R. Komanduri and M. C. Shaw, Galling wear of materials at high speed sliding contact, Wear, vol.33, issue.2, pp.283-292, 1975.

K. Hsu, T. M. Ahn, and D. A. Rigney, Friction, wear and microstructure of unlubricated austenitic stainless steels, Wear, vol.60, issue.1, pp.13-37, 1980.

B. Barzdajn, A. T. Paxton, D. Stewart, and F. P. Dunne, A Crystal Plasticity Assessment of Normally-loaded Sliding Contact in Rough Surfaces and Galling, J. Mech. Phys. Solids, 2018.

, ASTM G40,Terms and Definitions Relating to Wear and Erosion, 2008.

J. A. Siefert and S. S. Babu, Experimental observations of wear in specimens tested to ASTM G98, Wear, vol.320, pp.111-119, 2014.

T. Lesage, S. Bouvier, P. Jacquot, M. Risbet, Y. Chen et al., Galling characterization and classification in several stainless steels, 2018.

C. Hubert, J. Marteau, R. Deltombe, Y. M. Chen, and M. Bigerelle, Roughness characterization of the galling of metals, Surf. Topogr. Metrol. Prop, vol.2, issue.3, p.34002, 2014.

B. M. Voss, M. P. Pereira, B. F. Rolfe, and M. C. Doolan, A new methodology for measuring galling wear severity in high strength steels, Wear, pp.334-345, 2017.

S. R. Hummel and J. Helm, Repeatability Estimation in Galling Resistance Testing, J. Tribol, vol.132, issue.4, pp.44504-044504, 2010.

P. Friedrich, C. Herve, Y. Chen, D. Caze, and T. Lesage, Galling detection by acoustic emission according to ASTM G98," presented at the Metallic Materials and processes: Industrial challenges, 2017.

Y. Xie and M. X. Yao, Measurement of the threshold galling stress of hardfacing alloys, Wear, vol.255, issue.1-6, pp.509-516, 2003.

W. Wang, K. Wang, Y. Zhao, M. Hua, and X. Wei, A study on galling initiation in friction coupling stretch bending with advanced high strength hot-dip galvanized sheet, Wear, pp.286-294, 2015.

K. G. Budinski and S. T. Budinski, Interpretation of galling tests, Wear, pp.1185-1192, 2015.

G. W. Stachowiak and A. W. Batchelor, , 2001.

T. Kayaba and K. Kato, The analysis of adhesive wear mechanism by successive observations of the wear process in SEM, presented at the Proc. Int. Conf. on Wear of Materials, Deaborn, 1979.

B. Podgornik, S. Hogmark, and J. Pezdirnik, Comparison between different test methods for evaluation of galling properties of surface engineered tool surfaces, Wear, vol.257, issue.7, pp.843-851, 2004.

A. Gåård, P. Krakhmalev, and J. Bergström, Wear mechanisms in deep drawing of carbon steel -correlation to laboratory testing, Tribotest, vol.14, issue.1, pp.1-9, 2008.

Y. Chen, How to improve galling resistance testing with ASTM G98 standard, 2016.

R. A. Waite, S. R. Hummel, A. Herr, and G. Dalton, Analysis of the stress field in a threshold-galling test, Tribol. Int, vol.39, issue.11, pp.1421-1427, 2006.

S. R. Hummel, Development of a galling resistance test method with a uniform stress distribution, Tribol. Int, vol.41, issue.3, pp.175-180, 2008.

, ASTM G196-08 Standard Test Method for Galling Resistance of Material Couples, 2008.

S. Hogmark, S. Jacobson, and O. Wänstrand, A new universal test for tribological evaluation, 1999.

U. Wiklund and I. M. Hutchings, Investigation of surface treatments for galling protection of titanium alloys, Wear, vol.251, issue.1-12, pp.1034-1041, 2001.

B. Bhushan, Introduction to tribology, 2, 2013.

S. Hatami, A. Nafari, L. Nyborg, and U. Jelvestam, Galling related surface properties of powder metallurgical tool steels alloyed with and without nitrogen, Wear, vol.269, issue.3-4, pp.229-240, 2010.

S. Comittee-of, Review of wear and galling -Characteristics of stainless steel, 1978.

M. Hanson, On adhesion and galling in metal forming, Acta Universitatis Upsaliensis, 2008.

T. Klünsner, F. Zielbauer, S. Marsoner, M. Deller, M. Morstein et al., Influence of surface topography on early stages on steel galling of coated WC-Co hard metals, Int. J. Refract. Met. Hard Mater, vol.57, pp.24-30, 2016.

H. Choi, S. Kim, P. Seo, B. Kim, B. Cha et al., Experimental investigation on galling performance of tool steel in stamping of UHSS sheets, Int. J. Precis. Eng. Manuf, vol.15, issue.6, pp.1101-1107, 2014.

B. Podgornik, S. Hogmark, and O. Sandberg, Proper coating selection for improved galling performance of forming tool steel, Wear, vol.261, issue.1, pp.15-21, 2006.

J. Vikström, Galling resistance of hardfacing alloys replacing Stellite, Wear, vol.179, issue.1-2, pp.143-146, 1994.

P. A. Swanson, L. K. Ives, E. P. Whitenton, and M. B. Peterson, A study of the galling of two steels using two test methods, Wear, vol.122, issue.2, pp.207-223, 1988.

B. Podgornik and J. Jerina, Surface topography effect on galling resistance of coated and uncoated tool steel, Surf. Coat. Technol, vol.206, issue.11-12, pp.2792-2800, 2012.

L. M. Vilhena, B. Podgornik, J. Vi?intin, and J. Mo?ina, Influence of texturing parameters and contact conditions on tribological behaviour of laser textured surfaces, Meccanica, vol.46, issue.3, pp.567-575, 2011.

D. Ko, S. Kim, and B. Kim, Influence of microstructure on galling resistance of cold-work tool steels with different chemical compositions when sliding against ultrahigh-strength steel sheets under dry condition, Wear, pp.362-371, 2015.

I. Boromei, L. Ceschini, A. Marconi, and C. Martini, A duplex treatment to improve the sliding behavior of AISI 316L: Low-temperature carburizing with a DLC (a-C:H) topcoat, Wear, vol.302, issue.1-2, pp.899-908, 2013.

T. Sato, T. Besshi, I. Tsutsui, and T. Morimoto, Anti-galling property of a diamondlike carbon coated tool in aluminum sheet forming, J. Mater. Process. Technol, vol.104, issue.1-2, pp.21-24, 2000.

B. Podgornik, M. Sedla?ek, and J. Vi?intin, Influence of contact conditions on tribological behaviour of DLC coatings, Surf. Coat. Technol, vol.202, issue.4-7, pp.1062-1066, 2007.

B. Podgornik, F. Kafexhiu, T. Kosec, J. Jerina, and M. Kalin, Friction and anti-galling properties of hexagonal boron nitride (h-BN) in aluminium forming, Wear, 2017.

S. C. Agarwal and H. Ocken, The microstructure and galling wear of a laser-melted cobalt-base hardfacing alloy, Wear, vol.140, issue.2, pp.223-233, 1990.

P. Jacquot, B. Stauder, and J. Varlet, Amélioration des propriétés tribologiques d'aciers inoxydables, Trait. Matér, 2012.

P. Jacquot, Amélioration des propriétés tribologiques d'aciers inoxydables

K. Farrell, E. D. Specht, J. Pang, L. R. Walker, A. Rar et al., Characterization of a carburized surface layer on an austenitic stainless steel, J. Nucl. Mater, vol.343, issue.1-3, pp.123-133, 2005.

P. Gümpel and M. Wägner, Improving hardness and wear resistance of austenitic stainless steel, MTZ Worldw, vol.71, issue.9, pp.50-53, 2010.

O. Rey and P. Jacquot, Kolsterising: Hardening of austenitic stainless steel, Surf. Eng, vol.18, issue.6, pp.412-414, 2002.

M. C. Conti, A. Karl, P. S. Wismayer, and J. Buhagiar, Biocompatibility and characterization of a Kolsterised® medical grade cobalt-chromium-molybdenum alloy, vol.4, p.27713, 2014.

B. M. Pederson, Kinematics of Rolling Element Bearings, pp.1889-1892, 2013.

M. A. Somers and T. L. Christiansen, Low temperature surface hardening of stainless steel, Thermochemical Surface Engineering of Steels, pp.557-579, 2015.

P. Groche and G. Nitzsche, Influence of temperature on the initiation of adhesive wear with respect to deep drawing of aluminum-alloys, J. Mater. Process. Tech, vol.1, issue.3, pp.314-316, 2007.

E. C. Cutiongco and Y. Chung, Prediction of scuffing failure based on competitive kinetics of oxide formation and removal: Application to lubricated sliding of AISI 52100 steel on steel, Tribol. Trans, vol.37, issue.3, pp.622-628, 1994.

A. Gåård, Influence of tool microstructure on galling resistance, Tribol. Int, vol.57, pp.251-256, 2013.

K. C. Antony, Wear-Resistant Cobalt-Base Alloys, JOM, vol.35, issue.2, pp.52-60, 1983.

K. J. Bhansali and A. E. Miller, The role of stacking fault energy on galling and wear behavior, vol.75, pp.241-252, 1982.

F. Rotundo, L. Ceschini, C. Martini, R. Montanari, and A. Varone, High temperature tribological behavior and microstructural modifications of the low-temperature carburized AISI 316L austenitic stainless steel, Surf. Coat. Technol, vol.258, pp.772-781, 2014.

I. V. Kragelsky and N. M. Alekseev, On the Calculation of Seizure Considering the Plastic Flow of the Surficial Layers, J. Lubr. Technol, vol.98, issue.1, pp.133-138, 1976.

E. Schedin and B. Lehtinen, Galling mechanisms in lubricated systems: A study of sheet metal forming, Wear, vol.170, issue.1, pp.119-130, 1993.

T. Arai and Y. Tsuchiya, Role of carbide and nitride in antigalling property, Met. Transf. Galling Met. Syst, pp.198-216, 1986.

S. Hatami, L. Nyborg, and J. Krona, Wear mechanisms of tool steels used in PM pressing dies, Powder Metallurgy and Particulate Materials -2008, Proceedings of the 2008 World Congress on Powder Metallurgy and Particulate Materials, PowderMet, pp.10104-10118, 2008.

K. G. Budinski, Incipient galling of metals, Wear, vol.74, issue.1, pp.93-105, 1981.

A. Gåård, P. Krakhmalev, and J. Bergström, Influence of tool steel microstructure on origin of galling initiation and wear mechanisms under dry sliding against a carbon steel sheet, Wear, vol.267, issue.1-4, pp.387-393, 2009.

I. Heikkilä, Influence of tool steel microstructure on galling resistance against stainless steel, Tribology Series, vol.43, pp.641-649, 2003.

K. C. Anthony, Wear-resistant cobalt-free alloys, J. Mechnical Eng. Technol, vol.35, issue.2, pp.52-60, 1983.

D. H. Buckley, The Influence of the Atomic Nature of Crystalline Materials on Friction, E Trans, vol.11, issue.2, pp.89-100, 1968.

, Adhesion and Adhesive Wear, Tribology Series, vol.24, pp.613-635, 1993.

D. Arpan, Revisiting stacking fault energy of steels, Metall. Mater. Trans. A, 2015.

H. Gholizadeh, The influence of alloying and tempearature on the stacking-fault energy of iron-based alloys, 2013.

R. Smith, Development of a gall-resistant stainless-steel hardfacing alloy, Mater. Des

S. Curtze, V. Kuokkala, A. Oikari, J. Talonen, and H. Hänninen, Thermodynamic modeling of the stacking fault energy of austenitic steels, Acta Mater, vol.59, issue.3, pp.1068-1076, 2011.

H. M. Otte, The formation of stacking faults in austenite and its relation to martensite, Acta Metall, vol.5, issue.11, pp.614-627, 1957.

E. K. Ohriner, T. Wada, E. P. Whelan, and H. Ocken, The chemistry and structure of wear-resistant, iron-base hardfacing alloys, Metall. Trans. A, vol.22, issue.5, pp.983-991, 1991.

H. Ocken, The galling wear resistance of new iron-base hardfacing alloys: a comparison with established cobalt-and nickel-base alloys, p.6

Z. Y. Yang, M. G. Naylor, and D. A. Rigney, Sliding wear of 304 and 310 stainless steels, Wear, vol.105, issue.1, pp.73-86, 1985.

G. B. Olson and M. Cohen, A general mechanism of martensitic nucleation: Part I. General concepts and the FCC ? HCP transformation, Metall. Trans. A, vol.7, issue.12, pp.1897-1904, 1976.

K. Lee, S. Lee, Y. Kim, H. S. Hong, Y. Oh et al., The effects of additive elements on the sliding wear behavior of Fe-base hardfacing alloys, Wear, vol.255, issue.1, pp.481-488, 2003.

W. J. Schumacher and H. Tanczyn, Galling resistant austenitic stainless steel, 1975.

J. H. Dumbleton and J. A. Douthett, The unlubricated adhesive wear resistance of metastable austenitic stainless steels containing silicon, Wear, vol.42, issue.2, pp.305-332, 1977.

, American iron and steel institute, Designers Handbook Series, Review of the Wear and Galling Characteristics of Stainless Steel. Committee of Stainless Steel Producers, American Iron and Steel Institute, 1978.

L. Pelcastre, J. Hardell, and B. Prakash, Galling mechanisms during interaction of tool steel and Al-Si coated ultra-high strength steel at elevated temperature, Tribol. Int, vol.67, pp.263-271, 2013.

E. Schedin, Galling mechanisms in sheet forming operations, Wear, vol.179, issue.1, pp.123-128, 1994.

A. Saidoun, C. Herve, Y. M. Chen, T. Lesage, and S. Bouvier, Galling detection by acoustic emission (AE) according to ASTM G98, 2018.

I. 1. Morphologie-de-surface and .. .. ,

, 55 I.1.b. Micro-indentation et nano-indentation

I. , Caractérisation de la composition chimique et des phases en présence

. Ii,

, II.1. Nuances d'acier inoxydable retenues

, Sélection des nuances d'aciers inoxydables

P. .. ,

E. J. Abbott and F. A. Firestone, Specifying surface quality: a method based on accurate measurement and comparison, Mechanical Engineering, pp.569-572, 1933.

S. Johansson, P. H. Nilsson, R. Ohlsson, C. Anderberg, and B. Rosén, New cylinder liner surfaces for low oil consumption, Tribol. Int, vol.41, issue.9, pp.854-859, 2008.

I. Boromei, L. Ceschini, A. Marconi, and C. Martini, A duplex treatment to improve the sliding behavior of AISI 316L: Low-temperature carburizing with a DLC (a-C:H) topcoat, Wear, vol.302, issue.1-2, pp.899-908, 2013.

K. Hsu, T. M. Ahn, and D. A. Rigney, Friction, wear and microstructure of unlubricated austenitic stainless steels, Wear, vol.60, issue.1, pp.13-37, 1980.

J. Wang, H. Zou, C. Li, R. Zuo, S. Qiu et al., Relationship of microstructure transformation and hardening behavior of type 17-4 PH stainless steel, J. Univ. Sci. Technol. Beijing Miner. Metall. Mater, vol.13, issue.3, pp.235-239, 2006.

J. H. Dumbleton and J. A. Douthett, The unlubricated adhesive wear resistance of metastable austenitic stainless steels containing silicon, Wear, vol.42, issue.2, pp.305-332, 1977.

W. J. Schumacher, Wear and galling can knock out equipment, Chemical Engineering, pp.155-160, 1977.

C. Herve, P. Friedrich, Y. Chen, and D. Caze, Galling detection by acoustic emission according to ASTM G98

P. Jacquot, B. Stauder, and J. Varlet, Amélioration des propriétés tribologiques d'aciers inoxydables, 2010.

, Brochure commerciale : 'Spotlight S3P Ductility', Société Bodycote

S. R. Collins, P. C. Williams, and S. V. Marx, Low-temperature carburization of austenitic stainless steels, ASM Handbook, vol.4, 2014.

, Brochure commerciale : 'Spotlight : Surface hardening of martensitic and Precipitation Hardened stainless steels' -Société Bodycote

B. Stauder, P. Jacquot, G. Prunel, O. Rey, and M. Buvron, Influence de la cémentation : basse température sur la résistance au grippage et à l'usure des aciers inoxydables austénitiques, Trait. Therm, vol.349, p.132, 2003.

J. A. Siefert and S. S. Babu, Experimental observations of wear in specimens tested to ASTM G98, Wear, vol.320, pp.111-119, 2014.

, Adhesion and Adhesive Wear, Tribology Series, vol.24, pp.613-635, 1993.

K. G. Budinski, Incipient galling of metals, Wear, vol.74, issue.1, pp.93-105, 1981.

W. J. Schumacher and H. Tanczyn, Galling resistant austenitic stainless steel, 1975.

S. Johansson, P. H. Nilsson, R. Ohlsson, C. Anderberg, and B. Rosén, New cylinder liner surfaces for low oil consumption, Tribol. Int, vol.41, issue.9, pp.854-859, 2008.

G. W. Stachowiak and A. W. Batchelor, , 2001.

C. Rodenburg and W. M. Rainforth, A quantitative analysis of the influence of carbides size distributions on wear behaviour of high-speed steel in dry rolling/sliding contact, Acta Mater, vol.55, issue.7, pp.2443-2454, 2007.

P. Karlsson, A. Gåård, P. Krakhmalev, and J. Bergström, Galling resistance and wear mechanisms for cold-work tool steels in lubricated sliding against high strength stainless steel sheets, Wear, pp.92-97, 2012.

E. Schedin, Galling mechanisms in sheet forming operations, Wear, vol.179, issue.1, pp.123-128, 1994.

R. A. Waite, S. R. Hummel, A. Herr, and G. Dalton, Analysis of the stress field in a threshold-galling test, Tribol. Int, vol.39, issue.11, pp.1421-1427, 2006.

N. Solomon and I. Solomon, Deformation induced martensite in AISI 316 stainless steel, Rev. Metal, vol.46, issue.2, pp.121-128, 2010.

K. Spencer, M. Véron, K. Yu-zhang, and J. D. Embury, The strain induced martensite transformation in austenitic stainless steels: Part 1 -Influence of temperature and strain history, Mater. Sci. Technol, vol.25, issue.1, pp.7-17, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00436698

I. R. Souza-filho, Effects of strain-induced martensite and its reversion on the magnetic properties of AISI 201 austenitic stainless steel, J. Magn. Magn. Mater, vol.419, pp.156-165, 2016.

H. F. De-abreu, Deformation induced martensite in an AISI 301LN stainless steel: characterization and influence on pitting corrosion resistance, Mater. Res, vol.10, issue.4, pp.359-366, 2007.

K. Verbeken, N. Van-caenegem, and D. Raabe, Identification of ? martensite in a Febased shape memory alloy by means of EBSD, Micron, vol.40, issue.1, pp.151-156, 2009.

E. Ishimaru, H. Hamasaki, and F. Yoshida, Deformation-induced Martensitic Transformation and Workhardening of Type 304 Stainless Steel Sheet During Drawbending, Procedia Eng, vol.81, pp.921-926, 2014.

K. C. Anthony, Wear-resistant cobalt-free alloys, J. Mechnical Eng. Technol, vol.35, issue.2, pp.52-60, 1983.

D. H. Buckley, Chapter 8 Lubrication of Solid Surfaces, Tribology Series, vol.5, pp.511-552, 1981.

T. Angel, Formation of martensite in austenitic stainless steel, J Iron Steel Inst, vol.181, pp.165-174, 1954.

R. Naraghi, Martensitic Transformation in Austenitic Stainless Steels, 2009.

I. Karaman, H. Sehitoglu, Y. I. Chumlyakov, and H. J. Maier, The deformation of lowstacking-fault-energy austenitic steels, JOM, vol.54, issue.7, pp.31-37, 2002.

D. T. Pierce, J. A. Jiménez, J. Bentley, D. Raabe, and J. E. Wittig, The influence of stacking fault energy on the microstructural and strain-hardening evolution of Fe-Mn-Al-Si steels during tensile deformation, Acta Mater, vol.100, pp.178-190, 2015.

R. Song, C. Cai, S. Liu, Y. Feng, and Z. Pei, Stacking fault energy and compression deformation behavior of ultra-high manganese steel, Procedia Eng, vol.207, pp.1809-1814, 2017.

K. J. Bhansali and A. E. Miller, The role of stacking fault energy on galling and wear behavior, vol.75, pp.241-252, 1982.

J. P. Hirth and D. A. Rigney, Crystal plasticity and the delamination theory of wear, Wear, vol.39, issue.1, pp.133-141, 1976.

D. Arpan, Revisiting stacking fault energy of steels, Metall. Mater. Trans. A, 2015.

H. Gholizadeh, The influence of alloying and tempearature on the stacking-fault energy of iron-based alloys, 2013.

L. Rémy, A. Pineau, and B. Thomas, Temperature dependence of stacking fault energy in close-packed metals and alloys, Mater. Sci. Eng, vol.36, issue.1, pp.47-63, 1978.

R. E. Schramm and R. P. Reed, Stacking fault energies of seven commercial austenitic stainless steels, Metall. Trans. A, vol.6, issue.7, pp.1345-1351, 1975.

Q. X. Dai, X. N. Cheng, X. M. Luo, and Y. T. Zhao, Structural parameters of the martensite transformation for austenitic steels, Mater. Charact, vol.49, issue.4, pp.367-371, 2002.

T. Yonezawa, K. Suzuki, S. Ooki, and A. Hashimoto, The Effect of Chemical Composition and Heat Treatment Conditions on Stacking Fault Energy for Fe-Cr-Ni Austenitic Stainless Steel, Metall. Mater. Trans. A, vol.44, issue.13, pp.5884-5896, 2013.

M. Ojima, Weak Beam TEM Study on Stacking Fault Energy of High Nitrogen Steels, Steel Res. Int, vol.80, issue.7, pp.477-481, 2009.

D. Qi-xun, C. X. .-n.-wang-an-dong, and L. Xin-min, Stacking fault energy of cryogenic austenitic steels, Chin. Phys, vol.11, issue.6, p.596, 2002.

G. Meric-de-bellefon, J. C. Van-duysen, and K. Sridharan, Composition-dependence of stacking fault energy in austenitic stainless steels through linear regression with random intercepts, J. Nucl. Mater, vol.492, pp.227-230, 2017.

P. Jacquot, B. Stauder, and J. Varlet, Amélioration des propriétés tribologiques d'aciers inoxydables, 2010.

B. Stauder, P. Jacquot, G. Prunel, O. Rey, and M. Buvron, Influence de la cémentation : basse température sur la résistance au grippage et à l'usure des aciers inoxydables austénitiques, Trait. Therm, vol.349, pp.27-30, 2003.

D. A. Hughes, N. Hansen, and D. J. Bammann, Geometrically necessary boundaries, incidental dislocation boundaries and geometrically necessary dislocations, Scr. Mater, vol.48, issue.2, pp.147-153, 2003.

Q. Liu and N. Hansen, Geometrically necessary boundaries and incidental dislocation boundaries formed during cold deformation, Scr. Metall. Mater, vol.32, issue.8, pp.1289-1295, 1995.

D. H. Buckley, The Influence of the Atomic Nature of Crystalline Materials on Friction, E Trans, vol.11, issue.2, pp.89-100, 1968.

T. Watanabe, Approach to grain boundary design for strong and ductile polycrystals, Res Mech. Int. J. Struct. Mech. Mater. Sci, vol.11, issue.1, pp.47-84, 1984.

G. S. Rohrer, Grain boundary energy anisotropy: a review, J. Mater. Sci, vol.46, issue.18, pp.5881-5895, 2011.

C. Fu, Grain boundary engineering for control of tellurium diffusion in GH3535 alloy, J. Nucl. Mater, vol.497, pp.76-83, 2017.

B. C. De-cooman, Y. Estrin, and S. K. Kim, Twinning-induced plasticity (TWIP) steels, Acta Mater, vol.142, pp.283-362, 2018.

L. Priester, Grain boundaries: from theory to engineering, 2013.

W. Cao, Effects of initial microstructure on the grain boundary network during grain boundary engineering in Hastelloy N alloy, J. Alloys Compd, vol.704, pp.724-733, 2017.

S. O. Gashti, A. Fattah-alhosseini, Y. Mazaheri, and M. K. Keshavarz, Effects of grain size and dislocation density on strain hardening behavior of ultrafine grained AA1050 processed by accumulative roll bonding, J. Alloys Compd, vol.658, pp.854-861, 2016.

V. Gärtnerová, A. Singh, A. Jäger, and T. Mukai, Deformation behavior of ultra-finegrained Mg-0.3 at% Al alloy in compression, J. Alloys Compd, vol.726, pp.651-657, 2017.

R. Jamaati, M. R. Toroghinejad, S. Amirkhanlou, and H. Edris, Production of nanograin microstructure in steel nanocomposite, Mater. Sci. Eng. A, vol.638, pp.143-151, 2015.

X. Lu, X. Zhang, M. Shi, F. Roters, G. Kang et al., Dislocation mechanism based size-dependent crystal plasticity modeling and simulation of gradient nano-grained copper, Int. J. Plast, vol.113, pp.52-73, 2019.

, Propriétés des matériaux après essai de grippage à 350 MPa

, Sont indiquées sur fond vert les propriétés pour lesquelles le Nitronic60 se distingue des autres nuances. Le symbole « ? » indique l'absence de mesures et le symbole « / » indique que les valeurs sont nulles ou non applicables, Synthèse des propriétés des aciers non traités après essai de grippage à 350 MPa, vol.2

, Propriétés des matériaux traités avant essai de grippage

, Sont indiquées sur fond vert les propriétés pour lesquelles le traitement de surface modifie les propriétés des aciers. Le symbole « ? » indique l'absence de mesures et le symbole « / » indique que les valeurs sont nulles ou non applicables pour la nuance d'acier considérée. entière. La température à coeur d'échantillon étant négligeable, Synthèse des propriétés des aciers ayant différents traitements S 3 P avant essai, vol.3

, Plusieurs des pistes évoquées au cours de cette thèse nécessitent des essais complémentaires. Notamment, l'impact de la composition chimique sur la résistance au grippage nécessite des études plus poussées que celles présentées dans la littérature. Idéalement, il faudrait utiliser une seule nuance d'acier inoxydable et faire varier son taux de silicium

, En effet, les marques d'usure de faibles dimensions observées en surface malgré l'absence de grippage altèrent la microstructure en proche surface. Après rotations, les marques d'usure donnent-elles lieu à l'apparition du grippage ? Si cela est le cas, le grippage intervient-il lorsque la microstructure de la couche traitée devient fortement désorientée ? Des essais réalisés à des pressions très supérieures à 350 MPa (e.g. 1000 MPa) permettraient d'étudier plus précisément les limites des traitements S 3 P. En particulier, pour le 174-M-350, le grippage localisé en périphérie à 350 MPa se retrouve-t-il sur des rayons plus importants à plus haute pression ? La couche nitrurée de la couche M est-elle vraiment fragile lorsque le matériau traité est martensitique ? Pour finir, Au vu des analyses microstructurales réalisées, une étude plus poussée serait également souhaitable sur le 316L traité K33

, Ces bandes sont perpendiculaires à la surface pour le pion et parallèles à la surface pour les plaques d'Uranus45N utilisées pour les essais iso-matériau. Il en résulte plusieurs questions : la délamination observée pour cet essai iso-matériau est-elle une conséquence de cette alternance de phase particulière ? Y a-t-il des configurations qui sont particulièrement bénéfiques (ou au contraire néfastes) à la résistance au grippage ? Que se passe-t-il dans le cas où l'alternance de phase se retrouve en bandes parallèles en surface et que les deux phases en contact sont de même nature (e.g. contact entre la ferrite du pion et la ferrite de la plaque) ? Que se passe-t-il si l, Cependant, seul l'effet d'une alternance de phases sous forme de bandes a été étudié

W. J. Schumacher and H. Tanczyn, Galling resistant austenitic stainless steel, 1975.

C. Fu, Grain boundary engineering for control of tellurium diffusion in GH3535 alloy, J. Nucl. Mater, vol.497, pp.76-83, 2017.

K. C. Anthony, Wear-resistant cobalt-free alloys, J. Mechnical Eng. Technol, vol.35, issue.2, pp.52-60, 1983.

D. H. Buckley, The Influence of the Atomic Nature of Crystalline Materials on Friction, E Trans, vol.11, issue.2, pp.89-100, 1968.

S. O. Gashti, A. Fattah-alhosseini, Y. Mazaheri, and M. K. Keshavarz, Effects of grain size and dislocation density on strain hardening behavior of ultrafine grained AA1050 processed by accumulative roll bonding, J. Alloys Compd, vol.658, pp.854-861, 2016.

V. Gärtnerová, A. Singh, A. Jäger, and T. Mukai, Deformation behavior of ultra-finegrained Mg-0.3 at% Al alloy in compression, J. Alloys Compd, vol.726, pp.651-657, 2017.

R. Jamaati, M. R. Toroghinejad, S. Amirkhanlou, and H. Edris, Production of nanograin microstructure in steel nanocomposite, Mater. Sci. Eng. A, vol.638, pp.143-151, 2015.

R. A. Waite, S. R. Hummel, A. Herr, and G. Dalton, Analysis of the stress field in a threshold-galling test, Tribol. Int, vol.39, issue.11, pp.1421-1427, 2006.

G. W. Stachowiak and A. W. Batchelor, , 0208.

I. Annexes, Analyses complémentaires au mémoire

I. , Mesures d'énergie dissipée pendant l'essai _____________________________ 212

I. , Calcul de la pression locale _________________________________________ 215

I. , Impact de la phase cristallographique sur la résistance au grippage__________ 217

, I.7. Mesures DRX, vol.219

, Influence du type de finition de surface : profilomètre rotatif _____________ 229

. Ii, Synthèse des essais réalisés sur tribomètre rotatif _______________________ 236

, Cette méthode donne accès aux déformations situées sur une profondeur d'environ 6 µm (norme EN_15305-2009 relative aux Méthodes d'essais pour l'analyse des contraintes résiduelles par diffraction de rayons X)

. Setx, Elle est équipée d'un tube à rayons X et d'un détecteur à localisation linéaire, qui permet d'enregistrer la diffraction du rayonnement K? du chrome par la famille de plans atomiques (211) de la phase ? de l'acier et par la famille de plans atomiques

, Le montage utilisé est un montage Psi (?), p.13

, inclinaisons d'incidence ? (6?<0, ?=0 et 6?>0), réparties de façon à définir des intervalles

, Le calcul des contraintes a été effectué en prenant les constantes radiocristallographiques d'élasticité correspondant à la réflexion (211) de l'acier, c'est-à-dire : -½ S2 = 5,83 10 -6 MPa -1 -S1 = -1, vol.28, pp.10-16

, Parmi les finitions de surface étudiées, le polissage des pistes est la stratégie la plus efficace, en particulier lorsque la sollicitation est parallèle à la direction des rayures. Les raisons du seuil de grippage supérieur de la configuration polie par rapport à la configuration tournée n

, Le grenaillage semble en revanche être la morphologie de surface pour laquelle le seuil de grippage est le plus faible. Cette faiblesse pourrait avoir pour origine le rapport Spk/Svk

, Une diminution du Sa augmente par conséquent le seuil de grippage tant que le rapport Spk/Svk reste constant. On note justement que pour des Sa très faibles (0,1 µm), ce rapport Spk/Svk augmente

. En, . Sa, . Le, and . Spk, Svk et la finition de surface sont trois moyens de contrôler le seuil de grippage d'un tribosystème donné. Il semble tout de même à l'issue de ces essais que le rapport Spk/Svk soit le paramètre affectant le plus significativement le seuil de grippage

E. S. Gadelmawla, M. M. Koura, T. M. Maksoud, I. M. Elewa, and H. H. Soliman, Roughness parameters, J. Mater. Process. Technol, vol.123, issue.1, pp.133-145, 2002.

G. Schuhler, A. Jourani, S. Bouvier, and J. Perrochat, Wear Mechanisms in Contacts Involving Slippers in Axial Piston Pumps: A Multi-Technical Analysis, J. Mater. Eng. Perform, vol.27, issue.10, pp.5395-5405, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01993190

I. Corral, J. V. Calvet, and M. C. Salcedo, Use of roughness probability parameters to quantify the material removed in plateau-honing, Int. J. Mach. Tools Manuf, vol.50, issue.7, pp.621-629, 2010.

A. Jourani, Friction and Wear Mechanisms of 316L Stainless Steel in Dry Sliding Contact: Effect of Abrasive Particle Size, Tribol. Trans, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01993213

E. Schedin, Galling mechanisms in sheet forming operations, Wear, vol.179, issue.1, pp.123-128, 1994.

A. Gåård, Influence of tool microstructure on galling resistance, Tribol. Int, vol.57, pp.251-256, 2013.

B. Podgornik and J. Jerina, Surface topography effect on galling resistance of coated and uncoated tool steel, Surf. Coat. Technol, vol.206, issue.11-12, pp.2792-2800, 2012.

T. Klünsner, F. Zielbauer, S. Marsoner, M. Deller, M. Morstein et al., Influence of surface topography on early stages on steel galling of coated WC-Co hard metals, Int. J. Refract. Met. Hard Mater, vol.57, pp.24-30, 2016.

P. A. Swanson, L. K. Ives, E. P. Whitenton, and M. B. Peterson, A study of the galling of two steels using two test methods, Wear, vol.122, issue.2, pp.207-223, 1988.

S. Jacobson and S. Hogmark, Surface modifications in tribological contacts, Wear, vol.266, issue.3-4, pp.370-378, 2009.

K. Hsu, T. M. Ahn, and D. A. Rigney, Friction, wear and microstructure of unlubricated austenitic stainless steels, Wear, vol.60, issue.1, pp.13-37, 1980.

B. Barzdajn, A. T. Paxton, D. Stewart, and F. P. Dunne, A Crystal Plasticity Assessment of Normally-loaded Sliding Contact in Rough Surfaces and Galling, J. Mech. Phys. Solids, 2018.

J. Pujante, L. Pelcastre, M. Vilaseca, D. Casellas, and B. Prakash, Investigations into wear and galling mechanism of aluminium alloy-tool steel tribopair at different temperatures, Wear, vol.308, issue.1-2, pp.193-198, 2013.

L. Pelcastre, J. Hardell, and B. Prakash, Investigations into the occurrence of galling during hot forming of Al-Si-coated high-strength steel, Proc. Inst. Mech. Eng. Part J J. Eng. Tribol, vol.225, issue.6, pp.487-498, 2011.

B. Podgornik and J. Jerina, Surface topography effect on galling resistance of coated and uncoated tool steel, Surf. Coat. Technol, vol.206, issue.11-12, pp.2792-2800, 2012.

G. W. Stachowiak and A. W. Batchelor, , 2001.

B. Podgornik, M. Sedla?ek, and J. Vi?intin, Influence of contact conditions on tribological behaviour of DLC coatings, Surf. Coat. Technol, vol.202, issue.4-7, pp.1062-1066, 2007.