, For other mammals, this protocol has to be adapted (fixation, permeabilization...) and the antibodies that work well in the mouse need to be individually tested in other species. 2. Materials 1. Pulled Pasteur pipets and mouth tubing

, 1X Phosphate Buffer Saline (PBS)

, PFA: freshly dissolved 4% paraformadehyde in PBS (can be kept at +4°C for one week) 6. PBT: 0.1% Tween, PBS, vol.20

, Fetal Bovine Serum (FBS)

, Primary antibodies directed against Nanog, Cdx2, Gata6 and Sox, vol.17

, Make sure that each antibody is coupled to a different fluorophore that can be distinguished by the confocal microscope that will be used. Generally, Alexa488, Cy3, Cy5 suit to most microscopes, Secondary antibodies directed against the different animals of the primary antibodies

, Isolators: Press-to-seal TM (P24743, Invitrogen) to avoid squashing the embryos during image acquisition

R. O. Stephenson, J. Rossant, and P. P. Tam, Intercellular interactions, position, and polarity in establishing blastocyst cell lineages and embryonic axes, Cold Spring Harb Perspect Biol, vol.4, 2012.

C. Chazaud, Y. Yamanaka, and T. Pawson, Early Lineage Segregation between Epiblast and Primitive Endoderm in Mouse Blastocysts through the Grb2-MAPK Pathway, Dev Cell, vol.10, pp.615-624, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01923174

B. Plusa, A. Piliszek, and S. Frankenberg, Distinct sequential cell behaviours direct primitive endoderm formation in the mouse blastocyst, Development, vol.135, pp.3081-3091, 2008.

G. Guo, M. Huss, and G. Q. Tong, Resolution of cell fate decisions revealed by single-cell gene expression analysis from zygote to blastocyst, Dev Cell, vol.18, pp.675-685, 2010.

S. Frankenberg, F. Gerbe, and S. Bessonnard, Primitive Endoderm Differentiates via a Three-Step Mechanism Involving Nanog and RTK Signaling, Dev Cell, vol.21, pp.1005-1013, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01917180

M. Kang, A. Piliszek, J. Artus, and A. K. Hadjantonakis, FGF4 is required for lineage restriction and salt-and-pepper distribution of primitive endoderm factors but not their initial expression in the mouse, Development, vol.140, pp.267-279, 2013.

V. Sebastiano, L. Gentile, and S. Garagna, Cloned pre-implantation mouse embryos show correct timing but altered levels of gene expression, Mol Reprod Dev, vol.70, pp.146-154, 2005.

A. Jouneau, Q. Zhou, and A. Camus, Developmental abnormalities of NT mouse embryos appear early after implantation, Development, vol.133, pp.1597-1607, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00096257

A. Nagy, M. Gertsenstein, and K. Vintersten, Multipotent cell lineages in early mouse development depend on SOX2 function, Genes & Development, vol.17, pp.126-140, 2003.

G. A. Baltus, M. P. Kowalski, H. Zhai, A. V. Tutter, D. Quinn et al., Acetylation of Sox2 Induces its Nuclear Export in Embryonic Stem Cells, Stem Cells, vol.27, pp.2175-2184, 2009.

L. C. Barcroft, A. E. Moseley, J. B. Lingrel, and A. J. Watson, Deletion of the Na/K-ATPase ?1-subunit gene (Atp1a1) does not prevent cavitation of the preimplantation mouse embryo, Mechanisms of Development, vol.121, pp.417-426, 2004.

I. Bedzhov, S. J. Graham, C. Y. Leung, and M. Zernicka-goetz, Developmental plasticity, cell fate specification and morphogenesis in the early mouse embryo, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.369, pp.20130538-20130538, 2014.

S. Bessonnard, L. De-mot, D. Gonze, M. Barriol, C. Dennis et al., Gata6, Nanog and Erk signaling control cell fate in the inner cell mass through a tristable regulatory network, Development, vol.141, pp.3637-3648, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01923163

F. H. Biase, X. Cao, and S. Zhong, Cell fate inclination within 2-cell and 4-cell mouse embryos revealed by single-cell RNA sequencing, Genome Research, vol.24, pp.1787-1796, 2014.

S. Blij, T. Frum, A. Akyol, E. Fearon, and A. Ralston, Maternal Cdx2 is dispensable for mouse development, Development, vol.139, pp.3969-3972, 2012.

B. Boer, J. Kopp, S. Mallanna, M. Desler, H. Chakravarthy et al., Elevating the levels of Sox2 in embryonal carcinoma cells and embryonic stem cells inhibits the expression of Sox2:Oct-3/4 target genes, Nucleic Acids Research, vol.35, pp.1773-1786, 2007.

T. Boroviak, R. Loos, P. Lombard, J. Okahara, R. Behr et al., Lineage-Specific Profiling Delineates the Emergence and Progression of Naive Pluripotency in Mammalian Embryogenesis, Developmental Cell, vol.35, pp.366-382, 2015.

L. A. Boyer, T. I. Lee, M. F. Cole, S. E. Johnstone, S. S. Levine et al., Core Transcriptional Regulatory Circuitry in Human Embryonic Stem Cells. Cell, vol.122, pp.947-956, 2005.

I. G. Brons, L. E. Smithers, M. W. Trotter, P. Rugg-gunn, B. Sun et al., Derivation of pluripotent epiblast stem cells from mammalian embryos, Nature, vol.448, pp.191-195, 2007.

A. Burton, J. Muller, S. Tu, P. Padilla-longoria, E. Guccione et al., Single-Cell Profiling of Epigenetic Modifiers Identifies PRDM14 as an Inducer of Cell Fate in the Mammalian Embryo, Cell Reports, vol.5, pp.687-701, 2013.

K. Q. Cai, C. D. Capo-chichi, M. E. Rula, D. Yang, and X. Xu, Dynamic GATA6 expression in primitive endoderm formation and maturation in early mouse embryogenesis, Developmental Dynamics, vol.237, pp.2820-2829, 2008.

F. Campolo, M. Gori, R. Favaro, S. Nicolis, M. Pellegrini et al., Essential Role of Sox2 for the Establishment and Maintenance of the Germ Cell Line, STEM CELLS, vol.31, pp.1408-1421, 2013.

A. Camus, A. Perea-gomez, A. Moreau, and J. Collignon, Absence of Nodal signaling promotes precocious neural differentiation in the mouse embryo, Developmental Biology, vol.295, pp.743-755, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00067856

Z. Cao, T. S. Carey, A. Ganguly, C. A. Wilson, S. Paul et al., Transcription factor AP-2 induces early Cdx2 expression and represses HIPPO signaling to specify the trophectoderm lineage, Development, vol.142, pp.1606-1615, 2015.

C. D. Capo-chichi, M. E. Rula, J. L. Smedberg, L. Vanderveer, M. S. Parmacek et al., Perception of differentiation cues by GATA factors in primitive endoderm lineage determination of mouse embryonic stem cells, Developmental Biology, vol.286, pp.574-586, 2005.

I. Chambers, D. Colby, M. Robertson, J. Nichols, S. Lee et al., Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells, Cell, vol.113, pp.643-655, 2003.

I. Chambers, J. Silva, D. Colby, J. Nichols, B. Nijmeijer et al., Nanog safeguards pluripotency and mediates germline development, Nature, vol.450, pp.1230-1234, 2007.

K. Chawengsaksophak, W. De-graaff, J. Rossant, J. Deschamps, and F. Beck, Cdx2 is essential for axial elongation in mouse development, Proceedings of the National Academy of Sciences of the United States of America, vol.101, pp.7641-7645, 2004.

C. Chazaud, Y. Yamanaka, T. Pawson, and J. Rossant, Early Lineage Segregation between Epiblast and Primitive Endoderm in Mouse Blastocysts through the Grb2-MAPK Pathway, Developmental Cell, vol.10, pp.615-624, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01923174

A. M. Cheng, T. M. Saxton, R. Sakai, S. Kulkarni, G. Mbamalu et al., Mammalian Grb2 regulates multiple steps in embryonic development and malignant transformation, J. & OTHERS, vol.95, pp.793-803, 1998.

L. Chen, A. Yabuuchi, S. Eminli, A. Takeuchi, C. Lu et al., Cross-regulation of the Nanog and Cdx2 promoters, Cell research, vol.19, pp.1052-1061, 2009.

X. Chen, H. Xu, P. Yuan, F. Fang, M. Huss et al., Integration of External Signaling Pathways with the Core Transcriptional Network in Embryonic Stem Cells, Cell, vol.133, pp.1106-1117, 2008.

J. Chew, Y. Loh, W. Zhang, X. Chen, W. Tam et al., Reciprocal Transcriptional Regulation of Pou5f1 and Sox2 via the Oct4/Sox2 Complex in Embryonic Stem Cells, Molecular and Cellular Biology, vol.25, pp.6031-6046, 2005.

E. Coucouvanis and G. R. Martin, Signals for death and survival: a two-step mechanism for cavitation in the vertebrate embryo, Cell, vol.83, pp.279-287, 1995.

L. Dailey, H. Yuan, and C. Basilico, Interaction between a novel F9-specific factor and octamer-binding proteins is required for cell-type-restricted activity of the fibroblast growth factor 4 enhancer, Molecular and Cellular Biology, vol.14, pp.7758-7769, 1994.

S. Das, S. Jena, and D. N. Levasseur, Alternative Splicing Produces Nanog Protein Variants with Different Capacities for Self-renewal and Pluripotency in Embryonic Stem Cells, Journal of Biological Chemistry, vol.286, pp.42690-42703, 2011.

J. Dietrich and T. Hiiragi, Stochastic patterning in the mouse pre-implantation embryo, Development, vol.134, pp.4219-4231, 2007.

D. V. Do, J. Ueda, D. M. Messerschmidt, C. Lorthongpanich, Y. Zhou et al., A genetic and developmental pathway from STAT3 to the OCT4-NANOG circuit is essential for maintenance of ICM lineages in vivo, Genes & Development, vol.27, pp.1378-1390, 2013.

H. Elatmani, V. Dormoy-raclet, P. Dubus, F. Dautry, C. Chazaud et al., The RNA-Binding Protein Unr Prevents Mouse Embryonic Stem Cells Differentiation Toward the Primitive Endoderm Lineage, STEM CELLS, vol.29, pp.1504-1516, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01923180

M. Ema, D. Mori, H. Niwa, Y. Hasegawa, Y. Yamanaka et al., Krüppellike factor 5 Is Essential for Blastocyst Development and the Normal Self-Renewal of Mouse ESCs, Cell Stem Cell, vol.3, pp.555-567, 2008.

M. J. Evans and M. H. Kaufman, Establishment in culture of pluripotential cells from mouse embryos, Nature, vol.292, pp.154-156, 1981.

B. Feldman, W. Poueymirou, V. E. Papaioannou, T. M. Dechiara, and M. Goldfarb, Requirement of FGF-4 for postimplantation mouse development, Science, vol.267, pp.246-249, 1995.

M. Fidalgo, F. Faiola, C. Pereira, J. Ding, A. Saunders et al., Zfp281 mediates Nanog autorepression through recruitment of the NuRD complex and inhibits somatic cell reprogramming, Proceedings of the National Academy of Sciences of the United States of America, vol.109, pp.16202-16207, 2012.

A. Fiorenzano, E. Pascale, C. Aniello, D. Acampora, C. Bassalert et al., Cripto is essential to capture mouse epiblast stem cell and human embryonic stem cell pluripotency, Nature Communications, vol.7, p.12589, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01923147

T. P. Fleming, A quantitative analysis of cell allocation to trophectoderm and inner cell mass in the mouse blastocyst, Developmental Biology, vol.119, pp.520-531, 1987.

S. Frankenberg, F. Gerbe, S. Bessonnard, C. Belville, P. Pouchin et al., Primitive Endoderm Differentiates via a Three-Step Mechanism Involving Nanog and RTK Signaling, Developmental Cell, vol.21, pp.1005-1013, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01917180

S. Frankenberg, F. Gerbe, S. Bessonnard, C. Belville, P. Pouchin et al., Primitive Endoderm Differentiates via a Three-Step Mechanism Involving Nanog and RTK Signaling, Developmental Cell, vol.21, pp.1005-1013, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01917180

L. Freyer, C. Schröter, N. Saiz, N. Schrode, S. Nowotschin et al., A loss-of-function and H2B-Venus transcriptional reporter allele for Gata6 in mice, BMC Developmental Biology, vol.15, 2015.

T. Frum, M. A. Halbisen, C. Wang, H. Amiri, P. Robson et al., Oct4 Cell-Autonomously Promotes Primitive Endoderm Development in the Mouse Blastocyst, Developmental Cell, vol.25, pp.610-622, 2013.

J. Fujikura, E. Yamato, S. Yonemura, K. Hosoda, S. Masui et al., Differentiation of embryonic stem cells is induced by GATA factors, Genes & development, vol.16, pp.784-789, 2002.

T. Fujimori, Analysis of cell lineage in two-and four-cell mouse embryos, Development, vol.130, pp.5113-5122, 2003.

Z. Gao, J. L. Cox, J. M. Gilmore, B. D. Ormsbee, S. K. Mallanna et al., Determination of Protein Interactome of Transcription Factor Sox2 in Embryonic Stem Cells Engineered for Inducible Expression of Four Reprogramming Factors, Journal of Biological Chemistry, vol.287, pp.11384-11397, 2012.

F. Gerbe, B. Cox, J. Rossant, and C. Chazaud, Dynamic expression of Lrp2 pathway members reveals progressive epithelial differentiation of primitive endoderm in mouse blastocyst, Developmental Biology, vol.313, pp.594-602, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00352675

S. Ghimire, B. Heindryckx, M. Van-der-jeught, J. Neupane, T. O'leary et al., Inhibition of Transforming Growth Factor ? Signaling Promotes Epiblast Formation in Mouse Embryos, Stem Cells and Development, vol.24, pp.497-506, 2015.

S. N. Goldin and V. E. Papaioannou, Paracrine action of FGF4 during periimplantation development maintains trophectoderm and primitive endoderm, genesis, vol.36, pp.40-47, 2003.

M. Goolam, A. Scialdone, S. J. Graham, I. C. Macaulay, A. Jedrusik et al., Heterogeneity in Oct4 and Sox2 Targets Biases Cell Fate in 4-Cell Mouse Embryos, Cell, vol.165, pp.61-74, 2016.

J. B. Grabarek, K. Zyzynska, N. Saiz, A. Piliszek, S. Frankenberg et al., Differential plasticity of epiblast and primitive endoderm precursors within the ICM of the early mouse embryo, Development, vol.139, pp.129-139, 2012.

S. J. Graham, K. B. Wicher, A. Jedrusik, G. Guo, W. Herath et al., BMP signalling regulates the pre-implantation development of extra-embryonic cell lineages in the mouse embryo, Nature Communications, vol.5, p.5667, 2014.

C. Granier, V. Gurchenkov, A. Perea-gomez, A. Camus, S. Ott et al., Nodal cis-regulatory elements reveal epiblast and primitive endoderm heterogeneity in the peri-implantation mouse embryo, Developmental Biology, vol.349, pp.350-362, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00588076

G. Guo, M. Huss, G. Q. Tong, C. Wang, . Li et al., Resolution of Cell Fate Decisions Revealed by Single-Cell Gene Expression Analysis from Zygote to Blastocyst, Developmental Cell, vol.18, pp.675-685, 2010.

R. Haffner-krausz, M. Gorivodsky, Y. Chen, and P. Lonai, Expression of Fgfr2 in the early mouse embryo indicates its involvement in preimplantation development, Mechanisms of Development, vol.85, pp.167-172, 1999.

O. Haub and M. Goldfarb, Expression of the fibroblast growth factor-5 gene in the mouse embryo, Development, vol.112, pp.397-406, 1991.

N. Hillman, M. I. Sherman, and C. Graham, The effect of spatial arrangement on cell determination during mouse development, Development, vol.28, pp.263-278, 1972.

Y. Hirate, K. Cockburn, J. Rossant, and H. Sasaki, Tead4 is constitutively nuclear, while nuclear vs. cytoplasmic Yap distribution is regulated in preimplantation mouse embryos, Proceedings of the National Academy of Sciences, vol.109, pp.3389-3390, 2012.

Y. Hirate, S. Hirahara, K. Inoue, A. Suzuki, V. B. Alarcon et al., Polarity-Dependent Distribution of Angiomotin Localizes Hippo Signaling in Preimplantation Embryos, Current Biology, vol.23, pp.1181-1194, 2013.

P. Home, S. Ray, D. Dutta, I. Bronshteyn, M. Larson et al., GATA3 Is Selectively Expressed in the Trophectoderm of Peri-implantation Embryo and Directly Regulates Cdx2 Gene Expression, Journal of Biological Chemistry, vol.284, pp.28729-28737, 2009.

A. Jedrusik, A. W. Bruce, M. H. Tan, D. E. Leong, M. Skamagki et al., Maternally and zygotically provided Cdx2 have novel and critical roles for early development of the mouse embryo, Developmental Biology, vol.344, pp.66-78, 2010.

A. Jedrusik, A. Cox, K. B. Wicher, D. M. Glover, and M. Zernicka-goetz, Maternalzygotic knockout reveals a critical role of Cdx2 in the morula to blastocyst transition, Developmental Biology, vol.398, pp.147-152, 2015.

H. Jeon, T. Waku, T. Azami, L. T. Khoa, J. Yanagisawa et al., Comprehensive Identification of Krüppel-Like Factor Family Members Contributing to the Self-Renewal of Mouse Embryonic Stem Cells and Cellular Reprogramming, PLOS ONE, vol.11, 2016.

S. Jerabek, F. Merino, H. R. Schöler, and V. Cojocaru, OCT4: Dynamic DNA binding pioneers stem cell pluripotency, Biochimica et Biophysica Acta (BBA) -Gene Regulatory Mechanisms, vol.1839, pp.138-154, 2014.

J. Jiang, Y. Chan, Y. Loh, J. Cai, G. Tong et al., A core Klf circuitry regulates self-renewal of embryonic stem cells, Nature Cell Biology, vol.10, pp.353-360, 2008.

M. H. Johnson and J. M. Mcconnell, Lineage allocation and cell polarity during mouse embryogenesis, Seminars in Cell & Developmental Biology, vol.15, pp.583-597, 2004.

M. H. Johnson and C. A. Ziomek, The foundation of two distinct cell lineages within the mouse morula, Cell, vol.24, pp.71-80, 1981.

K. J. Kaneko and M. L. Depamphilis, TEAD4 establishes the energy homeostasis essential for blastocoel formation, Development, vol.140, pp.3680-3690, 2013.

M. Kang, A. Piliszek, J. Artus, and A. Hadjantonakis, FGF4 is required for lineage restriction and salt-and-pepper distribution of primitive endoderm factors but not their initial expression in the mouse, Development, vol.140, pp.267-279, 2013.

S. J. Kelly, Studies of the developmental potential of 4-and 8-cell stage mouse blastomeres, Journal of Experimental Zoology, vol.200, pp.365-376, 1977.

M. Keramari, J. Razavi, K. A. Ingman, C. Patsch, F. Edenhofer et al., Sox2 Is Essential for Formation of Trophectoderm in the Preimplantation Embryo, PLoS ONE, vol.5, p.13952, 2010.

L. J. Ko and J. D. Engel, DNA-binding specificities of the GATA transcription factor family, Molecular and cellular biology, vol.13, pp.4011-4022, 1993.

K. Komatsu and T. Fujimori, Multiple phases in regulation of Nanog expression during pre-implantation development, Development, Growth & Differentiation, vol.57, pp.648-656, 2015.

J. L. Kopp, B. D. Ormsbee, M. Desler, and A. Rizzino, Small Increases in the Level of Sox2 Trigger the Differentiation of Mouse Embryonic Stem Cells, Stem Cells, vol.26, pp.903-911, 2008.

M. Koutsourakis, A. Langeveld, R. Patient, R. Beddington, and F. Grosveld, The transcription factor GATA6 is essential for early extraembryonic development, Development, vol.126, pp.723-732, 1999.

D. Krawchuk, N. Honma-yamanaka, S. Anani, and Y. Yamanaka, FGF4 is a limiting factor controlling the proportions of primitive endoderm and epiblast in the ICM of the mouse blastocyst, Developmental Biology, vol.384, pp.65-71, 2013.

M. Krupa, E. Mazur, K. Szczepa?ska, K. Filimonow, M. Maleszewski et al., Allocation of inner cells to epiblast vs primitive endoderm in the mouse embryo is biased but not determined by the round of asymmetric divisions (8?16-and 16?32-cells), Developmental Biology, vol.385, pp.136-148, 2014.

T. Kunath, Imprinted X-inactivation in extra-embryonic endoderm cell lines from mouse blastocysts, Development, vol.132, pp.1649-1661, 2005.

T. Kunath, M. K. Saba-el-leil, M. Almousailleakh, J. Wray, S. Meloche et al., FGF stimulation of the Erk1/2 signalling cascade triggers transition of pluripotent embryonic stem cells from self-renewal to lineage commitment, Development, vol.134, pp.2895-2902, 2007.

C. T. Kuo, M. L. Veselits, K. P. Barton, M. M. Lu, C. Clendenin et al., The LKLF transcription factor is required for normal tunica media formation and blood vessel stabilization during murine embryogenesis, Genes & development, vol.11, pp.2996-3006, 1997.

K. Kurimoto, An improved single-cell cDNA amplification method for efficient highdensity oligonucleotide microarray analysis, Nucleic Acids Research, vol.34, pp.42-42, 2006.

K. Kurimoto, An improved single-cell cDNA amplification method for efficient highdensity oligonucleotide microarray analysis, Nucleic Acids Research, vol.34, pp.42-42, 2006.

F. Lanner and J. Rossant, The role of FGF/Erk signaling in pluripotent cells, Development, vol.137, pp.3351-3360, 2010.

F. Lavial, S. Bessonnard, Y. Ohnishi, A. Tsumura, A. Chandrashekran et al., Bmi1 facilitates primitive endoderm formation by stabilizing Gata6 during early mouse development, Genes & Development, vol.26, pp.1445-1458, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01923171

. Le, G. C. Bin, S. Munoz-descalzo, A. Kurowski, H. Leitch et al., Oct4 is required for lineage priming in the developing inner cell mass of the mouse blastocyst, Development, vol.141, pp.1001-1010, 2014.

C. Y. Leung and M. Zernicka-goetz, Angiomotin prevents pluripotent lineage differentiation in mouse embryos via Hippo pathway-dependent and -independent mechanisms, Nature Communications, vol.4, 2013.

I. Lian, J. Kim, H. Okazawa, J. Zhao, B. Zhao et al., The role of YAP transcription coactivator in regulating stem cell self-renewal and differentiation, Genes & Development, vol.24, pp.1106-1118, 2010.

J. Li, G. Pan, K. Cui, Y. Liu, S. Xu et al., A Dominant-negative Form of Mouse SOX2 Induces Trophectoderm Differentiation and Progressive Polyploidy in Mouse Embryonic Stem Cells, Journal of Biological Chemistry, vol.282, pp.19481-19492, 2007.

S. J. Lin, M. A. Wani, J. A. Whitsett, and J. M. Wells, Klf5 regulates lineage formation in the pre-implantation mouse embryo, Development, vol.137, pp.3953-3963, 2010.

Y. Loh, Q. Wu, J. Chew, V. B. Vega, W. Zhang et al., The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells, Nature Genetics, vol.38, pp.431-440, 2006.

C. Lorthongpanich, D. M. Messerschmidt, S. W. Chan, W. Hong, B. B. Knowles et al., Temporal reduction of LATS kinases in the early preimplantation embryo prevents ICM lineage differentiation, Genes & development, vol.27, pp.1441-1446, 2013.

D. J. Macphee, D. H. Jones, K. J. Barr, D. H. Betts, A. J. Watson et al., Differential Involvement of Na+,K+-ATPase Isozymes in Preimplantation Development of the Mouse, Developmental Biology, vol.222, pp.486-498, 2000.

P. Madan, K. Rose, and A. J. Watson, Na/K-ATPase beta1 Subunit Expression Is Required for Blastocyst Formation and Normal Assembly of Trophectoderm Tight Junction-associated Proteins, Journal of Biological Chemistry, vol.282, pp.12127-12134, 2007.

J. Maître, R. Niwayama, H. Turlier, F. Nédélec, and T. Hiiragi, Pulsatile cellautonomous contractility drives compaction in the mouse embryo, Nature Cell Biology, vol.17, pp.849-855, 2015.

J. Maître, H. Turlier, R. Illukkumbura, B. Eismann, R. Niwayama et al., Asymmetric division of contractile domains couples cell positioning and fate specification, Nature, vol.536, pp.344-348, 2016.

G. R. Martin, Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells, Proceedings of the National Academy of Sciences, vol.78, pp.7634-7638, 1981.

S. Masui, Y. Nakatake, Y. Toyooka, D. Shimosato, R. Yagi et al., Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells, Nature Cell Biology, vol.9, pp.625-635, 2007.

Z. Ma, T. Swigut, A. Valouev, A. Rada-iglesias, and J. Wysocka, Sequence-specific regulator Prdm14 safeguards mouse ESCs from entering extraembryonic endoderm fates, Nature Structural & Molecular Biology, vol.18, pp.120-127, 2011.

J. Mcconnell, L. Petrie, F. Stennard, K. Ryan, and J. Nichols, Eomesodermin is expressed in mouse oocytes and pre-implantation embryos, Molecular Reproduction and Development, vol.71, pp.399-404, 2005.

S. M. Meilhac, R. J. Adams, S. A. Morris, A. Danckaert, J. Le-garrec et al., Active cell movements coupled to positional induction are involved in lineage segregation in the mouse blastocyst, Developmental Biology, vol.331, pp.210-221, 2009.
URL : https://hal.archives-ouvertes.fr/pasteur-01572044

M. Merika and S. H. Orkin, DNA-binding specificity of GATA family transcription factors, Molecular and cellular biology, vol.13, pp.3999-4010, 1993.

D. M. Messerschmidt and R. Kemler, Nanog is required for primitive endoderm formation through a non-cell autonomous mechanism, Developmental Biology, vol.344, pp.129-137, 2010.

A. I. Mihajlovi?, V. Thamodaran, and A. W. Bruce, The first two cell-fate decisions of preimplantation mouse embryo development are not functionally independent, Scientific Reports, vol.5, p.15034, 2015.

K. Mitsui, Y. Tokuzawa, H. Itoh, K. Segawa, M. Murakami et al., The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells, cell, vol.113, pp.631-642, 2003.

Y. Miyanari and M. Torres-padilla, Control of ground-state pluripotency by allelic regulation of Nanog, Nature, vol.483, pp.470-473, 2012.

J. D. Molkentin, The Zinc Finger-containing Transcription Factors GATA-4, -5, and -6: UBIQUITOUSLY EXPRESSED REGULATORS OF TISSUE-SPECIFIC GENE EXPRESSION, Journal of Biological Chemistry, vol.275, pp.38949-38952, 2000.

J. D. Molkentin, Q. Lin, S. A. Duncan, and E. N. Olson, Requirement of the transcription factor GATA4 for heart tube formation and ventral morphogenesis, Genes & development, vol.11, pp.1061-1072, 1997.

R. Moore, K. Q. Cai, D. O. Escudero, and X. Xu, Cell adhesive affinity does not dictate primitive endoderm segregation and positioning during murine embryoid body formation, genesis, vol.47, pp.579-589, 2009.

S. M. Morgani and J. M. Brickman, LIF supports primitive endoderm expansion during pre-implantation development, Development, vol.142, pp.3488-3499, 2015.

S. A. Morris, S. J. Graham, A. Jedrusik, and M. Zernicka-goetz, The differential response to Fgf signalling in cells internalized at different times influences lineage segregation in preimplantation mouse embryos, Open Biology, vol.3, pp.130104-130104, 2013.

S. A. Morris, Y. Guo, and M. Zernicka-goetz, Developmental Plasticity Is Bound by Pluripotency and the Fgf and Wnt Signaling Pathways, Cell Reports, vol.2, pp.756-765, 2012.

S. A. Morris, R. T. Teo, H. Li, P. Robson, D. M. Glover et al., Origin and formation of the first two distinct cell types of the inner cell mass in the mouse embryo, Proceedings of the National Academy of Sciences, vol.107, pp.6364-6369, 2010.

N. Motosugi, T. Bauer, Z. Polanski, D. Solter, and T. Hiiragi, Polarity of the mouse embryo is established at blastocyst and is not prepatterned, Genes & development, vol.19, pp.1081-1092, 2005.

M. Nakagawa, M. Koyanagi, K. Tanabe, K. Takahashi, T. Ichisaka et al., Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts, Nature Biotechnology, vol.26, pp.101-106, 2007.

P. Navarro, N. Festuccia, D. Colby, A. Gagliardi, N. P. Mullin et al., OTHERS (2012) OCT4/SOX2-independent Nanog autorepression modulates heterogeneous Nanog gene expression in mouse ES cells, The EMBO journal, vol.31, pp.4547-4562

K. K. Niakan, H. Ji, R. Maehr, S. A. Vokes, K. T. Rodolfa et al., Sox17 promotes differentiation in mouse embryonic stem cells by directly regulating extraembryonic gene expression and indirectly antagonizing self-renewal, Genes & Development, vol.24, pp.312-326, 2010.

J. Nichols, J. Silva, M. Roode, and A. Smith, Suppression of Erk signalling promotes ground state pluripotency in the mouse embryo, Development, vol.136, pp.3215-3222, 2009.

J. Nichols, J. Silva, M. Roode, and A. Smith, Suppression of Erk signalling promotes ground state pluripotency in the mouse embryo, Development, vol.136, pp.3215-3222, 2009.

J. Nichols and A. Smith, Naive and Primed Pluripotent States, Cell Stem Cell, vol.4, pp.487-492, 2009.

J. Nichols, B. Zevnik, K. Anastassiadis, H. Niwa, D. Klewe-nebenius et al., Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4, Cell, vol.95, pp.379-391, 1998.

N. Nishioka, K. Inoue, K. Adachi, H. Kiyonari, M. Ota et al., The Hippo Signaling Pathway Components Lats and Yap Pattern Tead4 Activity to Distinguish Mouse Trophectoderm from Inner Cell Mass, Developmental Cell, vol.16, pp.398-410, 2009.

N. Nishioka, S. Yamamoto, H. Kiyonari, H. Sato, A. Sawada et al., Tead4 is required for specification of trophectoderm in preimplantation mouse embryos, Mechanisms of Development, vol.125, pp.270-283, 2008.

H. Niwa, J. Miyazaki, and A. G. Smith, Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells, Nature genetics, vol.24, pp.372-376, 2000.

H. Niwa, Y. Toyooka, D. Shimosato, D. Strumpf, K. Takahashi et al., Interaction between Oct3/4 and Cdx2 Determines Trophectoderm Differentiation, vol.123, pp.917-929, 2005.

Y. Ohnishi, W. Huber, A. Tsumura, M. Kang, P. Xenopoulos et al., Cell-tocell expression variability followed by signal reinforcement progressively segregates early mouse lineages, Nature Cell Biology, vol.16, pp.27-37, 2013.

S. Okumura-nakanishi, M. Saito, H. Niwa, and F. Ishikawa, Oct-3/4 and Sox2 Regulate Oct-3/4 Gene in Embryonic Stem Cells, Journal of Biological Chemistry, vol.280, pp.5307-5317, 2005.

D. M. Ornitz, FGFs, heparan sulfate and FGFRs: complex interactions essential for development, Bioessays, vol.22, pp.108-112, 2000.

S. L. Palmieri, W. Peter, H. Hess, and H. R. Schöler, Oct-4 Transcription Factor Is Differentially Expressed in the Mouse Embryo during Establishment of the First Two Extraembryonic Cell Lineages Involved in Implantation, Developmental Biology, vol.166, pp.259-267, 1994.

S. Parisi, F. Passaro, L. Aloia, I. Manabe, R. Nagai et al., Klf5 is involved in self-renewal of mouse embryonic stem cells, Journal of Cell Science, vol.121, pp.2629-2634, 2008.

M. Pesce and H. R. Schöler, Oct-4: gatekeeper in the beginnings of mammalian development, Stem cells, vol.19, pp.271-278, 2001.

K. Piotrowska-nitsche and M. Zernicka-goetz, Spatial arrangement of individual 4-cell stage blastomeres and the order in which they are generated correlate with blastocyst pattern in the mouse embryo, Mechanisms of Development, vol.122, pp.487-500, 2005.

V. Piras, M. Tomita, and K. Selvarajoo, Transcriptome-wide Variability in Single Embryonic Development Cells, Scientific Reports, vol.4, p.7137, 2014.

N. Plachta, T. Bollenbach, S. Pease, S. E. Fraser, and P. Pantazis, Oct4 kinetics predict cell lineage patterning in the early mammalian embryo, Nature Cell Biology, vol.13, pp.117-123, 2011.

B. Plusa, Downregulation of Par3 and aPKC function directs cells towards the ICM in the preimplantation mouse embryo, Journal of Cell Science, vol.118, pp.505-515, 2005.

B. Plusa, A. Piliszek, S. Frankenberg, J. Artus, and A. Hadjantonakis, Distinct sequential cell behaviours direct primitive endoderm formation in the mouse blastocyst, Development, vol.135, pp.3081-3091, 2008.

A. Ralston, B. J. Cox, N. Nishioka, H. Sasaki, E. Chea et al., Gata3 regulates trophoblast development downstream of Tead4 and in parallel to Cdx2, Development, vol.137, pp.395-403, 2010.

A. Ralston and J. Rossant, Cdx2 acts downstream of cell polarization to cellautonomously promote trophectoderm fate in the early mouse embryo, Developmental Biology, vol.313, pp.614-629, 2008.

D. A. Rappolee, Y. Patel, and K. Jacobson, Expression of fibroblast growth factor receptors in peri-implantation mouse embryos, 1998.

T. Rayon, S. Menchero, A. Nieto, P. Xenopoulos, M. Crespo et al., Notch and Hippo Converge on Cdx2 to Specify the Trophectoderm Lineage in the Mouse Blastocyst, Developmental Cell, vol.30, pp.410-422, 2014.

A. Rizzino and E. L. Wuebben, Sox2/Oct4: A delicately balanced partnership in pluripotent stem cells and embryogenesis, Gene Regulatory Mechanisms 1859, pp.780-791, 2016.

P. Robson, P. Stein, B. Zhou, R. M. Schultz, and H. S. Baldwin, Inner Cell Mass-Specific Expression of a Cell Adhesion Molecule (PECAM-1/CD31) in the Mouse Blastocyst, Developmental Biology, vol.234, pp.317-329, 2001.

D. J. Rodda, Transcriptional Regulation of Nanog by OCT4 and SOX2, Journal of Biological Chemistry, vol.280, pp.24731-24737, 2005.

J. Rossant and W. T. Lis, Potential of isolated mouse inner cell masses to form trophectoderm derivatives in vivo, Developmental Biology, vol.70, pp.255-261, 1979.

P. J. Rugg-gunn, B. J. Cox, F. Lanner, P. Sharma, V. Ignatchenko et al., Cell-Surface Proteomics Identifies Lineage-Specific Markers of Embryo-Derived Stem Cells, Developmental Cell, vol.22, pp.887-901, 2012.

A. P. Russ, S. Wattler, W. H. Colledge, S. A. Aparicio, M. B. Carlton et al., Eomesodermin is required for mouse trophoblast development and mesoderm formation, Nature, vol.404, pp.95-99, 2000.

N. Saiz, J. B. Grabarek, N. Sabherwal, N. Papalopulu, and B. Plusa, Atypical protein kinase C couples cell sorting with primitive endoderm maturation in the mouse blastocyst, Development, vol.140, pp.4311-4322, 2013.

M. Sakaki-yumoto, The murine homolog of SALL4, a causative gene in Okihiro syndrome, is essential for embryonic stem cell proliferation, and cooperates with Sall1 in anorectal, heart, brain and kidney development, Development, vol.133, pp.3005-3013, 2006.

N. Schrode, N. Saiz, S. Di-talia, and A. Hadjantonakis, GATA6 Levels Modulate Primitive Endoderm Cell Fate Choice and Timing in the Mouse Blastocyst, Developmental Cell, vol.29, pp.454-467, 2014.

C. Schröter, P. Rue, J. P. Mackenzie, and A. Martinez-arias, FGF/MAPK signaling sets the switching threshold of a bistable circuit controlling cell fate decisions in embryonic stem cells, Development, vol.142, pp.4205-4216, 2015.

J. A. Segre, C. Bauer, and E. Fuchs, Klf4 is a transcription factor required for establishing the barrier function of the skin, Nature genetics, vol.22, pp.356-360, 1999.

D. Shimosato, M. Shiki, and H. Niwa, Extra-embryonic endoderm cells derived from ES cells induced by GATA Factors acquire the character of XEN cells, BMC Developmental Biology, vol.7, p.80, 2007.

J. Silva, J. Nichols, T. W. Theunissen, G. Guo, A. L. Van-oosten et al., Nanog Is the Gateway to the Pluripotent Ground State, Cell, vol.138, pp.722-737, 2009.

A. M. Singh, T. Hamazaki, K. E. Hankowski, and N. Terada, A Heterogeneous Expression Pattern for Nanog in Embryonic Stem Cells, Stem Cells, vol.25, pp.2534-2542, 2007.

A. G. Smith, J. K. Heath, D. D. Donaldson, G. G. Wong, J. Moreau et al., Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides, Nature, vol.336, pp.688-690, 1988.

R. Smith and A. Mclaren, Factors affecting the time of formation of the mouse blastocoele, Development, vol.41, pp.79-92, 1977.

C. P. Sodhi, J. Li, and S. A. Duncan, Generation of mice harbouring a conditional lossof-function allele of Gata6, BMC developmental biology, vol.6, p.19, 2006.

S. Stefanovic, N. Abboud, S. Désilets, D. Nury, C. Cowan et al., Interplay of Oct4 with Sox2 and Sox17: a molecular switch from stem cell pluripotency to specifying a cardiac fate, The Journal of Cell Biology, vol.186, pp.665-673, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00409113

R. O. Stephenson, Y. Yamanaka, and J. Rossant, Disorganized epithelial polarity and excess trophectoderm cell fate in preimplantation embryos lacking E-cadherin, Development, vol.137, pp.3383-3391, 2010.

D. Strumpf, Cdx2 is required for correct cell fate specification and differentiation of trophectoderm in the mouse blastocyst, Development, vol.132, pp.2093-2102, 2005.

I. Tabansky, A. Lenarcic, R. W. Draft, K. Loulier, D. B. Keskin et al., Developmental Bias in Cleavage-Stage Mouse Blastomeres, Current Biology, vol.23, pp.21-31, 2013.

S. Tanaka, T. Kunath, A. K. Hadjantonakis, A. Nagy, and J. Rossant, Promotion of trophoblast stem cell proliferation by FGF4, Science, vol.282, pp.2072-2075, 1998.

F. Tang, C. Barbacioru, E. Nordman, B. Li, N. Xu et al., RNA-Seq analysis to capture the transcriptome landscape of a single cell, Nature Protocols, vol.5, pp.516-535, 2010.

A. K. Tarkowski, A. Suwi?ska, R. Czo?owska, and W. O?d?e?ski, Individual blastomeres of 16-and 32-cell mouse embryos are able to develop into foetuses and mice, Developmental Biology, vol.348, pp.190-198, 2010.

E. Tolkunova, F. Cavaleri, S. Eckardt, R. Reinbold, L. K. Christenson et al., The Caudal-Related Protein Cdx2 Promotes Trophoblast Differentiation of Mouse Embryonic Stem Cells, Stem Cells, vol.24, pp.139-144, 2006.

M. Torres-padilla, D. Parfitt, T. Kouzarides, and M. Zernicka-goetz, Histone arginine methylation regulates pluripotency in the early mouse embryo, Nature, vol.445, pp.214-218, 2007.

J. M. Velkey and K. S. Shea, Oct4 RNA interference induces trophectoderm differentiation in mouse embryonic stem cells, genesis, vol.37, pp.18-24, 2003.

M. I. Violette, P. Madan, and A. J. Watson, Na+/K+-ATPase regulates tight junction formation and function during mouse preimplantation development, Developmental Biology, vol.289, pp.406-419, 2006.

S. E. Wamaitha, . Del, I. Valle, L. T. Cho, Y. Wei et al., Gata6 potently initiates reprograming of pluripotent and differentiated cells to extraembryonic endoderm stem cells, Genes & development, vol.29, pp.1239-1255, 2015.

T. Watanabe, J. S. Biggins, N. B. Tannan, and S. Srinivas, Limited predictive value of blastomere angle of division in trophectoderm and inner cell mass specification, Development, vol.141, pp.2279-2288, 2014.

E. Wicklow, S. Blij, T. Frum, Y. Hirate, R. A. Lang et al., HIPPO Pathway Members Restrict SOX2 to the Inner Cell Mass Where It Promotes ICM Fates in the Mouse Blastocyst, PLoS Genetics, vol.10, 2014.

P. J. Wilder, D. Kelly, K. Brigman, C. L. Peterson, T. Nowling et al., Inactivation of the FGF-4 gene in embryonic stem cells alters the growth and/or the survival of their early differentiated progeny, Developmental Biology, vol.192, pp.614-629, 1997.

R. L. Williams, D. J. Hilton, S. Pease, T. A. Willson, C. L. Stewart et al., Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells, Nature, vol.336, pp.684-687, 1988.

Q. Winger, Analysis of Transcription Factor AP-2 Expression and Function During Mouse Preimplantation Development, Biology of Reproduction, vol.75, pp.324-333, 2006.

G. Wu, L. Gentile, T. Fuchikami, J. Sutter, K. Psathaki et al., Initiation of trophectoderm lineage specification in mouse embryos is independent of Cdx2, Development, vol.137, pp.4159-4169, 2010.

P. Xenopoulos, M. Kang, A. Puliafito, S. Di-talia, and A. Hadjantonakis, Heterogeneities in Nanog Expression Drive Stable Commitment to Pluripotency in the Mouse Blastocyst, Cell Reports, vol.10, pp.1508-1520, 2015.

N. Yadav, J. Lee, J. Kim, J. Shen, M. Hu et al., Specific protein methylation defects and gene expression perturbations in coactivatorassociated arginine methyltransferase 1-deficient mice, Proceedings of the National Academy of Sciences, vol.100, pp.6464-6468, 2003.

R. Yagi, M. J. Kohn, I. Karavanova, K. J. Kaneko, D. Vullhorst et al., Transcription factor TEAD4 specifies the trophectoderm lineage at the beginning of mammalian development, Development, vol.134, pp.3827-3836, 2007.

M. Yamaji, Y. Seki, K. Kurimoto, Y. Yabuta, M. Yuasa et al., Critical function of Prdm14 for the establishment of the germ cell lineage in mice, Nature Genetics, vol.40, pp.1016-1022, 2008.

Y. Yamanaka, F. Lanner, and J. Rossant, FGF signal-dependent segregation of primitive endoderm and epiblast in the mouse blastocyst, Development, vol.137, pp.715-724, 2010.

D. Yang, K. Q. Cai, I. H. Roland, E. R. Smith, and X. Xu, Disabled-2 Is an Epithelial Surface Positioning Gene, Journal of Biological Chemistry, vol.282, pp.13114-13122, 2007.

Q. Ying, J. Nichols, I. Chambers, and A. Smith, BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3, Cell, vol.115, pp.281-292, 2003.

H. Yuan, N. Corbi, C. Basilico, and L. Dailey, Developmental-specific activity of the FGF-4 enhancer requires the synergistic action of Sox2 and Oct-3, Genes & development, vol.9, pp.2635-2645, 1995.

F. Yu and K. Guan, The Hippo pathway: regulators and regulations, Genes & Development, vol.27, pp.355-371, 2013.

Y. , S. Fujimura, S. Nimura, K. Takeda, N. Toyooka et al., Sall4 Is Essential for Stabilization, But Not for Pluripotency, of Embryonic Stem Cells by Repressing Aberrant Trophectoderm Gene Expression, Stem Cells, vol.27, pp.796-805, 2009.

J. Zhang, W. Tam, G. Q. Tong, Q. Wu, H. Chan et al., Sall4 modulates embryonic stem cell pluripotency and early embryonic development by the transcriptional regulation of Pou5f1, Nature Cell Biology, vol.8, pp.1114-1123, 2006.

T. Zhao, C. Liu, and L. Chen, Roles of Klf5 Acetylation in the Self-Renewal and the Differentiation of Mouse Embryonic Stem Cells, PloS one, vol.10, 2015.

W. Zhong, Q. T. Wang, T. Sun, F. Wang, J. Liu et al., FGF Ligand Family mRNA Expression Profile for Mouse Preimplantation Embryos, Early Gestation Human Placenta, and Mouse Trophoblast Stem Cells, Molecular Reproduction and Development, vol.73, pp.540-550, 2006.

C. A. Ziomek and M. H. Johnson, Cell surface interaction induces polarization of mouse 8-cell blastomeres at compaction, Cell, vol.21, pp.935-942, 1980.

P. Du-stade-e3, , p.25

/. Nanog+,

/. Gata6+,

/. Nanog+,

/. Gata6+ and . Nanog,

/. Nanog+/+-;-gata6+ and . >0, , vol.99, p.99

/. Nanog+, , p.99

/. Gata6+ and . >0, , p.99

/. Nanog+,

/. Gata6+,

/. Nanog+,

/. Gata6+ and . Nanog,

, Gata6-/-la formation du blastocyste, l'embryon de souris est constitué d'un épithélium externe, le trophectoderme (TE), et d'une masse cellulaire interne (MCI)

. L'épiblaste-(epi), EPr) se spécifient au sein de la MCI sous un patron de « sel et poivre » caractérisé par l'expression complémentaire de NANOG, marqueur de l'EPI et de GATA6, marqueur de l'EPr. Nanog est nécessaire pour l'acquisition d'une identité EPI et Gata6 induit le devenir en EPr. La voie FGF/MAPK joue un rôle critique dans l'acquisition de l'identité EPr et la perturbation de son activité impacte

, Je recherche des facteurs qui serait exprimés de manière hétérogène avant la spécification des cellules internes et pourraient faire pencher la balance vers un destin ou l'autre. Pour cela, j'ai disséqué l'évolution des cellules de la MCI au sein des embryons Nanog

. Ces and . Ne-se-spécifie-ni-en-epi-ni-en-epr, En effet, les cellules internes des embryons Nanog-/-; Gata6-/-restent bloquées autour du stade E3.25. De manière étonnante, dans les cellules de la MCI, le facteur de transcription SOX2 est présent et ce, de manière hétérogène. De plus, grâce à des traitements inhibiteurs de la voie FGF/MAPK, je montre que cette voie n

. Ainsi, SOX2 dans les cellules internes des embryons est donc indépendante de Nanog, de Gata6 et de la voie FGF/MAPK