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Résumé long de la thèse 
 

Configuration à base de connaissances : une contribution 
à la modélisation générique, à l'évaluation et à 
l'optimisation évolutionnaire 

1. Introduction 

Dans un contexte de personnalisation de masse, la configuration concourante du produit et 

de son processus d’obtention constitue un défi industriel important : de nombreuses options ou 

alternatives, tant sur les aspects Produit que Processus d’obtention, de nombreux liens ou 

contraintes et un besoin d’optimisation des choix réalisés doivent être pris en compte. Ce 

problème est intitulé O-CPPC (Optimization of Concurrent Product and Process 

Configuration). Nous considérons ce problème comme un CSP (Constraints Satisfaction 

Problem) et l’optimisons avec des algorithmes évolutionnaire. Un état de l’art (chapitre 2) fait 

apparaître : i) que la plupart des travaux de recherche sont illustrés sur des exemples spécifiques 

à un cas industriel ou académique et peu représentatifs de la diversité existante ; ii) un besoin 

d’amélioration des performances d’optimisation afin de gagner en interactivité et faire face à 

des problèmes de taille plus conséquentes. En réponse au premier point, ces travaux de thèse 

proposent les briques d’un modèle générique du problème O-CPPC (chapitre 3). Ces briques 

permettent d’architecturer le produit et son processus d’obtention, de décrire chaque sous-

ensemble, composant et activité, de définir leurs contraintes, leur densité et les critères 

d’optimisation. Ce modèle générique est utilisé pour générer un benchmark réaliste pour 

évaluer les algorithmes d’optimisation. Ce benchmark est ensuite utilisé pour analyser la 

performance de l’approche évolutionnaire CFB-EA (chapitre 4). L’une des forces de cette 

approche est de proposer rapidement un front de Pareto proche de l’optimum. Pour répondre au 

second point, une amélioration de cette méthode est proposée puis évaluée (chapitre 5). L’idée 

est, à partir d’un premier front de Pareto approximatif déterminé très rapidement, de demander 

à l’utilisateur de choisir une zone d’intérêt (en fonction du prix et du délai d’obtention) et de 

restreindre la recherche de solutions uniquement sur cette zone. Cette amélioration entraine des 

gains de temps de calcul importants. Ce mémoire se termine par des perspectives de recherche 

pour chaque problématique de recherche abordée (chapitre 6).  
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2. Problème et problématiques de recherche associées 

2.1 Le problème O-CPPC et les outils utilisés 

Le problème O-CPPC est composé de quatre domaines : la configuration de produit, la 

configuration du processus d’obtention du produit, le couplage Produit/Projet et l’optimisation 

de cet ensemble au regard de différents objectifs.   

La configuration de produit est définie comme la spécialisation d’un modèle de produit 

générique par rapport aux besoins spécifique d’un client donné. Deux points de vue peuvent 

être envisagés dans un modèle de configuration : le point de vue physique où le produit est 

décomposé en sous-ensembles et composants, ou le point de vue fonctionnel où le produit est 

décrit par un ensemble de fonctions de service. Le modèle générique proposé associe ces deux 

types de description dans un modèle dit « physico-fonctionnel ». L’activité de configuration 

correspond alors à trouver une instanciation du modèle de produit générique, c’est-à-dire une 

sélection de composants ou de niveaux fonctionnels, qui satisfont les besoins de l’utilisateur et 

les contraintes du produit. 

La configuration du processus d’obtention est également définie comme la recherche d’une 

instanciation d’un modèle générique de processus d’obtention satisfaisant les besoins de 

l’utilisateur. Le modèle générique du processus décrit l’ensemble des opérations nécessaires 

pour obtenir un produit, leurs séquencements ainsi que le dimensionnement des ressources 

nécessaires. Il fait également apparaître des contraintes de compatibilités entre les ressources 

des différentes opérations. 

L’unification de ces deux problèmes dans un modèle commun appelé configuration 

concourante Produit/Processus (CPPC) permet d’éviter les incohérences qui peuvent apparaître 

si l’on configure un aspect séparément de l’autre. Le modèle CPPC est défini comme l’union 

des modèles Produit/Processus additionné de contraintes de couplage. Il est modélisé grâce au 

formalisme des CSP par un ensemble de variables dont les valeurs sont définies dans un 

domaine et reliées par un ensemble de contraintes. Le modèle correspond à une représentation 

de haut niveau du produit et du processus associé. Nous assumons que les variables de décision 

sont discrètes (numérique ou symbolique) et que les contraintes les reliant sont donc des tables 

de compatibilités.  

Ce modèle fait apparaître de nombreuses variables de décision. Les besoins du client portent 

sur un part limitée de ces variables. La saisie de ces besoins se fait lors d’une étape de 
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configuration interactive avec le client. Une fois les besoins saisis, il reste, la plupart du temps, 

de nombreux choix dans le modèle (i.e. des variables non instanciées). Une étape d’optimisation 

va alors rechercher parmi les configurations possibles celles qui satisfont les objectifs du client 

(ici seul le coût et le temps de cycle sont considérés). En conséquence, le modèle proposé, 

illustré sur la figure 3, fait apparaître des variables continues représentant les coûts ou les durées 

des opérations ; ainsi que des contraintes reliant ces variables dites d’évaluation et les variables 

de décision. 

Le modèle résultant appelé O-CPPC (Optimization of Concurrent Product-Processus 

Configuration) correspond donc au quadruplet <V, D, C, f> où V est l’ensemble des variables, 

D l’ensemble des domaines des variables de V, C l’ensemble des contraintes entre ces variables 

et f la fonction d’optimisation multi-objectif. La démarche d’aide à la décision proposée 

correspond à une résolution a posteriori de l’antagonisme entre les objectifs. L’optimisation 

doit donc fournir, en un temps raisonnable, un ensemble de solutions optimisées (front de 

Pareto). La démarche correspondante est illustrée sur la figure 2. La notion de temps de calcul 

raisonnable dépend du système Produit/Processus optimisé. Dans une situation de B2B avec un 

coût de produit élevé et un grand nombre de variables, le temps de calcul admissible peut 

atteindre une journée. 

Le problème d’optimisation envisagé se caractérise par ses aspects combinatoire (variables 

de décision discrètes), multi-objectif (deux objectifs dans ces travaux), son espace de recherche 

fluctuant (selon le nombre de variables de décisions non instanciées à l’issue de la première 

phase de configuration interactive) et important (nous envisageons jusqu’à 1080 solutions 

potentielles sans prendre en compte les contraintes) et la présence de contraintes. Dans des 

travaux précédents, l’équipe de recherche a proposé une première évolution des algorithmes 

évolutionnaires appelée CFB-EA (Constraints Filtering Based Evolutionary Algorithm) comme 

méthode d’optimisation. L’algorithme de la méthode CFB-EA, illustré sur la figure 8, met en 

jeu une version de la méthode SPEA2 adaptée par l’inclusion de contraintes. Il intègre un 

moteur de filtrage de CSP permettant de préserver la faisabilité (cohérence par rapport aux 

contraintes) des individus générés à chaque étape de l’algorithme évolutionnaire (génération, 

croisement, mutation).  

2.2 Problématiques de recherche associées 

De nombreuses recherches étudient le problème de configuration de produit et/ou de 

processus. La plupart se concentre sur un seul aspect sans prendre en compte la relation étroite 
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entre le produit et son processus d’obtention. Quelques études proposent un modèle concourant 

Produit/Processus et, à notre connaissance, aucune n’y associe l’optimisation du modèle 

correspondant. Parmi les travaux concernant l’optimisation de configuration de Produit, la 

plupart sont soit des cas académiques théoriques, soit des cas particuliers à une application 

donnée. Aucune étude ne met en place un véritable plan d’expérience, prenant en compte une 

grande diversité de situations industrielles, permettant d’analyser et d’évaluer l’étape 

d’optimisation (choix et paramétrage d’une méthode d’optimisation).  

En conséquence, trois problématiques de recherche (Questions de Recherche) sont 

définies : 

QR1 : Est-il possible de définir un modèle générique du problème O-CPPC capable de 

représenter une grande variété de cas réels et d’évaluer ainsi correctement les méthodes 

d’optimisation ?  

QR2 : Quel est l’impact des caractéristiques-clés du problème O-CPPC (taille, niveau de 

contraintes, etc.) sur l’algorithme d’optimisation CFB-EA ? 

QR3 : Est-il possible d’améliorer le temps d’exécution des algorithmes d’optimisation, 

spécialement du CFB-EA ?  

Le chapitre 2 de la thèse établit un positionnement des travaux par rapport à un état de l’art 

des approches de modélisation (CSP) et d’optimisation (EA) utilisées. Puis les chapitres 3, 4, 

et 5 répondent respectivement à chacune des problématiques de recherche annoncées. 

3. Modèle générique du problème O-CPPC 

3.1 Modèle générique de configuration de Produit 

De nombreuses études proposent de caractériser la conception de produit et/ou processus 

sous forme de décompositions hiérarchique selon différentes vues : fonctionnelle, besoins, 

composants physiques, processus, etc. Une vue de haut niveau de la décomposition physique 

d’un produit configurable met en jeu un certain nombre de composants regroupés en famille de 

composants (foc, family of components). Le produit et ses composants peuvent également être 

caractérisés par un ensemble d’attributs fonctionnels descriptifs (fdv, functional descriptive 

variables). Nous proposons de définir la configuration de produit comme l’instanciation des 

variables de décision. Ces variables de décision sont reliées par des contraintes de configuration 

qui limitent les combinaisons possibles de leurs valeurs.  
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Un autre aspect commun aux études existantes correspond à la modularité du produit 

configurable. Le produit peut être décomposé en différents modules associés aux fonctions ou 

composants principaux. Le modèle générique de produit configurable correspond donc à un 

ensemble de modules dits physico-fonctionnels. Chaque module est décrit par un ensemble de 

variables de décision (foc et fdv). Par exemple, pour la configuration d’une voiture, les modules 

pourraient être : la motorisation, le système électrique, la transmission, etc. Parmi les 

contraintes de configuration, on pourra alors distinguer les contraintes entre les variables d’un 

même module (intra-module) et les contraintes entre variables de différents modules (inter-

module). 

En vue d’optimiser le modèle CPPC, des variables d’évaluation doivent être ajoutées au 

modèle. Pour la configuration de produit, nous considèrerons uniquement le critère de prix. 

Nous proposons l’utilisation du terme « prix de vente » pour représenter indifféremment la 

notion de coût (matières premières ou composants) et la notion de prix de vente (point de vue 

fonctionnel/analyse de la valeur). En conséquence, des variables de prix pour chaque module 

(notées spm) sont ajoutées au modèle générique. Des contraintes numériques reliant ces 

variables aux variables de décision ou des contraintes d’agrégation entre ces variables 

permettent de calculer le prix total du produit. Un exemple du modèle correspondant est illustré 

par la figure 9. 

Le modèle générique va nous servir pour définir des cas de test. Or une génération aléatoire 

de contraintes entre les variables n’aurait pas de sens réel ou ne correspondant à aucun cas 

industriel réel. Une analyse de cas typiques de configurations industrielles montre des motifs 

récurrents associant un petit nombre de variables de décision fortement connectées, une variable 

d’évaluation et des contraintes de configuration et d’évaluation appelés PCEP (Product 

Configuration/Evaluation Pattern). Quatre types de PCEP ont été définis et illustrés sur la figure 

10. Ils correspondent à différents points de vue (physique et/ou fonctionnel) et différentes 

associations entre variables de décision (configuration et/ou évaluation) possibles. Le modèle 

générique de produit est alors défini comme un ensemble de modules composés de différents 

PCEP tel qu’illustré sur la figure 11. 

Toujours pour éviter une génération aléatoire qui n’aurait pas de sens réel, quatre motifs de 

contraintes de configuration entre les valeurs de variables de décisions notés Tcp (Type of 

configuration pattern) ont été définis et sont illustrés sur la figure 12. Ces motifs décrivent des 

situations standards de relation de configuration entre des variables de décision. Ils permettent 

de générer les combinaisons possibles entre les valeurs des variables impliquées. Chaque motif 
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peut être caractérisé par une densité de contrainte. La densité de contrainte est définie comme 

le nombre de combinaisons (tuples) interdites par rapport au nombre de combinaisons possible 

sans prendre en compte les contraintes. Ainsi une forte densité de contraintes suppose un faible 

nombre de combinaisons autorisées : plus forte est la densité de contraintes, plus le problème 

est contraint. 

Dans le même état d’esprit, trois types de motif d’évaluation ont été définis et illustrés sur 

la figure 13. Un motif d’évaluation permet d’associer un prix (ou un autre critère) à une valeur 

pour la variable d’évaluation correspondante.  

Enfin pour éviter un placement aléatoire des contraintes entre les variables de décision, 

entre les PCEPs et entre les modules, trois types d’architecture sont envisagés dans ce travail :  

- Architecture de type modulaire (figure 15) : un grand nombre de contraintes de 

configuration à l’intérieur des modules avec une forte densité de contraintes et un faible 

nombre de contraintes entre les modules avec une faible densité de contraintes. 

- Architecture de type intégrée (fgure 16) : des contraintes réparties de façon homogène 

à l’intérieur et entre les modules avec une densité homogène. 

- Architecture de type plateforme (figure 18) : même répartition des contraintes et 

densités que l’architecture modulaire mais avec un module central connecté aux autres 

modules et pas d’autres contraintes entre les autres modules. 

3.2 Modèle générique de configuration de Processus 

Dans une vue de haut niveau, le processus d’obtention d’un produit peut être considéré 

comme un ensemble d’activités ou opérations configurables reliées par des relations de 

précédence. A ce niveau d’abstraction, le nombre d’opérations et leur enchaînement sont 

considérés comme statiques (pas de choix entre différentes opérations ou d’activation 

d’opérations selon le produit associé).  

Il s’agit ici de configurer le choix et le dimensionnement des ressources associées aux 

opérations principales du processus. A chaque opération est associé un ensemble de ressources 

quantifiables permettant de réaliser la charge de travail associée à l’opération. De même que 

pour les familles de composants côté Produit, les ressources capables de réaliser une opération 

sont regroupées en familles de ressources (form) et associées à une quantité (qtrm). Ces variables 

constituent les variables de décision du modèle générique de Processus. Ces variables sont 

reliées par des contraintes de configuration illustrant soit le dimensionnement (association 

ressource/quantité) soit les compatibilités entre ressources. 



 

17 / 145 

 

Afin d’évaluer les combinaisons ressources/quantités possibles, des variables de prix (spm) 

et de durée (durm) sont associées à chaque opération. L’évaluation nécessite également l’ajout 

d’une variable intermédiaire pour représenter la charge de travail associée à l’opération (wlm). 

Des contraintes d’évaluation permettent alors de déterminer i) la durée d’une opération selon la 

charge de travail, la quantité et la ressource sélectionnée et ii) le prix de l’opération selon la 

ressource et la charge de travail associée. Côté coût, des contraintes numériques permettent 

d’agréger les coûts de chaque opération pour obtenir le coût total du processus. Enfin, ce modèle 

générique est complété par l’ajout de variables et de contraintes temporelles : date de début et 

de fin de chaque opération, les contraintes numériques associant ces dates à la durée de chaque 

opération et les contraintes numériques de précédence représentant le séquencement des 

opérations du processus. Une illustration du modèle générique de processus est donnée par la 

figure 21. 

3.3 Couplage des modèles génériques Produit et Processus 

Le couplage des deux modèles génériques précédents correspond à un ensemble de 

contraintes de configuration limitant les combinaisons possibles entre les variables de décision 

des deux modèles. Trois types de couplage sont envisagés. Un choix sur le produit peut i) 

restreindre le choix de ressources pour une opération (par exemple, un produit nécessité une 

compétence particulière) ; ii) nécessiter une quantité particulière (par exemple, il faut au moins 

deux opérateurs) ; ou iii) être associé à une charge de travail particulière. Les contraintes de 

couplage ne portent jamais sur les variables d’évaluation du modèle (prix et durées). 

3.4 Caractéristiques principales du modèle générique Produit et Processus 

Le modèle générique Produit/Processus complet ainsi défini permet de représenter une 

grande variété de cas industriels. Il fournit un cadre permettant une évaluation réaliste des 

algorithmes d’optimisation pour ce type de problème en évitant une génération aléatoire des 

variables et des contraintes de configuration et d’évaluation. 

Les caractéristiques clés de ce modèle sont : i) sa taille en termes de nombres de modules, 

d’opérations, de variables et la taille de leurs domaines ; ii) son architecture produit (plateforme, 

modulaire ou intégrée) et iii) la densité et la nature des contraintes (pattern de configuration).  
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4. Benchmark et évaluation de l’approche existante  

4.1 Benchmark de huit cas de test 

Le modèle générique précédemment proposé permet de générer des instances de problème 

O-CPPC. Afin de tester les caractéristiques clés du problème (architecture du produit, densité 

de contrainte et taille du problème), nous avons généré huit cas de test présentés en annexe. La 

procédure pour spécifier les cas de test est illustrée par la figure 24 et un générateur de cas de 

test a été mis au point. Un cas de référence a été défini avec une architecture de type plateforme, 

une taille de 30 variables de décision et une densité de contrainte médiane (50% de tuples 

interdits par contraintes). Puis nous avons fait varier soit la taille (15, 60 et 100 variables), soit 

le type d’architecture, soit le niveau de densité de contrainte (niveau bas impliquant 20% de 

tuples interdits et niveau haut impliquant 80% de tuples interdits) pour obtenir un plan 

d’expérience avec huit cas de test résumés dans le tableau 3. Les cas de test ont été définis de 

façon à évaluer séparément les trois caractéristiques clés du problème (taille, architecture du 

produit et niveau de contraintes). 

4.2 Evaluation de l’algorithme CFB-EA 

L’algorithme CFB-EA a été utilisé pour chacun des cas de test. Ses performances sont 

analysées en termes de qualité de solutions fournies et de temps d’exécution. La métrique de 

l’hypervolume (HV), illustrée sur la figure 26, est utilisée pour évaluer à la fois la performance 

et la diversité des solutions trouvées. Un plan d’expérience restreint a été mis en œuvre sur le 

cas de référence pour sélectionner les valeurs des paramètres évolutionnaires (taille de 

population, de l’archive et probabilités de croisement et de mutation) qui sont ensuite utilisées 

pour les autres cas de test. Le temps d’exécution de l’algorithme a été défini pour chaque cas 

de test de façon à laisser à l’algorithme le temps de converger. Comme il s’agit d’un algorithme 

pseudo-aléatoire, chaque cas est testé 5 fois. Les résultats proposés sont une moyenne de ses 5 

exécutions. Afin d’étudier l’évolution de la performance au cours du temps, les temps de calcul 

moyens nécessaires pour atteindre la performance final (notée HVfinal), 99% et 99.9% de cette 

performance sont comparés.   

La performance sur le cas de test référence est présentée par la figure 27 et le tableau 

associé. Elle montre que l’algorithme est efficace pour obtenir très rapidement une bonne 

qualité de solution (environ 10% du temps pour obtenir la performance finale) mais demande 

un temps conséquent pour affiner ce résultat. 
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La comparaison des cas de test avec des tailles différentes montre que le temps de calcul 

nécessaire est fortement lié à la taille du problème. Néanmoins, il reste dans des limites 

acceptables par rapport à la démarche d’aide à la décision envisagée (1/2 journée de calcul pour 

le cas à 100 variables de décision). 

La comparaison des différents niveaux de densité de contraintes montre également un 

impact élevé sur le temps de calcul. Plus le modèle est contraint, moins il a de solutions faisables 

et moins le temps de calcul est élevé. Le cas le plus contraint (80% de tuples interdits) demande 

10 fois moins de temps (247 sec.) pour atteindre sa performance finale que le cas le moins 

contraint (20% de tuples, 2610 sec.). 

L’analyse des différents types d’architecture de produit montre un avantage pour 

l’architecture de type plateforme puis de type modulaire. L’architecture de type intégrée semble 

la plus difficile à optimiser. Il faut bien rappeler que les différentes architectures présentent 

globalement le même niveau de contraintes (même nombre de contraintes et même ratio de 

contraintes avec des densités forte/moyenne). La différence entre les cas réside dans la 

répartition des contraintes dans le modèle ou la répartition des contraintes à forte ou moyenne 

densité entre les modules du produit. Généralement, il semble que plus les contraintes sont 

réparties dans le modèle, plus l’optimisation est difficile. Dans tous les cas, l’algorithme montre 

une bonne capacité à trouver rapidement de bonnes solutions, mais nécessite un temps de calcul 

plus long pour trouver les valeurs finales. 

5. Amélioration de l’approche existante et 

expérimentations 

5.1 Amélioration proposée, CFB-EA+ 

L’idée à la base de ces travaux est d’utiliser la capacité de la méthode CFB-EA à fournir 

rapidement un front de Pareto approximatif. Ce front de Pareto peut être montré à l’utilisateur 

qui, une fois informé, peut affiner sa demande en formulant une préférence sur une zone 

d’intérêt dans l’espace de recherche (contraintes de prix et/ou de délai maximum). Une second 

phase d’optimisation est alors enclenchée mais en restreignant la recherche à la zone délimitée 

par l’utilisateur. Tout en conservant son caractère d’aide à la décision multi-objectif a posteriori 

(l’utilisateur ne donne pas de préférence entre les objectifs avant l’optimisation), cette méthode 

appelée CFB-EA+ permet d’accélérer le recherche de solutions faisables satisfaisant les besoins 

et préférences de l’utilisateur.  
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La restriction de la recherche à la zone choisie par l’utilisateur est réalisée en ajoutant de 

nouvelles contraintes sur les variables objectifs. Ainsi les solutions sont maintenues dans la 

zone délimitée par l’utilisateur. Cette démarche, illustrée sur la figure 31 et dont l’algorithme 

est donnée en figure 32, comporte deux éléments à étudier : la durée de la première phase de 

recherche globale (temps noté ST pour Switching Time) et les caractéristiques de la zone 

délimitée par les préférences de l’utilisateur. Concernant la durée de la première phase (ST), si 

elle est trop importante, cela limite le gain de temps de calcul total espéré ; si elle est trop courte, 

le front de Parteo proposé à l’utilisateur ne lui permet pas de choisir correctement une zone de 

préférence. Concernant la zone choisie par l’utilisateur, si elle trop petite, l’algorithme risque 

d’être piégé dans un optimum local (faible population initiale) ; si elle est trop large, le gain de 

temps de calcul risque d’être amoindris. 

5.2 Expérimentations et recommandations 

Le cas de test référence a été utilisé pour comparer les deux méthodes. Trois zones 

différentes (notées RA1, RA2 et RA3) ont été testées ainsi que trois durées de la première phase 

(respectivement le temps pour atteindre 70, 80 et 90% de la performance finale par CFB-EA). 

La méthode proposée permet une réduction significative du temps de calcul de près de 25% 

en moyenne. L’analyse des résultats montre que le critère essentiel pour le succès de la seconde 

phase est la diversité des individus dans la zone choisie à l’issue de la première phase. 

En conséquence, une nouvelle version de CFB-EA+ est proposée. Cette amélioration dont 

l’algorithme est présenté par la figure 40, ajoute comme paramètre un nombre minimal de 

solutions dans la zone sélectionnée par l’utilisateur. Une nouvelle série de test a été réalisée 

avec cette nouvelle version sur le cas de test à 60 variables. Les gains de temps de calcul obtenus 

sont importants avec en moyenne 54% de réduction. 

6. Perspectives 

Ces travaux proposent un modèle générique pour le problème de configuration et 

d’optimisation conjointe Produit/Processus, capable de représenter une grande diversité de 

problèmes industriels. Différentes architectures et de nombreux patterns tant sur la répartition 

et les liens entre variables que sur la nature des contraintes de configuration ou d’évaluation 

sont proposés. D’autres architectures, critères ou patterns pourraient être ajoutés. Le modèle 

générique proposé permet de générer des cas de tests représentatifs et éviter ainsi une génération 

aléatoire aberrante. 
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Un benchmark utilisant le modèle générique a été mis au point et a permis d’évaluer 

l’approche CFB-EA par rapport à trois caractéristiques clés du problème : la taille, 

l’architecture produit et le niveau de contraintes. Un plan d’expérience plus complet pourrait 

être mené pour évaluer l’impact des autres caractéristiques du modèle ou leur interaction avec 

les paramètres de CFB-EA. 

Une nouvelle approche d’optimisation en deux étapes a été proposée et évaluée. Elle montre 

des gains de temps de calcul important grâce à une interaction avec l’utilisateur. Des 

recommandations ont été proposées pour cadrer cette interaction. Une comparaison avec 

d’autres méthodes utilisables pour la seconde phase telles que les SLS (stochastic local search) 

ou une approche exacte pourrait être envisagée. 
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Introduction  

In the manufacturing industry, the concept of mass customization has established itself as 

an indispensable lever for gaining market share. The aim is to offer a high level of diversity of 

product or service to the customer while maintaining a good level of productivity (Pine , 1993). 

In order to develop and implement mass customization, many companies use configuration 

software (Felfernig, et al., 2014). Configuration software enables companies to propose to their 

customers customized products from a huge set of variants and options of products (Wang, et 

al., 2015). If all configuration software can assist the supplier during the configuration of the 

product, only some of them do the same for the associated production and/or delivery process. 

Handling the two aspects (product and process) concurrently allows to avoid inconsistencies 

(product delicate or impossible to produce or to deliver) and give an extended view of the 

company response to the customer needs. This problem, considering the two aspects, is called 

Concurrent Product and Process Configuration (CPPC). Processing and optimizing CPPC 

problems are a major issue for companies producing technical products or systems either in 

business to business (B2B) or business to customer (B2C) situations. 

A configuration software is a kind of knowledge-based system that assists the user in the 

configuration task. The knowledge is in fact a representation or a model of all possible product 

and process configuration possibilities that we call the CPPC model or the generic model. The 

configuration software is used to confront customer’s requirements and supplier needs with the 

CPPC model. Configuring a product or a process corresponds to the selection of options or 

alternatives for the product (architecture, components or functionalities selection) and for the 

process (mainly resources selection and dimensioning). It thus corresponds to a decision-

making problem. According to many works on the subject (Sabin & Weigel, 1998) (Zhang, 

2014) (Felfernig, et al., 2014), the configuration problem can be considered as a Constraint 

Satisfaction Problem (CSP). In such a model, decision variables represent possible 

configuration choices on product and/or process. These decision variables are linked by 

constraints that model compatibilities and relations between decision variables. This modeling 

paradigm allows to use specific methods and tools to support the decision-making process. 

In most configuration problems, the configured product or process must satisfy a certain 

number of criteria which rely on the customer’s requirements (as for example: price, delivery 

time, performance) and/or on the objectives of the company (as for example: carbon footprint, 

quality, production cost). It results in a multi-criteria optimization problem named O-CPPC. 
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This problem is particularly difficult because of the many variants of the product and process, 

as well as their relationships and their impact on various objectives.  

Despite the industrial interest for this type of problem, we identified a lack of benchmark 

(set of testing instances) to evaluate and compare optimization methods. A benchmark avoids 

the case-dependency of optimization scientific results. Consequently, in this thesis: (i) a generic 

model of CPPC is proposed in order to generate a benchmark, (ii) this model is then used to 

evaluate an optimization algorithm previously published by our laboratory (Pitiot, et al., 2013) 

and (iii) an original improvement of the previous optimization algorithm, that reduces 

computation time, is proposed and evaluated.  
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1. Introduction: domains, problems and tools  

This PhD therefore focuses on modeling and optimizing the O-CPPC problem as well as 

evaluating optimization approaches. In the following sub-sections, the domains of the problem 

that originate the development of the present research are described. Then we introduce the 

frameworks and tools that we will use to model and optimize the problem. Afterward we 

propose the three research questions that we consider and finally we present the organization 

of the document with the different stages that comprise the following thesis.  

1.1 Domains of the problem  

We describe below the four domains covered by the addressed problem: Product 

Configuration, Process Configuration, Concurrent Product and Process Configuration (CPPC) 

and Optimization of the Concurrent Product and Process Configuration (O-CPPC) and we 

conclude with our research interest.  

1.1.1 Product Configuration  

In this section we consider the product and define relevant configuration task and problem 

and discuss product configuration applications and software. 

1.1.1.1 Product configuration Task Definition  

Formally speaking, (Sabin & Weigel, 1998) define the configuration task as "a special case 

of design activity where the artifact being configured is assembled from instances of a fixed set 

of well-defined component types" which can be composed conforming a set of constraints. As 

mentioned by (Dhungana, et al., 2017), product configuration is a well-established 

methodology for generating and building individualized products. With close ideas, other 

authors like (Mittal & Frayman, 1989), (Soininen, et al., 1998), (Aldanondo, et al., 2008) or 

(Hofstedt & Schneeweiss, 2013) have defined configuration as the task of deriving the 

definition of a specific or customized product (through a set of properties, subassemblies or bill 

of materials,…) from a generic model, while taking into account specific customer 

requirements. 

1.1.1.2 Product configuration Problem Definition 

We can say that the core problem of product configuration is to select and arrange 

combinations of parts or components that satisfy given specifications (Sabin & Weigel, 1998). 
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The first to propose a formal definition of the configuration problem were (Mittal & Frayman, 

1989). This definition states: 

− “Given: (A) a fixed, pre-defined set of components, where a component is described by a 

set of properties, ports for connecting it to other components, constraints at each port that 

describe the components that can be connected to that port, and other structural constraints 

(B) some description of the desired configuration; and (C) possibly some criteria for making 

optimal selections.  

− Build: One or more configurations that satisfy all the requirements, where a configuration 

is a set of components and a description of the connections between the components in the 

set, or, detect inconsistencies in the requirements." 

Most of authors have been more or less adapting this definition. (Aldanondo, et al., 2008) 

have proposed to add to this rather physical definition (component based) a descriptive or 

functional view. (Felfernig, et al., 2014) mentioned that the integration of the configuration 

process sharing of existing components and assemblies within product family architectures, 

involve a number of different stakeholders and experts from various company sectors. 

Therefore, the configuration problem has clearly a multidisciplinary context because it involves 

the knowledge of many functions of a company (marketing, sale, design, production…) each 

contributing from its space to the subject of interest. 

1.1.1.3 Applications  

As mentioned by (Felfernig, et al., 2014) configuration task is one of the applications of the 

Artificial Intelligence with more successful achievements in companies of very different 

sectors. For example product configuration field could be illustrated with various industrial 

cases: automotive (Amilhastre, et al., 2002), (Kaiser, et al., 2003), (Sinz, et al., 2003); power 

supply (Jensen & Lars, 2005); aircraft (Kopisch & Gunter, 1992), (Zhang , et al., 2013) or train 

design (Han & Lee, 2011). A database of industrial cases and related research issues was started 

by the University of Copenhagen (Subbarayan, 2006) but it is not any more maintained. 

1.1.1.4 Software 

A product configurator is a tool that supports the user during the configuration process 

(Schierholt, 2001). They are widely used to obtain product specifications in assemble to order 

situations. As mentioned by (Wang & Tseng, 2012) their objective is to reduce the confusion 

among customer decisions inside the huge number of choices in order to generate higher level 

of satisfaction. The task of a conventional product configurator is to "guide a consumer through 



 

27 / 145 

 

the derivation of a concrete product from the product family representation so that all 

requirements are fulfilled" (Dhungana, et al., 2017). (Sabin & Weigel, 1998) explained that 

since Digital Equipment Corporation used the R1/XCON system in 1982 to configure computer 

systems, a wealth of configuration expert systems has been built for configuring computers, 

communication networks, cars, trucks, operating systems, buildings, circuit boards, keyboards, 

printing presses and so forth. Product configuration software is either stand-alone software (as 

Tacton1, Configit2, Pros3 for example) or module of ERP software (as SAP4, Oracle5 for 

example). 

1.1.1.5 Synthesis 

In the proposed research we are going to focus on configurable technical products and will 

not consider service or software configuration. We consider that a configurable product 

corresponds to a product family with all possible options and variants (Campagna & Formisano, 

2013). We will consider that a configurable product can be represented formally with a generic 

model relying on constraint-based approaches. 

1.1.2 Process Configuration  

In this section we consider the process and define relevant configuration task and problem 

and discuss process configuration applications and software. 

1.1.2.1 Process configuration Task Definition  

Much less authors publish on process configuration; many more speak of process planning. 

Process planning as explained by (Schierholt, 2001) is "the task of finding relevant processes 

for manufacturing a product, sequencing these processes and defining the complete set of 

parameters for each process". So the process planning is therefore the activity of precisely 

specifying how to manufacture a product. Consequently (Schierholt, 2001)concludes that it was 

logical to extend the principles and key ideas of product configuration to the problem of process 

planning and was the first to speak of process configuration.  

 

 

1 https://www.tacton.com/ 
2 https://configit.com/9 
3 https://pros.com/ 
4 https://www.sap.com/products/cpq.html 
5 https://www.oracle.com/applications/ebusiness/products/configurator/ 
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Other authors like (Bartak , et al., 2010) or (Zhang , et al., 2013) follow previous ideas and 

have shown that the same kind of reasoning for the product configuration can be considered for 

the process configuration. They therefore consider that deriving a specific production plan 

(operations, resources to be used, others...) from some kind of generic process plan while 

respecting product characteristics and customer requirements, can define the process 

configuration. Similarly, (Tiihonen , et al., 2014) proposed a formal definition of process 

configuration as the task of "transforming a given process model into one that is specifically 

adapted to a given set of requirements". 

1.1.2.2 Process configuration Problem Definition  

As the domain of process configuration has been much less studied, as far as we know there 

is not any formal definition of the process configuration problem well accepted. Most authors 

as (Schierholt, 2001) or (Gottschalk & La Rosa, 2010) explain that the idea of product 

configuration can be extended towards process configuration. However, inspired by (Mittal & 

Frayman, 1989), (Aldanondo & Vareilles, 2008) proposed the following definition for the 

process configuration problem:  

− “Given:  

(i) a generic model of a configurable routing able to represent a family of production 

processes with all possible variants and options, that gathers:(1) a set of operations, (2) a set 

of resources with a required quantity, (3) a set of various constraints that restricts possible 

combinations of operations, resources and required quantities, 

(ii) a set of inputs, where an input corresponds with a selection of an operation, a resource 

or a quantity value, 

− Routing configuring can be defined as ‘finding at least one set of operations with relevant 

sets of pairs (resource, quantity) that satisfies all the constraints and the inputs.” 

The problem of numerous stakeholders of product configuration is much less present in the 

process configuration because it interests mainly functions relevant to production and delivery, 

in other words the customer is buying a product not a process. 

1.1.2.3 Applications  

Very few “pure” process configuration applications relevant to physical technical product 

cases can be found in the literature. We mean by “pure”, without a strong link with product 

configuration application. A process configuration system including an interactive and 

automatic process configuration component has been developed and deployed in a Swiss metal 
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working company (Schierholt, 2001). (Gottschalk & La Rosa, 2010) present a process 

configuration case dealing with a film industry. If we consider process configuration for 

services and software, more cases can be found. As mentioned by (Felfernig, et al., 2014) we 

can find success applications of process configuration in service areas like telecommunication 

and financial services. (Mayer, et al., 2011) described a large software and hardware 

development process and (Gottschalk, et al., 2009) applied a process configuration in Dutch 

municipalities.  

1.1.2.4 Software 

As far as we know, there is no process configuration software that exists as a standalone 

software. At the opposite, most of product configuration software editors propose modules that 

allow configuring the process associated with the configured product. 

1.1.2.5 Synthesis 

In the proposed research we are going to focus on discrete configurable processes and will 

not consider continuous processes (as chemical or energy production process). We consider that 

a configurable process corresponds to a discrete production process with all possible options 

and variants. We will consider that a configurable process can be represented formally with a 

generic process model relying on constraint-based approaches. Key difference with product, 

most of the times the customer doesn’t care about the process configuration which is most of 

the times considered as a "pure" supplier problem. The point that can interest the customer is 

the delivery date but not the way the supplier reaches it. 

1.1.3 Concurrent Product and Process Configuration (CPPC) 

Here too, CPPC task and problem definitions are proposed. Then applications and software 

are discussed. 

1.1.3.1 CPPC Task Definition  

Most of the time, a product is first configured and then once the product specificities are 

decided, process configuration is launched, in other words: begin with “the what” then finish 

with “the how”. The key interest of breaking this sequence is to allow taking into account 

specific process requirements before product requirements (Zhang , et al., 2013) or (Baxter, 

2007). For example, in some situations the use of a specific resource may forbid a specific 

product component or a strong due date expectation may oblige to use a local expensive 

resource. These resource selections can have strong consequences on the product configuration. 
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We can consequently define the Concurrent Product and Process Configuration as the task of 

configuring a product and its related process without strong precedence constraint. 

1.1.3.2 CPPC Problem Definition  

Most of the academic works deal with these two problems in an independent way, either 

product configuration or process configuration. Some studies have showed the interest of the 

union of these two configuration problems (Baxter, 2007), (Aldanondo, et al., 2010), (Hong, et 

al., 2010), (Li, et al., 2006) and (Huang & Gu, 2006). (Dhungana, et al., 2017) propose that the 

core problem to solve is "to integrate configuration process in order to simplify the value chain 

from product configuration to manufacturing of the individualized product". The CPPC 

problem can therefore be defined as the strict union of the product and process configuration 

problems with the addition of coupling interrelations of constraints. Coupling interrelations 

proposed in (Aldanondo, et al., 2010), (Pitiot, et al., 2013) formally describe the 

interdependences that exist between both problems. The CPPC problem of course inherits of 

all characteristics of product and process configuration problems.  

The resulting generic model architecture is shown in Figure 1, where: (i) X are configuration 

variables (ii) dotted lines are interrelations or constraints. The model gathers two sets of 

variables (black rounded boxes in Figure 1), one associated with the product generic model and 

the other with the process generic model. Constraints or interrelations are specific either to 

product or process (lower part of Figure 1) or between both of them (previous coupling 

interrelations in the upper part of Figure 1).  

Figure 1- Generic model architecture of the CPPC problem 

1.1.3.3  Applications  

(Dhungana, et al., 2017) proposed novel concepts and algorithms for a holistic approach in 

order to integrate product and production configuration. For their pilot study they used a power 

controller module as a configurable product and its production requirements. (Zhang , et al., 
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2013) show an example of CPPC problem dealing with small private aircraft. (Aldanondo, et 

al., 2010) illustrate this problem with an example dealing with crane. Other product examples 

mentioned in their model are the laptops, bicycles and power supplies. 

1.1.3.4 Software 

A decision aiding tool has to assist stakeholder to make the best decisions (product 

configuration and process planning choices) according to multiple objectives. CPPC problems 

take place in the first steps of the study of product and associated process. (Campagna & 

Formisano, 2013) presented a framework called ProdDoc, who combined Product and Process 

Configuration. As mentioned by (Dhungana, et al., 2017), ProdDoc is a step towards 

considering manufacturing during product configuration, because it provides constraint based 

languages for both product modeling and specification of process steps for production. At the 

present time we cannot strongly comment about the ability of commercial configuration 

software to handle simultaneously product and process configuration.  

1.1.3.5 Synthesis 

Being consistent with the previous sections, we are going to concentrate on problems 

assembling concurrently product and process configuration. We will restrict our investigations 

on: (i) technical products and systems, so we don’t deal with services and software, (ii) discrete 

manufacturing process, so we don’t consider chemical or continuous food industry processes. 

We will assume that the resulting product-process generic model of the configuration problem 

can be considered as a constraint satisfaction problem. 

1.1.4 Optimization of Concurrent Product and Process Configuration (O-CPPC) 

In this last sub section, as the scope is rather narrow, we just propose definition elements 

for the CPPC optimization task and problem. 

1.1.4.1 CPPC Optimization task definition  

The configuration task can be achieved either autonomously or interactively. By 

autonomous configuration, we mean that the customer provides all the requirements in a single 

shot and then ask for a solution. By interactive configuration, we mean that after inputting each 

“elementary requirement” provided by the customer, the consequences on other configuration 

variables are computed and shown to the user. By “elementary requirement”, we mean a 

customer domain restriction of a single product or process configuration variable (for example: 

required power belongs to [6, 8] or final assembly operation resource should be “Asia-line”). 



 

32 / 145 

 

As the goal of companies using configuration techniques is to propose a wide range of 

possibilities, the quantity of configuration variables that should be valuated can be rather large 

and the relevant interactive configuration process rather long. 

In order to avoid asking the customer to input elementary requirements on all variables, it 

is necessary to be able to switch the configuration process at any time from the previous 

interactive mode towards the autonomous mode. This means that once all elementary 

requirements proposed by the customer have been sequentially processed, remaining undecided 

choices are processed thanks to some autonomous computations. This autonomous computation 

can be achieved either with default values or by using multi-criteria optimization (cost, due-

date, performance, carbon footprint, etc.). 

This thesis is dedicated to the second solution and for the sake of clarity we will assume 

only two conflicting criteria: cost and cycle time. Furthermore, instead of providing a single 

solution, we propose a Pareto front so that the customer can choose, according to preference 

criteria, a rather low delivery time (at a higher cost) or a rather low-cost solution (with a longer 

delivery time). Therefore, the process of interactive configuration and optimization of the CPPC 

behaves as a two-step process, which combines interactive Concurrent Product and Process 

Configuration in step 1 and autonomous Concurrent Product and Process Optimization in step 

2, as shown in Figure 2. 

Figure 2- CCPC configuration and optimization process 

1.1.4.2 CPPC Optimization Problem Definition  

Most of the works that have been dealing with configuration optimization present this 

problem as a constrained optimization problem (Li, et al., 2006), (Wei, et al., 2014), (Du, et al., 
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2014). Our CCPC optimization problem inherits of this characteristic. The only difference with 

the CPPC problem lies in the existence of optimization criteria. A criterion can depend of 

configuration variables of product, process or both. A technical performance criterion may 

depend of product variables, a cycle time or delivery date criteria may depend of process, while 

a cost criterion may depend of both. For a two criteria problem (cycle time and cost), the 

resulting generic model architecture is shown in Figure 3 where criteria dependence has been 

added to the CPPC problem generic model of figure 2. 

 

Figure 3- Generic model architecture of the CPPC optimization problem 

1.1.4.3 Synthesis and application issues 

According to previous sections, we will consider in the present research the problem of 

Optimization of the Concurrent Product and Process Configuration. We assume or consider (i) 

only technical product and discrete production process, (ii) only situation where optimization 

follows interactive configuration, (iii) only two optimization criteria cost and cycle time. 

Given the problem under study and our concern with optimization, it is important to mention 

practical industrial or application issues. These issues may be very different, since configuration 

situations may range: (i) from cases costing around a thousand euros up to situations involving 

millions of euros, (ii) from business relations that are either business to customer (B2C) or to 

business (B2B). 

In B2C, configuration techniques can be used to configure: personal computers costing 1-4 

k€, kitchens ranging from 10-20 k€, cars from 20-80 k€, or sailing boats from 200-800 k€. For 

these B2C situations, it is usually clear that if the customer can wait a day for some optimization 

to a boat, he will hope to get results in just a few hours for a car and in less than an hour for a 

kitchen or a computer. As this kind of selling is frequently achieved face to face, with customers 

that are not fully driven by rational concerns, solutions optimization with many “what if” issues 
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requires computation times that should be as low as possible in order to meet any kind of 

customer request almost on demand. 

The same kind of conclusion can be drawn for B2B situations, which may involve, for 

example, machine-tools with a value of 50-200 k€, cranes costing 200-800 k€, private planes 

ranging from 2-10 M€ or a plant facility of 5-20 M€. For these B2B situations, given the high 

cost and the fact that customer demand is rather more rational, it is not a problem to wait one 

day for optimization results. But the concern here is more on the optimization side, which can 

require effective optimization, meaning for example that if a 0.1 % energy efficiency bonus can 

be achieved, the optimization process should find it.  

Consequently; these two needs drive expectations of low computation times and solution 

optimality which are the core of this research.  

1.2 Overview of frameworks and tools  

We just introduce in this section the two used frameworks: Constraint Satisfaction Problem 

(CSP) and Evolutionary Algorithms, in order to be able to propose research questions and a 

manuscript organization. 

1.2.1 CPPC as a Constraint Satisfaction Problem (CSP) 

Various modeling and processing approaches can be used to deal with the configuration 

problem. The 6th chapter of the configuration book (Felfernig, et al., 2014) identify and compare 

various approaches that can handle the configuration problem: rule-based systems, constraint 

satisfaction problem (CSP), Sat Solving, feature models, Unified modeling language 

configuration models, Description Logics, Ontology, Answer Set Programming and "hybrid" 

methods that assemble two of these methods. 

Historically, first configuration software or systems were rule based (McDermott, 1982). 

As the maintenance of such system becomes very quickly intractable (Soloway , et al., 1987), 

most of researchers have been working on approaches that differentiate the product knowledge 

domain form the problem solving knowledge. In this idea CSP techniques strongly supported 

by (Freuder, 1997) state: “Constraint technologies are one of the closest approaches computer 

science has yet made to the Holy Grail of programming: a user states the problem, the computer 

solves it.” The clear distinction of modeling and solving offered by CSP approaches and the 

importance of constraints or interrelations between configuration variables are some of the key 

reasons why CSP approaches are strongly used by configuration authors. A drawback of CSP 
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is their poor ability to deal with problem structuring aspects which is important for both product 

configuration (a product is a set of sub-assemblies; a sub-assembly is a set of components…) 

and process configuration (a process is a set of operations; an operation is a set of tasks…). This 

is why other techniques, like UML, Description Logics or Ontology (dealing very well with 

hierarchical aspects), are also used in configuration but they are almost always associated with 

some rules or constraint approaches in configuration.  

Furthermore, if constraint based approaches fit configuration well, they also fit very well 

process planning (Bartak , et al., 2010) and optimization problems (Coello, s.f.). As a 

consequence, we will use this constraint satisfaction problem framework (CSP) in this work. 

The first section of the second chapter will propose a survey of CSP and configuration. 

1.2.2 Optimization of CPPC with Evolutionary Algorithms (EA) 

With respect to optimization the CPPC problem inherits specificities from both product 

configuration optimization and process planning optimization.  

A first specificity of this is that the solution space can be large. It is reported in (Amilhastre, 

et al., 2002) that a configuration solution space of more than 1.4x1012 is required for a car-

configuration problem. When planning is added, the combinatorial structure can become very 

large. (Pitiot, et al., 2014) investigated solution spaces range between 106 and 1017 are 

investigated.  

A second specificity is that the CPPC solution space may vary in terms of size but also in 

terms of position. We have introduced in section 1.1.4 the notion of elementary requirements 

that correspond to customer expectations that must be respected in opposition with undecided 

choices that can be set by the optimization process. Therefore, for the first point, it is important 

to note that the size of the problem we are seeking to optimize increases when the quantity of 

elementary requirements processed during interactive configuration decreases. For the second 

point, according to the content of these elementary requirements (either high or low product 

performance, for example, that essentially drives cost and cycle time), the corresponding 

solution space that needs to be optimized can be clearly located in a different space area. This 

is shown in Figure 4, where two kinds of elementary requirements drive very different solution 

space locations, high performances elementary requirements drive costly and long cycle time 

while it is the opposite for low performance product elementary requirements. 
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Figure 4- CPPC optimization: different solution space locations 

A third specificity is relevant to the constraint level. By constraint level we mean the ratio 

between feasible and unfeasible space that can be computed as follows. We first consider the 

number of configuration variables (n) where the customer can express an elementary 

requirement and the average number of possible values (p) for each. When constraints are not 

considered, the solution space size equals pn. When constraints are considered, the solution 

space is reduced with respect to a constraint level which is the ratio of the number of constrained 

solutions (c) divided by the number of unconstrained solutions (u). This level can be quantified 

for a single constraint or for a whole problem. One should be aware that a high level corresponds 

to a low constrained problem. Thus, constrained solution space size equals pn * c/u. As the goal 

of companies using configuration techniques is most of the time to propose as many solutions 

as possible, the CPPC problem is most of the times not over-constrained.  

The last specificity deals with the number of criteria that must be taken into account. We 

have already mentioned, that we will consider only the two-criteria cycle time and cost that are 

the most frequent criteria required by customer. However, assuming that technical performance 

has been taken into account with elementary requirements, other criteria like product and 

process quality level and/or carbon footprint could be added. Consequently, for our CPPC 

optimization problem the number of criteria is rather low and, in any case, lower than five. As 

already said, we will consider only two criteria but, in some situations, we will discuss problems 

with more than two criteria. 

Given these specificities, we have tried to find the main authors close to our CPPC problem 

optimization. We therefore made a query on the web of science with following title words: 

"product” and “configuration” and “optimization” and not “supply chain”. As a result the ten 

most cited papers were in citation decreasing order: (Li, et al., 2006), (Du, et al., 2014), (Zhou, 
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et al., 2008), (Chen & Lin, 2002), (Pitiot, et al., 2014), (Xu, 2005), (Viswanathan & Allada, 

2006), (Wei, et al., 2014), (Jiang, et al., 2011) and (Song & Chan, 2015). Among these ten 

papers, eight where running genetic or evolutionary approaches while the two remaining were 

based on game theory or pairwise comparisons. We can therefore conclude that these meta-

heuristics fit very well the CPPC optimization specificities.  

As a consequence, we will use an evolutionary approach (EA) in this work. The second 

section of the second chapter will detail a survey of various EA. 

1.3 Research Questions and manuscript organization 

Having described the domains and introduced the two used frameworks and tools (CSP and 

EA) we can know define our research questions and the resulting manuscript organization. 

1.3.1 Goals of the works  

We deal with the problems of Optimization of Concurrent Product and Process 

Configuration (O-CPPC). As we have presented in the previous sections, many academic works 

show diverse investigation cases associated with product and/or process configuration. Most of 

the times the configuration approach is achieved with an individual focus that doesn´t take into 

account that there is a close relationship between a product and their respective production 

process. In the scientific literature, some studies tackle the analysis of Concurrent Product and 

Process Configuration problems. For example: (Dhungana, et al., 2017), (Campagna & 

Formisano, 2013), (Baxter, 2007), (Zhang , et al., 2013), (Hong, et al., 2010), (Li, et al., 2006) 

and (Huang & Gu, 2006); as far as we know, no paper deals with its optimization. Considering 

the ten articles studying configuration optimization mentioned at the end of section 1.2.2, all of 

them only deal with product configuration. Furthermore, most of them are rather theoretical 

propositions with an evaluation running a single problem, a kind of “toy” problem in most 

situations mainly to explain and illustrate the concepts (computer, electric motor, plane, air 

compressor, gear train…). There isn’t any kind of design of experiments for the proposed 

optimization approach. As a consequence, there is no standard to analyze and compare the 

optimization performance and therefore most of published results can be more or less 

considered as case dependent.  

In a previous work (Pitiot, et al., 2013), the Concurrent Product and Process Configuration 

(CPPC) is considered as a constraint satisfaction problem (CSP). In this work, an optimization 

metaheuristic, called Constraints Filtering Based - Evolutionary Algorithm (CFB-EA), has been 
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developed and evaluated with a specific small aircraft configuration problem. The case 

dependency problem has driven the authors to enlarge the previous aircraft example with a 

design of experiments with different problem sizes and different constraint levels (Pitiot, et al., 

2014).  

Following this stream of works, the goals of the PhD are: (i) to propose and discuss a kind 

of CPPC generic model that can reduce case dependency when evaluating optimization 

methods, (ii) to evaluate CFB-EA with respect to this CPPC generic model and (iii) to propose 

and evaluate a new version of CFB-EA that reduces computation time significantly.  

1.3.2 Research Questions  

Given previous considerations, we propose the three following research questions: 

QR1: Is it possible to propose a generic model of the CPPC problem that can avoid case 

dependency when evaluating and comparing optimization methods? 

 

QR2: How sensitive is CFB-EA optimization method, with respect to each key characteristic 

of the generic model of the CPPC problem? 

  

QR3: Is it possible to reduce the computation times of CFB-EA and other conventional EA 

approaches? 

1.3.3 Thesis organization  

Our main objective is therefore to evaluate and improve combinatorial optimization 

techniques for the problem of Concurrent Product and Process Configuration (O-CPPC) while 

avoiding case dependency. The rest of the thesis is organized as follows:  

Research problem: Given the CPPC problem already introduced, we refine in chapter 2 our 

research problem through a survey of the Constraint Satisfaction Problem with respect to 

configuration problems and Evolutionary Algorithms. This survey ends with the identification 

of the modeling and optimization approaches and tools that will be used in chapters 3 and 4. 

Generic modeling: we define in chapter 3 a generic problem of “Concurrent Product and 

Process Configuration”, we identify its main key characteristics and we formalize it as a 
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constraint satisfaction problem (CSP). This generic model is the core of a problem generator 

that allows generating CPPC benchmarks. 

Evaluation: Given a CPPC benchmark, a design of experiment is proposed in chapter 4 to 

evaluate the CFB-EA performance and to validate the CPPC generic model.  

Improvement: We propose and test an original improvement of CFB-EA and discuss its 

generalization to other evolutionary approaches in chapter 5. 

At the end, chapter 6 synthetizes the contributions and discusses future works. 
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2. Modeling and optimization approaches for CPPC 

In this chapter, our research problem is formalized with constraints satisfaction problem 

(CSP) for modeling and evolutionary algorithms (EA) for optimizing. The goal is to discuss, 

the kind of CSP and the kind of EA which can be used in chapters 3 and 4. Firstly, we detail 

the CSP framework; then we recall how CSP can be used to formalize product, process, 

concurrent product/process configuration (CPPC) and to optimize CPPC. Secondly, we analyze 

genetic approaches and more particularly evolutionary algorithm with respect to our CPPC 

optimization goals. Thirdly, we present the confirmation of the thesis problem and highlight the 

most important propositions.  

2.1 Constraint Satisfaction Problems (CSP) for configuration 

We first introduce the basics of CSP, then how CSP can be used to model: product 

configuration, process configuration and concurrent product/process configuration. 

2.1.1 Foundation of Constraint Satisfaction Problems (CSP) 

In this section, we present constraints satisfaction problems that allow us to formalize the 

general knowledge necessary for the configuration activity. In a first step, we formally define 

the problems of constraint satisfaction and specify the types and natures of variables and 

constraints that they cover. In a second step, we review the different types of constraint 

satisfaction problems: we classify them according to (1) the type and nature of their constraints 

and (2) the relevance of variables in the problem and the solution. 

2.1.1.1 CSP framework 

Constraint programming is a programming paradigm in which constraints are used to state 

or define the relationships between variables, and thus restrict the solution space. Constraint 

Satisfaction Problem (CSP) provides a unifying framework in which it is possible to express, 

in a natural way, a wide variety of computational problems (Krokhin & Zivny, 2017). 

Constraint Satisfaction Problems (CSP) allow modeling knowledge and reasoning on it to find 

all consistent solutions. The standard formalism of the constraint satisfaction problem goes back 

to (Montanari, 1974). 
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• Definition 1: Constraint Satisfaction Problem 

Formally speaking, (Tsang, 1993) defines the concept of constraint satisfaction problem as 

follows: "CSP is a problem composed of a finite set of variables, each of which is associated 

with a finite domain, and a set of constraints that restricts the values the variables can 

simultaneously take."  

The constraint satisfaction problem consists of a triplet (X, D, C) defined by: i) a set of 

variables X = {x1,…,xn}, ii) a domain for each variable D = {D1,…Dn} and iii) a set of 

constraints C = {C1,…,Cn} linking the variables X and representing the solution space 

(Felfernig, et al., 2014). 

• Definition 2: Task in a CSP 

"The task in a CSP is to assign a value vk to each variable xi such that all the constraints Cj 

are satisfied simultaneously" (Tsang, 1993). 

• Definition 3: Solution of a CSP 

"A solution S of a CSP (X, D, C) is a complete instantiation of the variables in X satisfying 

all the constraints in C" (Bartak , et al., 2010). 

• Definition 4: Consistent CSP  

"If a CSP has at least one solution, it is said that the CSP is satisfiable or consistent, 

otherwise we say that it is inconsistent" (Bartak , et al., 2010).  

• Definition 5: Domain of a Variable 

"The domain of a variable xi is a set of all possible values that can be assigned to the 

variable. If "x" is a variable, then we use "Dx" to denote the domain of it" (Tsang, 1993). 

• Definition 6: Degree of a Variable 

"The variable degree corresponds to the number of constraints in which the variable is 

involved" (Ghédira , 2013). 

• Definition 7: Label 

A label "is a variable-value pair that represents the assignment of the value to the variable" 

(Tsang, 1993). The expression <x, v> is used to represent the label of assigning the value "v" 

to the variable "x" (Tsang, 1993) .  
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• Definition 8: Constraint 

"A constraint on a set of variables is a restriction on the combination of values that these 

variables can take simultaneously" (Ghédira , 2013). In other words, a constraint can be seen as 

a set of all the legal compound labels for the subject variables (Tsang, 1993). They can be 

presented in different ways like functions, inequalities, matrices, etc. (Tsang, 1993) 

• Definition 9: Arity of a Constraint 

"The arity of a constraint "C" is the number of variables involved in "C"" (Ghédira , 2013). 

A constraint is called unary if it relates to a single variable or binary if its arity is equal to two. 

More generally, a constraint is called n-ary when its arity is equal to "n" (Ghédira , 2013). 

2.1.1.2 Variables and Constraints 

The variables on which the constraints apply can be of different types: symbolic or 

numerical, discrete or continuous. There are two ways to map the set of variables (Vareilles, 

2015). The Figure 5 presents this mapping according to the type of the elements of the domains 

and their cardinal. 

 

Figure 5- Classification of variables (Vareilles, 2015) 

If we consider only the type of elements of the domains definition, we obtain two disjoint 

subsets: symbolic variables (in green) and numerical variables (in brown). If we consider the 

cardinality of the domains definition (countable or not), we obtain two other disjoint subsets: 

the discrete variables (in blue) and the continuous variables (in red). 
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On the first hand, the constraints allow limiting the space of solution by delimiting the 

combinations of values that the variables can take simultaneously (in these cases they are 

qualified as compatible). On the other hand, they allow modifying the structure of the solution 

space (or CSP) by adding or removing elements (variables and constraints) to the current 

problem to be solved (in this case they are called activation) (Mittal & Falkenhainer, 1990). 

The activation constraints make possible to manage the relevance of the elements (variables 

and constraints) of the problem by a mechanism of implicit activation or de-activation (Van 

Oudenhove de Saint Gery , 2006). 

The diversity of knowledge to be formalized leads to the definition of different types of 

constraints (Yannou, 1998): a) compatibility tables representing in tabular form, the explicit list 

of authorized values to take into account, for instance, the allowed combinations of components, 

b) numerical functions representing in a mathematical form, the implicit combination of 

variable values to formalize, for instance, the computation of a product weight or a temporal 

relationship between activities or c) even pairwise functions defined by parts, allowing to take 

into account empirical knowledge or experimental results formalized in form of abacus 

(Mulyanto , 2002) (Vareilles , 2005) (Chenouard, 2007). 

Figure 6 summarizes the classification of constraints, according to their nature 

(compatibility or activation) and their type (compatibility tables, numerical functions and 

charts). 

  

Figure 6- Classification of constraints (Vareilles, 2015) 
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2.1.1.3  Classification of CSP  

Constraint Satisfaction Problems can be classified according to several criteria: a) the type 

of variables they possess (symbolic, continuous, temporal ...) (Gelle & Faltings, 2003), b) the 

type of the constraints (list of authorized values, mathematical function or temporal 

relationship) (Vareilles, 2015), and c) the nature of the established constraints (compatibility 

constraint and activation constraint) (Djefel , 2010) (Felfernig, et al., 2014). 

(Vareilles, 2015) proposed to complete the classification of (Djefel , 2010) (Felfernig, et 

al., 2014) for the notion of relevance of variables in the solution. For this, the notions of CSP 

with static structure and with dynamic structure are stated. CSP with a static structure are CSPs 

where the totality of variables "X" and the totality of constraints "C" characterize the solutions. 

No variables or constraint can be added as the problem is solved. CSPs with a dynamic structure 

are CSPs where the structure can be modified by adding variables and supplementary constraint 

as the problem is solved. 

In a similar way, we can distinguish the solutions with static structure that are described by 

the set of variables of "X" of the CSP. On the other hand, the solutions with a dynamic structure, 

contain only a subset of the variables of X, whereas these are present in the CSP, or have their 

structure evolve over time by adding or removing viable variables, in the same way as the CSP 

Three cases are then differentiated, the fourth combination (static CSP and dynamic 

solution) having no meaning, as illustrated in figure 7: 

Figure 7- Classification of CSP (Vareilles, 2015) 
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Static CSP and static solution 

• Discrete CSP: first type of CSP, defined by (Montanari, 1974) and characterized by discrete 

variables and compatibility constraints; described by lists of combinations of allowed or 

forbidden values (Tsang, 1993) and by discrete mathematical expressions. 

• CSP continuous: extension of discrete CSPs to the continuous domain and characterized by 

continuous numerical variables and constraints; described in general terms as mathematical 

functions, and more rarely by continuous compatibility constraints. 

• CSP Qualitative or quantitative temporal variables: characterized by temporal variables 

respectively representing time intervals (Allen, 1983); being moments or events (Dechter 

& Mairi, 1991) and by temporal constraints representing temporal relations between 

intervals or instants. (Meiri, 1996) proposed to combine these two types of temporal CSP 

to argue their expressiveness. 

• Mixed CSPs: characterized by variables of different types and discrete, continuous, 

temporal or mixed compatibility constraints (Gelle & Weigel, 1995), (Vareilles , 2005). 

Static CSP and dynamic solution 

• CSP *: characterized by discrete variables that have, for some, the value * in their domain 

(optional variables) and compatibility constraints taking into account the specific value * 

(Amilhastre, 1999) (Macdonald & Prosser, 2002). 

• State CSPs: characterized by discrete variables associated; for some, with a state Boolean 

variable indicating the relevance of the variable in the solution and compatibility constraints 

taking into account these state variables (Veron, 2001). 

Dynamic CSP and dynamic solution 

• Conditional CSP: characterized by discrete variables that are active or inactive in the 

problem, and constraints (compatibility constraints and activation constraints) that manage 

the relevance of variables in the problem, by explicitly allowing or prohibiting their 

activation according to four types of activation constraints (Mittal & Falkenhainer, 1990). 

Conditional CSPs have been extended to numerical variables (Gelle & Weigel, 1995), to 

the activation of subsets of variables (Soininen & Niemela , 1999), to the explicit activation 

of constraints (Vareilles , 2005) and to temporal CSPs (Tsamardinos , et al., 2003), (Vilim, 

et al., 2004), (Mouhoub & Sukpan, 2005). 

• Composite CSP: characterized by discrete variables, some of which are meta-variables that 

can be substituted by an entire sub-problem (variables and constraints) and compatibility 
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and activation constraints (Sabin & Freuder, 1996). Composite CSPs have been introduced 

mainly to model the hierarchical structure of configuration problems and have been 

extended to temporal CSP by (Mouhoub & Sukpan, 2005).  

• Generic CSP: dedicated to the configuration of products, characterized by discrete variables 

representing properties, ports and components, linked together by generic constraints of 

compatibility or activation. GCSP are by nature, hierarchical (Stumptner , et al., 1998).  

2.1.2 Product Configuration Definition and CSP Model  

In this section we present the basic definitions and a summary of the configuration 

techniques related to the product domain. 

2.1.2.1 Basic Definitions  

• Definition 10: Product   

A Product is “any good or service produced for sale, barter or internal use” (Blackstone, 

2013). It has a combination of tangible and intangible attributes that an enterprise offers to a 

customer for purchase. A product seeks to serve a need or satisfy a want (Blackstone, 2013). 

• Definition 11: Product Architecture  

Product architecture can be defined as “the way in which the functional elements of a 

product are arranged into physical units and the way in which these units interact” (Jiao, et al., 

2007) (Ulrich & Eppinger, 1995). For our research, we are mainly interested in integrated, 

modular and platform architectures.  

• Definition 12: Configurable Products  

We will focus on one type of product usually called configurable products. They have a 

predefined basic structure that can be customized by combining a series of available 

components and options (modules, parts,….) or by specifying suitable parameters (lengths, 

tensions,….) (Campagna & Formisano, 2013). Actually, a configurable product does not 

correspond to a specific physical object, but identifies a set of (physical) objects that a company 

can produce.  

A classical definition of Configurable Product was presented by (Veron, et al., 1999) as "a 

set of attributes (or components) which possible values belong to a finite set, and a set of 

feasibility constraints over these attributes which specify their compatible combinations of 

values".  
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• Definition 13: Product Configuration   

Product configuration is a consolidated methodology and one of the most effective 

technologies of mass customization strategies (Felfernig, et al., 2014) (Sabin & Weigel, 1998). 

It is a widely used technology for generating and building individualized products (product 

family design) which has been deployed by many companies for years (Wang, et al., 2015).  

Generally speaking, the task of product configuration is "to search the predefined 

components set according to customers’ requirements and the constraint relationships among 

the components, and to obtain the configuration results which can meet the customer’s 

personalized requirements " (Wang, et al., 2015) (Brown, 1998). 

(Aldanondo & Vareilles, 2008) summarized the following Product Configuration definition 

based on a compilation of common features proposed by various authors concerning product 

configuration (Mittal & Frayman, 1989) (Sabin & Weigel, 1998) (Soininen, et al., 1998) 

(Aldanondo, et al., 2003):  

• Hypothesis: a product is a set of components, 

• Given: 

i. a generic model of a configurable product able to represent a family of products with all 

possible variants and options, that gathers: 

1) a set of component groups and relevant component quantities, 

2) a set of various constraints that restricts possible combinations of components and/or 

component quantity values, 

ii. a set of customer requirements, where a requirement corresponds with a selection of a 

component or a quantity of this component, 

• Product Configuration can be defined as ‘finding at least one set of components that satisfies 

all constraints and customer requirements'. 

Then the same authors proposed a lightly modification of this basic definition with the 

introduction of the notion of product properties, which allows to characterize the requirements 

and to introduce the description view as follow:  

• Hypothesis: a product is a set of components, 

• Given: 

i- a generic model of a configurable product able to represent a family of products with all 

possible variants and options, that gathers: 
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1) a set of component groups, 

2) a set of product properties,  

3) a set of various constraints that restricts possible combinations of components and/or 

property values 

ii- a set of customer requirements, where a requirement corresponds with a selection of a 

component or a property value, 

• Requirements and Product Configuring can be defined as ‘finding at least one set of 

components that satisfies all the constraints and the customer requirements'. 

The component quantity introduced in the first definition by (Aldanondo & Vareilles, 2008) 

was considered in the last definition as a product property. The authors clarified that component 

quantity is mainly a physical characteristic of the product but is also necessary to consider it as 

a requirement (Aldanondo & Vareilles, 2008).  

The configuration result is a set of components or a bill-of-materials (Aldanondo & 

Vareilles, 2008). In other words, we get a listing of all sub-assemblies, intermediates, parts and 

raw materials that go into a parent assembly showing the quantity of each required to make an 

assembly (Blackstone, 2013). 

2.1.2.2 Configuration Techniques  

(Brown, 1998) summarized the next variety of techniques that can be used together to 

support configuring task:  

Component Choice  

(Brown, 1998) explained that "Component Choice" plays an important role on its 

usefulness. For example, the author said that a large and complex component has more 

requirements than others that also need to be included, so they have less flexible use. The simple 

and small components will probably provide more flexibility and will require more configuring; 

large components can be considered to be preconfigured sets of smaller components (Brown, 

1998). 

Experience and Knowledge 

(Brown, 1998) proposed that the "Experience and Knowledge" affects the search for a 

configuration process. He clarifies that they can reduce the search because the knowledge 

allows us to build previous structured descriptions of the available components; then the 
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experience may reduce the errors because it can allow us to build previously discovered sub-

configurations or heuristic into the system (Brown, 1998). 

Hierarchies  

(Brown, 1998) affirms that hierarchies are abstractions that allow a descending 

configuration strategy in order to avoid the excessive combination generated when a lot of 

details at the beginning are considering. For example a "Component Hierarchy" groups specific 

components into types and subtypes, a "Functional Hierarchy" provides a way of storing 

functions organized by type and abstractness and a "Part-Subpart Hierarchy" can be used for 

functions, for components, or both (Brown, 1998). 

Templates 

(Brown, 1998) mentioned that configuration "Templates" refer to any preformed piece of 

configuration from past experience. For example, a template can associate functional and/or 

structural items and they include components and relationships between them at some level of 

abstraction (Brown, 1998). 

Key Components  

Key Components correspond to "those that are almost always required, or those on which 

many other choices depend, suggesting that their correct choice should take priority" (Mittal & 

Frayman, 1989).  

Constraints  

As mentioned by (Wang, et al., 2015) various valid methods for solving product 

configuration have been studied and constraint satisfaction problem (CSP) is one of them 

(Felfernig, et al., 2014). In many works on the subject (Pitiot, et al., 2014) (Sabin & Weigel, 

1998) (Zhang, 2014), the Constraint Satisfaction Problem framework (CSP) has been efficiently 

used to model and support the product configuration activity.  

Selection of components introduces new variables and new constraints (Mittal & 

Falkenhainer, 1990), so the constraints are introduced by decisions (Brown, 1998). The 

objective is to find a feasible product that satisfies not only the constraints but also the user’s 

requirements (Veron, et al., 1999). According to this objective of choosing a feasible instance 

of a product among all its variations, the configuration problem can be mapped into a constraint 

problem. And the Constraint Satisfaction Problem (CSP) offers a suitable framework (Veron, 

et al., 1999).  
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2.1.3 Process configuration Definition and CSP Model  

In the following section we present basic definitions and a summary of the process 

configuration techniques.  

2.1.3.1 Basic Definitions  

• Definition 14: Process  

A process is "a planned series of actions or operations (e.g., mechanical, electrical, 

chemical, inspection, test …) that advances a material or procedure from one stage or 

completion to another" (Blackstone, 2013). 

Different types of processes for the products from product families are presented as follows 

(Wang, et al., 2015) (Schierholt, 2001): 

• Standard process: the processes necessary to manufacture the product are the same, appear 

in the same sequence and have fixed process parameters.  

• Standard process sequence with variable parameters: The processes necessary to 

manufacture products are always the same and always appear in the same sequence, but 

have variable process parameters depending on the specified product variant.  

• Standard process sequence with variant: standard process sequence exists for manufacturing 

product variants of a product family. Some processes of the standard sequence can be added 

or neglected depending on the specification.  

• General process framework: General process framework exists for all product variants, and 

the framework is filled with manufacturing processes from a predefined set. The sequence 

within the framework might vary.  

• Variable process sequence: No predefined sequence of processes exists, and the 

manufacturing processes used might be totally new. 

The process configuration can be applied for the "standard process sequence with variants" 

and the "general process framework", and is partially applicable for the "standard process 

sequence with variable parameters" (Wang, et al., 2015). 

• Definition 15: Process Configuration  

As we mentioned in the first Chapter, (Schierholt, 2001) concludes that the transference of 

the principles used in product configuration to the problem of process planning is called process 

configuration. So the essence of process configuration is the process planning (Wang, et al., 

2015).  
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(Schierholt, 2001) defined process configuration as "the task of selecting the manufacturing 

processes needed to manufacture a product variant according to customer specifications from a 

fixed, predefined set of processes, putting these manufacturing processes into sequence, and 

generating production data for each process while respecting all compatibility constraints on 

how process may be combined and ordered". 

Process configuration is more complex than product configuration because of the temporal 

constraints and resource constraints of production (Wang, et al., 2015). For example: some 

restrictions can be dynamics during the resolution process and also because the number of 

restrictions is unknown at the beginning (Wang, et al., 2015).  

We can find some academics cases of production configuration of product families (Zhang, 

et al., 2012) (Zhang & Rodrigues, 2010) (Wu, et al., 2013). This production configuration 

concept was presented by (Zhang , 2007) based on a process platform as follows: "From an 

existing process platform in relation with a product family, the proper process elements, such 

as conceptual processes for individual product items (including the end product), operations, 

machines, tools, fixtures, cycle times, and setups are selected for new members of the associated 

product family, and subsequently arranged into routings, where in the process concepts for 

items are replaced with the detailed operations, for producing the given product; both the 

selection and arrangement of process elements are subject to constraints represented by 

configuration rules in the process platform".  

(Wang, et al., 2015) applied the configuration technique to the process planning of product 

families. They introduced an algorithm in order to achieve the process configuration and 

developed a validation experiment on machining process configuration for a satellite plate 

panel. Formally speaking (Wang, et al., 2015) described the process configuration in the form 

of a tuple (P´, PM, RE, RU ) where:. 

• P´ represents the sets of configurable objects in process, such as the set of activities, the set 

of constrained variables representing process characteristics and involved resources, the set 

of temporal constraints between activities, the set of resources constraints and the set of 

constraints on activity durations. 

• PM defines the structure of process, represents the configurable process model.  

• RE represents the process technical requirements of product. 

• RU represents the rules and knowledge between configurable objects.  
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The result is either a process suitable for the target product or a no feasible solution. The 

feasible process in process configuration task could be called configuration scheme (Wang, et 

al., 2015). 

Finally, (Aldanondo & Vareilles, 2008) introduced the Process Configuration view or 

routing configuration as already seen in section 1.1.2.2  

− “Given:  

(i) a generic model of a configurable routing able to represent a family of production 

processes with all possible variants and options, that gathers:(1) a set of operations, (2) a set 

of resources with a required quantity, (3) a set of various constraints that restricts possible 

combinations of operations, resources and required quantities, 

(ii) a set of inputs, where an input corresponds with a selection of an operation, a resource 

or a quantity value, 

− Routing configuring can be defined as ‘finding at least one set of operations with relevant 

sets of pairs (resource, quantity) that satisfies all the constraints and the inputs.” 

2.1.3.2 Process Configuration Techniques  

At the beginning when (Schierholt, 2001) presented the concept of Process Configuration, 

he described generic process structures using directed graphs. These structures called plan 

skeletons had the knowledge about sequences of processes.  

In a same way as product configuration (section 2.2), authors interested in process 

configuration have shown that planning process could be also modelled and aided when 

considered as a CSP. For example, (Zhang & Rodrigues, 2010) studied the logic for configuring 

production processes using a dynamic modeling and visualization approach. (Zhang, et al., 

2012) developed a constraint satisfaction approach for production configuration decisions 

taking into consideration the constraint identification, representation and evaluation. Moreover, 

the planning and scheduling problem was tackled by (Bartak , et al., 2010) using constraint 

satisfaction techniques.  

Finally, (Wang, et al., 2015) applied the configuration technique to process planning of 

product families. They solved the process configuration task by generative constraint 

satisfaction problem (GCSP). The GCSP is an Extension of CSP that was proposed by 

(Stumptner , et al., 1998) (Stumptner & Haselböck, 1993). 
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2.1.4 Concurrent Product and Process Configuration (CPPC) Definition and CSP Model  

In this section we present the Concurrent Product and Process definition and the related 

configuration techniques. 

2.1.4.1 Basic Definitions  

• Definition 16: Concurrent Product and Process Configuration 

From a product-line view point, a product consists of three parts (Dhungana, et al., 2017): 

"features representing the customer facing problem space, a BOM (Bill of Material) and BOP 

(Bill of Processes) representing the solution space". The result of product configuration is a 

manufacturing order consisting of a list of materials (BOM) and a set of production operations 

(BOP) acting on materials (Dhungana, et al., 2017). That is why it is inevitable to consider 

production constraints during the product configuration. The analysis of this kind of problem 

has to become concurring because the configuration task impacts the product domain and 

process domain at the same time (Aldanondo, et al., 2008). On one hand, product configuration 

decisions may have strong consequences on the planning of its production process. On the other 

hand, planning decisions can provide hard constraints to product configuration. Dealing with 

product and process configuration in an independent way can cause inconsistencies due to the 

consequences and constraints between both domains (Aldanondo, et al., 2008). 

In the previous sections we have presented that (Aldanondo & Vareilles, 2008) summarized 

a Product Configuration definition and introduced the Process Configuration view or routing 

configuration. They analyzed the product domain and the process domain in a similar way, 

because associating the elements that characterize each definition we can find similarities 

between product and process environments, as shown in Table 1. 

Table 1- Similarities between Product and Process 

Product Process 

▪ A set of component groups. 
▪ A set of operations. 

▪ A set of product properties. 
▪ A set of resources with a required quantity. 

▪ A set of various constraints that restricts 

possible combinations of components 

and/or property values. 

▪ A set of various constraints that restricts 

possible combinations of operations, resources, 

and required quantities. 
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Product Process 

▪ A set of customer requirements, where a 

requirement corresponds with a selection 

of a component or a property value. 

▪ A set of inputs, where an input corresponds with 

a selection of an operation, a resource or a 

quantity. 

As a result, there are elements of the process domain associated for each element of the 

product domain. For example: 

• A set of component groups is related to the set of operations 

• A set of product properties is specific related to the set of resources with a required quantity. 

• A set of various constraints in the product domain is related to the set of various constraints 

in the process domain.  

• A set of customer requirements linked with the product is related to the set of inputs for the 

process. 

For that reason, (Aldanondo & Vareilles, 2008) showed how Process Configuration could 

be achieved with respect to Product Model. For example: the existence of an operation in a 

configured process routing can depend on the configured product (Aldanondo & Vareilles, 

2008). 

Based on this background we take back the definition of Concurrent Product and Process 

Configuration that we proposed in the first chapter "as the task of configuring a product and its 

related process at the same time, in order to meet technical and particular customer 

requirements"  

2.1.4.2 Concurrent Product and Process Configuration Techniques  

Mass customization can encompass the management of the entire product cycle, from the 

customer's order to the final manufacturing (Aldanondo & Vareilles, 2008). Therefore, it is 

necessary to extend the configuration techniques to the process planning. 

Some researchers incorporated product configuration with process planning (Pitiot, et al., 

2014) (Campagna & Formisano, 2013). (Campagna & Formisano, 2013) described a modeling 

framework (PRODOC) that allows to model a product and its production process. They 

described the main features and capabilities offered to model production processes and to link 

them with the corresponding products models. They showed that processes could be modelled 

in terms of activities and temporal relations between them, considering resource 

production/consumption and interdependencies between process executions and product 

productions. (Aldanondo & Vareilles, 2008) extended the product configuration to downstream 
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process configuration. They divided process configuration into routing configuration and 

operation configuration which could both be considered as CSP.  

For handling the numerous constraints associated with product and process variety, (Zhang, 

et al., 2012) have developed a constraint satisfaction approach to facilitate production 

configuration. They formulated a domain-based model to conceptualize the production 

configuration process, involving inter-connections among multiple domains in conjunction 

with diverse domain decision variables and constraints. The production configuration was 

formulated as a constraint satisfaction problem (CSP), using a constraint heuristic for the search 

of the solution.  

(Dhungana, et al., 2017) proposed to integrate product and production configuration by 

using new methodology for variability management in smart production ecosystems. They 

proposed novel concepts and algorithms for a holistic configuration approach required to 

support product designers, factory operators and end users in a common market place. They 

used the CSP paradigms for solving the combinatorial problem.  

In (Aldanondo, et al., 2008) the product configuration and planning problems are considered 

concurrent as two Constraint Satisfaction Problems. The objective is to propagate decision 

consequences between the two domains by the use of constraints. They proposed to couple 

together interactive product configuration tools with process planning tools in order to pass 

decisions made from one to the other. In particular, they proposed to associate product 

configuration and production planning in order to allow: (i) the propagation of the consequences 

of each product configuration decision toward the planning of its production process; (ii) the 

propagation of the consequences of each process planning decision towards the product 

configuration. This should reduce or avoid planning impossibilities due to product 

configuration, and configuration impossibilities due to production planning. 

Configurable products are modeled as a set of components (Aldanondo, et al., 2008). Each 

component is associated to a set of properties representing its configurable characteristics. 

Moreover, a set of constraints restricts possible combinations of components and property 

values. Production planning is addressed considering a production process as a set of task 

entities. A task entity is defined with: temporal parameters (start time, finishing time, and 

duration), resource parameters (required resource, and quantity of required resource), 

compatibility constraints (linking duration with required resource and/or required resource 

quantity) (Aldanondo, et al., 2008). 
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Coupling constraints are used to link a product with a process model (Aldanondo, et al., 

2008). A coupling constraint is a compatibility constraint that links a variable of the 

configuration model with a variable of the planning model. Any variable of the configuration 

model can belong to a coupling constraint. On the planning model side, resource parameters 

and duration variables can be involved in coupling constraints. A resource parameter in a 

coupling constraint allows to propagate the impact of a configuration decision on the selection 

of the required resource and/or resource quantity (reverse behavior from resource selection to 

product configuration is also possible). A temporal parameter duration in a coupling constraint 

allows to propagate the impact of a configuration decision on the modulation of the duration of 

a task (reverse behavior from duration modulation to product configuration is also possible). 

(Aldanondo, et al., 2008) showed that it is possible to manage interactions between product 

configuration and production planning. However, it´s only a primary result on the study of 

coupling process with product configuration. 

2.1.5 Synthesis  

The analysis and modeling of both product and process domains has to be done 

simultaneously because of the concurrent characteristic, the multiple interactions and inter-

relations that exist between the two domains. The configuration of each of these two domains 

can, without any doubt, be considered as a constraint satisfaction problem. Consequently, we 

consider the CSP framework for following modeling issues. In terms of kinds of CSP, we 

consider discrete variables and constraints for the configuration aspect and continuous variables 

and constraint for the criteria evaluation. As we are going to optimize the problem with 

evolutionary approaches, we will consider CSP with a static structure (no addition of variables 

and constraints in the problem during solving) in order to avoid the need to adapt evolutionary 

algorithm to chromosome with a structure that changes during optimization.  

2.2 Optimization of CPPC: definitions, OCSP Model and multiobjective 

issues  

Next, we summarized the most important definitions related to the problem of the 

Optimization of the Concurrent Product and Process Configuration (O-CPPC), the applicable 

optimization methods, the proposed method (CFB-EA) and related works. 
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2.2.1 Basic Definitions  

• Definition 17: Constrained Optimization  

Constrained optimization is the process of optimizing an objective function with respect to 

some variables in the presence of constraints on those variables. These constraints are expressed 

as a set of relationships that the variables have to satisfy. The constraints are usually presented 

as equalities, inequalities or compatibility tables.  

• Definition 18: Constraint satisfaction and optimization problem (CSOP) 

 Constrained Satisfaction and Optimization Problems (CSOP) extend CSP with 

optimization needs. Solving a CSP means finding a feasible solution while solving a CSOP 

means finding a feasible and optimized solution (Eiben, 2001). Formally speaking CSOP is 

defined by (Tsang, 1993) as a quadruplet (X, D, C, f), gathering a CSP with an optimization 

function "f” which maps every solution tuple to a numerical value: 

•  (X, D, C) is a CSP, and if S is the set of solution tuples of (X, D, C), 

• Then f (S) → numerical value. 

• Given a solution tuple T, we call f(T) the f-value of T. 

The task in a CSOP is to find the solution tuple with the optimal (minimal or maximal) f-

value with regard to the application dependent optimization function f (Tsang, 1993). 

• Definition 19: Combinatorial Optimization  

In optimization field, combinatorial optimization consists of finding an optimal solution 

from a finite set of feasible solutions (Gupta & McGovern, 2011).  

Usually the set of possible solutions is very large so much so that exhaustive search is not 

tractable. In the CPPC problem, it corresponds to the fact that decision variable domains (D) 

are discrete. Because the space of possible solutions is typically too large, the solving methods 

are generally suboptimal and include heuristics and metaheuristics.  

Definition 20: Constraint satisfaction and multiobjective optimization problem 

(CSMOP) 

This formalism extends the CSOP case with an objective function with several criteria, often 

contradictory. The fitness function of CSOP is therefore f(S)=f1(S), f2(S),…, ft(S):  

• fi(S) is the ith objective function, 

• S is a solution that respects C constraints, 
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• t is the number of objectives. 

Solving such problem consists in finding not only one solution but the set of solutions that 

represents the best trade-off or “compromise surface” between objectives. To define formally 

this set, the notion of optimal Pareto Front based on Pareto-dominance concept, is often used.  

• Definition 21: Pareto-dominance  

For any two solutions a and b, a dominate b if: 

∀𝑖, 𝑓𝑖(𝑎) ≤ 𝑓𝑖(𝑏) 𝑎𝑛𝑑 ∃𝑖, 𝑓𝑖(𝑎) < 𝑓𝑖(𝑏), 𝑖 = 1, 2, … , 𝑡 

• fi(a) is the ith objective function, 

• a and b are solutions that respect C constraints, 

• t is the number of objectives. 

• Definition 22: Pareto optimality  

A solution a is called Pareto optimal, if there is no other solution that dominates it.  

The set of Pareto optimal solutions is called Pareto Front. Multiobjective optimization 

consists in finding this optimal set. But, as solution space is very large, the aim is to find the 

best approximation in a reasonable computation time. 

2.2.2 Optimization and Configuration related works 

The globalization forces many industries to change from mass production to mass 

customization, because it is necessary to respond to the customers’ requirements in a fast way 

with high quality and reasonable cost (Pine , 1993).  

As mentioned by (Li, et al., 2006) and (Wei, et al., 2014), product configuration is one of 

the most important technology in the environment of mass customization. That´s why has been 

recognized as an effective means to implement it (Zhou, et al., 2008). 

(Zhou, et al., 2008) and (Li, et al., 2006) agreed that most of the existing literature is mainly 

focuses on generating feasible configuration solutions from an engineering perspective using 

constraints-based and knowledge-based applications, which makes it very difficult to optimize 

design of product configuration (Li, et al., 2006). (Jiao & Zhang, 2005) explained that meeting 

customer’s individual requirements through product configuration is essentially an optimization 

problem. But the traditional product configuration optimization targets are mostly single (Wei, 

et al., 2014). 
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(Li, et al., 2006) emphasized that we can get a huge number of possible product 

configuration solutions from the product model despite a great variety of constraints. So they 

concluded that the goal of the configuration process is to find feasible solutions that satisfy 

customer requirements and product constraints. That´s why they presented an approach based 

on multiobjective genetic algorithm to solve this kind of problem. First, they discussed the 

configuration product model, then the multiobjective optimization problem of product 

configuration is described with its mathematical formulation. Finally, a multiobjective genetic 

algorithm is designed for finding the Pareto optimal for the problem.  

(Du, et al., 2014) formulated a Stackelberg Game Theoretic Model for joint optimization of 

product family configuration and scaling design. In a bi-level decision structure reveals coupled 

decision making between module configuration and parameter scaling.  

(Zhou, et al., 2008) proposed a new optimization approach for customer driven product 

configuration for assemble-to-order manufacturing enterprises. First they established a 

configuration space for targeting the diversity of customer needs and a utility function is 

employed to model and measure customer preference. They formulated the mathematic model 

that maximizes the ratio between overall utility and cost from the perspective of the customers 

and manufacturers. Finally, a genetic algorithm is adopted to solve the combinatory 

optimization problem where a nested encoding scheme and multiple constraints handling are 

incorporated to improve the performance of configuration solving.  

(Wei, et al., 2014) mentioned that how to select the correct module to form the optimal 

product configuration scheme attracts increasing attention in the field of configuration 

optimization. So they presented and discussed the multiobjective optimization and evaluation 

method of modular product configuration design scheme. They proposed an approach based on 

genetic optimization algorithm and fuzzy-based select mechanism to solve the configuration 

optimization problem.  

(Song & Chan, 2015) developed a study to optimize the configuration of product-extension 

service (PES). Because most of the configuration optimization models are product-related, and 

they are not suitable for PES configuration optimization. They proposed an optimization model 

for PES configuration. The model simultaneously takes service cost, service response time, and 

service performance as the optimization objectives. The model of service configuration is 

solved with the non-dominated sorting genetic algorithm II (NSGAII) to obtain the optimized 

service configuration set. The validation of the proposed model in elevator service 

configuration shows that it can be used as an effective method for PES configuration. 
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 (Liu, et al., 2011) proposed that components in a product can be clustered into several 

modules according to some requirement. The authors defined a clustering issue as an 

optimization problem and identify its possible computation scale. Discrete particle swarm 

optimization (PSO) is applied to seek the optimal in the whole solution space, and it is proved 

as an effective method with an example of printer.  

Finally, (Tang, et al., 2017)concluded that most of the configuration studies are focused on 

the cost or the customer utility, but ignore the environmental concern which becomes an 

important design criterion due to the rising awareness of environmental protection. They 

developed a new bi-objective optimization model integrating environmental concerns into 

product configuration. In their optimization model, the customer satisfaction Index (CSI) and 

the greenhouse gas (GHG) emissions of a product is formulated as optimization objectives. 

Moreover, to solve the established optimization model, they proposed a two-phase approach. 

In the first step, the relative weight of each function module is calculated and the candidate 

instance is determined by filtering the instances which do not satisfy the selection constraint. 

Then, the product configuration can be generated based on a multiobjective genetic algorithm. 

Finally, a numerical case study is introduced for testing the effectiveness of the proposed 

method. 

2.2.3 Multiobjective decision aiding process  

Several approaches could be used to solve a multiobjective optimization problem. The 

choice depends on the difficulty of the problem to solve (nature of evaluation functions, size 

and complexity of the problem in terms of number of variables, size and nature of their domains, 

constraints density, etc.) and also on desired decision support process.  

Exact mathematical approaches like branch and bound have a limited field according to the 

complexity of the problem. Metaheuristics are then wildly used for complex problems. They 

don’t guarantee the optimality but give near-optimal solutions in reasonable computation time.  

Considering decision support in multiobjective context, three main approaches could be 

considered: “a-priori”, interactive or “a posteriori” approaches.  

• In “a-priori” approaches, user must prioritize or weight objectives. Optimization is thus 

transformed in a mono-objective problem. The major issue is thus to be able to prioritize 

objectives. 
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• In interactive approaches, user guide optimization towards a solution satisfying the selected 

compromise during optimization. This kind of approach does not guarantee to explore all 

areas of the search space but allows to explore faster an area of interest of the user. 

• In “a posteriori” approaches, the multiobjective aspect is preserved during optimization step 

and algorithm must find a complete set of solutions that represent the best compromise 

between objectives (Pareto Front). The trade-off between objectives is done by the user 

after the optimization when he selects a solution among the given set. 

This “a posteriori” way clearly complicates the optimization and requires an additional 

selection step for the user. But it avoids “blind” choice between objectives. The user can see 

different possibilities and decide his/her own specific compromise. Our approach belongs to 

this kind of decision aiding process. Nevertheless, improvement proposed in chapter 5 is 

inspired by interactive possibilities. 

Even in a-posteriori approaches, there is two ways to deal with a multiobjective 

optimization: aggregation (or scalarization) approaches or Pareto-based approaches. 

Scalarization methods decompose objective space and try to find best solutions in each area. 

Pareto-based approaches maintain various objectives separate and use Pareto-dominance 

concept to evaluate solutions.  

Various metaheuristics like particle swarm or evolutionary algorithm (EA) could be used in 

this optimization task. EAs show a great interest for multiobjective optimization due to their 

population-based and easy to implement skills.  

Evolutionary algorithms deal simultaneously with a set of possible solutions (the so-called 

population). This allows to find several members of the Pareto optimal set in a single run of the 

algorithm, instead of having to perform a series of separate runs as in the case of the traditional 

mathematical programming techniques. Additionally, evolutionary algorithms are less 

susceptible to the shape or continuity of the Pareto front (e.g., they can easily deal with 

discontinuous or concave Pareto fronts), whereas these two issues are a real concern for 

mathematical programming techniques. 

2.2.4 Presentation of EA 

Evolutionary algorithms are inspired by the biological evolution of species and appeared at 

the end of the 1950´s. They are part of a branch of artificial intelligence concerning optimization 

algorithms called metaheuristics. These are generic optimization algorithms (applicable to a 

wide family of combinatorial and multiobjective problems). Evolutionary Algorithms is the 
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name of the family of methods using evolutionary concepts. They gather various subgroups like 

evolution strategies (Rechenberg, 1965), evolutionary programming (Fogel , et al., 1966) or 

genetic algorithms (Holland , 1992). 

Formally speaking, a generic EA consists of four operations, including reproduction, 

mutation, recombination, and selection, and all these operations are repeated until the algorithm 

converges to a certain point with some criteria satisfied (Dubitzky, et al., 2013). In an EA, each 

candidate solution is represented as a chromosome. In each step of EA, the chromosomes 

compete against each other and those representing poor solutions will be kicked out before next 

step. To evaluate the chromosomes, a fitness function is defined as the objective function.  

(Zitzler, et al., 2002) summarized that after the first studies on evolutionary multiobjective 

optimization (EMO), a number of Pareto-based techniques were proposed like MOGA 

(Fonseca & Flemming, 1993) or NSGA (Srinivas & Deb, 1994). They demonstrate the 

capability of EMO algorithms to approximate the set of optimal trade-offs in a single 

optimization run. Then a couple of elitist multiobjective evolutionary algorithms were 

presented at this time. The two more known are SPEA2 (Zitzler, et al., 2002) and NSGA-II 

(Deb, et al., 2002). More recently, new approaches have proposed using scalarization technics 

like ε-MOEA (Deb, et al., 2003) or MOEA/D (Zhang & Li, 2007). They convert a 

multiobjective problem in a collection of single-objective problems. Solving each sub-problem 

gives a point in Pareto front. Those scalarization methods show a great interest for many-

objective problem (more than 4 objectives) (Wagner, et al., 2007). 

In this research, we will use and improve an adapted version existing of the Evolutionary 

Algorithm SPEA2 because it can provide solutions on a Pareto front in a first efficient way for 

this kind of global optimization problems with multiple objectives. We chose it because it is 

widely used and recognized to solve difficult, combinatorial and multiobjective optimization 

problems and it’s easy to implement. The concepts discussed could also be adapted for other 

similar metaheuristics (particle swarms, ant colonies,...) or other EA variants.  

The main ideas of SPEA2 are a) the evaluation of a solution takes Pareto-dominance and 

the local density of solutions into account, b) a set of the best and most diversified solutions are 

preserved in a separate archive, c) a binary tournament in the archive is used to select parents 

for a crossover. The SPEA2 algorithm has been adapted to take into account constraints of the 

problem using a filtering engine. It leads to CFB-EA proposed in (Pitiot, et al., 2013). 
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2.2.5 Constraints handling in EA  

EAs were initially proposed for very large and unconstrained solution spaces. They have 

been adapted by many authors in order to handle constraints. On his website, (Coello, s.f.) 

maintains a “List of References on Constraint-Handling Techniques used with Evolutionary 

Algorithms” that can be organized according to the following six kinds of approaches.  

• Penalty function. The idea is to reduce or penalize fitness value according to constraint 

violation. Thus, solutions that do not respect constraints are discarded. 

• Stochastic ranking. The idea is to modulate previous over/under penalization of the penalty 

function with a ranking process. 

• Epsilon constrained method. The idea is first to minimize the number of violated 

constraints, then optimize the objective function. 

• Multiobjective. The idea is to consider constraint violation as a single objective and to 

associate it with the original objective function in a multi-criteria problem. 

• Feasibility rules. The idea is to compare all pairs of solutions, in a binary tournament, with 

three rules mixing fitness value and constraint violation level. 

• Special operators. The idea is to deal only with feasible solutions through repairing methods 

or preservation of feasibility methods.  

The CFB-EA algorithm belongs to the last kind of approach, which only allows feasible 

solutions in the archive. CFB-EA complete SPEA2 with the addition, during: (i) the initial 

population generation process, (ii) the crossover and mutation process, of some constraint 

filtering that prunes search space and prevents inconsistent solutions in the population. Six 

parameters are required: size of archive, size of population, number of generations or any 

stopping criterion, crossover probability for individual selection, mutation probabilities for 

individual and gene selections. The CFB-EA algorithm is illustrated on figure 8.  

 

Figure 8- CFB-EA algorithm (Pitiot, et al., 2013) 
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2.2.6 Synthesis  

Given the following specificities of the configuration problem: (i) the problem size, which 

can vary greatly, (ii) the size of the problem to optimize, which depends on the amount of 

elementary requirements to be processed before optimization, (iii) the constraints level which 

is rather low (the goal of companies is to sell products and so many solutions are possible), (iv) 

multi-criteria optimization is most often necessary; even if some works have investigated 

configuration optimization using case-based reasoning, most of the published material 

considers metaheuristics. Due to their population-based search, their multi-objective aspect and 

their genericity, metaheuristics like particle swarm optimization (PSO) (Yadav, et al., 2012) or 

Evolutionary Algorithms (EA) (Wei, et al., 2014) (Dou, et al., 2016) (Tang, et al., 2017) are 

logically suitable for configuration optimization. They have to integrate constraints handling to 

manage unfeasibility in their optimization process. We position our contribution in this work 

stream and will use the Evolutionary algorithms CFB-EA (Pitiot, et al., 2013) which is based 

on SPEA26. Conclusion and confirmation of thesis proposition  

It´s inevitable to consider process configuration during the product configuration. The 

analysis of this kind of problem has to become concurring because there are multiple 

interactions and interrelated variables between both domains. It has been shown that the 

Constraint Satisfaction Problem framework can be efficiently used to model product and 

process configuration and its optimization. 

, For the Optimization of the Concurrent Product and Process Configuration problem (O-

CPPC), we have shown the interests of metaheuristics and more specifically evolutionary 

approaches. That´s why we have chosen CFB-EA which is an existing adapted version of the 

Evolutionary Algorithm SPEA2 that is widely used and recognized to solve these kinds of 

difficult problems. 

There is no standard to analyze the O-CPPC, and the existing works dealing with the 

sequential association of Optimization plus Concurrent Product and Process Configuration are 

rather theoretical with evaluations that consider most of the time a single problem without a 

detailed design of experiments. Consequently, we confirm the initial goals of the thesis and 

next chapters contain that will deal with: (i) generic modeling propositions, (ii) evaluations of 

CFB-EA optimization approach and finally (iii) CFB-EA optimization improvements.  

 

 

6 SPEA, an acronym for Strength Pareto Evolutionary Algorithm 
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3. Generic model of O-CPPC  

In order to address our first research question “Is it possible to propose a generic model of 

the CPPC problem that can avoid case dependency when evaluating and comparing 

optimization methods?” the goal of this chapter is to define and discuss a generic model that 

allows to generate benchmark for O-CPPC optimization problems. A benchmark is a set of 

model instances representative of a specific optimization problem and which allows testing of 

optimization algorithms and validation of their accuracy for the addressed problem. We need 

to generate various instances of the O-CPPC problem that represent the diversity and the 

complexity of industrial cases. In the following sections, we will define the product 

configuration generic model, process configuration generic model and their coupling. This will 

enable us to identify the O-CPPC key characteristics. 

3.1 Product configuration generic model for benchmark 

3.1.1 Product as a set of physical/functional modules 

In the design community many works have proposed to characterize or represent the 

product development. Axiomatic Design proposed by (Suh, 2001), (Suh, 1990), Design 

Structure Matriz (Stewart, 1981) and Function Behavior Structured (Gero, 1990) propose 

different domains or views of the product as: functions, requirements, behavior, physical 

components, process and resourc. (Lindemann, 2007) proposes a mapping of the four domains: 

functions, components, process and resources with a DSM approach. Furthermore, all these 

authors insist on decomposition aspects with various criteria: functional, physical or temporal. 

For our product configuration modeling problem, the identification or representation of 

physical components is an essential requirement because it allows us to deal with the bill of 

material concept which is a key point of configuration. According to configuration definitions 

of chapter 2, these components are gathered in component families that are considered as a 

product configuration variables. Chapter 2 also explains that the product, its sub-assemblies and 

its components can also be characterized with descriptive attributes with some kind of 

descriptive or functional views. We therefore consider in our model that the product, with its 

sub-assemblies and components is described by a set of configuration variables which are 

decision variables that are either families of components (noted foc) or functional descriptive 

variables (noted fdv), the model is therefore: {{fdvi},{focj}}. When the definition domain of 
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all these variables is reduced to a singleton, the configuration of the product with all sub-

assemblies and components is over. As we deal with configuration, product configuration 

constraints limit the possible combinations of previous variables values. Configuration 

constraint (noted cstk ) can be between fdvi or between focj or between both fdvi and focj. For a 

car example, constraints can be: between fdvi (speed, gas consumption), between focj 

(Engine_ref, Tire_ref), or between both fdvi and focj (speed, Engine_ref). 

As recalled at the beginning of this section, a product can be decomposed according to 

different criteria. Axiomatic design (Suh, 2001) and design structure matrix (DSM) (Stewart, 

1981) allow to identify functions associated with sub-assembles that fit very well the modular 

need of the configuration problem. We follow this idea and consider that the product is a set of 

physical-functional modules. For example, if the configured product is a car, physical-

functional modules can be: engine, body, electrical system, transmissions, audio system, etc. 

Consequently, each module is a set of families of components and functional descriptive 

variables, the previous configuration constraints are either between modules (cstkb) or inside a 

module (cstki) and the generic configuration model becomes: 

{ { {fdvi},{focj},{cstki} }, {cstkb} }.  

As our goal is to optimize the CPPC, we propose to add criteria variables to each product 

module and we make the assumption that an aggregation formula allows to deduce each 

criterion value for the whole product. In our case for the product we only consider a price 

criterion. Cost and selling price are two different ways to economically evaluate a product. 

Costs are what pays the enterprise (raw material, components or resources) while selling price 

is what customer pays. Coming from value analysis domain, the functional descriptive variables 

are related with selling price while components and resource are related with the product cost 

and the process cost. As configuration takes place during negotiation with customer, internal 

costs have to be hidden and they will be changed in selling price (commercial strategy is 

included like margins or discounts). Consequently, we consider that the price is modeled with 

selling price variables (noted spm) obtained thanks to a formula involving configuration 

variables that can be both families of components and/or functional descriptive variables. This 

price formula is modeled with numerical function constraints (notes cstsp) according to 

configuration variables that are either inside each module (cstspi) or at the product level for cost 

aggregation (cstspp). The generic configuration model becomes:  

{ { {fdvi},{focj},{cstki},{spm},{cstspi} }, {cstkb}, sp,{cstspp} }.  
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An example of a resulting product model is shown in figure 9. This example gathers two 

modules. The first one, “module 1”, is very simple:  

• It gathers three families of components: foc1-1, foc1-2 and foc1-3, there is no descriptive 

attributes  

• Two constraints (foc1-1, foc1-2) and (foc1-2, foc1-3) that shows component compatibilities, 

• Each component family is linked to a criteria variable which is the selling price in this case 

(sp1-1, sp1-2, sp1-3). 

The other module, “module 2”, is more complex: 

• In the upper part, a descriptive variable (fdv2-1) allows to identify component (foc2-1) this 

component allows to quantify a selling price variable (sp2-1). 

• In the lower part, a combination of two components (foc2-31, foc2-32) allows to quantify a 

selling price variable (sp2-3).  

• In the middle part, a combination of two descriptive variables (fdv2-21, fdv2-22) allows to 

identify a component (foc2-2) that allows to quantify a selling price variable (sp2-2).  

• Two compatibility constraints between descriptive variables (fdv2-1, fdv2-21) and between 

component families (foc2-2, foc2-.31) are also present. An inter-module constraint between 

the two modules exists between components families of each module (foc2-32, foc1-.2).  

• Finally, all selling price variables are linked with a numerical constraint (a sum in most of 

the cases) in order to get the selling price of the whole product.  

Figure 9- First CPPC product generic model for benchmark 
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3.1.2 Module as a set of Product Configuration Evaluation Patterns  

Given previous generic modeling propositions and in order to generate examples of models, 

assuming the definitions of: 

• a number of modules,  

• for each module: a number of component families, descriptive variables and criterion 

variables, 

• for each component family or descriptive variables: a number of possible values, 

• for each criterion variable: a possible range of values, 

a solution could be to randomly generate a set of constraints that reduces more or less the 

quantity of possible combinations of all previous variables. This way to process, given the 

randomly generation of constraints, generates descriptions that don’t have sense or that don’t 

correspond to any company configuration situation. For example: 

• A descriptive variable that is not linked to a family of component or a selling price variable 

with a constraint has no sense; this would mean that a product characteristic (as for example 

power, length, color) has no impact on any component selection or on module price. 

• Similarly, a family of components that is not linked to a selling price variable would mean 

that a selected component (as for example an Engine-Ref) has no impact on a module price.  

Consequently, typical industrial configuration situations have been analyzed. We observed 

that in the majority of product configuration models, some small groups of variables are 

strongly connected and that some common generic sets of variables and constraints are 

frequently repeated. We therefore propose to identify a small number of these generic sets that 

we call Product Configuration/Evaluation Pattern (noted PCEP) and to consider that a module 

is a set of such patterns. Each PCEP gathers a set of decision configuration variables (foc and/or 

fdv), at least one criterion variable (selling price, noted sp, in our case) linked by configuration 

and evaluation constraints. In the following we consider just one criterion for clarity; of course 

other criterion could be added. 

Four Product Configuration/Evaluation Patterns (PCEP) have been identified and are now 

presented and discussed. They are shown in figure 10. 
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Figure 10- Four Product Configuration/Evaluation Patterns (PCEP) 

3.1.2.1 Patterns PCEP-1 and PCEP-2: single evaluation pattern 

These two patterns gather a configuration and an evaluation constraint. They correspond to 

a single point of view analysis, either functional (PCEP-1) or physical (PECEP-2). They express 

the fact that a set of compatible components or functions is linked to a specific criterion or 

selling price variable.  

PCEP-1.1 and PCEP2.1 just show that one product descriptive variable or one family of 

components influences one price variable. This can correspond with a kind of very simple 

component price catalogue. For example, for PCEP-1.1, a specific cable is always present in a 

module, only the length or the cable can be selected during configuration and the selling price 

varies only according with this length variable. 

PCEP-1.2 and PCEP2.2 show that a criterion variable depends of more than one descriptive 

variable or component family. In fact, this constraint can mix two constraints, one that shows 

allowed combinations of descriptive variables or component families (cstki) and one that 

provide the criterion or price of each association (cstspi). For example, for PCEP-1.2, the price 

of a machine window depends of its height and width, but this constraint can also specify that 

extreme height and width are incompatible. Similarly, for PCEP-2.2, the price of the association 

of two components engine and gear-box depends of the two selected components but for power 

reason all gearbox is not compatible with all engines.  
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3.1.2.2 Patterns PCEP-3: composed evaluation pattern 

This pattern reflects some kind of a conventional design process: describe what you want 

with descriptive variables, choose technical solutions or components, and quantify a pattern 

criterion value that will be used later to deduce a module criterion.  

PCEP 3.1 is the simplest, one descriptive variable identifies one component that quantifies 

one criterion or price. This is typically a simple catalogue, as for example a power need enable 

to identify an engine reference with a price. 

PECP 3.2 shows that more than one descriptive variable can be necessary to identify a 

component. Again, a catalogue example for a machine window where four attributes (length, 

width, glass material and color) are necessary to identify a component with its price. 

 PECP 3.3 is something which is close to what we call a module because it can gather many 

descriptive variables and component families. However, here the idea is still to follow the 

process: each component is chosen with respect to different attributes, all the components 

families are combined to provide a criterion or price. The only difference with a module is that 

constraints between descriptive attributes associated with different families of component are 

forbidden. For example, the previous engine gear-box association can illustrate this pattern: (i) 

the engine component is chosen with respect to the three descriptive attributes max power, max 

torque and color, (ii) the gear-box is chosen with respect to the three descriptive attributes 

number of stages, admissible power and color, (iii) their association provides a price, (iv) it is 

not possible to express a constraint saying that they should both have a same color.  

3.1.2.3 Patterns PCEP-4: mixed evaluation pattern 

For these patterns the previous process that considers in a kind of sequence descriptive 

attributes, component family and finally criterion is not present anymore. The criterion or price 

is directly a combination of both descriptive attributes and component families. For example, a 

kitchen worktop is a parametric component with a price than can be defined by a component 

reference of the worktop (aggregating material, thickness and finish) and the two descriptive 

variables length and depth. 

3.1.2.4 Module as a set of PCEP patterns 

As a consequence, a module is a set of PCEP patterns and constraints can of course exist 

between two patterns inside a same module. The generic configuration model for benchmark 

becomes therefore:  
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• Product = (i) set of modules and configuration constraints between modules, (ii) product 

criterion variables and evaluation constraint that aggregates module criterion variables,  

• Modules = (i) set of instance of PECP patterns and configuration constraints between 

pattern inside a module, (ii) module criterion variables and evaluation constraint that 

aggregates pattern criterion variables,  

• Pattern = (i) set of variables: descriptive attributes, component families and criterion 

variables, (ii) set of constraints: configuration constraints and evaluation constraints  

The model example provided in figure 9 is now updated in figure 11 with this notion of 

Product Configuration/Evaluation Patterns.  

Figure 11- Example of CPPC product generic model for benchmark 

3.1.3 Constraints patterns 

Assuming now that all variables and constraints of the product generic model are described, 

it is necessary now to define the allowed combinations of each constraint. As in the beginning 

of the previous section we could think of a random generation of allowed combinations. But in 

order to be more representative or closer to the reality of company situations we also proposed 

constraint patterns and will first detail configuration constraints and then evaluation constraints. 

A constraint could be an equation or a compatibility table according to the nature of 

variables involved (continuous or discrete). A compatibility table shows allowed and/or 

forbidden combinations of values of involved variables. In our generic model, configuration 

constraints are exclusively discrete and represented by tables of compatibility that link 
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configuration variables; while evaluation constraints can use equations and tables of 

compatibility. 

3.1.3.1 Product configuration constraints patterns 

In our generic product model, a product configuration constraint is defined by: a type 

depending on the location of the linked configuration variables, a configuration constraint 

pattern and a constraint density. We define in next sections those concepts. 

Type of product configuration constraints 

As seen in previous subsection, product configuration constraints take place in different 

location of the model. We recall these types: 

• Intra-PCEP, they link inside a PCEP either: (i) only descriptive variables, (ii) only families 

of component or (iii) both, 

• Inter-PCEP, we assume that these configuration constraints link inside a module: (i) only 

descriptive variables, (ii) only families of component of different PCEP. This is done in 

order to keep links between functional and physical aspects at the PCEP level. For a realistic 

model, we limit the arity of those constraints to a maximum of four. 

• Inter-Module constraints, we assume the same kind of restriction between modules and 

allow links between: (i) only descriptive variables, (ii) only families of component of 

different modules. Similarly, the maximum arity is set to four. 

Configuration constraint patterns  

In this sub-section, we therefore only consider constraints linking configuration variables 

as descriptive variables and/or families of component. The values of each of these variables can 

be either ordered or not. For example, there is, most of the time, no order when dealing with 

configuration variables as: color, shape, style or more generally with a variable under purely 

subjective selection. For the constraints taking into account this kind of variables, there will be 

no configuration pattern. Variables with values that are ordered can be for example: power, 

length, size, complexity, pressure more generally any variables with values that can be 

compared or ordered. These last examples are descriptive variables, but it is also very easy to 

order families of component with respect to their evaluation criteria. We have identified four 

various configuration shapes or configuration constraint patterns (named Tcp) that are 

illustrated with examples in figure 12. These examples show configuration constraints between 

two variables but they could be extended to three or four variables. For each of these variables, 

the values have been replaced by their order in order to be able to compare them with 
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computation. Compatibility tables are illustrating by compatibility matrix. A cross in matrix 

corresponds to a compatible couple of values. Each value of each involved variable has to 

appear in at least one allowed tuple. (i.e. we have at least one cross in each line and each column 

in associated matrix). 

 

Figure 12- Four kinds of configuration constraints patterns 

• Tcp1: Similarity or close level pattern, this pattern corresponds to a similarity between 

various levels of decision variables. The parameter that controls the strength of the 

constraint is the allowed order difference between two values, in the proposed example the 

allowed difference must be less than 2. This can represent a design rule that maintains 

consistency between choices on a product. For example, this could lead to forbid the 

association of a luxury with low-cost components or to configure a house window with two 

extreme parameters: height (2 meters) and width (10 cms). 

• Tcp2: Dissimilarity pattern, this pattern is exactly the opposite of the previous with a similar 

minimum of allowed order difference between two values. In the example of figure 12, we 

have shown the complementary combinatory of the previous pattern. This can represent a 

conception or organizational rule that forbids the selection of same level for selected 

variables. For example, this could lead to forbid the selection of similar dangerous material 

for various component or similar suppliers for different operations. 



 

76 / 145 

 

• Tcp3: Limit pattern, this pattern corresponds to some kind of a cumulative limit of various 

value order or levels. The orders of the configuration variables are cumulated with a sum or 

a product calculation (sum in the example of figure 12) and the cumuli should respect a 

maximum threshold which is the parameter of this pattern. It can represent a physical 

limitation. For example, a car autonomy (kms with a full tank) and average cruising speed 

(kms/ hour) follows this kind of pattern. 

• Tcp4: Comparing pattern, this pattern corresponds to an inclusion of different orders in a 

unique way that can be explained as “a higher order can fulfill any lower order”. In the 

example of figure 12, given an order of V1 all orders of V2 that are larger or equal are 

compatible. It can represent for example that a given power requirement can be fulfilled by 

an engine matching exactly this power need but also by all engines that have a greater 

power.  

Configuration constraint density  

Constraint density corresponds to the ratio of the number of tuples forbidden by the 

constraint divided by the number of possible tuples without taking the constraint into account 

(or Cartesian product of definition domain size of constrained variables). On the previous figure 

12, it corresponds to the ratio of number of white boxes divided by the matrix total size in the 

compatibility matrixes. The constraint density is directly correlated with the strength parameter 

of previous configuration constraint patterns. It is important to note that a high constraint 

density allows a lower number of configuration solutions than a low constraint density. 

Therefore, higher the constraint density is, higher constrained is the problem. 

3.1.3.2 Evaluation constraint patterns 

As for configuration constraints, evaluation constraints are characterized with a type, a 

pattern and a constraint density. 

Type of product evaluation constraints 

As seen in previous subsection, product configuration constraints take place in different 

location of the model. We recall these types:  

• Intra-PCEP, they link: (i) descriptive variables and/or families of component with (ii) an 

evaluation variable inside a PCEP. Given the fact that configuration variables are discrete 

and evaluation variables are either integer or floats, these constraints can be discrete or 

mixed and defined thanks to table. In the case of a selling price criterion, these constraints 

correspond very frequently with some kinds of catalogues with prices. 
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• Inter-PCEP, they allow to aggregate evaluation variables of all PCEP of a single module 

into an evaluation variable for the whole module. In the case of a selling price, these 

constraints are most of the time just a simple sum calculation. 

• Inter-Module constraints, they allow to aggregate evaluation variables of all modules of the 

configurable product into an evaluation variable for the whole product. Here again, in the 

case of a selling price, these constraints are most of the time just a simple sum calculation. 

Evaluation constraint pattern 

 Given the fact that Inter-PCEP and Inter-module evaluation constraint are more or less 

aggregation calculation, we propose evaluation patterns only for Intra-PCEP pattern. Similarly, 

with configuration constraint pattern, we assume that the descriptive variables and/or families 

of component involved in the evaluation can be ordered. Three evaluation patterns have been 

identified as shown in figure 13: 

Figure 13- Three kinds of evaluation constraints patterns 

• Tep1, Linear progression, in this case the criterion value increases proportionally with the 

order of configuration variables, 

• Tep2, Decreasing progression, in this case with respect to configuration variables growth, 

the criterion value increase strongly at the beginning and less at the end, 

• Tep3, Increasing progression, in this case with respect to configuration variables growth, 

the criterion value increase slowly at the beginning and much more at the end. 

When more than one configuration variable are considered in these patterns, a kind of 

average order is computed and associated with the pattern.  

3.1.4 About Product architecture 

We first recall some very basics about product architecture and show how our proposition 

fits the most frequent kind of architectures of configurable products.  
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3.1.4.1 Product architecture basics 

 (Ulrich, 1995) defined the architecture of a product as "the scheme by which the function 

of the product is allocated to physical components". More precisely the author defined product 

architecture as: (1) the arrangement of functional elements; (2) the mapping from functional 

elements to physical components; (3) the specification of the interfaces among interacting 

physical components. Another definition was presented by (Ulrich & Eppinger, 1995) as a 

"scheme by which the functional elements of the product are arranged (or assigned) into 

physical building blocks (chunks) and by which the blocks interact" as shown in figure 14. So 

the arrangement of functional elements into physical chunks becomes the building blocks for 

the product or family of products (Ulrich & Eppinger, 1995). 

Figure 14- Product Architecture Definition (Ulrich & Eppinger, 1995) 

Most authors agree on two main kinds of architectures: modular and integrated. 

Furthermore, a certain kind of modular architecture called platform is also considered in 

(Bonjour, 2008) (Bonjour, et al., 2009) (Bonjour & Micaëlli, 2010). 

3.1.4.2 Modular architecture| 

The first distinction in the typology is between a modular architecture and an integrated 

one. (Marti, 2007) characterized a modular system architecture by the property of near-

decomposability, that is consisting of relatively autonomous subsystems. So in this architecture 

a module can be defined as "a special subsystem whose internal relationships are much stronger 

than the relationships with other subsystems" (Marti, 2007). Then (Ulrich, 1995) emphasizes 

that a modular architecture includes a one-to-one mapping from functional elements in the 

function structure to the physical components of the product and specifies decoupled interfaces 

between components. More specific, (Blackstone, 2013) explained that the modular 

architecture is a type of structure where the functional modules correspond to physical group 

of parts. The different physical pieces of parts have their own function, and there is an 

interaction between all modules (Blackstone, 2013). 



 

79 / 145 

 

Given these elements and the product generic model we propose, we can deduce that a 

modular architecture must show:  

• A large number of constraints inside each product modules (Intra-PCEP and Inter PCEP) 

with a high constraint density meaning that the quantity of allowed combinations is small 

or the dependencies between descriptive variables and families of components are strong. 

• A low number of constraints between modules (Inter-Module constraints) with a low 

constraint density meaning a high number of possible modules combinations. 

In the example of figure 15, we have a three modules product where each module contains 

three PCEP patterns. The numbers of constraints are for Intra PCEP: 9, for Inter PCEP: 8 and 

for Inter modules: 3.  

Figure 15- Example of product model with a modular architecture  

3.1.4.3 Integrated architecture 

(Ulrich, 1995) explained that an integrated architecture includes a complex (not one-to-one) 

mapping from functional elements to physical components and coupled interfaces between 

components. In this type of architecture, the modules are more dependent on each other and 

less easily distinguished (Marti, 2007).  

Given these elements, we can deduce that an integrated architecture must show:  

• A number of constraints inside each product modules (Intra-PCEP and Inter PCEP) which 

is closer to the number of constraints between modules (Inter-Module constraints) 

• Constraint densities with closer values, meaning that the quantity of allowed combinations 

or the dependencies between descriptive variables and families of components is not 

affected by the fact that a constraint is Inter-module or Intra-module.  
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In the example of figure 16, we have a three modules product close to the one of figure 16. 

But for this one, the numbers of constraints are for Intra PCEP: 9, for Inter PCEP: 3 and for 

Inter modules: 7 and all their constraint densities are close. 

Figure 16- Example of product model with an integrated architecture 

3.1.4.4 Platform architecture 

An increasingly popular method to reduce complexity in configurable products is the 

product platform architecture. (Marti, 2007) explained that the product platform is a special 

case of product modularization; the focus of modularization is decomposing a product into 

modules. Defining modules while establishing a platform means structuring the product’s 

architecture according to a certain hierarchy (Marti, 2007). Essentially it divides the product 

architecture into a standardized part (the platform) and customized modules. (Blackstone, 2013) 

explained that in the platform architecture there is a grouping of products to share common 

parts, components and characteristics (common platform). So this kind of design can be used 

to reduce cost and time to market. Another definition is presented by (Meyer & Lehnerd, 1997) 

as “a set of subsystems and interfaces that form a common structure from which a stream of 

derivative products can be efficiently developed and produced.” (Marti, 2007) explained that in 
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highly modularized products, it can be advantageous to establish platforms on the level of 

individual modules like the example shown in figure 17.  

Figure 17- Product family derived from a product platform (Marti, 2007) 

Finally, (Robertson & Ulrich, 1998) defined a product platform in a concurrent way as “the 

collection of assets that are shared by a set of products”, not confining it to the common physical 

structure shared across products. So these assets fall into one of the following four categories: 

components, processes, knowledge, and people / relationships (Robertson & Ulrich, 1998). 

Given these elements and the product generic model we propose, we can deduce that 

platform architecture must show:  

• A large number of constraints inside each product modules (Intra-PCEP and Inter PCEP) 

with a high constraint density meaning that the quantity of allowed combinations is small 

or the dependencies between descriptive variables and families of components are strong. 

• A set of constraints between modules (Inter-Module constraints) that show that only one 

module is linked individually with all the others with a low constraint density meaning that 

a high number of possible platform/modules combinations is possible. 
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In the example of figure 18, we have reconsidered the modular example of section 3.1.4.2 

figure 15 and only modified the inter-module constraints organization. The example shows that 

module 2 can be considered as the product platform while modules 1 and 3 are “customized” 

product modules that support diversity. 

Figure 18- Example of product model with a platform architecture 

3.1.5 Synthesis about product generic model for O-CPPC 

Our generic model proposition for the product part in order to analyze the Concurrent 

Product Process Configuration gather the following key elements: 

• A product is a set of modules with an evaluation variable for each criterion. 

• A module is a set of Product Configuration Evaluation Patterns (PCEP) with an evaluation 

variable for each criterion. 

• A PCEP is a set of configuration variables (or decision variables) that gathers descriptive 

variables and families of components and evaluation variables. 

• Product configuration and evaluation constraints are present: inside each PCEP, inside each 

module, inside the product. 

• Different kinds of patterns have been identified and describe: Product Configuration 

Evaluation Patterns (5 patterns), Product Configuration Constraints (4 patterns), Product 

Evaluation Constraints (3 patterns). 

• Constraint density has been proposed in order to characterize the amount of possible 

solutions allowed by any constraint. 

Given these elements, various examples have shown the diversity of the product aspects 

than can cover the CPPC problem. All this confirms that a random generation of variables and 
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constraints in order to define a product of a CPPC problem is really far from the reality and 

highlight the potential interest of our proposition for comparing optimization algorithms.  

3.2 Process configuration generic model for benchmark 

The process part of the generic model is much less complex than the one relevant to the 

product and many already defined elements will be reused. Therefore, we follow the same kind 

of organization for this section and present and discuss: process modeling, process operation 

patterns, constraint patterns and process architectures. 

3.2.1 Process as a set of production operations 

As explained in chapter 2, authors dealing with process modeling for configuration are 

much less numerous. However it is possible to recall (Schierholt, 2001), (Aldanondo & 

Vareilles, 2008) or (Gottschalk & La Rosa, 2010) that all consider the process as a set of 

activities and extend the product configuration ideas to the process domain. We therefore follow 

the recommendations of these authors and consider that the process is a set of operations. In 

this work we also assume for simplicity, that the ordering and the number of operations are 

static. It means that there is neither OR node on the sequence nor operation activation according 

to a specific configured product. 

Any operation gathers different resources with a given quantity during a certain amount of 

time in order to achieve some product production activities (sourcing, manufacturing, 

assembling, delivering…). Similarly, with the product domain we consider that the resources 

that can achieve the same kind of process are gathered in families of resources. Given a 

production operation to achieve, the process configuration corresponds for each operation: (i) 

to select a resource in a resource family (noted form) and (ii) to quantify the quantity of resources 

that must be used (noted qtrm). We therefore firstly consider only two kinds of process 

configuration variables or decision variables: the family of resource and the quantity of 

resources that are gathered in couples for each operation. The generic process basic 

configuration model gathering operations is therefore { { (form, qtrm) } }. 

 Given that our goal is to optimize the CPPC, these two operation configuration variables 

are strongly connected with process evaluation criteria. In our study two criteria are considered: 

the processing duration or cycle time (noted dur) and the processing cost that will be later 

aggregated with product selling price (noted sp). Other criteria like carbon footprint or quality 

could be considered. These criteria are computed thanks to evaluation constraints. In our bi-
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criteria case, we consider: one for duration (noted cstdur) and one for cost (noted cstsp). The 

generic process configuration model becomes: 

{ { (form, qtrm, dur, cstdur, sp, cstsp ) } }.  

3.2.2 Process operation pattern 

In this section, we define all variables needed to describe a generic operation. In order to 

associate previous operation variables with evaluation constraint, we propose to consider that 

each operation generates a specific work load (noted wl) for each used resource. This work load 

is defined for a given resource with a quantity of resource multiplied by duration (for example, 

a packing operation work load equal two man-month whatever the product is).  

This work load permits to quantify each operation duration and each operation cost. In order 

to detail the operation pattern, let us first consider that the operation uses just one family of 

resource and the resulting single resource operation pattern shown in figure 19. 

Figure 19- Single resource operation pattern 

This pattern shows previous operation variables and the two evaluation constraints. Given 

a production operation to achieve, a resource can be identified in the family with a workload to 

achieve. Given this selected resource (for) and identified workload (wl): 

• The first constraint dealing with the cost and later selling price (cstsp) allows quantifying 

the operation cost (sp), 

• The second constraint dealing with duration (cstdur) allows quantifying the operation 

duration (dur) with respect to the resource quantity (qtr). 

We will see later that the three decision variables that can be linked with product 

characteristics are the family of resource (for), the resource quantity (qtr) and the workload 

(wl). 

When more than one family of resource must be considered, for example a machine and an 

operator as shown in figure 20, each family of resource will be associated with a single resource 

operation pattern and the criteria will be aggregated. Most of the time, for cost operation (noted 
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spop) criterion the aggregation is a sum ( on the figure 20) while for operation duration (noted 

durop) it is a max operator (max on the figure 20), other operators could be imagined. 

Consequently the generic operation process model becomes: 

{ { (form, qtrm, wlm, durm, cstdur, spm, cstsp ) }, durop spop }.  

 

Figure 20- Multi resource operation pattern 

Last point to discuss is relevant to the operation sequencing or ordering. This will be achieved 

classically by anteriority constraint. We therefore need to add to the operation pattern model, 

starting and ending dates (noted stdop and endop) variables in order to attach anteriority 

constraints between the operations. These two variables dates are linked with a date constraint 

(noted cstdate ) stating that ending date equals starting date plus operation duration. Here we 

consider infinite capacity planning in order to quantify a minimum operation duration that will 

provide minimum production cycle time without taking into account any scheduling issues. 

This can be seen in the right of figure 20 and the resulting operation model is as follows: 

{ { (form, qtrm, wlm, durm, cstdur, spm, cstsp ) }, durop, spop, cstdate, stdop, endop }.  

With the proposed elements it is possible now to finish the description of the global process 

generic model as a set of operation pattern models as shown in the example of figure 21. It is 

just necessary to add: 

• Process global criteria evaluation variables as in our case: starting and ending process dates 

(noted stdpr and endpr ) and process cost (noted sppr ), 

• A set of sequencing constraints between operations, this is achieved by stating temporal 

constraints between necessary operation starting and ending dates: most of the time: stdopi+1 

> stdopi, (noted cstseq ) 
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• Aggregation constraints for criteria, in our case for a cost criterion it is most of the time a 

sum operation (noted cstsppr). 

Consequently, the global process model becomes: 

{ { { (form, qtrm, wlm, durm, cstdur, spm, cstsp ) }, durop, spop, cstdate, stdop, endop }  

 { cstseq }, stdpr, endpr , cstsppr, sppr ) }.  

Figure 21- Proposed CPPC process generic model for benchmark 

3.2.3 Process constraints pattern 

Given all previous propositions, any process constraint is consequently associated with a 

criterion evaluation that in our case are cost and duration. Therefore, the constraints seem to be 

only present for criterion evaluation and could lead to the conclusion that there is no effective 

configuration problem. This is not the case, because in most situations you have constraints 

between different resources families either for a same operation (incompatibility of people for 

example) or between different operations (if operator A works on an operation 1 he should keep 

working on operation 2 for example). In the following, we just briefly comment: cost, duration 

and resource constraints. 

3.2.3.1 Process cost constraint pattern 

For the cost constraint inside each operation pattern (cstsp), the evaluation constraint 

patterns proposed in section 3.1.3.2 can be re-used. Mainly the first one (Tep1) which is linear 

with respect to the configuration variable fits very well our cost criterion with a cost more or 

less proportional to workload given a specific selected resource. 

For the cost constraint (cstsppr) that aggregates the cost of different operation at the process 

level (cstsppr), similarly to product model there is no specific pattern as it is most often a sum 

calculation. 
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3.2.3.2 Process duration constraint pattern 

Inside each operation pattern, we have two constraints (cstdur and cstdate ). The first one 

quantifies the operation duration with respect to: the resource selected, the workload to realize 

and the quantity of resources affected. Duration is more or less proportional to workload while 

more or less inversely proportional to resource quantity as shown in the pattern of figure 22. 

The second one (cstdate ) is always the simple formula endop = stdop + durop. 

Figure 22- Operation duration constraint pattern 

Between operations, there is no specific pattern. The already mentioned sequencing 

constraint (cstseq) stdopi+1 > stdopi is enough as far as we don’t consider any overlapping 

constraint. 

3.2.3.3 Operation resource constraint pattern 

For this kind of constraint, the two configuration constraint patterns proposed in section 

3.1.3.1 “Similarity or close level pattern” or “Dissimilarity pattern” can be used in order to 

describe a similarity or dissimilarity of resource inside or between operations. Due to the 

diversity of technological resources that can be used, many other kinds of compatibility 

constraints could be imagined. 

3.2.4 About Process architecture or structure 

For the Optimization of Concurrent Product and Process Configuration Problem (O-CPPC) 

the type of production process that we are interested in is the Assembly Line. (Grzechca , 2011) 

defined an assembly line as "a manufacturing process in which parts are added to a product in 

a sequential manner using optimally planned logistics to create a finished product in the fastest 

possible way". More specifically, (Grzechca , 2011) details that the "assembly" is the process 

of fitting together various parts in order to create a finished product, so the parts can be divided 

into sub-assemblies and components. Finally, (Delchambre & Rekiek, 2006) explained that the 
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Assembly line is a production system composed of a number of stations where the pieces are 

consecutively launched down the system and are moved from one station to another in an order 

in which they must follow according to technological restrictions. Most of the time, two main 

process architectures or structures are considered (Chen, et al., 2006) with respect to the 

operation graph structure: serial and convergence. 

In the serial case, the operations or production steps are executed mainly in a serial way. 

This means that one operation of the process finish before the next starts and only one step is 

active at any one instant. This is structure is the most present when dealing with mass 

production as in automotive and electrical industry for example.  

The convergence case is a variation of the serial configuration structure where we can find 

two or more operations simultaneously running and then converging to another main operation. 

This solution is often met when production is launched in small batches as in aeronautic or 

railway industry for example.  

3.2.5 Synthesis about process generic model for O-CPPC 

Our generic model proposition for the process part in order to analyze the Concurrent 

Product Process Configuration gathers the following key elements: 

• A process is a set of operations with an evaluation variable for each criterion and two 

process starting and ending dates. 

• An operation is a set of variables that gathers: 

- for each involved resource: (i) three configuration variables (or decision variables): 

resource family, quantity of resource, workload; and (ii) two evaluation variables: 

duration and cost in our case,  

- for the whole operation: (i) two evaluation variables: duration, a cost in our case and (ii) 

two operation dates: starting and ending dates 

• Evaluation constraints are present: (i) for each involved resources inside each operation, (ii) 

then for the whole operation in order to aggregate each criterion on the different resources 

and, (iii) for the whole process in order to aggregate each criterion on different operations. 

• Process configuration constraints are restricted to resource compatibility inside an operation 

or between operations. 
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We can see that the diversity and complexity of process configuration model is much lower 

than the one relevant to product. Next section will just assemble them in order to finalize our 

proposition for a concurrent product process configuration generic model for benchmark. 

3.3 Coupling product process models and key characteristics 

We will first show how the two models can be associated, then in a brief synthesis 

underlines key characteristics of the proposed model. 

3.3.1 Coupling product and process models 

Following the works published about concurrent product process configuration (Baxter, 

2007), (Aldanondo, et al., 2010), (Hong, et al., 2010), (Pitiot, et al., 2013) or (Dhungana, et al., 

2017), the idea is to add coupling compatibility constraints between the two models.  

On the product side, the coupling constraints (noted cstcpl) can include only families of 

components and/or functional descriptive variables. For example, let us consider (i) a family of 

components “machine tool frame” with different descriptive variables as: “size”, “material” and 

“weight” and (ii) an operation as “welding” and a family of resources as “operator”: 

• According to the frame material, different welding competencies can be required and 

therefore a specific operator in the family.  

• According to the frame size it is clear that the welding workload can vary. 

• According to the frame weight it might be necessary to use more than one operator just to 

manipulate the frame. 

This simple example illustrates how descriptive attributes of a family of components 

impacts one process operation and therefore how the two models can be connected. 

On the process side, coupling constraints can only include families of resources, quantity 

of resources and/or workload variables. It is important to note that evaluation variables (cost 

and duration in our case) cannot be included in a coupling constraint. 

In terms of coupling constraint patterns, the four patterns presented for the product 

configuration constraints (section 3.1.3.1) can be fully used as far as the definition domains of 

both product and process variables are ordered. 

In terms of evaluation, when a criterion is present in both product and process model, as it 

is the case for cost or selling price, the two evaluation variables should be aggregated with a 

constraint (noted cstsppp) in order to get a global product/process criterion value.  



 

90 / 145 

 

3.3.2 Synthesis about full product/process generic model for O-CPPC 

With previous coupling constraints we can now propose our full product/process generic 

model for O-CPPC benchmark:  

• For product: 

- A product is a set of modules with an evaluation variable for each criterion. 

- A module is the instantiation of a set of Product Configuration Evaluation Patterns 

(PCEP) with an evaluation variable for each criterion, cost in our case. 

- A PCEP is a set of configuration variables (or decision variables) that gathers 

descriptive variables and families of components and evaluation variables. 

- Product configuration and evaluation constraints are present: inside each PCEP, inside 

each module, inside the product. 

• For process: 

- A process is a set of operations with an evaluation variable for each criterion, duration 

and selling price in our case, and two process starting and ending dates. 

- An operation is a set of variables that gathers:  

▪ for each involved resource: (i) three configuration variables (or decision variables): 

resource family, quantity of resource, workload; and (ii) two evaluation variables: 

duration and selling price in our case,  

▪ for the whole operation: (i) two evaluation variables: duration and selling price in our 

case and (ii) two operation dates: starting and ending dates 

- Evaluation constraints are present: (i) for each involved resources inside the operation, 

(ii) then for the whole operation in order to aggregate the different resources for each 

criterion and, (iii) for the whole process in order to aggregate the different operations 

for each criterion. 

- Process configuration constraints are restricted to resource compatibility inside an 

operation or between operations. 

• For the whole product/process model: 

- Coupling constraints (noted cstcpl) linking product descriptive variables and/or families 

of components with process resource families, quantity of resource and/or workload. 

- Product/process evaluation constraints in order to aggregate each criterion existing in 

the two models. 
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An example of such product/process model is proposed in figure 23. It assembles the two 

models of figures 11 and 20 with two coupling constraints and a product/process evaluation 

constraint:  

• Cstcpl-1 between two descriptive variables (fdv2-1 and fdv2-2) of module 2 and the three 

operation variables (for1,wl1, qtr1) of operation 1  

• Cstcpl-2 between one component family (foc1-3) of module 1, one component family (foc2-31) 

of module 2 and the two operation variables (for2,wl21) of operation 2, 

• Cstsppp that aggregates selling price criterion of product and process in a product/process 

selling price criterion (Spproduct/process).  

 

Dealing with architecture, we have introduced for product: integrated, modular and platform 

architectures while we have mentioned serial or convergence process structures. The 

association of product architecture and process structure is most often serial process with 

platform (automotive mass production industry for example) product and convergent structure 

with either integrated or modular product architectures (aerospace small batches industry for 

example). 
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Figure 23- Proposed CPPC product/process generic model for benchmark 

3.4 Proposition synthesis and key characteristics 

The goal of this third chapter was to answer the question “Is it possible to propose a generic 

model of the Concurrent Product Process Configuration problem that can avoid case 

dependency when evaluating and comparing optimization methods?”. Given all previous 

propositions, we can conclude that we now have a good base for a generic model of Concurrent 

Product Process Configuration problems. 

Our proposition is based on two sub-model product and process with various generic 

patterns that capture many aspects relevant to the diversity of configuration problems. These 

patterns concern products, processes and constraints. It is clear that others could be added, but 

we deeply think that they constitute a strong base for product process configuration modeling. 

In order to have full confidence in these propositions, a last step of validation is necessary with 

some kind of confrontation with real problem modeling. However, it sounds clear to us that 
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using our propositions in order to conduct CPPC optimization benchmarks will be always better 

than using random generation of variables and constraints. 

The key characteristics of our generic model are: (i) for the product side: number of 

modules, type and number of PCEPs, number of configuration variables, number of values, (ii) 

for the process side: number of operations, number of resources, number of values, (iii) for 

product and process sides: constraint patterns and constraint density, and (iv) Product/Process 

architectures. These characteristics will be used in the next chapter to evaluate optimization 

heuristics. 
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4. Benchmark description and evaluation of CFB-EA  

In this chapter, the benchmark proposed is presented, discussed and used to evaluate the 

CFB-EA optimization approach. The goal of the benchmark is to be able to evaluate 

optimization approaches on a scope of O-CPPC instances which are not case-dependent. This 

will allow answering our second research question “How sensitive is CFB-EA optimization 

method, with respect to each key characteristic of the generic model of the CPPC problem?”  

The definition of the instances that constitute the benchmark follows two contradictive 

goals. We need to represent the diversity of existing O-CPPC problems but we also have to 

limit the testing effort and thus the number of instances required to evaluate correctly an 

optimization approach. We therefore aggregate the key characteristics proposed at the end of 

the previous chapter in three parameters: (i) problem size, (ii) problem constraint density and 

(iii) product architecture. This induces eight different instances of CPPC models that will be 

optimized. 

In terms of optimization, we will use an evolution of the CFB-EA algorithm presented in 

(Pitiot, et al., 2014) and evaluates how it behaves with respect to the eight previous instances 

and three previous problem characteristics. This evolution gathers some detailed computation 

improvements which will not be explained in this thesis: better and faster evaluation of 

individuals and faster crossover operator. This explains the lower computation time when 

compared with results published in (Pitiot, et al., 2014) and (Pitiot, et al., 2019).  

This chapter is organized as follows. Firstly, we detail the process used to generate model 

instances and the eight instances (cases). Secondly, we present the optimization evaluation 

process. Thirdly, we analyze those results and conclude about key characteristics impacts on 

optimization.  

4.1 Definition and generation of problem cases  

4.1.1 Model generation procedure 

In order to get problem cases, we develop a software called “CPPC model generator” that 

instantiates the generic model presented in the previous chapter. This generator allows fulfilling 

all various parameters specified in generic model (i.e. the number of modules, the type of 

patterns and their parameters, etc.). To support this fastidious task, the model generator 
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implements a procedure to create an instance of an O-CPPC model. This procedure is shown in 

figure 24 and works as follows: 

 

Figure 24- Main procedure to generate a case in CPPC model generator 

• In step 1, the generation specifications that allow to globally describe the main 

characteristics of the problem are inputted: 

- Product architecture: platform, modular, integrated. 

- Process architecture: serial, convergence. 

- Model size: small, medium, intermediate, large.  

- Constraint density: low, medium, high. 

Given these elements, the quantity of: product modules, process operations, product and/or 

process evaluation criteria can be chosen. 

• In step 2, consequently the quantity of configuration constraints with types and density can 

be input for:  

- Product: Intra-PCEP constraint, Intra-module constraint, Inter-module constraint.  

- Process: Inter-operation constraints. 

- Product and process: Coupling constraints. 
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• In step 3, a quantity of evaluation constraints for both product and process is proposed and 

validated. In our case we have only duration and selling price evaluation variables: 

- For selling price, the product architecture with the number of: modules, PCEP and 

operations allow to deduce possibilities for these quantities. 

- For duration, the number of operations and the process architecture allow to deduce 

possibilities for these quantities. 

• In step 4, for each module and each PCEP, the type of pattern is selected. 

• In step 5, the resulting product/process model structure with all variables and constraints 

can be established and validated by the user. 

• In step 6, for each configuration constraint, a constraint pattern is selected for product, 

process and coupling. 

• In step 7, for each evaluation constraint, an evaluation pattern is selected for product and 

process. 

• In step 8, product evaluation parameters are inputted for each product evaluation pattern, in 

our case selling price, mainly the average value with an interval of variation of the selling 

price variable,  

• In step 9, process evaluation parameters are inputted for each process evaluation pattern, in 

our case selling price and duration, mainly averages and intervals for the selling price and 

duration variables. 

This procedure has been followed eight times in order to define eight model instances or 

cases that allow evaluating the main characteristics of an O-CPPC model: The product 

architecture, the model size and the constraints level or density. All cases derive from a 

reference case which is a platform architecture model. 

4.1.2 Main characteristics of the reference platform model case O-CPPC  

In this section, we describe the main characteristics of the reference case which is the 

platform architecture model showed in figure 25. This reference model gathers: 

• 3 modules  

• 3 operations (in a serial architecture),  

• 24 configuration variables in product side (14 fdv and 10 foc), each variable has 6 values 

in its definition domain (solution space size without constraint around 1018). 
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• 6 configuration variables in process side (3 for and 3 qtr), each variable has also 6 values in 

its definition domain (solution space for the whole model around 1023). 

• 9 PCEP patterns (three patterns for each module),  

• 26 configuration constraints (12 intra-PCEP, 3 intra-module, 6 inter-module, 3 coupling 

product/process and 2 inter-operation)  

• 26 evaluation constraints (constraints needed to compute selling price and cycle time).  

 

Figure 25- Reference case, the platform model 

One module, module 1, has a functional description with only Tpcep1 pattern (only 

functional description and selling price variables). Another module, module 3, has component 

description with only Tpcep2 patterns (only family of components and selling price variables). 

While the platform module, module 2, gathers a selection of physical-functional description 

with mixed patterns. Each module is linked to one operation by a coupling configuration 

constraints and each operation is linked to another operation by a configuration constraint. For 

all reference model details please consult annex 1. 

Considering this reference model as a basis, we now describe how the seven other model 

instances are going to be built with respect to the three characteristics: model size, constraint 

density and product architecture. 
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4.1.3 Model Size  

The size of the model is a key point for optimization evaluation. It corresponds to the size 

of the search space to investigate and is primarily associated with the number of variables and 

the size of their domains. The reference model has 30 variables with 6 values on their domains 

which is a good size (around 1023 without constraints) to investigate quickly properties of 

evaluation approaches in a reasonable computing time (around some hours of calculations). 

Real-world models could be obviously bigger but we assume that a detailed representation of a 

large and complex product/process would still remain under one or two hundred variables 

(assuming between 2 to 20 possible values and not only binary variables). 

In our approach, the user restrains the model size by entering his/her requirements and 

process filtering that decreases the solution space size. The resulting size could therefore greatly 

vary according to the number of inputted requirements. We consequently select four cases to 

study this model size characteristic with four model size values: 100, 60, 30 and 15 variables. 

Those cases could be various sizes corresponding to different reduction made by user according 

to his/her requirement on product/process. The four cases characteristics are detailed in table 2. 

Particular attention was paid to respect distribution and density of all constraints in order to be 

able to evaluate only the size impact. For these four instances, the following ratios are roughly 

constant:  

• Number of configuration constraints / number of variables: between 0.5 and 1, that provides 

a number of constraints of 12, 26, 51 and 82. 

• Number of modules / number of variables: between 0.1 and 0.2, that provides a number of 

modules of 3, 7 and 10. 

• Number of operations / number of variables: between 0.1 and 0.2 that provides a number of 

operations of 3, 7 and 10. 

Similarly, the constraints densities are similar or close (around 50% of constraints with high 

level (inter-modules constraints) and 50% with medium level (other constraints)) and the 

constraints distribution between various types of constraints (intra-module, inter-module, 

coupling, etc.). 
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 Size 
Quantity of 

Variables 

Quantity of 

Modules 

Quantity of 

Operations 

Quantity of 

Configurations 

Constraints 

1. Small 15 3 3 12 

2. Medium 30 3 3 26 

3. Intermediate 60 7 7 51 

4. Large 100 10 10 82 

Table 2- Model Sizes 

4.1.4 Configuration constraints Density  

Constraints density or hardness is delicate issue to evaluate. It could be linked to the number 

of constraints, the number of allowed tuples by constraint or their distribution between 

variables. The number of constraints and the number of tuples by constraint impact in same 

way the number of feasible solutions. Impact of distribution of constraints in the model or 

distribution of constraints with different levels would be more difficult to evaluate. As already 

said, we consider configuration constraint density as the ratio of the number of forbidden tuples 

excluded by the constraints divided by the number of possible tuples without any constraint. 

We defined three levels of constraint density: low, medium and high. The low level corresponds 

to 20% of ratio of forbidden tuples, medium to a level of 50% and high to a level of 80%. The 

configuration constraints density is thus evaluated on the same platform architecture model with 

26 constraints and 30 variables. The three cases differ only by the constraint’s density level of 

each constraint with three levels low, medium and high. 

4.1.5 Product architecture  

 As we presented in chapter 3, we are going to use the three typical product architectures: 

Platform, Modular and Integrated. The idea is to evaluate if the product architecture impacts 

optimization performance. The difference between these architectures relies on: (i) the 

distribution of product configuration constraints between: Intra-PCEP, Inter-PCEP, Inter 

module constraints and (ii) their constraint density. 

In the platform architecture, a module is the platform and the two other modules are linked 

on it. Following the idea that constraints in a module are stronger than between modules, the 

12 constraints in modules (intra-PCEP and inter-PCEP) have a higher constraint density; while 

constraints between modules have a medium density.  

Modular architecture derives from platform architecture one only by distribution of inter-

module configuration constraints. Each module is linked to the two others by two configuration 

constraints. 
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Integrated architecture has the same constraints distribution than modular architecture. The 

difference is that constraints between modules are stronger. To keep the same constraints 

density level in the whole model, we put some intra-module constraints to medium density. In 

such way, for all architecture there is the same number of constraints with high (15) and medium 

(11) density level.  

For all these product architectures, we assume a serial process architecture in order to isolate 

and quantify only the effect of product architecture modifications.  

4.1.6 Synthesis about O-CPPC benchmark 

 The eight model instances for our benchmark are presented in Table 3. Each of them will 

be optimized with CFB-EA algorithm in the next sections.  

 
Size 

Quantity of 

Variables 
Architecture 

Constraint 

density 

% of forbidden 

tuples 

1 Small 15 Platform Medium 50 

2 Medium 30 Platform Medium 50 

3 Intermediate 60 Platform Medium 50 

4 Large 100 Platform Medium 50 

5 Medium 30 Modular Medium 50 

6 Medium 30 Integrated Medium 50 

7 Medium 30 Platform low 20 

8 Medium 30 Platform high 80 

Table 3- O-CPPC benchmark model instances 

4.2 Optimization experimental plan  

This section presents optimization experiments on previous cases using evolutionary 

algorithm (CFB-EA). The EA optimization algorithm is implemented in C++ programming 

language and interacts with the filtering system Cofiade (Vareilles, et al., 2012) coded in Perl 

language. The indicated time consumption is the processor time spend by all processes (EA + 

filtering engine). The real time spend by optimization could be divided thanks to the 

parallelization of filtering engines (around 95% of time consumption correspond to the filtering 

process). In this section, we present the setting used for the evolutionary algorithm and the 

metrics used for experiments. 

4.2.1 Metrics for experiments 

For a multiobjective problem, the user expects an efficient and diversified set of solutions 

in a reasonable lapse of time. To evaluate the algorithm results, we used the hypervolume metric 

defined in (Zitzler & Thiele, 1998). It measures the hypervolume (HV) of the space dominated 
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by a set of solutions, as shown in Figure 26, where two criteria are considered and the HV is 

the surface inside the grey solid line. HV allows to evaluate both convergence and diversity 

proprieties. The fittest and most diversified set of solutions is the one that maximizes 

hypervolume. 

 

Figure 26- Hypervolume with the two criteria time and cost 

4.2.2 Evolutionary settings  

The CFB-EA method has six parameters and a stopping criterion. For this work, we 

investigate a small experimental plan on reference case (platform model) and we keep the same 

settings with all other models: 

• Probability of crossover: 0.9 

• Probability of mutation of a parent: 0.5 

• Probability of mutation of each gene of a selected parent: 0.1 

• Backtrack limit of filtering engine: 30. This correspond with the number of allowed 

backtrack for each individual before giving-up. 

• Population size: 100  

• Archive size: 150.  

Archive and population sizes are adjusted according to the size of the model for larger cases. 

The stopping criterion is a strict limit of computation time in seconds. This time is adapted at 

each case in order to let the algorithm converge.  

Like any metaheuristic, CBF-EA uses pseudo-random process. Consequently, the algorithm 

has to be launched more than one time on a same model in order to get consolidate results. In 

this work, every test is launched 5 times (5 runs). The average hypervolume (HV) and the 

relative standard deviation (RSD) over the 5 runs are computed. In each test, we compare the 
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average time needed to reach the final average HV value noted HVfinal. The HVfinal value is 

obtained when there is no improvement of average hypervolume.  

In order to study the HV evolution, we also compare the average computation times needed 

to reach 99% and 99.9% of the average HVfinal.  

4.3 Evaluation of existing approach on benchmark 

In this section, we present the results of the experimental plan proposed in section 4.1.6 

relevant to size test, constraints density test and architectural test.  

For a first illustration, figure 27 shows the evolution of average HV on platform case and 

associated table. The curve represents evolution of average HV for the 5 runs.  

 

Figure 27- Reference case: average HV evolution with respect to time 

After a quick improvement, the average HV stagnates and slowly converges to HVfinal. 

Around 99% of HVfinal is reached in 189 seconds and 99.9% in 502 seconds while HVfinal is 

reached in 1696 seconds. At the beginning, the RSD of time are limited (less than 2% of average 

time). This indicates that all the runs reach 99% of HVfinal in approximatively the same 

computation time, whereas, the RSD of time to reach HVfinal is larger (28%). Some runs (mainly 

one of the 5 runs) have troubles to refine Pareto front to its final value. The times needed to find 

HVfinal for each of the five runs are around 900, 1000, 1300, 1400 and 2200 seconds. However, 

all the runs found the same final for HVfinal (RSD of HV is 0%). We can guess that this value 

is probably the optimal one.  



 

104 / 145 

 

As all cases presented in this section will have different HV values, it would not be 

significant to compare their HV evolution in a same graph. We will compare only their 

convergence rates (time to reach HVfinal, 99.9% of HVfinal and 99% of HVfinal). 

The stopping criterion is a strict time limit, in this case 3600 seconds (1 hour). It corresponds 

to around 300 generations, 16 500 individuals generated and 273 000 filtering (averagely 75 

filtering per second). The main characteristic of our constrained optimization approach is to 

maintain feasibility of individual during their construction or modification (crossover, mutation 

or initialization). At each modification of an individual (i.e. an instantiation of a decision 

variable), domains of all remaining variables are checked by filtering engine. When a domain 

of remaining variables become empty, the individual is unfeasible. A limited backtrack on 

previous choices is then launched to restore feasibility.  

As all domains are checked at each modification, a strong specificity of our approach is that 

there is very few backtracks during evolutionary operators. In this case, there is only 0.44% of 

backtrack by individual. This is also due to the crossover operator behavior: the restrained 

crossover selects parents close in search space; then a uniform crossover is initiated on selected 

parents (crossover probability of 50% for each gene). It is applied gene by gene in a random 

order. After every instantiation, domains of remaining genes are checked: if a domain is empty, 

the backtrack is launched; but also, if a domain is reduced to one state, this state is automatically 

selected. This behavior preserves coherent genes combinations from parents in their children.  

But the main drawback of this behavior is that many modifications are avoided and 

sometime the resulting individuals are similar to the original ones (i.e. children are similar to 

their parents). In this case, the rate of useless crossover (crossover that leads to the same 

individual) is very high with around 38%.  

We will study in next sections how those rates evolve according to size, constraints density 

or architecture. 

4.3.1 Model size evaluation 

The results obtained with the four model size (small: 15 variables, medium: 30 variables, 

intermediate: 60 variables and large: 100 variables) are presented in the Figure 28. The 

horizontal axis corresponds to the number of variables and the vertical one with the computation 

time. 
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Logically, the time consumption is strongly affected by model size. Indeed, the number of 

possible solutions grows exponentially with the number of variables. Respectively, cases with 

15/30/60/100 variables correspond to more than 1011/1023/1046/1077 possible combinations 

without taking into account constraints and approximatively 108/1016/1031/1053 feasible 

solutions when constraints are taken into account (we will discuss in next section relations 

between constraints density and feasible search space). 

 

Figure 28- Model size effects on computation times 

In the small case, every run found the same HVfinal (supposed optimal value) in averagely 

294 seconds (5 minutes) because relative standard deviation (RSD of HV) is 0%. Likewise, in 

medium case, the supposed optimal is reached in averagely 1696 seconds (28 minutes). Time 

gaps between runs are relatively significant with RSD on time around 28%. Nevertheless, those 

time consumptions and sizes are relevant for a decision aiding process for small product/process 

like a personal computer, a kitchen or a car (see section 1.1.4.3 on optimization issues).  

With large or intermediate size, the times needed to reach HVfinal (46782 seconds/12.9 hours 

for large case and 19842 seconds/5.5 hours for intermediate case) are clearly much larger. 

Notice that some runs don’t find the supposed optimal value for HVfinal before the selected time 

limit (time limit: 12 hours for intermediate case and 24 hours for large case). But provided 

HVfinal values are really close from each other given the low values of RSD (0.053% for 

intermediate size and 0.271% for large size).  

Time consumptions in intermediate and large cases remain compatible for big 

products/processes (for example, an aircraft or a sealing boat). Assuming a very large 
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product/process model of 200 variables, its sounds quite to reasonable to consider 100 customer 

requirements that provide a problems size to optimize around 100 variables. Our 

experimentations with 60 to 100 variables can be consequently considered as good 

representatives. Furthermore, real computation time could be significantly reduced thanks to a 

parallelization of filtering.  

These larger cases have another property different from smaller cases: their Pareto front 

have more solutions than the archive size. That leads to an HVfinal value that fluctuates. Indeed 

when there are more Pareto-optimal solutions than the size of the archive, the algorithm make 

a non-deterministic selection based on distance to the k-nearest neighbor (see SPEA2 

description on (Zitzler, et al., 2002)). The small values of RSD on time for intermediate and 

large cases indicate that all runs have reached an average HVfinal value and fluctuate around this 

value. Larger archive size could be selected in such cases but it will reduce convergence speed.  

Concerning detailed indicators, size of the case to optimize significantly impacts the useless 

crossovers rate. It goes from 50% for the small case to 8% for the larger case. The more the 

chromosome of individuals is large, the more the useless crossover rate is reduced.  

Another interesting observation is that, in all cases, a good approximation of the final Pareto 

front, for example let us consider 99% of HVfinal, is found relatively quickly. It takes roughly 

between 10% and 20% of the time to reach 99% of HVfinal. Furthermore, this is obtained with 

a reasonable RSD on HV (values less than 0.6% are reported). This characteristic will be used 

in next chapter to propose an improvement of optimization approach. The proposed 

improvement could also solve the archive size problem on large cases.  

4.3.2 Model constraints density evaluation 

The results obtained with three constraints density level (low: 20% of forbidden tuples, 

medium: 50% of forbidden tuples, high: 80% of forbidden tuples) are presented in Figure 29. 

The horizontal axis corresponds to the average percentage of forbidden tuples and the vertical 

one corresponds as before with the computation time. 
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Figure 29- Constraint density effects on computation times 

When comparing the time required to obtain HVfinal, the constraints density have a major 

impact on time consumption. When the constraint density increases, the average percentage of 

forbidden tuples increases also (the problem is logically more and more constrained) and the 

computation clearly decreases. We confirm the known result; a more constrained problem is 

quicker to optimize. The most constrained problem (80% of forbidden tuples) reaches HVfinal 

in averagely 247 seconds with a RSD of 0% (supposed optimal), while in less constrained 

problem (20% of forbidden tuples), it takes averagely 2610 seconds to reach HVfinal with a RSD 

of 0.053%.  

The constraints density level is directly linked with the number of feasible solutions and 

thus to the size of the search space. For a given model size (number of variables and size of 

their domains), the more a problem is constrained, the less it has feasible solutions. The exact 

number of feasible solutions can’t be computed easily. It depends on the quantity of tuples of 

constraints but also to the distribution of constraints between variables. This constraint density 

test uses the platform medium size model. It has 30 variables with 6 values and 26 configuration 

constraints. We can have an approximation of feasibility scale of the three level of constraints 

density with a simpler fictive model: if 27 variables where linked one by one sequentially by 

constraints and the 3 remaining variables where unlinked to others, the ratio of feasibility 

(number of feasible solution over all possible combinations without taking into account 

constraints) is respectively around 10-3, 10-8 and 10-19 for high, medium and low constraints 

density. We checked this ratio on high constraint density case by a random sampling of solution 

and we found the same magnitude order: 0.002 % of feasible solutions (882 feasible solutions 

Low (20%) 

Medium (50%) 

High (80%) 
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for 426549 random combinations tested). The constraints density level can also be evaluated 

thanks to the backtrack rate observed in each case. It is respectively 0.04% / 0.44% / 14.12% 

for high / medium / low constrained cases. Even if constructing an individual is longer for more 

constrained cases, the time needed to investigate feasible search space is clearly reduced.  

The time consumptions needed to reach 99% of HVfinal are of the same order of magnitude 

than the times reported for the previous size evaluation (between 10 and 30% of time needed to 

found HVfinal). As in previous experimentations, the dispersion of all results is very low with 

RSD for both time to reach 99.9% or 99% of HVfinal (less than 3%) or value of HVfinal (less than 

0.4%). 

4.3.3 Product architecture evaluation 

The results obtained with the three product architectures (platform, modular, integrated) are 

presented in the Figure 30. The horizontal axis corresponds to the architectures and the vertical 

one with the computation time. 

 

Figure 30- Architecture effects on computation times 

When considering the time required to obtain HVfinal value, the platform architecture is the 

fastest (1696 seconds) followed by modular (2250 seconds) and integrated (3763 seconds) 

architectures.  

The gap between times needed to reach HVfinal in modular and integrated cases aren’t 

fundamentally significant but we have to keep in mind that differences between those three 

cases consist mainly in different constraint organization and different distribution of constraints 
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density. For example, if we consider the distribution of low constraints density, the same 

number of strong constraints (i) between modules for integrated architecture or (ii) intra-

modules for modular architecture haven’t a great impact on computation time when compared 

with the problem size or the constraints density.  

These results on platform model suggest that an architecture founded on a central module 

is easier to investigate for an evaluation algorithm. Variables of the platform module are more 

connected by constraints that those of other modules. The combinations for this architecture 

tend to give some kind of structure to the search space more properly than in the two other 

cases. The evolutionary algorithms that handle combinations of genes take benefits of this 

structuration and reach more quickly interesting areas.  

In a modular architecture, constraints are more “scattered” in the model. This leads to the 

same effect as a lower constraint level and thus a higher time consumption to reach final HV.  

Integrated case is clearly the most difficult case to obtain final HV. The backtrack rate and 

useless crossover rate are significantly higher with 1.87% and 47% (against 0.24% and 40% for 

modular case). Some interesting individuals are found quickly (i.e. time to reach 99% and 

99.9% are lower than in modular case) but it takes a long time to refine final Pareto front.  

4.4 Result synthesis 

The goal of this chapter was to evaluate an optimization approach of Concurrent Product 

Process Configuration with problem instances that were not case-dependent. The generic model 

of chapter 3 has allowed us to generate a benchmark of eight CPPC problems organized in an 

experimentation plan with respect to three key characteristics, (i) problem size, (ii) constraint 

density and (iii) product architecture. Then, these eight problems have been optimized with the 

CFB-EA algorithm and compared. 

In terms of case-dependency, we can conclude that the proposed generic model that takes 

into account many aspects of the diversity of configurable product is a good way to avoid case-

dependency when comparing optimization techniques. Two ideas for future works on this 

model are on one side to publish on the web our problem generator, and on the other side, to 

model new industrial cases.  

In terms of optimization results comparison with respect to the three key product/process 

characteristics, there is no "breaking results". We have noticed the conventional results relevant 

to problem size and constraint density already published in [Pitiot et al., 2014]. CFB-EA shows 
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a significant ability to combine individuals with few backtracks. Globally, it shows time 

consumption relevant for the addressed decision aiding process.  

We would have thought that the product architecture impact would be clearer. Given our 

result, we can just conclude that platform architecture fits better optimization than modular and 

integrated architectures. This is consistent with the fact that a CSP problem well-structured 

(around a platform module) is easier to optimize while with a collection of small interconnected 

CSP (modular and integrated cases), optimization process has trouble to refine Pareto front. 

Comparison between modular and integrated cases confirms that when constraints are more 

distributed between small interconnected CSP (integrated case), it is harder to optimize finely. 

Last important point for the next chapter; all evaluated cases have shown that 99% of HVfinal 

was reached quite quickly by all experimentations. An average of 16% of the time to reach 

HVfinal is necessary to get 99% of this final or very close to supposed optimal hypervolume 

value. This remark is the basis of the EA improvement proposed in the next chapter. 
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5. Improvement of existing approaches on benchmark  

The present chapter is based in the next article:  

Paul Pitiot, Luis Garces Monge, Michel Aldanondo, Elise Vareilles & Paul Gaborit (2019) 

Optimisation of the concurrent product and process configuration: an approach to reduce 

computation time with an experimental evaluation, International Journal of Production 

Research, DOI: 10.1080/00207543.2019.1598598 

In order to answer to our third research question: “Is it possible to reduce the computation 

times of CFB-EA and other conventional EA approaches?” we propose in this chapter an 

improvement of CFB-EA called CFB-EA+ recently published in (Pitiot, et al., 2019). The main 

idea is first to quickly compute a rough Pareto of solutions, then ask the user to select an area 

of interest, and finally to launch a second computation on this restricted area. 

In following sections, we make a brief review of associated concepts, a presentation of 

proposed approach, its interests and tuning of its parameters. Then, the proposed CFB-EA+ is 

presented with experimental results.  

5.1 Possible improvement to the EA and computation time reductions  

The CFB-EA algorithm shows a conventional behavior similar to most population-based 

optimization approaches and most EAs: after an initial fast improvement (due to the fitness 

function that maximizes solution dispersion on the Pareto front), performance stagnates before 

slowly coming closer to optimal values. A challenging aim is thus to find a way to avoid the 

previous stagnation sub-step. Given this purpose, two kinds of approaches, both of which are 

multi-stage, can be investigated. The first stage is almost always an EA, while the second stage 

can be either a similar EA or another technique, which is most often a stochastic local search 

(SLS). 

SLS algorithms (Hoos & Stützle, 2004) move from solution to solution in the search space 

by applying local changes until they find a supposed optimal solution or reach a time bound. In 

multiobjective contexts, the idea of mixing population-based approaches with an SLS algorithm 

is to benefit from both the quick and global improvements of the first EA and then use the SLS 

algorithm to improve search around founded solutions. It leads to a well-converged and 

diversified final result (Blot, et al., 2018).  

The idea around EA-based multi-stage optimization is to avoid tackling the whole problem 

size and complexity in a single shot. Two kinds of ideas can be found in the literature. The first 

https://doi.org/10.1080/00207543.2019.1598598


 

112 / 145 

 

ones try to reduce the number of criteria in a single optimization shot with some kind of criteria 

distribution or association to different optimization stages. The second ones try to reduce the 

size of solution spaces in a single optimization shot with some kind of solution space 

decomposition and allocation to optimization stages. For example, (Ascione, et al., 2016) 

distribute optimization criteria in a three-stage optimization approach in a study of energy 

retrofitting of hospital buildings. A similar approach can be seen in (Hamdy, et al., 2013), also 

for building optimization. Dealing more with solution space decomposition (Ji, et al., 2017) 

suggest using feasibility rules to quickly find a valid part of the solution space, then, once a 

solution is found, the investigated solution space is expended thanks to coevolution. Of course, 

approaches mixing criteria and solution space distribution can be found.  

Some authors consider a large number of stages and speak of interactive methods (López 

Jaimes & Coello Coello, 2013). These methods collect user preferences and give the possibility 

for the user to be active during the solution search process. The user has the opportunity to learn 

about the problem while exploring the available solutions (Miettinen, et al., 2008). This idea 

has been exploited in scalarization-based methods, such as (Linder , et al., 2012) or (Monz, et 

al., 2008). It has also been used with an evolutionary algorithm (Sinha, et al., 2014) (Bechikh, 

et al., 2015). Both approaches have some drawbacks, depending on the size and complexity of 

the problem (nature and number of objective functions). Three types of specifying preference 

information were identified by (Miettinen, et al., 2008): trade-off information, reference points 

and classification of objective functions. Our approach follows the idea of trade-off information 

by delimiting an area in the search space. But it does not belong to the interactive method class, 

in the sense that it only interacts once with the user. Consequently, our proposal for reducing 

optimization computation is a two-stage EA-based approach.  

5.2 A proposal to reduce computation time for the CPPC problem: CFB-

EA+ 

Within previous non-interactive methods, the partitioning of criteria or solution spaces and 

their affectation to a different optimization stage means that before launching the optimization, 

the user needs to have a priori preferences about the importance of the criteria, as well as the 

knowledge of the solution space areas to investigate. As CFB-EA allows all criteria to be 

considered over the whole solution space, a key idea of the proposal is to avoid the need for 

these a priori blind preferences by showing the user a first Pareto that consider the whole 

problem. Then, given this Pareto knowledge, the user can decide on how to compromise 

between criteria and solution space. 
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5.2.1 Description of CFB-EA+ 

Our proposal, called CFB-EA+, mixes both solution space and criteria partitions but only 

when knowing a little about the solution space. The idea is to launch a first optimization stage 

on the whole solutions space while taking into account all criteria, and to stop this process once 

a first ‘raw’ Pareto front can be identified at a time called switching time (ST). This Pareto 

result is shown to the customer in order for him/her, knowing the first general tendency of 

optimal compromises, to select a multi-criteria restricted area matching his/her criteria 

expectations.  

We have seen, during the definition of the optimization model of the CPPC problem that 

each optimization criterion was modeled as a numerical constraint that sums CSP variables 

(cost attributes or operation durations). Thus, for the second optimization stage, these numerical 

constraints are bounded with maximum values that correspond to the restricted area that fits 

customer expectations. These numerical constraints are added to the CPPC model and the three 

CFB-EA sub-steps that are subject to constraint filtering (initialization of individual population, 

individual crossover and individual mutation), all respect these criteria bounds. Therefore, the 

proposed second stage of the CFB-EA generates individuals that respect customer criteria 

restriction expectations.  

This two-stage optimization process is illustrated in Figure 31. On the left side, we can see 

the conventional single stage optimization that takes a long time. In the center, at the switching 

time, a first raw Pareto (resulting from the first stage optimization on the whole solution space) 

that allows capturing customer preferences (here the restricted area matching customer 

expectations is a maximum cycle time) is presented. On the right side, the final Pareto on the 

restricted area is shown. 

 

Figure 31- Proposed two-stage optimization process 
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The CFB-EA algorithm described in Figure 8 (section 2.2.5) is updated as follows: After 

the stopping criterion test step: (1) a switching time test is added, if the user is satisfied with the 

raw Pareto and has decided on a restricted area to investigate, (2) criteria constraints are 

inputted, (3) archive individuals that do not respect criteria constraints are removed, (4) criteria 

constraints are added to the filtering engine. The resulting CFBEA+ flowchart is shown in 

Figure 32, with new steps in bold dark grey. The problem of the tuning of the switching time 

will be addressed in the evaluation section at the end of Section (5.4.3). 

 

Figure 32- CFB-EA+ algorithm 

5.2.2 Interests and limits of CFB-EA+ 

The three following interests can be underlined. Firstly, our idea globally corresponds to 

some kind of criteria ordering, but in this case, ordering is declared once a global tendency of 

solutions distribution with respect to criteria is known by the user. This means that CFB-EA+ 

avoids the ‘blind choice’ about criteria of other two-stage optimization approaches that rely on 

a priori criteria ranking. Secondly, the first optimization stage is identical to CFB-EA, but the 

second one does not restart from scratch. In fact, it benefits from the first-stage individuals that 

respect the restricted area and that are systematically included in the initial population of the 

second optimization stage. Thus there is no loss of computation time between the two 

optimization stages. Thirdly, we have seen in Section 1.2.2 that, depending on the quantity of 

elementary requirements, the size of the problem to optimize can vary. Furthermore, according 

to the content of these elementary requirements (high or low product performance, for example, 

that essentially drives selling price and cycle time), the requirement-respecting solution space 

that needs to be optimized can be clearly located in a different space area as shown in Figure 4. 

As CFB-EA+ provides a general tendency before asking for criteria preference, any kind of 
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customer requirements can be easily handled even if the interesting solution locations are very 

different. 

A limitation could be discussed concerns backtracking. As constraint filtering is not 

powerful or strong enough, when the restricted area corresponds to too hard constraints, the 

constraint filtering process of the CFB-EA specific sub-steps (individual crossover and 

individual mutation) can reach inconsistencies. By this, we mean that no solution remains for a 

configuration CSP variable during crossover or mutation. Thus, some backtrack processes are 

necessary to repair the solution. But if in CFB-EA, the backtrack is not frequent at all, with 

CFB-EA+ and criteria constraints that are stronger, the optimization process can spend a long 

time on backtracking. The experimentations of Section 5.4 will show that backtrack is from 10 

to 40 times more frequent with CFB-EA+.  

5.2.3 Tuning CFB-EA+ parameters 

In order to use CFB-EA+, some recommendations relevant to the tuning of the two 

parameters must be proposed. We first define and discuss the tuning parameters, then we 

propose some recommendations that will be validated according to the result of the 

experimentation section. The two parameters are the “switching time” between the two-

optimization stage and the “size of the restricted area” matching customer expectations. 

About the switching time: 

• If it is too early, the first optimization stage might be unable to provide a rough Pareto 

sufficiently detailed to allow capturing a suitable restricted area matching customer 

expectations. 

• If it is too long, the first optimization stage will be very close to the optimal value and the 

computation time reduction will be rather low. 

About the size of the restricted area matching customer expectations: 

• If is too large, the second optimization stage will have a large solution space to investigate 

and, as before, the computation time reduction will be rather low. 

• If is too small, the evolutionary operators may fall in a local optimal area missing the global 

optimal one. 

 

These two tuning parameters are more or less linked. Let us first consider the size of the 

restricted area. Once the switching time is reached, the raw Pareto front is shown to the user 
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and the idea is to ask him/her, knowing current criteria values, about a solution tendency. By 

solution tendency, we mean for two criteria to indicate either a preference on a single criterion 

or a compromise between the two criteria, this provides three criteria tendencies for reducing 

the search space (for example on figure 33: cycle time < ct1, total cost < tc1, cycle time < ct2 

and total cost < tc2). Thus, as a suggestion, the raw Pareto front could be divided in to three 

parts containing a same number of individuals (1/4 of Pareto front that gathers 3 or 4 points 

each in figure 33). This is an order of magnitude suggestion and, of course, it is possible to 

deviate from this solution according to customer expectations.  

Once this restricted area is defined, in order to avoid the local optimal problem, it is 

necessary to check if the quantity of individuals existing in this area (Qtt in area) at the switching 

time is sufficient. This value will be quantified according to further experimentations. If it is 

not, this means that the switching time is too early and that the first optimization stage must be 

continued or that the size of the constrained area should be increased. 

 

Figure 33- Different restricted areas for second optimization stage 

5.3 Experimental Plan  

In this section, we first present the correction of evaluation metric needed to compare CFB-

EA and CFB-EA+. Then we describe our experimentation plan. 

5.3.1 Performance evaluation for experiments with CFB-EA+ 

Hypervolume computed during first stage corresponds to the area covered in the whole 

search space. When evaluating CFB-EA+, we must correct the value of this hypervolume with 

respect to the switching time (ST) between the two optimization stages and the associated 

restricted area. This means that once the two-stage optimization is over, when plotting the HV 

versus computation time: 
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• At the before switching time, we consider a corrected hypervolume as shown in the center 

of Figure 34, which means that we discard all individuals outside the restricted area when 

computing HV, 

• after switching time, as the constraints corresponding to the restricted area are respected by 

any individual, HV is unchanged, as shown on the right of Figure 34. 

 
 

Figure 34- Hypervolume computation for CFBEA+ 

In order to be able to compare CFB-EA with CFB-EA+ on a given restricted area, the 

hypervolume relevant to CFB-EA will be computed with the CFB-EA+ mode used before 

switching time, meaning that HV computation will not consider individuals outside the 

restricted area. Thus, before switching time the HV time evolution is formally similar for both 

algorithms, then after switching time a different behavior should be observable, as shown in 

Figure 35. 

 

Figure 35- Comparing HV evolution of CFB-EA+ and CFB-EA 

cycle time

to
ta

l c
o

st

Pareto optimized solutions space
with single shoot Pareto

First raw Pareto
after first stage

Second Pareto on restricted area
after second stage

restricted
area

cycle time

to
ta

l c
o

st

cycle time

to
ta

l c
o

st

max
cycle time

Switching time

Computation time

H
V optimal HV

HV evolution
CFBEA
CFBEA+



 

118 / 145 

 

The main experimentations in order to compare CFB-EA and CFB-EA+ will be achieved 

with the reference case (platform model as described in section 4.3). Then a larger problem 

(intermediate size case) will be considered to show the scalability of the proposal.  

5.3.2 Experimentation plan 

The experimental plan showed in this part corresponds to the one published in (Pitiot, et al., 

2019). This publication was achieved with an older version of CFB-EA than the one used in 

chapter 4. As it does not benefit from the last improvements made during the end of thesis, time 

consumption is higher than the ones presented in chapter 4. Nevertheless, comparison of CFB-

EA and CFB-EA+ with the same version and on the same models is relevant.  

CFB-EA reference results are obtained as follows: 

(1) the CFB-EA algorithm is launched 5 times with a time bound of 9000 seconds, 

(2) the average values of the first (HVfirst) and final (HVfinal) hypervolume are computed, 

(3) the average time to reach HVfinal is also noted. It might be below 9000 seconds. 

It is important to note that these previous values consider the whole solution space. Then, 

considering the Pareto front associated with the previous HVfinal, and in order to achieve 

comparisons with CFB-EA+: 

(4) three restricted areas (RA) illustrated in figure 36 are defined as: 

- RA1: cycle time < ctmax, ctmax defined with 25% individuals on Pareto front, 

- RA2: cycle time < ctmed & total cost < tcmed defined with 25% individuals on Pareto 

front  

- RA3: total cost < tcmax, tcmax defined with 25% individuals on Pareto front. 
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Figure 36- Four restricted areas for CFB-EA+ 

(5) and for each restricted area: 

- the corrected area hypervolume of CFB-EA (noted “Hypervolume best value BV” or 

“BV” in the results tables) is computed, 

- the time to reach 95%, 99%, 99.9% and 100% of previous CFB-EA “BV” is also 

computed. 

For each of these times and HV values, an average and a relative standard deviation (RSD) 

are provided. It can be seen in Figure 36 that in 12 minutes the Pareto front gives a good idea 

of possible potential compromises. 

In order to avoid absolute values for switching times, the analysis is conducted with three 

switching times related to different levels of Hypervolume for each previously defined 

restricted area. These three switching times correspond to a HV value of 70, 80 and 90% of 

(HVfinal - HVfirst). They correspond roughly to 466, 800 and 1160 seconds. Each of these times 

is associated with a number of individuals for each restricted area (noted Qtt in the tables of 

results), that have been generated during the first computation and that are in the restricted area, 

including, of course, those that belong to the Pareto front. 

For each couple (restricted area, switching time), CFB-EA+ is launched five times with the 

same time bound of 9000 s, and the following values are recorded: 

• average of the previous number of individuals (Qtt), 
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• the times when the hypervolume reaches 95%, 99%, 99.9% and 100% of the hypervolume 

best value (BV) of CFB-EA, 

• the final or best hypervolume, 

 

As before, both the average and the RSD are provided for these times and HV values. These 

results are compared to the results provided by CFB-EA on the same restricted area with a gap 

percentage, 100 * [value (CFB-EA) - value (CFB-EA+)] / value (CFB-EA). 

Having conducted CFB-EA optimization with various problem sizes, we came to the 

conclusion that the adequate size of the archive is 100, adequate population size is 150, 

appropriate crossover probability for individual selection is 0.8, and mutation probabilities for 

individual and gene selections should be set respectively at 0.5 and 0.1.  

5.4 Results  

In the following section, we present the associated results, discuss them and propose some 

recommendations for using and tuning CFB-EA+. Then with a larger model, we discuss 

scalability issues.  

5.4.1 CFB-EA and CFB-EA+ results comparison and discussions 

The hypervolume evolutions are shown and computations times are compared for the three 

restricted areas. 

5.4.1.1 Restricted Area 1, cycle time constraint  

Figure 37 shows the hypervolume evolution on a graph with a table that details the 

computation times. 
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Figure 37- Comparison CFBEA+ with CFBEA on restricted area 1 

For any switching time and any table times (95%, 99%, 99.9% and 100% and BV) CFB-

EA+ computation times are always lower, with a gap between 6% and 43%. For CFB-EA+, as 

switching time 80% (800 s.) and 90% (1160 s.) are higher than CFB-EA time to reach 95% of 

BV CFB-EA (around 530 s.), there is no computation time comparison. It can be noticed that 

each of the five runs reaches the hypervolume best value (BV 4009.96 with RSD = 0). 

Furthermore, even if CFB-EA+ takes more time to build individuals (CFB-EA+ backtrack rate 

by an individual is around 4.25%, while CFB-EA backtrack rate is close to 0.4%), it reaches 

BV more quickly. 

5.4.1.2 Restricted Area 2, cycle time and total cost constraint  

Results are shown in figure 38. These results show some interesting behavior. This 

restricted area is the most highly constrained one. The backtrack rate by an individual is around 

17% (more than 40 times more than CFB-EA). It also has the lowest quantity of individuals 

from the first stage (respectively 20.4, 51.8 and 88.4). That leads to, with early switching times 

(70% and 80%) CFB-EA+ is unable to reach 99.9% and 100% of CFB-EA best value. However, 

those final values are very close to the hypervolume best value and they are reached very early. 

Moreover, all other values show lower computation times with gaps between 14% and 37%. 

Even if individuals are more difficult to obtain, due to backtracking, CFB-EA+ outperform 
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CFB-EA. The key point would be to avoid the lack of diversity in the initial population that 

leads to local optimal for some cases of the earliest switching time.  

 

Figure 38- Comparison CFBEA+ with CFBEA on restricted area 2 

5.4.1.3 Restricted area 3, total cost constraint  

Results are shown in figure 39. For this restricted area, the tendency is similar. The 

backtrack rate by an individual is around 1,7%. The CFBEA+ computation times are still always 

better than CFB-EA with values between 11% and 49%. The highest decreases are obtained 

with the intermediate switching time (80%) that also always provides the best hypervolume 

value (10552.70). 
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Figure 39- Comparison CFBEA+ with CFBEA on restricted area 3 

5.4.2 Global results comparison 

Table 4 gathers all computation time reductions as a percentage decrease with respect to 

various combinations of restricted areas and switching times. 

When globally comparing all computation times, we obtain 30 times gaps: 10 with RA1, 8 

with RA2 and 12 with RA3. The average of these 30 gaps is 27.05%, meaning that CFB-EA+ 

allows a significant reduction in computation time. 

When comparing reductions with respect to restricted areas, the average gap of RA1 is 

21.68%, while RA2 is 29.19% and RA3 is 30.09%, meaning that CFB-EA+ computation time 

reductions are a little higher when restricted areas are more constrained by total cost. 

When considering only the time required to obtain the best hypervolume value (100% of 

BV CFB-EA), CFB-EA+ is always better than CFB-EA, with an average gap around 26% 

(excluding restricted area 2 with 70% and 80% switching time). This result, close to the global 

one (27.05), shows that significant computation time reductions are obtained with CFB-EA+ 

without any reduction of optimality level of the solutions. 

When taking into account the different switching times, average gaps are as follows: CFB-

EA+ 70%: 25.87%, CFB-EA+ 80%: 33.39% and CFB-EA+ 90%: 22.93%. This means that the 
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highest computation time reductions are provided with the intermediate switching time 

associated with a hypervolume equal to 80% of (HVfinal –HVfirst). 

As previously mentioned, the quantity of individuals respecting the restricted area at the 

switching time (noted “Qtt” in the tables of results) at the beginning of the second CFB-EA+ 

optimization stage must be considered as a switching time condition to avoid local optimums. 

Considering Table 4, we suggest a minimum quantity of 60 for all restricted areas. This quantity 

of individuals will be the basis for our tuning recommendation of the next section. Of course, 

this quantity is roughly related to the size of the archive, which is 100 in previous experiments. 

 

Table 4- Time reductions with respect to restricted areas and switching times. 

5.4.3 CFB-EA+ tuning recommendation for switching time and restricted area 

The recommendation process works in the following way: once the first CFB-EA+ 

optimization stage is launched on the whole solution space, at each loop, the possibility for a 

CFB-EA+ second stage initialization is checked as follows: 

• the individuals of the Pareto front are analyzed, and the constraints associated with each 

restricted area are computed, with respect to a 25% minimizing of each criterion and 25% 

of central compromise of the two criteria, 

• the quantity of individuals included in each restricted area since the beginning of the CFB-

EA+ stage is calculated, 
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• for each restricted area: 

o if this quantity of individuals is smaller, the CFB-EA+ first stage carries on, 

o if this quantity of individuals is larger than 60 (given the archive is around 100 in 

our case), the process proposes to the user to launch the second CFB-EA+ 

optimization stage, 

o if the user is not satisfied by the proposed restricted area, CFB-EA first stage carries 

on, 

o if the user is satisfied by the proposed restricted areas, he can either validate the 

proposed restricted area or slightly modify it, as long as the minimum quantity is 

respected. 

This recommendation will be used for optimizing the larger problem of the next section. 

The initial CFB-EA+ algorithm shown in Figure 32 Section 5.2.1 is updated and gives the final 

CFB-EA+ algorithm that works as illustrated in Figure 40. 

 

Figure 40- CFB-EA+ algorithm including the tuning process 

5.4.4 Experiments with a much larger model and scalability issues 

In order to deal with scalability issues, we consider now the intermediate case with 60 

variables. The archive size is larger, 150 (instead of 100), and the number of individuals that 

triggered the CFB-EA+ second stage initialization possibility is set to 100 (instead of 60) for 

all restricted area. The resulting switching times are, for RA1: 13736, for RA2: 7835 and for 

RA3: 8901. Figure 41 shows the hypervolume evolution for each restricted area with tables 

showing computer time reductions. 
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Figure 41- Comparison CFB-EA+ / CFB-EA with a larger model 

These curves and time reductions show that CFB-EA+ still works fine with larger problems. 

Furthermore, it can be noticed that the computation time reductions are globally larger with this 

60-variables model (around 54%) compared to the 30-variables model described in the previous 

section (around 27%). This leads us to the conclusion that the interest of CFB-EA + is greater 

when the amount of elementary requirements provided by the user is small. Let us imagine, 

although this was not the case for previous experiments, that: 

• the real problem has a model size of 80 variables, 

• that results provided in section 5.4.1 correspond with 50 elementary requirements, 

• that results provided in section 5.4.4 correspond with 20 elementary requirements. 

Results show, that for a given size problem of 80, better time reductions are obtained with 

20 elementary requirements compared to 50. Thus, for our interactive configuration problem, 

if requirements are very detailed and cover almost all configuration variables, our 

recommendation would be to just use the CFB-EA single-stage approach. 

5.5 Conclusion on CFB-EA+ evaluation: 

The key idea of CFB-EA+ is to avoid processing the whole solution space, but also to avoid 

“a priori” ordering of criteria and problem variables. The idea is to quickly compute a first 

Pareto front and, according to the knowledge of this result, to suggest some restricted areas to 

the user which will be subject to further enforced investigations in a second stage.  
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With regard to computation time reductions, a low-constrained model of 30 configurable 

variables was used for experiments with various switching times and restricted areas. Without 

any parameter classification, a decrease in the order of magnitude of 30% of computation time 

can be expected. It has also been noted that this improvement is obtained without any decrease 

of the optimality level of the solutions. 

For the tuning of CFB-EA+ parameters, previous experiments have confirmed that the 

largest reductions in computation time were obtained with an intermediate switching time. But 

as a switching time associated with a small restricted area could lead to an over-constrained 

problem or a lack of diversity in the initial population, the quantity of individuals in a given 

restricted area has been preferred as a necessary tuning parameter. Given these results, we have 

proposed an updated version of CFB-EA+ that enables to suggest to the user switching times 

associated with quantity of individuals in selected area of interest.  

A model gathering 60 variables with characteristics similar to the previous one was also 

considered. Experiments confirmed previous computation time reductions and show even better 

results for a larger model. 

These conclusions clearly show the interests of the CFB-EA+ approach in reducing 

optimization computation times. Furthermore, considering company expectations, and 

especially in B2C configuration situations, the possibility of showing a first Pareto Front in less 

than 15 min, and thus providing an idea of the solution space distribution will undoubtedly 

serve to keep the customer’s attention focused on the configuration possibilities. By viewing 

this Pareto, the customer can express a well-founded expectation of his/her criteria preferences 

and therefore feel greater satisfaction. For B2B situations, the contribution is a little different, 

as the customer usually has to wait for an optimal solution, which takes quite a long time.  

Here, even if this computation time is significantly reduced, it is possible to provide the 

customer with partial solution-space tendencies in a relatively short time, thus limiting the 

search for optimal space regions. 
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6. Conclusions and future works  

6.1 Conclusion 

This PhD focuses on modeling and optimizing issues for the O-CPPC problem as well as 

evaluating optimization approach (CFB-EA). It was motivated by strong expectations of the 

industrial issues: the need of powerful handling and optimization tools for a difficult decision 

aiding problem (large, multiobjective, combinatorial and constrained optimization) as well as 

the need of proper evaluation of optimization approach. The domains of O-CPPC problem and 

associated definitions, the frameworks and tools used (CSP and EA) were presented as well as 

a state-of-art of them. Responses to the three research questions were proposed in this work: 

QR1: “Is it possible to propose a generic model of the CPPC problem that can avoid case 

dependency when evaluating and comparing optimization methods?” 

A generic model and the associated generator have been proposed and discussed. The 

generic model gathers different points of view of product modeling (physical, functional or 

mixed) that could be found in various industrial cases. It proposes a structured decomposition 

of CPPC models with definition of: 

• architectures (platform, modular and integrated),  

• physical-functional modules,  

• Product Configuration Evaluation Patterns (5 patterns), 

• Product Configuration Constraints Patterns (4 patterns),  

• Product Evaluation Constraints Patterns (3 patterns),  

• A Process operation pattern,  

• Process evaluation pattern that links workload, resource, cost and duration of tasks, 

• Rules for constraint distribution between decision variables in each domain (product, 

process or coupling). 

These numerous elements must allow to capture a large diversity of existing configuration 

problems. Such generic modelling clearly avoids problems of case-dependency or random 

generation of models that suffer most of existing publications.  
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QR2: How sensitive is CFB-EA optimization method, with respect to each key characteristic 

of the generic model of the CPPC problem? 

Given generic model described, a first version of a benchmark for O-CPPC optimization 

problems was proposed with eight cases. It allowed us to evaluate three key characteristics of 

CPPC problem: product architecture, size and constraints density. 

The study confirms abilities of CFB-EA in relation with size and constraint density. Time 

consumption are relevant for the addressed decision aiding process. Experiments showed some 

interesting behaviors in relation to the Product architecture even if its impact is less relevant 

than size or constraint density.  

Formally, strong constrained cases (high constraint density level or concentrated constraints 

distribution as in platform case) lead to an easier optimization, whereas, low constrained cases 

(low constraint density level or constraints well spread all over the model as in modular case) 

are harder to optimize finely.  

In all cases, CFB-EA reaches a near-optimal (99% of final performance) Pareto front very 

quickly (less than 20% of the time to reach the best solution or less than 2 hours for the largest 

considered problem).  

QR3: Is it possible to reduce the computation times of CFB-EA and other conventional EA 

approaches? 

A two-step approach called CFB-EA+ was proposed and evaluated. It takes benefits from 

CFB-EA initial fast improvement to propose a first view of solution space (“raw” Pareto). It 

takes benefit to user’s preference collection as in interactive methods but without asking him 

several times. It also avoids the blind choice of partition of criteria or solution spaces of “a 

priori” approaches.  

CFB-EA+ shows a time consumption decrease in the order of magnitude of 30% in 30 

variables model and up to 50% in larger cases (60 variables). Those improvements are obtained 

with similar or better performance than with CFB-EA. 

According to the analyze of parameters tuning, the diversity of initial solutions in second 

phase is the key point to obtain the most significant time reduction without falling in a local 

optimum. Therefore, we have proposed an updated version of CFB-EA+ that enables to suggest 

to the user switching times associated with quantity of individuals in selected area of interest. 
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6.2 Futures works  

Presented works constitute a strong base for analysis, modeling and optimization of CPPC 

problem. For each research question, following perspectives could be investigated:  

QR1: Generic model of the CPPC problem  

The generic model proposed gathers various patterns coming from our experience on 

industrial projects. It could be completed with some other patterns that could be relevant to: 

specific industrial situations. In a similar way, another key issue that represents a popular 

research theme could be to integrate other evaluation criteria linked to environmental impact as 

carbon foot print or to product/process quality. 

A problem for optimization researchers is that real cases models are most of the time hidden 

by the privacy policy of companies. Thanks to the model generator and procedure, companies 

interested on the subject could build a kind of abstract model of their own product/process and 

add it to the benchmark to know which optimization seems to be the most accurate. In a same 

way, it is also necessary to use a standard format to describe cases. At the present time, they are 

described in the input format of our filtering engine. Based on XML format, XCSP3 proposed 

by (Boussemart , et al., 2016) seems to be a good candidate disconnected from economic issues 

of configurator software editors. Furthermore, a competition is annually organized to solve 

COP (constraints optimization problems) models formatted with XCSP3 problem. Once 

achieved, the last issue is to publish this CPPC model generator on the web in order to capture 

applied companies cases. 

QR2: Evaluation of CFB-EA characteristics on CPPC benchmark 

The experiments plan showed in chapter 4 evaluates our last version of CFB-EA with a 

standard parameter setting. It has been selected according to a first small experiments plan 

achieved on reference case (platform basic case with medium constraints density and medium 

size). A finer experiments plan could be achieved for a better understanding of connections 

between evolutionary setting and properties of cases.  

Once last improvements of CFB-EA published, another experimental study will be to 

evaluate performance of the new evolutionary operators with respect to the key characteristics 

of CPPC cases (model size, constraint density and architecture).  

QR3: Improvements of CFB-EA and their evaluation 

In the experimental plan, the evolutionary parameters setting was identical for both stages 

of CFB-EA+ and for CFB-EA in order to compare safely approaches. We have deduced that 
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the key requirement for the second stage was a good diversity of initial population. Maybe, a 

specific tuning could be found for each stage: A setting that reinforces exploration and diversity 

in the first stage and another one that intensifies search during second stage. This last point can 

be delicate because if the first stage “misses” a potential set of different solutions, it would be 

difficult to design a setting that at the same time reinforces search around solutions already 

found and also searches for a missed one. Perhaps, a varying setting could achieve this difficult 

challenge.  

Experiments of chapter 5 and those related in (Pitiot, et al., 2019) were not achieved with 

the very last version of CFB-EA and CFB-EA+. A new plan must be achieved to confirm gaps 

between CFB-EA and CFB-EA+ obtained with this last version. 

Besides unpublished improvements already developed, other ways could be investigated. 

Coupling of CFB-EA with SLS (stochastic local search) is another way to avoid stagnation of 

optimization algorithm after the initial quick improvement. 

Concerning other criterion added in the model, a delicate issue may be to express the 

constraints that characterize three-dimensional restricted areas.  

The last work perspective concerns the possibility of using the CFB-EA+ key idea with 

other multiobjective evolutionary algorithms. For this last question, we have good confidence 

that the proposed ideas should work fine with any multiobjective and constrained evolutionary 

algorithms. 
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Appendix 1: Specification of 8 Problem Cases 



 

page 1 / 16  

 

CASE 1: PLATFORM_MEDIUM_MEDIUM  

 

A) MAIN CHARACTERISTICS OF THE REFERENCE CASE  
 

The main characteristics of the Case 1: Platform_Medium_Medium which is a platform architecture 

model is showed on figure 42. This reference case gathers: 

• 3 modules  

• 3 operations (in a serial architecture),  

• 24 configuration variables in product side (14 fdv and 10 foc), each variable has 6 values in its 

definition domain (solution space size without constraint around 1018). 

• 6 configuration variables in process side (3 for and 3 qtr), each variable has also 6 values in its definition 

domain (solution space for whole model around 1023). 

• 9 PCEP patterns (three patterns for each module),  

• 26 configuration constraints (12 intra-PCEP, 3 intra-module, 6 inter-module, 3 coupling 

product/process and 2 inter-operation)  

• 26 evaluation constraints (constraints needed to compute selling price and cycle time). 

B) DIAGRAM OF THE MODEL  

  

 

Figure 42-Case 1 Platform_Medium_Medium 
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One module, module 1, has a functional description with only Tpcep1 pattern (only functional 

description and selling price variables). Another module, module 3, has component description with only 

Tpcep2 patterns (only family of components and selling price variables). While the platform module, 

module 2, gathers a selection of physical-functional description with mixed patterns. Each module is linked 

to one operation by a coupling configuration constraint and each operation is linked to another operation 

by a configuration constraint.  
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CASE 2: MODULAR_MEDIUM_MEDIUM  

A. MAIN CHARACTERISTICS OF THE REFERENCE CASE  
 

The main characteristics of the Case 2: Modular_Medium_Medium which is a modular architecture 

model is showed on figure 43. This reference case gathers: 

• 3 modules  

• 3 operations (in a serial architecture),  

• 24 configuration variables in product side (18 fdv and 6 foc), each variable has 6 values in its 

definition domain (solution space size without constraint around 1018). 

• 6 configuration variables in process side (3 for and 3 qtr), each variable has also 6 values in its definition 

domain (solution space for whole model around 1023). 

• 9 PCEP patterns (three patterns for each module),  

• 26 configuration constraints (12 intra-PCEP, 3 intra-module, 6 inter-module, 3 coupling 

product/process and 2 inter-operation)  

• 26 evaluation constraints (constraints needed to compute selling price and cycle time). 

B. DIAGRAM OF THE MODEL  

 

 

Figure 43-Case 2:Modular_Medium_medium 
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One module, module 1, has a functional description with only Tpcep1 pattern (only functional 

description and selling price variables). The module 3, has a physical-functional description with two 

Tpcep1 patterns and one Tpcep2 pattern. Module 2 gathers a selection of physical-functional description 

with mixed patterns (Tpcep3, Tpcep4 and Tpcep5). There is an interaction between all the modules. Each 

module is linked to one operation by a coupling configuration constraints and each operation is linked to 

another operation by a configuration constraint.  
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CASE 3: INTEGRATED_MEDIUM_MEDIUM  

 

A) MAIN CHARACTERISTICS OF THE REFERENCE CASE  
 

The main characteristics of the Case 3: Integrated_Medium_Medium which is a special modular 

architecture model is showed on figure 44. This reference case gathers: 

• 3 modules  

• 3 operations (in a serial architecture),  

• 24 configuration variables in product side (18 fdv and 6 foc), each variable has 6 values in its 

definition domain (solution space size without constraint around 1018). 

• 6 configuration variables in process side (3 for and 3 qtr), each variable has also 6 values in its definition 

domain (solution space for whole model around 1023). 

• 9 PCEP patterns (three patterns for each module),  

• 26 configuration constraints (12 intra-PCEP, 3 intra-module, 6 inter-module, 3 coupling 

product/process and 2 inter-operation)  

• 26 evaluation constraints (constraints needed to compute selling price and cycle time). 

B) DIAGRAM OF THE MODEL  

  

 

Figure 44-Case 3:Integrated_Medium_Medium 
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One module, module 1, has a functional description with only Tpcep1 pattern (only functional 

description and selling price variables). The module 3, has a physical-functional description with two 

Tpcep1 patterns and one Tpcep2 pattern. Module 2 gathers a selection of physical-functional description 

with mixed patterns (Tpcep3, Tpcep4 and Tpcep5). There is an interaction between all the modules. The 

relationships between modules (inter-module constraint) have high density. Each module is linked to one 

operation by a coupling configuration constraints and each operation is linked to another operation by a 

configuration constraint.  
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CASE 4: PLATFORM_SMALL_MEDIUM  

 

A) MAIN CHARACTERISTICS OF THE REFERENCE CASE  
 

The main characteristics of the Case 4: Platform_Small_Medium which is a platform architecture model 

is showed on figure 45. This reference case gathers: 

• 3 modules  

• 3 operations (in a serial architecture),  

• 9 configuration variables in product side (5 fdv and 4 foc), each variable has 6 values in its definition 

domain (solution space size without constraint around 1018). 

• 6 configuration variables in process side (3 for and 3 qtr), each variable has also 6 values in its definition 

domain (solution space for whole model around 1023). 

• 4 PCEP patterns (one in module 1, two in module 2, one in module 3),  

• 12 configuration constraints (3 intra-PCEP, 2 intra-module, 2 inter-module, 3 coupling product/process 

and 2 inter-operation)  

• 21 evaluation constraints (constraints needed to compute selling price and cycle time). 

B) DIAGRAM OF THE MODEL  

  

 

Figure 45-Case 4: Platform_Small_Medium 
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One module, module 1, has one component description with a Tpcep2 pattern (only one family of 

component and selling price variable). Another module, module 3, has one functional description with a 

Tpcep1 pattern (only one functional description and selling price variable). While the platform module, 

module 2, gathers physical-functional description with two Tpcep3 patterns. Module1 and module 2 are 

linked to one operation by a coupling configuration constraint and each operation is linked to another 

operation by a configuration constraint.  
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CASE 5: PLATFORM_INTERMEDIATE_MEDIUM  

 

A) MAIN CHARACTERISTICS OF THE REFERENCE CASE  
 

The main characteristics of the Case 5: Platform_Intermediate_Medium which is a platform architecture 

model is showed on figure 46. This reference case gathers: 

• 7 modules  

• 7 operations (in a serial architecture),  

• 46 configuration variables in product side (30 fdv and 16 foc), each variable has 6 values in its 

definition domain (solution space size without constraint around 1018). 

• 14 configuration variables in process side (7 for and 7 qtr), each variable has also 6 values in its 

definition domain (solution space for whole model around 1023). 

• 18 PCEP patterns (twoo patterns for each module and six for the platform),  

• 51 configuration constraints (12 intra-PCEP, 3 intra-module, 6 inter-module, 3 coupling 

product/process and 2 inter-operation)  

• 51 evaluation constraints (constraints needed to compute selling price and cycle time). 

 

B) DIAGRAM OF THE MODEL  
 

 Four modules (Module 1, 3, 5 and 6), have a functional description with only Tpcep1 pattern (only 

functional description and selling price variables. Three modules (module 2 and 4), have component 

description with only Tpcep2 patterns (only family of components and selling price variables). While 

the platform module, module 7, gathers a selection of physical-functional description with mixed 

patterns (Tpcep3, Tpcep4 and Tpcep5). Six modules (Module 1, 3, 4, 5, 6 and the Platform) are linked 

to one operation by a coupling configuration constraint and each operation is linked to another operation 

by a configuration constraint.  
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Figure 46-Case 5: PLATFORM_INTERMEDIATE_MEDIUM 
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CASE 6: PLATFORM_LARGE_MEDIUM  

 

A) MAIN CHARACTERISTICS OF THE REFERENCE CASE  
 

The main characteristics of the Case 6: Platform_Large_Medium which is a platform architecture model 

is showed on figure 47. This reference case gathers: 

• 10 modules  

• 10 operations (in a serial architecture),  

• 79 configuration variables in product side (46 fdv and 33 foc), each variable has 6 values in its 

definition domain (solution space size without constraint around 1018). 

• 20 configuration variables in process side (10 for and 10 qtr), each variable has also 6 values in its 

definition domain (solution space for whole model around 1023). 

• 29 PCEP patterns (twoo patterns for each module and eleven for the platform),  

• 82 configuration constraints (33 intra-PCEP, 10 intra-module, 20 inter-module, 10 coupling 

product/process and 9 inter-operation)  

• 74 evaluation constraints (constraints needed to compute selling price and cycle time). 

 

B) DIAGRAM OF THE MODEL  
 

 Five modules (Module 1, 3, 5, 7 and 9), have a functional description with only Tpcep1 pattern (only 

functional description and selling price variables. Four modules (module 2, 4, 6 and 8), have component 

description with only Tpcep2 patterns (only family of components and selling price variables). While 

the platform module, module 10, gathers a selection of physical-functional description with mixed 

patterns (Tpcep3, Tpcep4 and Tpcep5). The ten modules are linked to one operation by a coupling 

configuration constraint and each operation is linked to another operation by a configuration constraint.  
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Figure 47- CASE 6: PLATFORM_LARGE_MEDIUM
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CASE 7: PLATFORM_MEDIUM_HIGH  

 

A) MAIN CHARACTERISTICS OF THE REFERENCE CASE  
 

The main characteristics of the Case 7: Platform_Medium_High which is a platform architecture model 

is showed on figure 48. This reference case gathers: 

• 3 modules  

• 3 operations (in a serial architecture),  

• 24 configuration variables in product side (14 fdv and 10 foc), each variable has 6 values in its 

definition domain (solution space size without constraint around 1018). 

• 6 configuration variables in process side (3 for and 3 qtr), each variable has also 6 values in its definition 

domain (solution space for whole model around 1023). 

• 9 PCEP patterns (three patterns for each module),  

• 26 configuration constraints (12 intra-PCEP, 3 intra-module, 6 inter-module, 3 coupling 

product/process and 2 inter-operation)  

• 26 evaluation constraints (constraints needed to compute selling price and cycle time). 

B) DIAGRAM OF THE MODEL  

  

 

Figure 48- Case 7:Platform_Medium_High 
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One module, module 1, has a functional description with only Tpcep1 pattern (only functional 

description and selling price variables). Another module, module 3, has component description with only 

Tpcep2 patterns (only family of components and selling price variables). While the platform module, 

module 2, gathers a selection of physical-functional description with mixed patterns. Each module is linked 

to one operation by a coupling configuration constraints and each operation is linked to another operation 

by a configuration constraint. This model is similar to the first one (Case 1: 

Platform_Medium_Medium except by the constraint densities. In this case all the configuration 

constraints have high density. 
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CASE 8: PLATFORM_MEDIUM_LOW 

 

A) MAIN CHARACTERISTICS OF THE REFERENCE CASE  
 

The main characteristics of the Case 8: Platform_Medium_Low which is a platform architecture model 

is showed on figure 49. This reference case gathers: 

• 3 modules  

• 3 operations (in a serial architecture),  

• 24 configuration variables in product side (14 fdv and 10 foc), each variable has 6 values in its 

definition domain (solution space size without constraint around 1018). 

• 6 configuration variables in process side (3 for and 3 qtr), each variable has also 6 values in its definition 

domain (solution space for whole model around 1023). 

• 9 PCEP patterns (three patterns for each module),  

• 26 configuration constraints (12 intra-PCEP, 3 intra-module, 6 inter-module, 3 coupling 

product/process and 2 inter-operation)  

• 26 evaluation constraints (constraints needed to compute selling price and cycle time). 

B) DIAGRAM OF THE MODEL  

  

 

Figure 49- Case 8:Platform_Medium_Low 
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One module, module 1, has a functional description with only Tpcep1 pattern (only functional 

description and selling price variables). Another module, module 3, has component description with only 

Tpcep2 patterns (only family of components and selling price variables). While the platform module, 

module 2, gathers a selection of physical-functional description with mixed patterns. Each module is linked 

to one operation by a coupling configuration constraints and each operation is linked to another operation 

by a configuration constraint. This model is similar to the first one (Case 1: 

Platform_Medium_Medium except by the constraint densities. In this case the internal relationships 

(intra-PCEP constraints and intra-module constraints) have high density. The inter-modules 

constraints, coupling constraints and inter-operation constraints have low density. 

 



 

 

Résumé 

Configuration à base de connaissances : une contribution à la modélisation générique, à l'évaluation et à l'optimisation 

évolutionnaire 

Dans un contexte de personnalisation de masse, la configuration concourante du produit et de son processus d’obtention 

constituent un défi industriel important : de nombreuses options ou alternatives, de nombreux liens ou contraintes et un besoin 

d’optimisation des choix réalisés doivent être pris en compte. Ce problème est intitulé O-CPPC (Optimization of Concurrent 

Product and Process Configuration). Nous considérons ce problème comme un CSP (Constraints Satisfaction Problem) et 

l’optimisons avec des algorithmes évolutionnaires. Un état de l’art fait apparaître : i) que la plupart des travaux de recherche sont 

illustrées sur des exemples spécifiques à un cas industriel ou académique et peu représentatifs de la diversité existante ; ii) un 

besoin d’amélioration des performances d’optimisation afin de gagner en interactivité et faire face à des problèmes de taille plus 

conséquente. En réponse au premier point, ces travaux de thèse proposent les briques d’un modèle générique du problème O-

CPPC. Ces briques permettent d’architecturer le produit et son processus d’obtention. Ce modèle générique est utilisé pour 

générer un benchmark réaliste pour évaluer les algorithmes d’optimisation. Ce benchmark est ensuite utilisé pour analyser la 

performance de l’approche évolutionnaire CFB-EA. L’une des forces de cette approche est de proposer rapidement un front de 

Pareto proche de l’optimum. Pour répondre au second point, une amélioration de cette méthode est proposée puis évaluée. L’idée 

est, à partir d’un premier front de Pareto approximatif déterminé très rapidement, de demander à l’utilisateur de choisir une zone 

d’intérêt et de restreindre la recherche de solutions uniquement sur cette zone. Cette amélioration entraine des gains de temps de 

calcul importants.  

 Mots Clés : Évaluation, Modèle générique, Configuration de produit, Configuration de processus, Configuration concurrente, 

Optimisation évolutionnaire 

Abstract 

Knowledge-Based Configuration: A contribution to generic modeling, evaluation, and evolutionary optimization 

In a context of mass customization, the concurrent configuration of the product and its production process constitute an important 

industrial challenge: Numerous options or alternatives, numerous links or constraints and a need to optimize the choices made. 

This problem is called O-CPPC (Optimization of Concurrent Product and Process Configuration). We consider this problem as 

a CSP (Constraints Satisfaction Problem) and optimize it with evolutionary algorithms. A state of the art shows that: i) most 

studies are illustrated with examples specific to an industrial or academic case and not representative of the existing diversity; 

ii) a need to improve optimization performance in order to gain interactivity and face larger problems. In response to the first 

point, this thesis proposes a generic model of the O-CPPC problem. This generic model is used to generate a realistic benchmark 

for evaluating optimization algorithms. This benchmark is then used to analyze the performance of the CFB-EA evolutionary 

approach. One of the strengths of this approach is to quickly propose a Pareto front near the optimum. To answer the second 

point, an improvement of this method is proposed and evaluated. The idea is, from a first approximate Pareto front, to ask the 

user to choose an area of interest and to restrict the search for solutions only on this area. This improvement results in significant 

computing time savings.  

Keywords: Evaluation, Generic model, Product configuration, Process configuration, Concurrent configuration, Evolutionary 

optimization 


