B. Antolin-fontes, J. L. Ables, A. Görlich, and I. Ibañez-tallon, The habenulo-interpeduncular pathway in nicotine aversion and withdrawal, Neuropharmacology, vol.96, pp.213-222, 2015.

M. E. Avale, P. Faure, S. Pons, P. P. Robledo, T. T. Deltheil et al., Interplay of beta2* nicotinic receptors and dopamine pathways in the control of spontaneous locomotion, Proc Nat Acad Sci, vol.105, pp.15991-15996, 2008.

M. R. Banghart, K. Borges, E. Y. Isacoff, D. Trauner, and R. H. Kramer, Light-activated ion channels for remote control of neuronal firing, Nat Neurosc, vol.7, pp.1381-1386, 2004.

M. R. Banghart, A. Mourot, D. L. Fortin, J. Z. Yao, R. H. Kramer et al., Photochromic blockers of voltage-gated potassium channels, Angew Chem Int Ed Engl, vol.48, pp.9097-9101, 2009.

D. M. Barber, M. Schönberger, J. Burgstaller, J. Levitz, C. D. Weaver et al., Optical control of neuronal activity using a light-operated GIRK channel opener (LOGO), Chem Sci, vol.7, pp.2347-2352, 2016.

E. Bartels, N. H. Wassermann, and B. F. Erlanger, Photochromic activators of the acetylcholine receptor, Proc Nat Acad Sci, vol.68, pp.1820-1823, 1971.

S. Berlin and E. Y. Isacoff, Synapses in the spotlight with synthetic optogenetics, EMBO Rep, vol.18, pp.677-692, 2017.

S. Berlin, S. Szobota, A. Reiner, E. C. Carroll, M. A. Kienzler et al., A family of photoswitchable NMDA receptors. eLife, 5, e12040, 2016.

M. Borowiak, W. Nahaboo, M. Reynders, K. Nekolla, P. Jalinot et al., Photoswitchable inhibitors of microtubule dynamics optically control mitosis and cell death, Cell, vol.162, pp.403-411, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01234187

J. P. Bourgeois, V. Meas-yeadid, A. M. Lesourd, P. Faure, S. Pons et al., Modulation of the mouse prefrontal cortex activation by neuronal nicotinic receptors during novelty exploration but not by exploration of a familiar environment, Cereb Cortex, vol.22, pp.1007-1015, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01463685

K. Brejc, W. J. Van-dijk, R. V. Klaassen, M. Schuurmans, . Van-der et al., Crystal structure of an ACh-binding protein reveals the ligandbinding domain of nicotinic receptors, Nature, vol.411, pp.269-276, 2001.

J. Broichhagen, A. Damijonaitis, J. Levitz, K. R. Sokol, P. Leippe et al., Orthogonal optical control of a G Protein-coupled receptor with a SNAPtethered photochromic ligand, ACS Cent Sci, vol.1, pp.383-393, 2015.

N. Caporale, K. D. Kolstad, T. Lee, I. Tochitsky, D. Dalkara et al., LiGluR restores visual responses in rodent models of inherited blindness, Mol Ther, vol.19, pp.1212-1219, 2009.

E. C. Carroll, S. Berlin, J. Levitz, M. A. Kienzler, Z. Yuan et al., Two-photon brightness of azobenzene photoswitches designed for glutamate receptor optogenetics, Proc Nat Acad Sci, vol.112, pp.776-785, 2015.

P. H. Celie, S. E. Van-rossum-fikkert, W. J. Van-dijk, K. Brejc, A. B. Smit et al., Nicotine and carbamylcholine binding to nicotinic acetylcholine receptors as studied in AChBP Crystal structures, Neuron, vol.41, pp.8-8, 2004.

L. D. Chabala and H. A. Lester, Activation of Acetylcholine receptor channels by covalently bound agonists in cultured rat myoballs, J Physiol, vol.379, pp.83-108, 1986.

L. D. Chabala, A. M. Gurney, and H. A. Lester, Doseresponse of acetylcholine receptor channels opened by a flashactivated agonist in voltage-clamped rat myoballs, J Physiol, vol.371, pp.407-433, 1986.

N. Champtiaux, Z. Han, A. Bessis, F. M. Rossi, M. Zoli et al., Distribution and pharmacology of alpha 6-containing nicotinic acetylcholine receptors analyzed with mutant mice, J Neurosci, vol.22, pp.1208-1217, 2002.

J. Changeux, Allosteric receptors: from electric organ to cognition, Ann Rev Pharmacol Toxicol, vol.50, pp.1-38, 2010.

J. Changeux, Nicotine addiction and nicotinic receptors: lessons from genetically modified mice, Nat Rev Neurosci, vol.11, pp.1-13, 2010.

A. Damijonaitis, J. Broichhagen, T. Urushima, K. Hüll, J. Nagpal et al., AzoCholine enables optical control of alpha 7 nicotinic acetylcholine receptors in neural networks, ACS Chem Neurosci, vol.6, pp.701-707, 2015.

A. Damijonaitis, D. M. Barber, and D. Trauner, The photopharmacology of nicotinic acetylcholine receptors, vol.3, p.1292, 2016.

J. A. Dani and M. De-biasi, Mesolimbic dopamine and habenulo-interpeduncular pathways in nicotine withdrawal, Cold Spring Harb Perspect Med, vol.3, pp.12138-12146, 2013.

W. J. Deal, B. F. Erlanger, and D. D. Nachmansohn, Photoregulation of biological activity by photochromic reagents. 3. Photoregulation of bioelectricity by acetylcholine receptor inhibitors, Proc Nat Acad Sci, vol.64, pp.1230-1234, 1969.

K. Deisseroth, Optogenetics: 10 years of microbial opsins in neuroscience, Nat Neurosci, vol.18, pp.1213-1225, 2015.

M. Dong, A. Babalhavaeji, S. Samanta, A. A. Beharry, and G. A. Woolley, Red-shifting azobenzene photoswitches for in vivo use, Acc Chem Res, vol.48, pp.2662-2670, 2015.

R. M. Drenan and H. A. Lester, Insights into the neurobiology of the nicotinic cholinergic system and nicotine addiction from mice expressing nicotinic receptors harboring gain-offunction mutations, Pharmacol Rev, vol.64, pp.869-879, 2012.

R. M. Drenan, S. R. Grady, P. Whiteaker, T. Mcclure-begley, S. Mckinney et al., In vivo activation of midbrain dopamine neurons via sensitized, high-affinity a6 nicotinic acetylcholine receptors, Neuron, vol.60, pp.123-136, 2008.

R. M. Drenan, S. R. Grady, A. D. Steele, S. Mckinney, N. E. Patzlaff et al., Cholinergic modulation of locomotion and striatal dopamine release is mediated by a6a4* nicotinic acetylcholine receptors, J Neurosci, vol.30, pp.9877-9889, 2010.

G. C. Ellis-davies, Caged compounds: photorelease technology for control of cellular chemistry and physiology, Nat Methods, vol.4, pp.619-628, 2007.

R. Exley, N. Maubourguet, V. David, R. Eddine, A. Evrard et al., Distinct contributions of nicotinic acetylcholine receptor subunit alpha4 and subunit alpha6 to the reinforcing effects of nicotine, Proc Nat Acad Sci, vol.108, pp.7577-7582, 2011.

D. L. Fortin, T. W. Dunn, A. Fedorchak, D. Allen, R. Montpetit et al., Optogenetic photochemical control of designer K + channels in mammalian neurons, J Neurophysiol, vol.106, pp.488-496, 2011.

C. D. Fowler, Q. Lu, P. M. Johnson, M. J. Marks, and P. J. Kenny, Habenular A5 nicotinic receptor subunit signalling controls nicotine intake, Nature, vol.471, pp.597-601, 2011.

S. Frahm, M. A. Limak, L. Ferrarese, J. Santos-torres, B. Antolin-fontes et al., , 2011.

, Aversion to nicotine is regulated by the balanced activity of beta4 and alpha5 nicotinic receptor subunits in the medial habenula, Neuron, vol.70, pp.522-535

J. A. Frank, M. Moroni, R. Moshourab, M. Sumser, G. R. Lewin et al., Photoswitchable fatty acids enable optical control of TRPV1, Nat Commun, vol.6, pp.1-11, 2015.

S. D. Glick, E. M. Sell, S. E. Mccallum, and I. M. Maisonneuve, Brain regions mediating A3b4 nicotinic antagonist effects of 18-MC on nicotine self-administration, Eur J Pharmacol, vol.669, pp.71-75, 2011.

C. Gotti, B. Balestra, M. Moretti, G. E. Rovati, L. Maggi et al., 4-Oxystilbene compounds are selective ligands for neuronal nicotinic alphabungarotoxin receptors, Brit J Pharmacol, vol.124, pp.1197-1206, 1998.

S. Granon, P. Faure, and J. Changeux, Executive and social behaviors under nicotinic receptor regulation, Proc Nat Acad Sci, vol.100, pp.9596-9601, 2003.

K. Guillem, B. Bloem, R. B. Poorthuis, M. Loos, A. B. Smit et al., Nicotinic acetylcholine receptor beta2 subunits in the medial prefrontal cortex control attention, Science, vol.333, pp.888-891, 2011.

A. M. Gurney and H. A. Lester, Light-flash physiology with synthetic photosensitive compounds, Physiol Rev, vol.67, pp.583-617, 1987.

L. Harrington, X. Viñals, A. Herrera-solís, A. Flores, C. Morel et al., Role of b4* nicotinic acetylcholine receptors in the habenulo-interpeduncular pathway in nicotine reinforcement in mice, Neuropsychopharmacology, vol.41, pp.1790-1802, 2016.

K. J. Jackson, S. S. Sanjakdar, P. P. Muldoon, J. M. Mcintosh, and M. I. Damaj, The A3b4* nicotinic acetylcholine receptor subtype mediates nicotine reward and physical nicotine withdrawal signs independently of the A5 subunit in the mouse, Neuropharmacology, vol.70, pp.228-235, 2013.

H. Janovjak, S. Szobota, C. Wyart, D. Trauner, and E. Y. Isacoff, A light-gated, potassium-selective glutamate receptor for the optical inhibition of neuronal firing, Nat Neurosci, vol.13, pp.1027-1032, 2010.

J. Jeong, J. G. Mccall, G. Shin, Y. Zhang, R. Al-hasani et al., Wireless optofluidic systems for programmable in vivo pharmacology and optogenetics, vol.162, pp.662-674, 2015.

J. Kang, D. Kawaguchi, I. Coin, Z. Xiang, D. D. O'leary et al., In vivo expression of a light-activatable potassium channel using unnatural amino acids, Neuron, vol.80, pp.358-370, 2013.

M. A. Kienzler, A. Reiner, E. Trautman, S. Yoo, D. Trauner et al., A red-shifted, fast-relaxing azobenzene photoswitch for visible light control of an ionotropic glutamate receptor, J Am Chem Soc, vol.135, pp.17683-17686, 2013.

C. K. Kim, A. Adhikari, and K. Deisseroth, Integration of optogenetics with complementary methodologies in systems neuroscience, Nat Rev Neurosci, vol.18, pp.222-235, 2017.

R. H. Kramer, A. Mourot, and H. Adesnik, Optogenetic pharmacology for control of native neuronal signaling proteins, Nat Neurosci, vol.16, pp.816-823, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01542261

J. Swendsen and M. L. Moal, Individual vulnerability to addiction

. Sci, , vol.1216, pp.73-85, 2011.

A. M. Belcher, N. D. Volkow, F. G. Moeller, and S. Ferré, Personality traits and vulnerability or resilience to substance use disorders, Trends Cogn. Sci, vol.18, pp.211-217, 2014.

A. Meyer-lindenberg and H. Tost, Neural mechanisms of social risk for psychiatric disorders, Nat. Neurosci, vol.15, pp.663-668, 2012.

N. Torquet, Social interactions impact on the dopaminergic system and drive individuality, Nat. Commun, vol.9, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01950330

S. Kakade and P. Dayan, Dopamine: generalization and bonuses, Neural Netw, vol.15, pp.549-559, 2002.

N. Bunzeck and E. Düzel, Absolute Coding of Stimulus Novelty in the Human Substantia Nigra/VTA, Neuron, vol.51, pp.369-379, 2006.

J. D. Cohen, S. M. Mcclure, and A. J. Yu, Should I stay or should I go? How the human brain manages the trade-off between exploitation and exploration, Philos. Trans. R. Soc. Lond. B Biol. Sci, vol.362, pp.933-942, 2007.

P. Dayan and Y. Niv, Reinforcement learning: The Good, The Bad and The Ugly

. Opin, , vol.18, pp.185-196, 2008.

J. A. Beeler, N. D. Daw, C. R. Frazier, and X. Zhuang, Tonic Dopamine Modulates Exploitation of Reward Learning, Front. Behav. Neurosci, vol.4, 2010.

J. Naudé, Nicotinic receptors in the ventral tegmental area promote uncertaintyseeking, Nat. Neurosci. advance online publication, 2016.

W. Schultz, Multiple Dopamine Functions at Different Time Courses, Annu. Rev. Neurosci, vol.30, pp.259-288, 2007.

Y. Niv, N. D. Daw, and P. Dayan, How fast to work: Response vigor, motivation and tonic dopamine

A. A. Grace and B. S. Bunney, The control of firing pattern in nigral dopamine neurons: burst firing, J. Neurosci, vol.4, pp.2877-2890, 1984.

K. C. Berridge and T. E. Robinson, What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience?, Brain Res. Rev, vol.28, pp.309-369, 1998.

P. Apicella, T. Ljungberg, E. Scarnati, and W. Schultz, Responses to reward in monkey dorsal and ventral striatum, Exp. Brain Res, vol.85, 1991.

W. Schultz, P. Dayan, and P. R. Montague, A Neural Substrate of Prediction and Reward, Science, vol.275, pp.1593-1599, 1997.

P. Waelti, A. Dickinson, and W. Schultz, Dopamine responses comply with basic assumptions of formal learning theory, Nature, vol.412, pp.43-48, 2001.

A. A. Hamid, Mesolimbic dopamine signals the value of work, Nat. Neurosci, vol.19, pp.117-126, 2016.

A. R. Adamantidis, Optogenetic Interrogation of Dopaminergic Modulation of the Multiple Phases of Reward-Seeking Behavior, J. Neurosci, vol.31, pp.10829-10835, 2011.

A. D. Redish, S. Jensen, and A. Johnson, A unified framework for addiction: Vulnerabilities in the decision process, Behav. Brain Sci, vol.31, 2008.

T. E. Robinson and K. C. Berridge, Addiction. Annu. Rev. Psychol, vol.54, pp.25-53, 2003.

P. W. Kalivas and N. D. Volkow, The Neural Basis of Addiction: A Pathology of Motivation and Choice, Am J Psychiatry, vol.11, 2005.

S. J. Mizumori and Y. S. Jo, Homeostatic regulation of memory systems and adaptive decisions, Hippocampus, vol.23, pp.1103-1124, 2013.

P. Redgrave, K. Gurney, and J. Reynolds, What is reinforced by phasic dopamine signals?, Brain Res. Rev, vol.58, pp.322-339, 2008.

B. I. Hyland, J. N. Reynolds, J. Hay, C. G. Perk, and R. Miller, Firing modes of midbrain dopamine cells in the freely moving rat, Neuroscience, vol.114, pp.475-492, 2002.

N. D. Daw and K. Doya, The computational neurobiology of learning and reward

, Curr. Opin. Neurobiol, vol.16, pp.199-204, 2006.

J. A. Beeler, C. R. Frazier, and X. Zhuang, Putting desire on a budget: dopamine and energy expenditure, reconciling reward and resources, Front. Integr. Neurosci, vol.6, 2012.

R. Sutton and A. Barto, Reinforcement Learning: An Introduction, 2017.

Y. Niv, N. D. Daw, D. Joel, and P. Dayan, Tonic dopamine: opportunity costs and the control of response vigor, Psychopharmacology (Berl.), vol.191, pp.507-520, 2007.

F. Rigoli, Dopamine Increases a Value-Independent Gambling Propensity, Neuropsychopharmacology, vol.41, pp.2658-2667, 2016.

M. A. Addicott, J. M. Pearson, J. Wilson, M. L. Platt, and F. J. Mcclernon, Smoking and the bandit: A preliminary study of smoker and nonsmoker differences in exploratory behavior measured with a multiarmed bandit task, Exp. Clin. Psychopharmacol, vol.21, pp.66-73, 2013.

B. Juarez and M. Han, Diversity of Dopaminergic Neural Circuits in Response to Drug Exposure, Neuropsychopharmacology, vol.41, pp.2424-2446, 2016.

P. Faure, S. Tolu, S. Valverde, and J. Naud, Role of nicotinic acetylcholine receptors in regulating dopamine neuron activity, Neuroscience, vol.282, pp.86-100, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01542258

S. Tolu, Nicotine enhances alcohol intake and dopaminergic responses through ?2* and ?4* nicotinic acetylcholine receptors, Sci. Rep, vol.7, p.45116, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01502363

C. Morel, Nicotinic receptors mediate stress-nicotine detrimental interplay via dopamine cells' activity, Mol. Psychiatry, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02182455

V. Krishnan, Molecular Adaptations Underlying Susceptibility and Resistance to Social Defeat in Brain Reward Regions, Cell, vol.131, pp.391-404, 2007.

D. Chaudhury, Rapid regulation of depression-related behaviours by control of midbrain dopamine neurons, Nature, vol.493, pp.532-536, 2013.

S. Kleinlogel, Ultra light-sensitive and fast neuronal activation with the Ca 2+ -permeable channelrhodopsin CatCh, Nat. Neurosci, vol.14, pp.513-518, 2011.

G. M. Heyman, Addiction and Choice: Theory and New Data. Front, Psychiatry, vol.4, 2013.

J. D. Salamone, M. Correa, A. M. Farrar, E. J. Nunes, and M. Pardo, Dopamine, behavioral economics, and effort, Front. Behav. Neurosci, vol.3, 2009.

J. D. Salamone, M. Correa, A. Farrar, and S. M. Mingote, Effort-related functions of nucleus accumbens dopamine and associated forebrain circuits, Psychopharmacology (Berl.), vol.191, pp.461-482, 2007.

R. A. Wise, Addictive Drugs and Brain Stimulation Reward, Annu. Rev. Neurosci, vol.19, pp.319-340, 1996.

M. I. Palmatier, Dissociating the primary reinforcing and reinforcementenhancing effects of nicotine using a rat self-administration paradigm with concurrently available drug and environmental reinforcers, Psychopharmacology (Berl.), vol.184, pp.391-400, 2006.

P. J. Kenny and A. Markou, Nicotine Self-Administration Acutely Activates Brain Reward Systems and Induces a Long-Lasting Increase in Reward Sensitivity, Neuropsychopharmacology, vol.31, pp.1203-1211, 2006.

M. L. Locey and J. Dallery, Isolating Behavioral Mechanisms of Intertemporal Choice: Nicotine Effect on Delay Discounting and Amount Sensitivity, J. Exp. Anal. Behav, vol.91, pp.213-223, 2009.

M. A. Addicott, J. M. Pearson, B. Froeliger, M. L. Platt, and F. Joseph-mcclernon, Smoking automaticity and tolerance moderate brain activation during explore-exploit behavior, Psychiatry Res. Neuroimaging, vol.224, pp.254-261, 2014.

B. Adinoff, Neurobiologic Processes in Drug Reward and Addiction, Harv. Rev. Psychiatry, vol.12, pp.305-320, 2004.

M. Besson, Long-term effects of chronic nicotine exposure on brain nicotinic receptors, Proc. Natl. Acad. Sci, vol.104, pp.8155-8160, 2007.
URL : https://hal.archives-ouvertes.fr/pasteur-00161245

J. Cao, Mesolimbic Dopamine Neurons in the Brain Reward Circuit Mediate Susceptibility to Social Defeat and Antidepressant Action, J. Neurosci, vol.30, pp.16453-16458, 2010.

R. Sinha, Chronic Stress, Drug Use, and Vulnerability to Addiction

. Sci, , vol.1141, pp.105-130, 2008.

V. W. Choi, A. Asokan, R. A. Haberman, and R. J. Samulski, Production of Recombinant Adeno-Associated Viral Vectors, Curr. Protoc. Hum. Genet, vol.53, 2007.

C. Aurnhammer, Universal Real-Time PCR for the Detection and Quantification of Adeno-Associated Virus Serotype 2-Derived Inverted Terminal Repeat Sequences

, Gene Ther. Methods, vol.23, pp.18-28, 2012.

M. E. Avale, P. Faure, S. Pons, P. Robledo, T. Deltheil et al., Interplay of beta2* nicotinic receptors and dopamine pathways in the control of spontaneous locomotion, Proceedings of the National Academy of Sciences, vol.105, pp.15991-15996, 2008.

K. T. Beier, E. E. Steinberg, K. E. Deloach, S. Xie, K. Miyamichi et al., Circuit architecture of VTA dopamine neurons revealed by systematic Input-Output mapping, Cell, vol.162, pp.622-634, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02187382

J. P. Changeux, Nicotine addiction and nicotinic receptors: lessons from genetically modified mice, Nature Reviews Neuroscience, vol.11, pp.389-401, 2010.

D. Dautan, A. S. Souza, I. Huerta-ocampo, M. Valencia, M. Assous et al., Segregated cholinergic transmission modulates dopamine neurons integrated in distinct functional circuits, Nature Neuroscience, vol.19, pp.1025-1033, 2016.

D. Chiara, G. Imperato, and A. , Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats, Proceedings of the National Academy of Sciences, vol.85, pp.5274-5278, 1988.

R. Eddine, S. Valverde, S. Tolu, D. Dautan, A. Hay et al., A concurrent excitation and inhibition of dopaminergic subpopulations in response to nicotine, Scientific Reports, vol.5, p.8184, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01116458

P. Faure, S. Tolu, S. Valverde, and J. Naudé, Role of nicotinic acetylcholine receptors in regulating dopamine neuron activity, Neuroscience, vol.282, pp.86-100, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01542258

S. B. Floresco, A. R. West, B. Ash, H. Moore, and A. A. Grace, Afferent modulation of dopamine neuron firing differentially regulates tonic and phasic dopamine transmission, Nature Neuroscience, vol.6, pp.968-973, 2003.

B. M. Gaub, M. H. Berry, A. E. Holt, A. Reiner, M. A. Kienzler et al., Restoration of visual function by expression of a light-gated mammalian ion channel in retinal ganglion cells or ON-bipolar cells, PNAS, vol.111, pp.5574-5583, 2014.

A. A. Grace and B. S. Bunney, The control of firing pattern in nigral dopamine neurons: burst firing, The Journal of Neuroscience, vol.4, pp.2877-2890, 1984.

A. A. Grace and S. P. Onn, Morphology and electrophysiological properties of immunocytochemically identified rat dopamine neurons recorded in vitro, The Journal of Neuroscience, vol.9, pp.3463-3481, 1989.

S. R. Grady, O. Salminen, D. C. Laverty, P. Whiteaker, J. M. Mcintosh et al., The subtypes of nicotinic acetylcholine receptors on dopaminergic terminals of mouse striatum, Biochemical Pharmacology, vol.74, pp.1235-1246, 2007.

B. Juarez and M. H. Han, Diversity of dopaminergic neural circuits in response to drug exposure, Neuropsychopharmacology, vol.41, pp.2424-2446, 2016.

C. K. Kim, A. Adhikari, and K. Deisseroth, Integration of optogenetics with complementary methodologies in systems neuroscience, Nature Reviews Neuroscience, vol.18, pp.222-235, 2017.

S. L. King, M. J. Marks, S. R. Grady, B. J. Caldarone, A. O. Koren et al., Conditional expression in corticothalamic efferents reveals a developmental role for nicotinic acetylcholine receptors in modulation of passive avoidance behavior, The Journal of Neuroscience, vol.23, pp.3837-3843, 2003.

R. H. Kramer, A. Mourot, and H. Adesnik, Optogenetic pharmacology for control of native neuronal signaling proteins, Nature Neuroscience, vol.16, pp.816-823, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01542261

S. Lammel, A. Hetzel, O. Hä-ckel, I. Jones, B. Liss et al., Unique properties of mesoprefrontal neurons within a dual mesocorticolimbic dopamine system, Neuron, vol.57, pp.760-773, 2008.

S. Lammel, B. K. Lim, C. Ran, K. W. Huang, M. J. Betley et al., Input-specific control of reward and aversion in the ventral tegmental area, Nature, vol.491, pp.212-217, 2012.

D. Lemoine, R. Durand-de-cuttoli, and A. Mourot, Optogenetic control of mammalian ion channels with chemical photoswitches, Methods in Molecular Biology, vol.1408, pp.177-193, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01542254

. Durand-de-cuttoli, , vol.7, p.37487, 2018.

D. Lemoine, C. Habermacher, A. Martz, P. F. Mé-ry, N. Bouquier et al., Optical control of an ion channel gate, PNAS, vol.110, pp.20813-20818, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01498069

J. Levitz, C. Pantoja, B. Gaub, H. Janovjak, A. Reiner et al., Optical control of metabotropic glutamate receptors, Nature Neuroscience, vol.16, pp.507-516, 2013.

J. Levitz, A. T. Popescu, A. Reiner, and E. Y. Isacoff, A toolkit for orthogonal and in vivo optical manipulation of ionotropic glutamate receptors, Frontiers in Molecular Neuroscience, vol.9, 2016.

J. Y. Lin, S. B. Sann, K. Zhou, S. Nabavi, C. D. Proulx et al., Optogenetic inhibition of synaptic release with chromophore-assisted light inactivation (CALI), Neuron, vol.79, pp.241-253, 2013.

W. C. Lin, M. C. Tsai, C. M. Davenport, C. M. Smith, J. Veit et al., A comprehensive optogenetic pharmacology toolkit for in vivo control of GABA(A) Receptors and synaptic inhibition, vol.88, pp.879-891, 2015.

D. J. Lodge and A. A. Grace, The laterodorsal tegmentum is essential for burst firing of ventral tegmental area dopamine neurons, PNAS, vol.103, pp.5167-5172, 2006.

M. Mameli-engvall, A. Evrard, S. Pons, U. Maskos, T. H. Svensson et al., Hierarchical control of dopamine neuron-firing patterns by nicotinic receptors, Neuron, vol.50, pp.911-921, 2006.
URL : https://hal.archives-ouvertes.fr/pasteur-00176372

H. D. Mansvelder, J. R. Keath, and D. S. Mcgehee, Synaptic mechanisms underlie nicotine-induced excitability of brain reward Areas, Neuron, vol.33, pp.905-919, 2002.

M. Marx, R. H. Gü-nter, W. Hucko, G. Radnikow, and D. Feldmeyer, Improved biocytin labeling and neuronal 3D reconstruction, Nature Protocols, vol.7, pp.394-407, 2012.

U. Maskos, B. E. Molles, S. Pons, M. Besson, B. P. Guiard et al., Nicotine reinforcement and cognition restored by targeted expression of nicotinic receptors, Nature, vol.436, pp.103-107, 2005.
URL : https://hal.archives-ouvertes.fr/pasteur-00162546

N. D. Mazarakis, M. Azzouz, J. B. Rohll, F. M. Ellard, F. J. Wilkes et al., Rabies virus glycoprotein pseudotyping of lentiviral vectors enables retrograde axonal transport and access to the nervous system after peripheral delivery, Human Molecular Genetics, vol.10, pp.2109-2121, 2001.

M. Morales and E. B. Margolis, Ventral tegmental area: cellular heterogeneity, connectivity and behaviour, Nature Reviews Neuroscience, vol.18, pp.73-85, 2017.

C. L. Morales-perez, C. M. Noviello, and R. E. Hibbs, X-ray structure of the human a4b2 nicotinic receptor, Nature, vol.538, pp.411-415, 2016.

C. Morel, L. Fattore, S. Pons, Y. A. Hay, F. Marti et al., Nicotine consumption is regulated by a human polymorphism in dopamine neurons, Molecular Psychiatry, vol.19, pp.930-936, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01541366

J. Naudé, S. Tolu, M. Dongelmans, N. Torquet, S. Valverde et al., Nicotinic receptors in the ventral tegmental area promote uncertainty-seeking, Nature Neuroscience, vol.19, pp.471-478, 2016.

C. A. Paladini and J. Roeper, Generating bursts (and pauses) in the dopamine midbrain neurons, Neuroscience, vol.282, pp.109-121, 2014.

M. R. Picciotto, M. J. Higley, and Y. S. Mineur, Acetylcholine as a neuromodulator: cholinergic signaling shapes nervous system function and behavior, Neuron, vol.76, pp.116-129, 2012.

M. R. Picciotto, M. Zoli, C. Lé-na, A. Bessis, Y. Lallemand et al., Abnormal avoidance learning in mice lacking functional high-affinity nicotine receptor in the brain, Nature, vol.374, pp.65-67, 1995.

M. R. Picciotto, M. Zoli, R. Rimondini, C. Lé-na, L. M. Marubio et al., Acetylcholine receptors containing the beta2 subunit are involved in the reinforcing properties of nicotine, Nature, vol.391, pp.173-177, 1998.

M. Pignatelli and A. Bonci, Role of dopamine neurons in reward and aversion: a synaptic plasticity perspective, Neuron, vol.86, pp.1145-1157, 2015.

D. Pinault, A novel single-cell staining procedure performed in vivo under electrophysiological control: morpho-functional features of juxtacellularly labeled thalamic cells and other central neurons with biocytin or neurobiotin, Journal of Neuroscience Methods, vol.65, pp.113-136, 1996.

M. E. Rice and S. J. Cragg, Nicotine amplifies reward-related dopamine signals in striatum, Nature Neuroscience, vol.7, pp.583-584, 2004.

B. R. Rost, F. Schneider-warme, D. Schmitz, and P. Hegemann, Optogenetic tools for subcellular applications in neuroscience, Neuron, vol.96, pp.572-603, 2017.

M. Sarter, V. Parikh, and W. M. Howe, Phasic acetylcholine release and the volume transmission hypothesis: time to move on, Nature Reviews Neuroscience, vol.10, pp.383-390, 2009.

. Durand-de-cuttoli, , vol.7, p.37487, 2018.

S. Szobota, P. Gorostiza, D. Bene, F. Wyart, C. Fortin et al., Remote control of neuronal activity with a light-gated glutamate receptor, Neuron, vol.54, pp.535-545, 2007.

W. Szyma?-ski, J. M. Beierle, H. A. Kistemaker, W. A. Velema, and B. L. Feringa, Reversible photocontrol of biological systems by the incorporation of molecular photoswitches, Chemical Reviews, vol.113, pp.6114-6178, 2013.

K. Takemoto, H. Iwanari, H. Tada, K. Suyama, A. Sano et al., Optical inactivation of synaptic AMPA receptors erases fear memory, Nature Biotechnology, vol.35, pp.38-47, 2017.

A. Taly, P. J. Corringer, D. Guedin, P. Lestage, and J. P. Changeux, Nicotinic receptors: allosteric transitions and therapeutic targets in the nervous system, Nature Reviews Drug Discovery, vol.8, pp.733-750, 2009.

A. R. Tapper, S. L. Mckinney, R. Nashmi, J. Schwarz, P. Deshpande et al., Nicotine activation of alpha4* receptors: sufficient for reward, tolerance, and sensitization, Science, vol.306, pp.1029-1032, 2004.

I. Tochitsky, M. R. Banghart, A. Mourot, J. Z. Yao, B. Gaub et al., Optochemical control of genetically engineered neuronal nicotinic acetylcholine receptors, Nature Chemistry, vol.4, pp.105-111, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01542264

S. Tolu, R. Eddine, F. Marti, V. David, M. Graupner et al., Co-activation of VTA DA and GABA neurons mediates nicotine reinforcement, Molecular Psychiatry, vol.18, pp.382-393, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01541329

H. C. Tsai, F. Zhang, A. Adamantidis, G. D. Stuber, A. Bonci et al., Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning, Science, vol.324, pp.1080-1084, 2009.

N. D. Volkow and M. Morales, The brain on drugs: from reward to addiction, Cell, vol.162, pp.712-725, 2015.

C. L. Walters, S. Brown, J. P. Changeux, B. Martin, and M. I. Damaj, The beta2 but not alpha7 subunit of the nicotinic acetylcholine receptor is required for nicotine-conditioned place preference in mice, Psychopharmacology, vol.184, pp.339-344, 2006.
URL : https://hal.archives-ouvertes.fr/pasteur-00161485

C. Xiao, J. R. Cho, C. Zhou, J. B. Treweek, K. Chan et al., Cholinergic mesopontine signals govern locomotion and reward through dissociable midbrain pathways, Neuron, vol.90, pp.333-347, 2016.

C. Xiao, R. Srinivasan, R. M. Drenan, E. D. Mackey, J. M. Mcintosh et al., Characterizing functional a6b2 nicotinic acetylcholine receptors in vitro: mutant b2 subunits improve membrane expression, and fluorescent proteins reveal responsive cells, Biochemical Pharmacology, vol.82, pp.852-861, 2011.

H. Yang, J. W. De-jong, Y. Tak, J. Peck, H. S. Bateup et al., Nucleus accumbens subnuclei regulate motivated behavior via direct inhibition and disinhibition of VTA dopamine subpopulations, Neuron, vol.97, pp.434-449, 2018.

M. Zoli, F. Pistillo, and C. Gotti, Diversity of native nicotinic receptor subtypes in mammalian brain, Neuropharmacology, vol.96, pp.302-311, 2015.

. Durand-de-cuttoli, , vol.7, p.37487, 2018.

, The PTLs MAACh and MAHoCH were synthesized as previously described [ 5 ]. All compounds are stored in dry DMSO at ?80 °C, at a concentration of at least 2 mM, to ensure a fi nal DMSO content ?1 % during bioconjugation

, Anhydrous DMSO as solvent for stock solutions ( see Note 4 )

, Drierite desiccant (calcium sulfate) with indicator ( see Note 4 )

, Clones for the ?3, ?4, ?2, and ?4 nAChR subtypes in a vector for expression in oocytes (e.g., pNKS2) and in a vector for mammalian cell expression (e.g., pCDNA3.1 or pIRES, see Note 5 )

, Plasmid DNA mini-and maxi-prep kits

, Site-directed mutagenesis kits

, High yield capped RNA transcription kits with the adequate promoter

. Uv--visible and . Spectrophotometer,

, Xenopus laevis oocytes. Freshly prepared oocytes can be ordered directly from companies such as Ecocyte Bioscience ( see Note 6 )

, Incubator (18 °C)

, Neuro-2A cells: derived from neuroblastoma in an albino strain A mouse

, supplemented with 10 % Foetal Bovine Serum (FBS), 1 % nonessential amino-acids, 100 U/ml penicillin, 100 ?g/ml streptomycin, and 2 mM Glutamax ( see Note 8 ), Culture medium: Modifi ed Essential Medium (MEM)

, Twice concentrated HEPES buffered salt solution (HeBS 2×): 280 mM NaCl, 10 mM KCl, 1.5 mM NaH 2 PO 4 ·7H 2 O, 50 mM HEPES, 13 mM glucose. pH adjusted to 7.05-7.12 with NaOH. Filter-sterilize and store at 4 °C

, mM CaCl 2 , fi lter-sterilize and store at 4 °C

, N HCl solution. An acidic transfection medium solution (pH 6.3) helps dissolving DNA-Ca 2+ phosphate precipitates

, Culture medium ( see Note 8 )

, Transfection Medium: MEM plus 14 mM glucose

, Acidic transfection medium: transfection medium, with pH adjusted to 6.3 with HCl. Filter-sterilize and store at 4 °C. Important: readjust to pH 6.3 the day of transfection

, Oocyte ringer solution (ORI): 96 mM NaCl, 2 mM KCl, 1.8 mM CaCl 2 , 1 mM MgCl 2 , and 5 mM HEPES, pH 7.4 with NaOH. We usually prepare ORI from a 10× stock solution

, mM KCl, 100 ml, stored at room temperature

, Patch-clamp external solution: 140 mM NaCl, 2.8 mM KCl, 2 mM CaCl 2 , 2 mM MgCl 2 , 10 mM HEPES, 12 mM glucose. NaOH for pH adjustment (pH 7.3), fi lter-sterilize and store at 4 °C up to a week

, Patch-clamp internal solution: 140 mM KCl, 2 mM MgCl 2 , 5 mM EGTA, 5 mM HEPES. KOH for pH adjustment

, Light source ( see Note 10 )

, Air table

, Upright microscope ( see Note 11 ) with a bright fi eld oil immersion condenser and a long working distance 40× objective

A. Gautier, How to control proteins with light in living systems, Nat Chem Biol, vol.10, pp.533-541, 2014.

T. Fehrentz, M. Schönberger, and D. Trauner, Optochemical genetics, Angew Chem Int Ed Engl, vol.50, pp.12156-12182, 2011.

R. H. Kramer, A. Mourot, and H. Adesnik, Optogenetic pharmacology for control of native neuronal signaling proteins, Nat Neurosci, vol.16, pp.816-823, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01542261

A. Mourot, I. Tochitsky, and R. H. Kramer, Light at the end of the channel: optical manipulation of intrinsic neuronal excitability with chemical photoswitches, Front Mol Neurosci, vol.6, pp.1-15, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01542260

I. Tochitsky, Optochemical control of genetically engineered neuronal nicotinic acetylcholine receptors, Nat Chem, vol.4, pp.105-111, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01542264

M. Volgraf, Allosteric control of an ionotropic glutamate receptor with an optical switch, Nat Chem Biol, vol.2, pp.47-52, 2005.

J. Levitz, Optical control of metabotropic glutamate receptors, Nat Neurosci, vol.16, pp.507-516, 2013.

W. Lin, Engineering a lightregulated GABAA receptor for optical control of neural inhibition, ACS Chem Biol, vol.9, pp.1414-1419, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01542257

M. R. Banghart, K. Borges, E. Y. Isacoff, D. Trauner, and R. H. Kramer, Light-activated ion channels for remote control of neuronal fi ring, Nat Neurosci, vol.7, pp.1381-1386, 2004.

D. L. Fortin, Optogenetic photochemical control of designer K+ channels in mammalian neurons, J Neurophysiol, vol.106, pp.488-496, 2011.

G. Sandoz, J. Levitz, R. H. Kramer, and E. Y. Isacoff, Optical control of endogenous proteins with a photoswitchable conditional subunit reveals a role for TREK1 in GABAB signaling, Neuron, vol.74, pp.1005-1014, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00731896

D. Lemoine, Optical control of an ion channel gate, Proc Natl Acad Sci U S A, vol.110, pp.20813-20818, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01498069

M. Zoli, F. Pistillo, and C. Gotti, Diversity of native nicotinic receptor subtypes in mammalian brain, Neuropharmacology, vol.1, p.10, 2014.

F. Nees, The nicotinic cholinergic system function in the human brain, Neuropharmacology, vol.96, pp.289-301, 2015.

A. Taly, P. Corringer, D. Guedin, P. Lestage, and J. Changeux, Nicotinic receptors: allosteric transitions and therapeutic targets in the nervous system, Nat Rev Drug Discov, vol.8, pp.1-18, 2009.

J. Naudé, M. Dongelmans, and P. Faure, Nicotinic alteration of decision-making, Neuropharmacology, vol.96, pp.244-254, 2015.

A. Mourot, Probing the reorganization of the nicotinic acetylcholine receptor during desensitization by time-resolved covalent labeling using [3H]AC5, a photoactivatable agonist, Mol Pharmacol, vol.69, pp.452-461, 2006.

F. Krieger, Fluorescent agonists for the torpedo nicotinic acetylcholine receptor, ChemBioChem, vol.9, pp.1146-1153, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00289840

P. Celie, Nicotine and carbamylcholine binding to nicotinic acetylcholine receptors as studied in AChBP crystal structures, Neuron, vol.41, pp.907-914, 2004.

J. J. Chambers, H. Gouda, D. M. Young, I. D. Kuntz, and P. M. England, Photochemically knocking out glutamate receptors in vivo, J Am Chem Soc, vol.126, pp.13886-13887, 2004.

Y. Bhargava, J. Rettinger, and A. Mourot, Allosteric nature of P2X receptor activation probed by photoaffi nity labelling, Br J Pharmacol, vol.167, pp.1301-1310, 2012.

R. Srinivasan, Pharmacological chaperoning of nicotinic acetylcholine receptors reduces the endoplasmic reticulum stress response, Mol Pharmacol, vol.81, pp.759-769, 2012.

S. Samanta, Photoswitching azo compounds in vivo with red light, J Am Chem Soc, vol.135, issue.26, pp.9777-9784, 2013.

O. Sadovski, A. A. Beharry, F. Zhang, and G. A. Woolley, Spectral tuning of azobenzene photoswitches for biological applications, 2009.

, Angew Chem Int Ed Engl, vol.48, pp.1484-1486

A. A. Beharry, O. Sadovski, and G. A. Woolley, Azobenzene photoswitching without ultraviolet light, J Am Chem Soc, vol.133, pp.19684-19687, 2011.

A. Mourot, Tuning photochromic ion channel blockers, ACS Chem Neurosci, vol.2, pp.536-543, 2011.

M. Jiang and G. Chen, High Ca2+-phosphate transfection effi ciency in low-density neuronal cultures, Nat Protoc, vol.1, pp.695-700, 2006.

R. Peto, A. D. Lopez, J. Boreham, M. Thun, C. Heath et al., Mortality from smoking worldwide, Br. Med. Bull, vol.52, pp.12-21, 1996.

J. P. Changeux, Nicotine addiction and nicotinic receptors: lessons from genetically modified mice, Nat. Rev. Neurosci, vol.11, pp.389-401, 2010.

C. Gotti, M. Zoli, and F. Clementi, Brain nicotinic acetylcholine receptors: native subtypes and their relevance, Trends Pharmacol. Sci, vol.27, pp.482-491, 2006.

W. R. True, A. C. Heath, J. F. Scherrer, B. Waterman, J. Goldberg et al., Genetic and environmental contributions to smoking, Addiction, vol.92, pp.1277-1287, 1997.

L. J. Bierut, P. A. Madden, N. Breslau, E. O. Johnson, D. Hatsukami et al., Novel genes identified in a high-density genome wide association study for nicotine dependence, Hum. Mol. Genet, vol.16, pp.24-35, 2007.

L. J. Bierut, J. A. Stitzel, J. C. Wang, A. L. Hinrichs, R. A. Grucza et al., Variants in nicotinic receptors and risk for nicotine dependence, Am. J. Psychiatry, vol.165, pp.1163-1171, 2008.

R. Sherva, K. Wilhelmsen, C. S. Pomerleau, S. A. Chasse, J. P. Rice et al., Association of a single nucleotide polymorphism in neuronal acetylcholine receptor subunit alpha 5 (CHRNA5) with smoking status and with 'pleasurable buzz' during early experimentation with smoking, Addiction, vol.103, pp.1544-1552, 2008.

L. S. Chen, R. J. Hung, T. Baker, A. Horton, R. Culverhouse et al., CHRNA5 risk variant predicts delayed smoking cessation and earlier lung cancer diagnosis-a meta-analysis, J. Natl. Cancer Inst, vol.107, p.100, 2015.

S. F. Saccone, A. L. Hinrichs, N. L. Saccone, G. A. Chase, K. Konvicka et al., Cholinergic nicotinic receptor genes implicated in a nicotine dependence association study targeting 348 candidate genes with 3713 SNPs, Hum. Mol. Genet, vol.16, pp.36-49, 2007.

K. P. Jensen, E. E. Devito, A. I. Herman, G. W. Valentine, J. Gelernter et al., A CHRNA5 smoking risk variant decreases the aversive effects of nicotine in humans, Neuropsychopharmacology, vol.40, pp.2813-2821, 2015.

E. Wada, D. Mckinnon, S. Heinemann, J. Patrick, and L. W. Swanson, The distribution of mRNA encoded by a new member of the neuronal nicotinic acetylcholine receptor gene family (alpha 5) in the rat central nervous system, Brain Res, vol.526, pp.45-53, 1990.

Y. W. Hsu, L. Tempest, L. A. Quina, A. D. Wei, H. Zeng et al., Medial habenula output circuit mediated by a5 nicotinic receptorexpressing GABAergic neurons in the interpeduncular nucleus, J. Neurosci, vol.33, pp.18022-18035, 2013.

A. Kuryatov, W. Berrettini, and J. Lindstrom, Acetylcholine receptor (AChR) a5 subunit variant associated with risk for nicotine dependence and lung cancer reduces (a4b2)2a5 AChR function, Mol. Pharmacol, vol.79, pp.119-125, 2011.

M. Sciaccaluga, C. Moriconi, K. Martinello, M. Catalano, I. Bermudez et al., Crucial role of nicotinic a5 subunit variants for Ca2+ fluxes in ventral midbrain neurons, FASEB J, vol.29, pp.3389-3398, 2015.

C. Deflorio, S. Blanchard, M. C. Carisi, D. Bohl, and U. Maskos, Human polymorphisms in nicotinic receptors: a functional analysis in iPSderived dopaminergic neurons, FASEB J, vol.31, pp.828-839, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01548019

C. D. Fowler, Q. Lu, P. M. Johnson, M. J. Marks, and P. J. Kenny, , 2011.

, Habenular a5 nicotinic receptor subunit signalling controls nicotine intake, Nature, vol.471, pp.597-601

C. Morel, L. Fattore, S. Pons, Y. A. Hay, F. Marti et al., Nicotine consumption is regulated by a human polymorphism in dopamine neurons, Mol. Psychiatry, vol.19, pp.930-936, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01541366

C. C. Parker, H. Chen, S. B. Flagel, A. M. Geurts, J. B. Richards et al., Rats are the smart choice: rationale for a renewed focus on rats in behavioral genetics, vol.76, pp.250-258, 2014.

H. Kim and J. S. Kim, A guide to genome engineering with programmable nucleases, Nat. Rev. Genet, vol.15, pp.321-334, 2014.

M. Mani, J. Smith, K. Kandavelou, J. M. Berg, and S. Chandrasegaran, Binding of two zinc finger nuclease monomers to two specific sites is required for effective double-strand DNA cleavage, Biochem. Biophys. Res. Commun, vol.334, pp.1191-1197, 2005.

J. D. Sander and J. K. Joung, CRISPR-Cas systems for editing, regulating and targeting genomes, Nat. Biotechnol, vol.32, pp.347-355, 2014.

T. Mashimo, Gene targeting technologies in rats: zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats, Dev. Growth Differ, vol.56, pp.46-52, 2014.

Y. Shaham, U. Shalev, L. Lu, H. De-wit, and J. Stewart, The reinstatement model of drug relapse: history, methodology and major findings, Psychopharmacology (Berl.), vol.168, pp.3-20, 2003.

F. S. Falvella, T. Alberio, S. Noci, L. Santambrogio, M. Nosotti et al., , 2013.

, Multiple isoforms and differential allelic expression of CHRNA5 in lung tissue and lung adenocarcinoma, Carcinogenesis, vol.34, pp.1281-1285

A. K. Goodwin, T. Hiranita, P. , and M. G. , The reinforcing effects of nicotine in humans and nonhuman primates: a review of intravenous self-administration evidence and future directions for research, Nicotine Tob. Res, vol.17, pp.1297-1310, 2015.

E. C. Donny, A. R. Caggiula, M. M. Mielke, S. Booth, M. A. Gharib et al., Nicotine self-administration in rats on a progressive ratio schedule of reinforcement, Psychopharmacology (Berl.), vol.147, pp.135-142, 1999.

N. E. Paterson and A. Markou, The metabotropic glutamate receptor 5 antagonist MPEP decreased break points for nicotine, cocaine and food in rats, Psychopharmacology (Berl.), vol.179, pp.255-261, 2005.

, Current Biology, vol.28, p.9, 2018.

. Forget, A Human Polymorphism in CHRNA5 Is Linked to Relapse to Nicotine Seeking in Transgenic Rats, Current Biology, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02391001

G. Di-chiara and V. Bassareo, Reward system and addiction: what dopamine does and doesn't do, Curr. Opin. Pharmacol, vol.7, pp.69-76, 2007.

M. Subramaniyan, D. , and J. A. , Dopaminergic and cholinergic learning mechanisms in nicotine addiction, Ann. N Y Acad. Sci, vol.1349, pp.46-63, 2015.

G. E. Hoffman, W. S. Lee, M. S. Smith, R. Abbud, M. M. Roberts et al., c-Fos and Fos-related antigens as markers for neuronal activity: perspectives from neuroendocrine systems, NIDA Res. Monogr, vol.125, pp.117-133, 1993.

F. Zhang, W. Zhou, H. Liu, H. Zhu, S. Tang et al., Increased c-Fos expression in the medial part of the lateral habenula during cue-evoked heroin-seeking in rats, Neurosci. Lett, vol.386, pp.133-137, 2005.

M. Kallupi, G. De-guglielmo, N. Cannella, H. W. Li, G. Caló et al., , 2013.

, Hypothalamic neuropeptide S receptor blockade decreases discriminative cue-induced reinstatement of cocaine seeking in the rat, Psychopharmacology (Berl.), vol.226, pp.347-355

M. Besson, S. Guiducci, S. Granon, J. P. Guilloux, B. Guiard et al., Alterations in alpha5* nicotinic acetylcholine receptors result in midbrain-and hippocampus-dependent behavioural and neural impairments, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01346030

, Psychopharmacology (Berl.), vol.233, pp.3297-3314

S. G. Matta, D. J. Balfour, N. L. Benowitz, R. T. Boyd, J. J. Buccafusco et al., Guidelines on nicotine dose selection for in vivo research, Psychopharmacology (Berl.), vol.190, pp.269-319, 2007.

K. J. Jackson, M. J. Marks, R. E. Vann, X. Chen, T. F. Gamage et al., Role of alpha5 nicotinic acetylcholine receptors in pharmacological and behavioral effects of nicotine in mice, J. Pharmacol. Exp. Ther, vol.334, pp.137-146, 2010.

S. Frahm, M. A. Slimak, L. Ferrarese, J. Santos-torres, B. Antolin-fontes et al., Aversion to nicotine is regulated by the balanced activity of b4 and a5 nicotinic receptor subunits in the medial habenula, Neuron, vol.70, pp.522-535, 2011.

A. Tammim?-aki, P. Herder, P. Li, C. Esch, J. R. Laughlin et al., Impact of human D398N single nucleotide polymorphism on intracellular calcium response mediated by a3b4a5 nicotinic acetylcholine receptors, Neuropharmacology, vol.63, pp.1002-1011, 2012.

D. Wirtshafter, The role of interpeduncular connections with the tegmentum in avoidance learning, Physiol. Behav, vol.26, pp.985-989, 1981.

K. H. Hammer and F. Klingberg, Active avoidance is permanently abolished after lesions of the nucleus interpeduncularis in rat, Biomed. Biochim. Acta, vol.49, pp.489-497, 1990.

E. W. Thornton, M. Murray, T. Connors-eckenrode, and F. Haun, Dissociation of behavioral changes in rats resulting from lesions of the habenula versus fasciculus retroflexus and their possible anatomical substrates, Behav. Neurosci, vol.108, pp.1150-1162, 1994.

R. Salas, R. Sturm, J. Boulter, D. Biasi, and M. , Nicotinic receptors in the habenulo-interpeduncular system are necessary for nicotine withdrawal in mice, J. Neurosci, vol.29, pp.3014-3018, 2009.

B. L. Eggan and S. E. Mccallum, a3b4 nicotinic receptors in the medial habenula and substance P transmission in the interpeduncular nucleus modulate nicotine sensitization, Behav. Brain Res, vol.316, pp.94-103, 2017.

S. D. Glick, R. L. Ramirez, J. M. Livi, and I. M. Maisonneuve, 18-methoxycoronaridine acts in the medial habenula and/or interpeduncular nucleus to decrease morphine self-administration in rats, Eur. J. Pharmacol, vol.537, pp.94-98, 2006.

S. D. Glick, E. M. Sell, and I. M. Maisonneuve, Brain regions mediating alpha3beta4 nicotinic antagonist effects of 18-MC on methamphetamine and sucrose self-administration, Eur. J. Pharmacol, vol.599, pp.91-95, 2008.

S. D. Glick, E. M. Sell, S. E. Mccallum, and I. M. Maisonneuve, Brain regions mediating a3b4 nicotinic antagonist effects of 18-MC on nicotine self-administration, Eur. J. Pharmacol, vol.669, pp.71-75, 2011.

B. Antolin-fontes, J. L. Ables, A. Gö-rlich, and I. Ibañ-ez-tallon, The habenulo-interpeduncular pathway in nicotine aversion and withdrawal, Neuropharmacology, vol.96, pp.213-222, 2015.

W. C. Poller, V. I. Madai, R. Bernard, G. Laube, and R. W. Veh, A glutamatergic projection from the lateral hypothalamus targets VTA-projecting neurons in the lateral habenula of the rat, Brain Res, vol.1507, pp.45-60, 2013.

F. J. Meye, M. Soiza-reilly, T. Smit, M. A. Diana, M. K. Schwarz et al., Shifted pallidal co-release of GABA and glutamate in habenula drives cocaine withdrawal and relapse, Nat. Neurosci, vol.19, pp.1019-1024, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01542371

M. J. Gill, S. M. Ghee, S. M. Harper, and R. E. See, Inactivation of the lateral habenula reduces anxiogenic behavior and cocaine seeking under conditions of heightened stress, Pharmacol. Biochem. Behav, vol.111, pp.24-29, 2013.

A. Friedman, E. Lax, Y. Dikshtein, L. Abraham, Y. Flaumenhaft et al., Electrical stimulation of the lateral habenula produces enduring inhibitory effect on cocaine seeking behavior, Neuropharmacology, vol.59, pp.452-459, 2010.

A. K. Haack, C. Sheth, A. L. Schwager, M. S. Sinclair, S. Tandon et al., Lesions of the lateral habenula increase voluntary ethanol consumption and operant self-administration, block yohimbineinduced reinstatement of ethanol seeking, and attenuate ethanol-induced conditioned taste aversion, PLoS ONE, vol.9, 2014.

N. J. Marchant, R. Rabei, K. Kaganovsky, D. Caprioli, J. M. Bossert et al., A critical role of lateral hypothalamus in context-induced relapse to alcohol seeking after punishment-imposed abstinence, J. Neurosci, vol.34, pp.7447-7457, 2014.

S. Y. Khoo, G. D. Gibson, A. A. Prasad, and G. P. Mcnally, How contexts promote and prevent relapse to drug seeking, Genes Brain Behav, vol.16, pp.185-204, 2017.

C. Sheth, T. M. Furlong, K. A. Keefe, and S. A. Taha, The lateral hypothalamus to lateral habenula projection, but not the ventral pallidum to lateral habenula projection, regulates voluntary ethanol consumption, Behav. Brain Res, vol.328, pp.195-208, 2017.

R. David, A. Ciuraszkiewicz, X. Simeone, A. Orr-urtreger, R. L. Papke et al., Biochemical and functional properties of distinct nicotinic acetylcholine receptors in the superior cervical ganglion of mice with targeted deletions of nAChR subunit genes, Eur. J. Neurosci, vol.31, pp.978-993, 2010.

P. Scholze, A. Ciuraszkiewicz, F. Groessl, A. Orr-urtreger, J. M. Mcintosh et al., a4b2 nicotinic acetylcholine receptors in the early postnatal mouse superior cervical ganglion, Dev. Neurobiol, vol.71, pp.390-399, 2011.

F. Beiranvand, C. Zlabinger, A. Orr-urtreger, R. Ristl, S. Huck et al., Nicotinic acetylcholine receptors control acetylcholine and noradrenaline release in the rodent habenulo-interpeduncular complex, Br. J. Pharmacol, vol.171, pp.5209-5224, 2014.

B. Forget, K. M. Coen, L. Foll, and B. , Inhibition of fatty acid amide hydrolase reduces reinstatement of nicotine seeking but not break point for nicotine self-administration-comparison with CB(1) receptor blockade, Psychopharmacology (Berl.), vol.205, pp.613-624, 2009.

B. Forget, A. Pushparaj, L. Foll, and B. , Granular insular cortex inactivation as a novel therapeutic strategy for nicotine addiction, Biol. Psychiatry, vol.68, pp.265-271, 2010.

B. Forget, C. Wertheim, P. Mascia, A. Pushparaj, S. R. Goldberg et al., Noradrenergic alpha1 receptors as a novel target for the treatment of nicotine addiction, Neuropsychopharmacology, vol.35, pp.1751-1760, 2010.

, USA) were centrifuged at 2300 g for 5 min at 4 C. Resulting Pansorbin-pellets were washed twice with IP-High (50 mM Tris-HCl, 600 mM NaCl, 1 mM EDTA, 0.5% Triton X-100; pH 8.3) and once with IP-Low (50 mM Tris-HCl, 150 mM NaCl, 1 mM EDTA, 0.2% Triton X-100; pH 8.0), and then re-suspended with IP-Low. A volume of 20 mL of the washed Pansorbin was added to the samples which were subsequently incubated on a shaker for 2 hr at 4 C. After the incubation with Pansorbin, the samples were centrifuged at 2300 g for 5 min at 4 C. The supernatant was then discarded, and the pellet which contained the complex Pansorbin-nAChR-[3H] Epibatidine was washed twice with IP-High and once with IP-Low with the samples being centrifuged once more at 2300 g for 1 min at 4 C after each wash. To re-suspend the pellets, 200 mL 1 M NaOH was added and the suspensions were then transferred into 6 mL Mini Vial Sarstedt tubes. A volume of 2 mL scintillation cocktail, À20 C for protein quantification. 130 mL lysate was incubated with 20 mL 10 nM [3H]-epibatidine and 5 mg antibody in 30 mL phosphate-buffered saline

, Recording electrodes were pulled from borosilicate glass capillaries (with outer and inner diameters of 1.50 and 1.17 mm, respectively) with a Narishige electrode puller. The tips were broken under microscope control and filled with 0.5% sodium acetate. Electrodes had tip diameters of 1-2 mm and impedances of 20-50 MU. A reference electrode was placed in the subcutaneous tissue. The recording electrodes were lowered vertically through the hole with a micro drive. Electrical signals were amplified by a high-impedance amplifier and monitored with an oscilloscope and an audio monitor. The unit activity was digitized at 25 kHz and stored in Spike2 program. Its margins ranged from À4.9 to À5.9 mm posterior to bregma (AP), 0.5 to 1 mm mediolateral (ML) and 7 to 8.5 mm ventral (DV), -12 weeks) were anesthetized with chloral hydrate (8%), 400 mg/kg i.p. supplemented as required to maintain optimal anesthesia throughout the experiment, and positioned in a stereotaxic frame

, After 10 min of baseline recording, a first saline solution (NaCl 0.9%) was injected as control for nicotine injection. Nicotine (0.03 mg/kg) was injected 10 min after the saline solution. n = 34 individual cells in WT

, Ex vivo whole-cell patch clamp recordings Slice preparation 6-8 week old male Long Evans rats were deeply anesthetized with an i.p. injection of a mix of ketamine (75 mg/kg, intraperitoneal (IP)) and xylazine (10 mg/kg, IP), 1000.

, Nicotine tartrate (30 mM in aCSF) was locally applied for 200 ms using a puff pipette ($3 mm diameter) positioned 20 to 30 mm away from the soma, and connected to a picospritzer (PV-800 PicoPump, World Precision Instruments, adjusted to $2 psi). Nicotine-evoked currents were recorded in voltage-clamp mode at À60 mV. All the electrophysiological recordings were extracted using Clampfit (Molecular Devices, Leica) after intracardial perfusion of cold (4 C) sucrose-based artificial cerebrospinal fluid (SB-aCSF)light source (Scientifica

, Signals were analyzed offline with Clampfit 10.2 software (Molecular Devices). DMPP (Dimethylphenylpiperazinium, 100 mM) was applied through a local perfusion system in the presence of a cocktail of antagonists: 6-Cyano-7-nitroquinoxaline-2,3-dione (CNQX, e4, Ex vivo whole-cell patch clamp recordings of VTA neurons Whole cell patch-clamp recordings were made from VTA neurons visualized under infrared videomicroscopy with Nomarski optics, vol.28, pp.1-10, 2018.

. Forget, A Human Polymorphism in CHRNA5 Is Linked to Relapse to Nicotine Seeking in Transgenic Rats, Current Biology, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02391001

J. Mackay and M. Eriksen, The tobacco atlas. World Health Organization, 2002.

, American Psychiatry Association. DSM-5 -Manuel diagnostique et statistique des troubles mentaux, 2017.

J. Freund, Emergence of Individuality in Genetically Identical Mice, Science, vol.340, pp.756-759, 2013.

N. Torquet, Social interactions impact on the dopaminergic system and drive individuality, Nat. Commun, vol.9, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01950330

I. Tochitsky, Optochemical control of genetically engineered neuronal nicotinic acetylcholine receptors, Nat. Chem, vol.4, pp.105-111, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01542264

R. H. Kramer, A. Mourot, and H. Adesnik, Optogenetic pharmacology for control of native neuronal signaling proteins, Nat. Neurosci, vol.16, pp.816-823, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01542261

D. Lemoine, R. D. Cuttoli, and A. Mourot, Optogenetic Control of Mammalian Ion Channels with Chemical Photoswitches, Optogenetics, pp.177-193, 1408.
URL : https://hal.archives-ouvertes.fr/hal-01542254

R. Durand-de-cuttoli, S. Mondoloni, and A. Mourot, Dissection optique du rôle des récepteurs nicotiniques neuronaux à l'aide de récepteurs photo-contrôlables, Biol. Aujourdhui, vol.211, pp.173-188, 2017.

O. Liebreich, Ueber die chemische Beschaffenheit der Gehirnsubstanz, Justus Liebigs Ann. Chem, vol.134, pp.29-44, 1865.

A. Baeyer, Ueber die Reduction aromatischer Verbindungen mittelst Zinkstaub, Justus Liebigs Ann. Chem, vol.140, pp.295-296, 1866.

J. Langley and . Newport, On the reaction of cells and of nerve-endind to certain poisons, chiefly as regards the reaction of striated muscle to nicotine and to curarri, J. Physiol, 1905.

H. H. Dale, W. Feldberg, and M. Vogt, Release of acetylcholine at voluntary motor nerve endings, J. Physiol, vol.86, pp.353-380, 1936.

M. R. Bennett, The concept of transmitter receptors: 100 years on, Neuropharmacology, vol.39, pp.523-546, 2000.

M. Sarter, V. Parikh, and W. M. Howe, Phasic acetylcholine release and the volume transmission hypothesis: time to move on, Nat. Rev. Neurosci, vol.10, pp.383-390, 2009.

M. R. Picciotto, M. J. Higley, and Y. S. Mineur, Acetylcholine as a Neuromodulator: Cholinergic Signaling Shapes Nervous System Function and Behavior, Neuron, vol.76, pp.116-129, 2012.

V. Minces, L. Pinto, Y. Dan, and A. A. Chiba, Cholinergic shaping of neural correlations, Proc. Natl. Acad. Sci, vol.114, pp.5725-5730, 2017.

M. Sarter and V. Parikh, Choline transporters, cholinergic transmission and cognition

, Nat. Rev. Neurosci, vol.6, pp.48-56, 2005.

R. Szymusiak, Magnocellular nuclei of the basal forebrain: substrates of sleep and arousal regulation, Sleep, vol.18, pp.478-500, 1995.

M. Xu, Basal forebrain circuit for sleep-wake control, Nat. Neurosci, vol.18, pp.1641-1647, 2015.

A. Taly, P. Corringer, D. Guedin, P. Lestage, and J. Changeux, Nicotinic receptors: allosteric transitions and therapeutic targets in the nervous system, Nat. Rev. Drug Discov, vol.8, pp.733-750, 2009.

B. J. Everitt and T. W. Robbins, Central Cholinergic Systems and Cognition, Annu. Rev. Psychol, vol.48, pp.649-684, 1997.

N. J. Woolf, Cholinergic systems in mammalian brain and spinal cord, Prog. Neurobiol, vol.37, pp.475-524, 1991.

F. M. Ribeiro, The "ins" and "outs" of the high-affinity choline transporter CHT1, J. Neurochem, vol.97, pp.1-12, 2006.

A. Thiele, Muscarinic Signaling in the Brain, Annu. Rev. Neurosci, vol.36, pp.271-294, 2013.

M. Garzón and V. M. Pickel, Somatodendritic targeting of M5 muscarinic receptor in the rat ventral tegmental area: Implications for mesolimbic dopamine transmission, J. Comp. Neurol, vol.521, pp.2927-2946, 2013.

F. Zhou, C. Wilson, and J. A. Dani, Muscarinic and Nicotinic Cholinergic Mechanisms in the Mesostriatal Dopamine Systems, The Neuroscientist, vol.9, pp.23-36, 2003.

M. Noda, Primary structure of ?-subunit precursor of Torpedo californica acetylcholine receptor deduced from cDNA sequence, Nature, vol.299, pp.793-797, 1982.

C. Gotti, M. Zoli, and F. Clementi, Brain nicotinic acetylcholine receptors: native subtypes and their relevance, Trends Pharmacol. Sci, vol.27, pp.482-491, 2006.

J. Changeux, Nicotine addiction and nicotinic receptors: lessons from genetically modified mice, Nat. Rev. Neurosci, vol.11, pp.389-401, 2010.

M. Zoli, F. Pistillo, and C. Gotti, Diversity of native nicotinic receptor subtypes in mammalian brain, Neuropharmacology, vol.96, pp.302-311, 2015.

J. Ramirez-latorre, Functional contributions of ?5 subunit to neuronal acetylcholine receptor channels, Nature, vol.380, pp.347-351, 1996.

J. Monod, J. Wyman, and J. Changeux, On the nature of allosteric transitions: A plausible model, J. Mol. Biol, vol.12, pp.88-118, 1965.

M. Gielen and P. Corringer, The dual-gate model for pentameric ligand-gated ion channels activation and desensitization, J. Physiol, vol.596, pp.1873-1902, 2018.
URL : https://hal.archives-ouvertes.fr/pasteur-01721186

N. Le-novere and J. Changeux, Molecular evolution of the nicotinic acetylcholine receptor: An example of multigene family in excitable cells, J. Mol. Evol, vol.40, pp.155-172, 1995.

E. X. Albuquerque, E. F. Pereira, M. Alkondon, and S. W. Rogers, Mammalian Nicotinic Acetylcholine Receptors: From Structure to Function, Physiol. Rev, vol.89, pp.73-120, 2009.

L. E. Shorey-kendrick, Nicotinic receptors in non-human primates: Analysis of genetic and functional conservation with humans, Neuropharmacology, vol.96, pp.263-273, 2015.

R. Klink, A. Exaerde, K. De, M. Zoli, and J. Changeux, Molecular and Physiological Diversity of Nicotinic Acetylcholine Receptors in the Midbrain Dopaminergic Nuclei, J. Neurosci, vol.21, pp.1452-1463, 2001.

N. Champtiaux, Subunit Composition of Functional Nicotinic Receptors in Dopaminergic Neurons Investigated with Knock-Out Mice, J. Neurosci, vol.23, pp.7820-7829, 2003.

C. P. Fenster, M. F. Rains, B. Noerager, M. W. Quick, and R. A. Lester, Influence of Subunit Composition on Desensitization of Neuronal Acetylcholine Receptors at Low Concentrations of Nicotine, J. Neurosci, vol.17, pp.5747-5759, 1997.

S. Wonnacott, Nicotinic ACh Receptors. Tocris Sci. Rev, 2018.

S. G. Matta, Guidelines on nicotine dose selection for in vivo research

, Psychopharmacology (Berl.), vol.190, pp.269-319, 2007.

M. E. Benwell, D. J. Balfour, and J. M. Anderson, Evidence that Tobacco Smoking Increases the Density of (?)-[3H]Nicotine Binding Sites in Human Brain, J. Neurochem, vol.50, pp.1243-1247, 1988.

R. Nashmi, Assembly of ?4?2 Nicotinic Acetylcholine Receptors Assessed with Functional Fluorescently Labeled Subunits: Effects of Localization, Trafficking, and Nicotine-Induced Upregulation in Clonal Mammalian Cells and in Cultured Midbrain Neurons, J. Neurosci, vol.23, pp.11554-11567, 2003.

R. Nashmi, Chronic Nicotine Cell Specifically Upregulates Functional ?4* Nicotinic Receptors: Basis for Both Tolerance in Midbrain and Enhanced Long-Term Potentiation in Perforant Path, J. Neurosci, vol.27, pp.8202-8218, 2007.

R. D. Schwartz and K. J. Kellar, Nicotinic cholinergic receptor binding sites in the brain: regulation in vivo, Science, vol.220, pp.214-216, 1983.

M. E. Nelson, A. Kuryatov, C. H. Choi, Y. Zhou, and J. Lindstrom, Alternate Stoichiometries of ?4?2 Nicotinic Acetylcholine Receptors, Mol. Pharmacol, vol.63, pp.332-341, 2003.

P. Corringer, J. Sallette, and J. Changeux, Nicotine enhances intracellular nicotinic receptor maturation: A novel mechanism of neural plasticity?, J. Physiol.-Paris, vol.99, pp.162-171, 2006.
URL : https://hal.archives-ouvertes.fr/pasteur-00161479

J. Sallette, Nicotine Upregulates Its Own Receptors through Enhanced Intracellular Maturation, Neuron, vol.46, pp.595-607, 2005.
URL : https://hal.archives-ouvertes.fr/pasteur-00162539

R. Srinivasan, Nicotine up-regulates ?4?2 nicotinic receptors and ER exit sites via stoichiometry-dependent chaperoning, J. Gen. Physiol, vol.137, pp.59-79, 2011.

L. Houezec and J. , Role of nicotine pharmacokinetics in nicotine addiction and nicotine replacement therapy: a review, JAMA J. Am. Med. Assoc, vol.280, pp.1200-1200, 1998.

M. R. Picciotto, Acetylcholine receptors containing the ?2 subunit are involved in the reinforcing properties of nicotine, Nature, vol.391, pp.173-177, 1998.

A. L. Brody, Cigarette Smoking Saturates Brain ?4?2 Nicotinic Acetylcholine Receptors, Arch. Gen. Psychiatry, vol.63, pp.907-914, 2006.

N. L. Benowitz, Nicotine Addiction, N. Engl. J. Med, vol.362, pp.2295-2303, 2010.

J. A. Dani and M. D. Biasi, Mesolimbic Dopamine and Habenulo-Interpeduncular Pathways in Nicotine Withdrawal, Cold Spring Harb. Perspect. Med, vol.3, p.12138, 2013.

K. P. Cosgrove, ?2-Nicotinic Acetylcholine Receptor Availability During Acute and Prolonged Abstinence From Tobacco Smoking, Arch. Gen. Psychiatry, vol.66, pp.666-676, 2009.

M. Jing, A genetically encoded fluorescent acetylcholine indicator for in vitro and in vivo studies, Nat. Biotechnol, 2018.

C. Peng, Gene editing vectors for studying nicotinic acetylcholine receptors in cholinergic transmission, Eur. J. Neurosci, vol.0, 2018.

A. Carlsson, M. Lindqvist, T. Magnusson, and B. Waldeck, On the Presence of 3-Hydroxytyramine in Brain, Science, vol.127, pp.471-471, 1958.

W. Schultz, Getting Formal with Dopamine and Reward, Neuron, vol.36, pp.241-263, 2002.

J. D. Salamone and M. Correa, The Mysterious Motivational Functions of Mesolimbic Dopamine, Neuron, vol.76, pp.470-485, 2012.

E. S. Bromberg-martin, M. Matsumoto, and O. Hikosaka, Dopamine in Motivational Control: Rewarding, Aversive, and Alerting, vol.68, pp.815-834, 2010.

E. J. Nestler and W. A. Carlezon, The Mesolimbic Dopamine Reward Circuit in Depression, Biol. Psychiatry, vol.59, pp.1151-1159, 2006.

K. C. Berridge, From prediction error to incentive salience: mesolimbic computation of reward motivation, Eur. J. Neurosci, vol.35, pp.1124-1143, 2012.

R. Brisch, The Role of Dopamine in Schizophrenia from a Neurobiological and Evolutionary Perspective: Old Fashioned, but Still in Vogue, Front. Psychiatry, vol.5, 2014.

J. Meiser, D. Weindl, and K. Hiller, Complexity of dopamine metabolism, Cell Commun. Signal, vol.11, p.34, 2013.

J. Beaulieu and R. R. Gainetdinov, The Physiology, Signaling, and Pharmacology of Dopamine Receptors, Pharmacol. Rev, vol.63, pp.182-217, 2011.

A. Björklund and S. B. Dunnett, Dopamine neuron systems in the brain: an update, Trends Neurosci, vol.30, pp.194-202, 2007.

F. Pistillo, F. Clementi, M. Zoli, C. Gotti, and . Nicotinic, glutamatergic and dopaminergic synaptic transmission and plasticity in the mesocorticolimbic system: Focus on nicotine effects, Prog. Neurobiol, vol.124, pp.1-27, 2015.

M. Morales and E. B. Margolis, Ventral tegmental area: cellular heterogeneity, connectivity and behaviour, Nat. Rev. Neurosci, vol.18, pp.73-85, 2017.

L. W. Swanson, The Projections of the Ventral Tegmental Area and Adjacent Regions: A Combined Fluorescent Retrograde Tracer and Immunofluorescence Study in the Rat, Brain Res. Bull, vol.9, pp.321-353, 1982.

K. T. Beier, Circuit Architecture of VTA Dopamine Neurons Revealed by Systematic Input-Output Mapping, Cell, vol.162, pp.622-634, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02187382

S. Stagkourakis, H. Kim, D. J. Lyons, and C. Broberger, Dopamine Autoreceptor Regulation of a Hypothalamic Dopaminergic Network, Cell Rep, vol.15, pp.735-747, 2016.

J. Kaufling, La queue GABAergique de l'aire tgmentale ventrale : Un nouveau centre de contrôle des systèmes dopaminergiques, 2010.

A. A. Grace and B. S. Bunney, The control of firing pattern in nigral dopamine neurons: burst firing, J. Neurosci, vol.4, pp.2877-2890, 1984.

E. B. Margolis, H. Lock, G. O. Hjelmstad, and H. L. Fields, The ventral tegmental area revisited: is there an electrophysiological marker for dopaminergic neurons?, J. Physiol, vol.577, pp.907-924, 2006.

M. A. Ungless, P. J. Magill, and J. P. Bolam, Uniform Inhibition of Dopamine Neurons in the Ventral Tegmental Area by Aversive Stimuli, Science, vol.303, pp.2040-2042, 2004.

E. B. Margolis, B. Toy, P. Himmels, M. Morales, and H. L. Fields, Identification of Rat Ventral Tegmental Area GABAergic Neurons, PLoS ONE, vol.7, p.42365, 2012.

S. Sugita, S. W. Johnson, and R. A. North, Synaptic inputs to GABAA and GABAB receptors originate from discrete afferent neurons, Neurosci. Lett, vol.134, pp.207-211, 1992.

R. G. Nair-roberts, Stereological estimates of dopaminergic, GABAergic and glutamatergic neurons in the ventral tegmental area, substantia nigra and retrorubral field in the rat, Neuroscience, vol.152, pp.1024-1031, 2008.

F. Tecuapetla, Glutamatergic Signaling by Mesolimbic Dopamine Neurons in the Nucleus Accumbens, J. Neurosci, vol.30, pp.7105-7110, 2010.

M. Kawano, Particular subpopulations of midbrain and hypothalamic dopamine neurons express vesicular glutamate transporter 2 in the rat brain, J. Comp. Neurol, vol.498, pp.581-592, 2006.

T. S. Hnasko, Vesicular Glutamate Transport Promotes Dopamine Storage and Glutamate Corelease In Vivo, Neuron, vol.65, pp.643-656, 2010.

T. Yamaguchi, H. Wang, X. Li, T. H. Ng, M. Morales et al., J. Neurosci, vol.31, pp.8476-8490, 2011.

M. Morales and D. H. Root, Glutamate neurons within the midbrain dopamine regions, Neuroscience, vol.282, pp.60-68, 2014.

A. Lavin, Mesocortical Dopamine Neurons Operate in Distinct Temporal Domains Using Multimodal Signaling, J. Neurosci, vol.25, pp.5013-5023, 2005.

G. D. Stuber, T. S. Hnasko, J. P. Britt, R. H. Edwards, and A. Bonci, Dopaminergic Terminals in the Nucleus Accumbens But Not the Dorsal Striatum Corelease Glutamate, J. Neurosci, vol.30, pp.8229-8233, 2010.

N. Gorelova, P. J. Mulholland, L. J. Chandler, and J. K. Seamans, The Glutamatergic Component of the Mesocortical Pathway Emanating from Different Subregions of the Ventral Midbrain, Cereb. Cortex, vol.22, pp.327-336, 2012.

C. Birgner, VGLUT2 in dopamine neurons is required for psychostimulantinduced behavioral activation, Proc. Natl. Acad. Sci, vol.107, pp.389-394, 2010.

V. G. Olson and E. J. Nestler, Topographical organization of GABAergic neurons within the ventral tegmental area of the rat, Synapse, vol.61, pp.87-95, 2007.

N. X. Tritsch, J. B. Ding, and B. L. Sabatini, Dopaminergic neurons inhibit striatal output through non-canonical release of GABA, Nature, vol.490, pp.262-266, 2012.

N. X. Tritsch, W. Oh, C. Gu, and B. L. Sabatini, Midbrain dopamine neurons sustain inhibitory transmission using plasma membrane uptake of GABA, not synthesis, vol.3, p.1936, 2014.

N. X. Tritsch, A. J. Granger, and B. L. Sabatini, Mechanisms and functions of GABA co-release, Nat. Rev. Neurosci, vol.17, pp.139-145, 2016.

R. Y. Moore and F. E. Bloom, Central Catecholamine Neuron Systems: Anatomy and Physiology of the Dopamine Systems, Annu. Rev. Neurosci, vol.1, pp.129-169, 1978.

O. T. Phillipson, A Golgi study of the ventral tegmental area of Tsai and interfascicular nucleus in the rat, J. Comp. Neurol, vol.187, pp.99-115, 1979.

O. T. Phillipson, Afferent projections to the ventral tegmental area of Tsai and interfascicular nucleus: A horseradish peroxidase study in the rat, J. Comp. Neurol, vol.187, pp.117-143, 1979.

O. T. Phillipson, The cytoarchitecture of the interfascicular nucleus and ventral tegmental area of tsai in the rat, J. Comp. Neurol, vol.187, pp.85-98, 1979.

M. Watabe-uchida, L. Zhu, S. K. Ogawa, A. Vamanrao, and N. Uchida, Whole-Brain Mapping of Direct Inputs to Midbrain Dopamine Neurons, Neuron, vol.74, pp.858-873, 2012.

S. R. Sesack, C. Aoki, and V. M. Pickel, Ultrastructural localization of D2 receptor-like immunoreactivity in midbrain dopamine neurons and their striatal targets, J. Neurosci, vol.14, pp.88-106, 1994.

D. L. Rosin, M. C. Weston, C. P. Sevigny, R. L. Stornetta, and P. Guyenet, Hypothalamic orexin (hypocretin) neurons express vesicular glutamate transporters VGLUT1 or VGLUT2, J. Comp. Neurol, vol.465, pp.593-603, 2003.

F. Georges and G. Aston-jones, Activation of Ventral Tegmental Area Cells by the Bed Nucleus of the Stria Terminalis: A Novel Excitatory Amino Acid Input to Midbrain Dopamine Neurons, J. Neurosci, vol.22, pp.5173-5187, 2002.

C. Glangetas, Ventral Subiculum Stimulation Promotes Persistent Hyperactivity of Dopamine Neurons and Facilitates Behavioral Effects of Cocaine, Cell Rep, vol.13, pp.2287-2296, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01235368

S. Ikemoto, Dopamine reward circuitry: Two projection systems from the ventral midbrain to the nucleus accumbens-olfactory tubercle complex, Brain Res. Rev, vol.56, pp.27-78, 2007.

J. G. Mchaffie, A direct projection from superior colliculus to substantia nigra pars compacta in the cat, Neuroscience, vol.138, pp.221-234, 2006.
URL : https://hal.archives-ouvertes.fr/inserm-00410991

D. Dautan, Segregated cholinergic transmission modulates dopamine neurons integrated in distinct functional circuits, Nat. Neurosci, vol.19, pp.1025-1033, 2016.

A. A. Grace and S. P. Onn, Morphology and electrophysiological properties of immunocytochemically identified rat dopamine neurons recorded in vitro, J. Neurosci, vol.9, pp.3463-3481, 1989.

D. Ko, C. J. Wilson, C. J. Lobb, and C. A. Paladini, Detection of bursts and pauses in spike trains, J. Neurosci. Methods, vol.211, pp.145-158, 2012.

J. A. Dani and D. Bertrand, Nicotinic Acetylcholine Receptors and Nicotinic Cholinergic Mechanisms of the Central Nervous System, Annu. Rev. Pharmacol. Toxicol, vol.47, pp.699-729, 2007.

S. B. Floresco, A. R. West, B. Ash, H. Moore, and A. A. Grace, Afferent modulation of dopamine neuron firing differentially regulates tonic and phasic dopamine transmission, Nat. Neurosci, vol.6, pp.968-973, 2003.

M. Mameli-engvall, Hierarchical Control of Dopamine Neuron-Firing Patterns by Nicotinic Receptors, Neuron, vol.50, pp.911-921, 2006.
URL : https://hal.archives-ouvertes.fr/pasteur-00176372

W. Schultz, P. Dayan, and P. R. Montague, A Neural Substrate of Prediction and Reward, Science, vol.275, pp.1593-1599, 1997.

W. Schultz, Behavioral dopamine signals, Trends Neurosci, vol.30, pp.203-210, 2007.

C. D. Fiorillo, W. T. Newsome, and W. Schultz, The temporal precision of reward prediction in dopamine neurons, Nat. Neurosci, vol.11, pp.966-973, 2008.

W. Schultz, Multiple functions of dopamine neurons, 1000.

J. Olds and P. Milner, Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain, J. Comp. Physiol. Psychol, vol.47, pp.419-427, 1954.

A. Ettenberg and R. A. Wise, Non-selective enhancement of locus coeruleus and substantia nigra self-stimulation after termination of chronic dopaminergic receptor blockade with pimozide in rats, Psychopharmacol. Commun, vol.2, pp.117-124, 1976.

L. Stein, . Self-stimulation, . Of, . Brain, . The et al., Fed. Proc, vol.23, pp.836-850, 1964.

G. D. Chiara and A. Imperato, Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats, Proc. Natl. Acad. Sci, vol.85, pp.5274-5278, 1988.

J. J. Day, M. F. Roitman, R. M. Wightman, and R. M. Carelli, Associative learning mediates dynamic shifts in dopamine signaling in the nucleus accumbens, Nat. Neurosci, vol.10, pp.1020-1028, 2007.

D. L. Robinson, M. L. Heien, and R. M. Wightman, Frequency of Dopamine Concentration Transients Increases in Dorsal and Ventral Striatum of Male Rats during Introduction of Conspecifics, J. Neurosci, vol.22, pp.10477-10486, 2002.

E. A. Kiyatkin and A. Gratton, Electrochemical monitoring of extracellular dopamine in nucleus accumbens of rats lever-pressing for food, Brain Res, vol.652, pp.225-234, 1994.

W. Schultz, Updating dopamine reward signals, Curr. Opin. Neurobiol, vol.23, pp.229-238, 2013.

J. Mirenowicz and W. Schultz, Preferential activation of midbrain dopamine neurons by appetitive rather than aversive stimuli, Nature, vol.379, pp.449-451, 1996.

M. Matsumoto and O. Hikosaka, Two types of dopamine neuron distinctly convey positive and negative motivational signals, Nature, vol.459, pp.837-841, 2009.

F. Brischoux, S. Chakraborty, D. I. Brierley, and M. A. Ungless, Phasic excitation of dopamine neurons in ventral VTA by noxious stimuli, Proc. Natl. Acad. Sci, vol.106, pp.4894-4899, 2009.

R. Eddine, A concurrent excitation and inhibition of dopaminergic subpopulations in response to nicotine, Sci. Rep, vol.5, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01116458

D. Saal, Y. Dong, A. Bonci, and R. C. Malenka, Drugs of Abuse and Stress Trigger a Common Synaptic Adaptation in Dopamine Neurons, Neuron, vol.37, pp.577-582, 2003.

C. Bellone and C. Lüscher, mGluRs induce a long-term depression in the ventral tegmental area that involves a switch of the subunit composition of AMPA receptors, Eur. J. Neurosci, vol.21, pp.1280-1288, 2005.

C. Bellone and C. Lüscher, Cocaine triggered AMPA receptor redistribution is reversed in vivo by mGluR-dependent long-term depression, Nat. Neurosci, vol.9, pp.636-641, 2006.

M. Mameli, Cocaine-evoked synaptic plasticity: persistence in the VTA triggers adaptations in the NAc, Nat. Neurosci, vol.12, pp.1036-1041, 2009.

C. Lüscher and R. C. Malenka, Drug-Evoked Synaptic Plasticity in Addiction: From Molecular Changes to Circuit Remodeling, Neuron, vol.69, pp.650-663, 2011.

V. Pascoli, Contrasting forms of cocaine-evoked plasticity control components of relapse, Nature, vol.509, pp.459-464, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01942933

C. Xiao, Cholinergic Mesopontine Signals Govern Locomotion and Reward through Dissociable Midbrain Pathways, Neuron, vol.90, pp.333-347, 2016.

J. Mena-segovia, P. Winn, and J. P. Bolam, Cholinergic modulation of midbrain dopaminergic systems, Brain Res. Rev, vol.58, pp.265-271, 2008.

J. Mena-segovia and J. P. Bolam, Rethinking the Pedunculopontine Nucleus: From Cellular Organization to Function, Neuron, vol.94, pp.7-18, 2017.

H. D. Mansvelder, J. R. Keath, and D. S. Mcgehee, Synaptic Mechanisms Underlie Nicotine-Induced Excitability of Brain Reward Areas, Neuron, vol.33, pp.905-919, 2002.

C. Gotti, Structural and functional diversity of native brain neuronal nicotinic receptors, Biochem. Pharmacol, vol.78, pp.703-711, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00509504

M. E. Rice and S. J. Cragg, Nicotine amplifies reward-related dopamine signals in striatum, Nat. Neurosci, vol.7, pp.583-584, 2004.

D. Sulzer, S. J. Cragg, and M. E. Rice, Striatal dopamine neurotransmission: Regulation of release and uptake, Basal Ganglia, vol.6, pp.123-148, 2016.

A. L. Collins, T. J. Aitken, V. Y. Greenfield, S. B. Ostlund, and K. M. Wassum, Nucleus Accumbens Acetylcholine Receptors Modulate Dopamine and Motivation, Neuropsychopharmacology, vol.41, pp.2830-2838, 2016.

P. Calabresi, M. G. Lacey, and R. A. North, Nicotinic excitation of rat ventral tegmental neurones in vitro studied by intracellular recording, Br. J. Pharmacol, vol.98, pp.135-140, 1989.

S. J. Lokwan, P. .. Overton, M. .. Berry, and D. Clark, Stimulation of the pedunculopontine tegmental nucleus in the rat produces burst firing in A9 dopaminergic neurons, Neuroscience, vol.92, pp.245-254, 1999.

D. J. Lodge and A. A. Grace, The laterodorsal tegmentum is essential for burst firing of ventral tegmental area dopamine neurons, Proc. Natl. Acad. Sci, vol.103, pp.5167-5172, 2006.

S. Lammel, Input-specific control of reward and aversion in the ventral tegmental area, Nature, vol.491, p.212, 2012.

J. Hukkanen, P. Jacob, and N. L. Benowitz, Metabolism and Disposition Kinetics of Nicotine, Pharmacol. Rev, vol.57, pp.79-115, 2005.

V. I. Pidoplichko, M. Debiasi, J. T. Williams, and J. A. Dani, Nicotine activates and desensitizes midbrain dopamine neurons, Nature, vol.390, pp.401-404, 1997.

P. Faure, S. Tolu, S. Valverde, and J. Naud, Role of nicotinic acetylcholine receptors in regulating dopamine neuron activity, Neuroscience, vol.282, pp.86-100, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01542258

D. S. Zahm, The ventral striatopallidal parts of the basal ganglia in the rat-II. Compartmentation of ventral pallidal efferents, Neuroscience, vol.30, pp.33-50, 1989.

S. Lammel, B. K. Lim, and R. C. Malenka, Reward and aversion in a heterogeneous midbrain dopamine system, Neuropharmacology, vol.76, pp.351-359, 2014.

H. D. Mansvelder and D. S. Mcgehee, Long-Term Potentiation of Excitatory Inputs to Brain Reward Areas by Nicotine, Neuron, vol.27, pp.349-357, 2000.

B. Schilström, N. Rawal, M. Mameli-engvall, G. G. Nomikos, and T. H. Svensson, Dual effects of nicotine on dopamine neurons mediated by different nicotinic receptor subtypes, Int. J. Neuropsychopharmacol, vol.6, pp.1-11, 2003.

S. Banala, Photoactivatable drugs for nicotinic optopharmacology, Nat. Methods, vol.15, pp.347-350, 2018.

Y. Yan, Nicotinic Cholinergic Receptors in VTA Glutamate Neurons Modulate Excitatory Transmission, Cell Rep, vol.23, pp.2236-2244, 2018.

U. Maskos, Nicotine reinforcement and cognition restored by targeted expression of nicotinic receptors, Nature, vol.436, pp.103-107, 2005.
URL : https://hal.archives-ouvertes.fr/pasteur-00162546

R. Exley, Distinct contributions of nicotinic acetylcholine receptor subunit ?4 and subunit ?6 to the reinforcing effects of nicotine, Proc. Natl. Acad. Sci, vol.108, pp.7577-7582, 2011.

F. Marti and O. A. , Smoke extracts and nicotine, but not tobacco extracts, potentiate firing and burst activity of ventral tegmental area dopaminergic neurons in mice, Neuropsychopharmacol. Off. Publ. Am. Coll. Neuropsychopharmacol, vol.36, pp.2244-57, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00655431

S. Tolu, Co-activation of VTA DA and GABA neurons mediates nicotine reinforcement, Mol. Psychiatry, vol.18, pp.382-393, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01541329

C. Morel, Nicotine consumption is regulated by a human polymorphism in dopamine neurons, Mol. Psychiatry, vol.19, pp.930-936, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01541366

D. R. Petersen, K. J. Norris, and J. A. Thompson, A comparative study of the disposition of nicotine and its metabolites in three inbred strains of mice, Drug Metab. Dispos, vol.12, pp.725-731, 1984.

W. Li, W. M. Doyon, and J. A. Dani, Acute in vivo nicotine administration enhances synchrony among dopamine neurons, Biochem. Pharmacol, vol.82, pp.977-983, 2011.

B. Juarez and M. Han, Diversity of Dopaminergic Neural Circuits in Response to Drug Exposure, Neuropsychopharmacology, vol.41, pp.2424-2446, 2016.

C. L. Walters, S. Brown, J. Changeux, B. Martin, and M. I. Damaj, The ?2 but not ?7 subunit of the nicotinic acetylcholine receptor is required for nicotine-conditioned place preference in mice, Psychopharmacology (Berl.), vol.184, pp.339-344, 2006.
URL : https://hal.archives-ouvertes.fr/pasteur-00161485

J. Naudé, Nicotinic receptors in the ventral tegmental area promote uncertaintyseeking, Nat. Neurosci. advance online publication, 2016.

T. M. Mcgranahan, N. E. Patzlaff, S. R. Grady, S. F. Heinemann, and T. K. Booker,

, Nicotinic Acetylcholine Receptors on Dopaminergic Neurons Mediate Nicotine Reward and Anxiety Relief, J. Neurosci, vol.31, pp.10891-10902, 2011.

F. G. Gonon, Nonlinear relationship between impulse flow and dopamine released by rat midbrain dopaminergic neurons as studied by in vivo electrochemistry, Neuroscience, vol.24, pp.19-28, 1988.

R. Exley and S. J. Cragg, Presynaptic nicotinic receptors: a dynamic and diverse cholinergic filter of striatal dopamine neurotransmission: Presynaptic nAChRs filter dopamine release, Br. J. Pharmacol, vol.153, pp.283-297, 2009.

R. Exley, M. A. Clements, H. Hartung, J. M. Mcintosh, and S. J. Cragg, ?6-Containing Nicotinic Acetylcholine Receptors Dominate the Nicotine Control of Dopamine Neurotransmission in Nucleus Accumbens, Neuropsychopharmacology, vol.33, pp.2158-2166, 2008.

R. M. Drenan and H. A. Lester, Insights into the Neurobiology of the Nicotinic Cholinergic System and Nicotine Addiction from Mice Expressing Nicotinic Receptors Harboring Gain-of-Function Mutations, Pharmacol. Rev, vol.64, pp.869-879, 2012.

C. Labarca, Point mutant mice with hypersensitive ?4 nicotinic receptors show dopaminergic deficits and increased anxiety, Proc. Natl. Acad. Sci, vol.98, pp.2786-2791, 2001.

A. R. Tapper, Nicotine Activation of a4* Receptors: Sufficient for Reward, Tolerance, and Sensitization, Science, vol.306, p.5, 2004.

R. M. Drenan, In Vivo Activation of Midbrain Dopamine Neurons via Sensitized, High-Affinity ?6 * Nicotinic Acetylcholine Receptors, Neuron, vol.60, pp.123-136, 2008.

R. M. Drenan, Cholinergic Modulation of Locomotion and Striatal Dopamine Release Is Mediated by 6 4* Nicotinic Acetylcholine Receptors, J. Neurosci, vol.30, pp.9877-9889, 2010.

L. Harrington, Role of ?4* Nicotinic Acetylcholine Receptors in the Habenulo-Interpeduncular Pathway in Nicotine Reinforcement in Mice, Neuropsychopharmacology, vol.41, pp.1790-1802, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01542255

J. Ren, Cholinergic" Neurons Corelease Glutamate and Acetylcholine and Activate Postsynaptic Neurons via Distinct Transmission Modes, Neuron, vol.69, pp.445-452, 2011.

F. Beiranvand, Nicotinic acetylcholine receptors control acetylcholine and noradrenaline release in the rodent habenulo-interpeduncular complex, Br. J. Pharmacol, vol.171, pp.5209-5224, 2014.

S. Molas, S. R. Degroot, R. Zhao-shea, and A. R. Tapper, Anxiety and Nicotine Dependence: Emerging Role of the Habenulo-Interpeduncular Axis, Trends Pharmacol. Sci, vol.38, pp.169-180, 2017.

R. Salas, Decreased Signs of Nicotine Withdrawal in Mice Null for the 4 Nicotinic Acetylcholine Receptor Subunit, J. Neurosci, vol.24, pp.10035-10039, 2004.

R. Salas, R. Sturm, J. Boulter, and M. De-biasi, Nicotinic Receptors in the Habenulo-Interpeduncular System Are Necessary for Nicotine Withdrawal in Mice, J. Neurosci, vol.29, pp.3014-3018, 2009.

S. Frahm, Aversion to Nicotine Is Regulated by the Balanced Activity of ?4 and ?5 Nicotinic Receptor Subunits in the Medial Habenula, Neuron, vol.70, pp.522-535, 2011.

B. Antolin-fontes, J. L. Ables, and A. Görlich, Ibañez-Tallon, I. The habenulointerpeduncular pathway in nicotine aversion and withdrawal, Neuropharmacology, vol.96, pp.213-222, 2015.

A. Kuryatov, W. Berrettini, and . Lindstrom, J. Acetylcholine Receptor (AChR), p.5

, Subunit Variant Associated with Risk for Nicotine Dependence and Lung Cancer Reduces

, AChR Function. Mol. Pharmacol, vol.79, pp.119-125, 2011.

A. A. George, Function of Human ?3?4?5 Nicotinic Acetylcholine Receptors Is Reduced by the ?5(D398N) Variant, J. Biol. Chem, vol.287, pp.25151-25162, 2012.

C. D. Fowler, Q. Lu, P. M. Johnson, M. J. Marks, and P. J. Kenny, Habenular ?5 nicotinic receptor subunit signalling controls nicotine intake, Nature, vol.471, pp.597-601, 2011.

R. Pauly, J. Marks, and C. Collins, An Autoradiographic Analysis of Cholinergic Receptors in Mouse Brain After Chronic Nicotine Treatment, J. Phamacology Exp. Ther, vol.258, p.10, 1991.

S. Yates, M. Bencherif, E. Fluhler, and P. Lippiello, Up-regulation of nicotinic acetylcholine receptors following chronic exposure of rats to mainstream cigarette smoke or a2b2 to nicotine, Biol. Pharmacol, vol.50, 1995.

M. Shoaib, C. W. Schindler, and S. R. Goldberg, Nicotine self-administration in rats: strain and nicotine pre-exposure effects on acquisition, Psychopharmacology (Berl.), vol.129, pp.35-43, 1997.

B. Buisson and D. Bertrand, Chronic Exposure to Nicotine Upregulates the Human ?4?2 Nicotinic Acetylcholine Receptor Function, J. Neurosci, vol.21, pp.1819-1829, 2001.

Y. F. Vallejo, B. Buisson, D. Bertrand, and W. N. Green, Chronic Nicotine Exposure Upregulates Nicotinic Receptors by a Novel Mechanism, J. Neurosci, vol.25, pp.5563-5572, 2005.

X. Zhang, Chronic treatments with tacrine and (?)-nicotine induce different changes of nicotinic and muscarinic acetylcholine receptors in the brain of aged rat, J. Neural Transm, vol.109, pp.377-392, 2002.

C. L. Gentry, L. H. Wilkins, and R. J. Lukas, Effects of Prolonged Nicotinic Ligand Exposure on Function of Heterologously Expressed, Human ?4?2-and ?4?4-Nicotinic Acetylcholine Receptors, J. Pharmacol. Exp. Ther, vol.304, pp.206-216, 2003.

C. R. Breese, Effect of Smoking History on [3H]Nicotine Binding in Human Postmortem Brain, J. Phamacology Exp. Ther, vol.282, p.7, 1997.

E. J. Molinari, Up-regulation of human a 7 nicotinic receptors by chronic treatment with activator and antagonist ligands, Eur. J. Pharmacol, vol.9, 1998.

S. L. Parker, Up-Regulation of Brain Nicotinic Acetylcholine Receptors in the Rat during Long-Term Self-Administration of Nicotine: Disproportionate Increase of the 6

. Subunit, Mol. Pharmacol, vol.65, pp.611-622, 2004.

A. Lai, Long-Term Nicotine Treatment Decreases Striatal 6* Nicotinic Acetylcholine Receptor Sites and Function in Mice, Mol. Pharmacol, vol.67, pp.1639-1647, 2005.

M. Mugnaini, Selective down-regulation of [125I]Y0-?-conotoxin MII binding in rat mesostriatal dopamine pathway following continuous infusion of nicotine, Neuroscience, vol.137, pp.565-572, 2006.

P. C. Harkness and N. S. Millar, Changes in Conformation and Subcellular Distribution of ?4?2 Nicotinic Acetylcholine Receptors Revealed by Chronic Nicotine Treatment and Expression of Subunit Chimeras, J. Neurosci, vol.22, pp.10172-10181, 2002.

F. Wang, Chronic Nicotine Treatment Up-regulates Human ?3?2 but Not ?3?4

, Acetylcholine Receptors Stably Transfected in Human Embryonic Kidney Cells, J. Biol. Chem, vol.273, pp.28721-28732, 1998.

S. Fujii, Z. Ji, N. Morita, and K. Sumikawa, Acute and chronic nicotine exposure differentially facilitate the induction of LTP, Brain Res, vol.846, pp.137-143, 1999.

S. Caillé, K. Guillem, M. Cador, O. Manzoni, and F. Georges, Voluntary Nicotine Consumption Triggers In Vivo Potentiation of Cortical Excitatory Drives to Midbrain Dopaminergic Neurons, J. Neurosci, vol.29, pp.10410-10415, 2009.

S. Tolu, Nicotine enhances alcohol intake and dopaminergic responses through ?2* and ?4* nicotinic acetylcholine receptors, Sci. Rep, vol.7, p.45116, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01502363

C. Morel, Nicotinic receptors mediate stress-nicotine detrimental interplay via dopamine cells' activity, Mol. Psychiatry, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02182455

V. Krishnan, Molecular Adaptations Underlying Susceptibility and Resistance to Social Defeat in Brain Reward Regions, Cell, vol.131, pp.391-404, 2007.

K. K. Anstrom, K. A. Miczek, and E. Budygin, Increased phasic dopamine signaling in the mesolimbic pathway during social defeat in rats, Neuroscience, vol.161, pp.3-12, 2009.

L. Kestilä, Influence of parental education, childhood adversities, and current living conditions on daily smoking in early adulthood, Eur. J. Public Health, vol.16, pp.617-626, 2006.

R. Sinha, Chronic Stress, Drug Use, and Vulnerability to Addiction, Ann. N. Y. Acad. Sci, vol.1141, pp.105-130, 2008.

J. Barik, Chronic Stress Triggers Social Aversion via Glucocorticoid Receptor in Dopaminoceptive Neurons, Science, vol.339, pp.332-335, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01542259

J. P. Herman, M. M. Ostrander, N. K. Mueller, and H. Figueiredo, Limbic system mechanisms of stress regulation: Hypothalamo-pituitary-adrenocortical axis, Prog. Neuropsychopharmacol. Biol. Psychiatry, vol.29, pp.1201-1213, 2005.

O. Berton, Essential Role of BDNF in the Mesolimbic Dopamine Pathway in Social Defeat Stress, Science, vol.311, issue.6, 2006.

P. J. Larsen, The diurnal expression of genes encoding vasopressin and vasoactive intestinal peptide within the rat suprachiasmatic nucleus is influenced by circulating glucocorticoids, Mol. Brain Res, vol.27, pp.342-346, 1994.

A. Balsalobre, Resetting of Circadian Time in Peripheral Tissues by Glucocorticoid Signaling, Science, vol.289, pp.2344-2347, 2000.

P. Kitchener, F. D. Blasi, E. Borrelli, and P. V. Piazza, Differences between brain structures in nuclear translocation and DNA binding of the glucocorticoid receptor during stress and the circadian cycle, Eur. J. Neurosci, vol.19, pp.1837-1846, 2004.

R. M. Sapolsky, L. M. Romero, and A. U. Munck, How Do Glucocorticoids Influence Stress Responses? Integrating Permissive, Suppressive, Stimulatory, and Preparative Actions, Endocr. Rev, vol.21, p.35, 2000.

J. M. Reul and E. R. Kloet, Two Receptor Systems for Corticosterone in Rat Brain: Microdistribution and Differential Occupation, Endocrinology, vol.117, pp.2505-2511, 1985.

C. Sandi, C. Venero, and C. Guaza, Novelty-related Rapid Locomotor Effects of Corticosterone in Rats, Eur. J. Neurosci, vol.8, pp.794-800, 1996.

H. Karst, Mineralocorticoid receptors are indispensable for nongenomic modulation of hippocampal glutamate transmission by corticosterone, Proc. Natl. Acad. Sci, vol.102, pp.19204-19207, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00091818

E. D. Abercrombie, K. A. Keefe, D. S. Difrischia, and M. J. Zigmond, Differential Effect of Stress on In Vivo Dopamine Release in Striatum, Nucleus Accumbens, and Medial Frontal Cortex, J. Neurochem, vol.52, pp.1655-1658, 1989.

A. Imperato, S. Cabib, and S. Puglisi-allegra, Repeated stressful experiences differently affect the time-dependent responses of the mesolimbic dopamine system to the stressor, Brain Res, vol.601, pp.333-336, 1993.

P. W. Kalivas and P. Duffy, Selective activation of dopamine transmission in the shell of the nucleus accumbens by stress, Brain Res, vol.675, pp.325-328, 1995.

B. M. Prasad, B. A. Sorg, C. Ulibarri, and P. W. Kalivas, Sensitization to Stress and Psychostimulants.: Involvement of Dopamine Transmission versus the HPA Axis, Ann. N. Y. Acad. Sci, vol.771, pp.617-625, 1995.

M. Barrot, The dopaminergic hyper-responsiveness of the shell of the nucleus accumbens is hormone-dependent, Eur. J. Neurosci, vol.12, pp.973-979, 2000.

A. Nagano-saito, Stress-induced dopamine release in human medial prefrontal cortex-18F-Fallypride/PET study in healthy volunteers, Synapse, vol.67, pp.821-830, 2013.

S. Cabib and S. Puglisi-allegra, Opposite responses of mesolimbic dopamine system to controllable and uncontrollable aversive experiences, J. Neurosci, vol.14, pp.3333-3340, 1994.

S. Cabib and S. Puglisi-allegra, The mesoaccumbens dopamine in coping with stress, Neurosci. Biobehav. Rev, vol.36, pp.79-89, 2012.

O. Valenti, K. M. Gill, and A. A. Grace, Different stressors produce excitation or inhibition of mesolimbic dopamine neuron activity: response alteration by stress preexposure, Eur. J. Neurosci, vol.35, pp.1312-1321, 2012.

J. Cao, Mesolimbic Dopamine Neurons in the Brain Reward Circuit Mediate Susceptibility to Social Defeat and Antidepressant Action, J. Neurosci, vol.30, pp.16453-16458, 2010.

S. Rossi, Chronic Psychoemotional Stress Impairs Cannabinoid-Receptor-Mediated Control of GABA Transmission in the Striatum, J. Neurosci, vol.28, pp.7284-7292, 2008.

A. Denmark, The effects of chronic social defeat stress on mouse self-grooming behavior and its patterning, Behav. Brain Res, vol.208, pp.553-559, 2010.

D. Chaudhury, Rapid regulation of depression-related behaviours by control of midbrain dopamine neurons, Nature, vol.493, pp.532-536, 2013.

S. S. Daftary, J. Panksepp, Y. Dong, and D. B. Saal, Stress-induced, glucocorticoiddependent strengthening of glutamatergic synaptic transmission in midbrain dopamine neurons, Neurosci. Lett, vol.452, pp.273-276, 2009.

M. Razzoli, M. Andreoli, F. Michielin, D. Quarta, and D. Sokal, Increased phasic activity of VTA dopamine neurons in mice 3 weeks after repeated social defeat, Behav. Brain Res, vol.218, pp.253-257, 2011.

A. Bergström, M. N. Jayatissa, A. Mørk, and O. Wiborg, Stress sensitivity and resilience in the chronic mild stress rat model of depression; an in situ hybridization study, Brain Res, vol.1196, pp.41-52, 2008.

S. J. Russo, J. W. Murrough, M. Han, D. S. Charney, and E. J. Nestler, Neurobiology of resilience, Nat. Neurosci, vol.15, pp.1475-1484, 2012.

P. V. Piazza, Corticosterone in the range of stress-induced levels possesses reinforcing properties: implications for sensation-seeking behaviors, Proc. Natl. Acad. Sci, vol.90, pp.11738-11742, 1993.

V. Deroche, Stress-induced sensitization and glucocorticoids. I. Sensitization of dopamine-dependent locomotor effects of amphetamine and morphine depends on stressinduced corticosterone secretion, J. Neurosci, vol.15, pp.7181-7188, 1995.

K. A. Miczek, N. H. Mutschler, and K. A. Mizcek, Activational effects of social stress on IV cocaine self-administration in rats, Psychopharmacology (Berl.), vol.128, pp.256-264, 1996.

Y. Shaham, Corticotropin-Releasing Factor, But Not Corticosterone, Is Involved in Stress-Induced Relapse to Heroin-Seeking in Rats, J. Neurosci, vol.17, pp.2605-2614, 1997.

P. V. Piazza and M. Le-moal, The role of stress in drug self-administration, Trends Pharmacol. Sci, vol.19, pp.67-74, 1998.

E. Goeders and N. , The impact of stress on addiction, Eur. Neuropsychopharmacol, vol.13, pp.435-441, 2003.

N. E. Goeders and G. F. Guerin, Effects of surgical and pharmacological adrenalectomy on the initiation and maintenance of intravenous cocaine self-administration in rats, Brain Res, vol.722, pp.145-152, 1996.

V. Deroche, M. Marinelli, M. L. Moal, and P. V. Piazza, Glucocorticoids and Behavioral Effects of Psychostimulants. II: Cocaine Intravenous Self-administration and Reinstatement Depend on Glucocorticoid Levels, J. Pharmacol. Exp. Ther, vol.281, pp.1401-1407, 1997.

V. Deroche-gamonet, The Glucocorticoid Receptor as a Potential Target to Reduce Cocaine Abuse, J. Neurosci, vol.23, pp.4785-4790, 2003.

S. B. Gulliver, J. R. Hughes, L. J. Solomon, and A. N. Dey, An investigation of selfefficacy, partner support and daily stresses as predictors of relapse to smoking in self-quitters, Addiction, vol.90, pp.767-772, 1995.

H. De-wit, L. Vicini, E. Childs, M. A. Sayla, and J. Terner, Does stress reactivity or response to amphetamine predict smoking progression in young adults? A preliminary study, Pharmacol. Biochem. Behav, vol.86, pp.312-319, 2007.

U. Rao, C. L. Hammen, E. D. London, and R. E. Poland, Contribution of Hypothalamic-Pituitary-Adrenal Activity and Environmental Stress to Vulnerability for Smoking in Adolescents, Neuropsychopharmacology, vol.34, pp.2721-2732, 2009.

J. M. Richards, Biological mechanisms underlying the relationship between stress and smoking: State of the science and directions for future work, Biol. Psychol, vol.88, pp.1-12, 2011.

S. A. Mckee, Stress decreases the ability to resist smoking and potentiates smoking intensity and reward, J. Psychopharmacol. (Oxf.), vol.25, pp.490-502, 2011.

E. B. Ansell, P. Gu, K. Tuit, and R. Sinha, Effects of cumulative stress and impulsivity on smoking status, Hum. Psychopharmacol. Clin. Exp, vol.27, pp.200-208, 2012.

M. Lindström, B. Modén, and M. Rosvall, A life-course perspective on economic stress and tobacco smoking: a population-based study, Addiction, vol.108, pp.1305-1314, 2013.

K. Doya, Modulators of decision making, Nat. Neurosci, vol.11, pp.410-416, 2008.

J. W. Kable and P. W. Glimcher, The Neurobiology of Decision: Consensus and Controversy, Neuron, vol.63, pp.733-745, 2009.

I. Vlaev, N. Chater, N. Stewart, and G. D. Brown, Does the brain calculate value?, Trends Cogn. Sci, vol.15, pp.546-554, 2011.

C. Padoa-schioppa, Neurobiology of Economic Choice: A Good-Based Model, Annu. Rev. Neurosci, vol.34, pp.333-359, 2011.

D. Kahneman and A. Tversky, Prospect Theory: An Analysis of Decision under Risk, Econometrica, vol.47, pp.263-291, 1979.

P. J. Schoemaker, The Expected Utility Model: Its Variants, Purposes, Evidence and Limitations, J. Econ. Lit, vol.20, pp.529-563, 1982.

M. Keramati and B. Gutkin, Imbalanced Decision Hierarchy in Addicts Emerging from Drug-Hijacked Dopamine Spiraling Circuit, PLOS ONE, vol.8, p.61489, 2013.

A. Rangel, C. Camerer, and P. R. Montague, A framework for studying the neurobiology of value-based decision making, Nat. Rev. Neurosci, vol.9, pp.545-556, 2008.

R. Sutton and A. Barto, Reinforcement Learning: An Introduction, 2017.

B. B. Doll, D. A. Simon, and N. D. Daw, The ubiquity of model-based reinforcement learning, Curr. Opin. Neurobiol, vol.22, pp.1075-1081, 2012.

N. D. Daw, Y. Niv, and P. Dayan, Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control, Nat. Neurosci, vol.8, pp.1704-1711, 2005.

R. J. Herrnstein, Relative and Absolute Strength of Response as a Function of Frequency of Reinforcement1,2, J. Exp. Anal. Behav, vol.4, pp.267-272, 1961.

N. D. Daw, J. P. O'doherty, P. Dayan, B. Seymour, and R. J. Dolan, Cortical substrates for exploratory decisions in humans, Nature, vol.441, pp.876-879, 2006.

Y. Niv, J. A. Edlund, P. Dayan, and J. P. O'doherty, Neural Prediction Errors Reveal a Risk-Sensitive Reinforcement-Learning Process in the Human Brain, J. Neurosci, vol.32, pp.551-562, 2012.

J. Naudé, M. Dongelmans, and P. Faure, Nicotinic alteration of decision-making, Neuropharmacology, vol.96, pp.244-254, 2015.

S. Kakade and P. Dayan, Dopamine: generalization and bonuses, Neural Netw, vol.15, pp.549-559, 2002.

N. Bunzeck and E. Düzel, Absolute Coding of Stimulus Novelty in the Human Substantia Nigra/VTA, Neuron, vol.51, pp.369-379, 2006.

S. M. Mcclure, K. M. Ericson, D. I. Laibson, G. Loewenstein, and J. D. Cohen, Time Discounting for Primary Rewards, J. Neurosci, vol.27, pp.5796-5804, 2007.

P. Dayan and Y. Niv, Reinforcement learning: The Good, The Bad and The Ugly, Curr. Opin. Neurobiol, vol.18, pp.185-196, 2008.

J. A. Beeler, N. D. Daw, C. R. Frazier, and X. Zhuang, Tonic Dopamine Modulates Exploitation of Reward Learning, Front. Behav. Neurosci, vol.4, 2010.

J. C. Patel, E. Rossignol, M. E. Rice, and R. P. Machold, Opposing regulation of dopaminergic activity and exploratory motor behavior by forebrain and brainstem cholinergic circuits, Nat. Commun, vol.3, p.1172, 2012.

A. J. Yu, P. Dayan, and . Uncertainty, Neuromodulation, and Attention. Neuron, vol.46, pp.681-692, 2005.

S. Granon, P. Faure, and J. Changeux, Executive and social behaviors under nicotinic receptor regulation, Proc. Natl. Acad. Sci, vol.100, pp.9596-9601, 2003.

M. E. Avale, Interplay of ?2* nicotinic receptors and dopamine pathways in the control of spontaneous locomotion, Proc. Natl. Acad. Sci. 105, pp.15991-15996, 2008.

N. Maubourguet, A. Lesne, J. Changeux, U. Maskos, and P. Faure, Behavioral Sequence Analysis Reveals a Novel Role for ß2* Nicotinic Receptors in Exploration, PLoS Comput. Biol, vol.4, p.1000229, 2008.

S. H. Mitchell, Measures of impulsivity in cigarette smokers and non-smokers

, Psychopharmacology (Berl.), vol.146, pp.455-464, 1999.

G. Moeller and F. , Increased impulsivity in cocaine dependent subjects independent of antisocial personality disorder and aggression, Drug Alcohol Depend, vol.68, pp.105-111, 2002.

H. De-wit and J. Richards, Dual determinants of drug use in humans: Reward and impulsivity, Nebr. Symp. Motiv, 2004.

J. L. Perry and M. E. Carroll, The role of impulsive behavior in drug abuse, Psychopharmacology (Berl.), vol.200, pp.1-26, 2008.

W. K. Bickel, A. L. Odum, and G. J. Madden, Impulsivity and cigarette smoking: delay discounting in current, never, and ex-smokers, Psychopharmacology (Berl.), vol.146, pp.447-454, 1999.

F. Baker, M. W. Johnson, and W. K. Bickel, Delay discounting in current and neverbefore cigarette smokers: Similarities and differences across commodity, sign, and magnitude, J. Abnorm. Psychol, vol.112, pp.382-392, 2003.

M. S. Businelle, M. A. Mcvay, D. Kendzor, and A. Copeland, A comparison of delay discounting among smokers, substance abusers, and non-dependent controls, Drug Alcohol Depend, vol.112, pp.247-250, 2010.

A. P. Anokhin, S. Golosheykin, J. D. Grant, and A. C. Heath, Heritability of Delay Discounting in Adolescence: A Longitudinal Twin Study, Behav. Genet, vol.41, pp.175-183, 2011.

A. Verdejo-garcía, A. J. Lawrence, and L. Clark, Impulsivity as a vulnerability marker for substance-use disorders: Review of findings from high-risk research, problem gamblers and genetic association studies, Neurosci. Biobehav. Rev, vol.32, pp.777-810, 2008.

K. D. Ersche, A. J. Turton, S. Pradhan, E. T. Bullmore, and T. W. Robbins, Drug Addiction Endophenotypes: Impulsive Versus Sensation-Seeking Personality Traits, Biol. Psychiatry, vol.68, pp.770-773, 2010.

J. Audrain-mcgovern, Does delay discounting play an etiological role in smoking or is it a consequence of smoking? Drug Alcohol Depend, vol.103, pp.99-106, 2009.

J. W. Dalley, B. J. Everitt, T. W. Robbins, and . Impulsivity, Compulsivity, and Top-Down Cognitive Control, vol.69, pp.680-694, 2011.

D. Belin, A. C. Mar, J. W. Dalley, T. W. Robbins, and B. J. Everitt, High Impulsivity Predicts the Switch to Compulsive Cocaine-Taking, Science, vol.320, pp.1352-1355, 2008.

L. Diergaarde, Impulsive Choice and Impulsive Action Predict Vulnerability to Distinct Stages of Nicotine Seeking in Rats, Biol. Psychiatry, vol.63, pp.301-308, 2008.

H. Wit and . De, Impulsivity as a determinant and consequence of drug use: a review of underlying processes, Addict. Biol, vol.14, pp.22-31, 2009.

J. Dallery and M. L. Locey, Effects of acute and chronic nicotine on impulsive choice in rats, Behav. Pharmacol, vol.16, p.15, 2005.

K. Z. Kolokotroni, R. J. Rodgers, and A. A. Harrison, Acute nicotine increases both impulsive choice and behavioural disinhibition in rats, Psychopharmacology (Berl.), vol.217, pp.455-473, 2011.

C. W. Lejuez, W. M. Aklin, M. J. Zvolensky, and C. M. Pedulla, Evaluation of the Balloon Analogue Risk Task (BART) as a predictor of adolescent real-world risk-taking behaviours, J. Adolesc, vol.26, pp.475-479, 2003.

L. Xiao, Affective Decision-Making Deficits, Linked to a Dysfunctional Ventromedial Prefrontal Cortex, Revealed in 10th-grade Chinese Adolescent Smokers, Nicotine Tob. Res, vol.10, pp.1085-1097, 2008.

C. D. Fowler, M. A. Arends, and P. J. Kenny, Subtypes of nicotinic acetylcholine receptors in nicotine reward, dependence, and withdrawal: evidence from genetically modified mice, Behav. Pharmacol, vol.19, p.461, 2008.

J. Nesic, J. Rusted, T. Duka, and A. Jackson, Degree of dependence influences the effect of smoking on cognitive flexibility, Pharmacol. Biochem. Behav, vol.98, pp.376-384, 2011.

M. A. Addicott, J. M. Pearson, J. Wilson, M. L. Platt, and F. J. Mcclernon, Smoking and the bandit: A preliminary study of smoker and nonsmoker differences in exploratory behavior measured with a multiarmed bandit task, Exp. Clin. Psychopharmacol, vol.21, pp.66-73, 2013.

L. Fenno, O. Yizhar, and K. Deisseroth, The Development and Application of Optogenetics, Annu. Rev. Neurosci, vol.34, pp.389-412, 2011.

K. Deisseroth, Optogenetics: 10 years of microbial opsins in neuroscience, Nat. Neurosci, vol.18, pp.1213-1225, 2015.

C. K. Kim, A. Adhikari, and K. Deisseroth, Integration of optogenetics with complementary methodologies in systems neuroscience, Nat. Rev. Neurosci, vol.18, pp.222-235, 2017.

J. S. Wiegert, M. Mahn, M. Prigge, Y. Printz, and O. Yizhar, Silencing Neurons: Tools, Applications, and Experimental Constraints, Neuron, vol.95, pp.504-529, 2017.

M. Banghart, K. Borges, E. Isacoff, D. Trauner, and R. H. Kramer, Light-activated ion channels for remote control of neuronal firing, Nat. Neurosci, vol.7, pp.1381-1386, 2004.

M. Volgraf, Allosteric control of an ionotropic glutamate receptor with an optical switch, Nat. Chem. Biol, vol.2, pp.47-52, 2006.

H. Janovjak, S. Szobota, C. Wyart, D. Trauner, and E. Y. Isacoff, A light-gated, potassium-selective glutamate receptor for the optical inhibition of neuronal firing, Nat. Neurosci, vol.13, pp.1027-1032, 2010.

J. Levitz, Optical control of metabotropic glutamate receptors, Nat. Neurosci, vol.16, pp.507-516, 2013.

W. Lin, Engineering a Light-Regulated GABAA Receptor for Optical Control of Neural Inhibition, ACS Chem. Biol, vol.9, pp.1414-1419, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01542257

S. Szobota, Remote Control of Neuronal Activity with a Light-Gated Glutamate Receptor, Neuron, vol.54, pp.535-545, 2007.

W. Lin, A Comprehensive Optogenetic Pharmacology Toolkit for In Vivo Control of GABAA Receptors and Synaptic Inhibition, Neuron, vol.88, pp.879-891, 2015.

J. Levitz, A. T. Popescu, A. Reiner, and E. Y. Isacoff, A Toolkit for Orthogonal and in vivo Optical Manipulation of Ionotropic Glutamate Receptors, Front. Mol. Neurosci, vol.2, 2016.

G. M. Heyman, Addiction and Choice: Theory and New Data. Front, Psychiatry, vol.4, 2013.

M. Besson, Long-term effects of chronic nicotine exposure on brain nicotinic receptors, Proc. Natl. Acad. Sci, vol.104, pp.8155-8160, 2007.
URL : https://hal.archives-ouvertes.fr/pasteur-00161245

P. Dayan and Y. Niv, Reinforcement learning: The Good, The Bad and The Ugly, Curr. Opin. Neurobiol, vol.18, pp.185-196, 2008.

Y. Niv, N. D. Daw, and P. Dayan, How fast to work: Response vigor, motivation and tonic dopamine

Y. Niv, N. D. Daw, D. Joel, and P. Dayan, Tonic dopamine: opportunity costs and the control of response vigor, Psychopharmacology (Berl.), vol.191, pp.507-520, 2007.

J. D. Salamone, M. Correa, A. M. Farrar, E. J. Nunes, and M. Pardo, Dopamine, behavioral economics, and effort, Front. Behav. Neurosci, vol.3, 2009.

J. D. Salamone, M. Correa, A. Farrar, and S. M. Mingote, Effort-related functions of nucleus accumbens dopamine and associated forebrain circuits, Psychopharmacology (Berl.), vol.191, pp.461-482, 2007.

R. A. Wise and . Dopamine, learning and motivation, Nat. Rev. Neurosci, vol.5, pp.483-494, 2004.

P. J. Kenny and A. Markou, Nicotine Self-Administration Acutely Activates Brain Reward Systems and Induces a Long-Lasting Increase in Reward Sensitivity, Neuropsychopharmacology, vol.31, pp.1203-1211, 2006.

M. I. Palmatier, Dissociating the primary reinforcing and reinforcementenhancing effects of nicotine using a rat self-administration paradigm with concurrently available drug and environmental reinforcers, Psychopharmacology (Berl.), vol.184, pp.391-400, 2006.

M. L. Locey and J. Dallery, Isolating Behavioral Mechanisms of Intertemporal Choice: Nicotine Effect on Delay Discounting and Amount Sensitivity, J. Exp. Anal. Behav, vol.91, pp.213-223, 2009.

M. A. Addicott, J. M. Pearson, J. Wilson, M. L. Platt, and F. J. Mcclernon, Smoking and the bandit: A preliminary study of smoker and nonsmoker differences in exploratory behavior measured with a multiarmed bandit task, Exp. Clin. Psychopharmacol, vol.21, pp.66-73, 2013.

M. A. Addicott, J. M. Pearson, B. Froeliger, M. L. Platt, and F. Joseph-mcclernon, Smoking automaticity and tolerance moderate brain activation during explore-exploit behavior, Psychiatry Res. Neuroimaging, vol.224, pp.254-261, 2014.

B. Adinoff, Neurobiologic Processes in Drug Reward and Addiction, Harv. Rev. Psychiatry, vol.12, pp.305-320, 2004.

A. S. Chuong, Noninvasive optical inhibition with a red-shifted microbial rhodopsin, Nat. Neurosci, vol.17, pp.1123-1129, 2014.

N. Caporale, LiGluR Restores Visual Responses in Rodent Models of Inherited Blindness, Mol. Ther, vol.19, pp.1212-1219, 2011.

T. Patriarchi, Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors, Science, vol.360, p.4422, 2018.

P. Shih, Differential Expression and Function of Nicotinic Acetylcholine Receptors in Subdivisions of Medial Habenula, J. Neurosci, vol.34, pp.9789-9802, 2014.

S. R. Grady, Rodent Habenulo-Interpeduncular Pathway Expresses a Large Variety of Uncommon nAChR Subtypes, But Only the ?3?4 and ?3?3?4 Subtypes Mediate Acetylcholine Release, J. Neurosci, vol.29, pp.2272-2282, 2009.

J. C. Wang, Risk for nicotine dependence and lung cancer is conferred by mRNA expression levels and amino acid change in CHRNA5, Hum. Mol. Genet, vol.18, pp.3125-3135, 2009.

K. Keskitalo, Association of serum cotinine level with a cluster of three nicotinic acetylcholine receptor genes (CHRNA3/CHRNA5/CHRNB4) on chromosome 15, Hum. Mol. Genet, vol.18, pp.4007-4012, 2009.

A. Görlich, Reexposure to nicotine during withdrawal increases the pacemaking activity of cholinergic habenular neurons, Proc. Natl. Acad. Sci, vol.110, pp.17077-17082, 2013.

R. Zhao-shea, L. Liu, X. Pang, P. D. Gardner, and A. R. Tapper, Activation of GABAergic Neurons in the Interpeduncular Nucleus Triggers Physical Nicotine Withdrawal Symptoms, Curr. Biol, vol.23, pp.2327-2335, 2013.

E. Soria-gómez, Habenular CB1 Receptors Control the Expression of Aversive Memories, Neuron, vol.88, pp.306-313, 2015.

A. Mourot, Tuning Photochromic Ion Channel Blockers, ACS Chem. Neurosci, vol.2, pp.536-543, 2011.

A. Mourot, C. Herold, M. A. Kienzler, and R. H. Kramer, Understanding and improving photo-control of ion channels in nociceptors with azobenzene photo-switches, Br. J. Pharmacol, vol.175, pp.2296-2311, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01578413

E. C. Carroll, Two-photon brightness of azobenzene photoswitches designed for glutamate receptor optogenetics, Proc. Natl. Acad. Sci, vol.112, pp.776-785, 2015.

M. Dong, Near-Infrared Photoswitching of Azobenzenes under Physiological Conditions, J. Am. Chem. Soc, vol.139, pp.13483-13486, 2017.

S. Passlick, M. T. Richers, G. C. Ellis-davies, and . Thermodynamically-stable, Photoreversible Pharmacology in Neurons with One-and Two-Photon Excitation, Angew. Chem. Int. Ed, vol.0, 2018.

W. Lin, M. Tsai, R. Rajappa, and R. H. Kramer, Design of a Highly Bistable Photoswitchable Tethered Ligand for Rapid and Sustained Manipulation of Neurotransmission, J. Am. Chem. Soc, vol.140, pp.7445-7448, 2018.