
HAL Id: tel-02416606
https://theses.hal.science/tel-02416606

Submitted on 17 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Knowledge-based configuration : a contribution to
generic modeling, evaluation and evolutionary

optimization
Luis Garcés Monge

To cite this version:
Luis Garcés Monge. Knowledge-based configuration : a contribution to generic modeling, evaluation
and evolutionary optimization. Other [cs.OH]. Ecole des Mines d’Albi-Carmaux, 2019. English.
�NNT : 2019EMAC0003�. �tel-02416606�

https://theses.hal.science/tel-02416606
https://hal.archives-ouvertes.fr

�����������	
�����
�����

�������������	�����������������������

������

 Jury :

�

�*+��

le

������������

IMT - École Nationale Supérieure des Mines d'Albi-Carmaux

!��"���������"
������������
 Luis GARCÉS MONGE

11 octobre 2019

Knowledge-based configuration: a contribution to generic modeling,
evaluation and evolutionary optimization

�#
�� ��
#�
���� et discipline ou spécialité :
EDSYS : Génie Industriel 4200046

����������#$��#$���
Centre Génie Industriel, IMT Mines Albi

Michel TOLLENAERE, Professeur, Grenoble INP, Président
Pierre Alain YVARS, Professeur, Inst. Supérieur de Mécanique de Paris, Rapporteur

Éric BONJOUR, Professeur, Université de Lorraine, Rapporteur
Catherine DA CUNHA, Maître de Conférences, Centrale Nantes, Examinateur

Élise VAREILLES, Maître-assistant, IMT Mines Albi, Examinateur

���#����%��#�&"'����()"���
Michel ALDANONDO, Professeur, IMT Mines Albi

Paul PITIOT, Enseignant-chercheur, 3IL Rodez

1 / 145

Acknowledgements

To God for giving me patience and perseverance to end this stage of my life.

To my parents José Luis Garcés Fernández and Vera Virginia Monge Mora for all the love

and support they give me and for always giving me the best.

To Michel Aldanondo, Paul Pitiot and Elise Vareilles for all the dedication and patience towards

me. My eternal thanks

Especially to Michel Aldanondo for his advice, experience and knowledge and to Paul Pitiot

and Elise Vareilles for their knowledge, enthusiasm, guidance and professional support.

To my girlfriend Ariana Araya Madriz for all the support and compression.

To my friend Rafael Torres for all the support in the most difficult moments.

To my friend Marcela Meneses for the moral support and for encouraging me to undertake this

professional adventure.

To my friend and partner Abdourahim Sylla for helping me during my stays in France.

To professor Marcos Moya for all the help and professional advice.

To professor Eldon Caldwell for your friendship and support in this process.

To my friend Isabelle Fournier (R.I.P), for the french language and culture classes. I know you

must be very happy.

To all the colleagues of the Industrial Engineering Laboratory of IMT Mines Albi for all the

support and good memories.

To the Instituto Tecnológico de Costa Rica and especially to the colleagues of the School of

Production Engineering for all the support and for giving me the opportunity to live this

experience.

To the members of the jury M. Michel Tollenaere, M. Eric Bonjour, M. Pierre Alain Yvars and

Mme Catherine Da Cunha for all the recommendations and for having accepted to be part of

my jury.

2 / 145

Contents

Acknowledgements ... 1

Contents ... 2

List of Figures .. 7

List of Tables ... 9

Résumé long de la thèse... 11

1. Introduction .. 11

2. Problème et problématiques de recherche associées 12

2.1 Le problème O-CPPC et les outils utilisés ... 12

2.2 Problématiques de recherche associées ... 13

3. Modèle générique du problème O-CPPC .. 14

3.1 Modèle générique de configuration de Produit .. 14

3.2 Modèle générique de configuration de Processus 16

3.3 Couplage des modèles génériques Produit et Processus 17

3.4 Caractéristiques principales du modèle générique Produit et Processus 17

4. Benchmark et évaluation de l’approche existante .. 18

4.1 Benchmark de huit cas de test .. 18

4.2 Evaluation de l’algorithme CFB-EA ... 18

5. Amélioration de l’approche existante et expérimentations 19

5.1 Amélioration proposée, CFB-EA+ ... 19

5.2 Expérimentations et recommandations ... 20

6. Perspectives ... 20

Introduction .. 23

1. Introduction: domains, problems and tools ... 25

1.1 Domains of the problem .. 25

3 / 145

1.1.1 Product Configuration ... 25

1.1.2 Process Configuration ... 27

1.1.3 Concurrent Product and Process Configuration (CPPC) 29

1.1.4 Optimization of Concurrent Product and Process Configuration (O-CPPC)

 31

1.2 Overview of frameworks and tools .. 34

1.2.1 CPPC as a Constraint Satisfaction Problem (CSP) 34

1.2.2 Optimization of CPPC with Evolutionary Algorithms (EA) 35

1.3 Research Questions and manuscript organization 37

1.3.1 Goals of the works .. 37

1.3.2 Research Questions ... 38

1.3.3 Thesis organization ... 38

2. Modeling and optimization approaches for CPPC... 41

2.1 Constraint Satisfaction Problems (CSP) for configuration 41

2.1.1 Foundation of Constraint Satisfaction Problems (CSP) 41

2.1.2 Product Configuration Definition and CSP Model 47

2.1.3 Process configuration Definition and CSP Model 51

2.1.4 Concurrent Product and Process Configuration (CPPC) Definition and

CSP Model .. 54

2.1.5 Synthesis .. 57

2.2 Optimization of CPPC: definitions, OCSP Model and multiobjective issues 57

2.2.1 Basic Definitions ... 58

2.2.2 Optimization and Configuration related works 59

2.2.3 Multiobjective decision aiding process .. 61

2.2.4 Presentation of EA .. 62

2.2.5 Constraints handling in EA .. 64

2.2.6 Synthesis .. 65

4 / 145

3. Generic model of O-CPPC ... 67

3.1 Product configuration generic model for benchmark 67

3.1.1 Product as a set of physical/functional modules 67

3.1.2 Module as a set of Product Configuration Evaluation Patterns 70

3.1.3 Constraints patterns .. 73

3.1.4 About Product architecture ... 77

3.1.5 Synthesis about product generic model for O-CPPC 82

3.2 Process configuration generic model for benchmark 83

3.2.1 Process as a set of production operations .. 83

3.2.2 Process operation pattern ... 84

3.2.3 Process constraints pattern .. 86

3.2.4 About Process architecture or structure .. 87

3.2.5 Synthesis about process generic model for O-CPPC 88

3.3 Coupling product process models and key characteristics 89

3.3.1 Coupling product and process models .. 89

3.3.2 Synthesis about full product/process generic model for O-CPPC 90

3.4 Proposition synthesis and key characteristics ... 92

4. Benchmark description and evaluation of CFB-EA 95

4.1 Definition and generation of problem cases .. 95

4.1.1 Model generation procedure ... 95

4.1.2 Main characteristics of the reference platform model case O-CPPC 97

4.1.3 Model Size .. 99

4.1.4 Configuration constraints Density ... 100

4.1.5 Product architecture .. 100

4.1.6 Synthesis about O-CPPC benchmark ... 101

4.2 Optimization experimental plan ... 101

5 / 145

4.2.1 Metrics for experiments ... 101

4.2.2 Evolutionary settings ... 102

4.3 Evaluation of existing approach on benchmark ... 103

4.3.1 Model size evaluation ... 104

4.3.2 Model constraints density evaluation .. 106

4.3.3 Product architecture evaluation ... 108

4.4 Result synthesis .. 109

5. Improvement of existing approaches on benchmark 111

5.1 Possible improvement to the EA and computation time reductions 111

5.2 A proposal to reduce computation time for the CPPC problem: CFB-EA+ 112

5.2.1 Description of CFB-EA+ .. 113

5.2.2 Interests and limits of CFB-EA+ .. 114

5.2.3 Tuning CFB-EA+ parameters .. 115

5.3 Experimental Plan ... 116

5.3.1 Performance evaluation for experiments with CFB-EA+ 116

5.3.2 Experimentation plan .. 118

5.4 Results .. 120

5.4.1 CFB-EA and CFB-EA+ results comparison and discussions 120

5.4.2 Global results comparison .. 123

5.4.3 CFB-EA+ tuning recommendation for switching time and restricted area

 124

5.4.4 Experiments with a much larger model and scalability issues 125

5.5 Conclusion on CFB-EA+ evaluation: ... 126

6. Conclusions and future works .. 129

6.1 Conclusion ... 129

6.2 Futures works .. 131

6 / 145

7. Bibliographical References ... 133

Appendices .. 145

Appendix 1: Specification of 8 Problem Cases ... 145

7 / 145

List of Figures

Figure 1- Generic model architecture of the CPPC problem ... 30

Figure 2- CCPC configuration and optimization process .. 32

Figure 3- Generic model architecture of the CPPC optimization problem 33

Figure 4- CPPC optimization: different solution space locations .. 36

Figure 5- Classification of variables (Vareilles, 2015) .. 43

Figure 6- Classification of constraints (Vareilles, 2015) ... 44

Figure 7- Classification of CSP (Vareilles, 2015) .. 45

Figure 8- CFB-EA algorithm (Pitiot, et al., 2013) ... 64

Figure 9- First CPPC product generic model for benchmark ... 69

Figure 10- Four Product Configuration/Evaluation Patterns (PCEP) 71

Figure 11- Example of CPPC product generic model for benchmark 73

Figure 12- Four kinds of configuration constraints patterns .. 75

Figure 13- Three kinds of evaluation constraints patterns ... 77

Figure 14- Product Architecture Definition (Ulrich & Eppinger, 1995) 78

Figure 15- Example of product model with a modular architecture .. 79

Figure 16- Example of product model with an integrated architecture 80

Figure 17- Product family derived from a product platform (Marti, 2007) 81

Figure 18- Example of product model with a platform architecture .. 82

Figure 19- Single resource operation pattern ... 84

Figure 20- Multi resource operation pattern .. 85

Figure 21- Proposed CPPC process generic model for benchmark ... 86

Figure 22- Operation duration constraint pattern ... 87

Figure 23- Proposed CPPC product/process generic model for benchmark 92

Figure 24- Main procedure to generate a case in CPPC model generator 96

Figure 25- Reference case, the platform model ... 98

Figure 26- Hypervolume with the two criteria time and cost .. 102

Figure 27- Reference case: average HV evolution with respect to time 103

Figure 28- Model size effects on computation times ... 105

Figure 29- Constraint density effects on computation times .. 107

Figure 30- Architecture effects on computation times ... 108

Figure 31- Proposed two-stage optimization process .. 113

8 / 145

Figure 32- CFB-EA+ algorithm ... 114

Figure 33- Different restricted areas for second optimization stage 116

Figure 34- Hypervolume computation for CFBEA+ ... 117

Figure 35- Comparing HV evolution of CFB-EA+ and CFB-EA ... 117

Figure 36- Four restricted areas for CFB-EA+ .. 119

Figure 37- Comparison CFBEA+ with CFBEA on restricted area 1 121

Figure 38- Comparison CFBEA+ with CFBEA on restricted area 2 122

Figure 39- Comparison CFBEA+ with CFBEA on restricted area 3 123

Figure 40- CFB-EA+ algorithm including the tuning process ... 125

Figure 41- Comparison CFB-EA+ / CFB-EA with a larger model.. 126

Figure 42-Case 1 Platform_Medium_Medium .. 1

Figure 43-Case 2:Modular_Medium_medium ... 3

Figure 44-Case 3:Integrated_Medium_Medium .. 5

Figure 45-Case 4: Platform_Small_Medium ... 7

Figure 46-Case 5: PLATFORM_INTERMEDIATE_MEDIUM .. 10

Figure 47- CASE 6: PLATFORM_LARGE_MEDIUM ... 12

Figure 48- Case 7:Platform_Medium_High ... 13

Figure 49- Case 8:Platform_Medium_Low ... 15

9 / 145

List of Tables

Table 1- Similarities between Product and Process ... 54

Table 2- Model Sizes .. 100

Table 3- O-CPPC benchmark model instances .. 101

Table 4- Time reductions with respect to restricted areas and switching times. 124

10 / 145

11 / 145

Résumé long de la thèse

Configuration à base de connaissances : une contribution
à la modélisation générique, à l'évaluation et à
l'optimisation évolutionnaire

1. Introduction

Dans un contexte de personnalisation de masse, la configuration concourante du produit et

de son processus d’obtention constitue un défi industriel important : de nombreuses options ou

alternatives, tant sur les aspects Produit que Processus d’obtention, de nombreux liens ou

contraintes et un besoin d’optimisation des choix réalisés doivent être pris en compte. Ce

problème est intitulé O-CPPC (Optimization of Concurrent Product and Process

Configuration). Nous considérons ce problème comme un CSP (Constraints Satisfaction

Problem) et l’optimisons avec des algorithmes évolutionnaire. Un état de l’art (chapitre 2) fait

apparaître : i) que la plupart des travaux de recherche sont illustrés sur des exemples spécifiques

à un cas industriel ou académique et peu représentatifs de la diversité existante ; ii) un besoin

d’amélioration des performances d’optimisation afin de gagner en interactivité et faire face à

des problèmes de taille plus conséquentes. En réponse au premier point, ces travaux de thèse

proposent les briques d’un modèle générique du problème O-CPPC (chapitre 3). Ces briques

permettent d’architecturer le produit et son processus d’obtention, de décrire chaque sous-

ensemble, composant et activité, de définir leurs contraintes, leur densité et les critères

d’optimisation. Ce modèle générique est utilisé pour générer un benchmark réaliste pour

évaluer les algorithmes d’optimisation. Ce benchmark est ensuite utilisé pour analyser la

performance de l’approche évolutionnaire CFB-EA (chapitre 4). L’une des forces de cette

approche est de proposer rapidement un front de Pareto proche de l’optimum. Pour répondre au

second point, une amélioration de cette méthode est proposée puis évaluée (chapitre 5). L’idée

est, à partir d’un premier front de Pareto approximatif déterminé très rapidement, de demander

à l’utilisateur de choisir une zone d’intérêt (en fonction du prix et du délai d’obtention) et de

restreindre la recherche de solutions uniquement sur cette zone. Cette amélioration entraine des

gains de temps de calcul importants. Ce mémoire se termine par des perspectives de recherche

pour chaque problématique de recherche abordée (chapitre 6).

12 / 145

2. Problème et problématiques de recherche associées

2.1 Le problème O-CPPC et les outils utilisés

Le problème O-CPPC est composé de quatre domaines : la configuration de produit, la

configuration du processus d’obtention du produit, le couplage Produit/Projet et l’optimisation

de cet ensemble au regard de différents objectifs.

La configuration de produit est définie comme la spécialisation d’un modèle de produit

générique par rapport aux besoins spécifique d’un client donné. Deux points de vue peuvent

être envisagés dans un modèle de configuration : le point de vue physique où le produit est

décomposé en sous-ensembles et composants, ou le point de vue fonctionnel où le produit est

décrit par un ensemble de fonctions de service. Le modèle générique proposé associe ces deux

types de description dans un modèle dit « physico-fonctionnel ». L’activité de configuration

correspond alors à trouver une instanciation du modèle de produit générique, c’est-à-dire une

sélection de composants ou de niveaux fonctionnels, qui satisfont les besoins de l’utilisateur et

les contraintes du produit.

La configuration du processus d’obtention est également définie comme la recherche d’une

instanciation d’un modèle générique de processus d’obtention satisfaisant les besoins de

l’utilisateur. Le modèle générique du processus décrit l’ensemble des opérations nécessaires

pour obtenir un produit, leurs séquencements ainsi que le dimensionnement des ressources

nécessaires. Il fait également apparaître des contraintes de compatibilités entre les ressources

des différentes opérations.

L’unification de ces deux problèmes dans un modèle commun appelé configuration

concourante Produit/Processus (CPPC) permet d’éviter les incohérences qui peuvent apparaître

si l’on configure un aspect séparément de l’autre. Le modèle CPPC est défini comme l’union

des modèles Produit/Processus additionné de contraintes de couplage. Il est modélisé grâce au

formalisme des CSP par un ensemble de variables dont les valeurs sont définies dans un

domaine et reliées par un ensemble de contraintes. Le modèle correspond à une représentation

de haut niveau du produit et du processus associé. Nous assumons que les variables de décision

sont discrètes (numérique ou symbolique) et que les contraintes les reliant sont donc des tables

de compatibilités.

Ce modèle fait apparaître de nombreuses variables de décision. Les besoins du client portent

sur un part limitée de ces variables. La saisie de ces besoins se fait lors d’une étape de

13 / 145

configuration interactive avec le client. Une fois les besoins saisis, il reste, la plupart du temps,

de nombreux choix dans le modèle (i.e. des variables non instanciées). Une étape d’optimisation

va alors rechercher parmi les configurations possibles celles qui satisfont les objectifs du client

(ici seul le coût et le temps de cycle sont considérés). En conséquence, le modèle proposé,

illustré sur la figure 3, fait apparaître des variables continues représentant les coûts ou les durées

des opérations ; ainsi que des contraintes reliant ces variables dites d’évaluation et les variables

de décision.

Le modèle résultant appelé O-CPPC (Optimization of Concurrent Product-Processus

Configuration) correspond donc au quadruplet <V, D, C, f> où V est l’ensemble des variables,

D l’ensemble des domaines des variables de V, C l’ensemble des contraintes entre ces variables

et f la fonction d’optimisation multi-objectif. La démarche d’aide à la décision proposée

correspond à une résolution a posteriori de l’antagonisme entre les objectifs. L’optimisation

doit donc fournir, en un temps raisonnable, un ensemble de solutions optimisées (front de

Pareto). La démarche correspondante est illustrée sur la figure 2. La notion de temps de calcul

raisonnable dépend du système Produit/Processus optimisé. Dans une situation de B2B avec un

coût de produit élevé et un grand nombre de variables, le temps de calcul admissible peut

atteindre une journée.

Le problème d’optimisation envisagé se caractérise par ses aspects combinatoire (variables

de décision discrètes), multi-objectif (deux objectifs dans ces travaux), son espace de recherche

fluctuant (selon le nombre de variables de décisions non instanciées à l’issue de la première

phase de configuration interactive) et important (nous envisageons jusqu’à 1080 solutions

potentielles sans prendre en compte les contraintes) et la présence de contraintes. Dans des

travaux précédents, l’équipe de recherche a proposé une première évolution des algorithmes

évolutionnaires appelée CFB-EA (Constraints Filtering Based Evolutionary Algorithm) comme

méthode d’optimisation. L’algorithme de la méthode CFB-EA, illustré sur la figure 8, met en

jeu une version de la méthode SPEA2 adaptée par l’inclusion de contraintes. Il intègre un

moteur de filtrage de CSP permettant de préserver la faisabilité (cohérence par rapport aux

contraintes) des individus générés à chaque étape de l’algorithme évolutionnaire (génération,

croisement, mutation).

2.2 Problématiques de recherche associées

De nombreuses recherches étudient le problème de configuration de produit et/ou de

processus. La plupart se concentre sur un seul aspect sans prendre en compte la relation étroite

14 / 145

entre le produit et son processus d’obtention. Quelques études proposent un modèle concourant

Produit/Processus et, à notre connaissance, aucune n’y associe l’optimisation du modèle

correspondant. Parmi les travaux concernant l’optimisation de configuration de Produit, la

plupart sont soit des cas académiques théoriques, soit des cas particuliers à une application

donnée. Aucune étude ne met en place un véritable plan d’expérience, prenant en compte une

grande diversité de situations industrielles, permettant d’analyser et d’évaluer l’étape

d’optimisation (choix et paramétrage d’une méthode d’optimisation).

En conséquence, trois problématiques de recherche (Questions de Recherche) sont

définies :

QR1 : Est-il possible de définir un modèle générique du problème O-CPPC capable de

représenter une grande variété de cas réels et d’évaluer ainsi correctement les méthodes

d’optimisation ?

QR2 : Quel est l’impact des caractéristiques-clés du problème O-CPPC (taille, niveau de

contraintes, etc.) sur l’algorithme d’optimisation CFB-EA ?

QR3 : Est-il possible d’améliorer le temps d’exécution des algorithmes d’optimisation,

spécialement du CFB-EA ?

Le chapitre 2 de la thèse établit un positionnement des travaux par rapport à un état de l’art

des approches de modélisation (CSP) et d’optimisation (EA) utilisées. Puis les chapitres 3, 4,

et 5 répondent respectivement à chacune des problématiques de recherche annoncées.

3. Modèle générique du problème O-CPPC

3.1 Modèle générique de configuration de Produit

De nombreuses études proposent de caractériser la conception de produit et/ou processus

sous forme de décompositions hiérarchique selon différentes vues : fonctionnelle, besoins,

composants physiques, processus, etc. Une vue de haut niveau de la décomposition physique

d’un produit configurable met en jeu un certain nombre de composants regroupés en famille de

composants (foc, family of components). Le produit et ses composants peuvent également être

caractérisés par un ensemble d’attributs fonctionnels descriptifs (fdv, functional descriptive

variables). Nous proposons de définir la configuration de produit comme l’instanciation des

variables de décision. Ces variables de décision sont reliées par des contraintes de configuration

qui limitent les combinaisons possibles de leurs valeurs.

15 / 145

Un autre aspect commun aux études existantes correspond à la modularité du produit

configurable. Le produit peut être décomposé en différents modules associés aux fonctions ou

composants principaux. Le modèle générique de produit configurable correspond donc à un

ensemble de modules dits physico-fonctionnels. Chaque module est décrit par un ensemble de

variables de décision (foc et fdv). Par exemple, pour la configuration d’une voiture, les modules

pourraient être : la motorisation, le système électrique, la transmission, etc. Parmi les

contraintes de configuration, on pourra alors distinguer les contraintes entre les variables d’un

même module (intra-module) et les contraintes entre variables de différents modules (inter-

module).

En vue d’optimiser le modèle CPPC, des variables d’évaluation doivent être ajoutées au

modèle. Pour la configuration de produit, nous considèrerons uniquement le critère de prix.

Nous proposons l’utilisation du terme « prix de vente » pour représenter indifféremment la

notion de coût (matières premières ou composants) et la notion de prix de vente (point de vue

fonctionnel/analyse de la valeur). En conséquence, des variables de prix pour chaque module

(notées spm) sont ajoutées au modèle générique. Des contraintes numériques reliant ces

variables aux variables de décision ou des contraintes d’agrégation entre ces variables

permettent de calculer le prix total du produit. Un exemple du modèle correspondant est illustré

par la figure 9.

Le modèle générique va nous servir pour définir des cas de test. Or une génération aléatoire

de contraintes entre les variables n’aurait pas de sens réel ou ne correspondant à aucun cas

industriel réel. Une analyse de cas typiques de configurations industrielles montre des motifs

récurrents associant un petit nombre de variables de décision fortement connectées, une variable

d’évaluation et des contraintes de configuration et d’évaluation appelés PCEP (Product

Configuration/Evaluation Pattern). Quatre types de PCEP ont été définis et illustrés sur la figure

10. Ils correspondent à différents points de vue (physique et/ou fonctionnel) et différentes

associations entre variables de décision (configuration et/ou évaluation) possibles. Le modèle

générique de produit est alors défini comme un ensemble de modules composés de différents

PCEP tel qu’illustré sur la figure 11.

Toujours pour éviter une génération aléatoire qui n’aurait pas de sens réel, quatre motifs de

contraintes de configuration entre les valeurs de variables de décisions notés Tcp (Type of

configuration pattern) ont été définis et sont illustrés sur la figure 12. Ces motifs décrivent des

situations standards de relation de configuration entre des variables de décision. Ils permettent

de générer les combinaisons possibles entre les valeurs des variables impliquées. Chaque motif

16 / 145

peut être caractérisé par une densité de contrainte. La densité de contrainte est définie comme

le nombre de combinaisons (tuples) interdites par rapport au nombre de combinaisons possible

sans prendre en compte les contraintes. Ainsi une forte densité de contraintes suppose un faible

nombre de combinaisons autorisées : plus forte est la densité de contraintes, plus le problème

est contraint.

Dans le même état d’esprit, trois types de motif d’évaluation ont été définis et illustrés sur

la figure 13. Un motif d’évaluation permet d’associer un prix (ou un autre critère) à une valeur

pour la variable d’évaluation correspondante.

Enfin pour éviter un placement aléatoire des contraintes entre les variables de décision,

entre les PCEPs et entre les modules, trois types d’architecture sont envisagés dans ce travail :

- Architecture de type modulaire (figure 15) : un grand nombre de contraintes de

configuration à l’intérieur des modules avec une forte densité de contraintes et un faible

nombre de contraintes entre les modules avec une faible densité de contraintes.

- Architecture de type intégrée (fgure 16) : des contraintes réparties de façon homogène

à l’intérieur et entre les modules avec une densité homogène.

- Architecture de type plateforme (figure 18) : même répartition des contraintes et

densités que l’architecture modulaire mais avec un module central connecté aux autres

modules et pas d’autres contraintes entre les autres modules.

3.2 Modèle générique de configuration de Processus

Dans une vue de haut niveau, le processus d’obtention d’un produit peut être considéré

comme un ensemble d’activités ou opérations configurables reliées par des relations de

précédence. A ce niveau d’abstraction, le nombre d’opérations et leur enchaînement sont

considérés comme statiques (pas de choix entre différentes opérations ou d’activation

d’opérations selon le produit associé).

Il s’agit ici de configurer le choix et le dimensionnement des ressources associées aux

opérations principales du processus. A chaque opération est associé un ensemble de ressources

quantifiables permettant de réaliser la charge de travail associée à l’opération. De même que

pour les familles de composants côté Produit, les ressources capables de réaliser une opération

sont regroupées en familles de ressources (form) et associées à une quantité (qtrm). Ces variables

constituent les variables de décision du modèle générique de Processus. Ces variables sont

reliées par des contraintes de configuration illustrant soit le dimensionnement (association

ressource/quantité) soit les compatibilités entre ressources.

17 / 145

Afin d’évaluer les combinaisons ressources/quantités possibles, des variables de prix (spm)

et de durée (durm) sont associées à chaque opération. L’évaluation nécessite également l’ajout

d’une variable intermédiaire pour représenter la charge de travail associée à l’opération (wlm).

Des contraintes d’évaluation permettent alors de déterminer i) la durée d’une opération selon la

charge de travail, la quantité et la ressource sélectionnée et ii) le prix de l’opération selon la

ressource et la charge de travail associée. Côté coût, des contraintes numériques permettent

d’agréger les coûts de chaque opération pour obtenir le coût total du processus. Enfin, ce modèle

générique est complété par l’ajout de variables et de contraintes temporelles : date de début et

de fin de chaque opération, les contraintes numériques associant ces dates à la durée de chaque

opération et les contraintes numériques de précédence représentant le séquencement des

opérations du processus. Une illustration du modèle générique de processus est donnée par la

figure 21.

3.3 Couplage des modèles génériques Produit et Processus

Le couplage des deux modèles génériques précédents correspond à un ensemble de

contraintes de configuration limitant les combinaisons possibles entre les variables de décision

des deux modèles. Trois types de couplage sont envisagés. Un choix sur le produit peut i)

restreindre le choix de ressources pour une opération (par exemple, un produit nécessité une

compétence particulière) ; ii) nécessiter une quantité particulière (par exemple, il faut au moins

deux opérateurs) ; ou iii) être associé à une charge de travail particulière. Les contraintes de

couplage ne portent jamais sur les variables d’évaluation du modèle (prix et durées).

3.4 Caractéristiques principales du modèle générique Produit et Processus

Le modèle générique Produit/Processus complet ainsi défini permet de représenter une

grande variété de cas industriels. Il fournit un cadre permettant une évaluation réaliste des

algorithmes d’optimisation pour ce type de problème en évitant une génération aléatoire des

variables et des contraintes de configuration et d’évaluation.

Les caractéristiques clés de ce modèle sont : i) sa taille en termes de nombres de modules,

d’opérations, de variables et la taille de leurs domaines ; ii) son architecture produit (plateforme,

modulaire ou intégrée) et iii) la densité et la nature des contraintes (pattern de configuration).

18 / 145

4. Benchmark et évaluation de l’approche existante

4.1 Benchmark de huit cas de test

Le modèle générique précédemment proposé permet de générer des instances de problème

O-CPPC. Afin de tester les caractéristiques clés du problème (architecture du produit, densité

de contrainte et taille du problème), nous avons généré huit cas de test présentés en annexe. La

procédure pour spécifier les cas de test est illustrée par la figure 24 et un générateur de cas de

test a été mis au point. Un cas de référence a été défini avec une architecture de type plateforme,

une taille de 30 variables de décision et une densité de contrainte médiane (50% de tuples

interdits par contraintes). Puis nous avons fait varier soit la taille (15, 60 et 100 variables), soit

le type d’architecture, soit le niveau de densité de contrainte (niveau bas impliquant 20% de

tuples interdits et niveau haut impliquant 80% de tuples interdits) pour obtenir un plan

d’expérience avec huit cas de test résumés dans le tableau 3. Les cas de test ont été définis de

façon à évaluer séparément les trois caractéristiques clés du problème (taille, architecture du

produit et niveau de contraintes).

4.2 Evaluation de l’algorithme CFB-EA

L’algorithme CFB-EA a été utilisé pour chacun des cas de test. Ses performances sont

analysées en termes de qualité de solutions fournies et de temps d’exécution. La métrique de

l’hypervolume (HV), illustrée sur la figure 26, est utilisée pour évaluer à la fois la performance

et la diversité des solutions trouvées. Un plan d’expérience restreint a été mis en œuvre sur le

cas de référence pour sélectionner les valeurs des paramètres évolutionnaires (taille de

population, de l’archive et probabilités de croisement et de mutation) qui sont ensuite utilisées

pour les autres cas de test. Le temps d’exécution de l’algorithme a été défini pour chaque cas

de test de façon à laisser à l’algorithme le temps de converger. Comme il s’agit d’un algorithme

pseudo-aléatoire, chaque cas est testé 5 fois. Les résultats proposés sont une moyenne de ses 5

exécutions. Afin d’étudier l’évolution de la performance au cours du temps, les temps de calcul

moyens nécessaires pour atteindre la performance final (notée HVfinal), 99% et 99.9% de cette

performance sont comparés.

La performance sur le cas de test référence est présentée par la figure 27 et le tableau

associé. Elle montre que l’algorithme est efficace pour obtenir très rapidement une bonne

qualité de solution (environ 10% du temps pour obtenir la performance finale) mais demande

un temps conséquent pour affiner ce résultat.

19 / 145

La comparaison des cas de test avec des tailles différentes montre que le temps de calcul

nécessaire est fortement lié à la taille du problème. Néanmoins, il reste dans des limites

acceptables par rapport à la démarche d’aide à la décision envisagée (1/2 journée de calcul pour

le cas à 100 variables de décision).

La comparaison des différents niveaux de densité de contraintes montre également un

impact élevé sur le temps de calcul. Plus le modèle est contraint, moins il a de solutions faisables

et moins le temps de calcul est élevé. Le cas le plus contraint (80% de tuples interdits) demande

10 fois moins de temps (247 sec.) pour atteindre sa performance finale que le cas le moins

contraint (20% de tuples, 2610 sec.).

L’analyse des différents types d’architecture de produit montre un avantage pour

l’architecture de type plateforme puis de type modulaire. L’architecture de type intégrée semble

la plus difficile à optimiser. Il faut bien rappeler que les différentes architectures présentent

globalement le même niveau de contraintes (même nombre de contraintes et même ratio de

contraintes avec des densités forte/moyenne). La différence entre les cas réside dans la

répartition des contraintes dans le modèle ou la répartition des contraintes à forte ou moyenne

densité entre les modules du produit. Généralement, il semble que plus les contraintes sont

réparties dans le modèle, plus l’optimisation est difficile. Dans tous les cas, l’algorithme montre

une bonne capacité à trouver rapidement de bonnes solutions, mais nécessite un temps de calcul

plus long pour trouver les valeurs finales.

5. Amélioration de l’approche existante et

expérimentations

5.1 Amélioration proposée, CFB-EA+

L’idée à la base de ces travaux est d’utiliser la capacité de la méthode CFB-EA à fournir

rapidement un front de Pareto approximatif. Ce front de Pareto peut être montré à l’utilisateur

qui, une fois informé, peut affiner sa demande en formulant une préférence sur une zone

d’intérêt dans l’espace de recherche (contraintes de prix et/ou de délai maximum). Une second

phase d’optimisation est alors enclenchée mais en restreignant la recherche à la zone délimitée

par l’utilisateur. Tout en conservant son caractère d’aide à la décision multi-objectif a posteriori

(l’utilisateur ne donne pas de préférence entre les objectifs avant l’optimisation), cette méthode

appelée CFB-EA+ permet d’accélérer le recherche de solutions faisables satisfaisant les besoins

et préférences de l’utilisateur.

20 / 145

La restriction de la recherche à la zone choisie par l’utilisateur est réalisée en ajoutant de

nouvelles contraintes sur les variables objectifs. Ainsi les solutions sont maintenues dans la

zone délimitée par l’utilisateur. Cette démarche, illustrée sur la figure 31 et dont l’algorithme

est donnée en figure 32, comporte deux éléments à étudier : la durée de la première phase de

recherche globale (temps noté ST pour Switching Time) et les caractéristiques de la zone

délimitée par les préférences de l’utilisateur. Concernant la durée de la première phase (ST), si

elle est trop importante, cela limite le gain de temps de calcul total espéré ; si elle est trop courte,

le front de Parteo proposé à l’utilisateur ne lui permet pas de choisir correctement une zone de

préférence. Concernant la zone choisie par l’utilisateur, si elle trop petite, l’algorithme risque

d’être piégé dans un optimum local (faible population initiale) ; si elle est trop large, le gain de

temps de calcul risque d’être amoindris.

5.2 Expérimentations et recommandations

Le cas de test référence a été utilisé pour comparer les deux méthodes. Trois zones

différentes (notées RA1, RA2 et RA3) ont été testées ainsi que trois durées de la première phase

(respectivement le temps pour atteindre 70, 80 et 90% de la performance finale par CFB-EA).

La méthode proposée permet une réduction significative du temps de calcul de près de 25%

en moyenne. L’analyse des résultats montre que le critère essentiel pour le succès de la seconde

phase est la diversité des individus dans la zone choisie à l’issue de la première phase.

En conséquence, une nouvelle version de CFB-EA+ est proposée. Cette amélioration dont

l’algorithme est présenté par la figure 40, ajoute comme paramètre un nombre minimal de

solutions dans la zone sélectionnée par l’utilisateur. Une nouvelle série de test a été réalisée

avec cette nouvelle version sur le cas de test à 60 variables. Les gains de temps de calcul obtenus

sont importants avec en moyenne 54% de réduction.

6. Perspectives

Ces travaux proposent un modèle générique pour le problème de configuration et

d’optimisation conjointe Produit/Processus, capable de représenter une grande diversité de

problèmes industriels. Différentes architectures et de nombreux patterns tant sur la répartition

et les liens entre variables que sur la nature des contraintes de configuration ou d’évaluation

sont proposés. D’autres architectures, critères ou patterns pourraient être ajoutés. Le modèle

générique proposé permet de générer des cas de tests représentatifs et éviter ainsi une génération

aléatoire aberrante.

21 / 145

Un benchmark utilisant le modèle générique a été mis au point et a permis d’évaluer

l’approche CFB-EA par rapport à trois caractéristiques clés du problème : la taille,

l’architecture produit et le niveau de contraintes. Un plan d’expérience plus complet pourrait

être mené pour évaluer l’impact des autres caractéristiques du modèle ou leur interaction avec

les paramètres de CFB-EA.

Une nouvelle approche d’optimisation en deux étapes a été proposée et évaluée. Elle montre

des gains de temps de calcul important grâce à une interaction avec l’utilisateur. Des

recommandations ont été proposées pour cadrer cette interaction. Une comparaison avec

d’autres méthodes utilisables pour la seconde phase telles que les SLS (stochastic local search)

ou une approche exacte pourrait être envisagée.

22 / 145

23 / 145

Introduction

In the manufacturing industry, the concept of mass customization has established itself as

an indispensable lever for gaining market share. The aim is to offer a high level of diversity of

product or service to the customer while maintaining a good level of productivity (Pine , 1993).

In order to develop and implement mass customization, many companies use configuration

software (Felfernig, et al., 2014). Configuration software enables companies to propose to their

customers customized products from a huge set of variants and options of products (Wang, et

al., 2015). If all configuration software can assist the supplier during the configuration of the

product, only some of them do the same for the associated production and/or delivery process.

Handling the two aspects (product and process) concurrently allows to avoid inconsistencies

(product delicate or impossible to produce or to deliver) and give an extended view of the

company response to the customer needs. This problem, considering the two aspects, is called

Concurrent Product and Process Configuration (CPPC). Processing and optimizing CPPC

problems are a major issue for companies producing technical products or systems either in

business to business (B2B) or business to customer (B2C) situations.

A configuration software is a kind of knowledge-based system that assists the user in the

configuration task. The knowledge is in fact a representation or a model of all possible product

and process configuration possibilities that we call the CPPC model or the generic model. The

configuration software is used to confront customer’s requirements and supplier needs with the

CPPC model. Configuring a product or a process corresponds to the selection of options or

alternatives for the product (architecture, components or functionalities selection) and for the

process (mainly resources selection and dimensioning). It thus corresponds to a decision-

making problem. According to many works on the subject (Sabin & Weigel, 1998) (Zhang,

2014) (Felfernig, et al., 2014), the configuration problem can be considered as a Constraint

Satisfaction Problem (CSP). In such a model, decision variables represent possible

configuration choices on product and/or process. These decision variables are linked by

constraints that model compatibilities and relations between decision variables. This modeling

paradigm allows to use specific methods and tools to support the decision-making process.

In most configuration problems, the configured product or process must satisfy a certain

number of criteria which rely on the customer’s requirements (as for example: price, delivery

time, performance) and/or on the objectives of the company (as for example: carbon footprint,

quality, production cost). It results in a multi-criteria optimization problem named O-CPPC.

24 / 145

This problem is particularly difficult because of the many variants of the product and process,

as well as their relationships and their impact on various objectives.

Despite the industrial interest for this type of problem, we identified a lack of benchmark

(set of testing instances) to evaluate and compare optimization methods. A benchmark avoids

the case-dependency of optimization scientific results. Consequently, in this thesis: (i) a generic

model of CPPC is proposed in order to generate a benchmark, (ii) this model is then used to

evaluate an optimization algorithm previously published by our laboratory (Pitiot, et al., 2013)

and (iii) an original improvement of the previous optimization algorithm, that reduces

computation time, is proposed and evaluated.

25 / 145

1. Introduction: domains, problems and tools

This PhD therefore focuses on modeling and optimizing the O-CPPC problem as well as

evaluating optimization approaches. In the following sub-sections, the domains of the problem

that originate the development of the present research are described. Then we introduce the

frameworks and tools that we will use to model and optimize the problem. Afterward we

propose the three research questions that we consider and finally we present the organization

of the document with the different stages that comprise the following thesis.

1.1 Domains of the problem

We describe below the four domains covered by the addressed problem: Product

Configuration, Process Configuration, Concurrent Product and Process Configuration (CPPC)

and Optimization of the Concurrent Product and Process Configuration (O-CPPC) and we

conclude with our research interest.

1.1.1 Product Configuration

In this section we consider the product and define relevant configuration task and problem

and discuss product configuration applications and software.

1.1.1.1 Product configuration Task Definition

Formally speaking, (Sabin & Weigel, 1998) define the configuration task as "a special case

of design activity where the artifact being configured is assembled from instances of a fixed set

of well-defined component types" which can be composed conforming a set of constraints. As

mentioned by (Dhungana, et al., 2017), product configuration is a well-established

methodology for generating and building individualized products. With close ideas, other

authors like (Mittal & Frayman, 1989), (Soininen, et al., 1998), (Aldanondo, et al., 2008) or

(Hofstedt & Schneeweiss, 2013) have defined configuration as the task of deriving the

definition of a specific or customized product (through a set of properties, subassemblies or bill

of materials,…) from a generic model, while taking into account specific customer

requirements.

1.1.1.2 Product configuration Problem Definition

We can say that the core problem of product configuration is to select and arrange

combinations of parts or components that satisfy given specifications (Sabin & Weigel, 1998).

26 / 145

The first to propose a formal definition of the configuration problem were (Mittal & Frayman,

1989). This definition states:

− “Given: (A) a fixed, pre-defined set of components, where a component is described by a

set of properties, ports for connecting it to other components, constraints at each port that

describe the components that can be connected to that port, and other structural constraints

(B) some description of the desired configuration; and (C) possibly some criteria for making

optimal selections.

− Build: One or more configurations that satisfy all the requirements, where a configuration

is a set of components and a description of the connections between the components in the

set, or, detect inconsistencies in the requirements."

Most of authors have been more or less adapting this definition. (Aldanondo, et al., 2008)

have proposed to add to this rather physical definition (component based) a descriptive or

functional view. (Felfernig, et al., 2014) mentioned that the integration of the configuration

process sharing of existing components and assemblies within product family architectures,

involve a number of different stakeholders and experts from various company sectors.

Therefore, the configuration problem has clearly a multidisciplinary context because it involves

the knowledge of many functions of a company (marketing, sale, design, production…) each

contributing from its space to the subject of interest.

1.1.1.3 Applications

As mentioned by (Felfernig, et al., 2014) configuration task is one of the applications of the

Artificial Intelligence with more successful achievements in companies of very different

sectors. For example product configuration field could be illustrated with various industrial

cases: automotive (Amilhastre, et al., 2002), (Kaiser, et al., 2003), (Sinz, et al., 2003); power

supply (Jensen & Lars, 2005); aircraft (Kopisch & Gunter, 1992), (Zhang , et al., 2013) or train

design (Han & Lee, 2011). A database of industrial cases and related research issues was started

by the University of Copenhagen (Subbarayan, 2006) but it is not any more maintained.

1.1.1.4 Software

A product configurator is a tool that supports the user during the configuration process

(Schierholt, 2001). They are widely used to obtain product specifications in assemble to order

situations. As mentioned by (Wang & Tseng, 2012) their objective is to reduce the confusion

among customer decisions inside the huge number of choices in order to generate higher level

of satisfaction. The task of a conventional product configurator is to "guide a consumer through

27 / 145

the derivation of a concrete product from the product family representation so that all

requirements are fulfilled" (Dhungana, et al., 2017). (Sabin & Weigel, 1998) explained that

since Digital Equipment Corporation used the R1/XCON system in 1982 to configure computer

systems, a wealth of configuration expert systems has been built for configuring computers,

communication networks, cars, trucks, operating systems, buildings, circuit boards, keyboards,

printing presses and so forth. Product configuration software is either stand-alone software (as

Tacton1, Configit2, Pros3 for example) or module of ERP software (as SAP4, Oracle5 for

example).

1.1.1.5 Synthesis

In the proposed research we are going to focus on configurable technical products and will

not consider service or software configuration. We consider that a configurable product

corresponds to a product family with all possible options and variants (Campagna & Formisano,

2013). We will consider that a configurable product can be represented formally with a generic

model relying on constraint-based approaches.

1.1.2 Process Configuration

In this section we consider the process and define relevant configuration task and problem

and discuss process configuration applications and software.

1.1.2.1 Process configuration Task Definition

Much less authors publish on process configuration; many more speak of process planning.

Process planning as explained by (Schierholt, 2001) is "the task of finding relevant processes

for manufacturing a product, sequencing these processes and defining the complete set of

parameters for each process". So the process planning is therefore the activity of precisely

specifying how to manufacture a product. Consequently (Schierholt, 2001)concludes that it was

logical to extend the principles and key ideas of product configuration to the problem of process

planning and was the first to speak of process configuration.

1 https://www.tacton.com/
2 https://configit.com/9
3 https://pros.com/
4 https://www.sap.com/products/cpq.html
5 https://www.oracle.com/applications/ebusiness/products/configurator/

28 / 145

Other authors like (Bartak , et al., 2010) or (Zhang , et al., 2013) follow previous ideas and

have shown that the same kind of reasoning for the product configuration can be considered for

the process configuration. They therefore consider that deriving a specific production plan

(operations, resources to be used, others...) from some kind of generic process plan while

respecting product characteristics and customer requirements, can define the process

configuration. Similarly, (Tiihonen , et al., 2014) proposed a formal definition of process

configuration as the task of "transforming a given process model into one that is specifically

adapted to a given set of requirements".

1.1.2.2 Process configuration Problem Definition

As the domain of process configuration has been much less studied, as far as we know there

is not any formal definition of the process configuration problem well accepted. Most authors

as (Schierholt, 2001) or (Gottschalk & La Rosa, 2010) explain that the idea of product

configuration can be extended towards process configuration. However, inspired by (Mittal &

Frayman, 1989), (Aldanondo & Vareilles, 2008) proposed the following definition for the

process configuration problem:

− “Given:

(i) a generic model of a configurable routing able to represent a family of production

processes with all possible variants and options, that gathers:(1) a set of operations, (2) a set

of resources with a required quantity, (3) a set of various constraints that restricts possible

combinations of operations, resources and required quantities,

(ii) a set of inputs, where an input corresponds with a selection of an operation, a resource

or a quantity value,

− Routing configuring can be defined as ‘finding at least one set of operations with relevant

sets of pairs (resource, quantity) that satisfies all the constraints and the inputs.”

The problem of numerous stakeholders of product configuration is much less present in the

process configuration because it interests mainly functions relevant to production and delivery,

in other words the customer is buying a product not a process.

1.1.2.3 Applications

Very few “pure” process configuration applications relevant to physical technical product

cases can be found in the literature. We mean by “pure”, without a strong link with product

configuration application. A process configuration system including an interactive and

automatic process configuration component has been developed and deployed in a Swiss metal

29 / 145

working company (Schierholt, 2001). (Gottschalk & La Rosa, 2010) present a process

configuration case dealing with a film industry. If we consider process configuration for

services and software, more cases can be found. As mentioned by (Felfernig, et al., 2014) we

can find success applications of process configuration in service areas like telecommunication

and financial services. (Mayer, et al., 2011) described a large software and hardware

development process and (Gottschalk, et al., 2009) applied a process configuration in Dutch

municipalities.

1.1.2.4 Software

As far as we know, there is no process configuration software that exists as a standalone

software. At the opposite, most of product configuration software editors propose modules that

allow configuring the process associated with the configured product.

1.1.2.5 Synthesis

In the proposed research we are going to focus on discrete configurable processes and will

not consider continuous processes (as chemical or energy production process). We consider that

a configurable process corresponds to a discrete production process with all possible options

and variants. We will consider that a configurable process can be represented formally with a

generic process model relying on constraint-based approaches. Key difference with product,

most of the times the customer doesn’t care about the process configuration which is most of

the times considered as a "pure" supplier problem. The point that can interest the customer is

the delivery date but not the way the supplier reaches it.

1.1.3 Concurrent Product and Process Configuration (CPPC)

Here too, CPPC task and problem definitions are proposed. Then applications and software

are discussed.

1.1.3.1 CPPC Task Definition

Most of the time, a product is first configured and then once the product specificities are

decided, process configuration is launched, in other words: begin with “the what” then finish

with “the how”. The key interest of breaking this sequence is to allow taking into account

specific process requirements before product requirements (Zhang , et al., 2013) or (Baxter,

2007). For example, in some situations the use of a specific resource may forbid a specific

product component or a strong due date expectation may oblige to use a local expensive

resource. These resource selections can have strong consequences on the product configuration.

30 / 145

We can consequently define the Concurrent Product and Process Configuration as the task of

configuring a product and its related process without strong precedence constraint.

1.1.3.2 CPPC Problem Definition

Most of the academic works deal with these two problems in an independent way, either

product configuration or process configuration. Some studies have showed the interest of the

union of these two configuration problems (Baxter, 2007), (Aldanondo, et al., 2010), (Hong, et

al., 2010), (Li, et al., 2006) and (Huang & Gu, 2006). (Dhungana, et al., 2017) propose that the

core problem to solve is "to integrate configuration process in order to simplify the value chain

from product configuration to manufacturing of the individualized product". The CPPC

problem can therefore be defined as the strict union of the product and process configuration

problems with the addition of coupling interrelations of constraints. Coupling interrelations

proposed in (Aldanondo, et al., 2010), (Pitiot, et al., 2013) formally describe the

interdependences that exist between both problems. The CPPC problem of course inherits of

all characteristics of product and process configuration problems.

The resulting generic model architecture is shown in Figure 1, where: (i) X are configuration

variables (ii) dotted lines are interrelations or constraints. The model gathers two sets of

variables (black rounded boxes in Figure 1), one associated with the product generic model and

the other with the process generic model. Constraints or interrelations are specific either to

product or process (lower part of Figure 1) or between both of them (previous coupling

interrelations in the upper part of Figure 1).

Figure 1- Generic model architecture of the CPPC problem

1.1.3.3 Applications

(Dhungana, et al., 2017) proposed novel concepts and algorithms for a holistic approach in

order to integrate product and production configuration. For their pilot study they used a power

controller module as a configurable product and its production requirements. (Zhang , et al.,

31 / 145

2013) show an example of CPPC problem dealing with small private aircraft. (Aldanondo, et

al., 2010) illustrate this problem with an example dealing with crane. Other product examples

mentioned in their model are the laptops, bicycles and power supplies.

1.1.3.4 Software

A decision aiding tool has to assist stakeholder to make the best decisions (product

configuration and process planning choices) according to multiple objectives. CPPC problems

take place in the first steps of the study of product and associated process. (Campagna &

Formisano, 2013) presented a framework called ProdDoc, who combined Product and Process

Configuration. As mentioned by (Dhungana, et al., 2017), ProdDoc is a step towards

considering manufacturing during product configuration, because it provides constraint based

languages for both product modeling and specification of process steps for production. At the

present time we cannot strongly comment about the ability of commercial configuration

software to handle simultaneously product and process configuration.

1.1.3.5 Synthesis

Being consistent with the previous sections, we are going to concentrate on problems

assembling concurrently product and process configuration. We will restrict our investigations

on: (i) technical products and systems, so we don’t deal with services and software, (ii) discrete

manufacturing process, so we don’t consider chemical or continuous food industry processes.

We will assume that the resulting product-process generic model of the configuration problem

can be considered as a constraint satisfaction problem.

1.1.4 Optimization of Concurrent Product and Process Configuration (O-CPPC)

In this last sub section, as the scope is rather narrow, we just propose definition elements

for the CPPC optimization task and problem.

1.1.4.1 CPPC Optimization task definition

The configuration task can be achieved either autonomously or interactively. By

autonomous configuration, we mean that the customer provides all the requirements in a single

shot and then ask for a solution. By interactive configuration, we mean that after inputting each

“elementary requirement” provided by the customer, the consequences on other configuration

variables are computed and shown to the user. By “elementary requirement”, we mean a

customer domain restriction of a single product or process configuration variable (for example:

required power belongs to [6, 8] or final assembly operation resource should be “Asia-line”).

32 / 145

As the goal of companies using configuration techniques is to propose a wide range of

possibilities, the quantity of configuration variables that should be valuated can be rather large

and the relevant interactive configuration process rather long.

In order to avoid asking the customer to input elementary requirements on all variables, it

is necessary to be able to switch the configuration process at any time from the previous

interactive mode towards the autonomous mode. This means that once all elementary

requirements proposed by the customer have been sequentially processed, remaining undecided

choices are processed thanks to some autonomous computations. This autonomous computation

can be achieved either with default values or by using multi-criteria optimization (cost, due-

date, performance, carbon footprint, etc.).

This thesis is dedicated to the second solution and for the sake of clarity we will assume

only two conflicting criteria: cost and cycle time. Furthermore, instead of providing a single

solution, we propose a Pareto front so that the customer can choose, according to preference

criteria, a rather low delivery time (at a higher cost) or a rather low-cost solution (with a longer

delivery time). Therefore, the process of interactive configuration and optimization of the CPPC

behaves as a two-step process, which combines interactive Concurrent Product and Process

Configuration in step 1 and autonomous Concurrent Product and Process Optimization in step

2, as shown in Figure 2.

Figure 2- CCPC configuration and optimization process

1.1.4.2 CPPC Optimization Problem Definition

Most of the works that have been dealing with configuration optimization present this

problem as a constrained optimization problem (Li, et al., 2006), (Wei, et al., 2014), (Du, et al.,

33 / 145

2014). Our CCPC optimization problem inherits of this characteristic. The only difference with

the CPPC problem lies in the existence of optimization criteria. A criterion can depend of

configuration variables of product, process or both. A technical performance criterion may

depend of product variables, a cycle time or delivery date criteria may depend of process, while

a cost criterion may depend of both. For a two criteria problem (cycle time and cost), the

resulting generic model architecture is shown in Figure 3 where criteria dependence has been

added to the CPPC problem generic model of figure 2.

Figure 3- Generic model architecture of the CPPC optimization problem

1.1.4.3 Synthesis and application issues

According to previous sections, we will consider in the present research the problem of

Optimization of the Concurrent Product and Process Configuration. We assume or consider (i)

only technical product and discrete production process, (ii) only situation where optimization

follows interactive configuration, (iii) only two optimization criteria cost and cycle time.

Given the problem under study and our concern with optimization, it is important to mention

practical industrial or application issues. These issues may be very different, since configuration

situations may range: (i) from cases costing around a thousand euros up to situations involving

millions of euros, (ii) from business relations that are either business to customer (B2C) or to

business (B2B).

In B2C, configuration techniques can be used to configure: personal computers costing 1-4

k€, kitchens ranging from 10-20 k€, cars from 20-80 k€, or sailing boats from 200-800 k€. For

these B2C situations, it is usually clear that if the customer can wait a day for some optimization

to a boat, he will hope to get results in just a few hours for a car and in less than an hour for a

kitchen or a computer. As this kind of selling is frequently achieved face to face, with customers

that are not fully driven by rational concerns, solutions optimization with many “what if” issues

34 / 145

requires computation times that should be as low as possible in order to meet any kind of

customer request almost on demand.

The same kind of conclusion can be drawn for B2B situations, which may involve, for

example, machine-tools with a value of 50-200 k€, cranes costing 200-800 k€, private planes

ranging from 2-10 M€ or a plant facility of 5-20 M€. For these B2B situations, given the high

cost and the fact that customer demand is rather more rational, it is not a problem to wait one

day for optimization results. But the concern here is more on the optimization side, which can

require effective optimization, meaning for example that if a 0.1 % energy efficiency bonus can

be achieved, the optimization process should find it.

Consequently; these two needs drive expectations of low computation times and solution

optimality which are the core of this research.

1.2 Overview of frameworks and tools

We just introduce in this section the two used frameworks: Constraint Satisfaction Problem

(CSP) and Evolutionary Algorithms, in order to be able to propose research questions and a

manuscript organization.

1.2.1 CPPC as a Constraint Satisfaction Problem (CSP)

Various modeling and processing approaches can be used to deal with the configuration

problem. The 6th chapter of the configuration book (Felfernig, et al., 2014) identify and compare

various approaches that can handle the configuration problem: rule-based systems, constraint

satisfaction problem (CSP), Sat Solving, feature models, Unified modeling language

configuration models, Description Logics, Ontology, Answer Set Programming and "hybrid"

methods that assemble two of these methods.

Historically, first configuration software or systems were rule based (McDermott, 1982).

As the maintenance of such system becomes very quickly intractable (Soloway , et al., 1987),

most of researchers have been working on approaches that differentiate the product knowledge

domain form the problem solving knowledge. In this idea CSP techniques strongly supported

by (Freuder, 1997) state: “Constraint technologies are one of the closest approaches computer

science has yet made to the Holy Grail of programming: a user states the problem, the computer

solves it.” The clear distinction of modeling and solving offered by CSP approaches and the

importance of constraints or interrelations between configuration variables are some of the key

reasons why CSP approaches are strongly used by configuration authors. A drawback of CSP

35 / 145

is their poor ability to deal with problem structuring aspects which is important for both product

configuration (a product is a set of sub-assemblies; a sub-assembly is a set of components…)

and process configuration (a process is a set of operations; an operation is a set of tasks…). This

is why other techniques, like UML, Description Logics or Ontology (dealing very well with

hierarchical aspects), are also used in configuration but they are almost always associated with

some rules or constraint approaches in configuration.

Furthermore, if constraint based approaches fit configuration well, they also fit very well

process planning (Bartak , et al., 2010) and optimization problems (Coello, s.f.). As a

consequence, we will use this constraint satisfaction problem framework (CSP) in this work.

The first section of the second chapter will propose a survey of CSP and configuration.

1.2.2 Optimization of CPPC with Evolutionary Algorithms (EA)

With respect to optimization the CPPC problem inherits specificities from both product

configuration optimization and process planning optimization.

A first specificity of this is that the solution space can be large. It is reported in (Amilhastre,

et al., 2002) that a configuration solution space of more than 1.4x1012 is required for a car-

configuration problem. When planning is added, the combinatorial structure can become very

large. (Pitiot, et al., 2014) investigated solution spaces range between 106 and 1017 are

investigated.

A second specificity is that the CPPC solution space may vary in terms of size but also in

terms of position. We have introduced in section 1.1.4 the notion of elementary requirements

that correspond to customer expectations that must be respected in opposition with undecided

choices that can be set by the optimization process. Therefore, for the first point, it is important

to note that the size of the problem we are seeking to optimize increases when the quantity of

elementary requirements processed during interactive configuration decreases. For the second

point, according to the content of these elementary requirements (either high or low product

performance, for example, that essentially drives cost and cycle time), the corresponding

solution space that needs to be optimized can be clearly located in a different space area. This

is shown in Figure 4, where two kinds of elementary requirements drive very different solution

space locations, high performances elementary requirements drive costly and long cycle time

while it is the opposite for low performance product elementary requirements.

36 / 145

Figure 4- CPPC optimization: different solution space locations

A third specificity is relevant to the constraint level. By constraint level we mean the ratio

between feasible and unfeasible space that can be computed as follows. We first consider the

number of configuration variables (n) where the customer can express an elementary

requirement and the average number of possible values (p) for each. When constraints are not

considered, the solution space size equals pn. When constraints are considered, the solution

space is reduced with respect to a constraint level which is the ratio of the number of constrained

solutions (c) divided by the number of unconstrained solutions (u). This level can be quantified

for a single constraint or for a whole problem. One should be aware that a high level corresponds

to a low constrained problem. Thus, constrained solution space size equals pn * c/u. As the goal

of companies using configuration techniques is most of the time to propose as many solutions

as possible, the CPPC problem is most of the times not over-constrained.

The last specificity deals with the number of criteria that must be taken into account. We

have already mentioned, that we will consider only the two-criteria cycle time and cost that are

the most frequent criteria required by customer. However, assuming that technical performance

has been taken into account with elementary requirements, other criteria like product and

process quality level and/or carbon footprint could be added. Consequently, for our CPPC

optimization problem the number of criteria is rather low and, in any case, lower than five. As

already said, we will consider only two criteria but, in some situations, we will discuss problems

with more than two criteria.

Given these specificities, we have tried to find the main authors close to our CPPC problem

optimization. We therefore made a query on the web of science with following title words:

"product” and “configuration” and “optimization” and not “supply chain”. As a result the ten

most cited papers were in citation decreasing order: (Li, et al., 2006), (Du, et al., 2014), (Zhou,

37 / 145

et al., 2008), (Chen & Lin, 2002), (Pitiot, et al., 2014), (Xu, 2005), (Viswanathan & Allada,

2006), (Wei, et al., 2014), (Jiang, et al., 2011) and (Song & Chan, 2015). Among these ten

papers, eight where running genetic or evolutionary approaches while the two remaining were

based on game theory or pairwise comparisons. We can therefore conclude that these meta-

heuristics fit very well the CPPC optimization specificities.

As a consequence, we will use an evolutionary approach (EA) in this work. The second

section of the second chapter will detail a survey of various EA.

1.3 Research Questions and manuscript organization

Having described the domains and introduced the two used frameworks and tools (CSP and

EA) we can know define our research questions and the resulting manuscript organization.

1.3.1 Goals of the works

We deal with the problems of Optimization of Concurrent Product and Process

Configuration (O-CPPC). As we have presented in the previous sections, many academic works

show diverse investigation cases associated with product and/or process configuration. Most of

the times the configuration approach is achieved with an individual focus that doesn´t take into

account that there is a close relationship between a product and their respective production

process. In the scientific literature, some studies tackle the analysis of Concurrent Product and

Process Configuration problems. For example: (Dhungana, et al., 2017), (Campagna &

Formisano, 2013), (Baxter, 2007), (Zhang , et al., 2013), (Hong, et al., 2010), (Li, et al., 2006)

and (Huang & Gu, 2006); as far as we know, no paper deals with its optimization. Considering

the ten articles studying configuration optimization mentioned at the end of section 1.2.2, all of

them only deal with product configuration. Furthermore, most of them are rather theoretical

propositions with an evaluation running a single problem, a kind of “toy” problem in most

situations mainly to explain and illustrate the concepts (computer, electric motor, plane, air

compressor, gear train…). There isn’t any kind of design of experiments for the proposed

optimization approach. As a consequence, there is no standard to analyze and compare the

optimization performance and therefore most of published results can be more or less

considered as case dependent.

In a previous work (Pitiot, et al., 2013), the Concurrent Product and Process Configuration

(CPPC) is considered as a constraint satisfaction problem (CSP). In this work, an optimization

metaheuristic, called Constraints Filtering Based - Evolutionary Algorithm (CFB-EA), has been

38 / 145

developed and evaluated with a specific small aircraft configuration problem. The case

dependency problem has driven the authors to enlarge the previous aircraft example with a

design of experiments with different problem sizes and different constraint levels (Pitiot, et al.,

2014).

Following this stream of works, the goals of the PhD are: (i) to propose and discuss a kind

of CPPC generic model that can reduce case dependency when evaluating optimization

methods, (ii) to evaluate CFB-EA with respect to this CPPC generic model and (iii) to propose

and evaluate a new version of CFB-EA that reduces computation time significantly.

1.3.2 Research Questions

Given previous considerations, we propose the three following research questions:

QR1: Is it possible to propose a generic model of the CPPC problem that can avoid case

dependency when evaluating and comparing optimization methods?

QR2: How sensitive is CFB-EA optimization method, with respect to each key characteristic

of the generic model of the CPPC problem?

QR3: Is it possible to reduce the computation times of CFB-EA and other conventional EA

approaches?

1.3.3 Thesis organization

Our main objective is therefore to evaluate and improve combinatorial optimization

techniques for the problem of Concurrent Product and Process Configuration (O-CPPC) while

avoiding case dependency. The rest of the thesis is organized as follows:

Research problem: Given the CPPC problem already introduced, we refine in chapter 2 our

research problem through a survey of the Constraint Satisfaction Problem with respect to

configuration problems and Evolutionary Algorithms. This survey ends with the identification

of the modeling and optimization approaches and tools that will be used in chapters 3 and 4.

Generic modeling: we define in chapter 3 a generic problem of “Concurrent Product and

Process Configuration”, we identify its main key characteristics and we formalize it as a

39 / 145

constraint satisfaction problem (CSP). This generic model is the core of a problem generator

that allows generating CPPC benchmarks.

Evaluation: Given a CPPC benchmark, a design of experiment is proposed in chapter 4 to

evaluate the CFB-EA performance and to validate the CPPC generic model.

Improvement: We propose and test an original improvement of CFB-EA and discuss its

generalization to other evolutionary approaches in chapter 5.

At the end, chapter 6 synthetizes the contributions and discusses future works.

40 / 145

41 / 145

2. Modeling and optimization approaches for CPPC

In this chapter, our research problem is formalized with constraints satisfaction problem

(CSP) for modeling and evolutionary algorithms (EA) for optimizing. The goal is to discuss,

the kind of CSP and the kind of EA which can be used in chapters 3 and 4. Firstly, we detail

the CSP framework; then we recall how CSP can be used to formalize product, process,

concurrent product/process configuration (CPPC) and to optimize CPPC. Secondly, we analyze

genetic approaches and more particularly evolutionary algorithm with respect to our CPPC

optimization goals. Thirdly, we present the confirmation of the thesis problem and highlight the

most important propositions.

2.1 Constraint Satisfaction Problems (CSP) for configuration

We first introduce the basics of CSP, then how CSP can be used to model: product

configuration, process configuration and concurrent product/process configuration.

2.1.1 Foundation of Constraint Satisfaction Problems (CSP)

In this section, we present constraints satisfaction problems that allow us to formalize the

general knowledge necessary for the configuration activity. In a first step, we formally define

the problems of constraint satisfaction and specify the types and natures of variables and

constraints that they cover. In a second step, we review the different types of constraint

satisfaction problems: we classify them according to (1) the type and nature of their constraints

and (2) the relevance of variables in the problem and the solution.

2.1.1.1 CSP framework

Constraint programming is a programming paradigm in which constraints are used to state

or define the relationships between variables, and thus restrict the solution space. Constraint

Satisfaction Problem (CSP) provides a unifying framework in which it is possible to express,

in a natural way, a wide variety of computational problems (Krokhin & Zivny, 2017).

Constraint Satisfaction Problems (CSP) allow modeling knowledge and reasoning on it to find

all consistent solutions. The standard formalism of the constraint satisfaction problem goes back

to (Montanari, 1974).

42 / 145

• Definition 1: Constraint Satisfaction Problem

Formally speaking, (Tsang, 1993) defines the concept of constraint satisfaction problem as

follows: "CSP is a problem composed of a finite set of variables, each of which is associated

with a finite domain, and a set of constraints that restricts the values the variables can

simultaneously take."

The constraint satisfaction problem consists of a triplet (X, D, C) defined by: i) a set of

variables X = {x1,…,xn}, ii) a domain for each variable D = {D1,…Dn} and iii) a set of

constraints C = {C1,…,Cn} linking the variables X and representing the solution space

(Felfernig, et al., 2014).

• Definition 2: Task in a CSP

"The task in a CSP is to assign a value vk to each variable xi such that all the constraints Cj

are satisfied simultaneously" (Tsang, 1993).

• Definition 3: Solution of a CSP

"A solution S of a CSP (X, D, C) is a complete instantiation of the variables in X satisfying

all the constraints in C" (Bartak , et al., 2010).

• Definition 4: Consistent CSP

"If a CSP has at least one solution, it is said that the CSP is satisfiable or consistent,

otherwise we say that it is inconsistent" (Bartak , et al., 2010).

• Definition 5: Domain of a Variable

"The domain of a variable xi is a set of all possible values that can be assigned to the

variable. If "x" is a variable, then we use "Dx" to denote the domain of it" (Tsang, 1993).

• Definition 6: Degree of a Variable

"The variable degree corresponds to the number of constraints in which the variable is

involved" (Ghédira , 2013).

• Definition 7: Label

A label "is a variable-value pair that represents the assignment of the value to the variable"

(Tsang, 1993). The expression <x, v> is used to represent the label of assigning the value "v"

to the variable "x" (Tsang, 1993) .

43 / 145

• Definition 8: Constraint

"A constraint on a set of variables is a restriction on the combination of values that these

variables can take simultaneously" (Ghédira , 2013). In other words, a constraint can be seen as

a set of all the legal compound labels for the subject variables (Tsang, 1993). They can be

presented in different ways like functions, inequalities, matrices, etc. (Tsang, 1993)

• Definition 9: Arity of a Constraint

"The arity of a constraint "C" is the number of variables involved in "C"" (Ghédira , 2013).

A constraint is called unary if it relates to a single variable or binary if its arity is equal to two.

More generally, a constraint is called n-ary when its arity is equal to "n" (Ghédira , 2013).

2.1.1.2 Variables and Constraints

The variables on which the constraints apply can be of different types: symbolic or

numerical, discrete or continuous. There are two ways to map the set of variables (Vareilles,

2015). The Figure 5 presents this mapping according to the type of the elements of the domains

and their cardinal.

Figure 5- Classification of variables (Vareilles, 2015)

If we consider only the type of elements of the domains definition, we obtain two disjoint

subsets: symbolic variables (in green) and numerical variables (in brown). If we consider the

cardinality of the domains definition (countable or not), we obtain two other disjoint subsets:

the discrete variables (in blue) and the continuous variables (in red).

44 / 145

On the first hand, the constraints allow limiting the space of solution by delimiting the

combinations of values that the variables can take simultaneously (in these cases they are

qualified as compatible). On the other hand, they allow modifying the structure of the solution

space (or CSP) by adding or removing elements (variables and constraints) to the current

problem to be solved (in this case they are called activation) (Mittal & Falkenhainer, 1990).

The activation constraints make possible to manage the relevance of the elements (variables

and constraints) of the problem by a mechanism of implicit activation or de-activation (Van

Oudenhove de Saint Gery , 2006).

The diversity of knowledge to be formalized leads to the definition of different types of

constraints (Yannou, 1998): a) compatibility tables representing in tabular form, the explicit list

of authorized values to take into account, for instance, the allowed combinations of components,

b) numerical functions representing in a mathematical form, the implicit combination of

variable values to formalize, for instance, the computation of a product weight or a temporal

relationship between activities or c) even pairwise functions defined by parts, allowing to take

into account empirical knowledge or experimental results formalized in form of abacus

(Mulyanto , 2002) (Vareilles , 2005) (Chenouard, 2007).

Figure 6 summarizes the classification of constraints, according to their nature

(compatibility or activation) and their type (compatibility tables, numerical functions and

charts).

Figure 6- Classification of constraints (Vareilles, 2015)

45 / 145

2.1.1.3 Classification of CSP

Constraint Satisfaction Problems can be classified according to several criteria: a) the type

of variables they possess (symbolic, continuous, temporal ...) (Gelle & Faltings, 2003), b) the

type of the constraints (list of authorized values, mathematical function or temporal

relationship) (Vareilles, 2015), and c) the nature of the established constraints (compatibility

constraint and activation constraint) (Djefel , 2010) (Felfernig, et al., 2014).

(Vareilles, 2015) proposed to complete the classification of (Djefel , 2010) (Felfernig, et

al., 2014) for the notion of relevance of variables in the solution. For this, the notions of CSP

with static structure and with dynamic structure are stated. CSP with a static structure are CSPs

where the totality of variables "X" and the totality of constraints "C" characterize the solutions.

No variables or constraint can be added as the problem is solved. CSPs with a dynamic structure

are CSPs where the structure can be modified by adding variables and supplementary constraint

as the problem is solved.

In a similar way, we can distinguish the solutions with static structure that are described by

the set of variables of "X" of the CSP. On the other hand, the solutions with a dynamic structure,

contain only a subset of the variables of X, whereas these are present in the CSP, or have their

structure evolve over time by adding or removing viable variables, in the same way as the CSP

Three cases are then differentiated, the fourth combination (static CSP and dynamic

solution) having no meaning, as illustrated in figure 7:

Figure 7- Classification of CSP (Vareilles, 2015)

46 / 145

Static CSP and static solution

• Discrete CSP: first type of CSP, defined by (Montanari, 1974) and characterized by discrete

variables and compatibility constraints; described by lists of combinations of allowed or

forbidden values (Tsang, 1993) and by discrete mathematical expressions.

• CSP continuous: extension of discrete CSPs to the continuous domain and characterized by

continuous numerical variables and constraints; described in general terms as mathematical

functions, and more rarely by continuous compatibility constraints.

• CSP Qualitative or quantitative temporal variables: characterized by temporal variables

respectively representing time intervals (Allen, 1983); being moments or events (Dechter

& Mairi, 1991) and by temporal constraints representing temporal relations between

intervals or instants. (Meiri, 1996) proposed to combine these two types of temporal CSP

to argue their expressiveness.

• Mixed CSPs: characterized by variables of different types and discrete, continuous,

temporal or mixed compatibility constraints (Gelle & Weigel, 1995), (Vareilles , 2005).

Static CSP and dynamic solution

• CSP *: characterized by discrete variables that have, for some, the value * in their domain

(optional variables) and compatibility constraints taking into account the specific value *

(Amilhastre, 1999) (Macdonald & Prosser, 2002).

• State CSPs: characterized by discrete variables associated; for some, with a state Boolean

variable indicating the relevance of the variable in the solution and compatibility constraints

taking into account these state variables (Veron, 2001).

Dynamic CSP and dynamic solution

• Conditional CSP: characterized by discrete variables that are active or inactive in the

problem, and constraints (compatibility constraints and activation constraints) that manage

the relevance of variables in the problem, by explicitly allowing or prohibiting their

activation according to four types of activation constraints (Mittal & Falkenhainer, 1990).

Conditional CSPs have been extended to numerical variables (Gelle & Weigel, 1995), to

the activation of subsets of variables (Soininen & Niemela , 1999), to the explicit activation

of constraints (Vareilles , 2005) and to temporal CSPs (Tsamardinos , et al., 2003), (Vilim,

et al., 2004), (Mouhoub & Sukpan, 2005).

• Composite CSP: characterized by discrete variables, some of which are meta-variables that

can be substituted by an entire sub-problem (variables and constraints) and compatibility

47 / 145

and activation constraints (Sabin & Freuder, 1996). Composite CSPs have been introduced

mainly to model the hierarchical structure of configuration problems and have been

extended to temporal CSP by (Mouhoub & Sukpan, 2005).

• Generic CSP: dedicated to the configuration of products, characterized by discrete variables

representing properties, ports and components, linked together by generic constraints of

compatibility or activation. GCSP are by nature, hierarchical (Stumptner , et al., 1998).

2.1.2 Product Configuration Definition and CSP Model

In this section we present the basic definitions and a summary of the configuration

techniques related to the product domain.

2.1.2.1 Basic Definitions

• Definition 10: Product

A Product is “any good or service produced for sale, barter or internal use” (Blackstone,

2013). It has a combination of tangible and intangible attributes that an enterprise offers to a

customer for purchase. A product seeks to serve a need or satisfy a want (Blackstone, 2013).

• Definition 11: Product Architecture

Product architecture can be defined as “the way in which the functional elements of a

product are arranged into physical units and the way in which these units interact” (Jiao, et al.,

2007) (Ulrich & Eppinger, 1995). For our research, we are mainly interested in integrated,

modular and platform architectures.

• Definition 12: Configurable Products

We will focus on one type of product usually called configurable products. They have a

predefined basic structure that can be customized by combining a series of available

components and options (modules, parts,….) or by specifying suitable parameters (lengths,

tensions,….) (Campagna & Formisano, 2013). Actually, a configurable product does not

correspond to a specific physical object, but identifies a set of (physical) objects that a company

can produce.

A classical definition of Configurable Product was presented by (Veron, et al., 1999) as "a

set of attributes (or components) which possible values belong to a finite set, and a set of

feasibility constraints over these attributes which specify their compatible combinations of

values".

48 / 145

• Definition 13: Product Configuration

Product configuration is a consolidated methodology and one of the most effective

technologies of mass customization strategies (Felfernig, et al., 2014) (Sabin & Weigel, 1998).

It is a widely used technology for generating and building individualized products (product

family design) which has been deployed by many companies for years (Wang, et al., 2015).

Generally speaking, the task of product configuration is "to search the predefined

components set according to customers’ requirements and the constraint relationships among

the components, and to obtain the configuration results which can meet the customer’s

personalized requirements " (Wang, et al., 2015) (Brown, 1998).

(Aldanondo & Vareilles, 2008) summarized the following Product Configuration definition

based on a compilation of common features proposed by various authors concerning product

configuration (Mittal & Frayman, 1989) (Sabin & Weigel, 1998) (Soininen, et al., 1998)

(Aldanondo, et al., 2003):

• Hypothesis: a product is a set of components,

• Given:

i. a generic model of a configurable product able to represent a family of products with all

possible variants and options, that gathers:

1) a set of component groups and relevant component quantities,

2) a set of various constraints that restricts possible combinations of components and/or

component quantity values,

ii. a set of customer requirements, where a requirement corresponds with a selection of a

component or a quantity of this component,

• Product Configuration can be defined as ‘finding at least one set of components that satisfies

all constraints and customer requirements'.

Then the same authors proposed a lightly modification of this basic definition with the

introduction of the notion of product properties, which allows to characterize the requirements

and to introduce the description view as follow:

• Hypothesis: a product is a set of components,

• Given:

i- a generic model of a configurable product able to represent a family of products with all

possible variants and options, that gathers:

49 / 145

1) a set of component groups,

2) a set of product properties,

3) a set of various constraints that restricts possible combinations of components and/or

property values

ii- a set of customer requirements, where a requirement corresponds with a selection of a

component or a property value,

• Requirements and Product Configuring can be defined as ‘finding at least one set of

components that satisfies all the constraints and the customer requirements'.

The component quantity introduced in the first definition by (Aldanondo & Vareilles, 2008)

was considered in the last definition as a product property. The authors clarified that component

quantity is mainly a physical characteristic of the product but is also necessary to consider it as

a requirement (Aldanondo & Vareilles, 2008).

The configuration result is a set of components or a bill-of-materials (Aldanondo &

Vareilles, 2008). In other words, we get a listing of all sub-assemblies, intermediates, parts and

raw materials that go into a parent assembly showing the quantity of each required to make an

assembly (Blackstone, 2013).

2.1.2.2 Configuration Techniques

(Brown, 1998) summarized the next variety of techniques that can be used together to

support configuring task:

Component Choice

(Brown, 1998) explained that "Component Choice" plays an important role on its

usefulness. For example, the author said that a large and complex component has more

requirements than others that also need to be included, so they have less flexible use. The simple

and small components will probably provide more flexibility and will require more configuring;

large components can be considered to be preconfigured sets of smaller components (Brown,

1998).

Experience and Knowledge

(Brown, 1998) proposed that the "Experience and Knowledge" affects the search for a

configuration process. He clarifies that they can reduce the search because the knowledge

allows us to build previous structured descriptions of the available components; then the

50 / 145

experience may reduce the errors because it can allow us to build previously discovered sub-

configurations or heuristic into the system (Brown, 1998).

Hierarchies

(Brown, 1998) affirms that hierarchies are abstractions that allow a descending

configuration strategy in order to avoid the excessive combination generated when a lot of

details at the beginning are considering. For example a "Component Hierarchy" groups specific

components into types and subtypes, a "Functional Hierarchy" provides a way of storing

functions organized by type and abstractness and a "Part-Subpart Hierarchy" can be used for

functions, for components, or both (Brown, 1998).

Templates

(Brown, 1998) mentioned that configuration "Templates" refer to any preformed piece of

configuration from past experience. For example, a template can associate functional and/or

structural items and they include components and relationships between them at some level of

abstraction (Brown, 1998).

Key Components

Key Components correspond to "those that are almost always required, or those on which

many other choices depend, suggesting that their correct choice should take priority" (Mittal &

Frayman, 1989).

Constraints

As mentioned by (Wang, et al., 2015) various valid methods for solving product

configuration have been studied and constraint satisfaction problem (CSP) is one of them

(Felfernig, et al., 2014). In many works on the subject (Pitiot, et al., 2014) (Sabin & Weigel,

1998) (Zhang, 2014), the Constraint Satisfaction Problem framework (CSP) has been efficiently

used to model and support the product configuration activity.

Selection of components introduces new variables and new constraints (Mittal &

Falkenhainer, 1990), so the constraints are introduced by decisions (Brown, 1998). The

objective is to find a feasible product that satisfies not only the constraints but also the user’s

requirements (Veron, et al., 1999). According to this objective of choosing a feasible instance

of a product among all its variations, the configuration problem can be mapped into a constraint

problem. And the Constraint Satisfaction Problem (CSP) offers a suitable framework (Veron,

et al., 1999).

51 / 145

2.1.3 Process configuration Definition and CSP Model

In the following section we present basic definitions and a summary of the process

configuration techniques.

2.1.3.1 Basic Definitions

• Definition 14: Process

A process is "a planned series of actions or operations (e.g., mechanical, electrical,

chemical, inspection, test …) that advances a material or procedure from one stage or

completion to another" (Blackstone, 2013).

Different types of processes for the products from product families are presented as follows

(Wang, et al., 2015) (Schierholt, 2001):

• Standard process: the processes necessary to manufacture the product are the same, appear

in the same sequence and have fixed process parameters.

• Standard process sequence with variable parameters: The processes necessary to

manufacture products are always the same and always appear in the same sequence, but

have variable process parameters depending on the specified product variant.

• Standard process sequence with variant: standard process sequence exists for manufacturing

product variants of a product family. Some processes of the standard sequence can be added

or neglected depending on the specification.

• General process framework: General process framework exists for all product variants, and

the framework is filled with manufacturing processes from a predefined set. The sequence

within the framework might vary.

• Variable process sequence: No predefined sequence of processes exists, and the

manufacturing processes used might be totally new.

The process configuration can be applied for the "standard process sequence with variants"

and the "general process framework", and is partially applicable for the "standard process

sequence with variable parameters" (Wang, et al., 2015).

• Definition 15: Process Configuration

As we mentioned in the first Chapter, (Schierholt, 2001) concludes that the transference of

the principles used in product configuration to the problem of process planning is called process

configuration. So the essence of process configuration is the process planning (Wang, et al.,

2015).

52 / 145

(Schierholt, 2001) defined process configuration as "the task of selecting the manufacturing

processes needed to manufacture a product variant according to customer specifications from a

fixed, predefined set of processes, putting these manufacturing processes into sequence, and

generating production data for each process while respecting all compatibility constraints on

how process may be combined and ordered".

Process configuration is more complex than product configuration because of the temporal

constraints and resource constraints of production (Wang, et al., 2015). For example: some

restrictions can be dynamics during the resolution process and also because the number of

restrictions is unknown at the beginning (Wang, et al., 2015).

We can find some academics cases of production configuration of product families (Zhang,

et al., 2012) (Zhang & Rodrigues, 2010) (Wu, et al., 2013). This production configuration

concept was presented by (Zhang , 2007) based on a process platform as follows: "From an

existing process platform in relation with a product family, the proper process elements, such

as conceptual processes for individual product items (including the end product), operations,

machines, tools, fixtures, cycle times, and setups are selected for new members of the associated

product family, and subsequently arranged into routings, where in the process concepts for

items are replaced with the detailed operations, for producing the given product; both the

selection and arrangement of process elements are subject to constraints represented by

configuration rules in the process platform".

(Wang, et al., 2015) applied the configuration technique to the process planning of product

families. They introduced an algorithm in order to achieve the process configuration and

developed a validation experiment on machining process configuration for a satellite plate

panel. Formally speaking (Wang, et al., 2015) described the process configuration in the form

of a tuple (P´, PM, RE, RU) where:.

• P´ represents the sets of configurable objects in process, such as the set of activities, the set

of constrained variables representing process characteristics and involved resources, the set

of temporal constraints between activities, the set of resources constraints and the set of

constraints on activity durations.

• PM defines the structure of process, represents the configurable process model.

• RE represents the process technical requirements of product.

• RU represents the rules and knowledge between configurable objects.

53 / 145

The result is either a process suitable for the target product or a no feasible solution. The

feasible process in process configuration task could be called configuration scheme (Wang, et

al., 2015).

Finally, (Aldanondo & Vareilles, 2008) introduced the Process Configuration view or

routing configuration as already seen in section 1.1.2.2

− “Given:

(i) a generic model of a configurable routing able to represent a family of production

processes with all possible variants and options, that gathers:(1) a set of operations, (2) a set

of resources with a required quantity, (3) a set of various constraints that restricts possible

combinations of operations, resources and required quantities,

(ii) a set of inputs, where an input corresponds with a selection of an operation, a resource

or a quantity value,

− Routing configuring can be defined as ‘finding at least one set of operations with relevant

sets of pairs (resource, quantity) that satisfies all the constraints and the inputs.”

2.1.3.2 Process Configuration Techniques

At the beginning when (Schierholt, 2001) presented the concept of Process Configuration,

he described generic process structures using directed graphs. These structures called plan

skeletons had the knowledge about sequences of processes.

In a same way as product configuration (section 2.2), authors interested in process

configuration have shown that planning process could be also modelled and aided when

considered as a CSP. For example, (Zhang & Rodrigues, 2010) studied the logic for configuring

production processes using a dynamic modeling and visualization approach. (Zhang, et al.,

2012) developed a constraint satisfaction approach for production configuration decisions

taking into consideration the constraint identification, representation and evaluation. Moreover,

the planning and scheduling problem was tackled by (Bartak , et al., 2010) using constraint

satisfaction techniques.

Finally, (Wang, et al., 2015) applied the configuration technique to process planning of

product families. They solved the process configuration task by generative constraint

satisfaction problem (GCSP). The GCSP is an Extension of CSP that was proposed by

(Stumptner , et al., 1998) (Stumptner & Haselböck, 1993).

54 / 145

2.1.4 Concurrent Product and Process Configuration (CPPC) Definition and CSP Model

In this section we present the Concurrent Product and Process definition and the related

configuration techniques.

2.1.4.1 Basic Definitions

• Definition 16: Concurrent Product and Process Configuration

From a product-line view point, a product consists of three parts (Dhungana, et al., 2017):

"features representing the customer facing problem space, a BOM (Bill of Material) and BOP

(Bill of Processes) representing the solution space". The result of product configuration is a

manufacturing order consisting of a list of materials (BOM) and a set of production operations

(BOP) acting on materials (Dhungana, et al., 2017). That is why it is inevitable to consider

production constraints during the product configuration. The analysis of this kind of problem

has to become concurring because the configuration task impacts the product domain and

process domain at the same time (Aldanondo, et al., 2008). On one hand, product configuration

decisions may have strong consequences on the planning of its production process. On the other

hand, planning decisions can provide hard constraints to product configuration. Dealing with

product and process configuration in an independent way can cause inconsistencies due to the

consequences and constraints between both domains (Aldanondo, et al., 2008).

In the previous sections we have presented that (Aldanondo & Vareilles, 2008) summarized

a Product Configuration definition and introduced the Process Configuration view or routing

configuration. They analyzed the product domain and the process domain in a similar way,

because associating the elements that characterize each definition we can find similarities

between product and process environments, as shown in Table 1.

Table 1- Similarities between Product and Process

Product Process

▪ A set of component groups.
▪ A set of operations.

▪ A set of product properties.
▪ A set of resources with a required quantity.

▪ A set of various constraints that restricts

possible combinations of components

and/or property values.

▪ A set of various constraints that restricts

possible combinations of operations, resources,

and required quantities.

55 / 145

Product Process

▪ A set of customer requirements, where a

requirement corresponds with a selection

of a component or a property value.

▪ A set of inputs, where an input corresponds with

a selection of an operation, a resource or a

quantity.

As a result, there are elements of the process domain associated for each element of the

product domain. For example:

• A set of component groups is related to the set of operations

• A set of product properties is specific related to the set of resources with a required quantity.

• A set of various constraints in the product domain is related to the set of various constraints

in the process domain.

• A set of customer requirements linked with the product is related to the set of inputs for the

process.

For that reason, (Aldanondo & Vareilles, 2008) showed how Process Configuration could

be achieved with respect to Product Model. For example: the existence of an operation in a

configured process routing can depend on the configured product (Aldanondo & Vareilles,

2008).

Based on this background we take back the definition of Concurrent Product and Process

Configuration that we proposed in the first chapter "as the task of configuring a product and its

related process at the same time, in order to meet technical and particular customer

requirements"

2.1.4.2 Concurrent Product and Process Configuration Techniques

Mass customization can encompass the management of the entire product cycle, from the

customer's order to the final manufacturing (Aldanondo & Vareilles, 2008). Therefore, it is

necessary to extend the configuration techniques to the process planning.

Some researchers incorporated product configuration with process planning (Pitiot, et al.,

2014) (Campagna & Formisano, 2013). (Campagna & Formisano, 2013) described a modeling

framework (PRODOC) that allows to model a product and its production process. They

described the main features and capabilities offered to model production processes and to link

them with the corresponding products models. They showed that processes could be modelled

in terms of activities and temporal relations between them, considering resource

production/consumption and interdependencies between process executions and product

productions. (Aldanondo & Vareilles, 2008) extended the product configuration to downstream

56 / 145

process configuration. They divided process configuration into routing configuration and

operation configuration which could both be considered as CSP.

For handling the numerous constraints associated with product and process variety, (Zhang,

et al., 2012) have developed a constraint satisfaction approach to facilitate production

configuration. They formulated a domain-based model to conceptualize the production

configuration process, involving inter-connections among multiple domains in conjunction

with diverse domain decision variables and constraints. The production configuration was

formulated as a constraint satisfaction problem (CSP), using a constraint heuristic for the search

of the solution.

(Dhungana, et al., 2017) proposed to integrate product and production configuration by

using new methodology for variability management in smart production ecosystems. They

proposed novel concepts and algorithms for a holistic configuration approach required to

support product designers, factory operators and end users in a common market place. They

used the CSP paradigms for solving the combinatorial problem.

In (Aldanondo, et al., 2008) the product configuration and planning problems are considered

concurrent as two Constraint Satisfaction Problems. The objective is to propagate decision

consequences between the two domains by the use of constraints. They proposed to couple

together interactive product configuration tools with process planning tools in order to pass

decisions made from one to the other. In particular, they proposed to associate product

configuration and production planning in order to allow: (i) the propagation of the consequences

of each product configuration decision toward the planning of its production process; (ii) the

propagation of the consequences of each process planning decision towards the product

configuration. This should reduce or avoid planning impossibilities due to product

configuration, and configuration impossibilities due to production planning.

Configurable products are modeled as a set of components (Aldanondo, et al., 2008). Each

component is associated to a set of properties representing its configurable characteristics.

Moreover, a set of constraints restricts possible combinations of components and property

values. Production planning is addressed considering a production process as a set of task

entities. A task entity is defined with: temporal parameters (start time, finishing time, and

duration), resource parameters (required resource, and quantity of required resource),

compatibility constraints (linking duration with required resource and/or required resource

quantity) (Aldanondo, et al., 2008).

57 / 145

Coupling constraints are used to link a product with a process model (Aldanondo, et al.,

2008). A coupling constraint is a compatibility constraint that links a variable of the

configuration model with a variable of the planning model. Any variable of the configuration

model can belong to a coupling constraint. On the planning model side, resource parameters

and duration variables can be involved in coupling constraints. A resource parameter in a

coupling constraint allows to propagate the impact of a configuration decision on the selection

of the required resource and/or resource quantity (reverse behavior from resource selection to

product configuration is also possible). A temporal parameter duration in a coupling constraint

allows to propagate the impact of a configuration decision on the modulation of the duration of

a task (reverse behavior from duration modulation to product configuration is also possible).

(Aldanondo, et al., 2008) showed that it is possible to manage interactions between product

configuration and production planning. However, it´s only a primary result on the study of

coupling process with product configuration.

2.1.5 Synthesis

The analysis and modeling of both product and process domains has to be done

simultaneously because of the concurrent characteristic, the multiple interactions and inter-

relations that exist between the two domains. The configuration of each of these two domains

can, without any doubt, be considered as a constraint satisfaction problem. Consequently, we

consider the CSP framework for following modeling issues. In terms of kinds of CSP, we

consider discrete variables and constraints for the configuration aspect and continuous variables

and constraint for the criteria evaluation. As we are going to optimize the problem with

evolutionary approaches, we will consider CSP with a static structure (no addition of variables

and constraints in the problem during solving) in order to avoid the need to adapt evolutionary

algorithm to chromosome with a structure that changes during optimization.

2.2 Optimization of CPPC: definitions, OCSP Model and multiobjective

issues

Next, we summarized the most important definitions related to the problem of the

Optimization of the Concurrent Product and Process Configuration (O-CPPC), the applicable

optimization methods, the proposed method (CFB-EA) and related works.

58 / 145

2.2.1 Basic Definitions

• Definition 17: Constrained Optimization

Constrained optimization is the process of optimizing an objective function with respect to

some variables in the presence of constraints on those variables. These constraints are expressed

as a set of relationships that the variables have to satisfy. The constraints are usually presented

as equalities, inequalities or compatibility tables.

• Definition 18: Constraint satisfaction and optimization problem (CSOP)

 Constrained Satisfaction and Optimization Problems (CSOP) extend CSP with

optimization needs. Solving a CSP means finding a feasible solution while solving a CSOP

means finding a feasible and optimized solution (Eiben, 2001). Formally speaking CSOP is

defined by (Tsang, 1993) as a quadruplet (X, D, C, f), gathering a CSP with an optimization

function "f” which maps every solution tuple to a numerical value:

• (X, D, C) is a CSP, and if S is the set of solution tuples of (X, D, C),

• Then f (S) → numerical value.

• Given a solution tuple T, we call f(T) the f-value of T.

The task in a CSOP is to find the solution tuple with the optimal (minimal or maximal) f-

value with regard to the application dependent optimization function f (Tsang, 1993).

• Definition 19: Combinatorial Optimization

In optimization field, combinatorial optimization consists of finding an optimal solution

from a finite set of feasible solutions (Gupta & McGovern, 2011).

Usually the set of possible solutions is very large so much so that exhaustive search is not

tractable. In the CPPC problem, it corresponds to the fact that decision variable domains (D)

are discrete. Because the space of possible solutions is typically too large, the solving methods

are generally suboptimal and include heuristics and metaheuristics.

Definition 20: Constraint satisfaction and multiobjective optimization problem

(CSMOP)

This formalism extends the CSOP case with an objective function with several criteria, often

contradictory. The fitness function of CSOP is therefore f(S)=f1(S), f2(S),…, ft(S):

• fi(S) is the ith objective function,

• S is a solution that respects C constraints,

59 / 145

• t is the number of objectives.

Solving such problem consists in finding not only one solution but the set of solutions that

represents the best trade-off or “compromise surface” between objectives. To define formally

this set, the notion of optimal Pareto Front based on Pareto-dominance concept, is often used.

• Definition 21: Pareto-dominance

For any two solutions a and b, a dominate b if:

∀𝑖, 𝑓𝑖(𝑎) ≤ 𝑓𝑖(𝑏) 𝑎𝑛𝑑 ∃𝑖, 𝑓𝑖(𝑎) < 𝑓𝑖(𝑏), 𝑖 = 1, 2, … , 𝑡

• fi(a) is the ith objective function,

• a and b are solutions that respect C constraints,

• t is the number of objectives.

• Definition 22: Pareto optimality

A solution a is called Pareto optimal, if there is no other solution that dominates it.

The set of Pareto optimal solutions is called Pareto Front. Multiobjective optimization

consists in finding this optimal set. But, as solution space is very large, the aim is to find the

best approximation in a reasonable computation time.

2.2.2 Optimization and Configuration related works

The globalization forces many industries to change from mass production to mass

customization, because it is necessary to respond to the customers’ requirements in a fast way

with high quality and reasonable cost (Pine , 1993).

As mentioned by (Li, et al., 2006) and (Wei, et al., 2014), product configuration is one of

the most important technology in the environment of mass customization. That´s why has been

recognized as an effective means to implement it (Zhou, et al., 2008).

(Zhou, et al., 2008) and (Li, et al., 2006) agreed that most of the existing literature is mainly

focuses on generating feasible configuration solutions from an engineering perspective using

constraints-based and knowledge-based applications, which makes it very difficult to optimize

design of product configuration (Li, et al., 2006). (Jiao & Zhang, 2005) explained that meeting

customer’s individual requirements through product configuration is essentially an optimization

problem. But the traditional product configuration optimization targets are mostly single (Wei,

et al., 2014).

60 / 145

(Li, et al., 2006) emphasized that we can get a huge number of possible product

configuration solutions from the product model despite a great variety of constraints. So they

concluded that the goal of the configuration process is to find feasible solutions that satisfy

customer requirements and product constraints. That´s why they presented an approach based

on multiobjective genetic algorithm to solve this kind of problem. First, they discussed the

configuration product model, then the multiobjective optimization problem of product

configuration is described with its mathematical formulation. Finally, a multiobjective genetic

algorithm is designed for finding the Pareto optimal for the problem.

(Du, et al., 2014) formulated a Stackelberg Game Theoretic Model for joint optimization of

product family configuration and scaling design. In a bi-level decision structure reveals coupled

decision making between module configuration and parameter scaling.

(Zhou, et al., 2008) proposed a new optimization approach for customer driven product

configuration for assemble-to-order manufacturing enterprises. First they established a

configuration space for targeting the diversity of customer needs and a utility function is

employed to model and measure customer preference. They formulated the mathematic model

that maximizes the ratio between overall utility and cost from the perspective of the customers

and manufacturers. Finally, a genetic algorithm is adopted to solve the combinatory

optimization problem where a nested encoding scheme and multiple constraints handling are

incorporated to improve the performance of configuration solving.

(Wei, et al., 2014) mentioned that how to select the correct module to form the optimal

product configuration scheme attracts increasing attention in the field of configuration

optimization. So they presented and discussed the multiobjective optimization and evaluation

method of modular product configuration design scheme. They proposed an approach based on

genetic optimization algorithm and fuzzy-based select mechanism to solve the configuration

optimization problem.

(Song & Chan, 2015) developed a study to optimize the configuration of product-extension

service (PES). Because most of the configuration optimization models are product-related, and

they are not suitable for PES configuration optimization. They proposed an optimization model

for PES configuration. The model simultaneously takes service cost, service response time, and

service performance as the optimization objectives. The model of service configuration is

solved with the non-dominated sorting genetic algorithm II (NSGAII) to obtain the optimized

service configuration set. The validation of the proposed model in elevator service

configuration shows that it can be used as an effective method for PES configuration.

61 / 145

 (Liu, et al., 2011) proposed that components in a product can be clustered into several

modules according to some requirement. The authors defined a clustering issue as an

optimization problem and identify its possible computation scale. Discrete particle swarm

optimization (PSO) is applied to seek the optimal in the whole solution space, and it is proved

as an effective method with an example of printer.

Finally, (Tang, et al., 2017)concluded that most of the configuration studies are focused on

the cost or the customer utility, but ignore the environmental concern which becomes an

important design criterion due to the rising awareness of environmental protection. They

developed a new bi-objective optimization model integrating environmental concerns into

product configuration. In their optimization model, the customer satisfaction Index (CSI) and

the greenhouse gas (GHG) emissions of a product is formulated as optimization objectives.

Moreover, to solve the established optimization model, they proposed a two-phase approach.

In the first step, the relative weight of each function module is calculated and the candidate

instance is determined by filtering the instances which do not satisfy the selection constraint.

Then, the product configuration can be generated based on a multiobjective genetic algorithm.

Finally, a numerical case study is introduced for testing the effectiveness of the proposed

method.

2.2.3 Multiobjective decision aiding process

Several approaches could be used to solve a multiobjective optimization problem. The

choice depends on the difficulty of the problem to solve (nature of evaluation functions, size

and complexity of the problem in terms of number of variables, size and nature of their domains,

constraints density, etc.) and also on desired decision support process.

Exact mathematical approaches like branch and bound have a limited field according to the

complexity of the problem. Metaheuristics are then wildly used for complex problems. They

don’t guarantee the optimality but give near-optimal solutions in reasonable computation time.

Considering decision support in multiobjective context, three main approaches could be

considered: “a-priori”, interactive or “a posteriori” approaches.

• In “a-priori” approaches, user must prioritize or weight objectives. Optimization is thus

transformed in a mono-objective problem. The major issue is thus to be able to prioritize

objectives.

62 / 145

• In interactive approaches, user guide optimization towards a solution satisfying the selected

compromise during optimization. This kind of approach does not guarantee to explore all

areas of the search space but allows to explore faster an area of interest of the user.

• In “a posteriori” approaches, the multiobjective aspect is preserved during optimization step

and algorithm must find a complete set of solutions that represent the best compromise

between objectives (Pareto Front). The trade-off between objectives is done by the user

after the optimization when he selects a solution among the given set.

This “a posteriori” way clearly complicates the optimization and requires an additional

selection step for the user. But it avoids “blind” choice between objectives. The user can see

different possibilities and decide his/her own specific compromise. Our approach belongs to

this kind of decision aiding process. Nevertheless, improvement proposed in chapter 5 is

inspired by interactive possibilities.

Even in a-posteriori approaches, there is two ways to deal with a multiobjective

optimization: aggregation (or scalarization) approaches or Pareto-based approaches.

Scalarization methods decompose objective space and try to find best solutions in each area.

Pareto-based approaches maintain various objectives separate and use Pareto-dominance

concept to evaluate solutions.

Various metaheuristics like particle swarm or evolutionary algorithm (EA) could be used in

this optimization task. EAs show a great interest for multiobjective optimization due to their

population-based and easy to implement skills.

Evolutionary algorithms deal simultaneously with a set of possible solutions (the so-called

population). This allows to find several members of the Pareto optimal set in a single run of the

algorithm, instead of having to perform a series of separate runs as in the case of the traditional

mathematical programming techniques. Additionally, evolutionary algorithms are less

susceptible to the shape or continuity of the Pareto front (e.g., they can easily deal with

discontinuous or concave Pareto fronts), whereas these two issues are a real concern for

mathematical programming techniques.

2.2.4 Presentation of EA

Evolutionary algorithms are inspired by the biological evolution of species and appeared at

the end of the 1950´s. They are part of a branch of artificial intelligence concerning optimization

algorithms called metaheuristics. These are generic optimization algorithms (applicable to a

wide family of combinatorial and multiobjective problems). Evolutionary Algorithms is the

63 / 145

name of the family of methods using evolutionary concepts. They gather various subgroups like

evolution strategies (Rechenberg, 1965), evolutionary programming (Fogel , et al., 1966) or

genetic algorithms (Holland , 1992).

Formally speaking, a generic EA consists of four operations, including reproduction,

mutation, recombination, and selection, and all these operations are repeated until the algorithm

converges to a certain point with some criteria satisfied (Dubitzky, et al., 2013). In an EA, each

candidate solution is represented as a chromosome. In each step of EA, the chromosomes

compete against each other and those representing poor solutions will be kicked out before next

step. To evaluate the chromosomes, a fitness function is defined as the objective function.

(Zitzler, et al., 2002) summarized that after the first studies on evolutionary multiobjective

optimization (EMO), a number of Pareto-based techniques were proposed like MOGA

(Fonseca & Flemming, 1993) or NSGA (Srinivas & Deb, 1994). They demonstrate the

capability of EMO algorithms to approximate the set of optimal trade-offs in a single

optimization run. Then a couple of elitist multiobjective evolutionary algorithms were

presented at this time. The two more known are SPEA2 (Zitzler, et al., 2002) and NSGA-II

(Deb, et al., 2002). More recently, new approaches have proposed using scalarization technics

like ε-MOEA (Deb, et al., 2003) or MOEA/D (Zhang & Li, 2007). They convert a

multiobjective problem in a collection of single-objective problems. Solving each sub-problem

gives a point in Pareto front. Those scalarization methods show a great interest for many-

objective problem (more than 4 objectives) (Wagner, et al., 2007).

In this research, we will use and improve an adapted version existing of the Evolutionary

Algorithm SPEA2 because it can provide solutions on a Pareto front in a first efficient way for

this kind of global optimization problems with multiple objectives. We chose it because it is

widely used and recognized to solve difficult, combinatorial and multiobjective optimization

problems and it’s easy to implement. The concepts discussed could also be adapted for other

similar metaheuristics (particle swarms, ant colonies,...) or other EA variants.

The main ideas of SPEA2 are a) the evaluation of a solution takes Pareto-dominance and

the local density of solutions into account, b) a set of the best and most diversified solutions are

preserved in a separate archive, c) a binary tournament in the archive is used to select parents

for a crossover. The SPEA2 algorithm has been adapted to take into account constraints of the

problem using a filtering engine. It leads to CFB-EA proposed in (Pitiot, et al., 2013).

64 / 145

2.2.5 Constraints handling in EA

EAs were initially proposed for very large and unconstrained solution spaces. They have

been adapted by many authors in order to handle constraints. On his website, (Coello, s.f.)

maintains a “List of References on Constraint-Handling Techniques used with Evolutionary

Algorithms” that can be organized according to the following six kinds of approaches.

• Penalty function. The idea is to reduce or penalize fitness value according to constraint

violation. Thus, solutions that do not respect constraints are discarded.

• Stochastic ranking. The idea is to modulate previous over/under penalization of the penalty

function with a ranking process.

• Epsilon constrained method. The idea is first to minimize the number of violated

constraints, then optimize the objective function.

• Multiobjective. The idea is to consider constraint violation as a single objective and to

associate it with the original objective function in a multi-criteria problem.

• Feasibility rules. The idea is to compare all pairs of solutions, in a binary tournament, with

three rules mixing fitness value and constraint violation level.

• Special operators. The idea is to deal only with feasible solutions through repairing methods

or preservation of feasibility methods.

The CFB-EA algorithm belongs to the last kind of approach, which only allows feasible

solutions in the archive. CFB-EA complete SPEA2 with the addition, during: (i) the initial

population generation process, (ii) the crossover and mutation process, of some constraint

filtering that prunes search space and prevents inconsistent solutions in the population. Six

parameters are required: size of archive, size of population, number of generations or any

stopping criterion, crossover probability for individual selection, mutation probabilities for

individual and gene selections. The CFB-EA algorithm is illustrated on figure 8.

Figure 8- CFB-EA algorithm (Pitiot, et al., 2013)

65 / 145

2.2.6 Synthesis

Given the following specificities of the configuration problem: (i) the problem size, which

can vary greatly, (ii) the size of the problem to optimize, which depends on the amount of

elementary requirements to be processed before optimization, (iii) the constraints level which

is rather low (the goal of companies is to sell products and so many solutions are possible), (iv)

multi-criteria optimization is most often necessary; even if some works have investigated

configuration optimization using case-based reasoning, most of the published material

considers metaheuristics. Due to their population-based search, their multi-objective aspect and

their genericity, metaheuristics like particle swarm optimization (PSO) (Yadav, et al., 2012) or

Evolutionary Algorithms (EA) (Wei, et al., 2014) (Dou, et al., 2016) (Tang, et al., 2017) are

logically suitable for configuration optimization. They have to integrate constraints handling to

manage unfeasibility in their optimization process. We position our contribution in this work

stream and will use the Evolutionary algorithms CFB-EA (Pitiot, et al., 2013) which is based

on SPEA26. Conclusion and confirmation of thesis proposition

It´s inevitable to consider process configuration during the product configuration. The

analysis of this kind of problem has to become concurring because there are multiple

interactions and interrelated variables between both domains. It has been shown that the

Constraint Satisfaction Problem framework can be efficiently used to model product and

process configuration and its optimization.

, For the Optimization of the Concurrent Product and Process Configuration problem (O-

CPPC), we have shown the interests of metaheuristics and more specifically evolutionary

approaches. That´s why we have chosen CFB-EA which is an existing adapted version of the

Evolutionary Algorithm SPEA2 that is widely used and recognized to solve these kinds of

difficult problems.

There is no standard to analyze the O-CPPC, and the existing works dealing with the

sequential association of Optimization plus Concurrent Product and Process Configuration are

rather theoretical with evaluations that consider most of the time a single problem without a

detailed design of experiments. Consequently, we confirm the initial goals of the thesis and

next chapters contain that will deal with: (i) generic modeling propositions, (ii) evaluations of

CFB-EA optimization approach and finally (iii) CFB-EA optimization improvements.

6 SPEA, an acronym for Strength Pareto Evolutionary Algorithm

66 / 145

67 / 145

3. Generic model of O-CPPC

In order to address our first research question “Is it possible to propose a generic model of

the CPPC problem that can avoid case dependency when evaluating and comparing

optimization methods?” the goal of this chapter is to define and discuss a generic model that

allows to generate benchmark for O-CPPC optimization problems. A benchmark is a set of

model instances representative of a specific optimization problem and which allows testing of

optimization algorithms and validation of their accuracy for the addressed problem. We need

to generate various instances of the O-CPPC problem that represent the diversity and the

complexity of industrial cases. In the following sections, we will define the product

configuration generic model, process configuration generic model and their coupling. This will

enable us to identify the O-CPPC key characteristics.

3.1 Product configuration generic model for benchmark

3.1.1 Product as a set of physical/functional modules

In the design community many works have proposed to characterize or represent the

product development. Axiomatic Design proposed by (Suh, 2001), (Suh, 1990), Design

Structure Matriz (Stewart, 1981) and Function Behavior Structured (Gero, 1990) propose

different domains or views of the product as: functions, requirements, behavior, physical

components, process and resourc. (Lindemann, 2007) proposes a mapping of the four domains:

functions, components, process and resources with a DSM approach. Furthermore, all these

authors insist on decomposition aspects with various criteria: functional, physical or temporal.

For our product configuration modeling problem, the identification or representation of

physical components is an essential requirement because it allows us to deal with the bill of

material concept which is a key point of configuration. According to configuration definitions

of chapter 2, these components are gathered in component families that are considered as a

product configuration variables. Chapter 2 also explains that the product, its sub-assemblies and

its components can also be characterized with descriptive attributes with some kind of

descriptive or functional views. We therefore consider in our model that the product, with its

sub-assemblies and components is described by a set of configuration variables which are

decision variables that are either families of components (noted foc) or functional descriptive

variables (noted fdv), the model is therefore: {{fdvi},{focj}}. When the definition domain of

68 / 145

all these variables is reduced to a singleton, the configuration of the product with all sub-

assemblies and components is over. As we deal with configuration, product configuration

constraints limit the possible combinations of previous variables values. Configuration

constraint (noted cstk) can be between fdvi or between focj or between both fdvi and focj. For a

car example, constraints can be: between fdvi (speed, gas consumption), between focj

(Engine_ref, Tire_ref), or between both fdvi and focj (speed, Engine_ref).

As recalled at the beginning of this section, a product can be decomposed according to

different criteria. Axiomatic design (Suh, 2001) and design structure matrix (DSM) (Stewart,

1981) allow to identify functions associated with sub-assembles that fit very well the modular

need of the configuration problem. We follow this idea and consider that the product is a set of

physical-functional modules. For example, if the configured product is a car, physical-

functional modules can be: engine, body, electrical system, transmissions, audio system, etc.

Consequently, each module is a set of families of components and functional descriptive

variables, the previous configuration constraints are either between modules (cstkb) or inside a

module (cstki) and the generic configuration model becomes:

{ { {fdvi},{focj},{cstki} }, {cstkb} }.

As our goal is to optimize the CPPC, we propose to add criteria variables to each product

module and we make the assumption that an aggregation formula allows to deduce each

criterion value for the whole product. In our case for the product we only consider a price

criterion. Cost and selling price are two different ways to economically evaluate a product.

Costs are what pays the enterprise (raw material, components or resources) while selling price

is what customer pays. Coming from value analysis domain, the functional descriptive variables

are related with selling price while components and resource are related with the product cost

and the process cost. As configuration takes place during negotiation with customer, internal

costs have to be hidden and they will be changed in selling price (commercial strategy is

included like margins or discounts). Consequently, we consider that the price is modeled with

selling price variables (noted spm) obtained thanks to a formula involving configuration

variables that can be both families of components and/or functional descriptive variables. This

price formula is modeled with numerical function constraints (notes cstsp) according to

configuration variables that are either inside each module (cstspi) or at the product level for cost

aggregation (cstspp). The generic configuration model becomes:

{ { {fdvi},{focj},{cstki},{spm},{cstspi} }, {cstkb}, sp,{cstspp} }.

69 / 145

An example of a resulting product model is shown in figure 9. This example gathers two

modules. The first one, “module 1”, is very simple:

• It gathers three families of components: foc1-1, foc1-2 and foc1-3, there is no descriptive

attributes

• Two constraints (foc1-1, foc1-2) and (foc1-2, foc1-3) that shows component compatibilities,

• Each component family is linked to a criteria variable which is the selling price in this case

(sp1-1, sp1-2, sp1-3).

The other module, “module 2”, is more complex:

• In the upper part, a descriptive variable (fdv2-1) allows to identify component (foc2-1) this

component allows to quantify a selling price variable (sp2-1).

• In the lower part, a combination of two components (foc2-31, foc2-32) allows to quantify a

selling price variable (sp2-3).

• In the middle part, a combination of two descriptive variables (fdv2-21, fdv2-22) allows to

identify a component (foc2-2) that allows to quantify a selling price variable (sp2-2).

• Two compatibility constraints between descriptive variables (fdv2-1, fdv2-21) and between

component families (foc2-2, foc2-.31) are also present. An inter-module constraint between

the two modules exists between components families of each module (foc2-32, foc1-.2).

• Finally, all selling price variables are linked with a numerical constraint (a sum in most of

the cases) in order to get the selling price of the whole product.

Figure 9- First CPPC product generic model for benchmark

70 / 145

3.1.2 Module as a set of Product Configuration Evaluation Patterns

Given previous generic modeling propositions and in order to generate examples of models,

assuming the definitions of:

• a number of modules,

• for each module: a number of component families, descriptive variables and criterion

variables,

• for each component family or descriptive variables: a number of possible values,

• for each criterion variable: a possible range of values,

a solution could be to randomly generate a set of constraints that reduces more or less the

quantity of possible combinations of all previous variables. This way to process, given the

randomly generation of constraints, generates descriptions that don’t have sense or that don’t

correspond to any company configuration situation. For example:

• A descriptive variable that is not linked to a family of component or a selling price variable

with a constraint has no sense; this would mean that a product characteristic (as for example

power, length, color) has no impact on any component selection or on module price.

• Similarly, a family of components that is not linked to a selling price variable would mean

that a selected component (as for example an Engine-Ref) has no impact on a module price.

Consequently, typical industrial configuration situations have been analyzed. We observed

that in the majority of product configuration models, some small groups of variables are

strongly connected and that some common generic sets of variables and constraints are

frequently repeated. We therefore propose to identify a small number of these generic sets that

we call Product Configuration/Evaluation Pattern (noted PCEP) and to consider that a module

is a set of such patterns. Each PCEP gathers a set of decision configuration variables (foc and/or

fdv), at least one criterion variable (selling price, noted sp, in our case) linked by configuration

and evaluation constraints. In the following we consider just one criterion for clarity; of course

other criterion could be added.

Four Product Configuration/Evaluation Patterns (PCEP) have been identified and are now

presented and discussed. They are shown in figure 10.

71 / 145

Figure 10- Four Product Configuration/Evaluation Patterns (PCEP)

3.1.2.1 Patterns PCEP-1 and PCEP-2: single evaluation pattern

These two patterns gather a configuration and an evaluation constraint. They correspond to

a single point of view analysis, either functional (PCEP-1) or physical (PECEP-2). They express

the fact that a set of compatible components or functions is linked to a specific criterion or

selling price variable.

PCEP-1.1 and PCEP2.1 just show that one product descriptive variable or one family of

components influences one price variable. This can correspond with a kind of very simple

component price catalogue. For example, for PCEP-1.1, a specific cable is always present in a

module, only the length or the cable can be selected during configuration and the selling price

varies only according with this length variable.

PCEP-1.2 and PCEP2.2 show that a criterion variable depends of more than one descriptive

variable or component family. In fact, this constraint can mix two constraints, one that shows

allowed combinations of descriptive variables or component families (cstki) and one that

provide the criterion or price of each association (cstspi). For example, for PCEP-1.2, the price

of a machine window depends of its height and width, but this constraint can also specify that

extreme height and width are incompatible. Similarly, for PCEP-2.2, the price of the association

of two components engine and gear-box depends of the two selected components but for power

reason all gearbox is not compatible with all engines.

72 / 145

3.1.2.2 Patterns PCEP-3: composed evaluation pattern

This pattern reflects some kind of a conventional design process: describe what you want

with descriptive variables, choose technical solutions or components, and quantify a pattern

criterion value that will be used later to deduce a module criterion.

PCEP 3.1 is the simplest, one descriptive variable identifies one component that quantifies

one criterion or price. This is typically a simple catalogue, as for example a power need enable

to identify an engine reference with a price.

PECP 3.2 shows that more than one descriptive variable can be necessary to identify a

component. Again, a catalogue example for a machine window where four attributes (length,

width, glass material and color) are necessary to identify a component with its price.

 PECP 3.3 is something which is close to what we call a module because it can gather many

descriptive variables and component families. However, here the idea is still to follow the

process: each component is chosen with respect to different attributes, all the components

families are combined to provide a criterion or price. The only difference with a module is that

constraints between descriptive attributes associated with different families of component are

forbidden. For example, the previous engine gear-box association can illustrate this pattern: (i)

the engine component is chosen with respect to the three descriptive attributes max power, max

torque and color, (ii) the gear-box is chosen with respect to the three descriptive attributes

number of stages, admissible power and color, (iii) their association provides a price, (iv) it is

not possible to express a constraint saying that they should both have a same color.

3.1.2.3 Patterns PCEP-4: mixed evaluation pattern

For these patterns the previous process that considers in a kind of sequence descriptive

attributes, component family and finally criterion is not present anymore. The criterion or price

is directly a combination of both descriptive attributes and component families. For example, a

kitchen worktop is a parametric component with a price than can be defined by a component

reference of the worktop (aggregating material, thickness and finish) and the two descriptive

variables length and depth.

3.1.2.4 Module as a set of PCEP patterns

As a consequence, a module is a set of PCEP patterns and constraints can of course exist

between two patterns inside a same module. The generic configuration model for benchmark

becomes therefore:

73 / 145

• Product = (i) set of modules and configuration constraints between modules, (ii) product

criterion variables and evaluation constraint that aggregates module criterion variables,

• Modules = (i) set of instance of PECP patterns and configuration constraints between

pattern inside a module, (ii) module criterion variables and evaluation constraint that

aggregates pattern criterion variables,

• Pattern = (i) set of variables: descriptive attributes, component families and criterion

variables, (ii) set of constraints: configuration constraints and evaluation constraints

The model example provided in figure 9 is now updated in figure 11 with this notion of

Product Configuration/Evaluation Patterns.

Figure 11- Example of CPPC product generic model for benchmark

3.1.3 Constraints patterns

Assuming now that all variables and constraints of the product generic model are described,

it is necessary now to define the allowed combinations of each constraint. As in the beginning

of the previous section we could think of a random generation of allowed combinations. But in

order to be more representative or closer to the reality of company situations we also proposed

constraint patterns and will first detail configuration constraints and then evaluation constraints.

A constraint could be an equation or a compatibility table according to the nature of

variables involved (continuous or discrete). A compatibility table shows allowed and/or

forbidden combinations of values of involved variables. In our generic model, configuration

constraints are exclusively discrete and represented by tables of compatibility that link

74 / 145

configuration variables; while evaluation constraints can use equations and tables of

compatibility.

3.1.3.1 Product configuration constraints patterns

In our generic product model, a product configuration constraint is defined by: a type

depending on the location of the linked configuration variables, a configuration constraint

pattern and a constraint density. We define in next sections those concepts.

Type of product configuration constraints

As seen in previous subsection, product configuration constraints take place in different

location of the model. We recall these types:

• Intra-PCEP, they link inside a PCEP either: (i) only descriptive variables, (ii) only families

of component or (iii) both,

• Inter-PCEP, we assume that these configuration constraints link inside a module: (i) only

descriptive variables, (ii) only families of component of different PCEP. This is done in

order to keep links between functional and physical aspects at the PCEP level. For a realistic

model, we limit the arity of those constraints to a maximum of four.

• Inter-Module constraints, we assume the same kind of restriction between modules and

allow links between: (i) only descriptive variables, (ii) only families of component of

different modules. Similarly, the maximum arity is set to four.

Configuration constraint patterns

In this sub-section, we therefore only consider constraints linking configuration variables

as descriptive variables and/or families of component. The values of each of these variables can

be either ordered or not. For example, there is, most of the time, no order when dealing with

configuration variables as: color, shape, style or more generally with a variable under purely

subjective selection. For the constraints taking into account this kind of variables, there will be

no configuration pattern. Variables with values that are ordered can be for example: power,

length, size, complexity, pressure more generally any variables with values that can be

compared or ordered. These last examples are descriptive variables, but it is also very easy to

order families of component with respect to their evaluation criteria. We have identified four

various configuration shapes or configuration constraint patterns (named Tcp) that are

illustrated with examples in figure 12. These examples show configuration constraints between

two variables but they could be extended to three or four variables. For each of these variables,

the values have been replaced by their order in order to be able to compare them with

75 / 145

computation. Compatibility tables are illustrating by compatibility matrix. A cross in matrix

corresponds to a compatible couple of values. Each value of each involved variable has to

appear in at least one allowed tuple. (i.e. we have at least one cross in each line and each column

in associated matrix).

Figure 12- Four kinds of configuration constraints patterns

• Tcp1: Similarity or close level pattern, this pattern corresponds to a similarity between

various levels of decision variables. The parameter that controls the strength of the

constraint is the allowed order difference between two values, in the proposed example the

allowed difference must be less than 2. This can represent a design rule that maintains

consistency between choices on a product. For example, this could lead to forbid the

association of a luxury with low-cost components or to configure a house window with two

extreme parameters: height (2 meters) and width (10 cms).

• Tcp2: Dissimilarity pattern, this pattern is exactly the opposite of the previous with a similar

minimum of allowed order difference between two values. In the example of figure 12, we

have shown the complementary combinatory of the previous pattern. This can represent a

conception or organizational rule that forbids the selection of same level for selected

variables. For example, this could lead to forbid the selection of similar dangerous material

for various component or similar suppliers for different operations.

76 / 145

• Tcp3: Limit pattern, this pattern corresponds to some kind of a cumulative limit of various

value order or levels. The orders of the configuration variables are cumulated with a sum or

a product calculation (sum in the example of figure 12) and the cumuli should respect a

maximum threshold which is the parameter of this pattern. It can represent a physical

limitation. For example, a car autonomy (kms with a full tank) and average cruising speed

(kms/ hour) follows this kind of pattern.

• Tcp4: Comparing pattern, this pattern corresponds to an inclusion of different orders in a

unique way that can be explained as “a higher order can fulfill any lower order”. In the

example of figure 12, given an order of V1 all orders of V2 that are larger or equal are

compatible. It can represent for example that a given power requirement can be fulfilled by

an engine matching exactly this power need but also by all engines that have a greater

power.

Configuration constraint density

Constraint density corresponds to the ratio of the number of tuples forbidden by the

constraint divided by the number of possible tuples without taking the constraint into account

(or Cartesian product of definition domain size of constrained variables). On the previous figure

12, it corresponds to the ratio of number of white boxes divided by the matrix total size in the

compatibility matrixes. The constraint density is directly correlated with the strength parameter

of previous configuration constraint patterns. It is important to note that a high constraint

density allows a lower number of configuration solutions than a low constraint density.

Therefore, higher the constraint density is, higher constrained is the problem.

3.1.3.2 Evaluation constraint patterns

As for configuration constraints, evaluation constraints are characterized with a type, a

pattern and a constraint density.

Type of product evaluation constraints

As seen in previous subsection, product configuration constraints take place in different

location of the model. We recall these types:

• Intra-PCEP, they link: (i) descriptive variables and/or families of component with (ii) an

evaluation variable inside a PCEP. Given the fact that configuration variables are discrete

and evaluation variables are either integer or floats, these constraints can be discrete or

mixed and defined thanks to table. In the case of a selling price criterion, these constraints

correspond very frequently with some kinds of catalogues with prices.

77 / 145

• Inter-PCEP, they allow to aggregate evaluation variables of all PCEP of a single module

into an evaluation variable for the whole module. In the case of a selling price, these

constraints are most of the time just a simple sum calculation.

• Inter-Module constraints, they allow to aggregate evaluation variables of all modules of the

configurable product into an evaluation variable for the whole product. Here again, in the

case of a selling price, these constraints are most of the time just a simple sum calculation.

Evaluation constraint pattern

 Given the fact that Inter-PCEP and Inter-module evaluation constraint are more or less

aggregation calculation, we propose evaluation patterns only for Intra-PCEP pattern. Similarly,

with configuration constraint pattern, we assume that the descriptive variables and/or families

of component involved in the evaluation can be ordered. Three evaluation patterns have been

identified as shown in figure 13:

Figure 13- Three kinds of evaluation constraints patterns

• Tep1, Linear progression, in this case the criterion value increases proportionally with the

order of configuration variables,

• Tep2, Decreasing progression, in this case with respect to configuration variables growth,

the criterion value increase strongly at the beginning and less at the end,

• Tep3, Increasing progression, in this case with respect to configuration variables growth,

the criterion value increase slowly at the beginning and much more at the end.

When more than one configuration variable are considered in these patterns, a kind of

average order is computed and associated with the pattern.

3.1.4 About Product architecture

We first recall some very basics about product architecture and show how our proposition

fits the most frequent kind of architectures of configurable products.

78 / 145

3.1.4.1 Product architecture basics

 (Ulrich, 1995) defined the architecture of a product as "the scheme by which the function

of the product is allocated to physical components". More precisely the author defined product

architecture as: (1) the arrangement of functional elements; (2) the mapping from functional

elements to physical components; (3) the specification of the interfaces among interacting

physical components. Another definition was presented by (Ulrich & Eppinger, 1995) as a

"scheme by which the functional elements of the product are arranged (or assigned) into

physical building blocks (chunks) and by which the blocks interact" as shown in figure 14. So

the arrangement of functional elements into physical chunks becomes the building blocks for

the product or family of products (Ulrich & Eppinger, 1995).

Figure 14- Product Architecture Definition (Ulrich & Eppinger, 1995)

Most authors agree on two main kinds of architectures: modular and integrated.

Furthermore, a certain kind of modular architecture called platform is also considered in

(Bonjour, 2008) (Bonjour, et al., 2009) (Bonjour & Micaëlli, 2010).

3.1.4.2 Modular architecture|

The first distinction in the typology is between a modular architecture and an integrated

one. (Marti, 2007) characterized a modular system architecture by the property of near-

decomposability, that is consisting of relatively autonomous subsystems. So in this architecture

a module can be defined as "a special subsystem whose internal relationships are much stronger

than the relationships with other subsystems" (Marti, 2007). Then (Ulrich, 1995) emphasizes

that a modular architecture includes a one-to-one mapping from functional elements in the

function structure to the physical components of the product and specifies decoupled interfaces

between components. More specific, (Blackstone, 2013) explained that the modular

architecture is a type of structure where the functional modules correspond to physical group

of parts. The different physical pieces of parts have their own function, and there is an

interaction between all modules (Blackstone, 2013).

79 / 145

Given these elements and the product generic model we propose, we can deduce that a

modular architecture must show:

• A large number of constraints inside each product modules (Intra-PCEP and Inter PCEP)

with a high constraint density meaning that the quantity of allowed combinations is small

or the dependencies between descriptive variables and families of components are strong.

• A low number of constraints between modules (Inter-Module constraints) with a low

constraint density meaning a high number of possible modules combinations.

In the example of figure 15, we have a three modules product where each module contains

three PCEP patterns. The numbers of constraints are for Intra PCEP: 9, for Inter PCEP: 8 and

for Inter modules: 3.

Figure 15- Example of product model with a modular architecture

3.1.4.3 Integrated architecture

(Ulrich, 1995) explained that an integrated architecture includes a complex (not one-to-one)

mapping from functional elements to physical components and coupled interfaces between

components. In this type of architecture, the modules are more dependent on each other and

less easily distinguished (Marti, 2007).

Given these elements, we can deduce that an integrated architecture must show:

• A number of constraints inside each product modules (Intra-PCEP and Inter PCEP) which

is closer to the number of constraints between modules (Inter-Module constraints)

• Constraint densities with closer values, meaning that the quantity of allowed combinations

or the dependencies between descriptive variables and families of components is not

affected by the fact that a constraint is Inter-module or Intra-module.

80 / 145

In the example of figure 16, we have a three modules product close to the one of figure 16.

But for this one, the numbers of constraints are for Intra PCEP: 9, for Inter PCEP: 3 and for

Inter modules: 7 and all their constraint densities are close.

Figure 16- Example of product model with an integrated architecture

3.1.4.4 Platform architecture

An increasingly popular method to reduce complexity in configurable products is the

product platform architecture. (Marti, 2007) explained that the product platform is a special

case of product modularization; the focus of modularization is decomposing a product into

modules. Defining modules while establishing a platform means structuring the product’s

architecture according to a certain hierarchy (Marti, 2007). Essentially it divides the product

architecture into a standardized part (the platform) and customized modules. (Blackstone, 2013)

explained that in the platform architecture there is a grouping of products to share common

parts, components and characteristics (common platform). So this kind of design can be used

to reduce cost and time to market. Another definition is presented by (Meyer & Lehnerd, 1997)

as “a set of subsystems and interfaces that form a common structure from which a stream of

derivative products can be efficiently developed and produced.” (Marti, 2007) explained that in

81 / 145

highly modularized products, it can be advantageous to establish platforms on the level of

individual modules like the example shown in figure 17.

Figure 17- Product family derived from a product platform (Marti, 2007)

Finally, (Robertson & Ulrich, 1998) defined a product platform in a concurrent way as “the

collection of assets that are shared by a set of products”, not confining it to the common physical

structure shared across products. So these assets fall into one of the following four categories:

components, processes, knowledge, and people / relationships (Robertson & Ulrich, 1998).

Given these elements and the product generic model we propose, we can deduce that

platform architecture must show:

• A large number of constraints inside each product modules (Intra-PCEP and Inter PCEP)

with a high constraint density meaning that the quantity of allowed combinations is small

or the dependencies between descriptive variables and families of components are strong.

• A set of constraints between modules (Inter-Module constraints) that show that only one

module is linked individually with all the others with a low constraint density meaning that

a high number of possible platform/modules combinations is possible.

82 / 145

In the example of figure 18, we have reconsidered the modular example of section 3.1.4.2

figure 15 and only modified the inter-module constraints organization. The example shows that

module 2 can be considered as the product platform while modules 1 and 3 are “customized”

product modules that support diversity.

Figure 18- Example of product model with a platform architecture

3.1.5 Synthesis about product generic model for O-CPPC

Our generic model proposition for the product part in order to analyze the Concurrent

Product Process Configuration gather the following key elements:

• A product is a set of modules with an evaluation variable for each criterion.

• A module is a set of Product Configuration Evaluation Patterns (PCEP) with an evaluation

variable for each criterion.

• A PCEP is a set of configuration variables (or decision variables) that gathers descriptive

variables and families of components and evaluation variables.

• Product configuration and evaluation constraints are present: inside each PCEP, inside each

module, inside the product.

• Different kinds of patterns have been identified and describe: Product Configuration

Evaluation Patterns (5 patterns), Product Configuration Constraints (4 patterns), Product

Evaluation Constraints (3 patterns).

• Constraint density has been proposed in order to characterize the amount of possible

solutions allowed by any constraint.

Given these elements, various examples have shown the diversity of the product aspects

than can cover the CPPC problem. All this confirms that a random generation of variables and

83 / 145

constraints in order to define a product of a CPPC problem is really far from the reality and

highlight the potential interest of our proposition for comparing optimization algorithms.

3.2 Process configuration generic model for benchmark

The process part of the generic model is much less complex than the one relevant to the

product and many already defined elements will be reused. Therefore, we follow the same kind

of organization for this section and present and discuss: process modeling, process operation

patterns, constraint patterns and process architectures.

3.2.1 Process as a set of production operations

As explained in chapter 2, authors dealing with process modeling for configuration are

much less numerous. However it is possible to recall (Schierholt, 2001), (Aldanondo &

Vareilles, 2008) or (Gottschalk & La Rosa, 2010) that all consider the process as a set of

activities and extend the product configuration ideas to the process domain. We therefore follow

the recommendations of these authors and consider that the process is a set of operations. In

this work we also assume for simplicity, that the ordering and the number of operations are

static. It means that there is neither OR node on the sequence nor operation activation according

to a specific configured product.

Any operation gathers different resources with a given quantity during a certain amount of

time in order to achieve some product production activities (sourcing, manufacturing,

assembling, delivering…). Similarly, with the product domain we consider that the resources

that can achieve the same kind of process are gathered in families of resources. Given a

production operation to achieve, the process configuration corresponds for each operation: (i)

to select a resource in a resource family (noted form) and (ii) to quantify the quantity of resources

that must be used (noted qtrm). We therefore firstly consider only two kinds of process

configuration variables or decision variables: the family of resource and the quantity of

resources that are gathered in couples for each operation. The generic process basic

configuration model gathering operations is therefore { { (form, qtrm) } }.

 Given that our goal is to optimize the CPPC, these two operation configuration variables

are strongly connected with process evaluation criteria. In our study two criteria are considered:

the processing duration or cycle time (noted dur) and the processing cost that will be later

aggregated with product selling price (noted sp). Other criteria like carbon footprint or quality

could be considered. These criteria are computed thanks to evaluation constraints. In our bi-

84 / 145

criteria case, we consider: one for duration (noted cstdur) and one for cost (noted cstsp). The

generic process configuration model becomes:

{ { (form, qtrm, dur, cstdur, sp, cstsp) } }.

3.2.2 Process operation pattern

In this section, we define all variables needed to describe a generic operation. In order to

associate previous operation variables with evaluation constraint, we propose to consider that

each operation generates a specific work load (noted wl) for each used resource. This work load

is defined for a given resource with a quantity of resource multiplied by duration (for example,

a packing operation work load equal two man-month whatever the product is).

This work load permits to quantify each operation duration and each operation cost. In order

to detail the operation pattern, let us first consider that the operation uses just one family of

resource and the resulting single resource operation pattern shown in figure 19.

Figure 19- Single resource operation pattern

This pattern shows previous operation variables and the two evaluation constraints. Given

a production operation to achieve, a resource can be identified in the family with a workload to

achieve. Given this selected resource (for) and identified workload (wl):

• The first constraint dealing with the cost and later selling price (cstsp) allows quantifying

the operation cost (sp),

• The second constraint dealing with duration (cstdur) allows quantifying the operation

duration (dur) with respect to the resource quantity (qtr).

We will see later that the three decision variables that can be linked with product

characteristics are the family of resource (for), the resource quantity (qtr) and the workload

(wl).

When more than one family of resource must be considered, for example a machine and an

operator as shown in figure 20, each family of resource will be associated with a single resource

operation pattern and the criteria will be aggregated. Most of the time, for cost operation (noted

85 / 145

spop) criterion the aggregation is a sum (on the figure 20) while for operation duration (noted

durop) it is a max operator (max on the figure 20), other operators could be imagined.

Consequently the generic operation process model becomes:

{ { (form, qtrm, wlm, durm, cstdur, spm, cstsp) }, durop spop }.

Figure 20- Multi resource operation pattern

Last point to discuss is relevant to the operation sequencing or ordering. This will be achieved

classically by anteriority constraint. We therefore need to add to the operation pattern model,

starting and ending dates (noted stdop and endop) variables in order to attach anteriority

constraints between the operations. These two variables dates are linked with a date constraint

(noted cstdate) stating that ending date equals starting date plus operation duration. Here we

consider infinite capacity planning in order to quantify a minimum operation duration that will

provide minimum production cycle time without taking into account any scheduling issues.

This can be seen in the right of figure 20 and the resulting operation model is as follows:

{ { (form, qtrm, wlm, durm, cstdur, spm, cstsp) }, durop, spop, cstdate, stdop, endop }.

With the proposed elements it is possible now to finish the description of the global process

generic model as a set of operation pattern models as shown in the example of figure 21. It is

just necessary to add:

• Process global criteria evaluation variables as in our case: starting and ending process dates

(noted stdpr and endpr) and process cost (noted sppr),

• A set of sequencing constraints between operations, this is achieved by stating temporal

constraints between necessary operation starting and ending dates: most of the time: stdopi+1

> stdopi, (noted cstseq)

86 / 145

• Aggregation constraints for criteria, in our case for a cost criterion it is most of the time a

sum operation (noted cstsppr).

Consequently, the global process model becomes:

{ { { (form, qtrm, wlm, durm, cstdur, spm, cstsp) }, durop, spop, cstdate, stdop, endop }

 { cstseq }, stdpr, endpr , cstsppr, sppr) }.

Figure 21- Proposed CPPC process generic model for benchmark

3.2.3 Process constraints pattern

Given all previous propositions, any process constraint is consequently associated with a

criterion evaluation that in our case are cost and duration. Therefore, the constraints seem to be

only present for criterion evaluation and could lead to the conclusion that there is no effective

configuration problem. This is not the case, because in most situations you have constraints

between different resources families either for a same operation (incompatibility of people for

example) or between different operations (if operator A works on an operation 1 he should keep

working on operation 2 for example). In the following, we just briefly comment: cost, duration

and resource constraints.

3.2.3.1 Process cost constraint pattern

For the cost constraint inside each operation pattern (cstsp), the evaluation constraint

patterns proposed in section 3.1.3.2 can be re-used. Mainly the first one (Tep1) which is linear

with respect to the configuration variable fits very well our cost criterion with a cost more or

less proportional to workload given a specific selected resource.

For the cost constraint (cstsppr) that aggregates the cost of different operation at the process

level (cstsppr), similarly to product model there is no specific pattern as it is most often a sum

calculation.

87 / 145

3.2.3.2 Process duration constraint pattern

Inside each operation pattern, we have two constraints (cstdur and cstdate). The first one

quantifies the operation duration with respect to: the resource selected, the workload to realize

and the quantity of resources affected. Duration is more or less proportional to workload while

more or less inversely proportional to resource quantity as shown in the pattern of figure 22.

The second one (cstdate) is always the simple formula endop = stdop + durop.

Figure 22- Operation duration constraint pattern

Between operations, there is no specific pattern. The already mentioned sequencing

constraint (cstseq) stdopi+1 > stdopi is enough as far as we don’t consider any overlapping

constraint.

3.2.3.3 Operation resource constraint pattern

For this kind of constraint, the two configuration constraint patterns proposed in section

3.1.3.1 “Similarity or close level pattern” or “Dissimilarity pattern” can be used in order to

describe a similarity or dissimilarity of resource inside or between operations. Due to the

diversity of technological resources that can be used, many other kinds of compatibility

constraints could be imagined.

3.2.4 About Process architecture or structure

For the Optimization of Concurrent Product and Process Configuration Problem (O-CPPC)

the type of production process that we are interested in is the Assembly Line. (Grzechca , 2011)

defined an assembly line as "a manufacturing process in which parts are added to a product in

a sequential manner using optimally planned logistics to create a finished product in the fastest

possible way". More specifically, (Grzechca , 2011) details that the "assembly" is the process

of fitting together various parts in order to create a finished product, so the parts can be divided

into sub-assemblies and components. Finally, (Delchambre & Rekiek, 2006) explained that the

88 / 145

Assembly line is a production system composed of a number of stations where the pieces are

consecutively launched down the system and are moved from one station to another in an order

in which they must follow according to technological restrictions. Most of the time, two main

process architectures or structures are considered (Chen, et al., 2006) with respect to the

operation graph structure: serial and convergence.

In the serial case, the operations or production steps are executed mainly in a serial way.

This means that one operation of the process finish before the next starts and only one step is

active at any one instant. This is structure is the most present when dealing with mass

production as in automotive and electrical industry for example.

The convergence case is a variation of the serial configuration structure where we can find

two or more operations simultaneously running and then converging to another main operation.

This solution is often met when production is launched in small batches as in aeronautic or

railway industry for example.

3.2.5 Synthesis about process generic model for O-CPPC

Our generic model proposition for the process part in order to analyze the Concurrent

Product Process Configuration gathers the following key elements:

• A process is a set of operations with an evaluation variable for each criterion and two

process starting and ending dates.

• An operation is a set of variables that gathers:

- for each involved resource: (i) three configuration variables (or decision variables):

resource family, quantity of resource, workload; and (ii) two evaluation variables:

duration and cost in our case,

- for the whole operation: (i) two evaluation variables: duration, a cost in our case and (ii)

two operation dates: starting and ending dates

• Evaluation constraints are present: (i) for each involved resources inside each operation, (ii)

then for the whole operation in order to aggregate each criterion on the different resources

and, (iii) for the whole process in order to aggregate each criterion on different operations.

• Process configuration constraints are restricted to resource compatibility inside an operation

or between operations.

89 / 145

We can see that the diversity and complexity of process configuration model is much lower

than the one relevant to product. Next section will just assemble them in order to finalize our

proposition for a concurrent product process configuration generic model for benchmark.

3.3 Coupling product process models and key characteristics

We will first show how the two models can be associated, then in a brief synthesis

underlines key characteristics of the proposed model.

3.3.1 Coupling product and process models

Following the works published about concurrent product process configuration (Baxter,

2007), (Aldanondo, et al., 2010), (Hong, et al., 2010), (Pitiot, et al., 2013) or (Dhungana, et al.,

2017), the idea is to add coupling compatibility constraints between the two models.

On the product side, the coupling constraints (noted cstcpl) can include only families of

components and/or functional descriptive variables. For example, let us consider (i) a family of

components “machine tool frame” with different descriptive variables as: “size”, “material” and

“weight” and (ii) an operation as “welding” and a family of resources as “operator”:

• According to the frame material, different welding competencies can be required and

therefore a specific operator in the family.

• According to the frame size it is clear that the welding workload can vary.

• According to the frame weight it might be necessary to use more than one operator just to

manipulate the frame.

This simple example illustrates how descriptive attributes of a family of components

impacts one process operation and therefore how the two models can be connected.

On the process side, coupling constraints can only include families of resources, quantity

of resources and/or workload variables. It is important to note that evaluation variables (cost

and duration in our case) cannot be included in a coupling constraint.

In terms of coupling constraint patterns, the four patterns presented for the product

configuration constraints (section 3.1.3.1) can be fully used as far as the definition domains of

both product and process variables are ordered.

In terms of evaluation, when a criterion is present in both product and process model, as it

is the case for cost or selling price, the two evaluation variables should be aggregated with a

constraint (noted cstsppp) in order to get a global product/process criterion value.

90 / 145

3.3.2 Synthesis about full product/process generic model for O-CPPC

With previous coupling constraints we can now propose our full product/process generic

model for O-CPPC benchmark:

• For product:

- A product is a set of modules with an evaluation variable for each criterion.

- A module is the instantiation of a set of Product Configuration Evaluation Patterns

(PCEP) with an evaluation variable for each criterion, cost in our case.

- A PCEP is a set of configuration variables (or decision variables) that gathers

descriptive variables and families of components and evaluation variables.

- Product configuration and evaluation constraints are present: inside each PCEP, inside

each module, inside the product.

• For process:

- A process is a set of operations with an evaluation variable for each criterion, duration

and selling price in our case, and two process starting and ending dates.

- An operation is a set of variables that gathers:

▪ for each involved resource: (i) three configuration variables (or decision variables):

resource family, quantity of resource, workload; and (ii) two evaluation variables:

duration and selling price in our case,

▪ for the whole operation: (i) two evaluation variables: duration and selling price in our

case and (ii) two operation dates: starting and ending dates

- Evaluation constraints are present: (i) for each involved resources inside the operation,

(ii) then for the whole operation in order to aggregate the different resources for each

criterion and, (iii) for the whole process in order to aggregate the different operations

for each criterion.

- Process configuration constraints are restricted to resource compatibility inside an

operation or between operations.

• For the whole product/process model:

- Coupling constraints (noted cstcpl) linking product descriptive variables and/or families

of components with process resource families, quantity of resource and/or workload.

- Product/process evaluation constraints in order to aggregate each criterion existing in

the two models.

91 / 145

An example of such product/process model is proposed in figure 23. It assembles the two

models of figures 11 and 20 with two coupling constraints and a product/process evaluation

constraint:

• Cstcpl-1 between two descriptive variables (fdv2-1 and fdv2-2) of module 2 and the three

operation variables (for1,wl1, qtr1) of operation 1

• Cstcpl-2 between one component family (foc1-3) of module 1, one component family (foc2-31)

of module 2 and the two operation variables (for2,wl21) of operation 2,

• Cstsppp that aggregates selling price criterion of product and process in a product/process

selling price criterion (Spproduct/process).

Dealing with architecture, we have introduced for product: integrated, modular and platform

architectures while we have mentioned serial or convergence process structures. The

association of product architecture and process structure is most often serial process with

platform (automotive mass production industry for example) product and convergent structure

with either integrated or modular product architectures (aerospace small batches industry for

example).

92 / 145

Figure 23- Proposed CPPC product/process generic model for benchmark

3.4 Proposition synthesis and key characteristics

The goal of this third chapter was to answer the question “Is it possible to propose a generic

model of the Concurrent Product Process Configuration problem that can avoid case

dependency when evaluating and comparing optimization methods?”. Given all previous

propositions, we can conclude that we now have a good base for a generic model of Concurrent

Product Process Configuration problems.

Our proposition is based on two sub-model product and process with various generic

patterns that capture many aspects relevant to the diversity of configuration problems. These

patterns concern products, processes and constraints. It is clear that others could be added, but

we deeply think that they constitute a strong base for product process configuration modeling.

In order to have full confidence in these propositions, a last step of validation is necessary with

some kind of confrontation with real problem modeling. However, it sounds clear to us that

93 / 145

using our propositions in order to conduct CPPC optimization benchmarks will be always better

than using random generation of variables and constraints.

The key characteristics of our generic model are: (i) for the product side: number of

modules, type and number of PCEPs, number of configuration variables, number of values, (ii)

for the process side: number of operations, number of resources, number of values, (iii) for

product and process sides: constraint patterns and constraint density, and (iv) Product/Process

architectures. These characteristics will be used in the next chapter to evaluate optimization

heuristics.

94 / 145

95 / 145

4. Benchmark description and evaluation of CFB-EA

In this chapter, the benchmark proposed is presented, discussed and used to evaluate the

CFB-EA optimization approach. The goal of the benchmark is to be able to evaluate

optimization approaches on a scope of O-CPPC instances which are not case-dependent. This

will allow answering our second research question “How sensitive is CFB-EA optimization

method, with respect to each key characteristic of the generic model of the CPPC problem?”

The definition of the instances that constitute the benchmark follows two contradictive

goals. We need to represent the diversity of existing O-CPPC problems but we also have to

limit the testing effort and thus the number of instances required to evaluate correctly an

optimization approach. We therefore aggregate the key characteristics proposed at the end of

the previous chapter in three parameters: (i) problem size, (ii) problem constraint density and

(iii) product architecture. This induces eight different instances of CPPC models that will be

optimized.

In terms of optimization, we will use an evolution of the CFB-EA algorithm presented in

(Pitiot, et al., 2014) and evaluates how it behaves with respect to the eight previous instances

and three previous problem characteristics. This evolution gathers some detailed computation

improvements which will not be explained in this thesis: better and faster evaluation of

individuals and faster crossover operator. This explains the lower computation time when

compared with results published in (Pitiot, et al., 2014) and (Pitiot, et al., 2019).

This chapter is organized as follows. Firstly, we detail the process used to generate model

instances and the eight instances (cases). Secondly, we present the optimization evaluation

process. Thirdly, we analyze those results and conclude about key characteristics impacts on

optimization.

4.1 Definition and generation of problem cases

4.1.1 Model generation procedure

In order to get problem cases, we develop a software called “CPPC model generator” that

instantiates the generic model presented in the previous chapter. This generator allows fulfilling

all various parameters specified in generic model (i.e. the number of modules, the type of

patterns and their parameters, etc.). To support this fastidious task, the model generator

96 / 145

implements a procedure to create an instance of an O-CPPC model. This procedure is shown in

figure 24 and works as follows:

Figure 24- Main procedure to generate a case in CPPC model generator

• In step 1, the generation specifications that allow to globally describe the main

characteristics of the problem are inputted:

- Product architecture: platform, modular, integrated.

- Process architecture: serial, convergence.

- Model size: small, medium, intermediate, large.

- Constraint density: low, medium, high.

Given these elements, the quantity of: product modules, process operations, product and/or

process evaluation criteria can be chosen.

• In step 2, consequently the quantity of configuration constraints with types and density can

be input for:

- Product: Intra-PCEP constraint, Intra-module constraint, Inter-module constraint.

- Process: Inter-operation constraints.

- Product and process: Coupling constraints.

97 / 145

• In step 3, a quantity of evaluation constraints for both product and process is proposed and

validated. In our case we have only duration and selling price evaluation variables:

- For selling price, the product architecture with the number of: modules, PCEP and

operations allow to deduce possibilities for these quantities.

- For duration, the number of operations and the process architecture allow to deduce

possibilities for these quantities.

• In step 4, for each module and each PCEP, the type of pattern is selected.

• In step 5, the resulting product/process model structure with all variables and constraints

can be established and validated by the user.

• In step 6, for each configuration constraint, a constraint pattern is selected for product,

process and coupling.

• In step 7, for each evaluation constraint, an evaluation pattern is selected for product and

process.

• In step 8, product evaluation parameters are inputted for each product evaluation pattern, in

our case selling price, mainly the average value with an interval of variation of the selling

price variable,

• In step 9, process evaluation parameters are inputted for each process evaluation pattern, in

our case selling price and duration, mainly averages and intervals for the selling price and

duration variables.

This procedure has been followed eight times in order to define eight model instances or

cases that allow evaluating the main characteristics of an O-CPPC model: The product

architecture, the model size and the constraints level or density. All cases derive from a

reference case which is a platform architecture model.

4.1.2 Main characteristics of the reference platform model case O-CPPC

In this section, we describe the main characteristics of the reference case which is the

platform architecture model showed in figure 25. This reference model gathers:

• 3 modules

• 3 operations (in a serial architecture),

• 24 configuration variables in product side (14 fdv and 10 foc), each variable has 6 values

in its definition domain (solution space size without constraint around 1018).

98 / 145

• 6 configuration variables in process side (3 for and 3 qtr), each variable has also 6 values in

its definition domain (solution space for the whole model around 1023).

• 9 PCEP patterns (three patterns for each module),

• 26 configuration constraints (12 intra-PCEP, 3 intra-module, 6 inter-module, 3 coupling

product/process and 2 inter-operation)

• 26 evaluation constraints (constraints needed to compute selling price and cycle time).

Figure 25- Reference case, the platform model

One module, module 1, has a functional description with only Tpcep1 pattern (only

functional description and selling price variables). Another module, module 3, has component

description with only Tpcep2 patterns (only family of components and selling price variables).

While the platform module, module 2, gathers a selection of physical-functional description

with mixed patterns. Each module is linked to one operation by a coupling configuration

constraints and each operation is linked to another operation by a configuration constraint. For

all reference model details please consult annex 1.

Considering this reference model as a basis, we now describe how the seven other model

instances are going to be built with respect to the three characteristics: model size, constraint

density and product architecture.

99 / 145

4.1.3 Model Size

The size of the model is a key point for optimization evaluation. It corresponds to the size

of the search space to investigate and is primarily associated with the number of variables and

the size of their domains. The reference model has 30 variables with 6 values on their domains

which is a good size (around 1023 without constraints) to investigate quickly properties of

evaluation approaches in a reasonable computing time (around some hours of calculations).

Real-world models could be obviously bigger but we assume that a detailed representation of a

large and complex product/process would still remain under one or two hundred variables

(assuming between 2 to 20 possible values and not only binary variables).

In our approach, the user restrains the model size by entering his/her requirements and

process filtering that decreases the solution space size. The resulting size could therefore greatly

vary according to the number of inputted requirements. We consequently select four cases to

study this model size characteristic with four model size values: 100, 60, 30 and 15 variables.

Those cases could be various sizes corresponding to different reduction made by user according

to his/her requirement on product/process. The four cases characteristics are detailed in table 2.

Particular attention was paid to respect distribution and density of all constraints in order to be

able to evaluate only the size impact. For these four instances, the following ratios are roughly

constant:

• Number of configuration constraints / number of variables: between 0.5 and 1, that provides

a number of constraints of 12, 26, 51 and 82.

• Number of modules / number of variables: between 0.1 and 0.2, that provides a number of

modules of 3, 7 and 10.

• Number of operations / number of variables: between 0.1 and 0.2 that provides a number of

operations of 3, 7 and 10.

Similarly, the constraints densities are similar or close (around 50% of constraints with high

level (inter-modules constraints) and 50% with medium level (other constraints)) and the

constraints distribution between various types of constraints (intra-module, inter-module,

coupling, etc.).

100 / 145

 Size
Quantity of

Variables

Quantity of

Modules

Quantity of

Operations

Quantity of

Configurations

Constraints

1. Small 15 3 3 12

2. Medium 30 3 3 26

3. Intermediate 60 7 7 51

4. Large 100 10 10 82

Table 2- Model Sizes

4.1.4 Configuration constraints Density

Constraints density or hardness is delicate issue to evaluate. It could be linked to the number

of constraints, the number of allowed tuples by constraint or their distribution between

variables. The number of constraints and the number of tuples by constraint impact in same

way the number of feasible solutions. Impact of distribution of constraints in the model or

distribution of constraints with different levels would be more difficult to evaluate. As already

said, we consider configuration constraint density as the ratio of the number of forbidden tuples

excluded by the constraints divided by the number of possible tuples without any constraint.

We defined three levels of constraint density: low, medium and high. The low level corresponds

to 20% of ratio of forbidden tuples, medium to a level of 50% and high to a level of 80%. The

configuration constraints density is thus evaluated on the same platform architecture model with

26 constraints and 30 variables. The three cases differ only by the constraint’s density level of

each constraint with three levels low, medium and high.

4.1.5 Product architecture

 As we presented in chapter 3, we are going to use the three typical product architectures:

Platform, Modular and Integrated. The idea is to evaluate if the product architecture impacts

optimization performance. The difference between these architectures relies on: (i) the

distribution of product configuration constraints between: Intra-PCEP, Inter-PCEP, Inter

module constraints and (ii) their constraint density.

In the platform architecture, a module is the platform and the two other modules are linked

on it. Following the idea that constraints in a module are stronger than between modules, the

12 constraints in modules (intra-PCEP and inter-PCEP) have a higher constraint density; while

constraints between modules have a medium density.

Modular architecture derives from platform architecture one only by distribution of inter-

module configuration constraints. Each module is linked to the two others by two configuration

constraints.

101 / 145

Integrated architecture has the same constraints distribution than modular architecture. The

difference is that constraints between modules are stronger. To keep the same constraints

density level in the whole model, we put some intra-module constraints to medium density. In

such way, for all architecture there is the same number of constraints with high (15) and medium

(11) density level.

For all these product architectures, we assume a serial process architecture in order to isolate

and quantify only the effect of product architecture modifications.

4.1.6 Synthesis about O-CPPC benchmark

 The eight model instances for our benchmark are presented in Table 3. Each of them will

be optimized with CFB-EA algorithm in the next sections.

Size

Quantity of

Variables
Architecture

Constraint

density

% of forbidden

tuples

1 Small 15 Platform Medium 50

2 Medium 30 Platform Medium 50

3 Intermediate 60 Platform Medium 50

4 Large 100 Platform Medium 50

5 Medium 30 Modular Medium 50

6 Medium 30 Integrated Medium 50

7 Medium 30 Platform low 20

8 Medium 30 Platform high 80

Table 3- O-CPPC benchmark model instances

4.2 Optimization experimental plan

This section presents optimization experiments on previous cases using evolutionary

algorithm (CFB-EA). The EA optimization algorithm is implemented in C++ programming

language and interacts with the filtering system Cofiade (Vareilles, et al., 2012) coded in Perl

language. The indicated time consumption is the processor time spend by all processes (EA +

filtering engine). The real time spend by optimization could be divided thanks to the

parallelization of filtering engines (around 95% of time consumption correspond to the filtering

process). In this section, we present the setting used for the evolutionary algorithm and the

metrics used for experiments.

4.2.1 Metrics for experiments

For a multiobjective problem, the user expects an efficient and diversified set of solutions

in a reasonable lapse of time. To evaluate the algorithm results, we used the hypervolume metric

defined in (Zitzler & Thiele, 1998). It measures the hypervolume (HV) of the space dominated

102 / 145

by a set of solutions, as shown in Figure 26, where two criteria are considered and the HV is

the surface inside the grey solid line. HV allows to evaluate both convergence and diversity

proprieties. The fittest and most diversified set of solutions is the one that maximizes

hypervolume.

Figure 26- Hypervolume with the two criteria time and cost

4.2.2 Evolutionary settings

The CFB-EA method has six parameters and a stopping criterion. For this work, we

investigate a small experimental plan on reference case (platform model) and we keep the same

settings with all other models:

• Probability of crossover: 0.9

• Probability of mutation of a parent: 0.5

• Probability of mutation of each gene of a selected parent: 0.1

• Backtrack limit of filtering engine: 30. This correspond with the number of allowed

backtrack for each individual before giving-up.

• Population size: 100

• Archive size: 150.

Archive and population sizes are adjusted according to the size of the model for larger cases.

The stopping criterion is a strict limit of computation time in seconds. This time is adapted at

each case in order to let the algorithm converge.

Like any metaheuristic, CBF-EA uses pseudo-random process. Consequently, the algorithm

has to be launched more than one time on a same model in order to get consolidate results. In

this work, every test is launched 5 times (5 runs). The average hypervolume (HV) and the

relative standard deviation (RSD) over the 5 runs are computed. In each test, we compare the

time

co
st

m
ax tim

e

max cost

Pareto
Individual i

HV = U (max cost – cost i)*(max time - time i)
i

Computation time
H

V optimal HV

103 / 145

average time needed to reach the final average HV value noted HVfinal. The HVfinal value is

obtained when there is no improvement of average hypervolume.

In order to study the HV evolution, we also compare the average computation times needed

to reach 99% and 99.9% of the average HVfinal.

4.3 Evaluation of existing approach on benchmark

In this section, we present the results of the experimental plan proposed in section 4.1.6

relevant to size test, constraints density test and architectural test.

For a first illustration, figure 27 shows the evolution of average HV on platform case and

associated table. The curve represents evolution of average HV for the 5 runs.

Figure 27- Reference case: average HV evolution with respect to time

After a quick improvement, the average HV stagnates and slowly converges to HVfinal.

Around 99% of HVfinal is reached in 189 seconds and 99.9% in 502 seconds while HVfinal is

reached in 1696 seconds. At the beginning, the RSD of time are limited (less than 2% of average

time). This indicates that all the runs reach 99% of HVfinal in approximatively the same

computation time, whereas, the RSD of time to reach HVfinal is larger (28%). Some runs (mainly

one of the 5 runs) have troubles to refine Pareto front to its final value. The times needed to find

HVfinal for each of the five runs are around 900, 1000, 1300, 1400 and 2200 seconds. However,

all the runs found the same final for HVfinal (RSD of HV is 0%). We can guess that this value

is probably the optimal one.

104 / 145

As all cases presented in this section will have different HV values, it would not be

significant to compare their HV evolution in a same graph. We will compare only their

convergence rates (time to reach HVfinal, 99.9% of HVfinal and 99% of HVfinal).

The stopping criterion is a strict time limit, in this case 3600 seconds (1 hour). It corresponds

to around 300 generations, 16 500 individuals generated and 273 000 filtering (averagely 75

filtering per second). The main characteristic of our constrained optimization approach is to

maintain feasibility of individual during their construction or modification (crossover, mutation

or initialization). At each modification of an individual (i.e. an instantiation of a decision

variable), domains of all remaining variables are checked by filtering engine. When a domain

of remaining variables become empty, the individual is unfeasible. A limited backtrack on

previous choices is then launched to restore feasibility.

As all domains are checked at each modification, a strong specificity of our approach is that

there is very few backtracks during evolutionary operators. In this case, there is only 0.44% of

backtrack by individual. This is also due to the crossover operator behavior: the restrained

crossover selects parents close in search space; then a uniform crossover is initiated on selected

parents (crossover probability of 50% for each gene). It is applied gene by gene in a random

order. After every instantiation, domains of remaining genes are checked: if a domain is empty,

the backtrack is launched; but also, if a domain is reduced to one state, this state is automatically

selected. This behavior preserves coherent genes combinations from parents in their children.

But the main drawback of this behavior is that many modifications are avoided and

sometime the resulting individuals are similar to the original ones (i.e. children are similar to

their parents). In this case, the rate of useless crossover (crossover that leads to the same

individual) is very high with around 38%.

We will study in next sections how those rates evolve according to size, constraints density

or architecture.

4.3.1 Model size evaluation

The results obtained with the four model size (small: 15 variables, medium: 30 variables,

intermediate: 60 variables and large: 100 variables) are presented in the Figure 28. The

horizontal axis corresponds to the number of variables and the vertical one with the computation

time.

105 / 145

Logically, the time consumption is strongly affected by model size. Indeed, the number of

possible solutions grows exponentially with the number of variables. Respectively, cases with

15/30/60/100 variables correspond to more than 1011/1023/1046/1077 possible combinations

without taking into account constraints and approximatively 108/1016/1031/1053 feasible

solutions when constraints are taken into account (we will discuss in next section relations

between constraints density and feasible search space).

Figure 28- Model size effects on computation times

In the small case, every run found the same HVfinal (supposed optimal value) in averagely

294 seconds (5 minutes) because relative standard deviation (RSD of HV) is 0%. Likewise, in

medium case, the supposed optimal is reached in averagely 1696 seconds (28 minutes). Time

gaps between runs are relatively significant with RSD on time around 28%. Nevertheless, those

time consumptions and sizes are relevant for a decision aiding process for small product/process

like a personal computer, a kitchen or a car (see section 1.1.4.3 on optimization issues).

With large or intermediate size, the times needed to reach HVfinal (46782 seconds/12.9 hours

for large case and 19842 seconds/5.5 hours for intermediate case) are clearly much larger.

Notice that some runs don’t find the supposed optimal value for HVfinal before the selected time

limit (time limit: 12 hours for intermediate case and 24 hours for large case). But provided

HVfinal values are really close from each other given the low values of RSD (0.053% for

intermediate size and 0.271% for large size).

Time consumptions in intermediate and large cases remain compatible for big

products/processes (for example, an aircraft or a sealing boat). Assuming a very large

106 / 145

product/process model of 200 variables, its sounds quite to reasonable to consider 100 customer

requirements that provide a problems size to optimize around 100 variables. Our

experimentations with 60 to 100 variables can be consequently considered as good

representatives. Furthermore, real computation time could be significantly reduced thanks to a

parallelization of filtering.

These larger cases have another property different from smaller cases: their Pareto front

have more solutions than the archive size. That leads to an HVfinal value that fluctuates. Indeed

when there are more Pareto-optimal solutions than the size of the archive, the algorithm make

a non-deterministic selection based on distance to the k-nearest neighbor (see SPEA2

description on (Zitzler, et al., 2002)). The small values of RSD on time for intermediate and

large cases indicate that all runs have reached an average HVfinal value and fluctuate around this

value. Larger archive size could be selected in such cases but it will reduce convergence speed.

Concerning detailed indicators, size of the case to optimize significantly impacts the useless

crossovers rate. It goes from 50% for the small case to 8% for the larger case. The more the

chromosome of individuals is large, the more the useless crossover rate is reduced.

Another interesting observation is that, in all cases, a good approximation of the final Pareto

front, for example let us consider 99% of HVfinal, is found relatively quickly. It takes roughly

between 10% and 20% of the time to reach 99% of HVfinal. Furthermore, this is obtained with

a reasonable RSD on HV (values less than 0.6% are reported). This characteristic will be used

in next chapter to propose an improvement of optimization approach. The proposed

improvement could also solve the archive size problem on large cases.

4.3.2 Model constraints density evaluation

The results obtained with three constraints density level (low: 20% of forbidden tuples,

medium: 50% of forbidden tuples, high: 80% of forbidden tuples) are presented in Figure 29.

The horizontal axis corresponds to the average percentage of forbidden tuples and the vertical

one corresponds as before with the computation time.

107 / 145

Figure 29- Constraint density effects on computation times

When comparing the time required to obtain HVfinal, the constraints density have a major

impact on time consumption. When the constraint density increases, the average percentage of

forbidden tuples increases also (the problem is logically more and more constrained) and the

computation clearly decreases. We confirm the known result; a more constrained problem is

quicker to optimize. The most constrained problem (80% of forbidden tuples) reaches HVfinal

in averagely 247 seconds with a RSD of 0% (supposed optimal), while in less constrained

problem (20% of forbidden tuples), it takes averagely 2610 seconds to reach HVfinal with a RSD

of 0.053%.

The constraints density level is directly linked with the number of feasible solutions and

thus to the size of the search space. For a given model size (number of variables and size of

their domains), the more a problem is constrained, the less it has feasible solutions. The exact

number of feasible solutions can’t be computed easily. It depends on the quantity of tuples of

constraints but also to the distribution of constraints between variables. This constraint density

test uses the platform medium size model. It has 30 variables with 6 values and 26 configuration

constraints. We can have an approximation of feasibility scale of the three level of constraints

density with a simpler fictive model: if 27 variables where linked one by one sequentially by

constraints and the 3 remaining variables where unlinked to others, the ratio of feasibility

(number of feasible solution over all possible combinations without taking into account

constraints) is respectively around 10-3, 10-8 and 10-19 for high, medium and low constraints

density. We checked this ratio on high constraint density case by a random sampling of solution

and we found the same magnitude order: 0.002 % of feasible solutions (882 feasible solutions

Low (20%)

Medium (50%)

High (80%)

108 / 145

for 426549 random combinations tested). The constraints density level can also be evaluated

thanks to the backtrack rate observed in each case. It is respectively 0.04% / 0.44% / 14.12%

for high / medium / low constrained cases. Even if constructing an individual is longer for more

constrained cases, the time needed to investigate feasible search space is clearly reduced.

The time consumptions needed to reach 99% of HVfinal are of the same order of magnitude

than the times reported for the previous size evaluation (between 10 and 30% of time needed to

found HVfinal). As in previous experimentations, the dispersion of all results is very low with

RSD for both time to reach 99.9% or 99% of HVfinal (less than 3%) or value of HVfinal (less than

0.4%).

4.3.3 Product architecture evaluation

The results obtained with the three product architectures (platform, modular, integrated) are

presented in the Figure 30. The horizontal axis corresponds to the architectures and the vertical

one with the computation time.

Figure 30- Architecture effects on computation times

When considering the time required to obtain HVfinal value, the platform architecture is the

fastest (1696 seconds) followed by modular (2250 seconds) and integrated (3763 seconds)

architectures.

The gap between times needed to reach HVfinal in modular and integrated cases aren’t

fundamentally significant but we have to keep in mind that differences between those three

cases consist mainly in different constraint organization and different distribution of constraints

109 / 145

density. For example, if we consider the distribution of low constraints density, the same

number of strong constraints (i) between modules for integrated architecture or (ii) intra-

modules for modular architecture haven’t a great impact on computation time when compared

with the problem size or the constraints density.

These results on platform model suggest that an architecture founded on a central module

is easier to investigate for an evaluation algorithm. Variables of the platform module are more

connected by constraints that those of other modules. The combinations for this architecture

tend to give some kind of structure to the search space more properly than in the two other

cases. The evolutionary algorithms that handle combinations of genes take benefits of this

structuration and reach more quickly interesting areas.

In a modular architecture, constraints are more “scattered” in the model. This leads to the

same effect as a lower constraint level and thus a higher time consumption to reach final HV.

Integrated case is clearly the most difficult case to obtain final HV. The backtrack rate and

useless crossover rate are significantly higher with 1.87% and 47% (against 0.24% and 40% for

modular case). Some interesting individuals are found quickly (i.e. time to reach 99% and

99.9% are lower than in modular case) but it takes a long time to refine final Pareto front.

4.4 Result synthesis

The goal of this chapter was to evaluate an optimization approach of Concurrent Product

Process Configuration with problem instances that were not case-dependent. The generic model

of chapter 3 has allowed us to generate a benchmark of eight CPPC problems organized in an

experimentation plan with respect to three key characteristics, (i) problem size, (ii) constraint

density and (iii) product architecture. Then, these eight problems have been optimized with the

CFB-EA algorithm and compared.

In terms of case-dependency, we can conclude that the proposed generic model that takes

into account many aspects of the diversity of configurable product is a good way to avoid case-

dependency when comparing optimization techniques. Two ideas for future works on this

model are on one side to publish on the web our problem generator, and on the other side, to

model new industrial cases.

In terms of optimization results comparison with respect to the three key product/process

characteristics, there is no "breaking results". We have noticed the conventional results relevant

to problem size and constraint density already published in [Pitiot et al., 2014]. CFB-EA shows

110 / 145

a significant ability to combine individuals with few backtracks. Globally, it shows time

consumption relevant for the addressed decision aiding process.

We would have thought that the product architecture impact would be clearer. Given our

result, we can just conclude that platform architecture fits better optimization than modular and

integrated architectures. This is consistent with the fact that a CSP problem well-structured

(around a platform module) is easier to optimize while with a collection of small interconnected

CSP (modular and integrated cases), optimization process has trouble to refine Pareto front.

Comparison between modular and integrated cases confirms that when constraints are more

distributed between small interconnected CSP (integrated case), it is harder to optimize finely.

Last important point for the next chapter; all evaluated cases have shown that 99% of HVfinal

was reached quite quickly by all experimentations. An average of 16% of the time to reach

HVfinal is necessary to get 99% of this final or very close to supposed optimal hypervolume

value. This remark is the basis of the EA improvement proposed in the next chapter.

111 / 145

5. Improvement of existing approaches on benchmark

The present chapter is based in the next article:

Paul Pitiot, Luis Garces Monge, Michel Aldanondo, Elise Vareilles & Paul Gaborit (2019)

Optimisation of the concurrent product and process configuration: an approach to reduce

computation time with an experimental evaluation, International Journal of Production

Research, DOI: 10.1080/00207543.2019.1598598

In order to answer to our third research question: “Is it possible to reduce the computation

times of CFB-EA and other conventional EA approaches?” we propose in this chapter an

improvement of CFB-EA called CFB-EA+ recently published in (Pitiot, et al., 2019). The main

idea is first to quickly compute a rough Pareto of solutions, then ask the user to select an area

of interest, and finally to launch a second computation on this restricted area.

In following sections, we make a brief review of associated concepts, a presentation of

proposed approach, its interests and tuning of its parameters. Then, the proposed CFB-EA+ is

presented with experimental results.

5.1 Possible improvement to the EA and computation time reductions

The CFB-EA algorithm shows a conventional behavior similar to most population-based

optimization approaches and most EAs: after an initial fast improvement (due to the fitness

function that maximizes solution dispersion on the Pareto front), performance stagnates before

slowly coming closer to optimal values. A challenging aim is thus to find a way to avoid the

previous stagnation sub-step. Given this purpose, two kinds of approaches, both of which are

multi-stage, can be investigated. The first stage is almost always an EA, while the second stage

can be either a similar EA or another technique, which is most often a stochastic local search

(SLS).

SLS algorithms (Hoos & Stützle, 2004) move from solution to solution in the search space

by applying local changes until they find a supposed optimal solution or reach a time bound. In

multiobjective contexts, the idea of mixing population-based approaches with an SLS algorithm

is to benefit from both the quick and global improvements of the first EA and then use the SLS

algorithm to improve search around founded solutions. It leads to a well-converged and

diversified final result (Blot, et al., 2018).

The idea around EA-based multi-stage optimization is to avoid tackling the whole problem

size and complexity in a single shot. Two kinds of ideas can be found in the literature. The first

https://doi.org/10.1080/00207543.2019.1598598

112 / 145

ones try to reduce the number of criteria in a single optimization shot with some kind of criteria

distribution or association to different optimization stages. The second ones try to reduce the

size of solution spaces in a single optimization shot with some kind of solution space

decomposition and allocation to optimization stages. For example, (Ascione, et al., 2016)

distribute optimization criteria in a three-stage optimization approach in a study of energy

retrofitting of hospital buildings. A similar approach can be seen in (Hamdy, et al., 2013), also

for building optimization. Dealing more with solution space decomposition (Ji, et al., 2017)

suggest using feasibility rules to quickly find a valid part of the solution space, then, once a

solution is found, the investigated solution space is expended thanks to coevolution. Of course,

approaches mixing criteria and solution space distribution can be found.

Some authors consider a large number of stages and speak of interactive methods (López

Jaimes & Coello Coello, 2013). These methods collect user preferences and give the possibility

for the user to be active during the solution search process. The user has the opportunity to learn

about the problem while exploring the available solutions (Miettinen, et al., 2008). This idea

has been exploited in scalarization-based methods, such as (Linder , et al., 2012) or (Monz, et

al., 2008). It has also been used with an evolutionary algorithm (Sinha, et al., 2014) (Bechikh,

et al., 2015). Both approaches have some drawbacks, depending on the size and complexity of

the problem (nature and number of objective functions). Three types of specifying preference

information were identified by (Miettinen, et al., 2008): trade-off information, reference points

and classification of objective functions. Our approach follows the idea of trade-off information

by delimiting an area in the search space. But it does not belong to the interactive method class,

in the sense that it only interacts once with the user. Consequently, our proposal for reducing

optimization computation is a two-stage EA-based approach.

5.2 A proposal to reduce computation time for the CPPC problem: CFB-

EA+

Within previous non-interactive methods, the partitioning of criteria or solution spaces and

their affectation to a different optimization stage means that before launching the optimization,

the user needs to have a priori preferences about the importance of the criteria, as well as the

knowledge of the solution space areas to investigate. As CFB-EA allows all criteria to be

considered over the whole solution space, a key idea of the proposal is to avoid the need for

these a priori blind preferences by showing the user a first Pareto that consider the whole

problem. Then, given this Pareto knowledge, the user can decide on how to compromise

between criteria and solution space.

113 / 145

5.2.1 Description of CFB-EA+

Our proposal, called CFB-EA+, mixes both solution space and criteria partitions but only

when knowing a little about the solution space. The idea is to launch a first optimization stage

on the whole solutions space while taking into account all criteria, and to stop this process once

a first ‘raw’ Pareto front can be identified at a time called switching time (ST). This Pareto

result is shown to the customer in order for him/her, knowing the first general tendency of

optimal compromises, to select a multi-criteria restricted area matching his/her criteria

expectations.

We have seen, during the definition of the optimization model of the CPPC problem that

each optimization criterion was modeled as a numerical constraint that sums CSP variables

(cost attributes or operation durations). Thus, for the second optimization stage, these numerical

constraints are bounded with maximum values that correspond to the restricted area that fits

customer expectations. These numerical constraints are added to the CPPC model and the three

CFB-EA sub-steps that are subject to constraint filtering (initialization of individual population,

individual crossover and individual mutation), all respect these criteria bounds. Therefore, the

proposed second stage of the CFB-EA generates individuals that respect customer criteria

restriction expectations.

This two-stage optimization process is illustrated in Figure 31. On the left side, we can see

the conventional single stage optimization that takes a long time. In the center, at the switching

time, a first raw Pareto (resulting from the first stage optimization on the whole solution space)

that allows capturing customer preferences (here the restricted area matching customer

expectations is a maximum cycle time) is presented. On the right side, the final Pareto on the

restricted area is shown.

Figure 31- Proposed two-stage optimization process

114 / 145

The CFB-EA algorithm described in Figure 8 (section 2.2.5) is updated as follows: After

the stopping criterion test step: (1) a switching time test is added, if the user is satisfied with the

raw Pareto and has decided on a restricted area to investigate, (2) criteria constraints are

inputted, (3) archive individuals that do not respect criteria constraints are removed, (4) criteria

constraints are added to the filtering engine. The resulting CFBEA+ flowchart is shown in

Figure 32, with new steps in bold dark grey. The problem of the tuning of the switching time

will be addressed in the evaluation section at the end of Section (5.4.3).

Figure 32- CFB-EA+ algorithm

5.2.2 Interests and limits of CFB-EA+

The three following interests can be underlined. Firstly, our idea globally corresponds to

some kind of criteria ordering, but in this case, ordering is declared once a global tendency of

solutions distribution with respect to criteria is known by the user. This means that CFB-EA+

avoids the ‘blind choice’ about criteria of other two-stage optimization approaches that rely on

a priori criteria ranking. Secondly, the first optimization stage is identical to CFB-EA, but the

second one does not restart from scratch. In fact, it benefits from the first-stage individuals that

respect the restricted area and that are systematically included in the initial population of the

second optimization stage. Thus there is no loss of computation time between the two

optimization stages. Thirdly, we have seen in Section 1.2.2 that, depending on the quantity of

elementary requirements, the size of the problem to optimize can vary. Furthermore, according

to the content of these elementary requirements (high or low product performance, for example,

that essentially drives selling price and cycle time), the requirement-respecting solution space

that needs to be optimized can be clearly located in a different space area as shown in Figure 4.

As CFB-EA+ provides a general tendency before asking for criteria preference, any kind of

115 / 145

customer requirements can be easily handled even if the interesting solution locations are very

different.

A limitation could be discussed concerns backtracking. As constraint filtering is not

powerful or strong enough, when the restricted area corresponds to too hard constraints, the

constraint filtering process of the CFB-EA specific sub-steps (individual crossover and

individual mutation) can reach inconsistencies. By this, we mean that no solution remains for a

configuration CSP variable during crossover or mutation. Thus, some backtrack processes are

necessary to repair the solution. But if in CFB-EA, the backtrack is not frequent at all, with

CFB-EA+ and criteria constraints that are stronger, the optimization process can spend a long

time on backtracking. The experimentations of Section 5.4 will show that backtrack is from 10

to 40 times more frequent with CFB-EA+.

5.2.3 Tuning CFB-EA+ parameters

In order to use CFB-EA+, some recommendations relevant to the tuning of the two

parameters must be proposed. We first define and discuss the tuning parameters, then we

propose some recommendations that will be validated according to the result of the

experimentation section. The two parameters are the “switching time” between the two-

optimization stage and the “size of the restricted area” matching customer expectations.

About the switching time:

• If it is too early, the first optimization stage might be unable to provide a rough Pareto

sufficiently detailed to allow capturing a suitable restricted area matching customer

expectations.

• If it is too long, the first optimization stage will be very close to the optimal value and the

computation time reduction will be rather low.

About the size of the restricted area matching customer expectations:

• If is too large, the second optimization stage will have a large solution space to investigate

and, as before, the computation time reduction will be rather low.

• If is too small, the evolutionary operators may fall in a local optimal area missing the global

optimal one.

These two tuning parameters are more or less linked. Let us first consider the size of the

restricted area. Once the switching time is reached, the raw Pareto front is shown to the user

116 / 145

and the idea is to ask him/her, knowing current criteria values, about a solution tendency. By

solution tendency, we mean for two criteria to indicate either a preference on a single criterion

or a compromise between the two criteria, this provides three criteria tendencies for reducing

the search space (for example on figure 33: cycle time < ct1, total cost < tc1, cycle time < ct2

and total cost < tc2). Thus, as a suggestion, the raw Pareto front could be divided in to three

parts containing a same number of individuals (1/4 of Pareto front that gathers 3 or 4 points

each in figure 33). This is an order of magnitude suggestion and, of course, it is possible to

deviate from this solution according to customer expectations.

Once this restricted area is defined, in order to avoid the local optimal problem, it is

necessary to check if the quantity of individuals existing in this area (Qtt in area) at the switching

time is sufficient. This value will be quantified according to further experimentations. If it is

not, this means that the switching time is too early and that the first optimization stage must be

continued or that the size of the constrained area should be increased.

Figure 33- Different restricted areas for second optimization stage

5.3 Experimental Plan

In this section, we first present the correction of evaluation metric needed to compare CFB-

EA and CFB-EA+. Then we describe our experimentation plan.

5.3.1 Performance evaluation for experiments with CFB-EA+

Hypervolume computed during first stage corresponds to the area covered in the whole

search space. When evaluating CFB-EA+, we must correct the value of this hypervolume with

respect to the switching time (ST) between the two optimization stages and the associated

restricted area. This means that once the two-stage optimization is over, when plotting the HV

versus computation time:

117 / 145

• At the before switching time, we consider a corrected hypervolume as shown in the center

of Figure 34, which means that we discard all individuals outside the restricted area when

computing HV,

• after switching time, as the constraints corresponding to the restricted area are respected by

any individual, HV is unchanged, as shown on the right of Figure 34.

Figure 34- Hypervolume computation for CFBEA+

In order to be able to compare CFB-EA with CFB-EA+ on a given restricted area, the

hypervolume relevant to CFB-EA will be computed with the CFB-EA+ mode used before

switching time, meaning that HV computation will not consider individuals outside the

restricted area. Thus, before switching time the HV time evolution is formally similar for both

algorithms, then after switching time a different behavior should be observable, as shown in

Figure 35.

Figure 35- Comparing HV evolution of CFB-EA+ and CFB-EA

cycle time

to
ta

l c
o

st

Pareto optimized solutions space
with single shoot Pareto

First raw Pareto
after first stage

Second Pareto on restricted area
after second stage

restricted
area

cycle time

to
ta

l c
o

st

cycle time

to
ta

l c
o

st

max
cycle time

Switching time

Computation time

H
V optimal HV

HV evolution
CFBEA
CFBEA+

118 / 145

The main experimentations in order to compare CFB-EA and CFB-EA+ will be achieved

with the reference case (platform model as described in section 4.3). Then a larger problem

(intermediate size case) will be considered to show the scalability of the proposal.

5.3.2 Experimentation plan

The experimental plan showed in this part corresponds to the one published in (Pitiot, et al.,

2019). This publication was achieved with an older version of CFB-EA than the one used in

chapter 4. As it does not benefit from the last improvements made during the end of thesis, time

consumption is higher than the ones presented in chapter 4. Nevertheless, comparison of CFB-

EA and CFB-EA+ with the same version and on the same models is relevant.

CFB-EA reference results are obtained as follows:

(1) the CFB-EA algorithm is launched 5 times with a time bound of 9000 seconds,

(2) the average values of the first (HVfirst) and final (HVfinal) hypervolume are computed,

(3) the average time to reach HVfinal is also noted. It might be below 9000 seconds.

It is important to note that these previous values consider the whole solution space. Then,

considering the Pareto front associated with the previous HVfinal, and in order to achieve

comparisons with CFB-EA+:

(4) three restricted areas (RA) illustrated in figure 36 are defined as:

- RA1: cycle time < ctmax, ctmax defined with 25% individuals on Pareto front,

- RA2: cycle time < ctmed & total cost < tcmed defined with 25% individuals on Pareto

front

- RA3: total cost < tcmax, tcmax defined with 25% individuals on Pareto front.

119 / 145

Figure 36- Four restricted areas for CFB-EA+

(5) and for each restricted area:

- the corrected area hypervolume of CFB-EA (noted “Hypervolume best value BV” or

“BV” in the results tables) is computed,

- the time to reach 95%, 99%, 99.9% and 100% of previous CFB-EA “BV” is also

computed.

For each of these times and HV values, an average and a relative standard deviation (RSD)

are provided. It can be seen in Figure 36 that in 12 minutes the Pareto front gives a good idea

of possible potential compromises.

In order to avoid absolute values for switching times, the analysis is conducted with three

switching times related to different levels of Hypervolume for each previously defined

restricted area. These three switching times correspond to a HV value of 70, 80 and 90% of

(HVfinal - HVfirst). They correspond roughly to 466, 800 and 1160 seconds. Each of these times

is associated with a number of individuals for each restricted area (noted Qtt in the tables of

results), that have been generated during the first computation and that are in the restricted area,

including, of course, those that belong to the Pareto front.

For each couple (restricted area, switching time), CFB-EA+ is launched five times with the

same time bound of 9000 s, and the following values are recorded:

• average of the previous number of individuals (Qtt),

120 / 145

• the times when the hypervolume reaches 95%, 99%, 99.9% and 100% of the hypervolume

best value (BV) of CFB-EA,

• the final or best hypervolume,

As before, both the average and the RSD are provided for these times and HV values. These

results are compared to the results provided by CFB-EA on the same restricted area with a gap

percentage, 100 * [value (CFB-EA) - value (CFB-EA+)] / value (CFB-EA).

Having conducted CFB-EA optimization with various problem sizes, we came to the

conclusion that the adequate size of the archive is 100, adequate population size is 150,

appropriate crossover probability for individual selection is 0.8, and mutation probabilities for

individual and gene selections should be set respectively at 0.5 and 0.1.

5.4 Results

In the following section, we present the associated results, discuss them and propose some

recommendations for using and tuning CFB-EA+. Then with a larger model, we discuss

scalability issues.

5.4.1 CFB-EA and CFB-EA+ results comparison and discussions

The hypervolume evolutions are shown and computations times are compared for the three

restricted areas.

5.4.1.1 Restricted Area 1, cycle time constraint

Figure 37 shows the hypervolume evolution on a graph with a table that details the

computation times.

121 / 145

Figure 37- Comparison CFBEA+ with CFBEA on restricted area 1

For any switching time and any table times (95%, 99%, 99.9% and 100% and BV) CFB-

EA+ computation times are always lower, with a gap between 6% and 43%. For CFB-EA+, as

switching time 80% (800 s.) and 90% (1160 s.) are higher than CFB-EA time to reach 95% of

BV CFB-EA (around 530 s.), there is no computation time comparison. It can be noticed that

each of the five runs reaches the hypervolume best value (BV 4009.96 with RSD = 0).

Furthermore, even if CFB-EA+ takes more time to build individuals (CFB-EA+ backtrack rate

by an individual is around 4.25%, while CFB-EA backtrack rate is close to 0.4%), it reaches

BV more quickly.

5.4.1.2 Restricted Area 2, cycle time and total cost constraint

Results are shown in figure 38. These results show some interesting behavior. This

restricted area is the most highly constrained one. The backtrack rate by an individual is around

17% (more than 40 times more than CFB-EA). It also has the lowest quantity of individuals

from the first stage (respectively 20.4, 51.8 and 88.4). That leads to, with early switching times

(70% and 80%) CFB-EA+ is unable to reach 99.9% and 100% of CFB-EA best value. However,

those final values are very close to the hypervolume best value and they are reached very early.

Moreover, all other values show lower computation times with gaps between 14% and 37%.

Even if individuals are more difficult to obtain, due to backtracking, CFB-EA+ outperform

122 / 145

CFB-EA. The key point would be to avoid the lack of diversity in the initial population that

leads to local optimal for some cases of the earliest switching time.

Figure 38- Comparison CFBEA+ with CFBEA on restricted area 2

5.4.1.3 Restricted area 3, total cost constraint

Results are shown in figure 39. For this restricted area, the tendency is similar. The

backtrack rate by an individual is around 1,7%. The CFBEA+ computation times are still always

better than CFB-EA with values between 11% and 49%. The highest decreases are obtained

with the intermediate switching time (80%) that also always provides the best hypervolume

value (10552.70).

123 / 145

Figure 39- Comparison CFBEA+ with CFBEA on restricted area 3

5.4.2 Global results comparison

Table 4 gathers all computation time reductions as a percentage decrease with respect to

various combinations of restricted areas and switching times.

When globally comparing all computation times, we obtain 30 times gaps: 10 with RA1, 8

with RA2 and 12 with RA3. The average of these 30 gaps is 27.05%, meaning that CFB-EA+

allows a significant reduction in computation time.

When comparing reductions with respect to restricted areas, the average gap of RA1 is

21.68%, while RA2 is 29.19% and RA3 is 30.09%, meaning that CFB-EA+ computation time

reductions are a little higher when restricted areas are more constrained by total cost.

When considering only the time required to obtain the best hypervolume value (100% of

BV CFB-EA), CFB-EA+ is always better than CFB-EA, with an average gap around 26%

(excluding restricted area 2 with 70% and 80% switching time). This result, close to the global

one (27.05), shows that significant computation time reductions are obtained with CFB-EA+

without any reduction of optimality level of the solutions.

When taking into account the different switching times, average gaps are as follows: CFB-

EA+ 70%: 25.87%, CFB-EA+ 80%: 33.39% and CFB-EA+ 90%: 22.93%. This means that the

124 / 145

highest computation time reductions are provided with the intermediate switching time

associated with a hypervolume equal to 80% of (HVfinal –HVfirst).

As previously mentioned, the quantity of individuals respecting the restricted area at the

switching time (noted “Qtt” in the tables of results) at the beginning of the second CFB-EA+

optimization stage must be considered as a switching time condition to avoid local optimums.

Considering Table 4, we suggest a minimum quantity of 60 for all restricted areas. This quantity

of individuals will be the basis for our tuning recommendation of the next section. Of course,

this quantity is roughly related to the size of the archive, which is 100 in previous experiments.

Table 4- Time reductions with respect to restricted areas and switching times.

5.4.3 CFB-EA+ tuning recommendation for switching time and restricted area

The recommendation process works in the following way: once the first CFB-EA+

optimization stage is launched on the whole solution space, at each loop, the possibility for a

CFB-EA+ second stage initialization is checked as follows:

• the individuals of the Pareto front are analyzed, and the constraints associated with each

restricted area are computed, with respect to a 25% minimizing of each criterion and 25%

of central compromise of the two criteria,

• the quantity of individuals included in each restricted area since the beginning of the CFB-

EA+ stage is calculated,

125 / 145

• for each restricted area:

o if this quantity of individuals is smaller, the CFB-EA+ first stage carries on,

o if this quantity of individuals is larger than 60 (given the archive is around 100 in

our case), the process proposes to the user to launch the second CFB-EA+

optimization stage,

o if the user is not satisfied by the proposed restricted area, CFB-EA first stage carries

on,

o if the user is satisfied by the proposed restricted areas, he can either validate the

proposed restricted area or slightly modify it, as long as the minimum quantity is

respected.

This recommendation will be used for optimizing the larger problem of the next section.

The initial CFB-EA+ algorithm shown in Figure 32 Section 5.2.1 is updated and gives the final

CFB-EA+ algorithm that works as illustrated in Figure 40.

Figure 40- CFB-EA+ algorithm including the tuning process

5.4.4 Experiments with a much larger model and scalability issues

In order to deal with scalability issues, we consider now the intermediate case with 60

variables. The archive size is larger, 150 (instead of 100), and the number of individuals that

triggered the CFB-EA+ second stage initialization possibility is set to 100 (instead of 60) for

all restricted area. The resulting switching times are, for RA1: 13736, for RA2: 7835 and for

RA3: 8901. Figure 41 shows the hypervolume evolution for each restricted area with tables

showing computer time reductions.

126 / 145

Figure 41- Comparison CFB-EA+ / CFB-EA with a larger model

These curves and time reductions show that CFB-EA+ still works fine with larger problems.

Furthermore, it can be noticed that the computation time reductions are globally larger with this

60-variables model (around 54%) compared to the 30-variables model described in the previous

section (around 27%). This leads us to the conclusion that the interest of CFB-EA + is greater

when the amount of elementary requirements provided by the user is small. Let us imagine,

although this was not the case for previous experiments, that:

• the real problem has a model size of 80 variables,

• that results provided in section 5.4.1 correspond with 50 elementary requirements,

• that results provided in section 5.4.4 correspond with 20 elementary requirements.

Results show, that for a given size problem of 80, better time reductions are obtained with

20 elementary requirements compared to 50. Thus, for our interactive configuration problem,

if requirements are very detailed and cover almost all configuration variables, our

recommendation would be to just use the CFB-EA single-stage approach.

5.5 Conclusion on CFB-EA+ evaluation:

The key idea of CFB-EA+ is to avoid processing the whole solution space, but also to avoid

“a priori” ordering of criteria and problem variables. The idea is to quickly compute a first

Pareto front and, according to the knowledge of this result, to suggest some restricted areas to

the user which will be subject to further enforced investigations in a second stage.

127 / 145

With regard to computation time reductions, a low-constrained model of 30 configurable

variables was used for experiments with various switching times and restricted areas. Without

any parameter classification, a decrease in the order of magnitude of 30% of computation time

can be expected. It has also been noted that this improvement is obtained without any decrease

of the optimality level of the solutions.

For the tuning of CFB-EA+ parameters, previous experiments have confirmed that the

largest reductions in computation time were obtained with an intermediate switching time. But

as a switching time associated with a small restricted area could lead to an over-constrained

problem or a lack of diversity in the initial population, the quantity of individuals in a given

restricted area has been preferred as a necessary tuning parameter. Given these results, we have

proposed an updated version of CFB-EA+ that enables to suggest to the user switching times

associated with quantity of individuals in selected area of interest.

A model gathering 60 variables with characteristics similar to the previous one was also

considered. Experiments confirmed previous computation time reductions and show even better

results for a larger model.

These conclusions clearly show the interests of the CFB-EA+ approach in reducing

optimization computation times. Furthermore, considering company expectations, and

especially in B2C configuration situations, the possibility of showing a first Pareto Front in less

than 15 min, and thus providing an idea of the solution space distribution will undoubtedly

serve to keep the customer’s attention focused on the configuration possibilities. By viewing

this Pareto, the customer can express a well-founded expectation of his/her criteria preferences

and therefore feel greater satisfaction. For B2B situations, the contribution is a little different,

as the customer usually has to wait for an optimal solution, which takes quite a long time.

Here, even if this computation time is significantly reduced, it is possible to provide the

customer with partial solution-space tendencies in a relatively short time, thus limiting the

search for optimal space regions.

128 / 145

129 / 145

6. Conclusions and future works

6.1 Conclusion

This PhD focuses on modeling and optimizing issues for the O-CPPC problem as well as

evaluating optimization approach (CFB-EA). It was motivated by strong expectations of the

industrial issues: the need of powerful handling and optimization tools for a difficult decision

aiding problem (large, multiobjective, combinatorial and constrained optimization) as well as

the need of proper evaluation of optimization approach. The domains of O-CPPC problem and

associated definitions, the frameworks and tools used (CSP and EA) were presented as well as

a state-of-art of them. Responses to the three research questions were proposed in this work:

QR1: “Is it possible to propose a generic model of the CPPC problem that can avoid case

dependency when evaluating and comparing optimization methods?”

A generic model and the associated generator have been proposed and discussed. The

generic model gathers different points of view of product modeling (physical, functional or

mixed) that could be found in various industrial cases. It proposes a structured decomposition

of CPPC models with definition of:

• architectures (platform, modular and integrated),

• physical-functional modules,

• Product Configuration Evaluation Patterns (5 patterns),

• Product Configuration Constraints Patterns (4 patterns),

• Product Evaluation Constraints Patterns (3 patterns),

• A Process operation pattern,

• Process evaluation pattern that links workload, resource, cost and duration of tasks,

• Rules for constraint distribution between decision variables in each domain (product,

process or coupling).

These numerous elements must allow to capture a large diversity of existing configuration

problems. Such generic modelling clearly avoids problems of case-dependency or random

generation of models that suffer most of existing publications.

130 / 145

QR2: How sensitive is CFB-EA optimization method, with respect to each key characteristic

of the generic model of the CPPC problem?

Given generic model described, a first version of a benchmark for O-CPPC optimization

problems was proposed with eight cases. It allowed us to evaluate three key characteristics of

CPPC problem: product architecture, size and constraints density.

The study confirms abilities of CFB-EA in relation with size and constraint density. Time

consumption are relevant for the addressed decision aiding process. Experiments showed some

interesting behaviors in relation to the Product architecture even if its impact is less relevant

than size or constraint density.

Formally, strong constrained cases (high constraint density level or concentrated constraints

distribution as in platform case) lead to an easier optimization, whereas, low constrained cases

(low constraint density level or constraints well spread all over the model as in modular case)

are harder to optimize finely.

In all cases, CFB-EA reaches a near-optimal (99% of final performance) Pareto front very

quickly (less than 20% of the time to reach the best solution or less than 2 hours for the largest

considered problem).

QR3: Is it possible to reduce the computation times of CFB-EA and other conventional EA

approaches?

A two-step approach called CFB-EA+ was proposed and evaluated. It takes benefits from

CFB-EA initial fast improvement to propose a first view of solution space (“raw” Pareto). It

takes benefit to user’s preference collection as in interactive methods but without asking him

several times. It also avoids the blind choice of partition of criteria or solution spaces of “a

priori” approaches.

CFB-EA+ shows a time consumption decrease in the order of magnitude of 30% in 30

variables model and up to 50% in larger cases (60 variables). Those improvements are obtained

with similar or better performance than with CFB-EA.

According to the analyze of parameters tuning, the diversity of initial solutions in second

phase is the key point to obtain the most significant time reduction without falling in a local

optimum. Therefore, we have proposed an updated version of CFB-EA+ that enables to suggest

to the user switching times associated with quantity of individuals in selected area of interest.

131 / 145

6.2 Futures works

Presented works constitute a strong base for analysis, modeling and optimization of CPPC

problem. For each research question, following perspectives could be investigated:

QR1: Generic model of the CPPC problem

The generic model proposed gathers various patterns coming from our experience on

industrial projects. It could be completed with some other patterns that could be relevant to:

specific industrial situations. In a similar way, another key issue that represents a popular

research theme could be to integrate other evaluation criteria linked to environmental impact as

carbon foot print or to product/process quality.

A problem for optimization researchers is that real cases models are most of the time hidden

by the privacy policy of companies. Thanks to the model generator and procedure, companies

interested on the subject could build a kind of abstract model of their own product/process and

add it to the benchmark to know which optimization seems to be the most accurate. In a same

way, it is also necessary to use a standard format to describe cases. At the present time, they are

described in the input format of our filtering engine. Based on XML format, XCSP3 proposed

by (Boussemart , et al., 2016) seems to be a good candidate disconnected from economic issues

of configurator software editors. Furthermore, a competition is annually organized to solve

COP (constraints optimization problems) models formatted with XCSP3 problem. Once

achieved, the last issue is to publish this CPPC model generator on the web in order to capture

applied companies cases.

QR2: Evaluation of CFB-EA characteristics on CPPC benchmark

The experiments plan showed in chapter 4 evaluates our last version of CFB-EA with a

standard parameter setting. It has been selected according to a first small experiments plan

achieved on reference case (platform basic case with medium constraints density and medium

size). A finer experiments plan could be achieved for a better understanding of connections

between evolutionary setting and properties of cases.

Once last improvements of CFB-EA published, another experimental study will be to

evaluate performance of the new evolutionary operators with respect to the key characteristics

of CPPC cases (model size, constraint density and architecture).

QR3: Improvements of CFB-EA and their evaluation

In the experimental plan, the evolutionary parameters setting was identical for both stages

of CFB-EA+ and for CFB-EA in order to compare safely approaches. We have deduced that

132 / 145

the key requirement for the second stage was a good diversity of initial population. Maybe, a

specific tuning could be found for each stage: A setting that reinforces exploration and diversity

in the first stage and another one that intensifies search during second stage. This last point can

be delicate because if the first stage “misses” a potential set of different solutions, it would be

difficult to design a setting that at the same time reinforces search around solutions already

found and also searches for a missed one. Perhaps, a varying setting could achieve this difficult

challenge.

Experiments of chapter 5 and those related in (Pitiot, et al., 2019) were not achieved with

the very last version of CFB-EA and CFB-EA+. A new plan must be achieved to confirm gaps

between CFB-EA and CFB-EA+ obtained with this last version.

Besides unpublished improvements already developed, other ways could be investigated.

Coupling of CFB-EA with SLS (stochastic local search) is another way to avoid stagnation of

optimization algorithm after the initial quick improvement.

Concerning other criterion added in the model, a delicate issue may be to express the

constraints that characterize three-dimensional restricted areas.

The last work perspective concerns the possibility of using the CFB-EA+ key idea with

other multiobjective evolutionary algorithms. For this last question, we have good confidence

that the proposed ideas should work fine with any multiobjective and constrained evolutionary

algorithms.

133 / 145

7. Bibliographical References

Aldanondo , M. & Vareilles, E., 2008. Configuration for Mass Customization: How to extend

product configuration towards requirements and process configuration. Journal of Intelligent

Manufacturing , 19(5), pp. 521-535A.

Aldanondo, M., Hadj Hamou, K., Moynard, G. & Lamothe , J., 2003. Mass customization and

configuration: Requirement analysis and constraint based modeling propositions. Integrated

Computer Aided Engineeirng , 10(2), pp. 177-189|.

Aldanondo, M., Vareilles, E., Dejel, M. & Galborit , P., 2008. Towards an association of

product configuration with production planning. Patras, Greece, University of Patras .

Aldanondo, M., Vareilles, E. & Djefel, M., 2010. Towards an association of product

configuration with product planning. International Journal of Mass Customisation , 3(4), pp.

316-332.

Allen, J., 1983. Maintaining Knowledge about temporal intervals. In: ACM 11. Rochester :

University of Rochester , pp. 123-154.

Amilhastre, J., 1999. Représentation par automate d´ensemble de solutions de problèmes de

satisfaction de contraintes. Doctoral Thesis , Montpellier: Université de Montpellier.

Amilhastre, J., Fargier, H. & Marquis, P., 2002. Consistency restoration and explanations in

dynamics CSPs application to configuration. Artificial Intelligence, 135(1-2), pp. 199-234.

Anon., n.d.

Ascione, F. et al., 2016. Multistage and multiobjective optimization for energy retrofitting a

devoloped hospital reference building. A new approach to assess cost optimality. Applied

Energy , Volume 174, pp. 37-68.

Bartak , R., Salido, M. & Rossi, F., 2010. Constraint satisfaction techniques in planning and

scheduling. Journal for Intelligent Manufacturing , 21(1), pp. 5-15.

Baxter, D., 2007. An engineering design kowledge reuse methodology using process modelling.

Research in Engineering Design, 18(1), pp. 37-48.

Bechikh, S., Kessentini , M., Said, B. & Ghedira, K., 2015. Preference Incorporation in

Evolutionary Multiobjective Optimization: A survey of the state of the arts. Advances in

Computer , Volume 98, pp. 141-207.

134 / 145

Blackstone, J., 2013. APICS Dictionary. Chicago : APICS.

Blot, A., Kessaci, M. & Jourdan , L., 2018. Survey and unification of local search techniques

in metaheuristics for multiobjective combinatorial optimization. Journal of Heuristics, pp. 1-

26.

Bonjour, E., 2008. Contributions à l'instrumentation du métier d'architecte système : de

l'architecture modulaire du produit àl'organisation du système de conception, France:

Université de Franche-Comté.

Bonjour, E., Deniaud, S., Dulmet, M. & Harmel , G., 2009. A fuzzy method for propagating

functional architecture constraints to physical architecture. Journal for Mechanical Design,

131(6).

Bonjour, E. & Micaëlli, J. P., 2010. Design core competence diagnosis: a case from the

automotive industry. IEEE Transactions on Engineering Management , 57(2), pp. 323-337.

Boussemart , F., Lecoutre , C., Audemard, G. & Piette, C., 2016. XCSP3: An Integrated Format

for Benchmarking Combinatorial Constrained Problems. Technical Report, Ithaca, New York:

Cornell University Library.

Brown, D., 1998. Defining Configuring. Artificial Intelligence for Engineering Design,

Analysis and Manufacturing, Volume 12, pp. 301-305.

Campagna, D. & Formisano, A., 2013. Product and Production Process Modelig and

Configuration. Fundamenta Informaticae, Volume 124.

Chen, G. et al., 2006. A framework for an automotive body assembly process design system.

Computer Aided Design, 38(5), pp. 531-539.

Chen, L. & Lin, L., 2002. Optimization of product configuration design using functional

requirements and constraints. Research in Engineeirng Design , 13(3), pp. 167-182.

Chenouard, R., 2007. Résolution par satisfaction de contraintes appliquée á l aide á la décision

en conception architecturale. Doctoral Thesis, Paris: ENSAM.

Coello, C., n.d. List of References on Constraint Handling Techniques used with Evolutionary

Algorithms. [Online] Available at: http://www.cs.cinvestav.mx/~constraint/ [Accessed 2018].

Deb, K., Mohan, M. & Mishra, S., 2003. A Fast Multiobjective Evolutionary Algorithm for

Finding Well Spread Pareto Optimal Solutions, Kanpur: KanGAL Report 2003002.

135 / 145

Deb, K., Pratap, A., Agarwal, S. & Meyarivan , T., 2002. A fast end elitist multiobjective

genetic algorithm: NSA-II. IEEE Transaction on Evolutionary Computation , 6(2), pp. 181-

197.

Dechter, I. & Mairi, R., 1991. Temporal constraint network. Artificial Intelligence , Volume

40, pp. 61-65.

Delchambre, A. & Rekiek, B., 2006. Assembly Line Design: The Balancing of Mixed Model

Hybrid Assembly Lines with Genetic Algorithms. London: Springer Series in Advanced

Manufacturing .

Dhungana, A., Falkner, A., Haselbock, A. & Taupe, R., 2017. Enabling Integrated Product and

Factory Configuration in Smart Production Ecosystems. Viena , IEEE.

Djefel , M., 2010. Couplage de la configuration de produit et de project de réalisation:

exploitation des approches par contraintes et des algorithmes évolutionnaires. Doctoral Thesis

, Toulouse : Université de Toulouse. Mines Albi .

Dou, R., Zong, C. & Li, M., 2016. An interactive genetic algorithm with the interval arithmetic

based on hesitation and its application to achieve customer collaborative product configuration

design. Applied Soft Computing, Volume 38, pp. 384-394.

Dubitzky, W., Wolkenhauer, O., Cho, K. & Yokota, H., 2013. Encyclopedia of Systems Biology.

New York: Springer.

Du, G., Jiao , R. & Chen, M., 2014. Joint optimization of product family configuration and

scaling design by stackelberg game. European Journal of Operational Research , 232(2), pp.

330-341.

Eiben, A., 2001. Evolutionary Algorithms and constraint satisfaction: Definition, survey,

methodology and research directions. In: Theoretical Aspects of Evolutionary Computing.

Natural Computing Series. Berlin Heidelberg: Springer, pp. 13-58.

Felfernig, A., Holtz, L., Bagley, C. & Tiihonen , J., 2014. Chapter 6: Configuration Knowledge

Representation and Reasoning . In: Knowledge Based Configuration: From Research to

Business Cases . s.l.:Elsevier/Morgan Kaufmann, pp. 41-72.

Felfernig, A., Hotz, L., Bagley, C. & Tiihonen, J., 2014. Chapter 1: Motivation for the book.

In: Knowledge Based Configuration: From Research to Business Cases. Waltham:

Elsevier/Morgan Kuafmann, pp. 03-07.

136 / 145

Felfernig, A., Hotz, L., Bagley, C. & Tiihonen, J., 2014. Chapter 11: Knowledge Engineering

for Confguration Systems. In: Knowledge Based Configuration: From Research to Business

Cases. Waltham: Elsevier/Morgan Kaufmann, pp. 139-155.

Felfernig, A., Hotz, L., Bagley, C. & Tiihonen, J., 2014. Chapter 2: A Short History of

Configuration Technologies. In: Knowledge Based Configuration: From Research to Business

cases. Waltham : Elsevier/Morgan Kaufmann, pp. 9-17.

Fogel , L., Owens, A. & Walsh, M., 1966. Artificial Intelligence Through Simulated Evolution.

s.l.:John Wiley & Sons.

Fonseca, C. & Flemming, P., 1993. Genetic algorithms for multiobjective optimization:

Formulation, discussion and generalization. San Francisco, Morgan Kaufmann Publishers Inc..

Freuder, E., 1997. In pursuit of the Holy Grail. Constraints , 2(1), pp. 57-61.

Gelle, E. & Faltings, B., 2003. Solving Mixed and Conditional Constraint Satisfaction

Problems. In: Constraints. Dutch: Kluwer Academic Publishers, pp. 107-141.

Gelle, E. & Weigel, R., 1995. Interactive Configuration Based on Incremental Constraint

Satisfaction. In: Knowledge Intensive CAD. KIC 1995. IFIP Advances in Information and

Communication Technology. Boston : Springer , pp. 117-126.

Gero, J., 1990. Design prototypes: a knowledge representation schema for design. A.I.

Magazine , 11(4), pp. 26-36.

Ghédira , K., 2013. Constraint Satisfaction Problems. CSP Formalisms and Techniques. Great

Britain/United States : ISTE Ltd and John Wiley & Sons, Inc.

Gottschalk, F. & La Rosa, M., 2010. Modern Business Process Automation: YAWL and its

support enviroment . In: Modern Business Process Automation . Berlin, Heidelberg: Springer,

pp. 459-487.

Gottschalk, F. et al., 2009. Configurable process models: experiences from a municipality case

study. In: Advanced Information Systems Engineering. 21st International Conference, CAiSE.

Amsterdam, The Netherlands: Springer , pp. 486-500.

Grzechca , W., 2011. Assembly Line-Theory and Practice. Croatia: InTech Open Access

Publisher .

Gupta , S. & McGovern, S., 2011. Chapter 10: Combinatorial Optimization Searches. In:

Disassembly Line: Balancing and Modeling. New York: The McGraw-Hill Companies, Inc..

137 / 145

Hamdy, M., Hasan, A. & Siren, K., 2013. A multistage optimization method for cost optimal

and nearly zero energy building solutions in line with the EPBD recast 2010. Energy and

Buildings , Volume 56, pp. 189-203.

Han, S. & Lee, J., 2011. Knowledge based configuration design of a train bogie. Journal of

Mechanical Science and Technology , 24(12), pp. 2503-2510.

Hofstedt, P. & Schneeweiss, D., 2013. A constraint Based Interactive Product Configurator.

Berling , Springer .

Holland , J., 1992. Adaptation in Natural and Artificial Systems. Cambridge, MA: MIT Press.

Hong, G., Xue, D. & Tu, Y., 2010. Rapid identification of the optimal product configuration

and its parameters based on customer centric product modeling for one of a kind production.

Computers in Industry , 61(3), pp. 270-279.

Hoos, H. & Stützle, T., 2004. Stochastic Local Search Foundations and Applications, San

Francisco : Morgan Kaufmann.

Huang, H. & Gu, Y., 2006. Development mode based on integration of product models and

process models. Concurrent Engineering: Research and Applications, 14(1), pp. 27-34.

Jensen , R. & Lars, S., 2005. Power Supply Restoration, Master Thesis , Copenhagen : IT

University of Copenhagen .

Jiang, Z., Sisi, X., Lin, L. & Zhaoqian, L., 2011. Inventory shortage driven optimisation for

product configuration variation. International Journal of Production Research , 49(4), pp.

1045-1060.

Jiao, J., Simpson , T. & Siddique , Z., 2007. Product family design and platform based product

development : a state of the art review. Journal of Intelligent Manufacturing , 18(1), pp. 5-29.

Jiao, J. & Zhang, Y., 2005. Product portfolio planning based on customer engineering

interaction. IIE Trans, 37(9), pp. 801-814.

Ji, J., Yu, W. & Zhang, J., 2017. A two stage coevalution approach for constrained

optimization. Berlin , ACM , pp. 167-168.

Kaiser, A., Wolfgang, K. & Carsten, S., 2003. Formal Methods for the Validation of

Automotive Product Configuration Data. Artificial Intelligence for Engineering Design,

Analysis and Manufacturing , 17(2).

138 / 145

Kopisch, M. & Gunter, A., 1992. Configuration of a passenger aircraft cabin based on

conceptual hierarchy, constraints and flexible control.. In: Industrial and Engineering

Applications of Artificial Intelligence and Expert Systems. Berling, Heidelberg: Springer.

Krokhin, A. & Zivny, S., 2017. The constraint satisfcation problem: Complexity and

Approximability. Germany: Dagstuhl Publishing.

Li, L., Chen , L., Huang, Z. & Zhong, Y., 2006. Product Configuration Optimization Using a

Multiobjective GA. International Journal of Advanced Manufacturing Technology , Volume

30, pp. 20-29.

Lindemann, U., 2007. A vision to overcome chaotic design for X processes in early phases.

France, Design Society .

Linder , J., Lindkvist, S. & Sjoberg, J., 2012. Two Step Framework for Interactive

Multiobjective Optimization. Technical Report LiTH-ISY-R-3043, Linkoping: Department of

Electrical Engineering. Linkoping University.

Liu, Y., Zhang, Z. & Liu, Z., 2011. Customized configuration for hierarchical products:

component clustering and optimization. International Journal of Advanced Manufacturing

Technology , 57(9-12), pp. 1223-1233.

López Jaimes, A. & Coello Coello, C., 2013. Interactive Approaches to Multiojective

Evolutionary Algorithms. Chap. 8. In: Mulricriteria Decision Aid and Artificial Intelligence:

Links.Theory and Applications. West Sussex: Wiley Blackwell, pp. 191-208.

Macdonald , K. & Prosser, P., 2002. A case study of constraint programming for configuration

problems. Rapp Tech. APES-45-2002, s.l.: APES Research Group.

Marti, M., 2007. Complexity Management. Optimizing Product Architecture of Industrial

Products, s.l.: Deutscher Universitäts-Verlag.

Mayer, W., Stumptner, M., Killisperger, P. & Grossman, G., 2011. A declarative framework

for work process configuration. Artificial Intelligence for Engineering, Design, Analysis and

Manufacturing , 25(2), pp. 143-162.

McDermott, J., 1982. R1: a rule based configurer of computer systems. Artificial Intelligence ,

19(1), pp. 39-88.

Meiri, I., 1996. Combining qualitative and quantitative constraints in temporal reasoning.

Artificial Intelligence , 87(1-2), pp. 343-385.

139 / 145

Meyer, M. & Lehnerd, A., 1997. The power of product platforms: Building value and cost

leadership. Free Press.

Miettinen, K., Ruiz|, F. & Wierzbicki, A., 2008. Introduction to Multiobjective Optimization:

Interactive Approaches. Multiobjective Optimization. Lecture Notes in Computer Science ,

Volume 5252, pp. 27-57.

Mittal, S. & Falkenhainer, B., 1990. Dynamics constraint satisfaction problems. Boston,

Massachusetts, AAAI Press, pp. 25-32.

Mittal, S. & Frayman, F., 1989. Towards a generic model of configuration tasks. Detroit,

Morgan Kaufmann Publishers Inc.

Montanari, U., 1974. Networks of constraints: Fundamental properties and applications to

picture processing. Information Sciences , Volume 7, pp. 95-132.

Monz, M., Küfer, K., Bortfeld, T. & Thieke, C., 2008. Pareto Navigation: Algorithm

Foundation of Interactive Multicriteria IMRT Planning. Physics in Medicine and Biology,

Volume 53, pp. 985-998.

Mouhoub, M. & Sukpan, A., 2005. A new temporal CSP Framework Handling Composite

Variables and Activity Constraints. Hong Kong, IEEE, pp. 143-149.

Mulyanto , T., 2002. Utilisation des techniques de programmation par contraintes pour la

conception d´avions. Doctoral Thesis , Toulouse : Écoles Nationale Supérieure de

l´Aéronautique et de l´Éspace.

Pine , B. J., 1993. Mass Customization: The New Frontier in Business Competition. Harvard

Business School Press.

Pitiot, P., Aldanondo , M. & Vareilles, E., 2014. Concurrent product configuration and process

planning: Some optimization experimental results. Computers in Industry , 65(4), pp. 610-621.

Pitiot, P. et al., 2013. Concurrent product configuration and process planning, towards an

approoach combining interactivity and optimality. International Journal of Production

Research , 51(2), pp. 524-541.

Pitiot, P. et al., 2019. Optimization of the concurrent product and process configuration: an

approach to reduce computation time with an experimental evaluation. International Journal of

Production Research.

140 / 145

Rechenberg, I., 1965. Cybernetic solution path of an experimental problem. Farnborough:

Royal Aircraft Establishment Library Translation.

Robertson , D. & Ulrich, K., 1998. Planning of product platforms. Sloan Management Review,

39(4), pp. 19-31.

Sabin , D. & Weigel, R., 1998. Product Configuration Framework- A Survey. IEEE Intelligent

Systems , 13(4), pp. 19-31.

Sabin, D. & Freuder, E., 1996. Configuration as Composite Constraint Satisfaction. California,

AAAI Press, pp. 153-161.

Schierholt, K., 2001. Process configuration: combining the principles of product configuration

and process planning. AI EDAM, 15(5), pp. 411-424.

Schierholt, K., 2001. Process Configuration: Mastering Knowledge intensive planning tasks,

Zurich : Hochschulverlag AG, ETH Zurich .

Sinha, A., Korhonen , P., Wallenius , J. & Deb, K., 2014. An Interactive Evolutionary

Multiobjective Optimization Algorithm with a Limited Number of Decision Maker Calls.

European Journal of Operational Research , 233(3), pp. 674-688.

Sinz, C., Kaiser, A. & Küchlin, W., 2003. Formal methods for the valdation of automotive

product configuration data.. Artificial Intelligence for Engineering Design, Analysis and

Manufacturing, Volume 17, pp. 75-97.

Soininen , T. & Niemela , T., 1999. Developing a declarative rule language for application in

product configuration. Berlin , Springer .

Soininen, T., Tiihonen, J., Mannisto, T. & Sulonen, R., 1998. Towards a General Ontology of

Configuration. Artificial Intelligence for Engineering Design, Analysis and Manufacturing,

12(4), pp. 357-372.

Soloway , E., Bachant, J. & Jensen, K., 1987. Assessing the maintainability of XCON in RIME:

coping with problem of very large rule bases.. Proceedings of the Sixth National Conference

on Artifical Intelligence (AAAI-87), pp. 113-125.

Song, W. & Chan, F., 2015. Multiobjetive configuration optimization for product extension

service. Journal of Manufacturing Systems , 37(Part I), pp. 113-125.

Srinivas, N. & Deb, K., 1994. Multiobjective function optimisation using nondominated sorting

in genetic algorithms. Evolutionary Computation , Volume 2, pp. 221-248.

141 / 145

Stewart, D., 1981. The design structure system. A method for managing the design of complex

systems.. IEEE Transactions on Engineering Management , Volume 28, pp. 71-74.

Stumptner , M., Friedrich, G. & Haselböck, A., 1998. Generative Contraint Based

Configuration of Large Technical Systems. Artifical Intelligence for Engineering Design,

Analysis and Manufacturing, pp. 307-320.

Stumptner, M. & Haselböck, A., 1993. A generative constraint formalism for configuration

problems. In: Advances in Artificial Intelligence . Berlin Heidelberg : Springer , pp. 302-313.

Subbarayan, 2006. http://www.itu.dk/research/cla/externals/clib/. [Online].

Suh, N., 1990. The principes od design. Oxford series and advanced manufacturing. Oxford

University Press.

Suh, N., 2001. Axiomatic Design: Advances and Applications.. Oxford University Press .

Tang, D., Wang, Q. & Ullah, I., 2017. Optimisation of product configuration in consideration

of customer satisfaction and low carbon. International Journal of Production Research, 55(12),

pp. 3349-3373.

Tiihonen , J., Mayer, W., Stumptner, M. & Heiskala, M., 2014. Chapter 21: Configuring

Services and Processes. In: Knowledge Based Configuration: From Research to Business

Cases. Waltham: Elsevier/Morgan Kaufmann, pp. 251-260.

Tsamardinos , I., Vidal , T. & Pollack, M., 2003. CTP: A new Constraint Based Formalism for

Conditional Temproal Planning. In: Constraints 8.4. USA: Springer, pp. 365-388.

Tsang, E., 1993. Foundations of Constraints Satisfaction. UK/USA: Academic Press Limited .

Ulrich , K. T. & Eppinger, S., 1995. Product Design and Development. USA: McGraw Hill.

Ulrich, K., 1995. The role of product architecture in the manufacturing firm. Research Policy

24. Elsevier Science B.V..

Van Oudenhove de Saint Gery , T., 2006. Contribution à l´élaboration d´un formalisme gérant

la pertinence pour les problèmes d´aide à la conception à base de constraintes. Doctoral

Thesis. , Toulouse : Institut National Polytecnique de Toulouse .

Vareilles , E., 2005. Conception et approches par propgation de contraintes: contribution à la

mise en ouevre d´un outils d´aide intéractif. Doctoral Thesis, Toulouse: Institut Nationale

Polytechnique de Toulouse.

142 / 145

Vareilles, E., 2015. Configuration interactive et contraintes: Connaissances, Filtrage et

Extensions. Mémoire d´HDR, Albi France: Écoles de Mines .

Vareilles, E. et al., 2012. CoFiADe Constraint Filtering for Aiding Design. Toulouse , JFPC

2012.

Veron, M., 2001. Modélisation et résolution du problème de configuration industrielle:

utilisation des techniques de satisfaction de contraintes. Doctoral Thesis , Toulouse : Institut

Polytechnique de Toulouse .

Veron, M., Fargier, H. & Aldanondo, M., 1999. From CSP to Configuration Problems.

California , AAAI.

Vilim, P., Bartak , R. & Cepek, O., 2004. Unary ressource constraint with optional activities.

Berlin, Springer, pp. 62-76.

Viswanathan , S. & Allada, V., 2006. Product configuration optimization for disassembly

planning: A differential approach. In Omega , 34(6), pp. 599-616.

Wagner, T., Beume, N. & Naujoks , B., 2007. Pareto, Aggregation and Indicator Based Methods

in Many Objective Optimization. In: Evolutionary Multicriterion Optimization. EMO 2007.

Lecture Notes in Computer Science . Berlin : Springer .

Wang, L., Sheng Zhong, S. & Jian Zhang , Y., 2015. Process configuration based on generative

constraint satisfaction problem. Journal of Intelligence Manufacturing , 28(4), pp. 945-952.

Wang, Y. & Tseng, M., 2012. A Two Step Hierarchical Product Configurator Design

Methodology . In: Foundations of Intelligent Systems. ISMIS 1012. Lecture Notes in Computer

Science . Berlin, Heidelberg: Springer .

Wei, W., Fan, W. & Li, Z., 2014. Multiobjective optimization and evaluation method of

modular product configuration design. International Journal of Advanced Manufacturing

Technology , 75(9-12), pp. 1527-1536.

Wu, D., Zhang, L. & Jiao, R., 2013. SysML based design chain information modeling for

variety management in production reconfiguration. Journal of Intelligent Manufacturing ,

24(3), pp. 575-596.

Xu, Z., 2005. Concurrent optimization of product module selection and assembly line

configuration: A multiobjective approach. Journal of Manufacturing Science and Engineering,

127(4), pp. 875-884.

143 / 145

Yadav, A., Kusum, D. & Sushil, K., 2012. An Harmonic Potential Well Based Particle Swarm

Optimization. Journal of Information and Operations Management, Volume 3.

Yannou, B., 1998. Les apports de la programmation par contraintes en conception. In:

Conception de produits mécaniques: méthodes, modèles et outils. Paris: D´HERMÉS, pp. 457-

486.

Zhang , L., 2007. Process platform based production configuration for mass customization.

Doctoral dissertation , Singapore : University of Singapore.

Zhang , L., Vareilles, E. & Aldanondo , M., 2013. Generic bill of functions, materials and

operations for SAP2 configuration.. International Journal for Production Research , 51(2), pp.

465-478.

Zhang , Q. & Li, H., 2007. MOEA/D: A Multi-Objective Evolutionary Algorithm Based on

Decomposition. IEEE Translation on Evolutionary Computation , 11(6), pp. 712-731.

Zhang, L., 2014. Product Configuration: A review of the state of the art and future research.

International Journal for Production Research , 52(21), pp. 6381-6388.

Zhang, L. & Rodrigues, B., 2010. Nested couloured timed Petri nets for production

configuration of product families. International Journal for Production Research , 48(6), pp.

1805-1833.

Zhang, L., Xu, Q., Yu, Y. & Jiao, R., 2012. Domain based production configuration with

constraint satisfaction. International Journal for Production Research, 50(24), pp. 7149-7166.

Zhou, C., Lin, Z. & Liu, C., 2008. Customer driven product configuration optimization for

assemble to order manufacturing enterprises. International Journal of Advanced Manufacturing

Technology , 38(1-2), pp. 185-194.

Zitzler, E., Laumanns, M. & Thiele , L., 2002. SPEA2: Improving the Strength Pareto

Evolutionary Algorithm for Multiobjective Optimization. Zurich, ETH, pp. 95-100.

Zitzler, E. & Thiele, L., 1998. Multiojective optmization using evolutionary algorithms-a

comparative case study. Berlin, Springer , pp. 291-301.

144 / 145

145 / 145

Appendices

Appendix 1: Specification of 8 Problem Cases

page 1 / 16

CASE 1: PLATFORM_MEDIUM_MEDIUM

A) MAIN CHARACTERISTICS OF THE REFERENCE CASE

The main characteristics of the Case 1: Platform_Medium_Medium which is a platform architecture

model is showed on figure 42. This reference case gathers:

• 3 modules

• 3 operations (in a serial architecture),

• 24 configuration variables in product side (14 fdv and 10 foc), each variable has 6 values in its

definition domain (solution space size without constraint around 1018).

• 6 configuration variables in process side (3 for and 3 qtr), each variable has also 6 values in its definition

domain (solution space for whole model around 1023).

• 9 PCEP patterns (three patterns for each module),

• 26 configuration constraints (12 intra-PCEP, 3 intra-module, 6 inter-module, 3 coupling

product/process and 2 inter-operation)

• 26 evaluation constraints (constraints needed to compute selling price and cycle time).

B) DIAGRAM OF THE MODEL

Figure 42-Case 1 Platform_Medium_Medium

page 2 / 16

One module, module 1, has a functional description with only Tpcep1 pattern (only functional

description and selling price variables). Another module, module 3, has component description with only

Tpcep2 patterns (only family of components and selling price variables). While the platform module,

module 2, gathers a selection of physical-functional description with mixed patterns. Each module is linked

to one operation by a coupling configuration constraint and each operation is linked to another operation

by a configuration constraint.

page 3 / 16

CASE 2: MODULAR_MEDIUM_MEDIUM

A. MAIN CHARACTERISTICS OF THE REFERENCE CASE

The main characteristics of the Case 2: Modular_Medium_Medium which is a modular architecture

model is showed on figure 43. This reference case gathers:

• 3 modules

• 3 operations (in a serial architecture),

• 24 configuration variables in product side (18 fdv and 6 foc), each variable has 6 values in its

definition domain (solution space size without constraint around 1018).

• 6 configuration variables in process side (3 for and 3 qtr), each variable has also 6 values in its definition

domain (solution space for whole model around 1023).

• 9 PCEP patterns (three patterns for each module),

• 26 configuration constraints (12 intra-PCEP, 3 intra-module, 6 inter-module, 3 coupling

product/process and 2 inter-operation)

• 26 evaluation constraints (constraints needed to compute selling price and cycle time).

B. DIAGRAM OF THE MODEL

Figure 43-Case 2:Modular_Medium_medium

page 4 / 16

One module, module 1, has a functional description with only Tpcep1 pattern (only functional

description and selling price variables). The module 3, has a physical-functional description with two

Tpcep1 patterns and one Tpcep2 pattern. Module 2 gathers a selection of physical-functional description

with mixed patterns (Tpcep3, Tpcep4 and Tpcep5). There is an interaction between all the modules. Each

module is linked to one operation by a coupling configuration constraints and each operation is linked to

another operation by a configuration constraint.

page 5 / 16

CASE 3: INTEGRATED_MEDIUM_MEDIUM

A) MAIN CHARACTERISTICS OF THE REFERENCE CASE

The main characteristics of the Case 3: Integrated_Medium_Medium which is a special modular

architecture model is showed on figure 44. This reference case gathers:

• 3 modules

• 3 operations (in a serial architecture),

• 24 configuration variables in product side (18 fdv and 6 foc), each variable has 6 values in its

definition domain (solution space size without constraint around 1018).

• 6 configuration variables in process side (3 for and 3 qtr), each variable has also 6 values in its definition

domain (solution space for whole model around 1023).

• 9 PCEP patterns (three patterns for each module),

• 26 configuration constraints (12 intra-PCEP, 3 intra-module, 6 inter-module, 3 coupling

product/process and 2 inter-operation)

• 26 evaluation constraints (constraints needed to compute selling price and cycle time).

B) DIAGRAM OF THE MODEL

Figure 44-Case 3:Integrated_Medium_Medium

page 6 / 16

One module, module 1, has a functional description with only Tpcep1 pattern (only functional

description and selling price variables). The module 3, has a physical-functional description with two

Tpcep1 patterns and one Tpcep2 pattern. Module 2 gathers a selection of physical-functional description

with mixed patterns (Tpcep3, Tpcep4 and Tpcep5). There is an interaction between all the modules. The

relationships between modules (inter-module constraint) have high density. Each module is linked to one

operation by a coupling configuration constraints and each operation is linked to another operation by a

configuration constraint.

page 7 / 16

CASE 4: PLATFORM_SMALL_MEDIUM

A) MAIN CHARACTERISTICS OF THE REFERENCE CASE

The main characteristics of the Case 4: Platform_Small_Medium which is a platform architecture model

is showed on figure 45. This reference case gathers:

• 3 modules

• 3 operations (in a serial architecture),

• 9 configuration variables in product side (5 fdv and 4 foc), each variable has 6 values in its definition

domain (solution space size without constraint around 1018).

• 6 configuration variables in process side (3 for and 3 qtr), each variable has also 6 values in its definition

domain (solution space for whole model around 1023).

• 4 PCEP patterns (one in module 1, two in module 2, one in module 3),

• 12 configuration constraints (3 intra-PCEP, 2 intra-module, 2 inter-module, 3 coupling product/process

and 2 inter-operation)

• 21 evaluation constraints (constraints needed to compute selling price and cycle time).

B) DIAGRAM OF THE MODEL

Figure 45-Case 4: Platform_Small_Medium

page 8 / 16

One module, module 1, has one component description with a Tpcep2 pattern (only one family of

component and selling price variable). Another module, module 3, has one functional description with a

Tpcep1 pattern (only one functional description and selling price variable). While the platform module,

module 2, gathers physical-functional description with two Tpcep3 patterns. Module1 and module 2 are

linked to one operation by a coupling configuration constraint and each operation is linked to another

operation by a configuration constraint.

page 9 / 16

CASE 5: PLATFORM_INTERMEDIATE_MEDIUM

A) MAIN CHARACTERISTICS OF THE REFERENCE CASE

The main characteristics of the Case 5: Platform_Intermediate_Medium which is a platform architecture

model is showed on figure 46. This reference case gathers:

• 7 modules

• 7 operations (in a serial architecture),

• 46 configuration variables in product side (30 fdv and 16 foc), each variable has 6 values in its

definition domain (solution space size without constraint around 1018).

• 14 configuration variables in process side (7 for and 7 qtr), each variable has also 6 values in its

definition domain (solution space for whole model around 1023).

• 18 PCEP patterns (twoo patterns for each module and six for the platform),

• 51 configuration constraints (12 intra-PCEP, 3 intra-module, 6 inter-module, 3 coupling

product/process and 2 inter-operation)

• 51 evaluation constraints (constraints needed to compute selling price and cycle time).

B) DIAGRAM OF THE MODEL

 Four modules (Module 1, 3, 5 and 6), have a functional description with only Tpcep1 pattern (only

functional description and selling price variables. Three modules (module 2 and 4), have component

description with only Tpcep2 patterns (only family of components and selling price variables). While

the platform module, module 7, gathers a selection of physical-functional description with mixed

patterns (Tpcep3, Tpcep4 and Tpcep5). Six modules (Module 1, 3, 4, 5, 6 and the Platform) are linked

to one operation by a coupling configuration constraint and each operation is linked to another operation

by a configuration constraint.

page 10 / 16

Figure 46-Case 5: PLATFORM_INTERMEDIATE_MEDIUM

page 11 / 16

CASE 6: PLATFORM_LARGE_MEDIUM

A) MAIN CHARACTERISTICS OF THE REFERENCE CASE

The main characteristics of the Case 6: Platform_Large_Medium which is a platform architecture model

is showed on figure 47. This reference case gathers:

• 10 modules

• 10 operations (in a serial architecture),

• 79 configuration variables in product side (46 fdv and 33 foc), each variable has 6 values in its

definition domain (solution space size without constraint around 1018).

• 20 configuration variables in process side (10 for and 10 qtr), each variable has also 6 values in its

definition domain (solution space for whole model around 1023).

• 29 PCEP patterns (twoo patterns for each module and eleven for the platform),

• 82 configuration constraints (33 intra-PCEP, 10 intra-module, 20 inter-module, 10 coupling

product/process and 9 inter-operation)

• 74 evaluation constraints (constraints needed to compute selling price and cycle time).

B) DIAGRAM OF THE MODEL

 Five modules (Module 1, 3, 5, 7 and 9), have a functional description with only Tpcep1 pattern (only

functional description and selling price variables. Four modules (module 2, 4, 6 and 8), have component

description with only Tpcep2 patterns (only family of components and selling price variables). While

the platform module, module 10, gathers a selection of physical-functional description with mixed

patterns (Tpcep3, Tpcep4 and Tpcep5). The ten modules are linked to one operation by a coupling

configuration constraint and each operation is linked to another operation by a configuration constraint.

page 12 / 16

Figure 47- CASE 6: PLATFORM_LARGE_MEDIUM

page 13 / 16

CASE 7: PLATFORM_MEDIUM_HIGH

A) MAIN CHARACTERISTICS OF THE REFERENCE CASE

The main characteristics of the Case 7: Platform_Medium_High which is a platform architecture model

is showed on figure 48. This reference case gathers:

• 3 modules

• 3 operations (in a serial architecture),

• 24 configuration variables in product side (14 fdv and 10 foc), each variable has 6 values in its

definition domain (solution space size without constraint around 1018).

• 6 configuration variables in process side (3 for and 3 qtr), each variable has also 6 values in its definition

domain (solution space for whole model around 1023).

• 9 PCEP patterns (three patterns for each module),

• 26 configuration constraints (12 intra-PCEP, 3 intra-module, 6 inter-module, 3 coupling

product/process and 2 inter-operation)

• 26 evaluation constraints (constraints needed to compute selling price and cycle time).

B) DIAGRAM OF THE MODEL

Figure 48- Case 7:Platform_Medium_High

page 14 / 16

One module, module 1, has a functional description with only Tpcep1 pattern (only functional

description and selling price variables). Another module, module 3, has component description with only

Tpcep2 patterns (only family of components and selling price variables). While the platform module,

module 2, gathers a selection of physical-functional description with mixed patterns. Each module is linked

to one operation by a coupling configuration constraints and each operation is linked to another operation

by a configuration constraint. This model is similar to the first one (Case 1:

Platform_Medium_Medium except by the constraint densities. In this case all the configuration

constraints have high density.

page 15 / 16

CASE 8: PLATFORM_MEDIUM_LOW

A) MAIN CHARACTERISTICS OF THE REFERENCE CASE

The main characteristics of the Case 8: Platform_Medium_Low which is a platform architecture model

is showed on figure 49. This reference case gathers:

• 3 modules

• 3 operations (in a serial architecture),

• 24 configuration variables in product side (14 fdv and 10 foc), each variable has 6 values in its

definition domain (solution space size without constraint around 1018).

• 6 configuration variables in process side (3 for and 3 qtr), each variable has also 6 values in its definition

domain (solution space for whole model around 1023).

• 9 PCEP patterns (three patterns for each module),

• 26 configuration constraints (12 intra-PCEP, 3 intra-module, 6 inter-module, 3 coupling

product/process and 2 inter-operation)

• 26 evaluation constraints (constraints needed to compute selling price and cycle time).

B) DIAGRAM OF THE MODEL

Figure 49- Case 8:Platform_Medium_Low

page 16 / 16

One module, module 1, has a functional description with only Tpcep1 pattern (only functional

description and selling price variables). Another module, module 3, has component description with only

Tpcep2 patterns (only family of components and selling price variables). While the platform module,

module 2, gathers a selection of physical-functional description with mixed patterns. Each module is linked

to one operation by a coupling configuration constraints and each operation is linked to another operation

by a configuration constraint. This model is similar to the first one (Case 1:

Platform_Medium_Medium except by the constraint densities. In this case the internal relationships

(intra-PCEP constraints and intra-module constraints) have high density. The inter-modules

constraints, coupling constraints and inter-operation constraints have low density.

Résumé

Configuration à base de connaissances : une contribution à la modélisation générique, à l'évaluation et à l'optimisation

évolutionnaire

Dans un contexte de personnalisation de masse, la configuration concourante du produit et de son processus d’obtention

constituent un défi industriel important : de nombreuses options ou alternatives, de nombreux liens ou contraintes et un besoin

d’optimisation des choix réalisés doivent être pris en compte. Ce problème est intitulé O-CPPC (Optimization of Concurrent

Product and Process Configuration). Nous considérons ce problème comme un CSP (Constraints Satisfaction Problem) et

l’optimisons avec des algorithmes évolutionnaires. Un état de l’art fait apparaître : i) que la plupart des travaux de recherche sont

illustrées sur des exemples spécifiques à un cas industriel ou académique et peu représentatifs de la diversité existante ; ii) un

besoin d’amélioration des performances d’optimisation afin de gagner en interactivité et faire face à des problèmes de taille plus

conséquente. En réponse au premier point, ces travaux de thèse proposent les briques d’un modèle générique du problème O-

CPPC. Ces briques permettent d’architecturer le produit et son processus d’obtention. Ce modèle générique est utilisé pour

générer un benchmark réaliste pour évaluer les algorithmes d’optimisation. Ce benchmark est ensuite utilisé pour analyser la

performance de l’approche évolutionnaire CFB-EA. L’une des forces de cette approche est de proposer rapidement un front de

Pareto proche de l’optimum. Pour répondre au second point, une amélioration de cette méthode est proposée puis évaluée. L’idée

est, à partir d’un premier front de Pareto approximatif déterminé très rapidement, de demander à l’utilisateur de choisir une zone

d’intérêt et de restreindre la recherche de solutions uniquement sur cette zone. Cette amélioration entraine des gains de temps de

calcul importants.

 Mots Clés : Évaluation, Modèle générique, Configuration de produit, Configuration de processus, Configuration concurrente,

Optimisation évolutionnaire

Abstract

Knowledge-Based Configuration: A contribution to generic modeling, evaluation, and evolutionary optimization

In a context of mass customization, the concurrent configuration of the product and its production process constitute an important

industrial challenge: Numerous options or alternatives, numerous links or constraints and a need to optimize the choices made.

This problem is called O-CPPC (Optimization of Concurrent Product and Process Configuration). We consider this problem as

a CSP (Constraints Satisfaction Problem) and optimize it with evolutionary algorithms. A state of the art shows that: i) most

studies are illustrated with examples specific to an industrial or academic case and not representative of the existing diversity;

ii) a need to improve optimization performance in order to gain interactivity and face larger problems. In response to the first

point, this thesis proposes a generic model of the O-CPPC problem. This generic model is used to generate a realistic benchmark

for evaluating optimization algorithms. This benchmark is then used to analyze the performance of the CFB-EA evolutionary

approach. One of the strengths of this approach is to quickly propose a Pareto front near the optimum. To answer the second

point, an improvement of this method is proposed and evaluated. The idea is, from a first approximate Pareto front, to ask the

user to choose an area of interest and to restrict the search for solutions only on this area. This improvement results in significant

computing time savings.

Keywords: Evaluation, Generic model, Product configuration, Process configuration, Concurrent configuration, Evolutionary

optimization

