A. Desmoulière, C. Guyot, and G. Gabbiani, The stroma reaction myofibroblast: a key player in the control of tumor cell behavior, Int J Dev Biol, vol.48, pp.509-526, 2004.

S. Liu, C. Ginestier, S. J. Ou, S. G. Clouthier, S. H. Patel et al., Breast cancer stem cells are regulated by mesenchymal stem cells through cytokine networks, Cancer Res, vol.71, pp.614-638, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01431944

E. M. Rosen, S. Fan, R. G. Pestell, and I. D. Goldberg, BRCA1 gene in breast cancer, J Cell Physiol, vol.196, pp.19-41, 2003.

W. D. Foulkes, I. M. Stefansson, P. O. Chappuis, L. R. Bégin, J. R. Goffin et al., Germline BRCA1 mutations and a basal epithelial phenotype in breast cancer, J Natl Cancer Inst, vol.95, pp.1482-1487, 2003.

O. A. Stefansson, J. G. Jonasson, O. T. Johannsson, K. Olafsdottir, M. Steinarsdottir et al., Genomic profiling of breast tumours in relation to BRCA abnormalities and phenotypes, Breast Cancer Res, vol.11, p.47, 2009.

A. Bellacosa, A. K. Godwin, S. Peri, K. Devarajan, E. Caretti et al., Altered gene expression in morphologically normal epithelial cells from heterozygous carriers of BRCA1 or BRCA2 mutations, Cancer Prev Res (Phila), vol.3, pp.48-61, 2010.

K. Rennstam, A. Ringberg, H. E. Cunliffe, H. Olsson, G. Landberg et al., Genomic alterations in histopathologically normal breast tissue from BRCA1 mutation carriers may be caused by BRCA1 haploinsufciency, Genes Chromosomes Cancer, vol.49, pp.78-90, 2010.

F. Griscelli, N. Oudrhiri, O. Feraud, D. Divers, L. Portier et al., Bennaceur Griscelli A. Generation of induced pluripotent stem cell (iPSC) line from a patient with triple negative breast cancer with hereditary exon 17 deletion of BRCA1 gene, Stem Cell Res, vol.24, pp.135-138, 2017.

K. Takahashi, K. Tanabe, M. Ohnuki, M. Narita, T. Ichisaka et al., Induction of pluripotent stem cells from adult human fibroblasts by defined factors, Cell, vol.131, pp.861-72, 2007.

M. Giuliani, N. Oudrhiri, Z. M. Noman, A. Vernochet, S. Chouaib et al., Human mesenchymal stem cells derived from induced pluripotent stem cells down-regulate NK-cell cytolytic machinery, Blood, vol.12, pp.3254-62, 2011.

V. G. Tusher, R. Tibshirani, and G. Chu, Significance analysis of microarrays applied to the ionizing radiation responseProc, Natl. Acad. Sci. U. S. A, vol.98, pp.5116-5121, 2001.

S. Lê, J. Josse, and F. Husson, FactoMineR: An R Package for Multivariate Analysis, J. Stat. Softw, vol.25, pp.1-18, 2008.

A. C. Zambon, S. Gaj, I. Ho, K. Hanspers, K. Vranizan et al., GO-Elite: a flexible solution for pathway and ontology overrepresentation, Bioinforma. Oxf. Engl, vol.28, pp.2209-2210, 2012.

A. Subramanian, P. Tamayo, V. K. Mootha, S. Mukherjee, B. L. Ebert et al., Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles, Proc. Natl. Acad. Sci. U. S. A, vol.102, pp.15545-15550, 2005.

M. S. Cline, M. Smoot, E. Cerami, A. Kuchinsky, N. Landys et al., Integration of biological networks and gene expression data using Cytoscape, Nat. Protoc, vol.2, pp.2366-2382, 2007.

M. D. Smadja, A. Basire, A. Amelot, A. Conte, I. Bièche et al., Thrombin bound to a fibrin clot confers angiogenic and haemostatic properties on endothelial progenitor cells, J Cell Mol Med, vol.12, pp.975-986, 2008.

O. M. Rashid, M. Nagahashi, S. Ramachandran, C. Dumur, J. Schaum et al., An improved syngeneic orthotopic murine model of human breast cancer progression. K Breast Cancer Res Treat, vol.147, pp.501-513, 2014.

N. Dianat, L. Viet, B. Gobbo, E. Auger, N. Bièche et al., Midkine lacking its last 40 amino acids acts on endothelial and neuroblastoma tumor cells and inhibits tumor development, Mol Cancer Ther, vol.1, pp.213-237, 2015.

G. Michel, E. Minet, E. I. Durant, F. Remacle, J. Michiels et al., Molecular modeling of the hypoxia-inducible factor 1 (HIF-1), Theoretical Chemistry Accounts, vol.101, pp.51-56, 1999.

P. Carmeliet, Y. Dor, J. M. Herbert, D. Fukumura, K. Brusselmans et al., Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis, Nature, vol.394, pp.485-90, 1998.

A. F. Salem, A. Howell, M. Sartini, F. Sotgia, and M. P. Lisanti, Downregulation of stromal BRCA1 drives breast cancer tumor growth via upregulation of HIF-1?, autophagy and ketone body production, Cell Cycle, vol.11, pp.4167-73, 2012.

R. D. Guzy, B. Sharma, E. Bell, N. S. Chandel, and P. T. Schumacker, Loss of the SdhB, but Not the SdhA, subunit of complex II triggers reactive oxygen species-dependent hypoxia-inducible factor activation and tumorigenesis, Mol Cell Biol, vol.28, pp.718-749, 2008.

P. Van-der-groep, A. Bouter, F. H. Menko, E. Van-der-wall, and P. J. Van-diest, High frequency of HIF-1alpha overexpression in BRCA1 related breast cancer, Breast Cancer Res Treat, vol.111, pp.475-80, 2008.

M. Yan, M. Rayoo, E. A. Takano, H. Thorne, K. Investigators et al., BRCA1 tumours correlate with a HIF-1alpha phenotype and have a poor prognosis through modulation of hydroxylase enzyme profile expression, Br J Cancer, vol.101, pp.1168-74, 2009.

P. H. Maxwell, M. S. Wiesener, G. W. Chang, S. C. Clifford, E. C. Vaux et al., The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis, Nature, vol.399, pp.271-276, 1999.

J. A. Forsythe, B. H. Jiang, N. V. Iyer, F. Agani, S. W. Leung et al., Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1, Mol Cell Biol, vol.16, pp.4604-4617, 1996.

L. Morra and H. Moch, Periostin expression and epithelial-mesenchymal transition in cancer: a review and an update, Virchows Arch, vol.459, pp.465-75, 2011.

R. A. Norris, B. Damon, V. Mironov, V. Kasyanov, A. Ramamurthi et al., Periostin regulates collagen fibrillogenesis and the biomechanical properties of connective tissues, J Cell Biochem, vol.101, pp.695-711, 2007.

P. Li, S. Oparil, W. Feng, and Y. Chen, Hypoxia-responsive growth factors upregulate periostin and osteopontin expression via distinct signaling pathways in rat pulmonary arterial smooth muscle cells, J Appl Physiol, vol.97, pp.1550-1558, 2004.

S. Bao, G. Ouyang, X. Bai, Z. Huang, C. Ma et al., Periostin potently promotes metastatic growth of colon cancer by augmenting cell survival via the Akt/PKB pathway, Cancer Cell, vol.5, pp.329-368, 2004.

L. Gillan, D. Matei, D. A. Fishman, C. S. Gerbin, B. Y. Karlan et al., Periostin secreted by epithelial ovarian carcinoma is a ligand for alpha(V)beta(3) and alpha(V)beta(5) integrins and promotes cell motility, Cancer Res, vol.62, pp.5358-5364, 2002.

W. Yan and R. Shao, Transduction of a mesenchyme-specific gene periostin into 293T cells induces cell invasive activity through epithelial-mesenchymal transformation, J Biol Chem, vol.281, pp.19700-19708, 2006.

C. J. Kim, K. Sakamoto, Y. Tambe, and H. Inoue, Opposite regulation of epithelial-tomesenchymal transition and cell invasiveness by periostin between prostate and bladder cancer cells, Int J Oncol, vol.38, pp.1759-66, 2011.

J. P. Thiery, Epithelial-mesenchymal transitions in tumour progression, Nat Rev Cancer, vol.2, pp.442-54, 2002.

P. Kaur, G. M. Nagaraja, H. Zheng, D. Gizachew, M. Galukande et al., A mouse model for triple-negative breast cancer tumor-initiating cells (TNBC-TICs) exhibits similar aggressive phenotype to the human disease, BMC Cancer, vol.12, p.120, 2012.

A. W. Lambert, C. K. Wong, S. Ozturk, P. Papageorgis, R. Raghunathan et al., Tumor Cell-Derived Periostin Regulates Cytokines That Maintain Breast Cancer Stem Cells, Mol Cancer Res, vol.14, pp.103-116, 2016.

Z. Wang, S. Xiong, Y. Mao, M. Chen, X. Ma et al., Periostin promotes immunosuppressive premetastatic niche formation to facilitate breast tumour metastasis, J Pathol, vol.239, pp.484-95, 2016.

, Annexe 4 : Publication complémentaire

, Les MSCs BRCA1 +/-utilisées dans ce travail ont été différenciées à partir d'iPSCs. Les iPSCs BRCA1 +/-ont été générées par une méthode de transduction virale non-intégrative (virus de Sendaï) comprenant les facteurs Oct3/4, Sox2, Klf4 et c-Myc à partir de cellules mononuclées du sang cryopréservées d'une patiente de, p.56

, Cette lignée (PB38) ainsi obtenue a été caractérisée quant à l'expression des marqueurs de pluripotence, de son caryotype, de sa capacité à former des tératomes in vivo et de la présence d'une mutation sur le gène BRCA1. La lignée PB38 a fait l'objet d'une publication dans la revue Stem Cell

S. Verbeke, Étude des voies de signalisation du récepteur p75NTR impliquées dans la croissance des cellules de cancer du sein, 2010.

R. V. Short and C. R. Austin, Reproduction in mammals

L. A. Torre, F. Bray, R. L. Siegel, J. Ferlay, J. Lortet-tieulent et al., Global cancer statistics, CA Cancer J Clin, vol.65, pp.87-108, 2012.

J. Ferlay, I. Soerjomataram, and R. Dikshit, Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012, Int J Cancer, vol.136, pp.359-386, 2015.

F. Binder-foucard, A. Belot, P. Delafosse, L. Remontet, A. Woronoff et al., Estimation nationale de l'incidence et de la mortalité par cancer en France entre 1980 et 2012. Partie 1 -Tumeurs solides, p.122, 2013.

L. Ribassin-majed, G. Le-teuff, and C. Hill, The frequency of cancer in France: Most recent data and trends

, Bull Cancer (Paris), vol.104, pp.20-29, 2017.

D. Hanahan and R. A. Weinberg, Hallmarks of cancer: the next generation, Cell, vol.144, pp.646-674, 2011.

E. Marshall, Breast cancer. Dare to do less, Science, vol.343, pp.1454-1456, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00478335

P. Rizzolo, V. Silvestri, and S. Tommasi, Male breast cancer: genetics, epigenetics, and ethical aspects, Ann Oncol Off J Eur Soc Med Oncol, vol.24, issue.8, pp.75-82, 2013.

V. Silvestri, D. Barrowdale, and A. M. Mulligan, Male breast cancer in BRCA1 and BRCA2 mutation carriers: pathology data from the Consortium of Investigators of Modifiers of BRCA1/2, Breast Cancer Res BCR, vol.18, p.15, 2016.

J. M. Hall, M. K. Lee, and B. Newman, Linkage of early-onset familial breast cancer to chromosome 17q21, Science, vol.250, pp.1684-1689, 1990.

D. Ford and D. F. Easton, The genetics of breast and ovarian cancer, Br J Cancer, vol.72, pp.805-812, 1995.

S. Rowell, B. Newman, J. Boyd, and M. C. King, Inherited predisposition to breast and ovarian cancer, Am J Hum Genet, vol.55, pp.861-865, 1994.

Y. Miki, J. Swensen, and D. Shattuck-eidens, A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1, Science, vol.266, pp.66-71, 1994.

E. M. Rosen and M. J. Pishvaian, Targeting the BRCA1/2 tumor suppressors, Curr Drug Targets, vol.15, pp.17-31, 2014.

S. Shiovitz and L. A. Korde, Genetics of breast cancer: a topic in evolution, Ann Oncol Off J Eur Soc Med Oncol, vol.26, pp.1291-1299, 2015.

W. D. Foulkes, Inherited susceptibility to common cancers, N Engl J Med, vol.359, pp.2143-2153, 2008.

A. R. Venkitaraman, Cancer susceptibility and the functions of BRCA1 and BRCA2, Cell, vol.108, pp.171-182, 2002.

W. D. Foulkes, I. M. Stefansson, and P. O. Chappuis, Germline BRCA1 mutations and a basal epithelial phenotype in breast cancer, J Natl Cancer Inst, vol.95, pp.1482-1485, 2003.

O. A. Stefansson, J. G. Jonasson, and O. T. Johannsson, Genomic profiling of breast tumours in relation to BRCA abnormalities and phenotypes, Breast Cancer Res BCR, vol.11, p.47, 2009.

L. C. Hartmann and N. M. Lindor, The Role of Risk-Reducing Surgery in Hereditary Breast and Ovarian Cancer, N Engl J Med, vol.374, pp.454-468, 2016.

F. J. Couch, M. R. Johnson, and K. G. Rabe, The prevalence of BRCA2 mutations in familial pancreatic cancer, Cancer Epidemiol Biomark Prev Publ Am Assoc Cancer Res Cosponsored Am Soc Prev Oncol, vol.16, pp.342-346, 2007.

O. M. Ginsburg, C. Kim-sing, and W. D. Foulkes, BRCA1 and BRCA2 families and the risk of skin cancer, Fam Cancer, vol.9, pp.489-493, 2010.

. Anon and . Wiley, TNM Classification of Malignant Tumours

M. K. Brierley, C. Gospodarowicz, and . Wittekind,

X. Dai, T. Li, and Z. Bai, Breast cancer intrinsic subtype classification, clinical use and future trends, Am J Cancer Res, vol.5, pp.2929-2943, 2015.

C. S. Vallejos, H. L. Gómez, and W. R. Cruz, Breast cancer classification according to immunohistochemistry markers: subtypes and association with clinicopathologic variables in a peruvian hospital database, Clin Breast Cancer, vol.10, pp.294-300, 2010.

C. M. Perou, T. Sørlie, and M. B. Eisen, Molecular portraits of human breast tumours, Nature, vol.406, pp.747-752, 2000.

T. Sørlie, C. M. Perou, and R. Tibshirani, Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications, Proc Natl Acad Sci U S A, vol.98, pp.10869-10874, 2001.

, Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours, Nature, vol.490, pp.61-70, 2012.

C. Curtis, S. P. Shah, and S. Chin, The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups, Nature, vol.486, p.346

S. Dawson, O. M. Rueda, S. Aparicio, and C. Caldas, A new genome-driven integrated classification of breast cancer and its implications, EMBO J, vol.32, pp.617-628, 2013.

N. Turner, A. Tutt, and A. Ashworth, Hallmarks of "BRCAness" in sporadic cancers, Nat Rev Cancer, vol.4, pp.814-819, 2004.

E. H. Lips, L. Mulder, and A. Oonk, Triple-negative breast cancer: BRCAness and concordance of clinical features with BRCA1-mutation carriers, Br J Cancer, vol.108, pp.2172-2177, 2013.

C. J. Lord and A. Ashworth, BRCAness revisited, Nat Rev Cancer, vol.16, pp.110-120, 2016.

M. D. Brooks, M. L. Burness, and M. S. Wicha, Therapeutic Implications of Cellular Heterogeneity and Plasticity in Breast Cancer, Cell Stem Cell, vol.17, pp.260-271, 2015.

G. Molyneux, F. C. Geyer, and F. Magnay, BRCA1 basal-like breast cancers originate from luminal epithelial progenitors and not from basal stem cells, Cell Stem Cell, vol.7, pp.403-417, 2010.

B. Pal, Y. Chen, and A. Bert, Integration of microRNA signatures of distinct mammary epithelial cell types with their gene expression and epigenetic portraits, Breast Cancer Res BCR, vol.17, p.85, 2015.

E. M. Rosen, S. Fan, R. G. Pestell, and I. D. Goldberg, BRCA1 gene in breast cancer, J Cell Physiol, vol.196, pp.19-41, 2003.

Q. Zhu, G. M. Pao, and A. M. Huynh, BRCA1 tumour suppression occurs via heterochromatin-mediated silencing, Nature, vol.477, pp.179-184, 2011.

E. M. Rosen, S. Fan, and Y. Ma, BRCA1 regulation of transcription, Cancer Lett, vol.236, pp.175-185, 2006.

L. C. Gowen, B. L. Johnson, A. M. Latour, K. K. Sulik, and B. H. Koller, Brca1 deficiency results in early embryonic lethality characterized by neuroepithelial abnormalities, Nat Genet, vol.12, pp.191-194, 1996.

T. Ludwig, D. L. Chapman, V. E. Papaioannou, and A. Efstratiadis, Targeted mutations of breast cancer susceptibility gene homologs in mice: lethal phenotypes of Brca1, Brca2, Brca1/Brca2, Brca1/p53, and Brca2/p53 nullizygous embryos, Genes Dev, vol.11, pp.1226-1241, 1997.

S. L. Clark, A. M. Rodriguez, R. R. Snyder, G. Hankins, and D. Boehning, Structure-Function Of The Tumor Suppressor BRCA1, Comput Struct Biotechnol J, vol.1, 2012.

M. Huen, S. Sy, and J. Chen, BRCA1 and its toolbox for the maintenance of genome integrity, Nat Rev Mol Cell Biol, vol.11, pp.138-148, 2010.

P. L. Welcsh, K. N. Owens, and M. C. King, Insights into the functions of BRCA1 and BRCA2, Trends Genet TIG, vol.16, pp.69-74, 2000.

M. A. Arnold and M. Goggins, BRCA2 and predisposition to pancreatic and other cancers, Expert Rev Mol Med, vol.3, pp.1-10, 2001.

P. L. Welcsh, E. L. Schubert, and M. C. King, Inherited breast cancer: an emerging picture, Clin Genet, vol.54, pp.447-458, 1998.

S. Fan, Y. X. Ma, and C. Wang, Role of direct interaction in BRCA1 inhibition of estrogen receptor activity, Oncogene, vol.20, pp.77-87, 2001.

A. Monteiro, BRCA1: the enigma of tissue-specific tumor development, Trends Genet TIG, vol.19, pp.312-315, 2003.

S. T. Marquis, J. V. Rajan, and A. Wynshaw-boris, The developmental pattern of Brca1 expression implies a role in differentiation of the breast and other tissues, Nat Genet, vol.11, pp.17-26, 1995.

C. R. Mueller and C. D. Roskelley, Regulation of BRCA1 expression and its relationship to sporadic breast cancer, Breast Cancer Res BCR, vol.5, pp.45-52, 2003.

F. Magdinier, L. M. Billard, and G. Wittmann, Regional methylation of the 5' end CpG island of BRCA1 is associated with reduced gene expression in human somatic cells, FASEB J Off Publ Fed Am Soc Exp Biol, vol.14, pp.1585-1594, 2000.
URL : https://hal.archives-ouvertes.fr/hal-01663881

J. C. Rice, H. Ozcelik, P. Maxeiner, I. Andrulis, and B. W. Futscher, Methylation of the BRCA1 promoter is associated with decreased BRCA1 mRNA levels in clinical breast cancer specimens, Carcinogenesis, vol.21, pp.1761-1765, 2000.

L. Wu, F. Wang, and R. Xu, Promoter methylation of BRCA1 in the prognosis of breast cancer: a meta-analysis, Breast Cancer Res Treat, vol.142, pp.619-627, 2013.

C. Gorrini, B. P. Gang, and C. Bassi, Estrogen controls the survival of BRCA1-deficient cells via a PI3K-NRF2-regulated pathway, Proc Natl Acad Sci U S A, vol.111, pp.4472-4477, 2014.

D. Lorenzo, S. B. Patel, A. G. Hurley, R. M. Kaufmann, and S. H. , The Elephant and the Blind Men: Making Sense of PARP Inhibitors in Homologous Recombination Deficient Tumor Cells, Front Oncol, vol.3, p.228, 2013.

H. E. Bryant, N. Schultz, and H. D. Thomas, Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase, Nature, vol.434, pp.913-917, 2005.

H. Farmer, N. Mccabe, and C. J. Lord, Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy, Nature, vol.434, pp.917-921, 2005.

A. G. Knudson, Mutation and cancer: statistical study of retinoblastoma, Proc Natl Acad Sci U S A, vol.68, pp.820-823, 1971.

S. Staff, N. N. Nupponen, A. Borg, J. J. Isola, and M. M. Tanner, Multiple copies of mutant BRCA1 and BRCA2 alleles in breast tumors from germ-line mutation carriers, Genes Chromosomes Cancer, vol.28, pp.432-442, 2000.

H. Konishi, M. Mohseni, and A. Tamaki, Mutation of a single allele of the cancer susceptibility gene BRCA1 leads to genomic instability in human breast epithelial cells, Proc Natl Acad Sci U S A, vol.108, pp.17773-17778, 2011.

M. Hollstein, D. Sidransky, B. Vogelstein, and C. C. Harris, p53 mutations in human cancers, Science, vol.253, pp.49-53, 1991.

A. Børresen-dale, Hum Mutat, vol.21, pp.292-300, 2003.

W. D. Foulkes, BRCA1--sowing the seeds crooked in the furrow, Nat Genet, vol.40, pp.8-9, 2008.

M. E. Thompson, R. A. Jensen, P. S. Obermiller, D. L. Page, and J. T. Holt, Decreased expression of BRCA1 accelerates growth and is often present during sporadic breast cancer progression, Nat Genet, vol.9, pp.444-450, 1995.

Q. Yang, T. Sakurai, and I. Mori, Prognostic significance of BRCA1 expression in Japanese sporadic breast carcinomas, Cancer, vol.92, pp.54-60, 2001.

H. Lambie, A. Miremadi, and S. E. Pinder, Prognostic significance of BRCA1 expression in sporadic breast carcinomas, J Pathol, vol.200, pp.207-213, 2003.

A. M. Hanby, D. P. Kelsell, and H. W. Potts, Association between loss of heterozygosity of BRCA1 and BRCA2 and morphological attributes of sporadic breast cancer, Int J Cancer J Int Cancer, vol.88, pp.204-208, 2000.

M. W. Beckmann, F. Picard, and H. X. An, Clinical impact of detection of loss of heterozygosity of BRCA1 and BRCA2 markers in sporadic breast cancer, Br J Cancer, vol.73, pp.1220-1226, 1996.

S. Staff, J. Isola, and M. Tanner, Haplo-insufficiency of BRCA1 in sporadic breast cancer, Cancer Res, vol.63, pp.4978-4983, 2003.

T. A. Buchholz, X. Wu, and A. Hussain, Evidence of haplotype insufficiency in human cells containing a germline mutation in BRCA1 or BRCA2, Int J Cancer J Int Cancer, vol.97, pp.557-561, 2002.

J. P. Geisler, M. A. Hatterman-zogg, J. A. Rathe, and R. E. Buller, Frequency of BRCA1 dysfunction in ovarian cancer, J Natl Cancer Inst, vol.94, pp.61-67, 2002.

P. A. Russell, P. D. Pharoah, D. Foy, and K. , Frequent loss of BRCA1 mRNA and protein expression in sporadic ovarian cancers, Int J Cancer J Int Cancer, vol.87, pp.317-321, 2000.

K. Yoshikawa, K. Honda, and T. Inamoto, Reduction of BRCA1 protein expression in Japanese sporadic breast carcinomas and its frequent loss in BRCA1-associated cases, Clin Cancer Res Off J Am Assoc Cancer Res, vol.5, pp.1249-1261, 1999.

J. Taylor, M. Lymboura, and P. E. Pace, An important role for BRCA1 in breast cancer progression is indicated by its loss in a large proportion of non-familial breast cancers, Int J Cancer J Int Cancer, vol.79, pp.334-342, 1998.

C. A. Wilson, L. Ramos, and M. R. Villaseñor, Localization of human BRCA1 and its loss in high-grade, non-inherited breast carcinomas, Nat Genet, vol.21, pp.236-240, 1999.

R. L. Baldwin, E. Nemeth, and H. Tran, BRCA1 promoter region hypermethylation in ovarian carcinoma: a population-based study, Cancer Res, vol.60, pp.5329-5333, 2000.

E. Atlas, M. Stramwasser, K. Whiskin, and C. R. Mueller, GA-binding protein alpha/beta is a critical regulator of the BRCA1 promoter, Oncogene, vol.19, pp.1933-1940, 2000.

D. A. Bochar, L. Wang, and H. Beniya, BRCA1 is associated with a human SWI/SNF-related complex: linking chromatin remodeling to breast cancer, Cell, vol.102, pp.257-265, 2000.

P. Arizti, L. Fang, and I. Park, Tumor suppressor p53 is required to modulate BRCA1 expression, Mol Cell Biol, vol.20, pp.7450-7459, 2000.

R. Scully, S. F. Anderson, and D. M. Chao, BRCA1 is a component of the RNA polymerase II holoenzyme, Proc Natl Acad Sci U S A, vol.94, pp.5605-5610, 1997.

H. Ruffner, C. A. Joazeiro, D. Hemmati, T. Hunter, and I. M. Verma, Cancer-predisposing mutations within the RING domain of BRCA1: loss of ubiquitin protein ligase activity and protection from radiation hypersensitivity, Proc Natl Acad Sci U S A, vol.98, pp.5134-5139, 2001.

R. S. Tibbetts, D. Cortez, and K. M. Brumbaugh, Functional interactions between BRCA1 and the checkpoint kinase ATR during genotoxic stress, Genes Dev, vol.14, pp.2989-3002, 2000.

A. Bellacosa, A. K. Godwin, and S. Peri, Altered gene expression in morphologically normal epithelial cells from heterozygous carriers of BRCA1 or BRCA2 mutations, Cancer Prev Res Phila Pa, vol.3, pp.48-61, 2010.

K. Rennstam, A. Ringberg, H. E. Cunliffe, H. Olsson, G. Landberg et al., Genomic alterations in histopathologically normal breast tissue from BRCA1 mutation carriers may be caused by BRCA1 haploinsufficiency, Genes Chromosomes Cancer, vol.49, pp.78-90, 2010.

T. A. Proia, P. J. Keller, and P. B. Gupta, Genetic predisposition directs breast cancer phenotype by dictating progenitor cell fate, Cell Stem Cell, vol.8, pp.149-163, 2011.

E. Lim, F. Vaillant, and D. Wu, Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers, Nat Med, vol.15, pp.907-913, 2009.

S. Liu, C. Ginestier, C. , and E. , BRCA1 regulates human mammary stem/progenitor cell fate, Proc Natl Acad Sci U S A, vol.105, pp.1680-1685, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01431959

C. D. Curtis, D. L. Thorngren, and A. M. Nardulli, Immunohistochemical analysis of oxidative stress and DNA repair proteins in normal mammary and breast cancer tissues, BMC Cancer, vol.10, p.9, 2010.

N. Foray, V. Randrianarison, D. Marot, M. Perricaudet, G. Lenoir et al., Gamma-rays-induced death of human cells carrying mutations of BRCA1 or BRCA2, Oncogene, vol.18, pp.7334-7342, 1999.

H. Chiang, R. Elledge, P. Larson, I. Jatoi, R. Li et al., Effects of Radiation Therapy on Breast Epithelial Cells in BRCA1/2 Mutation Carriers, Breast Cancer Basic Clin Res, vol.9, pp.25-29, 2015.

S. Hallam, S. Govindarajulu, B. Huckett, and A. Bahl, BRCA1/2 Mutation-associated Breast Cancer, Wide Local Excision and Radiotherapy or Unilateral Mastectomy: A Systematic Review, Clin Oncol R Coll Radiol G B, vol.27, pp.527-535, 2015.

Z. Wu, X. Li, C. Y. Hu, M. Ford, C. G. Kleer et al., Canonical Wnt signaling regulates Slug activity and links epithelial-mesenchymal transition with epigenetic Breast Cancer 1, Early Onset (BRCA1) repression, Proc Natl Acad Sci U S A, vol.109, pp.16654-16659, 2012.

S. Paget, The distribution of secondary growths in cancer of the breast. 1889, Cancer Metastasis Rev, vol.8, pp.98-101, 1989.

J. A. Joyce and J. W. Pollard, Microenvironmental regulation of metastasis, Nat Rev Cancer, vol.9, pp.239-252, 2009.

D. Öhlund, E. Elyada, and D. Tuveson, Fibroblast heterogeneity in the cancer wound, J Exp Med, vol.211, pp.1503-1523, 2014.

V. Paunescu, F. M. Bojin, and C. A. Tatu, Tumour-associated fibroblasts and mesenchymal stem cells: more similarities than differences, J Cell Mol Med, vol.15, pp.635-646, 2011.

R. Kalluri and M. Zeisberg, Fibroblasts in cancer, Nat Rev Cancer, vol.6, pp.392-401, 2006.

H. Luo, G. Tu, Z. Liu, and M. Liu, Cancer-associated fibroblasts: a multifaceted driver of breast cancer progression, Cancer Lett, vol.361, pp.155-163, 2015.

A. K. Witkiewicz, A. Dasgupta, and F. Sotgia, An absence of stromal caveolin-1 expression predicts early tumor recurrence and poor clinical outcome in human breast cancers, Am J Pathol, vol.174, pp.2023-2034, 2009.

A. Orimo, P. B. Gupta, and D. C. Sgroi, Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion, Cell, vol.121, pp.335-348, 2005.

O. Pontiggia, R. Sampayo, and D. Raffo, The tumor microenvironment modulates tamoxifen resistance in breast cancer: a role for soluble stromal factors and fibronectin through ?1 integrin, Breast Cancer Res Treat, vol.133, pp.459-471, 2012.

U. E. Martinez-outschoorn, A. Goldberg, and Z. Lin, Anti-estrogen resistance in breast cancer is induced by the tumor microenvironment and can be overcome by inhibiting mitochondrial function in epithelial cancer cells, Cancer Biol Ther, vol.12, pp.924-938, 2011.

K. L. Mueller, J. M. Madden, G. L. Zoratti, C. Kuperwasser, K. List et al., Fibroblast-secreted hepatocyte growth factor mediates epidermal growth factor receptor tyrosine kinase inhibitor resistance in triple-negative breast cancers through paracrine activation of Met, Breast Cancer Res BCR, vol.14, p.104, 2012.

J. M. Karp, L. Teo, and G. S. , Mesenchymal stem cell homing: the devil is in the details, Cell Stem Cell, vol.4, pp.206-216, 2009.

C. P. El-haibi and A. E. Karnoub, Mesenchymal stem cells in the pathogenesis and therapy of breast cancer, J Mammary Gland Biol Neoplasia, vol.15, pp.399-409, 2010.

S. Kidd, E. Spaeth, A. Klopp, M. Andreeff, B. Hall et al., The (in) auspicious role of mesenchymal stromal cells in cancer: be it friend or foe, Cytotherapy, vol.10, pp.657-667, 2008.

P. J. Mishra, P. J. Mishra, and R. Humeniuk, Carcinoma-associated fibroblast-like differentiation of human mesenchymal stem cells, Cancer Res, vol.68, pp.4331-4339, 2008.

E. L. Spaeth, J. L. Dembinski, and A. K. Sasser, Mesenchymal stem cell transition to tumor-associated fibroblasts contributes to fibrovascular network expansion and tumor progression, PloS One, vol.4, p.4992, 2009.

A. E. Karnoub, A. B. Dash, and A. P. Vo, Mesenchymal stem cells within tumour stroma promote breast cancer metastasis, Nature, vol.449, pp.557-563, 2007.

S. Kidd, E. Spaeth, and J. L. Dembinski, Direct evidence of mesenchymal stem cell tropism for tumor and wounding microenvironments using in vivo bioluminescent imaging, Stem Cells Dayt Ohio, vol.27, pp.2614-2623, 2009.

M. R. Loebinger, P. G. Kyrtatos, and M. Turmaine, Magnetic resonance imaging of mesenchymal stem cells homing to pulmonary metastases using biocompatible magnetic nanoparticles, Cancer Res, vol.69, pp.8862-8867, 2009.

B. Feng and L. Chen, Review of mesenchymal stem cells and tumors: executioner or coconspirator?, Cancer Biother Radiopharm, vol.24, pp.717-721, 2009.

K. M. Mcandrews, D. J. Mcgrail, N. Ravikumar, and M. R. Dawson, Mesenchymal Stem Cells Induce Directional Migration of Invasive Breast Cancer Cells through TGF-?, Sci Rep, vol.5, p.16941, 2015.

E. Spaeth, A. Klopp, J. Dembinski, M. Andreeff, and F. Marini, Inflammation and tumor microenvironments: defining the migratory itinerary of mesenchymal stem cells, Gene Ther, vol.15, pp.730-738, 2008.

S. Liu, C. Ginestier, and S. J. Ou, Breast cancer stem cells are regulated by mesenchymal stem cells through cytokine networks, Cancer Res, vol.71, pp.614-624, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01431944

L. M. Coussens and Z. Werb, Inflammation and cancer, Nature, vol.420, pp.860-867, 2002.

J. W. Pollard, Tumour-educated macrophages promote tumour progression and metastasis, Nat Rev Cancer, vol.4, pp.71-78, 2004.

L. Bingle, N. J. Brown, and C. E. Lewis, The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies, J Pathol, vol.196, pp.254-265, 2002.

J. Condeelis and J. W. Pollard, Macrophages: obligate partners for tumor cell migration, invasion, and metastasis, Cell, vol.124, pp.263-266, 2006.

S. Chouaib, C. Asselin-paturel, F. Mami-chouaib, A. Caignard, and J. Y. Blay, The hosttumor immune conflict: from immunosuppression to resistance and destruction, Immunol Today, vol.18, pp.493-497, 1997.

C. Murdoch, M. Muthana, S. B. Coffelt, and C. E. Lewis, The role of myeloid cells in the promotion of tumour angiogenesis, Nat Rev Cancer, vol.8, pp.618-631, 2008.

A. Dutour and M. Rigaud, Tumor endothelial cells are targets for selective therapies: in vitro and in vivo models to evaluate antiangiogenic strategies, Anticancer Res, vol.25, pp.3799-3807, 2005.

S. Rafii, D. Lyden, R. Benezra, K. Hattori, and B. Heissig, Vascular and haematopoietic stem cells: novel targets for anti-angiogenesis therapy?, Nat Rev Cancer, vol.2, pp.826-835, 2002.

S. Chouaib, C. Kieda, H. Benlalam, M. Z. Noman, F. Mami-chouaib et al., Endothelial cells as key determinants of the tumor microenvironment: interaction with tumor cells, extracellular matrix and immune killer cells, Crit Rev Immunol, vol.30, pp.529-545, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00591659

S. Landskroner-eiger, B. Qian, and E. S. Muise, Proangiogenic contribution of adiponectin toward mammary tumor growth in vivo, Clin Cancer Res Off J Am Assoc Cancer Res, vol.15, pp.3265-3276, 2009.

P. Iyengar, V. Espina, and T. W. Williams, Adipocyte-derived collagen VI affects early mammary tumor progression in vivo, demonstrating a critical interaction in the tumor/stroma microenvironment, J Clin Invest, vol.115, pp.1163-1176, 2005.

Y. Mao, E. T. Keller, D. H. Garfield, K. Shen, and J. Wang, Stromal cells in tumor microenvironment and breast cancer, Cancer Metastasis Rev, vol.32, pp.303-315, 2013.

J. Fernandes, Etude de la formation d'agrégats multicellulaires de carcinomes ovariens et du remodelage du microenvironnement tumoral, 2010.

R. P. Tucker and R. Chiquet-ehrismann, The regulation of tenascin expression by tissue microenvironments, Biochim Biophys Acta, vol.1793, pp.888-892, 2009.

F. X. Maquart, A. Siméon, S. Pasco, and J. C. Monboisse,

, J Soc Biol, vol.193, pp.423-428, 1999.

K. Kessenbrock, V. Plaks, and Z. Werb, Matrix metalloproteinases: regulators of the tumor microenvironment, Cell, vol.141, pp.52-67, 2010.

K. Nabeshima, T. Inoue, Y. Shimao, and T. Sameshima, Matrix metalloproteinases in tumor invasion: role for cell migration, Pathol Int, vol.52, pp.255-264, 2002.

E. S. Radisky and D. C. Radisky, Matrix metalloproteinases as breast cancer drivers and therapeutic targets, Front Biosci Landmark Ed, vol.20, pp.1144-1163, 2015.

S. Takeshita, R. Kikuno, K. Tezuka, and E. Amann, Osteoblast-specific factor 2: cloning of a putative bone adhesion protein with homology with the insect protein fasciclin I, Biochem J, vol.294, pp.271-278, 1993.

K. Horiuchi, N. Amizuka, and S. Takeshita, Identification and characterization of a novel protein, periostin, with restricted expression to periosteum and periodontal ligament and increased expression by transforming growth factor beta, J Bone Miner Res Off J Am Soc Bone Miner Res, vol.14, pp.1239-1249, 1999.

V. Lindner, Q. Wang, B. A. Conley, R. E. Friesel, and C. Vary, Vascular injury induces expression of periostin: implications for vascular cell differentiation and migration, Arterioscler Thromb Vasc Biol, vol.25, pp.77-83, 2005.

L. Gillan, D. Matei, D. A. Fishman, C. S. Gerbin, B. Y. Karlan et al., Periostin secreted by epithelial ovarian carcinoma is a ligand for alpha(V)beta(3) and alpha(V)beta(5) integrins and promotes cell motility, Cancer Res, vol.62, pp.5358-5364, 2002.

H. Rios, S. V. Koushik, and H. Wang, periostin null mice exhibit dwarfism, incisor enamel defects, and an early-onset periodontal disease-like phenotype, Mol Cell Biol, vol.25, pp.11131-11144, 2005.

A. Kudo, Periostin in fibrillogenesis for tissue regeneration: periostin actions inside and outside the cell, Cell Mol Life Sci CMLS, vol.68, pp.3201-3207, 2011.

S. J. Conway, K. Izuhara, and Y. Kudo, The role of periostin in tissue remodeling across health and disease, Cell Mol Life Sci CMLS, vol.71, pp.1279-1288, 2014.

R. A. Norris, B. Damon, and V. Mironov, Periostin regulates collagen fibrillogenesis and the biomechanical properties of connective tissues, J Cell Biochem, vol.101, pp.695-711, 2007.

S. Bao, G. Ouyang, and X. Bai, Periostin potently promotes metastatic growth of colon cancer by augmenting cell survival via the Akt/PKB pathway, Cancer Cell, vol.5, pp.329-339, 2004.

R. Shao, S. Bao, and X. Bai, Acquired expression of periostin by human breast cancers promotes tumor angiogenesis through up-regulation of vascular endothelial growth factor receptor 2 expression, Mol Cell Biol, vol.24, pp.3992-4003, 2004.

X. Wang, J. Liu, and Z. Wang, Periostin contributes to the acquisition of multipotent stem cell-like properties in human mammary epithelial cells and breast cancer cells, PloS One, vol.8, p.72962, 2013.

L. Morra and H. Moch, Periostin expression and epithelial-mesenchymal transition in cancer: a review and an update, Virchows Arch Int J Pathol, vol.459, pp.465-475, 2011.

D. Cui, Z. Huang, Y. Liu, and G. Ouyang, The multifaceted role of periostin in priming the tumor microenvironments for tumor progression, Cell Mol Life Sci CMLS, 2017.

I. Malanchi, A. Santamaria-martínez, and E. Susanto, Interactions between cancer stem cells and their niche govern metastatic colonization, Nature, vol.481, pp.85-89, 2011.

D. F. Quail and J. A. Joyce, Microenvironmental regulation of tumor progression and metastasis, Nat Med, vol.19, pp.1423-1437, 2013.

S. Contié, N. Voorzanger-rousselot, J. Litvin, P. Clézardin, and P. Garnero, Increased expression and serum levels of the stromal cell-secreted protein periostin in breast cancer bone metastases, Int J Cancer, vol.128, pp.352-360, 2011.

B. Quaresima, F. Romeo, and M. C. Faniello, BRCA1 5083del19 mutant allele selectively up-regulates periostin expression in vitro and in vivo, Clin Cancer Res Off J Am Assoc Cancer Res, vol.14, pp.6797-6803, 2008.

F. Puglisi, C. Puppin, and E. Pegolo, Expression of periostin in human breast cancer, J Clin Pathol, vol.61, pp.494-498, 2008.

C. W. Sutton, N. Rustogi, and C. Gurkan, Quantitative proteomic profiling of matched normal and tumor breast tissues, J Proteome Res, vol.9, pp.3891-3902, 2010.

H. Sasaki, C. Yu, and M. Dai, Elevated serum periostin levels in patients with bone metastases from breast but not lung cancer, Breast Cancer Res Treat, vol.77, pp.245-252, 2003.

C. P. El-haibi, G. W. Bell, and J. Zhang, Critical role for lysyl oxidase in mesenchymal stem cell-driven breast cancer malignancy, Proc Natl Acad Sci U S A, vol.109, pp.17460-17465, 2012.

U. E. Martinez-outschoorn, R. Balliet, and Z. Lin, BRCA1 mutations drive oxidative stress and glycolysis in the tumor microenvironment: implications for breast cancer prevention with antioxidant therapies, Cell Cycle Georget Tex, vol.11, pp.4402-4413, 2012.

A. F. Salem, A. Howell, M. Sartini, F. Sotgia, and M. P. Lisanti, Downregulation of stromal BRCA1 drives breast cancer tumor growth via upregulation of HIF-1?, autophagy and ketone body production, Cell Cycle Georget Tex, vol.11, pp.4167-4173, 2012.

Q. Xiao, D. Zhou, and A. A. Rucki, Cancer-Associated Fibroblasts in Pancreatic Cancer Are Reprogrammed by Tumor-Induced Alterations in Genomic DNA Methylation, Cancer Res, vol.76, pp.5395-5404, 2016.

H. Lin, T. Zuo, and C. Lin, Breast cancer-associated fibroblasts confer AKT1-mediated epigenetic silencing of Cystatin M in epithelial cells, Cancer Res, vol.68, pp.10257-10266, 2008.

B. G. Cuiffo, A. Campagne, and G. W. Bell, MSC-regulated microRNAs converge on the transcription factor FOXP2 and promote breast cancer metastasis, Cell Stem Cell, vol.15, pp.762-774, 2014.

A. Bergamaschi, E. Tagliabue, and T. Sørlie, Extracellular matrix signature identifies breast cancer subgroups with different clinical outcome, J Pathol, vol.214, pp.357-367, 2008.

J. P. Thiery and J. P. Sleeman, Complex networks orchestrate epithelial-mesenchymal transitions, Nat Rev Mol Cell Biol, vol.7, pp.131-142, 2006.

S. A. Mani, W. Guo, and M. Liao, The epithelial-mesenchymal transition generates cells with properties of stem cells, Cell, vol.133, pp.704-715, 2008.

M. A. Nieto, Epithelial plasticity: a common theme in embryonic and cancer cells, Science, vol.342, p.1234850, 2013.

M. A. Nieto, R. Huang, J. Ra, J. P. Thiery, and . Emt, Cell, vol.166, pp.21-45, 2016.

R. Kalluri and R. A. Weinberg, The basics of epithelial-mesenchymal transition, J Clin Invest, vol.119, pp.1420-1428, 2009.

M. A. Nieto, The early steps of neural crest development, Mech Dev, vol.105, pp.27-35, 2001.

D. Shook and R. Keller, Mechanisms, mechanics and function of epithelialmesenchymal transitions in early development, Mech Dev, vol.120, pp.1351-1383, 2003.

D. C. Radisky, Epithelial-mesenchymal transition, J Cell Sci, vol.118, pp.4325-4326, 2005.

V. Arnoux, M. Nassour, L. 'helgoualc'h, A. Hipskind, R. A. Savagner et al., Erk5 controls Slug expression and keratinocyte activation during wound healing, Mol Biol Cell, vol.19, pp.4738-4749, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00318681

J. P. Thiery, H. Acloque, R. Huang, and M. A. Nieto, Epithelial-mesenchymal transitions in development and disease, Cell, vol.139, pp.871-890, 2009.

N. Ahmed, S. Maines-bandiera, M. A. Quinn, W. G. Unger, S. Dedhar et al., Molecular pathways regulating EGF-induced epithelio-mesenchymal transition in human ovarian surface epithelium, Am J Physiol Cell Physiol, vol.290, pp.1532-1542, 2006.

M. Iwano, D. Plieth, T. M. Danoff, C. Xue, H. Okada et al., Evidence that fibroblasts derive from epithelium during tissue fibrosis, J Clin Invest, vol.110, pp.341-350, 2002.

R. Kalluri and E. G. Neilson, Epithelial-mesenchymal transition and its implications for fibrosis, J Clin Invest, vol.112, pp.1776-1784, 2003.

S. Kasimir-bauer, O. Hoffmann, D. Wallwiener, R. Kimmig, and T. Fehm, Expression of stem cell and epithelial-mesenchymal transition markers in primary breast cancer patients with circulating tumor cells, Breast Cancer Res BCR, vol.14, p.15, 2012.

A. Giordano, H. Gao, and S. Anfossi, Epithelial-mesenchymal transition and stem cell markers in patients with HER2-positive metastatic breast cancer, Mol Cancer Ther, vol.11, pp.2526-2534, 2012.

G. Barrière, A. Riouallon, J. Renaudie, M. Tartary, and M. Rigaud, Mesenchymal and stemness circulating tumor cells in early breast cancer diagnosis, BMC Cancer, vol.12, p.114, 2012.

K. E. Sleeman, H. Kendrick, A. Ashworth, C. M. Isacke, and M. J. Smalley, CD24 staining of mouse mammary gland cells defines luminal epithelial, myoepithelial/basal and non-epithelial cells, Breast Cancer Res BCR, vol.8, p.7, 2006.

N. Takebe, R. Q. Warren, and S. P. Ivy, Breast cancer growth and metastasis: interplay between cancer stem cells, embryonic signaling pathways and epithelial-tomesenchymal transition, Breast Cancer Res BCR, vol.13, p.211, 2011.

G. Moreno-bueno, H. Peinado, and P. Molina, The morphological and molecular features of the epithelial-to-mesenchymal transition, Nat Protoc, vol.4, pp.1591-1613, 2009.

, Massagué J. TGFbeta in Cancer. Cell, vol.134, pp.215-230, 2008.

L. Yang, J. Huang, and X. Ren, Abrogation of TGF beta signaling in mammary carcinomas recruits Gr-1+CD11b+ myeloid cells that promote metastasis, Cancer Cell, vol.13, pp.23-35, 2008.

L. A. Kingsley, P. Fournier, J. M. Chirgwin, and T. A. Guise, Molecular biology of bone metastasis, Mol Cancer Ther, vol.6, pp.2609-2617, 2007.

D. Wever, O. Mareel, and M. , Role of tissue stroma in cancer cell invasion, J Pathol, vol.200, pp.429-447, 2003.

X. Pei, F. Bai, and M. D. Smith, CDK inhibitor p18(INK4c) is a downstream target of GATA3 and restrains mammary luminal progenitor cell proliferation and tumorigenesis, Cancer Cell, vol.15, pp.389-401, 2009.

F. Bai, H. L. Chan, and A. Scott, BRCA1 Suppresses Epithelial-to-Mesenchymal Transition and Stem Cell Dedifferentiation during Mammary and Tumor Development, Cancer Res, 2014.

F. Bai, M. D. Smith, H. L. Chan, and X. Pei, Germline mutation of Brca1 alters the fate of mammary luminal cells and causes luminal-to-basal mammary tumor transformation, Oncogene, vol.32, pp.2715-2725, 2013.

S. E. Moody, D. Perez, and T. Pan, The transcriptional repressor Snail promotes mammary tumor recurrence, Cancer Cell, vol.8, pp.197-209, 2005.

D. Tkocz, N. T. Crawford, and N. E. Buckley, BRCA1 and GATA3 corepress FOXC1 to inhibit the pathogenesis of basal-like breast cancers, Oncogene, vol.31, pp.3667-3678, 2012.

X. Ye and R. A. Weinberg, Epithelial-Mesenchymal Plasticity: A Central Regulator of Cancer Progression, Trends Cell Biol, 2015.

E. H. Gort, A. J. Groot, E. Van-der-wall, P. J. Van-diest, and M. A. Vooijs, Hypoxic regulation of metastasis via hypoxia-inducible factors, Curr Mol Med, vol.8, pp.60-67, 2008.

V. Mele, M. G. Muraro, and D. Calabrese, Mesenchymal stromal cells induce epithelial-to-mesenchymal transition in human colorectal cancer cells through the expression of surface-bound TGF-?, Int J Cancer J Int Cancer, vol.134, pp.2583-2594, 2014.

A. Kabashima-niibe, H. Higuchi, and H. Takaishi, Mesenchymal stem cells regulate epithelial-mesenchymal transition and tumor progression of pancreatic cancer cells, Cancer Sci, vol.104, pp.157-164, 2013.

F. T. Martin, R. M. Dwyer, and J. Kelly, Potential role of mesenchymal stem cells (MSCs) in the breast tumour microenvironment: stimulation of epithelial to mesenchymal transition (EMT), Breast Cancer Res Treat, vol.124, pp.317-326, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00530824

Y. Yu, C. Xiao, L. Tan, Q. Wang, X. Li et al., Cancer-associated fibroblasts induce epithelial-mesenchymal transition of breast cancer cells through paracrine TGF-? signalling, Br J Cancer, vol.110, pp.724-732, 2014.

W. Yan and R. Shao, Transduction of a mesenchyme-specific gene periostin into 293T cells induces cell invasive activity through epithelial-mesenchymal transformation, J Biol Chem, vol.281, pp.19700-19708, 2006.

C. J. Kim, K. Sakamoto, Y. Tambe, and H. Inoue, Opposite regulation of epithelial-tomesenchymal transition and cell invasiveness by periostin between prostate and bladder cancer cells, Int J Oncol, vol.38, pp.1759-1766, 2011.

W. Risau, Mechanisms of angiogenesis, Nature, vol.386, pp.671-674, 1997.

I. Geudens and H. Gerhardt, Coordinating cell behaviour during blood vessel formation, Dev Camb Engl, vol.138, pp.4569-4583, 2011.

A. Desroches-castan, Inhibition de l'angiogenèse tumorale : criblage d'une chimiothèque et caractérisation d'un nouveau composé agissant sur la voie de signalisation Ras-ERK, 2014.

P. Carmeliet and R. K. Jain, Molecular mechanisms and clinical applications of angiogenesis, Nature, vol.473, pp.298-307, 2011.

R. Kalluri, Basement membranes: structure, assembly and role in tumour angiogenesis, Nat Rev Cancer, vol.3, pp.422-433, 2003.

J. Folkman, Tumor angiogenesis: therapeutic implications, N Engl J Med, vol.285, pp.1182-1186, 1971.

P. Carmeliet and R. K. Jain, Angiogenesis in cancer and other diseases, Nature, vol.407, pp.249-257, 2000.

R. K. Jain, Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy, Science, vol.307, pp.58-62, 2005.

H. E. Turner, A. L. Harris, S. Melmed, and J. Wass, Angiogenesis in endocrine tumors, Endocr Rev, vol.24, pp.600-632, 2003.

P. Carmeliet, Angiogenesis in health and disease, Nat Med, vol.9, pp.653-660, 2003.

D. Fukumura, R. Xavier, and T. Sugiura, Tumor induction of VEGF promoter activity in stromal cells, Cell, vol.94, pp.715-725, 1998.

M. C. Brahimi-horn, J. Chiche, and J. Pouysségur, Hypoxia and cancer, J Mol Med Berl Ger, vol.85, pp.1301-1307, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00319797

S. Salceda and J. Caro, Hypoxia-inducible factor 1alpha (HIF-1alpha) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes, J Biol Chem, vol.272, pp.22642-22647, 1997.

P. Vaupel, The role of hypoxia-induced factors in tumor progression, The Oncologist, vol.9, issue.5, pp.10-17, 2004.

M. Yan, M. Rayoo, E. A. Takano, H. Thorne, K. Investigators et al., BRCA1 tumours correlate with a HIF-1alpha phenotype and have a poor prognosis through modulation of hydroxylase enzyme profile expression, Br J Cancer, vol.101, pp.1168-1174, 2009.

P. A. Futreal, Q. Liu, and D. Shattuck-eidens, BRCA1 mutations in primary breast and ovarian carcinomas, Science, vol.266, pp.120-122, 1994.

R. S. Bindra, S. L. Gibson, and A. Meng, Hypoxia-induced down-regulation of BRCA1 expression by E2Fs, Cancer Res, vol.65, pp.11597-11604, 2005.

H. J. Kang, H. J. Kim, and J. Rih, BRCA1 plays a role in the hypoxic response by regulating HIF-1alpha stability and by modulating vascular endothelial growth factor expression, J Biol Chem, vol.281, pp.13047-13056, 2006.

P. Van-der-groep, P. J. Van-diest, and Y. Smolders, HIF-1? overexpression in ductal carcinoma in situ of the breast in BRCA1 and BRCA2 mutation carriers, PloS One, vol.8, p.56055, 2013.

J. T. Erler, K. L. Bennewith, and M. Nicolau, Lysyl oxidase is essential for hypoxiainduced metastasis, Nature, vol.440, pp.1222-1226, 2006.

R. Mazzieri, F. Pucci, and D. Moi, Targeting the ANG2/TIE2 axis inhibits tumor growth and metastasis by impairing angiogenesis and disabling rebounds of proangiogenic myeloid cells, Cancer Cell, vol.19, pp.512-526, 2011.

F. Qiu, C. Shi, J. Zheng, and Y. Liu, Periostin mediates the increased pro-angiogenic activity of gastric cancer cells under hypoxic conditions, J Biochem Mol Toxicol, vol.27, pp.364-369, 2013.

M. J. Evans and M. H. Kaufman, Establishment in culture of pluripotential cells from mouse embryos, Nature, vol.292, pp.154-156, 1981.

G. R. Martin, Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells, Proc Natl Acad Sci U S A, vol.78, pp.7634-7638, 1981.

A. Doyle, M. P. Mcgarry, N. A. Lee, and J. J. Lee, The construction of transgenic and gene knockout/knockin mouse models of human disease, Transgenic Res, vol.21, pp.327-349, 2012.

D. Hockemeyer and R. Jaenisch, Induced Pluripotent Stem Cells Meet Genome Editing, Cell Stem Cell, vol.18, pp.573-586, 2016.

J. A. Thomson, J. Itskovitz-eldor, and S. S. Shapiro, Embryonic stem cell lines derived from human blastocysts, Science, vol.282, pp.1145-1147, 1998.

K. Takahashi and S. Yamanaka, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors, Cell, vol.126, pp.663-676, 2006.

K. Takahashi, K. Tanabe, and M. Ohnuki, Induction of pluripotent stem cells from adult human fibroblasts by defined factors, Cell, vol.131, pp.861-872, 2007.

J. Yu, M. A. Vodyanik, and K. Smuga-otto, Induced pluripotent stem cell lines derived from human somatic cells, Science, vol.318, pp.1917-1920, 2007.

A. Courtot, A. Magniez, and N. Oudrhiri, Morphological analysis of human induced pluripotent stem cells during induced differentiation and reverse programming, BioResearch Open Access, vol.3, pp.206-216, 2014.

N. Heins, M. Englund, and C. Sjöblom, Derivation, characterization, and differentiation of human embryonic stem cells, Stem Cells Dayt Ohio, vol.22, pp.367-376, 2004.

J. B. Gurdon, T. R. Elsdale, and M. Fischberg, Sexually mature individuals of Xenopus laevis from the transplantation of single somatic nuclei, Nature, vol.182, pp.64-65, 1958.

I. Wilmut, A. E. Schnieke, J. Mcwhir, A. J. Kind, and K. Campbell, Viable offspring derived from fetal and adult mammalian cells, Cloning Stem Cells, vol.9, pp.3-7, 2007.

R. A. Miller and F. H. Ruddle, Pluripotent teratocarcinoma-thymus somatic cell hybrids, Cell, vol.9, pp.45-55, 1976.

R. Lister, M. Pelizzola, and Y. S. Kida, Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells, Nature, vol.471, pp.68-73, 2011.

K. Okita, T. Ichisaka, and S. Yamanaka, Generation of germline-competent induced pluripotent stem cells, Nature, vol.448, pp.313-317, 2007.

F. González, S. Boué, I. Belmonte, and J. C. , Methods for making induced pluripotent stem cells: reprogramming à la carte, Nat Rev Genet, vol.12, pp.231-242, 2011.

N. Fusaki, H. Ban, A. Nishiyama, K. Saeki, and M. Hasegawa, Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome, Proc Jpn Acad Ser B Phys Biol Sci, vol.85, pp.348-362, 2009.

J. Yu, K. Hu, and K. Smuga-otto, Human induced pluripotent stem cells free of vector and transgene sequences, Science, vol.324, pp.797-801, 2009.

L. Warren, P. D. Manos, and T. Ahfeldt, Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA, Cell Stem Cell, vol.7, pp.618-630, 2010.

D. Kim, C. Kim, and J. Moon, Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins, Cell Stem Cell, vol.4, pp.472-476, 2009.

W. Zhou and C. R. Freed, Adenoviral gene delivery can reprogram human fibroblasts to induced pluripotent stem cells, Stem Cells Dayt Ohio, vol.27, pp.2667-2674, 2009.

E. Bayart and O. Cohen-haguenauer, Technological overview of iPS induction from human adult somatic cells, Curr Gene Ther, vol.13, pp.73-92, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02345998

D. Cacchiarelli, C. Trapnell, and M. J. Ziller, Integrative Analyses of Human Reprogramming Reveal Dynamic Nature of Induced Pluripotency, Cell, vol.162, pp.412-424, 2015.

C. Sandt, O. Féraud, and N. Oudrhiri, Identification of spectral modifications occurring during reprogramming of somatic cells, PloS One, vol.7, p.30743, 2012.

Y. Xu, M. Zhang, and W. Li, Transcriptional Control of Somatic Cell Reprogramming. Trends Cell Biol, vol.26, pp.272-288, 2016.

M. Ulvestad, P. Nordell, and A. Asplund, Drug metabolizing enzyme and transporter protein profiles of hepatocytes derived from human embryonic and induced pluripotent stem cells, Biochem Pharmacol, vol.86, pp.691-702, 2013.

M. Bellin, M. C. Marchetto, F. H. Gage, and C. L. Mummery, Induced pluripotent stem cells: the new patient?, Nat Rev Mol Cell Biol, vol.13, pp.713-726, 2012.

H. Kamao, M. Mandai, and S. Okamoto, Characterization of human induced pluripotent stem cell-derived retinal pigment epithelium cell sheets aiming for clinical application, Stem Cell Rep, vol.2, pp.205-218, 2014.

M. Mandai, A. Watanabe, and Y. Kurimoto, Autologous Induced Stem-Cell-Derived Retinal Cells for Macular Degeneration, N Engl J Med, vol.376, pp.1038-1046, 2017.

A. J. Friedenstein, K. V. Petrakova, A. I. Kurolesova, and G. P. Frolova, Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues, Transplantation, vol.6, pp.230-247, 1968.

A. J. Friedenstein, R. K. Chailakhjan, and K. S. Lalykina, The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells, Cell Tissue Kinet, vol.3, pp.393-403, 1970.

M. Owen, Marrow stromal stem cells, J Cell Sci Suppl, vol.10, pp.63-76, 1988.

A. I. Caplan, Mesenchymal stem cells, J Orthop Res Off Publ Orthop Res Soc, vol.9, pp.641-650, 1991.

J. E. Dennis, A. Merriam, A. Awadallah, J. U. Yoo, B. Johnstone et al., A quadripotential mesenchymal progenitor cell isolated from the marrow of an adult mouse, J Bone Miner Res Off J Am Soc Bone Miner Res, vol.14, pp.700-709, 1999.

P. Bianco, P. G. Robey, and P. J. Simmons, Mesenchymal stem cells: revisiting history, concepts, and assays, Cell Stem Cell, vol.2, pp.313-319, 2008.

M. F. Pittenger, A. M. Mackay, and S. C. Beck, Multilineage potential of adult human mesenchymal stem cells, Science, vol.284, pp.143-147, 0193.

M. Crisan, S. Yap, and L. Casteilla, A perivascular origin for mesenchymal stem cells in multiple human organs, Cell Stem Cell, vol.3, pp.301-313, 2008.

A. I. Caplan, All MSCs are pericytes?, Cell Stem Cell, vol.3, pp.229-230, 2008.

P. J. Simmons, S. Gronthos, A. Zannettino, S. Ohta, and S. Graves, Isolation, characterization and functional activity of human marrow stromal progenitors in hemopoiesis, Prog Clin Biol Res, vol.389, pp.271-280, 1994.

M. Bensidhoum, A. Chapel, and S. Francois, Homing of in vitro expanded Stro-1-or Stro-1+ human mesenchymal stem cells into the NOD/SCID mouse and their role in supporting human CD34 cell engraftment, Blood, vol.103, pp.3313-3319, 2004.

A. Nasef, Y. Z. Zhang, and C. Mazurier, Selected Stro-1-enriched bone marrow stromal cells display a major suppressive effect on lymphocyte proliferation, Int J Lab Hematol, vol.31, pp.9-19, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00484856

N. Quirici, D. Soligo, P. Bossolasco, F. Servida, C. Lumini et al., Isolation of bone marrow mesenchymal stem cells by anti-nerve growth factor receptor antibodies, Exp Hematol, vol.30, pp.783-791, 2002.

S. Kern, H. Eichler, J. Stoeve, H. Klüter, and K. Bieback, Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue, Stem Cells Dayt Ohio, vol.24, pp.1294-1301, 2006.

E. A. Jones, S. E. Kinsey, and A. English, Isolation and characterization of bone marrow multipotential mesenchymal progenitor cells, Arthritis Rheum, vol.46, pp.3349-3360, 2002.

B. Delorme, J. Ringe, and C. Pontikoglou, Specific lineage-priming of bone marrow mesenchymal stem cells provides the molecular framework for their plasticity, Stem Cells Dayt Ohio, vol.27, pp.1142-1151, 2009.

M. Dominici, L. Blanc, K. Mueller, and I. , Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement, Cytotherapy, vol.8, pp.315-317, 2006.

A. J. Nixon, A. E. Watts, and L. V. Schnabel, Cell-and gene-based approaches to tendon regeneration, J Shoulder Elbow Surg, vol.21, pp.278-294, 2012.

L. Song and R. S. Tuan, Transdifferentiation potential of human mesenchymal stem cells derived from bone marrow, FASEB J Off Publ Fed Am Soc Exp Biol, vol.18, pp.980-982, 2004.

C. D. Luzzani and S. G. Miriuka, Pluripotent Stem Cells as a Robust Source of Mesenchymal Stem Cells, Stem Cell Rev, vol.13, pp.68-78, 2017.

M. Giuliani, N. Oudrhiri, and Z. M. Noman, Human mesenchymal stem cells derived from induced pluripotent stem cells down-regulate NK-cell cytolytic machinery, Blood, vol.118, pp.3254-3262, 2011.

S. Aggarwal and M. F. Pittenger, Human mesenchymal stem cells modulate allogeneic immune cell responses, Blood, vol.105, pp.1815-1822, 2005.

R. Meisel, A. Zibert, M. Laryea, U. Göbel, W. Däubener et al., Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation, Blood, vol.103, pp.4619-4621, 2004.

Y. Shi, J. Su, A. I. Roberts, P. Shou, A. B. Rabson et al., How mesenchymal stem cells interact with tissue immune responses, Trends Immunol, vol.33, pp.136-143, 2012.

M. Giuliani, A. Bennaceur-griscelli, and A. Nanbakhsh, TLR ligands stimulation protects MSC from NK killing, Stem Cells Dayt Ohio, vol.32, pp.290-300, 2014.

A. J. Nauta and W. E. Fibbe, Immunomodulatory properties of mesenchymal stromal cells, Blood, vol.110, pp.3499-3506, 2007.

L. Blanc, K. Tammik, C. Rosendahl, K. Zetterberg, E. Ringdén et al., HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells, Exp Hematol, vol.31, pp.890-896, 2003.

V. Planat-benard, J. Silvestre, and B. Cousin, Plasticity of human adipose lineage cells toward endothelial cells: physiological and therapeutic perspectives, Circulation, vol.109, pp.656-663, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00409575

S. Hung, R. R. Pochampally, S. Chen, S. Hsu, and D. J. Prockop, Angiogenic effects of human multipotent stromal cell conditioned medium activate the PI3K-Akt pathway in hypoxic endothelial cells to inhibit apoptosis, increase survival, and stimulate angiogenesis, Stem Cells Dayt Ohio, vol.25, pp.2363-2370, 2007.

Y. Wu, L. Chen, P. G. Scott, and E. E. Tredget, Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis, Stem Cells Dayt Ohio, vol.25, pp.2648-2659, 2007.

R. A. Boomsma and D. L. Geenen, Mesenchymal stem cells secrete multiple cytokines that promote angiogenesis and have contrasting effects on chemotaxis and apoptosis, PloS One, vol.7, p.35685, 2012.

T. Kinnaird, E. Stabile, and M. S. Burnett, Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms, Circ Res, vol.94, pp.678-685, 2004.

A. I. Caplan and D. Correa, The MSC: an injury drugstore, Cell Stem Cell, vol.9, pp.11-15, 2011.

C. Alfarano, C. Roubeix, and R. Chaaya, Intraparenchymal injection of bone marrow mesenchymal stem cells reduces kidney fibrosis after ischemia-reperfusion in cyclosporine-immunosuppressed rats, Cell Transplant, vol.21, pp.2009-2019, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00852839

C. Mias, O. Lairez, and E. Trouche, Mesenchymal stem cells promote matrix metalloproteinase secretion by cardiac fibroblasts and reduce cardiac ventricular fibrosis after myocardial infarction, Stem Cells Dayt Ohio, vol.27, pp.2734-2743, 0195.
URL : https://hal.archives-ouvertes.fr/inserm-00410344

Z. Liu, Y. Zhuge, and O. C. Velazquez, Trafficking and differentiation of mesenchymal stem cells, J Cell Biochem, vol.106, pp.984-991, 2009.

G. Brooke, M. Cook, and C. Blair, Therapeutic applications of mesenchymal stromal cells, Semin Cell Dev Biol, vol.18, pp.846-858, 2007.

T. Yi and S. U. Song, Immunomodulatory properties of mesenchymal stem cells and their therapeutic applications, Arch Pharm Res, vol.35, pp.213-221, 2012.

J. M. Gimble, B. A. Bunnell, L. Casteilla, J. S. Jung, and K. Yoshimura, Phases I-III Clinical Trials Using Adult Stem Cells, Stem Cells Int, p.604713, 2010.

V. G. Tusher, R. Tibshirani, and G. Chu, Significance analysis of microarrays applied to the ionizing radiation response, Proc Natl Acad Sci U S A, vol.98, pp.5116-5121, 2001.

S. Lê, J. Josse, and F. Husson, FactoMineR: An R Package for Multivariate Analysis, J Stat Softw, vol.25, pp.1-18, 2008.

A. C. Zambon, S. Gaj, and I. Ho, GO-Elite: a flexible solution for pathway and ontology over-representation, Bioinforma Oxf Engl, vol.28, pp.2209-2210, 2012.

D. Palma, M. Biziato, D. Petrova, and T. V. , Microenvironmental regulation of tumour angiogenesis, Nat Rev Cancer, vol.17, pp.457-474, 2017.

K. Hida, Y. Hida, and D. N. Amin, Tumor-associated endothelial cells with cytogenetic abnormalities, Cancer Res, vol.64, pp.8249-8255, 2004.

B. Streubel, A. Chott, and D. Huber, Lymphoma-specific genetic aberrations in microvascular endothelial cells in B-cell lymphomas, N Engl J Med, vol.351, pp.250-259, 2004.

E. Cuyàs, B. Corominas-faja, and M. Martín, BRCA1 haploinsufficiency cellautonomously activates RANKL expression and generates denosumab-responsive breast cancer-initiating cells, Oncotarget, vol.8, pp.35019-35032, 2017.

E. Cuyàs, B. Martin-castillo, J. Bosch-barrera, and J. A. Menendez, Metformin inhibits RANKL and sensitizes cancer stem cells to denosumab, Cell Cycle Georget Tex, vol.16, pp.1022-1028, 2017.

E. Nolan, F. Vaillant, and D. Branstetter, RANK ligand as a potential target for breast cancer prevention in BRCA1-mutation carriers, Nat Med, vol.22, pp.933-939, 2016.

J. A. Menendez, N. Folguera-blasco, E. Cuyàs, S. Fernández-arroyo, J. Joven et al., Accelerated geroncogenesis in hereditary breast-ovarian cancer syndrome, Oncotarget, vol.7, pp.11959-11971, 2016.

D. Lee, J. Su, and H. S. Kim, Modeling familial cancer with induced pluripotent stem cells, Cell, vol.161, pp.240-254, 2015.

J. Kim, J. P. Hoffman, and R. K. Alpaugh, An iPSC line from human pancreatic ductal adenocarcinoma undergoes early to invasive stages of pancreatic cancer progression, Cell Rep, vol.3, pp.2088-2099, 0196.

J. Hadoux, O. Féraud, and F. Griscelli, Generation of an induced pluripotent stem cell line from a patient with hereditary multiple endocrine neoplasia 2A (MEN2A) syndrome with RET mutation, Stem Cell Res, vol.17, pp.154-157, 2016.

G. Telliam, O. Féraud, and F. Griscelli, Generation of an induced pluripotent stem cell line from a patient with chronic myeloid leukemia (CML) resistant to targeted therapies, Stem Cell Res, vol.17, pp.235-237, 2016.

A. Banito and J. Gil, Induced pluripotent stem cells and senescence: learning the biology to improve the technology, EMBO Rep, vol.11, pp.353-359, 2010.

A. A. Soyombo, Y. Wu, and L. Kolski, Analysis of induced pluripotent stem cells from a BRCA1 mutant family, Stem Cell Rep, vol.1, pp.336-349, 2013.

A. Amann, M. Zwierzina, and S. Koeck, Development of a 3D angiogenesis model to study tumour -endothelial cell interactions and the effects of anti-angiogenic drugs, Sci Rep, vol.7, p.2963, 2017.

Y. Wang, K. Takeishi, and Z. Li, Microenvironment of a tumor-organoid system enhances hepatocellular carcinoma malignancy-related hallmarks, Organogenesis, vol.2017, pp.1-12

, Autres sources : -Institut National du Cancer, consulté de mai à septembre, 2017.

, -Fondation ARC pour la Recherche sur le cancer, consulté de mai à septembre, 2017.

, Haute Autorité de Santé, consulté de mai à septembre, 2017.

-. France,

-. Cancer,

, -Recommandations et référentiels : femmes porteuses d'une mutation de BRCA1 ou BRCA2, 2017.

, Guide affection longue durée, Cancer du sein, HAS et INCa, Janvier 2010. -Guide patient, Les traitements des cancers du sein, Cancer Info, La Ligue et INCa, Octobre, 2013.