F. Torres, E. Kerhervé, and A. Cathelin, 5G : Tendances et Perspectives pour la Conception d'Amplificateurs de Puissance, JNRDM, 2016.

. Cisco, The Zettabyte Era-Trends and Analysis, Cisco, 2016.

. Cisco, Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2015.

I. M. , 2083-0, "IMT Vision-Framework and overall objectives of the future development of IMT for 2020 and beyond, 2015.

E. Commission, STRATEGIC ROADMAP TOWARDS 5G FOR EUROPE, Radio Spectrum Policy Group, 2016.

. Rscom16-40rev3, Mandate to CEPT to develop harmonised technical conditions for spectrum use in support of the introduction of next-generation (5G) terrestrial wireless systems in the Union, EUROPEAN COMMISSION-Electronic Communications Networks & Services, 2016.

. Rspg16-032, STRATEGIC ROADMAP TOWARDS 5G FOR EUROPE, EUROPEAN COMMISSION-Electronic Communications Networks and Services, 2016.

A. Siligaris, O. Richard, B. Martineau, C. Mounet, F. Chaix et al.,

. Yamamoto, A 65-nm CMOS Fully Integrated Transceiver Module for 60-GHz Wireless HD Applications, IEEE JOURNAL OF SOLID-STATE CIRCUITS, vol.46, issue.12, p.3005, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01666102

R. Behzad, A study of injection locking and pulling in oscillators, IEEE Journal of Solid-State Circuits, vol.39, issue.9, pp.1415-1424, 2004.

M. ;. Tabesh, . Chen, ;. Jiashu, and C. Marcu,

L. ;. Kong, . Kang, . Shinwon;-alon, ;. Elad, and A. Niknejad, A 65nm CMOS 4-element Sub-34mW/element 60GHz phased-array transceiver, IEEE International Solid-State Circuits Conference -(ISSCC), 2011.

J. Mira, Conception d'oscillateurs contrôlés en tension dans la gamme 2 GHz -10 GHz, intégrés sur silicium et analyse des mécanismes à l'origine du bruit de phase, 2004.

M. Houdebine, Contribution pour l'amélioration de la robustesse et du bruit de phase des synthétiseurs de fréquences, INP Grenole, 2006.

D. B. Leeson, A simple model of feedback oscillator noise spectrum, IEEE, vol.54, pp.329-330, 1966.

M. Houdebine, Contribution pour l'amélioration de la robustesse et du bruit de phase des synthétiseurs de fréquences, 2006.

B. Razavi, A Study of Phase Noise in CMOS Oscillators, IEEE Journal of Solid-State Circuits, vol.31, issue.3, 1996.

C. Cao and K. K. , Millimeter-wave voltage-controlled oscillators in 0.13-um CMOS, IEEE J. Solid-State Circuits, vol.41, issue.6, pp.1297-1304, 2016.

H. Hsieh, Y. Chen, and L. Lu, A millimeter-wave CMOS LC-tank VCO with an admittance-transforming technique, IEEE Trans. Microw. Theory Tech, vol.55, issue.9, pp.1854-1861, 2007.

J. Yin and C. Luong, A 57,5-90,1 GHz Magnetically tuned Multimode CMOS VCO, IEEE J. Solid-State Circuits, vol.48, issue.8, pp.1851-1861, 2013.

J. L. Gonzalez, F. Badets, B. Martineau, and D. Belot, A 56-GHz LC-Tank VCO with 17% tuning range in 65-nm bulk CMOS for wireless HDMI, IEEE Trans. Microw. Theory Tech, vol.58, pp.1359-1366, 2010.

G. Liu, B. Roc, A. Abe, K. Keya, and Y. Xu, Configurable MCPW based inductor for mmwave circuits and systems, IEEE ISCAS, 2010.

G. Liu, B. Roc, and Y. Xu, MM-Wave configurable VCO using MCPW-based tunable inductor in 65-nm CMOS, IEEE Trans. Circuits and Systems-II, vol.58, issue.12, pp.842-846, 2012.

T. Larocca, J. Liu, F. Wang, D. Murphy, and F. Chang, CMOS digital controlled oscillator with embedded DiCAD resonator for 58-64 GHz linear frequency tuning and low phase noise, IEEE MTT-S International Microwave Symposium Digest, 2009.

W. Wu, J. R. Long, R. B. Staszewski, and J. J. Pekarik, High-resolution 60-GHz DCOs with reconfigurable distributed metal capacitors in passive resonators, IEEE Radio Frequency Integrated Circuit Symp, 2012.

W. Wu, J. R. Long, and R. B. Staszewski, High-resolution millimeter wave digitally controlled oscillators with reconfigurable passive resonators, IEEE J. Solid-State Circuits, vol.48, issue.11, pp.2785-2794, 2013.

Y. Cassivi and K. Wu, Low cost microwave oscillator using substrate integrated waveguide, IEEE Microw. and Wireless Compon. Lett., Vols, vol.13, issue.2, pp.48-50, 2003.

N. Deltimple, Y. Deval, D. Belot, and E. Kerherve, Design of Class-E power VCO in 65nm CMOS technology: Application to RF transmitter architecture, IEEE International Symposium on Circuits and Systems, pp.18-21, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00207360

H. Madureira, N. Deltimple, E. Kerherve, M. Dematos, and S. Haddad, Design and measurement of class EF2 power oscillator, Electronics Letters, vol.51, issue.10, pp.744-745, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01152961

A. Mohsen, A. Harb, N. Deltimple, and A. Serhane, 28-nm UTBB FD-SOI vs. 22-nm Tri-Gate FinFET Review: A Designer Guide-Part I, Circuits and Systems, vol.8, pp.93-110, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01717702

A. Mohsen, A. Harb, N. Deltimple, and A. Serhane, 28-nm UTBB FD-SOI vs. 22-nm Tri-Gate FinFET Review: A Designer Guide-Part II, Circuits and Systems, vol.8, pp.111-121, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01717702

S. Nv, An introduction to FD-SOI, 2013.

C. Hu, Modern Semiconductor Devices for Integrated Circuits, Modern Semiconductor Devices for Integrated Circuits, pp.259-290, 2010.

C. C. Hu, Thin-Body FinFET as Scalable Low Voltage Transistor, Proceedings of Technical Program of 2012 VLSI Technology, System and Application, 2012.

R. Sharma, S. Baishya, R. Haldar, and K. Guha, Future Transistor for Hand-Held Devices, International Conference on Innovations in Engineering and Technology, vol.3, issue.3, pp.749-752, 2014.

A. Asenov, FinFETs, IEEE Council on Electronic Design Automation, Presented at SISPAD, 2013.

X. A. , 28nm node bulk vs FDSOI reliability comparison, IEEE International Reliability Physics Symposium (IRPS), 2012.

F. Y. Ma, M. Je, and Y. L. Hung, Singapore Sponsors Lectures on MOS Technology by SSCS DL Dr. Alvin Loke [Chapters], IEEE Solid-State Circuits Magazine, vol.5, issue.2, pp.96-98, 2013.

O. Weber, O. Faynot, and F. Andrieu, High immunity to threshold voltage variability in undoped ultra-thin FDSOI MOSFETs and its physical understanding, 2008 IEEE International Electron Devices Meeting, pp.15-17, 2008.

O. Thomas, J. Noel, C. Fenouillet-beranger, M. Jaud, J. Dura et al., 32 nm and beyond Multi-VT Ultra-Thin Body and BOX FDSOI: From Device to Circuit, Proceedings of 2010 IEEE International Symposium on Circuits and Systems (ISCAS), 2010.

R. Troutman, VLSI limitations from drain-induced barrier lowering, IEEE Journal of Solid-State Circuits, vol.26, issue.4, pp.461-469, 1979.

A. Chaudhry and M. J. Kumar, Controlling short-channel effects in deep-submicron SOI MOSFETs for improved reliability: a review, IEEE Transactions on Device and Materials Reliability, vol.4, issue.1, pp.99-109, 2004.

W. Dghais and J. Rodriguez, UTTB FDSOI Back-Gate Biasing for Low Power and High-Speed Chip Design, Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series, 2014.

C. Hu, FinFET and Other New Transistor Technologies, 2011.

P. Magarshack, P. Flatresse, and G. Cesana, UTBB FD-SOI: A Process/Design Symbiosis for Breakthrough Energy-Efficiency, Design, Automation & Test in Europe Conference & Exhibition, 2013.

J. Noel, O. Thomas, and M. Jaud, Multi-VT UTBB FDSOI Device Architectures for Low-Power CMOS Circuit, IEEE Transactions on Electron Devices, vol.58, issue.8, pp.2473-2482, 2011.

P. Flatresse, UTBB-FDSOI Design & Migration Methodology, 2013.

J. Schaeffer, Extending Moore's Law with FD-SOI Technology, Global Foundaries Technical Webinar Series, 2015.

G. Cesana, The FD-SOI Technology for Very High-Speed and Energy Efficient SoCs, 2014.

T. D. Forums, What is FD-SOI and why is it useful?, 2012.

T. Rudenko, V. Kilchytska, and N. Collaert, Carrier Mobility in Undoped Triple-Gate FinFET Structures and Limitations of Its Description in Terms of Top and Sidewall Channel Mobilities, IEEE Transactions on Electron Devices, vol.55, issue.12, pp.3532-3541, 2008.

M. Bohr and K. Mistry, Intel's Revolutionary, 22 nm Transistor Technology, 2011.

B. Doris, A. Khakifirooz, K. Cheng, and T. Hook, Fully Depleted Devices FDSOI and FinFET, Micro-and Nanoelectronics, pp.71-93, 2015.

N. Agrawal, Y. Kimura, R. Arghavani, and S. Datta, Impact of Transistor Architecture (Bulk Planar, Trigate on Bulk, Ultrathin-Body Planar SOI) and Material (Silicon or III-V Semiconductor) on Variation for Logic and SRAM Applications, IEEE Transactions on Electron Devices, vol.60, issue.10, pp.3298-3304, 2013.

T. Dillinger, Tradeoffs in bulk planar FET, FD-SOI, and FinFET Design, 2015.

K. W. Lee, T. Y. An, S. Y. Joo, K. W. Kwon, and S. Y. Kim, Modeling of Parasitic Fringing Capacitance in Multifin Tri-Gate FinFETs, IEEE Transactions on Electron Devices, vol.60, issue.5, pp.1786-1789, 2013.

A. J. Strojwas, Is the Bulk vs. SOI Battle over?, International Symposium on VLSI Technology, Systems and Application (VLSI-TSA), 2013.

S. K. Mohapatra, K. P. Pradhan, D. Singh, and P. K. Sahu, The Role of Geometry Parameters and Fin Aspect Ratio of Sub-20 nm SOI-FinFET: An Analysis towards Analog and RF Circuit Design, IEEE Transactions on Nanotechnology, vol.14, issue.3, pp.546-554, 2015.

N. Planes, 28 nm FDSOI Technology Platform for High-Speed Low-Voltage Digital Applications, Symposium on VLSI Technology (VLSIT), 2012.

C. Auth, A 22 nm High Performance and Low-Power CMOS Technology Featuring Fully-Depleted Tri-Gate Transistors, Self-Aligned Contacts and High Density MIM Capacitors, Symposium on VLSI Technology (VLSIT), 2012.

C. Jan, A 22 nm SoC Platform Technology Featuring 3-D Tri-Gate and Highk/Metal Gate, Optimized for Ultra Low Power, High Performance and High Density SoC Applications, IEEE International Electron Devices Meeting (IEDM), 2012.

T. Skotnicki, The Success Story of Fdsoi from Equation to Fabrication, Presented at Workshop FDSOI, LETI DAYS, 2015.

E. R. Hsieh and H. M. Tsai, New Observations on the Corner Effect and STI-Induced Effect in Trigate CMOS Devices, International Conference on Solid State Devices and Materials, 2013.

D. James, Intel Ivy Bridge unveiled -The first commercial tri-gate, high-k, metal-gate CPU, Proceedings of the IEEE 2012 Custom Integrated Circuits Conference, 2012.

D. H. Triyoso and R. Carter, Factors Impacting Threshold Voltage in Advanced CMOS Integration: Gate Last (FINFET) vs. Gate First (FDSOI), ECS Transactions, vol.69, issue.5, pp.103-110, 2015.

M. Bhole, A. Kurude, and S. Pawar, FinFET-Benefits, Drawbacks and Challenges, IJESRT: International Journal of Engineering Sciences & Research Technology, vol.2, issue.11, pp.3219-3222, 2013.

X. Cauchy, . Soitec, and F. Andrieu, Question and Answers on Fully Depleted SOI Technology, 2010.

M. Brambilla, K. Low, B. Murmann, and J. Schaeffer, EDPS (2015) Choosing FinFET, FD-SOI, or Bulk Planar FETs, 2015.

A. Khakifirooz, Fully depleted extremely thin SOI for mainstream 20nm low-power technology and beyond, IEEE International Solid-State Circuits Conference -(ISSCC), 2010.

A. Cathelin, FD-SOI Technology-Analog/RF/MS Focus, STMicroelectronics

K. Ouellette, 28 nm FDSOI Growing Applications and Ecosystem, Tokyo SOI Meeting, Digital Products Group STMicroelectronics, 2015.

C. Hu, SOI and Nano-Scale MOSFETs, Device Research Conference, 2001.

M. M. Hussain, Gate-First Integration of Tunable Work Function Metal Gates of Different Thickness into High-k/Metal Gates CMOS FinFETs for Multi-VTH Engineering, IEEE Transactions on Electron Devices, vol.57, issue.3, pp.626-631, 2010.

R. Harris, Critical Components of FinFET Integration: Examining the Density Trade-Off and Process Integration for FinFET Implementation, ECS Transactions, vol.11, issue.6, pp.331-338, 2007.

H. M. Fahad, C. Hu, and M. M. Hussain, Simulation Study of a 3-D Device Integrating FinFET and UTBFET, IEEE Transactions on Electron Devices, vol.62, issue.1, pp.83-87, 2015.

C. Hu and J. Chen, The 20 nm Moore's Law Challenge-FinFET versus SOI Technology, Nvidia, 2012.

W. M. John, C. Rogers, and . Plett, Radio Frequency Integrated Circuit Design_Second Edition, 2010.

N. Demirel, E. Kerhervé, R. Plana, and D. Pache, 79GHz BiCMOS single-ended and differential power amplifiers, 40th European Microwave Conference (EuMC), 2010.
URL : https://hal.archives-ouvertes.fr/hal-00579104

Y. Luque, E. Kerhervé, N. Deltimple, L. Leyssenne, and D. Belot, CMOS stacked folded differential structure power amplifier for high power RF application, International Journal of RF and Microwave Computer-Aided Engineering, vol.20, issue.6, pp.611-618, 2010.

J. Xia, A. Chung, and S. Boumaiza, A wideband millimeter-wave differential stacked-FET power amplifier with 17.3 dBm output power and 25% PAE in 45nm SOI CMOS, IEEE MTT-S International Microwave Symposium (IMS), 2017.

B. Moret, V. Knopik, and E. Kerherve, A 28GHz self-contained power amplifier for 5G applications in 28nm FD-SOI CMOS, IEEE 8th Latin American Symposium on Circuits & Systems (LASCAS), 2017.
URL : https://hal.archives-ouvertes.fr/hal-01618222

E. Morifuji, H. S. Momose, T. Ohguro, T. Yoshitomi, H. Kimijima et al., Future perspective and scaling down roadmap for RF CMOS, 1999 Symposium on VLSI Technology. Digest of Technical Papers, pp.14-16, 1999.

L. Aurelien, Design of 60 GHz High Linear Power Amplifiers in Nanoscale CMOS Technologies, 2014.

B. Martineau, A. Cathelin, F. Danneville, A. Kaiser, G. Dambrine et al., 80 GHz Low Noise Amplifiers in 65nm CMOS SOI, Proc. ESSCIRC, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00284027

S. Cripps, RF Power Amplifiers for Wireless Communications, 2006.

J. H. Kim, S. J. Lee, B. H. Park, S. H. Jang, J. H. Jung et al., Analysis of High-Efficiency Power Amplifier Using Second Harmonic Manipulation: Inverse Class-F/J Amplifiers, IEEE Transactions on Microwave Theory and Techniques, vol.59, issue.8, pp.2024-2036, 2011.

K. Mimis, K. Morris, and J. Mcgeehan, A 2GHz GaN Class-J power amplifier for base station applications, Power Amplifiers for Wireless and Radio Applications (PAWR), 2011 IEEE Topical Conference on Power Amplifiers for Wireless and Radio Applications, pp.16-19, 2011.

A. Mohsen, M. J. Ayoub, M. Alloush, A. Harb, N. Deltimple et al., Common source power amplifier design for 5G application in 28-nm UTBB FD-SOI technology, International Journal of Electronics and Communications, vol.96, pp.273-278, 2018.

J. M. Rollet, Stability and power gain invariants of linear two-ports, IRE Transactions Circuit Theory, Vols. CT-9, pp.29-32, 1962.

M. L. Edwards and J. H. Sinsky, A new criterion for linear 2-port stability using a single geometrically derived parameter, IEEE Trans. Microw. Theory Tech, vol.40, issue.12, pp.2303-2311, 1992.

Z. Deng,

A. M. Niknejad, A layout-based optimal neutralization technique for mmwave differential amplifiers, IEEE Radio Frequency Integrated Circuits Symposium, 2010.

D. Chowdhury,

P. Reynaert,

A. M. Niknejad, Design Considerations for 60 GHz Transformer-Coupled CMOS Power Amplifiers, IEEE Journal of Solid-State Circuits, vol.44, issue.10, pp.2733-2744, 2009.

A. Almuhaisen, P. Wright, J. Lees, P. J. Tasker, S. C. Cripps et al., Novel wide band high-efficiency active harmonic injection power amplifier concept, IEEE MTT-S International Microwave Symposium, 2010.

M. Seo, H. Lee, J. Gu, H. Kim, J. Ham et al., High-Efficiency Power Amplifier Using an Active Second-Harmonic Injection Technique Under Optimized Third-Harmonic Termination, IEEE Transactions on Circuits and Systems II: Express Briefs, vol.61, issue.8, pp.549-553, 2014.

B. Park, J. Jeong, Y. Kim, K. Cho, B. Moon et al., Highly linear CMOS power amplifier for mm-wave applications, IEEE MTT-S International Microwave Symposium (IMS), 2016.

S. Shakib, H. C. Park, J. Dunworth, V. Aparin, and K. Entesari, A 28GHz efficient linear power amplifier for 5G phased arrays in 28nm bulk CMOS, IEEE International Solid-State Circuits Conference (ISSCC), 2016.

F. Torres, M. D. Matos, A. Cathelin, and E. Kerhervé, A 31 GHz 2-Stage Reconfigurable Balanced Power Amplifier with 32.6dB Power Gain, 25.5% PAEmaxand 17.9dBm Psatin 28nm FD-SOI CMOS, IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 2018.

S. Callender, S. Pellerano, and C. Hull, A 73GHz PA for 5G Phased Arrays in 14nm FinFET CMOS, Radio Frequency Integrated Circuits Symposium (RFIC), 2017.

B. Razavi and . Microelectronics, , 1998.

J. S. Goo, H. T. Ahn, D. J. Ladwig, Z. Yu, T. Lee et al., A Noise optimization technique for integrated Low noise amplifiers, IEEE Journal of Solid-State Circuits, vol.37, issue.8, pp.994-1002, 2002.

T. H. Lee, The design of narrowband CMOS Low-Noise Amplifiers, Advances in Analog Circuits Design, pp.28-30, 1998.

T. Friis, Noise figures of radio receivers, Proceedings of IRE, vol.32, issue.7, pp.419-422, 1944.

T. K. Nguyen, N. M. Oh, H. Choi, G. J. Ihm, M. S. Yang et al., CMOS low-noise amplifier design optimization techniques, IEEE Transactions on Microwave Theory and Techniques, vol.52, issue.5, pp.1433-1442, 2004.

A. Medra, V. Giannini, D. Guermandi, and P. Wambacq, A 79-GHz variable gain low-noise amplifier and power amplifier in 28-nm CMOS operating up to 125 °C, European Solid State Circuits Conference (ESSCIRC), 2014.

H. Yeh, C. Chiong, S. Aloui, and H. Wang, Analysis and Design of Millimeter-Wave Low-Voltage CMOS Cascode LNA With Magnetic Coupled Technique, IEEE Transactions, vol.60, issue.12, pp.4066-4079, 2012.

K. Hadipour, A. Ghilioni, A. Mazzanti, M. Bassi, and F. Svelto, A 40 GHz to 67 GHz Bandwidth 23 dB Gain 5.8 dB Maximum NF mm-Wave LNA in 28nm CMOS, IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 2015.

H. Gao, K. Ying, M. K. Matters-kammerer, P. Harpe, Q. Ma et al., A 48-61 GHz LNA in 40-nm CMOS with 3.6 dB minimum NF employing a metal slotting method, IEEE Radio Frequency Integrated Circuits Symposium, 2016.

M. Vigilante and P. Reynaert, 68.1-to-96.4GHz Variable-Gain Low-Noise Amplifier in 28nm CMOS, IEEE International Solid-State Circuits Conference ISSCC, 2016.

S. Shakib, H. Park, J. Dunworth, V. Aparin, and K. Entesari, A Highly Efficient and Linear Power Amplifier for 28-GHz 5G Phased Array Radios in 28-nm CMOS, IEEE Journal of Solid-State Circuits, vol.51, issue.12, pp.3020-3036, 2016.

B. Park, S. Jin, and D. Jeong, Highly Linear mm-Wave CMOS Power Amplifier, IEEE Transactions on Microwave Theory and Technique, vol.64, issue.12, pp.4535-4544, 2016.

A. Chinig, Review on technologies used to design RF diplexers, MedCrave-International Journal of Biosensors & Bioelectronics, vol.4, issue.1, pp.23-25, 2018.

B. Moret, V. Knopik, and E. Kerherve, A 28GHz Self-Contained Power Amplifier for 5G applications in 28nm FD-SOI CMOS, 8th Latin American Symposium on Circuits & Systems (LASCAS), 2017.
URL : https://hal.archives-ouvertes.fr/hal-01618222

F. Torres, M. D. Matos, A. Cathelin, and E. Kerhervé, A 31 GHz 2-Stage Reconfigurable Balanced Power Amplifier with 32.6dB Power Gain, 25.5% PAEmaxand 17.9dBm Psatin 28nm FD-SOI CMOS, IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 2018.

G. Zhan and W. Shi, LOBOT: Low-Cost, Self-Contained Localization of Small-Sized Ground Robotic Vehicles, IEEE Transaction Parallel Distribution System, vol.24, issue.4, pp.744-753, 2013.

J. Gorisse, A. Cathelin, A. Kaiser, and E. Kerherve, A 60GHz 65nm CMOS RMS power detector for antenna impedance mismatch detection, Proceedings of ESSCIRC, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00585510

C. Cao and K. K. , Millimeter-wave voltage-controlled oscillators in 0.13-um CMOS, IEEE J. Solid-State Circuits, vol.41, issue.6, pp.1297-1304, 2016.

J. Yin and C. Luong, A 57,5-90,1 GHz Magnetically tuned Multimode CMOS VCO, IEEE J. Solid-State Circuits, vol.48, issue.8, pp.1851-1861, 2013.

G. Liu, B. Roc, A. Abe, K. Keya, and Y. Xu, Configurable MCPW based inductor for mmwave circuits and systems, IEEE ISCAS, 2010.

G. Liu, B. Roc, and Y. Xu, MM-Wave configurable VCO using MCPW-based tunable inductor in 65-nm CMOS, IEEE Trans. Circuits and Systems-II, vol.58, issue.12, pp.842-846, 2012.

M. Vigilante and P. Reynaert, Analysis and Design of an E-Band Transformer-Coupled Low-Noise Quadrature VCO in 28-nm CMOS, IEEE Transactions on Microwave Theory and Techniques, vol.64, issue.4, pp.1122-1132, 2016.

P. Agarwal, P. P. Pande, and D. Heo, 25.3 GHz, 4.1 mW VCO with 34.8% tuning range using a switched substrate-shield inductor, IEEE MTT-S International Microwave Symposium, 2015.

M. Hekmat, F. Aryanfar, J. Wei, V. Gadde, and R. Navid, A 25 GHz Fast-Lock Digital LC PLL With Multiphase Output Using a Magnetically-Coupled Loop of Oscillators, IEEE Journal of Solid-State Circuits, vol.50, issue.2, pp.490-502, 2015.

Y. Shu, J. Huizhen, X. Qian, and . Luo, A 20.7-31.8GHz Dual-Mode Voltage Waveform-Shaping Oscillator with 195.8dBc/Hz FoMTin 28nm CMOS, IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 2018.

Y. Kawano, A. Mineyama, T. Suzuki, M. Sato, T. Hirose et al., A fully-integrated K-band CMOS power amplifier with Psat of 23.8 dBm and PAE of 25.1 %, IEEE Radio Frequency Integrated Circuits Symposium, 2011.

H. Hsieh, Y. Chen, and L. Lu, A millimeter-wave CMOS LC-tank VCO with an admittance-transforming technique, IEEE Trans. Microw. Theory Tech, vol.55, issue.9, pp.1854-1861, 2007.

J. L. Gonzalez, F. Badets, B. Martineau, and D. Belot, A 56-GHz LC-Tank VCO with 17% tuning range in 65-nm bulk CMOS for wireless HDMI, IEEE Trans. Microw. Theory Tech, vol.58, pp.1359-1366, 2010.

T. Larocca, J. Liu, F. Wang, D. Murphy, and F. Chang, CMOS digital controlled oscillator with embedded DiCAD resonator for 58-64 GHz linear frequency tuning and low phase noise, IEEE MTT-S International Microwave Symposium Digest, 2009.

W. Wu, J. R. Long, R. B. Staszewski, and J. J. Pekarik, High-resolution 60-GHz DCOs with reconfigurable distributed metal capacitors in passive resonators, IEEE Radio Frequency Integrated Circuit Symp, 2012.

W. Wu, J. R. Long, and R. B. Staszewski, High-resolution millimeter wave digitally controlled oscillators with reconfigurable passive resonators, IEEE J. Solid-State Circuits, vol.48, issue.11, pp.2785-2794, 2013.

A. Mohsen, A. Harb, N. Deltimple, and A. Serhane, 28-nm UTBB FD-SOI vs. 22-nm Tri-Gate FinFET Review: A Designer Guide-Part I. Circuits and Systems, vol.8, pp.93-110, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01717702

A. Mohsen, A. Harb, N. Deltimple, and A. Serhane, 28-nm UTBB FD-SOI vs. 22-nm Tri-Gate FinFET Review: A Designer Guide-Part II, Circuits and Systems, vol.8, pp.111-121, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01717702

A. Mohsen, M. J. Ayoub, M. Alloush, A. Harb, N. Deltimple et al., Common source power amplifier design for 5G application in 28-nm UTBB FD-SOI technology, International Journal of Electronics and Communications, vol.96, pp.273-278, 2018.

M. Abou-chahine, H. Bazzi, A. Mohsen, A. Harb, and A. Kassem, A low-noise voltage-controlled ring oscillator in 28-nm FDSOI technology for UWB applications, International Journal of Electronics and Communications, vol.97, pp.94-101, 2018.

A. Mohsen, A. Harb, N. Deltimple, and A. Serhane, Low Noise Power Amplifier In 28-Nm Utbb Fdsoi Technology With Forward Body Bias, International Journal of Digital Information and Wireless Communications (IJDIWC), vol.8, issue.2, 2018.

A. Mohsen, A. Harb, and N. Deltimple, to be submit) Variable Gain Differential Low Noise Power Amplifier in 28-nm FD-SOI

H. Bazzi, M. Mouhamad-s-abou-chahine, A. Assaf, A. Mohsen, and . Harb, Class AB vs. Class J 5G Power Amplifier in 28-nm UTBB FD-SOI Technology for High Efficiency Operation, IEEE ICM 2017, vol.2017, pp.10-13, 2017.