A. A. Hismiogullari, A. M. Bozdayi, and K. Rahman, Biliary lipid secretion, Turk J Gastroenterol, vol.18, pp.65-70, 2007.

P. V. Roder, B. Wu, and Y. Liu, Pancreatic regulation of glucose homeostasis, Exp Mol Med, vol.48, p.219, 2016.

J. S. Baker, M. C. Mccormick, and R. A. Robergs, Interaction among Skeletal Muscle Metabolic Energy Systems during Intense Exercise, J Nutr Metab, p.905612, 2010.

C. R. Liddle and R. A. , Recent advances in the regulation of pancreatic secretion, Curr Opin Gastroenterol, vol.30, pp.490-494, 2014.

A. Tyberg, K. Karia, and M. Gabr, Management of pancreatic fluid collections: A comprehensive review of the literature, World J Gastroenterol, vol.22, pp.2256-70, 2016.

K. Saito, N. Iwama, and T. Takahashi, Morphometrical analysis on topographical difference in size distribution, number and volume of islets in the human pancreas, Tohoku J Exp Med, vol.124, pp.177-86, 1978.

P. In't-veld and M. Marichal, Microscopic anatomy of the human islet of Langerhans, Adv Exp Med Biol, vol.654, pp.1-19, 2010.

J. Dolensek, M. S. Rupnik, and A. Stozer, Structural similarities and differences between the human and the mouse pancreas, Islets, vol.7, p.1024405, 2015.

D. Silva-xavier and G. , The Cells of the Islets of Langerhans, J Clin Med, vol.7, 2018.

L. Jansson, A. Barbu, and B. Bodin, Pancreatic islet blood flow and its measurement, Ups J Med Sci, vol.121, pp.81-95, 2016.

D. P. Begg and S. C. Woods, Interactions between the central nervous system and pancreatic islet secretions: a historical perspective, Adv Physiol Educ, vol.37, pp.53-60, 2013.

M. Brissova, M. J. Fowler, and W. E. Nicholson, Assessment of human pancreatic islet architecture and composition by laser scanning confocal microscopy, J Histochem Cytochem, vol.53, pp.1087-97, 2005.

O. Cabrera, D. M. Berman, and N. S. Kenyon, The unique cytoarchitecture of human pancreatic islets has implications for islet cell function, Proc Natl Acad Sci, vol.103, pp.2334-2343, 2006.

D. Bosco, M. Armanet, and P. Morel, Unique arrangement of alpha-and beta-cells in human islets of Langerhans, Diabetes, vol.59, pp.1202-1212, 2010.

M. K. Kim, H. S. Kim, and I. K. Lee, Endoplasmic reticulum stress and insulin biosynthesis: a review, Exp Diabetes Res, p.509437, 2012.

V. L. Tokarz, P. E. Macdonald, and A. Klip, The cell biology of systemic insulin function, J Cell Biol, vol.217, pp.2273-89, 2018.

M. G. Magro and M. Solimena, Regulation of beta-cell function by RNA-binding proteins, Mol Metab, vol.2, pp.348-55, 2013.

D. L. Hay, S. Chen, and T. A. Lutz, Pharmacology, Physiology, and Clinical Potential. Pharmacol Rev, vol.67, pp.564-600, 2015.

A. Morris, Acute effects of glucagon on the liver, Nat Rev Endocrinol, vol.14, p.323, 2018.

T. Eigler and B. , Somatostatin system: molecular mechanisms regulating anterior pituitary hormones, J Mol Endocrinol, vol.53, pp.1-19, 2014.

T. D. Muller, R. Nogueiras, and M. L. Andermann, Mol Metab, vol.4, pp.437-60, 2015.

O. M. Tiscornia, G. A. Negri, and G. Otero, Pancreatic polypeptide: a review of its involvement in neuro-endocrine reflexes, islet-acinar interactions and ethanol-evoked physiopatologic pancreatic gland changes, Acta Gastroenterol Latinoam, vol.45, pp.155-64, 2015.

F. Aragon, M. Karaca, and A. Novials, Pancreatic polypeptide regulates glucagon release through PPYR1 receptors expressed in mouse and human alpha -cells, Biochim Biophys Acta, vol.1850, pp.343-51, 2015.

B. Thorens, GLUT2, glucose sensing and glucose homeostasis, Diabetologia, vol.58, pp.221-253, 2015.

X. B. Li, J. D. Gu, and Q. H. Zhou, Review of aerobic glycolysis and its key enzymes -new targets for lung cancer therapy, Thorac Cancer, vol.6, pp.17-24, 2015.

M. Akram, Citric acid cycle and role of its intermediates in metabolism, Cell Biochem Biophys, vol.68, pp.475-483, 2014.

D. F. Wilson, Oxidative phosphorylation: regulation and role in cellular and tissue metabolism, J Physiol, vol.595, pp.7023-7061, 2017.

D. Poburko and N. Demaurex, Regulation of the mitochondrial proton gradient by cytosolic Ca(2)(+) signals, Pflugers Arch, vol.464, pp.19-26, 2012.

J. S. Mctaggart, R. H. Clark, and F. M. Ashcroft, The role of the KATP channel in glucose homeostasis in health and disease: more than meets the islet, J Physiol, vol.588, pp.3201-3210, 2010.

S. N. Yang, Y. Shi, and G. Yang, Ionic mechanisms in pancreatic beta cell signaling, Cell Mol Life Sci, vol.71, pp.4149-77, 2014.

Z. Wang and D. C. Thurmond, Mechanisms of biphasic insulin-granule exocytosisroles of the cytoskeleton, small GTPases and SNARE proteins, J Cell Sci, vol.122, pp.893-903, 2009.

J. Cen, E. Sargsyan, and P. Bergsten, Fatty acids stimulate insulin secretion from human pancreatic islets at fasting glucose concentrations via mitochondriadependent and -independent mechanisms, Nutr Metab (Lond), vol.13, p.59, 2016.

P. Newsholme and M. Krause, Nutritional regulation of insulin secretion: implications for diabetes, Clin Biochem Rev, vol.33, pp.35-47, 2012.

T. Brun and P. Maechler, Beta-cell mitochondrial carriers and the diabetogenic stress response, Biochim Biophys Acta, vol.1863, pp.2540-2549, 2016.

P. Rorsman and E. Renstrom, Insulin granule dynamics in pancreatic beta cells, Diabetologia, vol.46, pp.1029-1074, 2003.

S. M. Najjar and G. Perdomo, Hepatic Insulin Clearance: Mechanism and Physiology, Physiology (Bethesda), vol.34, pp.198-215, 2019.

M. C. Petersen, D. F. Vatner, and G. I. Shulman, Regulation of hepatic glucose metabolism in health and disease, Nat Rev Endocrinol, vol.13, pp.572-87, 2017.

D. Leto and A. R. Saltiel, Regulation of glucose transport by insulin: traffic control of GLUT4, Nat Rev Mol Cell Biol, vol.13, pp.383-96, 2012.

G. Dimitriadis, P. Mitrou, and V. Lambadiari, Insulin effects in muscle and adipose tissue, Diabetes Res Clin Pract, vol.93, issue.1, pp.52-61, 2011.

I. Quesada, E. Tuduri, and C. Ripoll, Physiology of the pancreatic alpha-cell and glucagon secretion: role in glucose homeostasis and diabetes, J Endocrinol, vol.199, pp.5-19, 2008.

H. Y. Gaisano, P. E. Macdonald, and M. Vranic, Glucagon secretion and signaling in the development of diabetes, Front Physiol, vol.3, p.349, 2012.

J. G. Knudsen, A. Hamilton, and R. Ramracheya, Dysregulation of Glucagon Secretion by Hyperglycemia-Induced Sodium-Dependent Reduction of ATP Production, Cell Metab, vol.29, pp.430-472, 2019.

C. J. Ramnanan, D. S. Edgerton, and G. Kraft, Physiologic action of glucagon on liver glucose metabolism, Diabetes Obes Metab, vol.13, issue.1, pp.118-143, 2011.

K. Sharabi, C. D. Tavares, and A. K. Rines, Molecular pathophysiology of hepatic glucose production, Mol Aspects Med, vol.46, pp.21-33, 2015.

A. L. Burrack, T. Martinov, and B. T. Fife, T Cell-Mediated Beta Cell Destruction: Autoimmunity and Alloimmunity in the Context of Type 1 Diabetes, Front Endocrinol (Lausanne), vol.8, p.343, 2017.

K. C. Herold, S. Usmani-brown, and T. Ghazi, beta cell death and dysfunction during type 1 diabetes development in at-risk individuals, J Clin Invest, vol.125, pp.1163-73, 2015.

F. Pociot, Type 1 diabetes genome-wide association studies: not to be lost in translation, Clin Transl Immunology, vol.6, p.162, 2017.

J. A. Noble and A. M. Valdes, Genetics of the HLA region in the prediction of type 1 diabetes, Curr Diab Rep, vol.11, pp.533-575, 2011.

C. E. Taplin and J. M. Barker, Autoantibodies in type 1 diabetes, Autoimmunity, vol.41, pp.11-19, 2008.

J. J. Couper, M. J. Haller, and A. G. Ziegler, ISPAD Clinical Practice Consensus Guidelines 2014. Phases of type 1 diabetes in children and adolescents, Pediatr Diabetes, vol.15, pp.18-25, 2014.

D. M. Tridgell, C. Spiekerman, and R. S. Wang, Interaction of onset and duration of diabetes on the percent of GAD and IA-2 antibody-positive subjects in the type 1 diabetes genetics consortium database, Diabetes Care, vol.34, pp.988-93, 2011.

N. S. Wilcox, J. Rui, and M. Hebrok, Life and death of beta cells in Type 1 diabetes: A comprehensive review, J Autoimmun, vol.71, pp.51-59, 2016.

A. Rabinovitch and W. L. Suarez-pinzon, Roles of cytokines in the pathogenesis and therapy of type 1 diabetes, Cell Biochem Biophys, vol.48, pp.159-63, 2007.

N. Petrovsky, D. Silva, and L. Socha, The role of Fas ligand in beta cell destruction in autoimmune diabetes of NOD mice, Ann N Y Acad Sci, vol.958, pp.204-212, 2002.

A. Katsarou, S. Gudbjornsdottir, and A. Rawshani, Type 1 diabetes mellitus, Nat Rev Dis Primers, vol.3, p.17016, 2017.

L. Kahanovitz, P. M. Sluss, and R. Sj, Type 1 Diabetes -A Clinical Perspective, Point Care, vol.16, pp.37-40, 2017.

R. Andreasson, C. Ekelund, and M. Landin-olsson, HbA1c levels in children with type 1 diabetes and correlation to diabetic retinopathy, J Pediatr Endocrinol Metab, vol.31, pp.369-74, 2018.

V. Viswanathan, Preventing microvascular complications in type 1 diabetes mellitus, Indian J Endocrinol Metab, vol.19, pp.36-44, 2015.

D. M. Nathan and D. Group, The diabetes control and complications trial/epidemiology of diabetes interventions and complications study at 30 years: overview, Diabetes Care, vol.37, pp.9-16, 2014.

S. M. Switzer, E. G. Moser, and B. E. Rockler, Intensive insulin therapy in patients with type 1 diabetes mellitus, Endocrinol Metab Clin North Am, vol.41, pp.89-104, 2012.

K. Mane, K. Chaluvaraju, and M. Niranjan, Review of insulin and its analogues in diabetes mellitus, J Basic Clin Pharm, vol.3, pp.283-93, 2012.

E. Matsuda and P. Brennan, The effectiveness of continuous subcutaneous insulin pumps with continuous glucose monitoring in outpatient adolescents with type 1 diabetes: A systematic review, JBI Libr Syst Rev, vol.10, pp.1-10, 2012.

N. Spaan, A. Teplova, and G. Stam, Systematic review: continuous intraperitoneal insulin infusion with implantable insulin pumps for diabetes mellitus, Acta Diabetol, vol.51, pp.339-51, 2014.

A. Shirin, D. Rossa, F. Klickstein, and I. , Optimal regulation of blood glucose level in Type I diabetes using insulin and glucagon, PLoS One, vol.14, p.213665, 2019.

J. S. Skyler, G. L. Bakris, and E. Bonifacio, Differentiation of Diabetes by Pathophysiology, Natural History, and Prognosis, Diabetes, vol.66, pp.241-55, 2017.

P. Morigny, M. Houssier, and E. Mouisel, Adipocyte lipolysis and insulin resistance, Biochimie, vol.125, pp.259-66, 2016.

T. Tran, A. Pease, and A. J. Wood, Review of Evidence for Adult Diabetic Ketoacidosis Management Protocols, Front Endocrinol (Lausanne), vol.8, p.106, 2017.

P. E. Cryer, Hypoglycemia in type 1 diabetes me llitus, Endocrinol Metab Clin North Am, vol.39, pp.641-54, 2010.

A. Chawla, R. Chawla, and S. Jaggi, Microvasular and macrovascular complications in diabetes mellitus: Distinct or continuum?, Indian J Endocrinol Metab, vol.20, pp.546-51, 2016.

G. Orasanu and J. Plutzky, The pathologic continuum of diabetic vascular disease, J Am Coll Cardiol, vol.53, pp.35-42, 2009.

J. R. Nyengaard, Y. Ido, and C. Kilo, Interactions between hyperglycemia and hypoxia: implications for diabetic retinopathy, Diabetes, vol.53, pp.2931-2939, 2004.

T. A. Gardiner, D. B. Archer, and T. M. Curtis, Arteriolar involvement in the microvascular lesions of diabetic retinopathy: implications for pathogenesis. Microcirculation, vol.14, pp.25-38, 2007.

E. J. Duh, J. K. Sun, and A. W. Stitt, Diabetic retinopathy: current understandi ng, mechanisms, and treatment strategies, JCI Insight, vol.2, 2017.

N. Papadopoulou-marketou, C. Gp, and C. Kanaka-gantenbein, Diabetic nephropathy in type 1 diabetes: a review of early natural history, pathogenesis, and diagnosis, Diabetes Metab Res Rev, p.33, 2017.

S. Said and G. T. Hernandez, The link between chronic kidney disease and cardiovascular disease, J Nephropathol, vol.3, pp.99-104, 2014.

A. K. Schreiber, C. F. Nones, and R. C. Reis, Diabetic neuropathic pain: Physiopathology and treatment, World J Diabetes, vol.6, pp.432-476, 2015.

S. Noor, M. Zubair, and A. J. , Diabetic foot ulcer--A review on pathophysiology, classification and microbial etiology, Diabetes Metab Syndr, vol.9, pp.192-201, 2015.

T. R. Einarson, A. Acs, and C. Ludwig, Prevalence of cardiovascular disease in type 2 diabetes: a systematic literature review of scientific evidence from across the world in, Cardiovasc Diabetol, vol.17, p.83, 2007.

R. Chen, B. Ovbiagele, and W. Feng, Diabetes and Stroke: Epidemiology, Pathophysiology, Pharmaceuticals and Outcomes, Am J Med Sci, vol.351, pp.380-386, 2016.

M. Vanstone, A. Rewegan, and F. Brundisini, Patient Perspectives on Quality of Life With Uncontrolled Type 1 Diabetes Mellitus: A Systematic Review and Qualitative Meta-synthesis, Ont Health Technol Assess Ser, vol.15, pp.1-29, 2015.

M. C. Vantyghem and M. Press, Management strategies for brittle diabetes, Ann Endocrinol (Paris), vol.67, pp.287-96, 2006.

L. A. Kent, G. V. Gill, and G. Williams, Mortality and outcome of patients with brittle diabetes and recurrent ketoacidosis, Lancet, vol.344, pp.778-81, 1994.

W. D. Kelly, R. C. Lillehei, and F. K. Merkel, Allotransplantation of the pancreas and duodenum along with the kidney in diabetic nephropathy, Surgery, vol.61, pp.827-864, 1967.

J. P. Squifflet, R. W. Gruessner, and S. De, The history of pancreas transplantation: past, present and future, Acta Chir Belg, vol.108, pp.367-78, 2008.

D. Casanova and . En-nombre-de, Grupo Espanol de Trasplante de P . Pancreas transplantation: 50 years of experience, Cir Esp, vol.95, pp.254-60, 2017.

F. A. Hampson, S. J. Freeman, and J. Ertner, Pancreatic transplantation: surgical technique, normal radiological appearances and complications, Insights Imaging, vol.1, pp.339-386, 2010.

J. A. Van-der-hoeven, T. Horst, G. J. Molema, and G. , Effects of brain death and hemodynamic status on function and immunologic activation of the potential donor liver in the rat, Ann Surg, vol.232, pp.804-817, 2000.

J. C. Dayoub, C. F. Anzic, and A. , The effects of donor age on organ transplants: A review and implications for aging research, Exp Gerontol, vol.110, pp.230-270, 2018.

A. T. Jiang, . Bhsc, and N. Rowe, Simultaneous pancreas-kidney transplantation: The role in the treatment of type 1 diabetes and end-stage renal disease, Can Urol Assoc J, vol.8, pp.135-143, 2014.

S. V. Niederhaus, D. B. Kaufman, and J. S. Odorico, Induction therapy in pancreas transplantation, Transpl Int, vol.26, pp.704-718, 2013.

A. C. Gruessner and R. W. Gruessner, Long-term outcome after pancreas transplantation: a registry analysis, Curr Opin Organ Transplant, vol.21, pp.377-85, 2016.

T. Jenssen, A. Hartmann, and K. I. Birkeland, Long-term diabetes complications after pancreas transplantation, Curr Opin Organ Transplant, vol.22, pp.382-390, 2017.

A. Humar, T. Ramcharan, and R. Kandaswamy, Technical failures after pancreas transplants: why grafts fail and the risk factors--a multivariate analysis, Transplantation, vol.78, pp.1188-92, 2004.

W. F. Ballinger and P. E. Lacy, Transplantation of intact pancreatic islets in rats, Surgery, vol.72, pp.175-86, 1972.

J. S. Najarian, D. E. Sutherland, and A. J. Matas, Human islet transplantation: a preliminary report, Transplant Proc, vol.9, pp.233-239, 1977.

D. W. Scharp, P. E. Lacy, and J. V. Santiago, Insulin independence after islet transplantation into type I diabetic patient, Diabetes, vol.39, pp.515-523, 1990.

A. M. Shapiro, M. Pokrywczynska, and C. Ricordi, Clinical pancreatic islet transplantation, Nat Rev Endocrinol, vol.13, pp.268-77, 2017.

A. M. Shapiro, J. R. Lakey, and E. A. Ryan, Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen, N Engl J Med, vol.343, pp.230-238, 2000.

E. A. Ryan, B. W. Paty, and P. A. Senior, Five-year follow-up after clinical islet transplantation, Diabetes, vol.54, pp.2060-2069, 2005.

B. J. Hering, W. R. Clarke, and N. D. Bridges, Phase 3 Trial of Transplantation of Human Islets in Type 1 Diabetes Complicated by Severe Hypoglycemia, Diabetes Care, vol.39, pp.1230-1270, 2016.

J. R. Lakey, G. L. Warnock, and R. V. Rajotte, Variables in organ donors that affect the recovery of human islets of Langerhans, Transplantation, vol.61, pp.1047-53, 1996.

H. Brandhorst, D. Brandhorst, and B. J. Hering, Body mass index of pancreatic donors: a decisive factor for human islet isolation, Exp Clin Endocrinol Diabetes, vol.103, issue.2, pp.23-29, 1995.

M. R. Rickels and R. P. Robertson, Pancreatic Islet Transplantation in Humans: Recent Progress and Future Directions, Endocr Rev, vol.40, pp.631-68, 2019.

T. Berney, C. Boffa, and T. Augustine, Utilization of organs from donors after circulatory death for vascularized pancreas and islet of Langerhans transplantation: recommendations from an expert group, Transpl Int, vol.29, pp.798-806, 2016.

N. Othonos and P. Choudhary, Who Should Be Considered for Islet Transplantation Alone?, Curr Diab Rep, vol.17, p.23, 2017.

T. Anazawa, H. Okajima, and T. Masui, Current state and future evolution of pancreatic islet transplantation, Ann Gastroenterol Surg, vol.3, pp.34-42, 2019.

A. R. Pepper, B. Gala-lopez, and O. Ziff, Revascularization of transplanted pancreatic islets and role of the transplantation site, Clin Dev Immunol, p.352315, 2013.

L. Rosenberg, R. Wang, and S. Paraskevas, Structural and functional changes resulting from islet isolation lead to islet cell death, Surgery, vol.126, pp.393-401, 1999.

T. Van-belle, V. Herrath, and M. , Immunosuppression in islet transplantation, J Clin Invest, vol.118, pp.1625-1633, 2008.

G. Filler, I. Neuschulz, and I. Vollmer, Tacrolimus reversibly reduces insulin secretion in paediatric renal transplant recipients, Nephrol Dial Transplant, vol.15, pp.867-71, 2000.

V. J. Auer, E. Janas, and V. Ninichuk, Extracellular factors and immunosuppressive drugs influencing insulin secretion of murine islets, Clin Exp Immunol, vol.170, pp.238-285, 2012.

E. B. Geer, J. Islam, and C. Buettner, Mechanisms of glucocorticoid-induced insulin resistance: focus on adipose tissue function and lipid metabolism, Endocrinol Metab Clin North Am, vol.43, pp.75-102, 2014.

F. B. Barton, M. R. Rickels, and A. R. , Improvement in outcomes of clinical islet transplantation: 1999-2010, Diabetes Care, vol.35, pp.1436-1481, 2012.

E. A. Ryan, T. Shandro, and K. Green, Assessment of the severity of hypoglycemia and glycemic lability in type 1 diabetic subjects undergoing islet transplantation, Diabetes, vol.53, pp.955-62, 2004.

S. Merani and A. M. Shapiro, Current status of pancreatic islet transplantation, Clin Sci (Lond), vol.110, pp.611-636, 2006.

P. Bucher, Z. Mathe, and D. Bosco, Morbidity associated with intraportal islet transplantation, Transplant Proc, vol.36, pp.1119-1139, 2004.

T. Kawahara, T. Kin, and S. Kashkoush, Portal vein thrombosis is a potentially preventable complication in clinical islet transplantation, Am J Transplant, vol.11, pp.2700-2707, 2011.

D. O'gorman, K. T. Pawlick, and R. , Clinical islet isolation outcomes with a highly purified neutral protease for pancreas dissociation, Islets, vol.5, pp.111-116, 2013.

Y. Wang, K. K. Danielson, and A. Ropski, Systematic analysis of donor and isolation factor's impact on human islet yield and size distribution, Cell Transplant, vol.22, pp.2323-2356, 2013.

J. R. Lakey, R. V. Rajotte, and G. L. Warnock, Human pancreas preservation prior to islet isolation, Cold ischemic tolerance. Transplantation, vol.59, pp.689-94, 1995.

K. Omori, E. Kobayashi, and H. Komatsu, Involvement of a proapoptotic gene (BBC3) in islet injury mediated by cold preservation and rewarming, Am J Physiol Endocrinol Metab, vol.310, pp.1016-1042, 2016.

T. Kin, P. Senior, and D. O'gorman, Risk factors for islet loss during culture prior to transplantation, Transpl Int, vol.21, pp.1029-1064, 2008.

C. C. Yeh, L. J. Wang, and J. J. Mcgarrigle, Effect of Manufacturing Procedures on Human Islet Isolation From Donor Pancreata Standardized by the North American Islet Donor Score, Cell Transplant, vol.26, pp.33-44, 2017.

B. Nilsson, K. N. Ekdahl, and O. Korsgren, Control of instant blood-mediated inflammatory reaction to improve islets of Langerhans engraftment, Curr Opin Organ Transplant, vol.16, pp.620-626, 2011.

V. Delaune, T. Berney, and S. Lacotte, Intraportal islet transplantation: the impact of the liver microenvironment, Transpl Int, vol.30, pp.227-265, 2017.

E. Pouliquen, P. Baltzinger, and A. Lemle, Anti-Donor HLA Antibody Response After Pancreatic Islet Grafting: Characteristics, Risk Factors, and Impact on Graft Function, Am J Transplant, vol.17, pp.462-73, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01929170

S. Paradis, A. L. Charles, and A. Meyer, Chronology of mitochondrial and cellular events during skeletal muscle ischemia-reperfusion, Am J Physiol Cell Physiol, vol.310, pp.968-82, 2016.

G. J. Fuhrman and F. A. Fuhrman, Oxygen consumption of animals and tissues as a function of temperature, J Gen Physiol, vol.42, pp.715-737, 1959.

P. L. Privalov, Cold denaturation of proteins, Crit Rev Biochem Mol Biol, vol.25, pp.281-305, 1990.

F. A. Garcia-gil, C. D. Albendea, and L. Lopez-pingarron, Altered cellular membrane fluidity levels and lipid peroxidation during experimental pancreas transplantation, J Bioenerg Biomembr, vol.44, pp.571-578, 2012.

R. C. Aloia, The role of membrane fatty acids in mammalian hibernation, Fed Proc, vol.39, pp.2974-2983, 1980.

K. Heerlein, A. Schulze, and L. Hotz, Hypoxia decreases cellular ATP demand and inhibits mitochondrial respiration of a549 cells, Am J Respir Cell Mol Biol, vol.32, pp.44-51, 2005.

A. F. Rodrigues, R. Roecker, and G. M. Junges, Hypoxanthine induces oxidative stress in kidney of rats: protective effect of vitamins E plus C and allopurinol, Cell Biochem Funct, vol.32, pp.387-94, 2014.

R. K. Nakamoto, B. Scanlon, J. A. , and A. Mk, The rotary mechanism of the ATP synthase, Arch Biochem Biophys, vol.476, pp.43-50, 2008.

D. E. Farthing, C. A. Farthing, and L. Xi, Inosine and hypoxanthine as novel biomarkers for cardiac ischemia: from bench to point-of-care, Exp Biol Med (Maywood), vol.240, pp.821-852, 2015.

H. El-banani, M. Bernard, and D. Baetz, Changes in intracellular sodium and pH during ischaemia-reperfusion are attenuated by trimetazidine. Comparison between low-and zero-flow ischaemia, Cardiovasc Res, vol.47, pp.688-96, 2000.

G. L. Smith, P. Donoso, and C. J. Bauer, Relationship between intracellular pH and metabolite concentrations during metabolic inhibition in isolated ferret heart, J Physiol, vol.472, pp.11-22, 1993.

T. A. Berendsen, M. L. Izamis, and H. Xu, Hepatocyte viability and adenosine triphosphate content decrease linearly over time during conventional cold storage of rat liver grafts, Transplant Proc, vol.43, pp.1484-1492, 2011.

E. E. Guibert, A. Y. Petrenko, and C. L. Balaban, Organ Preservation: Current Concepts and New Strategies for the Next Decade, Transfus Med Hemother, vol.38, pp.125-167, 2011.

D. G. Allen, S. P. Cairns, and S. E. Turvey, Intracellular calcium and myocardial function during ischemia, Adv Exp Med Biol, vol.346, pp.19-29, 1993.

E. Marban, M. Kitakaze, and H. Kusuoka, Intracellular free calcium concentration measured with 19F NMR spectroscopy in intact ferret hearts, Proc Natl Acad Sci, vol.84, pp.6005-6014, 1987.

T. Kalogeris, C. P. Baines, and M. Krenz, Cell biology of ischemia/reperfusion injury, Int Rev Cell Mol Biol, vol.298, pp.229-317, 2012.

C. Neuhof and H. Neuhof, Calpain system and its involvement in myocardial ischemia and reperfusion injury, World J Cardiol, vol.6, pp.638-52, 2014.

P. Jw and O. Mh, The role of phospholipases, cyclooxygenases, and lipoxygenases in cerebral ischemic/traumatic injuries, Crit Rev Neurobiol, vol.15, pp.61-90, 2003.

J. S. Mcnally, A. Saxena, and H. Cai, Regulation of xanthine oxidoreductase protein expression by hydrogen peroxide and calcium, Arterioscler Thromb Vasc Biol, vol.25, pp.1623-1631, 2005.

M. M. Pike, C. S. Luo, and M. D. Clark, NMR measurements of Na+ and cellular energy in ischemic rat heart: role of Na(+)-H+ exchange, Am J Physiol, vol.265, pp.2017-2043, 1993.

A. Takeuchi, S. Tatsumi, and N. Sarai, Ionic mechanisms of cardiac cell swelling induced by blocking Na+/K+ pump as revealed by experiments and simulation, J Gen Physiol, vol.128, pp.495-507, 2006.

P. D. Ray, B. W. Huang, and Y. Tsuji, Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling, Cell Signal, vol.24, pp.981-90, 2012.

F. Vallelian, T. Pimenova, and C. P. Pereira, The reaction of hydrogen peroxide with hemoglobin induces extensive alpha-globin crosslinking and impairs the interaction of hemoglobin with endogenous scavenger pathways, Free Radic Biol Med, vol.45, pp.1150-1158, 2008.

M. Maes, P. Galecki, and Y. S. Chang, A review on the oxidative and nitrosative stress (O&NS) pathways in major depression and their possible contribution to the (neuro)degenerative processes in that illness, Prog Neuropsychopharmacol Biol Psychiatry, vol.35, pp.676-92, 2011.

L. B. Sullivan and N. S. Chandel, Mitochondrial reactive oxygen species and cancer, Cancer Metab, vol.2, p.17, 2014.

E. J. Lesnefsky, B. Tandler, and J. Ye, Myocardial ischemia decreases oxidative phosphorylation through cytochrome oxidase in subsarcolemmal mitochondria, Am J Physiol, vol.273, pp.1544-54, 1997.

M. Aldakkak, D. F. Stowe, and Q. Chen, Inhibited mitochondrial respiration by amobarbital during cardiac ischaemia improves redox state and reduces matrix Ca2+ overload and ROS release, Cardiovasc Res, vol.77, pp.406-421, 2008.

G. Solaini, A. Baracca, and G. Lenaz, Hypoxia and mitochondrial oxidative metabolism, Biochim Biophys Acta, vol.1797, pp.1171-1178, 2010.

N. Gorenkova, E. Robinson, and D. J. Grieve, Conformational change of mitochondrial complex I increases ROS sensitivity during ischemia, Antioxid Redox Signal, vol.19, pp.1459-68, 2013.

G. Petrosillo, F. M. Ruggiero, D. Venosa, and N. , Decreased complex III activity in mitochondria isolated from rat heart subjected to ischemia and reperfusion: role of reactive oxygen species and cardiolipin, FASEB J, vol.17, pp.714-720, 2003.

T. L. Vanden-hoek, C. Li, and Z. Shao, Significant levels of oxidants are generated by isolated cardiomyocytes during ischemia prior to reperfusion, J Mol Cell Cardiol, vol.29, pp.2571-83, 1997.

H. Younus, Therapeutic potentials of superoxide dismutase, Int J Health Sci (Qassim), vol.12, pp.88-93, 2018.

C. Mytilineou, B. C. Kramer, and J. A. Yabut, Glutathione depletion and oxidative stress, Parkinsonism Relat Disord, vol.8, pp.385-392, 2002.

N. Alva, J. Palomeque, and T. Carbonell, Oxidative stress and antioxidant activity in hypothermia and rewarming: can RONS modulate the beneficial effects of therapeutic hypothermia, Oxid Med Cell Longev, p.957054, 2013.

M. Calvani, G. Comito, and E. Giannoni, Time-dependent stabilization of hypoxia inducible factor-1alpha by different intracellular sources of reactive oxygen species, PLoS One, vol.7, p.38388, 2012.

Y. L. Chua, E. Dufour, and E. P. Dassa, Stabilization of hypoxia-inducible factor-1alpha protein in hypoxia occurs independently of mitochondrial reactive oxygen species production, J Biol Chem, vol.285, pp.31277-84, 2010.

A. J. Majmundar, W. J. Wong, and S. Mc, Hypoxia-inducible factors and the response to hypoxic stress, Mol Cell, vol.40, pp.294-309, 2010.

V. L. Dengler, M. Galbraith, and J. M. Espinosa, Transcriptional regulation by hypoxia inducible factors, Crit Rev Biochem Mol Biol, vol.49, pp.1-15, 2014.

D. Rey, M. J. Valin, A. Usategui, and A. , Hif-1alpha Knockdown Reduces Glycolytic Metabolism and Induces Cell Death of Human Synovial Fibroblasts Under Normoxic Conditions, Sci Rep, vol.7, p.3644, 2017.

A. Loboda, A. Jozkowicz, and J. Dulak, HIF-1 and HIF-2 transcription factors--similar but not identical, Mol Cells, vol.29, pp.435-477, 2010.

R. A. Stokes, K. Cheng, and N. Deters, Hypoxia-inducible factor-1alpha (HIF-1alpha) potentiates beta-cell survival after islet transplantation of human and mouse islets, Cell Transplant, vol.22, pp.253-66, 2013.

M. Z. Akhtar, A. I. Sutherland, and H. Huang, The role of hypoxia-inducible factors in organ donation and transplantation: the current perspective and future opportunities, Am J Transplant, vol.14, pp.1481-1488, 2014.

W. M. Bernhardt, U. Gottmann, and F. Doyon, Donor treatment with a PHD-inhibitor activating HIFs prevents graft injury and prolongs survival in an allogenic kidney transplant model, Proc Natl Acad Sci, vol.106, pp.21276-81, 2009.

F. Lunardi, D. Zampieri, and M. Vadori, Overexpression of Hypoxia-Inducible Factor-1alpha in Primary Graft Dysfunction Developing in an Orthotopic Lung Transplantation Rat Model, Transplant Proc, vol.49, pp.722-727, 2017.

W. Moritz, F. Meier, and D. M. Stroka, Apoptosis in hypoxic human pancreatic islets correlates with HIF-1alpha expression, FASEB J, vol.16, pp.745-752, 2002.

A. Langlois, S. Dal, and K. Vivot, Improvement of islet graft function using liraglutide is correlated with its anti-inflammatory properties, Br J Pharmacol, vol.173, pp.3443-53, 2016.

Z. Zhang, L. Yao, and J. Yang, PI3K/Akt and HIF1 signaling pathway in hypoxiaischemia (Review), Mol Med Rep, vol.18, pp.3547-54, 2018.

M. Bd, A. Toker, . Akt/pkb, and . Signaling, Navigating the Network, Cell, vol.169, pp.381-405, 2017.

G. Liu, T. Wang, and T. Wang, Effects of apoptosis-related proteins caspase-3, Bax and Bcl-2 on cerebral ischemia rats, Biomed Rep, vol.1, pp.861-868, 2013.

J. Zdychova and R. Komers, Emerging role of Akt kinase/protein kinase B signaling in pathophysiology of diabetes and its complications, Physiol Res, vol.54, pp.1-16, 2005.

C. R. Elsea, D. A. Roberts, and B. J. Druker, Inhibition of p38 MAPK suppresses inflammatory cytokine induction by etoposide, 5 -fluorouracil, and doxorubicin without affecting tumoricidal activity, PLoS One, vol.3, p.2355, 2008.

B. Cai, S. H. Chang, and E. B. Becker, p38 MAP kinase mediates apoptosis through phosphorylation of BimEL at Ser-65, J Biol Chem, vol.281, pp.25215-25237, 2006.

X. Sui, N. Kong, and L. Ye, p38 and JNK MAPK pathways control the balance of apoptosis and autophagy in response to chemotherapeutic agents, Cancer Lett, vol.344, pp.174-183, 2014.

C. Nito, H. Kamada, and H. Endo, Role of the p38 mitogen-activated protein kinase/cytosolic phospholipase A2 signaling pathway in blood-brain barrier disruption after focal cerebral ischemia and reperfusion, J Cereb Blood Flow Metab, vol.28, pp.1686-96, 2008.

X. Yang, Y. Liu, and X. M. Yang, Cardioprotection by mild hypothermia during ischemia involves preservation of ERK activity, Basic Res Cardiol, vol.106, pp.421-451, 2011.

J. L. Solan, L. Marquez-rosado, and P. D. Lampe, Cx43 phosphorylation mediated effects on ERK and Akt protect against ischemia reperfusion injury and alter stability of stress-inducible protein NDRG1, J Biol Chem, 2019.

K. L. Rock and H. Kono, The inflammatory response to cell death, Annu Rev Pathol, vol.3, pp.99-126, 2008.

S. L. Abrahamse, P. Van-runnard-heimel, and R. J. Hartman, Induction of necrosis and DNA fragmentation during hypothermic preservation of hepatocytes in UW, HTK, and Celsior solutions, Cell Transplant, vol.12, pp.59-68, 2003.

Y. Lin, L. Chen, and W. Li, Role of high-mobility group box-1 in myocardial ischemia/reperfusion injury and the effect of ethyl pyruvate, Exp Ther Med, vol.9, pp.1537-1578, 2015.

C. Luo, H. Liu, and H. Wang, Toll-Like Receptor 4 Signaling in High Mobility Group Box-1 Protein 1 Mediated the Suppression of Regulatory T-Cells, Med Sci Monit, vol.23, pp.300-308, 2017.

R. Nano, L. Racanicchi, and R. Melzi, Human pancreatic islet preparations release HMGB1: (ir)relevance for graft engraftment, Cell Transplant, vol.22, pp.2175-86, 2013.

A. Pavlosky, A. Lau, and Y. Su, RIPK3-mediated necroptosis regulates cardiac allograft rejection, Am J Transplant, vol.14, pp.1778-90, 2014.

G. Zhao, C. Fu, and L. Wang, Down-regulation of nuclear HMGB1 reduces ischemiainduced HMGB1 translocation and release and protects against liver ischemiareperfusion injury, Sci Rep, vol.7, p.46272, 2017.

Y. Yu, D. Tang, and R. Kang, Oxidative stress-mediated HMGB1 biology, Front Physiol, vol.6, p.93, 2015.

R. S. Whelan, V. Kaplinskiy, and R. N. Kitsis, Cell death in the pathogenesis of heart disease: mechanisms and significance, Annu Rev Physiol, vol.72, pp.19-44, 2010.

S. Elmore, Apoptosis: a review of programmed cell death, Toxicol Pathol, vol.35, pp.495-516, 2007.

H. Yin and M. Zhu, Free radical oxidation of cardiolipin: chemical mechanisms, detection and implication in apoptosis, mitochondrial dysfunction and human diseases, Free Radic Res, vol.46, pp.959-74, 2012.

M. R. Metukuri, D. Beer-stolz, and R. A. Namas, Expression and subcellular localization of BNIP3 in hypoxic hepatocytes and liver stress, Am J Physiol Gastrointest Liver Physiol, vol.296, pp.499-509, 2009.

V. Stadlbauer, S. Schaffellner, and F. Iberer, Occurance of apoptosis during ischemia in porcine pancreas islet cells, Int J Artif Organs, vol.26, pp.205-215, 2003.

B. R. Broughton, D. C. Reutens, and C. G. Sobey, Apoptotic mechanisms after cerebral ischemia, Stroke, vol.40, pp.331-340, 2009.

J. S. Benjamin, C. B. Culpepper, and L. D. Brown, Chronic anemic hypoxemia attenuates glucose-stimulated insulin secretion in fetal sheep, Am J Physiol Regul Integr Comp Physiol, vol.312, pp.492-500, 2017.

E. K. Pae, B. Ahuja, and M. Kim, Impaired glucose homeostasis after a transient intermittent hypoxic exposure in neonatal rats, Biochem Biophys Res Commun, vol.441, pp.637-679, 2013.

A. Rodriguez-brotons, W. Bietiger, and C. Peronet, Impact of Pancreatic Rat Islet Density on Cell Survival during Hypoxia, J Diabetes Res, p.3615286, 2016.

M. Garcia-contreras, A. Tamayo-garcia, and K. L. Pappan, Metabolomics Study of the Effects of Inflammation, Hypoxia, and High Glucose on Isolated Human Pancreatic Islets, J Proteome Res, vol.16, pp.2294-306, 2017.

Y. Sato, M. Inoue, and T. Yoshizawa, Moderate hypoxia induces beta-cell dysfunction with HIF-1-independent gene expression changes, PLoS One, vol.9, p.114868, 2014.

E. K. Pae and G. Kim, Insulin production hampered by intermittent hypoxia via impaired zinc homeostasis, PLoS One, vol.9, p.90192, 2014.

K. Cheng, K. Ho, and R. Stokes, Hypoxia-inducible factor-1alpha regulates beta cell function in mouse and human islets, J Clin Invest, vol.120, pp.2171-83, 2010.

M. Giuliani, W. Moritz, and E. Bodmer, Central necrosis in isolated hypoxic human pancreatic islets: evidence for postisolation ischemia, Cell Transplant, vol.14, pp.67-76, 2005.

K. Bloch, J. Vennang, and D. Lazard, Different susceptibility of rat pancreatic alpha and beta cells to hypoxia, Histochem Cell Biol, vol.137, pp.801-811, 2012.

R. Bottino, A. N. Balamurugan, and H. Tse, Response of human islets to isolation stress and the effect of antioxidant treatment, Diabetes, vol.53, pp.2559-68, 2004.

S. Lablanche, C. Cottet-rousselle, and F. Lamarche, Protection of pancreatic INS-1 beta-cells from glucose-and fructose-induced cell death by inhibiting mitochondrial permeability transition with cyclosporin A or metformin, Cell Death Dis, vol.2, p.134, 2011.

C. Piot, P. Croisille, and P. Staat, Effect of cyclosporine on reperfusion injury in acute myocardial infarction, N Engl J Med, vol.359, pp.473-81, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00443408

J. Inserte, H. V. , G. , and D. , Contribution of calpains to myocardial ischaemia/reperfusion injury, Cardiovasc Res, vol.96, pp.23-31, 2012.

G. M. Collins, M. Bravo-shugarman, and P. I. Terasaki, Kidney preservation for transportation. Initial perfusion and 30 hours' ice storage, Lancet, vol.2, pp.1219-1241, 1969.

J. Jamart and L. Lambotte, Efficiency and limitation of Euro-Collins solution in kidney preservation, J Surg Res, vol.34, pp.195-204, 1983.

S. J. Ontell, L. Makowka, and P. Ove, Improved hepatic function in the 24-hour preserved rat liver with UW-lactobionate solution and SRI 63-441, Gastroenterology, vol.95, pp.1617-1641, 1988.

M. Bejaoui, E. Pantazi, and E. Folch-puy, Emerging concepts in liver graft preservation, World J Gastroenterol, vol.21, pp.396-407, 2015.

R. F. Roberts, G. P. Nishanian, and J. N. Carey, Addition of aprotinin to organ preservation solutions decreases lung reperfusion injury, Ann Thorac Surg, vol.66, pp.225-255, 1998.

F. O. Belzer, D. 'alessandro, A. M. Hoffmann, and R. M. , The use of UW solution in clinical transplantation. A 4-year experience, Ann Surg, vol.215, pp.579-83, 1992.

T. Hauet, Z. Han, and C. Doucet, A modified University of Wisconsin preservation solution with high-NA+ low-K+ content reduces reperfusion injury of the pig kidney graft, Transplantation, vol.76, pp.18-27, 2003.

S. Giraud, R. Thuillier, and R. Codas, The Optimal PEG for Kidney Preservation: A Preclinical Porcine Study, Int J Mol Sci, vol.19, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01762477

D. Santo, L. S. Amarelli, C. Romano, and G. , High-risk heart grafts: effective preservation with Celsior solution, Heart Vessels, vol.21, pp.89-94, 2006.

S. Giraud, T. Hauet, and M. Eugene, A new preservation solution (SCOT 15) Improves the islet isolation process from pancreata of non-heart-beating donors: a Murine model, Transplant Proc, vol.41, pp.3293-3298, 2009.

T. Hubert, V. Gmyr, and L. Arnalsteen, Influence of preservation solution on human islet isolation outcome, Transplantation, vol.83, pp.270-276, 2007.

N. Niclauss, A. Wojtusciszyn, and P. Morel, Comparative impact on islet isolation and transplant outcome of the preservation solutions Institut Georges Lopez-1, University of Wisconsin, and Celsior, Transplantation, vol.93, pp.703-711, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01930695

E. Hamada, N. Ebi, and C. Miyagi-shiohira, Comparison Between Modified Extracellular-Type Trehalose-Containing Kyoto Solution and University of Wisconsin Solution in 18-Hour Pancreas Preservation for Islet Transplantation, Pancreas, vol.47, pp.46-53, 2018.

N. He, J. H. Li, and J. J. Jia, Hypothermic Machine Perfusion's Protection on Porcine Kidney Graft Uncovers Greater Akt-Erk Phosphorylation, Transplant Proc, vol.49, pp.1923-1932, 2017.

C. Doucet, S. Milin, and F. Favreau, A p38 mitogen-activated protein kinase inhibitor protects against renal damage in a non-heart-beating donor model, Am J Physiol Renal Physiol, vol.295, pp.179-91, 2008.

H. Noguchi, S. Matsumoto, and N. Kobayashi, Effect of JNK inhibitor during islet isolation and transplantation, Transplant Proc, vol.40, pp.379-81, 2008.

H. Noguchi, S. Matsumoto, and N. Onaca, Ductal injection of JNK inhibitors before pancreas preservation prevents islet apoptosis and improves islet graft function, Hum Gene Ther, vol.20, pp.73-85, 2009.

J. Wei, S. Chen, and S. Xue, Blockade of Inflammation and Apoptosis Pathways by siRNA Prolongs Cold Preservation Time and Protects Donor Hearts in a Porcine Model, Mol Ther Nucleic Acids, vol.9, pp.428-467, 2017.

A. L. Charles, A. S. Guilbert, and M. Guillot, Muscles Susceptibility to Ischemia-Reperfusion Injuries Depends on Fiber Type Specific Antioxidant Level, Front Physiol, vol.8, p.52, 2017.

C. E. Murry, J. Rb, and K. A. Reimer, Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium, Circulation, vol.74, pp.1124-1160, 1986.

M. A. Moses, P. D. Addison, and P. C. Neligan, Inducing late phase of infarct protection in skeletal muscle by remote preconditioning: efficacy and mechanism, Am J Physiol Regul Integr Comp Physiol, vol.289, pp.1609-1626, 2005.

M. Kitakaze, M. Hori, and S. Takashima, Ischemic preconditioning increases adenosine release and 5'-nucleotidase activity during myocardial ischemia and reperfusion in dogs. Implications for myocardial salvage, Circulation, vol.87, pp.208-223, 1993.

R. Sharma, P. K. Randhawa, and N. Singh, Bradykinin in ischemic conditioninginduced tissue protection: Evidences and possible mechanisms, Eur J Pharmacol, vol.768, pp.58-70, 2015.

R. Bolli, Q. H. Li, and X. L. Tang, The late phase of preconditioning and its natural clinical application--gene therapy, Heart Fail Rev, vol.12, pp.189-99, 2007.

R. Quarrie, D. S. Lee, and G. Steinbaugh, Ischemic preconditioning preserves mitochondrial membrane potential and limits reactive oxygen species production, J Surg Res, vol.178, pp.8-17, 2012.

K. Przyklenk, B. Bauer, and M. Ovize, Regional ischemic 'preconditioning' protects remote virgin myocardium from subsequent sustained coronary occlusion, Circulation, vol.87, pp.893-902, 1993.

V. Anttila, H. Haapanen, and F. Yannopoulos, Review of remote ischemic preconditioning: from laboratory studies to clinical trials, Scand Cardiovasc J, vol.50, pp.355-61, 2016.

E. W. Dickson, M. Lorbar, and W. A. Porcaro, Rabbit heart can be "preconditioned" via transfer of coronary effluent, Am J Physiol, vol.277, pp.2451-2458, 1999.

M. Donato, B. Buchholz, and M. Rodriguez, Role of the parasympathetic nervous system in cardioprotection by remote hindlimb ischaemic preconditioning, Exp Physiol, vol.98, pp.425-459, 2013.

F. C. Serejo, L. F. Rodrigues, J. Da-silva-tavares, and K. C. , Cardioprotective properties of humoral factors released from rat hearts subject to ischemic preconditioning, J Cardiovasc Pharmacol, vol.49, pp.214-234, 2007.

F. Thaveau, J. Zoll, and O. Rouyer, Ischemic preconditioning specifically restores complexes I and II activities of the mitochondrial respiratory chain in ischemic skeletal muscle, J Vasc Surg, vol.46, pp.541-548, 2007.

Z. Mansour, J. Bouitbir, and A. L. Charles, Remote and local ischemic preconditioning equivalently protects rat skeletal muscle mitochondrial function during experimental aortic cross-clamping, J Vasc Surg, vol.55, pp.497-505, 2012.

K. A. Reimer, C. E. Murry, and I. Yamasawa, Four brief periods of myocardial ischemia cause no cumulative ATP loss or necrosis, Am J Physiol, vol.251, pp.1306-1321, 1986.

M. G. Perrelli, P. Pagliaro, and C. Penna, Ischemia/reperfusion injury and cardioprotective mechanisms: Role of mitochondria and reactive oxygen species, World J Cardiol, vol.3, pp.186-200, 2011.

J. W. Thompson, S. V. Narayanan, and K. B. Koronowski, Signaling pathways leading to ischemic mitochondrial neuroprotection, J Bioenerg Biomembr, vol.47, pp.101-111, 2015.

F. Mastropasqua, G. Girolimetti, and M. Shoshan, PGC1alpha: Friend or Foe in Cancer?, Genes (Basel), vol.9, 2018.

C. Sanchez-ramos, I. Prieto, and A. Tierrez, PGC-1alpha Downregulation in Steatotic Liver Enhances Ischemia-Reperfusion Injury and Impairs Ischemic Preconditioning, Antioxid Redox Signal, vol.27, pp.1332-1378, 2017.

T. Wenz, S. G. Rossi, and R. L. Rotundo, Increased muscle PGC-1alpha expression protects from sarcopenia and metabolic disease during aging, Proc Natl Acad Sci, vol.106, pp.20405-20415, 2009.

N. M. Heinen, V. E. Putz, and J. I. Gorgens, Cardioprotection by remote ischemic preconditioning exhibits a signaling pattern different from local ischemic preconditioning, Shock, vol.36, pp.45-53, 2011.

D. Lindholm, O. Eriksson, and J. Makela, PGC-1alpha: a master gene that is hard to master, Cell Mol Life Sci, vol.69, pp.2465-2473, 2012.

M. M. Monick, L. S. Powers, and C. W. Barrett, Constitutive ERK MAPK activity regulates macrophage ATP production and mitochondrial integrity, J Immunol, vol.180, pp.7485-96, 2008.

W. Farooqui, H. C. Pommergaard, and A. Rasmussen, Remote ischemic preconditioning of transplant recipients to reduce graft ischemia and reperfusion injuries: A systematic review, Transplant Rev (Orlando), vol.32, pp.10-15, 2018.

P. Ferdinandy, D. J. Hausenloy, and G. Heusch, Interaction of risk factors, comorbidities, and comedications with ischemia/reperfusion injury and cardioprotection by preconditioning, postconditioning, and remote conditioning, Pharmacol Rev, vol.66, pp.1142-74, 2014.

N. Gassanov, A. M. Nia, and E. Caglayan, Remote ischemic preconditioning and renoprotection: from myth to a novel therapeutic option?, J Am Soc Nephrol, vol.25, pp.216-240, 2014.

S. Hu, H. Dong, and H. Zhang, Noninvasive limb remote ischemic preconditioning contributes neuroprotective effects via activation of adenosine A1 receptor and redox status after transient focal cerebral ischemia in rats, Brain Res, vol.1459, pp.81-90, 2012.

P. D. Addison, P. C. Neligan, and H. Ashrafpour, Noninvasive remote ischemic preconditioning for global protection of skeletal muscle against infarction, Am J Physiol Heart Circ Physiol, vol.285, pp.1435-1478, 2003.

R. K. Kharbanda, T. T. Nielsen, and A. N. Redington, Translation of remote ischaemic preconditioning into clinical practice, Lancet, vol.374, pp.1557-65, 2009.

A. R. Hogan, M. Doni, and R. D. Molano, Beneficial effects of ischemic preconditioning on pancreas cold preservation, Cell Transplant, vol.21, pp.1349-60, 2012.

V. Delaune, S. Lacotte, and Q. Gex, Effects of remote ischaemic preconditioning on intraportal islet transplantation in a rat model, Transpl Int, vol.32, pp.323-356, 2019.

L. Kay, Z. Daneshrad, and V. A. Saks, Alteration in the control of mitochondrial respiration by outer mitochondrial membrane and creatine during heart preservation, Cardiovasc Res, vol.34, pp.547-56, 1997.

Y. Tanioka, D. E. Sutherland, and Y. Kuroda, Excellence of the two-layer method (University of Wisconsin solution/perfluorochemical) in pancreas preservation before islet isolation, Surgery, vol.122, pp.41-43, 1997.

J. G. Riess, Perfluorocarbon-based oxygen delivery, Artif Cells Blood Substit Immobil Biotechnol, vol.34, pp.567-80, 2006.

J. Caballero-corbalan, T. Eich, and T. Lundgren, No beneficial effect of two-layer storage compared with UW-storage on human islet isolation and transplantation, Transplantation, vol.84, pp.864-873, 2007.

K. K. Papas, B. J. Hering, and L. Guenther, Pancreas oxygenation is limited during preservation with the two-layer method, Transplant Proc, vol.37, pp.3501-3505, 2005.

W. E. Scott, ,. O'brien, T. D. Ferrer-fabrega, and J. , Persufflation improves pancreas preservation when compared with the two-layer method, Transplant Proc, vol.42, pp.2016-2025, 2010.

M. S. Reddy, N. Carter, and A. Cunningham, Portal Venous Oxygen Persufflation of the Donation after Cardiac Death pancreas in a rat model is superior to static cold storage and hypothermic machine perfusion, Transpl Int, vol.27, pp.634-643, 2014.

M. Leemkuil, G. Lier, and M. A. Engelse, Hypothermic Oxygenated Machine Perfusion of the Human Donor Pancreas, Transplant Direct, vol.4, p.388, 2018.

J. Gomez-cambronero, The Oxygen Dissociation Curve of Hemoglobin: Bridging the Gap between Biochemistry and Physiology, J Chem Educ, vol.78, p.757, 2001.

J. M. Rifkind, J. G. Mohanty, and E. Nagababu, The pathophysiology of extracellular hemoglobin associated with enhanced oxidative reactions, Front Physiol, vol.5, p.500, 2014.

M. Rousselot, E. Delpy, D. L. Rochelle, and C. , Arenicola marina extracellular hemoglobin: a new promising blood substitute, Biotechnol J, vol.1, pp.333-378, 2006.

R. Thuillier, D. Dutheil, and M. T. Trieu, Supplementation with a new therapeutic oxygen carrier reduces chronic fibrosis and organ dysfunction in kidney static preservation, Am J Transplant, vol.11, pp.1845-60, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01250926

L. Gall, T. Polard, V. Rousselot, and M. , In vivo biodistribution and oxygenation potential of a new generation of oxygen carrier, J Biotechnol, vol.187, pp.1-9, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01315458

L. Pape, F. Cosnuau-kemmat, L. Richard, and G. , HEMOXCell, a New Oxygen Carrier Usable as an Additive for Mesenchymal Stem Cell Culture in Platelet Lysate-Supplemented Media, Artif Organs, vol.41, pp.359-71, 2017.

V. Mallet, D. Dutheil, and V. Polard, Dose-ranging study of the performance of the natural oxygen transporter HEMO2 Life in organ preservation, Artif Organs, vol.38, pp.691-701, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01928025

M. Glorion, V. Polard, and F. Favereau, Prevention of ischemia-reperfusion lung injury during static cold preservation by supplementation of standard preservation solution with HEMO2life((R)) in pig lung transplantation model, Artif Cells Nanomed Biotechnol, vol.46, pp.1773-80, 2018.

E. S. Teh, F. Zal, and V. Polard, HEMO2life as a protective additive to Celsior solution for static storage of donor hearts prior to transplantation, Artif Cells Nanomed Biotechnol, vol.45, pp.717-739, 2017.

J. Kaminski, P. Hannaert, and A. Kasil, Efficacy of the natural oxygen transporter HEMO2 life((R)) in cold preservation in a preclinical porcine model of donation after cardiac death, Transpl Int, 2019.

C. Ricordi, D. W. Gray, and B. J. Hering, Islet isolation assessment in man and large animals, Acta Diabetol Lat, vol.27, pp.185-95, 1990.

H. H. Contractor, P. R. Johnson, and D. R. Chadwick, The effect of UW solution and its components on the collagenase digestion of human and porcine pancreas, Cell Transplant, vol.4, pp.615-624, 1995.

A. Cuadrado and A. R. Nebreda, Mechanisms and functions of p38 MAPK signalling, Biochem J, vol.429, pp.403-420, 2010.

D. Yoshinari, I. Takeyoshi, and M. Kobayashi, Effects of a p38 mitogen-activated protein kinase i nhibitor as an additive to university of wisconsin solution on reperfusion injury in liver transplantation, Transplantation, vol.72, pp.22-29, 2001.

N. Hashimoto, I. Takeyoshi, and D. Yoshinari, Effects of a p38 mitogen-activated protein kinase inhibitor as an additive to Euro-Collins solution on reperfusion injury in canine lung transplantation1, Transplantation, vol.74, pp.320-326, 2002.

N. Welsh, B. Margulis, and L. A. Borg, Differences in the expression of heat-shock proteins and antioxidant enzymes between huma n and rodent pancreatic islets: implications for the pathogenesis of insulin-dependent diabetes mellitus, Mol Med, vol.1, pp.806-826, 1995.

P. Stiegler, V. Stadlbauer, and F. Hackl, Prevention of oxidative stress in porcine islet isolation, J Artif Organs, vol.13, pp.38-47, 2010.

S. Abdelli, A. Abderrahmani, and B. J. Hering, The c-Jun N-terminal kinase JNK participates in cytokine-and isolation stress-induced rat pancreatic islet apoptosis, Diabetologia, vol.50, pp.1660-1669, 2007.

A. Pileggi, M. M. Ribeiro, and A. R. Hogan, Effects of pancreas cold ischemia on islet function and quality, Transplant Proc, vol.41, pp.1808-1817, 2009.

K. Omori, E. Kobayashi, and J. Rawson, Mechanisms of islet damage mediated by pancreas cold ischemia/rewarming, Cryobiology, vol.73, pp.126-160, 2016.

Z. Berkova, F. Saudek, and P. Girman, Combining Donor Characteristics with Immunohistological Data Improves the Prediction of Islet Isolation Success, J Diabetes Res, p.4214328, 2016.

J. Lyon, M. Fox, J. E. Spigelman, and A. F. , Research-Focused Isolation of Human Islets From Donors With and Without Diabetes at the Alberta Diabetes Institute IsletCore, Endocrinology, vol.157, pp.560-569, 2016.

D. E. Hilling, E. Bouwman, and O. T. Terpstra, Effects of donor-, pancreas-, and isolation-related variables on human islet isolation outcome: a systematic review, Cell Transplant, vol.23, pp.921-929, 2014.

J. S. Kaddis, J. S. Danobeitia, and J. C. Niland, Multicenter analysis of novel and established variables associated with successful human islet isolation outcomes, Am J Transplant, vol.10, pp.646-56, 2010.

J. C. Henquin, Influence of organ donor attributes and preparation characteristics on the dynamics of insulin secretion in isolated human islets, Physiol Rep, vol.6, 2018.

A. S. Muthusamy and A. Vaidya, Expanding the donor pool in pancreas transplantation, Curr Opin Organ Transplant, vol.16, pp.123-130, 2011.

Z. Hu, S. Hu, and S. Yang, Remote Liver Ischemic Preconditioning Protects against Sudden Cardiac Death via an ERK/GSK-3beta-Dependent Mechanism, PLoS One, vol.11, p.165123, 2016.

E. Marais, S. Genade, and B. Huisamen, Activation of p38 MAPK induced by a multi-cycle ischaemic preconditioning protocol is associated with attenuated p38 MAPK activity during sustained ischaemia and reperfusion, J Mol Cell Cardiol, vol.33, pp.769-78, 2001.

H. Singh, M. Kumar, and N. Singh, Late Phases of Cardioprotection During Remote Ischemic Preconditioning and Adenosine Preconditioning Involve Activation of Neurogenic Pathway, J Cardiovasc Pharmacol, vol.73, pp.63-72, 2019.

Z. Giricz, Z. V. Varga, and T. Baranyai, Cardioprotection by remote ischemic preconditioning of the rat heart is mediated by extracellular vesicles, J Mol Cell Cardiol, vol.68, pp.75-83, 2014.

T. Hiraide, K. Katsura, and H. Muramatsu, Adenosine receptor antagonists cancelled the ischemic tolerance phenomenon in gerbil, Brain Res, vol.910, pp.94-102, 2001.

M. Ferko, I. Kancirova, and M. Jasova, Remote ischemic preconditioning of the heart: protective responses in functional and biophysical properties of cardiac mitochondria, Physiol Res, vol.63, issue.4, pp.469-78, 2014.

A. Zarbock and J. A. Kellum, Remote Ischemic Preconditioning and Protection of the Kidney--A Novel Therapeutic Option, Crit Care Med, vol.44, pp.607-623, 2016.

D. Brandhorst, H. Brandhorst, and N. Mullooly, High Seeding Density Induces Local Hypoxia and Triggers a Proinflammatory Response in Isolated Human Islets, Cell Transplant, vol.25, pp.1539-1585, 2016.

T. L. Place, F. E. Domann, and A. J. Case, Limitations of oxygen delivery to cells in culture: An underappreciated problem in basic and translational research, Free Radic Biol Med, vol.113, pp.311-333, 2017.

H. Komatsu, C. Cook, and C. H. Wang, Oxygen environment and islet size are the primary limiting factors of isolated pancreatic islet survival, PLoS One, vol.12, p.183780, 2017.

R. H. Wenger, V. Kurtcuoglu, and C. C. Scholz, Frequently asked questions in hypoxia research, Hypoxia (Auckl), vol.3, pp.35-43, 2015.

A. Rodriguez-brotons, W. Bietiger, and C. Peronet, Comparison of Perfluorodecalin and HEMOXCell as Oxygen Carriers for Islet Oxygenation in an In Vitro Model of Encapsulation, Tissue Eng Part A, vol.22, pp.1327-1363, 2016.

Y. Fang, Q. Zhang, and J. Tan, Intermittent hypoxia-induced rat pancreatic beta-cell apoptosis and protective effects of antioxidant intervention, Nutr Diabetes, vol.4, p.131, 2014.

D. Zhang, Y. Liu, and Y. Tang, Increased mitochondrial fission is critical for hypoxiainduced pancreatic beta cell death, PLoS One, vol.13, p.197266, 2018.

R. Bottino, A. N. Balamurugan, and S. Bertera, Preservation of human islet cell functional mass by anti-oxidative action of a novel SOD mimic compound, Diabetes, vol.51, pp.2561-2568, 2002.

A. Pileggi, R. D. Molano, and T. Berney, Heme oxygenase-1 induction in islet cells results in protection from apoptosis and improved in vivo function after transplantation, Diabetes, vol.50, pp.1983-91, 2001.

K. K. Papas, R. C. Long, J. Constantinidis, and I. , Effects of short-term hypoxia on a transformed cell-based bioartificial pancreatic construct, Cell Transplant, vol.9, pp.415-437, 2000.

K. K. Papas, E. S. Avgoustiniatos, and L. A. Tempelman, High-density culture of human islets on top of silicone rubber membranes, Transplant Proc, vol.37, pp.3412-3416, 2005.

T. Doenst and H. Taegtmeyer, Ischemia-stimulated glucose uptake does not require catecholamines in rat heart, J Mol Cell Cardiol, vol.31, pp.435-478, 1999.

J. Avila, B. Barbaro, and A. Gangemi, Intra-ductal glutamine administration reduces oxidative injury during human pancreatic islet isolation, Am J Transplant, vol.5, pp.2830-2837, 2005.

J. L. Contreras, C. Eckstein, and C. A. Smyth, Brain death significantly reduces isolated pancreatic islet yields and functionality in vitro and in vivo after transplantation in rats, Diabetes, vol.52, pp.2935-2977, 2003.

B. Floerchinger, R. Oberhuber, and S. G. Tullius, Effects of brain death on organ quality and transplant outcome, Transplant Rev (Orlando), vol.26, pp.54-63, 2012.

R. P. Watts, T. O. Fraser, and J. F. , Inflammatory signalling associated with brain dead organ donation: from brain injury to brain stem death and posttransplant ischaemia reperfusion injury, J Transplant, p.521369, 2013.

F. Lemaire, S. Sigrist, E. Delpy, C. Peronet, J. Cherfan et al., Beneficial effects of the novel marine oxygen carrier M101 during cold preservation of rat and human pancreas, Journal of Cellular and Molecular Medicine, issue.2, 2019.

F. Lemaire, S. Sigrist, E. Delpy, C. Peronet, J. Cherfan et al., Beneficial effect of the novel marine oxygen carrier M101 during rat and human islet culture

F. Lemaire, S. Sigrist, E. Delpy, C. Peronet, J. Cherfan et al., Effect of a non invasive remote ischemic preconditioning during pancreas cold preservation

, Oxford -Royaume-Uni "Effect of a novel marine oxygen carrier for preservation of the pancreas during ischemia-reperfusion process". 16th international Pancreas and Islet Transplantation Association 2017 congress. The review of diabetic studies, Résumés publiés "Ischemia-reperfusion preconditioning of the pancreas for better islet isolation outcomes". 16th international Pancreas and Islet Transplantation Association 2017 congress, vol.14, 2017.

F. Lemaire, C. Peronet, K. Bouzakri, S. Sigrist, M. Pinget et al., 9 th European Pancreas and Islet Transplant Association (EPITA) Symposium & 38th AIDPIT Workshop; Igls -Autriche -2019 "Effect of a novel marine oxygen carrier for preservation of the pancres during ischemia-reperfusion process, SCOT15 ® versus Custodiol ® preservation solution: impact on marginal human pancreases during cold ischemia time

, Association Est Transplant

, Ischemia-reperfusion preconditioning of the pancreas for better islet isolation outcomes

F. Lemaire, . Ferreau, C. Bietiger, . Peronet, . Langlois et al., Communication présentée au : o 24ème journée annuelle de l'Association Est Transplant, 2018.

, 16th international Pancreas and Islet Transplantation Association 2017 congress; Oxford -Royaume-Uni -2017 of HEMO2life ® , a marine oxygen carrier, for pancreas preservation during cold ischemia

F. Lemaire, W. Bietiger, C. Peronet, A. Langlois, K. Bouzakri et al., th European Pancreas and Islet Transplant Association (EPITA) Symposium & 37th AIDPIT Workshop; Igls -Autriche -2018 "Protecting pancreas by ischemia-reperfusion preconditioning for improvement of islet transplantation, vol.8

F. Lemaire, . Ferreau, C. Bietiger, . Peronet, . Langloi-s et al., th European Pancreas and Islet Transplant Association (EPITA) Symposium & 36th AIDPIT Workshop, vol.7

F. Lemaire, S. Sigrist, E. Delpy, C. Peronet, J. Cherfan et al., Beneficial effects of the novel marine oxygen carrier M101 during cold preservation of rat and human pancreas, Journal of Cellular and Molecular Medicine, 2019.

, J Cell Mol Med, 2019.

R. Kandaswamy, P. G. Stock, and S. K. Gustafson, OPTN/SRTR 2017 annual data report: pancreas, Am J Transplant, vol.19, issue.2, pp.124-183, 2019.

A. M. Shapiro, Strategies toward single-donor islets of langerhans transplantation, Curr Opin Organ Transplant, vol.16, pp.627-631, 2011.

R. Kandaswamy, P. G. Stock, and S. K. Gustafson, OPTN/SRTR 2016 annual data report: pancreas, Am J Transplant, vol.18, issue.1, pp.114-171, 2018.

J. A. Fridell, J. Rogers, and R. J. Stratta, The pancreas allograft donor: current status, controversies, and challenges for the future, Clin Transplant, vol.24, pp.433-449, 2010.

A. Pileggi, M. M. Ribeiro, and A. R. Hogan, Effects of pancreas cold ischemia on islet function and quality, Transplant Proc, vol.41, pp.1808-1809, 2009.

E. N. Rudolph, T. B. Dunn, and D. Sutherland, Optimizing outcomes in pancreas transplantation: Impact of organ preservation time, Clin Transplant, p.31, 2017.

T. Kalogeris, C. P. Baines, and M. Krenz, Cell biology of ischemia/ reperfusion injury, Int Rev Cell Mol Biol, vol.298, pp.229-317, 2012.

P. M. Schulte, The effects of temperature on aerobic metabolism: towards a mechanistic understanding of the responses of ectotherms to a changing environment, J Exp Biol, vol.218, pp.1856-1866, 2015.

W. Kamiike, M. Burdelski, and G. Steinhoff, Adenine nucleotide metabolism and its relation to organ viability in human liver transplantation, Transplantation, vol.45, pp.138-143, 1988.

D. N. Granger and P. R. Kvietys, Reperfusion injury and reactive oxygen species: The evolution of a concept, Redox Biol, vol.6, pp.524-551, 2015.

S. Salzano, P. Checconi, and E. M. Hanschmann, Linkage of inflammation and oxidative stress via release of glutathionylated peroxiredoxin-2, which acts as a danger signal, Proc Natl Acad Sci, vol.111, pp.12157-12162, 2014.

B. G. Bruinsma, J. H. Avruch, and G. V. Sridharan, Peritransplant energy changes and their correlation to outcome after human liver transplantation, Transplantation, vol.101, pp.1637-1644, 2017.

I. R. Sweet, D. L. Cook, and E. Dejulio, Regulation of ATP/ADP in pancreatic islets, Diabetes, vol.53, pp.401-409, 2004.

M. Goto, J. Holgersson, and M. Kumagai-braesch, The ADP/ATP ratio: a novel predictive assay for quality assessment of isolated pancreatic islets, Am J Transplant, vol.6, pp.2483-2487, 2006.

R. Bottino, A. N. Balamurugan, and H. Tse, Response of human islets to isolation stress and the effect of antioxidant treatment, Diabetes, vol.53, pp.2559-2568, 2004.

A. C. Kelly, K. E. Smith, and W. G. Purvis, Oxygen perfusion (Persufflation) of human pancreata enhances insulin secretion and attenuates islet proinflammatory signaling, Transplantation, vol.103, pp.160-167, 2019.

T. Kin, M. Mirbolooki, and P. Salehi, Islet isolation and transplantation outcomes of pancreas preserved with University of Wisconsin solution versus two-layer method using preoxygenated perfluorocarbon, Transplantation, vol.82, pp.1286-1290, 2006.

J. Caballero-corbalan, T. Eich, and T. Lundgren, No beneficial effect of two-layer storage compared with UW-storage on human islet isolation and transplantation, Transplantation, vol.84, pp.864-869, 2007.

L. Gall, T. Polard, V. Rousselot, and M. , In vivo biodistribution and oxygenation potential of a new generation of oxygen carrier, J Biotechnol, vol.187, pp.1-9, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01315458

V. Mallet, D. Dutheil, and V. Polard, Dose-ranging study of the performance of the natural oxygen transporter HEMO2 Life in organ preservation, Artif Organs, vol.38, pp.691-701, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01928025

R. Thuillier, D. Dutheil, and M. T. Trieu, Supplementation with a new therapeutic oxygen carrier reduces chronic fibrosis and organ dysfunction in kidney static preservation, Am J Transplant, vol.11, pp.1845-1860, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01250926

E. S. Teh, F. Zal, V. Polard, P. Menasché, and D. J. Chambers, HEMO2life as a protective additive to Celsior solution for static storage of donor hearts prior to transplantation, Artif Cells Nanomed Biotechnol, vol.45, pp.717-722, 2017.

M. Glorion, V. Polard, and F. Favereau, Prevention of ischemiareperfusion lung injury during static cold preservation by supplementation of standard preservation solution with HEMO2life((R)) in pig lung transplantation model, Artif Cells Nanomed Biotechnol, vol.46, pp.1773-1780, 2018.

J. Kaminski, P. Hannaert, and A. Kasil, Efficacy of the natural oxygen transporter HEMO2 life((R)) in cold preservation in a preclinical porcine model of donation after cardiac death, Transpl Int, vol.32, pp.985-996, 2019.

A. Kasil, S. Giraud, and P. Couturier, Individual and combined impact of oxygen and oxygen transporter supplementation during kidney machine preservation in a porcine preclinical kidney transplantation model, Int J Mol Sci, vol.20, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02165668

A. Raucci, R. Palumbo, and M. E. Bianchi, HMGB1: a signal of necrosis, Autoimmunity, vol.40, pp.285-289, 2007.

A. Tsung, J. R. Klune, and X. Zhang, HMGB1 release induced by liver ischemia involves Toll-like receptor 4 dependent reactive oxygen species production and calcium-mediated signaling, J Exp Med, vol.204, pp.2913-2923, 2007.

C. Ricordi, D. W. Gray, and B. J. Hering, Islet isolation assessment in man and large animals, Acta Diabetol Lat, vol.27, pp.185-195, 1990.

H. Elgendy, T. Okitsu, and Y. Kimura, Augmented damage of islets by impaired exocrine acinar cells undergoing apoptosis that is possibly converted to necrosis during isolation, Islets, vol.3, pp.102-110, 2011.

W. M. Kuhtreiber, L. T. Ho, and A. Kamireddy, Islet isolation from human pancreas with extended cold ischemia time, Transplant Proc, vol.42, pp.2027-2031, 2010.

P. Buchwald, FEM-based oxygen consumption and cell viability models for avascular pancreatic islets, Theor Biol Med Model, vol.6, p.5, 2009.

T. L. Place, F. E. Domann, and A. J. Case, Limitations of oxygen delivery to cells in culture: an underappreciated problem in basic and translational research, Free Radic Biol Med, vol.113, pp.311-322, 2017.

T. S. Chan, S. Cassim, and V. A. Raymond, Upregulation of Krebs cycle and anaerobic glycolysis activity early after onset of liver ischemia, PLoS ONE, vol.13, p.199177, 2018.

G. Nowak, J. Ungerstedt, and J. Wernerman, Metabolic changes in the liver graft monitored continuously with microdialysis during liver transplantation in a pig model, Liver Transpl, vol.8, pp.424-432, 2002.

A. Cuenda and S. Rousseau, p38 MAP-kinases pathway regulation, function and role in human diseases, Biochim Biophys Acta, vol.1773, pp.1358-1375, 2007.

A. Barajas-espinosa, A. Basye, and M. G. Angelos, Modulation of p38 kinase by DUSP4 is important in regulating cardiovascular function under oxidative stress, Free Radic Biol Med, vol.89, pp.170-181, 2015.

D. E. Farthing, C. A. Farthing, and L. Xi, Inosine and hypoxanthine as novel biomarkers for cardiac ischemia: from bench to point-of-care, Exp Biol Med, vol.240, pp.821-831, 2015.

A. C. Van-erp, D. Hoeksma, and R. A. Rebolledo, The crosstalk between ROS and autophagy in the field of transplantation medicine, Oxid Med Cell Longev, p.7120962, 2017.

N. Datta, S. G. Devaney, and R. W. Busuttil, Prolonged cold ischemia time results in local and remote organ dysfunction in a murine model of vascularized composite transplantation, Am J Transplant, vol.17, pp.2572-2579, 2017.

C. E. Ponticelli, The impact of cold ischemia time on renal transplant outcome, Kidney Int, vol.87, pp.272-275, 2015.

A. Liu, H. Jin, and O. Dirsch, Release of danger signals during ischemic storage of the liver: a potential marker of organ damage?, Mediators Inflamm, p.436145, 2010.

D. E. Hilling, E. Bouwman, and O. T. Terpstra, Effects of donor-, pancreas-, and isolation-related variables on human islet isolation outcome: a systematic review, Cell Transplant, vol.23, pp.921-928, 2014.

T. Linn, J. Schmitz, and I. Hauck-schmalenberger, Ischaemia is linked to inflammation and induction of angiogenesis in pancreatic islets, Clin Exp Immunol, vol.144, pp.179-187, 2006.

H. A. Khambalia, M. Y. Alexander, and M. Nirmalan, Links between a biomarker profile, cold ischaemic time and clinical outcome following simultaneous pancreas and kidney transplantation, Cytokine, vol.105, pp.8-16, 2018.

A. S. Friberg, T. Lundgren, and H. Malm, Transplanted functional islet mass: donor, islet preparation, and recipient factors influence early graft function in islet-after-kidney patients, Transplantation, vol.93, pp.632-638, 2012.

N. Gilbo and D. Monbaliu, Temperature and oxygenation during organ preservation: friends or foes?, Curr Opin Organ Transplant, vol.22, pp.290-299, 2017.

S. A. Hosgood, H. F. Nicholson, and M. L. Nicholson, Oxygenated kidney preservation techniques, Transplantation, vol.93, pp.455-459, 2012.

T. M. Suszynski, M. D. Rizzari, and W. E. Scott, Persufflation (gaseous oxygen perfusion) as a method of heart preservation, J Cardiothorac Surg, vol.8, p.105, 2013.

M. Ravaioli, M. Baldassare, and F. Vasuri, Strategies to restore adenosine triphosphate (ATP) level after more than 20 hours of cold ischemia time in human marginal kidney grafts, Ann Transplant, vol.23, pp.34-44, 2018.

J. Treckmann, T. Minor, and S. Saad, Retrograde oxygen persufflation preservation of human livers: a pilot study, Liver Transpl, vol.14, pp.358-364, 2008.

. Scott, B. P. Weegman, and J. Ferrer-fabrega, Pancreas oxygen persufflation increases ATP levels as shown by nuclear magnetic resonance, Transplant Proc, vol.42, pp.2011-2015, 2010.

A. Petrovic, D. Bogojevic, and A. Korac, Oxidative stress-dependent contribution of HMGB1 to the interplay between apoptosis and autophagy in diabetic rat liver, J Physiol Biochem, vol.73, pp.511-521, 2017.

Y. Yu, D. Tang, and R. Kang, Oxidative stress-mediated HMGB1 biology, Front Physiol, vol.6, p.93, 2015.

M. A. Hidalgo, K. A. Shah, and B. J. Fuller, Cold ischemia-induced damage to vascular endothelium results in permeability alterations in transplanted lungs, J Thorac Cardiovasc Surg, vol.112, pp.1027-1035, 1996.

P. M. Huet, M. R. Nagaoka, and G. Desbiens, Sinusoidal endothelial cell and hepatocyte death following cold ischemia-warm reperfusion of the rat liver, Hepatology, vol.39, pp.1110-1119, 2004.

E. S. Avgoustiniatos, B. J. Hering, and K. K. Papas, The rat pancreas is not an appropriate model for testing the preservation of the human pancreas with the two-layer method, Transplantation, vol.81, issue.10, pp.1471-1472, 2006.