez, T. Edeskär, and S. Knutsson, Particle shape quantities and measurement techniques-A review, Electron. J. Geotech. Eng, vol.18, pp.169-198, 2013.

K. Johanson, Effect of particle shape on unconfined yield strength, Powder Technol, vol.194, issue.3, pp.246-251, 2009.

A. G. Athanassiadis, Particle shape effects on the stress response of granular packings, Soft Matter, vol.10, issue.1, pp.48-59, 2013.

D. Hann, The influence of some parameters on the flow properties of bulk solids, Strojniski VestnikJournal Mech. Eng, vol.55, issue.5, 2009.

D. Höhner, S. Wirtz, and V. Scherer, A study on the influence of particle shape on the mechanical interactions of granular media in a hopper using the Discrete Element Method, Powder Technol, vol.278, pp.286-305, 2015.

D. Höhner, S. Wirtz, and V. Scherer, Experimental and numerical investigation on the influence of particle shape and shape approximation on hopper discharge using the discrete element method, Powder Technol, vol.235, pp.614-627, 2013.

Q. Guo, X. Chen, and H. Liu, Experimental research on shape and size distribution of biomass particle, Fuel, vol.94, pp.551-555, 2012.

D. Barletta, R. J. Berry, S. H. Larsson, T. A. Lestander, M. Poletto et al., Assessment on bulk solids best practice techniques for flow characterization and storage/handling equipment design for biomass materials of different classes, Fuel Process. Technol, vol.138, pp.540-554, 2015.

M. Stasiak, M. Molenda, M. Ba?da, and E. Gondek, Mechanical properties of sawdust and woodchips, Fuel, vol.159, pp.900-908, 2015.

J. Dai and J. R. Grace, Biomass granular screw feeding: An experimental investigation, Biomass Bioenergy, vol.35, issue.2, pp.942-955, 2011.

H. G. Merkus and G. M. Meesters, Production, Handling and Characterization of Particulate Materials, 2015.

I. Tomasetta, D. Barletta, and M. Poletto, The effect of temperature on flow properties of fine powders, Chem. Eng. Trans, vol.24, pp.655-660, 2011.

S. Paulrud, J. E. Mattsson, and C. Nilsson, Particle and handling characteristics of wood fuel powder: effects of different mills, Fuel Process. Technol, vol.76, issue.1, pp.23-39, 2002.

X. Jia and E. J. Garboczi, Advances in shape measurement in the digital world, Particuology, vol.26, pp.19-31, 2016.

, REVOLUTION Powder Analyzer | Mercury Scientific Inc, p.28, 2018.

G. Lumay, J. Fiscina, F. Ludewig, and N. Vandewalle, Influence of cohesive forces on the macroscopic properties of granular assemblies, AIP Conference Proceedings, vol.1542, pp.995-998, 2013.

S. C. Thakur, Characterization of cohesive powders for bulk handling and DEM modelling, PARTICLES 2013: Fundamentals and Applications, pp.310-321, 2013.

M. Wojtkowski, O. I. Imole, M. Ramaioli, E. C. Montes, and S. Luding, Behavior of cohesive powder in rotating drums, AIP Conference Proceedings, vol.1542, pp.983-986, 2013.

D. Geldart, E. C. Abdullah, and A. Verlinden, Characterisation of dry powders, Powder Technol, vol.190, issue.1-2, pp.70-74, 2009.

H. Y. Saw, C. E. Davies, A. H. Paterson, and J. R. Jones, Correlation between Powder Flow Properties Measured by Shear Testing and Hausner Ratio, Procedia Eng, vol.102, pp.218-225, 2015.

D. Geldart, N. Harnby, and A. C. Wong, Fluidization of cohesive powders, Powder Technol, vol.37, issue.1, pp.25-37, 1984.

G. Ovarlez, Statique et rhéologie d'un milieu granulaire confiné, vol.11, 2002.

D. Schulze, Powders and Bulk Solids: Behavior, Characterization, Storage and Flow, 2007.

A. W. Jenike, Storage and Flow of Solids, 1964.

D. Schulze and A. Wittmaier, Flow Properties of Highly Dispersed Powders at Very Small Consolidation Stresses, Chem. Eng. Technol, vol.26, issue.2, pp.133-137, 2003.

J. W. Carson and H. Wilms, Development of an international standard for shear testing, Powder Technol, vol.167, issue.1, pp.1-9, 2006.

M. D. Ashton, D. C. , .. Cheng, R. Farley, and F. H. Valentin, Some investigations into the strength and flow properties of powders, Rheol. Acta, vol.4, issue.3, pp.206-218, 1965.

M. Hirota, K. Takenaka, K. Iimura, and M. Suzuki, Proposal of an approximation equation for the yield locus to evaluate powder properties, Adv. Powder Technol, vol.18, issue.3, pp.287-302, 2007.

J. L. Amorós, G. Mallol, C. Feliu, and M. J. Orts, Study of the rheological behaviour of monomodal quartz particle beds under stress. A model for the shear yield functions of powders, Chem. Eng. Sci, vol.66, issue.18, pp.4070-4077, 2011.

J. Geoffroy and J. T. Carstensen, Modified Warren-Springs equation, Powder Technol, vol.76, issue.2, pp.135-140, 1993.

M. Peleg, M. D. Normand, and M. G. Corradini, Interactive software for calculating the principal stresses of compacted cohesive powders with the Warren-Spring equation, Powder Technol, vol.197, issue.3, pp.268-273, 2010.

F. Da-c.-françois and . Chevoir, DENSE GRANULAR FLOWS : FRICTION AND JAMMING

P. G. Rognon, J. Roux, D. Wolf, M. Naaïm, and F. Chevoir, Rheophysics of cohesive granular materials, Europhys. Lett. EPL, vol.74, issue.4, pp.644-650, 2006.

H. Matuttis and A. Schinner, Particle simulation of cohesive granular materials, Int. J. Mod. Phys. C, vol.12, issue.07, pp.1011-1021, 2001.

F. Radjai and F. Dubois, Discrete-element modeling of granular materials, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00691805

A. Castellanos, The relationship between attractive interparticle forces and bulk behaviour in dry and uncharged fine powder, Adv. Phys, vol.54, issue.4, pp.263-376, 2005.

A. Singh, V. Magnanimo, K. Saitoh, and S. Luding, Effect of cohesion on shear banding in quasistatic granular materials, Phys. Rev. E, vol.90, issue.2, p.22202, 2014.

M. Capece, R. Ho, J. Strong, and P. Gao, Prediction of powder flow performance using a multicomponent granular Bond number, Powder Technol, vol.286, pp.561-571, 2015.

P. Lamarche, Contribution à l'étude expérimentale et à la modélisation de la gazéification étagée de biomasse en lit fixe, 2011.

R. Warnecke, Gasification of biomass: comparison of fixed bed and fluidized bed gasifier, Biomass Bioenergy, vol.18, issue.6, pp.489-497, 2000.

D. Ballerini, Biocarburants (Les). Editions OPHRYS

P. Mckendry, Energy production from biomass (part 3): gasification technologies, Bioresour. Technol, vol.83, issue.1, pp.55-63, 2002.

A. Molino, V. Larocca, S. Chianese, and D. Musmarra, Biofuels Production by Biomass Gasification: A Review, Energies, vol.11, issue.4, p.811, 2018.

K. Svoboda, M. Poho?elý, M. Hartman, and J. Martinec, Pretreatment and feeding of biomass for pressurized entrained flow gasification, Fuel Process. Technol, vol.90, issue.5, pp.629-635, 2009.

P. W. Wypych and J. Yi, Minimum transport boundary for horizontal dense-phase pneumatic conveying of granular materials, Powder Technol, vol.129, issue.1-3, pp.111-121, 2003.

M. Hopkins, LOSS in weight feeder systems, Meas. Control, vol.39, issue.8, pp.237-240, 2006.

C. Wilén and A. Rautalin, Handling and feeding of biomass to pressurized reactors: Safety engineering, Bioresour. Technol, vol.46, issue.1-2, pp.77-85, 1993.

K. R. Cummer and R. C. Brown, Ancillary equipment for biomass gasification, Biomass Bioenergy, vol.23, issue.2, pp.113-128, 2002.

J. M. Craven, J. Swithenbank, V. N. Sharifi, D. Peralta-solorio, G. Kelsall et al., Development of a novel solids feed system for high pressure gasification, Fuel Process. Technol, vol.119, pp.32-40, 2014.

S. Hinterreiter, H. Hartmann, and P. Turowski, Method for determining bridging properties of biomass fuels-experimental and model approach, Biomass Convers. Biorefinery, vol.2, issue.2, pp.109-121, 2012.

F. Miccio, N. Silvestri, D. Barletta, and M. Poletto, Characterization of woody biomass flowability, Chem. Eng. Trans, vol.24, pp.643-648, 2011.

R. M. Nedderman, U. Tüzün, S. B. Savage, and G. T. Houlsby, The flow of granular materials-I: Discharge rates from hoppers, Chem. Eng. Sci, vol.37, issue.11, pp.1597-1609, 1982.

K. Saleh and P. Guigon, Mise en oeuvre des poudres -Granulation humide : bases et théorie, Tech. Ing, 2009.

B. J. Ennis, Agglomeration technology: Equipment selection, Chem. Eng, vol.117, issue.5, pp.50-54, 2010.

V. Yandapalli, Granulation of lignocellulosic powders, 2013.

C. Vanneste-ibarcq and M. González-martínez, Method for processing a biomass powder by wet granulation with a view to introducing same into a reactor, associated biomass powder, application to biomass gasification, 2018.

, CAMSIZER X2 -particle size & shape analyzer -Retsch Technology, p.4, 2018.

P. Tegzes, R. Albert, M. Paskvan, A. Barabási, T. Vicsek et al., Liquid-induced transitions in granular media, Phys. Rev. E, vol.60, issue.5, pp.5823-5826, 1999.

T. C. Halsey and A. J. Levine, How Sandcastles Fall, Phys. Rev. Lett, vol.80, issue.14, pp.3141-3144, 1998.

C. C. Sun, Quantifying effects of moisture content on flow properties of microcrystalline cellulose using a ring shear tester, Powder Technol, vol.289, pp.104-108, 2016.

A. Crouter and L. Briens, The Effect of Moisture on the Flowability of Pharmaceutical Excipients, AAPS PharmSciTech, vol.15, issue.1, pp.65-74, 2013.

M. A. Quintanilla, J. M. Valverde, A. Castellanos, and R. E. Viturro, Looking for Self-Organized Critical Behavior in Avalanches of Slightly Cohesive Powders, Phys. Rev. Lett, vol.87, issue.19, p.194301, 2001.

J. M. Valverde and A. Castellanos, Random loose packing of cohesive granular materials, EPL Europhys. Lett, vol.75, issue.6, p.985, 2006.

R. J. Ross and F. P. Service, Wood handbook : wood as an engineering material, USDA For. Serv. For. Prod. Lab. Gen. Tech. Rep. FPL-GTR, vol.190, 2010.

J. Pachón-morales, J. Colin, F. Pierre, T. Champavert, F. Puel et al., Flowability of lignocellusic biomass powders: influence of torrefaction intensity, EPJ Web Conf, vol.140, p.13017, 2017.

, Dietmar Schulze Schüttgutmesstechnik, p.22, 2018.

D. Schulze and J. Schwedes, An examination of initial stresses in hoppers, Chem. Eng. Sci, vol.49, issue.13, pp.2047-2058, 1994.

P. C. Arnold and A. G. Mclean, An analytical solution for the stress function at the wall of a converging channel, Powder Technol, vol.13, issue.2, pp.255-260, 1976.

C. Mankoc, The flow rate of granular materials through an orifice, Granul. Matter, vol.9, issue.6, pp.407-414, 2007.

I. Zuriguel, A. Garcimartín, D. Maza, L. A. Pugnaloni, and J. M. Pastor, Jamming during the discharge of granular matter from a silo, Phys. Rev. E Stat. Nonlin. Soft Matter Phys, vol.71

K. To, Effect of Hopper Angles on Jamming Probability in 2-Dimensional Hoppers, Chin. J. Phys, vol.40, issue.4, pp.379-386, 2002.

A. Van-der-drift, H. Boerrigter, B. Coda, M. K. Cieplik, and K. Hemmes, ECN Publication ECN-C--04-039, p.31, 2018.

N. Haque and M. Somerville, Techno-Economic and Environmental Evaluation of Biomass Dryer, Procedia Eng, vol.56, pp.650-655, 2013.

, Mesure des caractéristiques des combustibles bois : évaluation et proposition de méthodes d'analyse de combustible, p.29, 2018.

J. S. Tumuluru, S. Sokhansanj, J. R. Hess, C. T. Wright, and R. D. Boardman, A review on biomass torrefaction process and product properties for energy applications, Ind. Biotechnol, vol.7, issue.5, pp.384-401, 2011.

, CRC handbook of chemistry and physics: a readyreference book of chemical and physical data, vol.77, 1996.

, Certains procédés de production d'énergie nécessitent l'utilisation de poudres de biomasse, par exemple la gazéification en réacteur à flux entraîné (RFE). Cependant, les poudres de biomasse ont une mauvaise coulabilité

, L'objectif de cette thèse est d'étudier leurs propriétés d'écoulement dans le contexte de la gazéification en RFE

, des tests de cisaillement et des mesures de densité ont été effectués. D'une part, une corrélation est mise en évidence entre la cohésion (issue des tests de cisaillement), la densité et l'angle d'avalanche (tiré des mesures en tambour). Ainsi, un paramètre difficile à obtenir comme la cohésion peut l'être à partir de mesures simples. D'autre part, l'influence de l'humidité sur la coulabilité des poudres de biomasse a été évaluée. L'humidité n'a pas d'effet significatif sous 15 % (en masse, base humide), car l'eau est adsorbée dans la structure de la biomasse

, Un liant issu de déchets de biomasse est ajouté à la poudre pour former des granulés d'environ 1 mm. Leur forme sphérique diminue l'entrelacement des particules et leur faible polydispersité diminue le nombre de points de contact

, Enfin, la caractérisation à l'échelle supérieure est effectuée dans un pilote reproduisant l'injection en RFE. Les résultats montrent le rôle essentiel de la sphéricité et d'une faible polydispersité des particules. L'effet positif de la torréfaction et de la granulation sur la coulabilité est mis en évidence

. Mots-clefs,