D. Nelson, G. Fraser, and W. Klemperer, Science, vol.238, p.1670, 1987.

J. W. Reed and P. M. Harris, The Journal of Chemical Physics, vol.35, p.1730, 1961.

R. Boese, N. Niederprüm, D. Bläser, A. Maulitz, M. Y. Antipin et al., J. Phys. Chem. B, vol.101, p.5794, 1997.

A. D. Fortes, J. P. Brodholt, I. G. Wood, and L. Vo?adlo, Journal of Chemical Physics, vol.118, p.5987, 2003.

J. S. Loveday, R. J. Nelmes, W. G. Marshall, J. M. Besson, S. Klotz et al., Physical Review Letters, vol.76, p.74, 1996.

S. Ninet, F. Datchi, S. Klotz, G. Hamel, J. S. Loveday et al., Physical Review B, vol.79, 2009.

P. Chieux and H. Bertagnolli, The Journal of Chemical Physics, vol.88, p.3726, 1984.

T. Bausenwein, H. Bertagnolli, A. David, K. Goller, H. Zweier et al., The Journal of Chemical Physics, vol.101, p.672, 1994.

M. A. Ricci, M. Nardone, F. P. Ricci, C. Andreani, and A. K. Soper, The Journal of Chemical Physics, vol.102, p.7650, 1995.

M. Guthrie, C. Tulk, J. Molaison, and A. M. Santos, Physical Review B, vol.85, p.184205, 2012.

R. F. Kruh and J. I. Petz, The Journal of Chemical Physics, vol.41, p.890, 1964.

A. H. Narten, The Journal of Chemical Physics, vol.66, p.3117, 1977.

P. Giura, R. Angelini, F. Datchi, G. Ruocco, and F. Sette, The Journal of Chemical Physics, vol.127, p.84508, 2007.

W. L. Jorgensen and M. Ibrahim, Journal of the American Chemical Society, vol.102, p.3309, 1980.

M. Diraison, G. J. Martyna, and M. E. Tuckerman, The Journal of Chemical Physics, vol.111, p.1096, 1999.

A. D. Boese, A. Chandra, J. M. Martin, and D. Marx, Journal of Chemical Physics, vol.119, 2003.

A. Tongraar, T. Kerdcharoen, and S. Hannongbua, The Journal of Physical Chemistry A, vol.110, p.4924, 2006.

E. A. Orabi and G. Lamoureux, Journal of Chemical Theory and Computation, vol.9, p.2035, 2013.

.. K. Soper, Chemical Physics, vol.258, p.121, 2000.

T. Strässle, Y. Saitta, G. Godec, S. Hamel, J. Klotz et al., Physical Review Letters, vol.96, p.67801, 2006.

G. Weck, J. H. Eggert, P. Loubeyre, N. Desbiens, E. Bourasseau et al., Physical Review B, vol.80, p.180202, 2009.

Y. Katayama, T. Hattori, H. Saitoh, T. Ikeda, K. Aoki et al., Physical Review B, vol.81, p.14109, 2010.

G. Weck, G. Garbarino, S. Ninet, D. K. Spaulding, F. Datchi et al., The Review of scientific instruments, vol.84, p.1, 2013.

G. Weck, G. Garbarino, P. Loubeyre, F. Datchi, T. Plisson et al., Physical Review B -Condensed Matter and Materials Physics, vol.91, p.1, 2015.

F. Datchi, G. Weck, A. M. Saitta, Z. Raza, G. Garbarino et al., Physical Review B, vol.94, p.1, 2016.

R. Boehler and K. Hantsetters, High Pressure Research, vol.24, p.37, 2004.

O. L. Anderson, D. G. Isaak, and S. Yamamoto, Journal of Applied Physics, vol.65, p.1534, 1989.

J. C. Jamieson, J. N. Fritz, and M. H. Manghnani, High-pressure research in Geophysics, pp.27-48, 1982.

S. H. Shim, T. S. Duffy, and K. Takemura, Earth and Planetary Science Letters, vol.203, p.729, 2002.

T. Tsuchiya, Journal of Geophysical Research, vol.108, p.1, 2003.

Y. Fei, A. Ricolleau, M. Frank, K. Mibe, G. Shen et al., Proceedings of the National Academy of Sciences of the United States of America, vol.104, p.9182, 2007.

P. I. Dorogokupets and A. Dewaele, High Pressure Research, vol.27, p.431, 2007.

M. Yokoo, N. Kawai, K. G. Nakamura, K. I. Kondo, Y. Tange et al., Physical Review B -Condensed Matter and Materials Physics, vol.80, p.1, 2009.

C. Prescher and V. B. Prakapenka, High Pressure Research, vol.7959, p.223, 2015.

G. Weck, G. Garbarino, S. Ninet, D. Spaulding, F. Datchi et al., Review of Scientific Instruments, vol.84, 2013.

J. H. Eggert, G. Weck, P. Loubeyre, and M. Mezouar, Physical Review B, vol.65, p.174105, 2002.

F. Hajdu, Acta Crystallographica Section A, vol.28, p.250, 1972.

R. F. Stewart, E. R. Davidson, and W. T. Simpson, The Journal of Chemical Physics, vol.42, p.3175, 1965.

J. Krogh-moe, Acta Crystallographica, vol.9, p.951, 1956.

N. Norman, Acta Crystallographica, vol.10, p.370, 1957.

R. Kaplow, S. L. Strong, and B. L. Averbach, Physical Review, 1965.

, NIST Chemistry webBook; NIST standard reference database No, 2001.

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car et al., Journal of physics. Condensed matter : an Institute of Physics journal, vol.21, 2009.

J. P. Perdew, K. Burke, and M. Ernzerhof, Physical Review Letters, vol.77, 1996.

F. Datchi, S. Ninet, M. Gauthier, B. Saitta, F. Canny et al., Physical Review B, vol.73, p.174111, 2006.

S. Ninet, F. Datchi, A. Saitta, M. Lazzeri, and B. Canny, Physical Review B, vol.74, p.104101, 2006.

A. D. Becke, Physical Review A, vol.38, 1988.

C. Lee, W. Yang, and R. G. Parr, Physical Review B, vol.37, p.785, 1988.

V. Brazhkin, Y. Fomin, V. Lyapin, K. Ryzhov, and . Trachenko, Physical Review E, vol.85, p.31203, 2012.

K. Trachenko, V. V. Brazhkin, and D. Bolmatov, Phys. Rev. E, vol.89, p.32126, 2014.

C. H. Reinsch, Numerische Mathematik, vol.10, p.177, 1967.

R. Tillner-roth, F. Harms-watzenberg, and H. D. Baehr, DKV -Tagungsbericht, p.67, 1993.

S. Jahangiri and H. Behnejad, Journal of Molecular Liquids, vol.222, p.733, 2016.

Y. Song and E. A. Mason, The Journal of Cheminade Physics, vol.91, p.7840, 1989.

M. Bethkenhagen, M. French, and R. Redmer, The Journal of chemical physics, vol.138, p.234504, 2013.

A. H. Narten, E. Johnson, and A. Habenschuss, J. Chem. Phys, vol.73, p.1248, 1980.

L. Temleitner, L. Pusztai, and Y. Akahama, Physical Review B, vol.1, 2008.

G. Weck, P. Loubeyre, J. H. Eggert, M. Mezouar, and M. Hanfland, Physical Review B, vol.76, p.54121, 2007.

A. B. Bhatia and N. H. March, Physics and Chemistry of Liquids, vol.13, p.313, 1984.

Y. Zeng, G. Fagherazzi, F. Pinna, S. Polizzi, P. R. et al., J. Non-Cryst. Solids, vol.155, p.259, 1993.

C. Cavazzoni, G. L. Chiarotti, S. Scandolo, E. Tosatti, M. Bernasconi et al., Science, vol.283, p.44, 1999.

W. B. Hubbard, Science, vol.214, p.145, 1981.

T. Guillot, Science, vol.286, p.72, 1999.

D. Sudarsky, A. Burrows, and I. Hubeny, The Astrophysical Journal, vol.588, p.1121, 2003.

O. L. Kuskov and V. A. Kronrod, Icarus, vol.177, p.550, 2005.

C. C. Porco, P. Helfenstein, P. C. Thomas, A. P. Ingersoll, J. Wisdom et al., Science, vol.311, p.1393, 2006.

B. I. Olovsson and D. H. Templeton, Acta Crystallographica, vol.12, p.832, 1959.

J. W. Reed and P. M. Harris, The Journal of Chemical Physics, vol.35, p.1730, 1961.

A. W. Hewat and C. Riekel, Acta Crystallogr. Sect. A Cryst. Physics, Diffraction, Theor. Gen. Crystallogr, vol.35, p.569, 1979.

J. Eckert, R. L. Mills, and S. K. Satija, The Journal of Chemical Physics, vol.81, p.6034, 1984.

R. B. Von-dreele and R. C. Hanson, Acta Crystallographica Section C: Crystal Structure Communications, vol.40, p.1635, 1984.

J. S. Loveday, R. J. Nelmes, W. G. Marshall, J. M. Besson, S. Klotz et al., Physical Review Letters, vol.76, p.74, 1996.

S. Ninet, F. Datchi, P. Dumas, M. Mezouar, G. Garbarino et al., Physical Review B, vol.89, p.174103, 2014.

T. Palasyuk, I. Troyan, M. Eremets, V. Drozd, S. Medvedev et al., Nature Communications, vol.5, 2014.

S. Ninet, F. Datchi, and A. M. Saitta, Physical Review Letters, vol.165702, p.1, 2012.

C. Cavazzoni, G. L. Chiarotti, S. Scandolo, E. Tosatti, M. Bernasconi et al., Science, vol.283, p.44, 1999.

M. Bethkenhagen, M. French, and R. Redmer, The Journal of chemical physics, vol.138, p.234504, 2013.

R. D. Dick, The Journal of Chemical Physics, vol.74, p.4053, 1981.

A. C. Mitchell, The Journal of Chemical Physics, vol.76, p.6273, 1982.

W. J. Nellis, D. C. Hamilton, N. C. Holmes, H. B. Radousky, F. H. Ree et al., Science, vol.240, p.779, 1988.

H. B. Radousky, A. C. Mitchell, and W. J. Nellis, The Journal of Chemical Physics, vol.93, p.8235, 1990.

W. J. Nellis, N. C. Holmes, A. C. Mitchell, D. C. Hamilton, and M. Nicol, The Journal of Chemical Physics, vol.107, p.9096, 1997.

R. C. Hanson and M. Jordan, The Journal of Physical Chemistry, vol.84, p.1173, 1980.

S. Ninet and F. Datchi, The Journal of chemical physics, vol.128, p.154508, 2008.

J. G. Ojwang, R. S. Mcwilliams, X. Ke, and A. F. Goncharov, The Journal of chemical physics, vol.137, p.64507, 2012.

L. Benedetti and P. Loubeyre, High Pressure Research, vol.24, p.423, 2004.

O. L. Anderson, D. G. Isaak, and S. Yamamoto, Journal of Applied Physics, vol.65, p.1534, 1989.

C. Prescher and V. B. Prakapenka, High Pressure Research, vol.7959, p.223, 2015.

M. Mezouar, P. Faure, W. Crichton, N. Rambert, B. Sitaud et al., Review of Scientific Instruments, vol.73, p.3570, 2002.

G. Weck, G. Garbarino, S. Ninet, D. Spaulding, F. Datchi et al., Review of Scientific Instruments, vol.84, 2013.

F. Occelli, P. Loubeyre, and R. Letoullec, Nature materials, vol.2, p.151, 2003.

Y. Akahama and H. Kawamura, Journal of Applied Physics, vol.96, p.3748, 2004.

M. Popov, Journal of applied physics, vol.95, 2004.

B. J. Baer, M. E. Chang, and W. J. Evans, Journal of Applied Physics, vol.104, p.34504, 2008.

D. Neumann, H. Zabel, and J. Rush, Journal of Physics C: Solid State Physics, vol.20, 1987.

T. Kume, S. Sasaki, and H. Shimizu, Journal of Raman Spectroscopy, vol.32, p.383, 2001.

D. Schiferl, S. Buchsbaurn, and R. L. Mills, The Journal of Physical Chemistry, vol.89, p.2324, 1985.

I. F. Silvera and R. J. Wijngaarden, Physical Review Letters, vol.47, p.39, 1981.

H. Schneider, W. Hafner, A. Wokaun, and H. Olijnyk, The Journal of Chemical Physics, vol.96, p.8046, 1992.

M. Santoro, E. Gregoryanz, H. Mao, and R. J. Hemley, Solid State Communications, vol.144, p.225, 2007.

D. K. Spaulding, G. Weck, P. Loubeyre, F. Datchi, P. Dumas et al., Nature Communications, vol.5, 2014.

A. F. Goncharov, N. Holtgrewe, G. Qian, C. Hu, A. R. Oganov et al., The Journal of Chemical Physics, vol.142, 2015.

H. Wang, M. I. Eremets, I. Troyan, H. Liu, Y. Ma et al., Scientific reports, vol.5, 2015.

I. G. Batyrev, The Journal of Physical Chemistry A, vol.121, p.638, 2017.

G. Qian, H. Niu, C. Hu, A. R. Oganov, Q. Zeng et al., Scientific Reports, vol.6, p.25947, 2016.

.. .. Mesure-de-la-courbe-de-fusion,

. .. , Glace VII à hautes températures : preuve d'une nouvelle phase de H 2 O ou simple effet thermique ?, p.171

. .. , Détection d'une transition solide-solide, p.171

. .. Les-gradients-thermiques, , p.175

.. .. Discussion,

.. .. Conclusion,

. Hubbard, Par exemple, sur Mars, l'eau existe sous forme solide dans les calottes glaciaires polaires, ou encore sous forme de gaz dans l'atmosphère de Vénus. Dans le système solaire externe, l'eau et d'autres types de glace (CH 4 , NH 3 , etc.) sont les principaux composants d'Uranus et Neptune, 1991.

W. , Afin d'améliorer les modèles de l'intérieur des planètes, il est important de sonder les composants qui les constituent dans les conditions Bibliographie Ahart M, High Pressure Research, vol.34, issue.3, pp.327-336, 2009.

O. L. Anderson, Equation for thermal expansivity in planetary interiors, Journal of Geophysical Research, vol.72, issue.14, p.3661, 1967.

J. L. Aragones and C. Vega, Plastic crystal phases of simple water models, The Journal of Chemical Physics, issue.24, p.130, 2009.

F. Datchi, P. Loubeyre, and R. Letoullec, Extended and accurate determination of the melting curves of argon, helium, ice (H2O), and hydrogen (H2), Physical Review B, vol.61, issue.10, pp.6535-6546, 2000.

N. Dubrovinskaia and L. Dubrovinsky, Melting curve of water studied in externally heated diamond-anvil cell, High Pressure Research, vol.23, issue.3, pp.307-311, 2003.

L. S. Dubrovinsky, S. K. Saxena, and P. Lazor, High-pressure and high-temperature in situ X-ray diffraction study of iron and corundum to 68 GPa using an internally heated diamond anvil cell, Physics and Chemistry of Minerals, vol.25, issue.6, pp.434-441, 1998.

M. R. Frank, Y. Fei, and J. Hu, Constraining the equation of state of fluid H2O to 80 GPa using the melting curve, bulk modulus, and thermal expansivity of ice VII, Geochimica et Cosmochimica Acta, vol.68, issue.13, pp.2781-2790, 2004.

Z. M. Geballe and R. Jeanloz, Origin of temperature plateaus in laser-heated diamond anvil cell experiments, Journal of Applied Physics, vol.111, issue.12, p.123518, 2012.

A. F. Goncharov, N. Goldman, L. Fried, J. Crowhurst, I. F. Kuo et al., Dynamic ionization of water under extreme conditions, Physical Review Letters, vol.94, issue.12, p.125508, 2005.

J. A. Hernandez and R. Caracas, Superionic-superionic phase transitions in bodycentered cubic H2O ice, Physical Review Letters, vol.117, issue.13, p.135503, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02333289

W. B. Hubbard, W. J. Nellis, A. C. Mitchell, N. C. Holmes, S. S. Limaye et al., Interior structure of Neptune : Comparison with Uranus, Science, vol.253, issue.5020, pp.648-651, 1991.

T. Kimura, Y. Kuwayama, and T. Yagi, Melting temperatures of H2O up to 72, 2014.

, GPa measured in a diamond anvil cell using CO2 laser heating technique, The Journal of Chemical Physics, vol.140, issue.7, p.74501

S. Klotz, F. Datchi, and S. Ninet, Is there a plastic phase in ice VII at high pressure and high temperature, 2010.

O. L. Kuskov and V. A. Kronrod, Internal structure of Europa and Callisto, Icarus, vol.177, issue.2, pp.550-569, 2005.

S. Ninet, F. Datchi, and A. M. Saitta, Proton Disorder and Superionicity in Hot Dense Ammonia Ice, Physical Review Letters, pp.1-5, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01003693

H. Rickman, Composition and physical properties of comets, Solar System Ices, pp.395-417, 1997.

B. Schwager and R. Boehler, H2O : another ice phase and its melting curve, High Pressure Research, vol.28, issue.3, pp.431-433, 2008.

B. Schwager, L. Chudinovskikh, A. G. Gavriliuk, and R. Boehler, Melting curve of H2O to 90 GPa measured in a laser-heated diamond cell, Journal of Physics : Condensed Matter, vol.16, issue.14, pp.1177-1179, 2004.

E. Schwegler, M. Sharma, F. Gygi, and G. Galli, Melting of ice under pressure, Proceedings of the National Academy of Sciences of the United States of America, vol.105, pp.14779-14783, 2008.

E. Sugimura, T. Iitaka, K. Hirose, K. Kawamura, N. Sata et al., Compression of H2O ice to 126 GPa and implications for hydrogen-bond symmetrization : Synchrotron x-ray diffraction measurements and density-functional calculations, Physical Review B -Condensed Matter and Materials Physics, vol.77, issue.21, pp.1-6, 2008.

E. Sugimura, T. Komabayashi, K. Hirose, N. Sata, Y. Ohishi et al., Simultaneous high-pressure and high-temperature volume measurements of ice VII and its thermal equation of state, Physical Review B -Condensed Matter and Materials Physics, vol.82, issue.13, pp.1-9, 2010.

Y. Takii, K. Koga, and H. Tanaka, A plastic phase of water from computer simulation, The Journal of Chemical Physics, issue.20, p.128, 2008.

W. Jr, J. H. Lewis, W. S. Magee, B. A. Lunine, J. I. Mckinnon et al., Liquid water on Enceladus from observations of ammonia and 40Ar in the plume, Nature, vol.460, issue.7254, pp.1164-1164, 2009.

, Au cours de ce travail, notre ambition était d'étudier les diagrammes de phase de H 2 O et NH 3 afin d'améliorer notre connaissance de ces systèmes et de clarifier les courbes de fusion à haute température et haute pression de l'ammoniace (10 à 60 GPa et 1000 K à 2200 K) et de l'eau (20 à 90 GPa et 900 à 2400 K), 2013.

, La technique la plus adéquate pour une détection directe de la fusion est la diffraction des rayons X. Pour répondre aux objectifs, nous avons employé de nouveaux outils expérimentaux pour nous affranchir des contraintes liées à l'utilisation des cellules à enclumes de diamant, lors des expériences de diffraction X. En premier lieu, nous avons utilisé un collimateur multicanal

, Ce collimateur a également permis l'extraction d'informations quantitatives sur la structure de l'ammoniac. Le deuxième outil expérimental utilisé est un système de chauffage laser CO 2 . Il permet d'atteindre des températures supérieures à 3000 K et de chauffer directement NH 3 et H 2 O sans l'usage d'un absorbeur. L'absence de ce dernier limite les risques de contamination et de réaction chimique au sein de l'échantillon. Ces stratégies expérimentales ont rendu possible pour la première fois l'étude de la struc