
HAL Id: tel-02410130
https://theses.hal.science/tel-02410130

Submitted on 13 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Neuromorphic computation using event-based sensors :
from algorithms to hardware implementations

Germain Haessig

To cite this version:
Germain Haessig. Neuromorphic computation using event-based sensors : from algorithms to hardware
implementations. Automatic. Sorbonne Université, 2018. English. �NNT : 2018SORUS422�. �tel-
02410130�

https://theses.hal.science/tel-02410130
https://hal.archives-ouvertes.fr

thèse de doctorat
en vue de l’obtention du titre de docteur en robotique de

sorbonne universités

ecole doctorale 391 : sciences mécaniques, acoustique, electronique et
robotique de paris

neuromorphic computation using
event-based sensors : from

algorithms to hardware
implementations

présentée par
germain haessig

sous la direction de
pr. ryad b. benosman

présentée et soutenue publiquement le 14 septembre 2018

devant un jury composé de :

Associate Pr. Sio Hoi Ieng Examinateur
Pr. Stéphane Régnier Examinateur
Pr. Bernabé Linares-Barranco Rapporteur
Pr. Giacomo Indiveri Rapporteur
Pr. Ryad B. Benosman Directeur de thèse

Germain Haessig : Neuromorphic computation using event-based sensors : from
algorithms to hardware implementations, Ph.D. Thesis, September 2018.

Contact : germain.haessig@inserm.fr

Institut de la Vision
Equipe Vision et Calcul Naturel
17, Rue Moreau
75012 Paris, France

mailto:germain.haessig@inserm.fr

A B S T R A C T

This thesis is about the implementation of neuromorphic algorithms, using,
as a first step, data from a silicon retina, mimicking the human eye’s beha-
vior, and then evolve towards all kind of event-based signals. These event-
based signals are coming from a paradigm shift in the data representation,
thus allowing a high dynamic range, a precise temporal resolution and a
sensor-level data compression. Especially, we will study the development
of a high frequency monocular depth map generator, a real-time spike sor-
ting algorithm for intelligent brain-machine interfaces, and an unsupervised
learning algorithm for pattern recognition. Some of these algorithms (Op-
tical flow detection, depth map construction from stereovision) will be in
the meantime developed on available neuromorphic platforms (SpiNNaker,
TrueNorth), thus allowing a fully neuromorphic pipeline, from sensing to
computing, with a low power budget.

R É S U M É

Cette thèse porte sur l’implémentation d’algorithmes événementiels, en
utilisant, dans un premier temps, des données provenant d’une rétine artifi-
cielle, mimant le fonctionnement de la rétine humaine, pour ensuite évoluer
vers tous types de signaux événementiels. Ces signaux événementiels sont is-
sus d’un changement de paradigme dans la représentation du signal, offrant
une grande plage dynamique de fonctionnement, une résolution temporelle
importante ainsi qu’une compression native du signal. Sera notamment étu-
diée la réalisation d’un dispositif de création de cartes de profondeur mo-
noculaires à haute fréquence, un algorithme de tri cellulaire en temps réel,
ainsi que l’apprentissage non supervisé pour de la reconnaissance de formes.
Certains de ces algorithmes (détection de flot optique, construction de cartes
de profondeur en stéréovision) seront développés en parallèle sur des plate-
formes de simulation neuromorphiques existantes (SpiNNaker, TrueNorth),
afin de proposer une chaîne de traitement de l’information entièrement neu-
romorphique, du capteur au calcul, à faible coût énergétique.

iii

AVA N T- P R O P O S

Au seuil de ce parcours scientifique, je souhaiterais, avec beaucoup d’hu-
milité et tout en ayant conscience de mon peu de recul, évoquer plusieurs
aspects de mon travail d’une manière plus personnelle. Il s’agira donc ici
plus de mon expérience de la thèse, de ces trois années de recherche, sou-
vent passées à courir après le temps, parfois à m’enthousiasmer devant un
résultat bien meilleur qu’espéré, mais aussi à être exaspéré face à l’infructuo-
sité de tel algorithme ou de l’échec de tel projet. Ainsi va la science, m’avait
on dit.

La thèse est un peu comme un chemin sinueux, où l’on se perd facilement,
où les bifurcations, si elles existent, font office de sentes cachées derrière un
fourré. Se repérer devient alors un art, que l’on apprend à maîtriser au fil
des années, jusqu’au moment de transmettre le peu que l’on a appris.

Enseigner durant ces années a été à la fois une échappatoire, mais aussi
une source de satisfaction. Cette dure science de la transmission des connais-
sances, d’éveiller la curiosité de l’auditoire, continuera d’enrichir ma vision
d’un domaine que l’on pense, à tort, cerner. Quoi de plus beau qu’un regard,
peut-être naïf, mais aussi différent, sur un sujet particulier ?

Avant tout, cette thèse aura été l’occasion de découvrir un domaine qui,
s’il n’a pas encore acquis ses lettres de noblesse, se révèle être un champ
dynamique, en plein essor, se basant sur des technologies arrivant à maturité,
et véhiculant avec lui un ensemble de belles promesses, dont je ne peux
que souhaiter l’accomplissement. J’aspire à continuer à travailler dans ce
milieu, ainsi qu’à faire bon usage de l’introspection et de la patience que
cette aventure m’a apporté.

∼ ∼

Il va de soi que cette aventure n’aurait été possible sans le soutien indé-
fectible de nombreuses personnes, que je vais essayer de remercier ici, en
tentant d’en omettre le moins possible.

Tout d’abord, à mes parents, sans qui cette aventure n’aurait jamais eu
lieu. Pour ce goût de la curiosité que vous m’avez inculqué, cet état d’esprit
ne pouvant prendre pour argent comptant ce qui est parfois communément
accepté.

Ensuite, à Elise, ma sœur. Tu as été présente tout au long de l’aventure,
avec tes mots de soutien, tes sourires et ces heures, malheureusement bien
trop peu nombreuses, passées à refaire le monde.

À Julien et Loïc, soutiens inébranlables depuis de bien longues années
maintenant. Nous avons vécu de beaux moments, et de belles aventures nous
attendent encore, je l’espère. Et bien entendu à Laura et Lucie, qui ont su me
supporter et accepter que je leur emprunte leur compagnon pour de longues
sorties en montagne. Les années passent, mais vous revoir me fait à chaque
fois un bien fou.

À tous mes collègues, passés ou présents, qui ont su faire de cette dure
quête un doux moment. Camille, Quentin, Francesco et Xavier L., mes pre-
mières racines dans l’équipe, qui se sont, au fil des années, envolées vers de
nouvelles aventures. Je garderai toujours en mémoire nos discussions inter-
minables autour de la machine à café. Merci pour votre accueil chaleureux
au sein de cette équipe.
Puis, à la nouvelle génération, avec laquelle j’ai traversé les eaux troubles de
la recherche, en espérant trouver une issue à nos heures de réflexions.
Bien entendu, à la Team Arkose, pour ces heures à respirer de la magnésie,
s’esquinter les doigts sur des prises bien souvent trop petites, rigoler et pro-
fiter de belles journées pour aller tâter du rocher. Pour votre soutien lorsque
mon corps n’a voulu suivre, et vos encouragements lorsqu’il m’a été pos-
sible de reprendre. En espérant vous retrouver aux détours d’un rocher très
rapidement.
À Paul, Kevin A. et Xavier B., qui sont devenus avec le temps bien plus que
des collègues.
Aux différents bars que nous avons fréquentés avec assiduité, à râler, refaire
le monde ou tout simplement discuter.
À la nouvelle génération, qui saura faire face à l’adversité et porter ce ma-
gnifique domaine encore plus haut.

À Piotr Dudek, qui a pris du temps pour me faire découvrir le doux
monde du semi-conducteur, du design au layout.

À Garrick Orchard, pour ce projet un peu fou de sortir un papier après
Telluride.

À Laurent Cabaret, pour son soutien lors de mon monitorat, sa confiance
et la liberté qu’il m’a laissée. Enseigner à tes cotés a été un réel plaisir.

À Jean-Pierre Barbot et Dominique Placko, deux de mes enseignants à
l’École Normale, qui ont su éveiller ma curiosité sur l’électronique analo-
gique, et pour ces nombreux projets encadrés avec vous.

À Stéphane Laveau, et toute l’équipe de Prophesee, avec qui j’ai apprécié
travailler, et passé des heures à bricoler des démonstrateurs de cette fabu-
leuse technologie.

À toute la communauté Neuromorph’, pour les longues heures à discuter
lors de nos diverses rencontres, à CapoCaccia ou Telluride.

Et bien sûr à Ryad, mon directeur de thèse, qui n’a cessé de croire en moi
et m’a poussé à toujours chercher plus loin.

Bien à vous.

v

Simplicity is the ultimate sophistication.

LEONARDO DA VINCI

C O N T E N T S

1 introduction 1

2 depth from defocus 5

2.1 Introduction . 5

2.2 Materials and Methods . 8

2.2.1 Event based cameras . 8

2.2.2 Depth estimation . 8

2.2.3 Liquid lens control . 12

2.2.4 Spiking neural network 13

2.3 Results . 14

2.3.1 Remarks and limitations 18

2.4 Conclusions and Discussions . 18

3 sparse coding 21

3.1 Introduction . 21

3.2 Event-based cameras . 22

3.3 Methods . 22

3.3.1 Time-surface construction 23

3.3.2 Training phase: Finding the patch of projection basis . . 23

3.3.3 Building a hierarchical model 24

3.3.4 Classification . 26

3.4 Experiments . 27

3.4.1 Letters and digits dataset 27

3.4.2 Flipped card deck . 27

3.5 Conclusion . 28

4 spike sorting 31

4.1 Introduction . 31

4.2 Methods . 32

4.2.1 Model description . 32

4.2.2 Event generation . 33

4.2.3 Feature extraction and clustering 34

4.2.4 Classification . 35

4.3 Results . 35

4.3.1 Metrics . 35

4.3.2 Benchmarking . 36

4.4 Conclusion . 39

4.5 Discussion . 40

5 optical flow on truenorth 41

5.1 Introduction . 41

5.2 Background . 43

5.2.1 Direction Sensitive (DS) Unit 43

5.2.2 Event-based Sensor . 44

vii

viii contents

5.2.3 The TrueNorth Environment 45

5.3 Implementation . 46

5.3.1 Input Module . 47

5.3.2 Delay Module . 49

5.3.3 DS Module . 49

5.3.4 Parameters . 50

5.3.5 Interpreting the Result . 51

5.3.6 ATIS-TrueNorth link . 51

5.4 Testing . 52

5.4.1 Sources of Visual Data . 52

5.4.2 Modeling Motion for the Rotating Pipe 52

5.4.3 Modeling Motion for the Rotating Spiral 53

5.4.4 Error Metrics . 54

5.5 Results . 55

5.6 Discussion . 56

5.7 Conclusion . 59

6 neuromorphic networks on spinnaker 61

6.1 Introduction . 61

6.2 The SpiNNaker platform . 62

6.3 Interfacing one event-based camera to SpiNNaker 62

6.4 Interfacing two event-based cameras to SpiNNaker 64

6.4.1 SpiNN3 board . 64

6.4.2 SpiNN5 board . 64

6.5 Optical flow . 66

6.6 Disparity detector . 66

6.7 Conclusion . 67

7 conclusion 71

bibliography 75

P U B L I C AT I O N S

journals

Haessig, G., Cassidy, A., Alvarez, R., Benosman, R., & Orchard, G. (2018).
Spiking Optical Flow for Event-based Sensors Using IBM’s TrueNorth Neu-
rosynaptic System. IEEE Transactions on Biomedical Circuits and Systems,
(99), 1-11.

Haessig, G., Berthelon, X., Ieng, S.H., and Benosman, R (2018). A Spiking
Neural Network Model of Depth from Defocus for Event-based Neuromor-
phic Vision. Submitted.

Haessig, G., Gehere, K., and Benosman, R (2018). Spikes decoding spikes :
an event-based framework for real-time unsupervised spike sorting. Submit-
ted.

Haessig, G., Galluppi, F., Lagorce, X., and Benosman, R (2018). Neuromor-
phic networks on the SpiNNaker platform. In preparation.

conferences

Haessig, G., & Benosman, R. (2018, May). A sparse coding multi-scale
precise-timing machine learning algorithm for neuromorphic event-based
sensors. In : Micro-and Nanotechnology Sensors, Systems, and Applications X
(Vol. 10639, p. 106391U). International Society for Optics and Photonics.

ix

x publications

1 I N T R O D U C T I O N

Figure 1 – Sea turtle. Flickr photo by Philippe Guillaume.

This is a sea turtle. A (very) old animal, that is, every year, migrating from
Africa to America, a 6000km journey that takes approximately 2 months. For
years, scientists have been looking for the reason of this travel. They found
that the beaches in both destinations are identical. Same climate. Same
amount of food. And even same food. So why should this turtle take part in
such a journey, costing time and energy, to reach a point that is similar to the
starting one ? Biologists argued that the turtle is following the gulf stream
to grab some plankton, explaining why the chosen path is not a straight one.
But plankton can be found in closest places. For now, no plausible clues
have been found.

But...
The sea turtle is a 110-million-years-old animal. Fossils have been found in
both sides of the Atlantic Ocean, showing that this journey has been part
of the turtle life for a long time. What was the shape of the world 110

million years ago ? Africa and America were so close that they formed an
unique continent. At that time, the inferior Cretaceous (146million-100million
years ago), the two identical beaches were probably a few miles apart. One
might have sunrise, the other one sunset. Then, the continent drift slowly
took these two places apart. Meanwhile, the turtle kept doing its routine,
increasing slowly the distance required to reach the opposite coast, which is
written in its genes. This may explain why, 110 million years later, this turtle
is traveling across an ocean to reach its destination. 1

I do not claim this theory is the good one. Better ones might exist but
this story shows us one important thing : sometimes, it is impossible to
understand the reasons of a given behavior just by observing it. We have to
go back to the origins of the phenomenon, put it in perspective, understand

1. Personal conversation with Florian Engert, Professor of Molecular and Cellular Biology,
Harvard.

1

2 introduction

the growth and development of living systems in order to fully explain a
phenomenon. This has to be remembered.

motivation

My first electrical engineering lecture was more than a decade ago. And,
as in most of the following ones, it started with Moore’s law. That the num-
ber of transistor in a given device will, and should, increase by a factor of 2
every 2 years[85]. This has been true for a long time (factor 1.96 between 1971

and 2001), but nowadays, an inflection in this curve can be seen. Why ? This
thesis will not be about electrical engineering, but during these three years,
I found some hints that became, year after year, some kind of a motivation
leading my work.

Since 2004, the frequency of Intel processors has leveled around 3 GHz[135].
Nowadays, performance is given by the number of cores, and no more the
clock frequency. Lot of cores means lot of transistors. Even if the energy
required by a single transistor to switch is small, integration of billions of
them in a single die made the power consumption a major consideration in
design. Transistors also became smaller. This size reductions had the effect
that the transistors are not exactly totally off, a (very) small current contin-
uously leaking through it. Again, this is not a concern for a single unit.
But with dies containing billion transistors, the equation changed. State of
the art GPUs integrate 21 billion transistors (NVIDIA GV100 Volta, 12nm,
2017

2) or FPGAs with 50 billion (Xilinx Everest, 7nm, 2018
3). But that scal-

ing, according to the self-fulfilling Moore’s prophecy, couldn’t last forever :
transistors can not be smaller than atoms. This is physics, and it can not be
bypassed.

So, thinking about new approaches is needed.
The neuromorphic community, established by Carver Mead and Misha Ma-
howald in the late 80’s[81], has been trying to find answers to these issues.
They developed the first prototype of a silicon retina, mimicking the be-
havior of the human eye[70]. Misha Mahowald received, in 1992, Caltech’s
Milton and Francis Clauser Doctoral Prize for her thesis’ originality and
"potential for opening up new avenues of human thought and endeavor".
Since, the neuromorphic community is trying to find new approaches, some
paradigm shift, to renew our way of seeing Perception and Computation.

But what does Neuromorphic mean ?

“Neuromorphic engineering, also known as neuromorphic com-
puting, is a concept developed by Carver Mead in the late 1980s,
describing the use of very-large-scale integration (VLSI) systems
containing electronic analog circuits to mimic neuro-biological ar-
chitectures present in the nervous system. In recent times the
term neuromorphic has been used to describe analog, digital,

2. https://www.nvidia.com
3. https://www.xilinx.com

http://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://www.xilinx.com/news/press/2018/xilinx-unveils-revolutionary-adaptable-computing-product-category.html

introduction 3

mixed-mode analog/digital VLSI, and software systems that im-
plement models of neural systems (for perception, motor control,
or multisensory integration).” (Wikipedia 4)

The current trend is on Convolutionnal Neural Networks. State of the art
dedicated implementations can tackle the problem of computation with 1pJ
per addition and 5pJ per multiplication[34]. But these networks need Ran-
dom Access Memory (RAM) to all the values (membrane potential, weights).
SRAM (Static RAM) access costs 10pJ, DRAM (dynamic RAM) 1nJ. Most of
the energy is then spent on memory access, not on computation. Memory
is then the bottleneck. I do not claim that CNNs can not solve problems,
because they do [61][32], but they are not the most efficient way of doing
this. The brain is 30W. Lee Sedol is burning 30W for his brain. DeepMind,
with its 1202 CPUs and 176 GPUs, can be estimated at 275kW[116], just for
learning... With its 30W, Lee Sedol can also read, speak, interact with other
people, and many other things that DeepMind is not able to do. This is why
we are here, and why this field has a beautiful story to write.

dissertation structure

This dissertation is organized in two parts. First (Chapters 2,3 and 4), I will
introduce new algorithms handling event-based signals. Chapter 2 presents
an event-based approach to monocular depth estimation, Depth From Focus,
using an event-based sensor and a liquid lens, allowing low power and high
frequency depth map construction. Chapter 3 uses some sparse coding tools
already existing in the literature and applies them to event-based machine
learning algorithm, in order to drastically reduce the number of required
prototypes, and thus allowing implementation in hardware with limited re-
sources. Chapter 4 applies a modified version of the machine learning al-
gorithm presented in the second chapter to mono-dimensional signals, for
online unsupervised spike sorting tasks. The second part (Chapters 5 and 6)
details some implementations of neuromorphic networks on two dedicated
platforms : Chapter 5 details the implementation of a spiking neural net-
work to compute optical flow on TrueNorth, IBM’s neurosynaptic platform.
Chapter 6 is about the implementation of the same optical flow network, and
a stereovision network, on the SpiNNaker platform.

4. https://en.wikipedia.org/wiki/Neuromorphic_engineering

https://en.wikipedia.org/wiki/Neuromorphic_engineering

4 introduction

2 D E P T H F R O M D E F O C U S

Depth from defocus is an important mechanism that enables vision sys-
tems to perceive depth. While machine vision has developed several algo-
rithms to estimate depth from the amount of defocus present at the focal
plane, existing techniques are slow, energy demanding and mainly relying
on numerous acquisitions and massive amounts of filtering operations on
the pixels’ absolute luminance value. Recent advances in neuromorphic en-
gineering allow an alternative to this problem, with the use of event-based
silicon retinas and neural processing devices inspired by the organizing prin-
ciples of the brain. In this paper, we present a low power, compact and
computationally inexpensive setup to estimate depth in a 3D scene in real
time at high rates that can be directly implemented with massively paral-
lel, compact, low-latency and low-power neuromorphic engineering devices.
Exploiting the high temporal resolution of the event-based silicon retina, we
are able to extract depth at 100Hz for a power budget lower than a 200mW
(10mW for the camera, 90mW for the liquid lens and ∼ 100mW for the com-
putation). We validate the model with experimental results, highlighting
features that are consistent with both computational neuroscience and re-
cent findings in the retina physiology. We demonstrate its efficiency with a
prototype of a neuromorphic hardware system and provide testable predic-
tions on the role of spike-based representations and temporal dynamics in
biological depth from defocus experiments reported in the literature.

2.1 introduction

The complexity of eyes’ inner structure implies that any visual stimuli
from natural scenes contains a wide range of visual information, including
defocus. Several studies have shown that defocus is essential in completing
some tasks and more specifically for depth estimation [48, 130]. Although a
large body of research on Depth From Defocus (DFD) exists since the early
60’s, there is currently a gap between the information output from biological
retinas and the existing literature both in the vision science and computer vi-
sion that uses images as the sole source of their studies. Although images are
perfect to display static information, their use in acquiring dynamic contents
of scenes is far from being optimal. The use of images implies a stroboscopic
acquisition of visual information (unknown to biological systems) at a low
sampling frequency. They are thus unable to describe the full dynamics of
observed scenes. On the other hand, retinal outputs are massively paral-
lel and data-driven: ganglion cells of biological retinas fire asynchronously
according to the information measured in the scene [42, 13] at millisecond
precision. Recent neuroscience findings show that this temporal precision
can also be found in other subcortical areas, like the lateral geniculate nu-

5

6 depth from defocus

cleus (LGN) [65, 108] and the visual cortex [71]. The last decade has seen
a paradigm shift in neural coding. It is now widely accepted that precise
timing of spikes open new profound implications on the nature of neural
computation [110, 66]. The information encoded in the precise timing of
spikes allows neurons to perform computation with a single spike per neu-
ron [125]. Initially supported by theoretical studies [124], this hypothesis has
been later confirmed by experimental investigations [55, 106].

Here, we present a novel approach to the depth from defocus, inspired
by biological retina ouput, which is compatible with ultra low latency and
low power neuromorphic hardware technologies [21]. In particular, we ex-
ploit advances made in both mixed signal Analog/Digital VLSI technology
and computational neuroscience which enabled us to combine a new class
of retina-like artificial vision sensors with brain-inspired spiking neural pro-
cessing devices to build sophisticated real-time event-based visual process-
ing systems [88, 53, 113]. We show how precise timing of spiking retinas
allows the introduction of a novel, fast and reliable biologically plausible
solution to the problem of estimating depth from defocus directly from the
high temporal properties of spikes.

Silicon retinas located at the core of the hereby presented system are a
novel piece of hardware which do not sense scenes as a serie of frames. Con-
ventional cameras wastefully record entire images at fixed frame rates(30-
60Hz) that are too slow to match the temporal sub-millisecond resolution of
human senses. Silicon retinas are asynchronous and clock-less, every pixel is
independent from its neighbors and only reacts to changes caused by move-
ments in a scene. Data are transmitted immediately and are scene driven,
resulting in a stream of events with a microsecond time precision equiva-
lent to conventional high-speed vision sensors, with the addition of being
low power and sparse [101]. This type of acquisition increases the sensor
dynamic range and reduces power computation.

Spiking Neural Networks (SNNs [40]) are computational models using
neural stimulation. It has been shown that such networks are able to solve
constraint satisfaction problems [15, 86], depth extraction from stereovision [94,
30] or flow computation [41, 45]. As they are mimicking real neurons behav-
ior, they allow a massively parallel, low power calculation, which is highly
suitable for embedded computation. The use of a SNN in this work is a
natural choice to build a complete neuromorphic event-based system, from
the signal acquisition to the final output of the depth information. This is
advantageous because of the resulting low-power system promised by the
spiking/neuromorphic technology. The developed architecture is particu-
larly adapted on a variety of existing neuromorphic spiking chips such as
the SpiNNaker [35], TrueNorth [82] or LOIHI [27] neural chips. More spe-
cific neuromorphic hardware, such as the 256 neurons ROLLS chip [104], can
also be used. When combined with an event-based camera, power as low as
100mW is proven to be sufficient to achieve a realtime optical flow computa-
tion [45]. We are showing with this work that a low-power (6100mW), com-

2.1 introduction 7

putationally inexpensive and realtime DFD system can be similarly achieved.

Among the multitude of techniques developed by vision scientists to es-
timate depth, those called depth from focus (DFF) or depth from defocus (DFD)
have the great advantage of requiring only a monocular camera [36]. The
DFF method uses many images, and depth clues are obtained from the
sharpness at each pixel. This method is computationally expensive and the
amount of data to process is substantial. On the other hand, DFD estimates
the variance of spatially varying blur spots based on a physical model. This
technique requires less images but at the cost of a greater error in position-
ing. Current methods that use DFD or DFF generate depth maps for static
scenes only [119] as they are limited by the frame rate of the camera driven
at maximum of 25 fps. The computer vision and engineering community
have described a number of algorithms for defocus computation [131, 95,
84]. However, they typically require multiple concurrent images [141, 132,
96], lightfield systems [122], specific lens apertures [141, 63], correlations[75],
specific hardware[74] or light with known patterns projected onto the envi-
ronment [96]. The use of images and luminance implies high computational
costs of around 17ms to process a single frame [75].

These approaches cannot serve as conceivable models of defocus estima-
tion in natural visual systems, as mammalian usually operate on a complete
different data format and acquisition principles. Early studies [76, 78] show
that the border between blurred and sharp regions can be used to estab-
lish the depth-order of objects. For example, an out-of-focus target with
a blurry textured region and a blurry border was perceived to be located
proximal to the plane of focus, while an out-of-focus target with a blurry
region and a sharp border was perceived to be located distant to the plane
of focus. Recent findings in neurosciences show that blur perception in hu-
man is a dynamic process that allows depth assessment. In particular, the
retinal defocus blur provides information regarding the relative and/or ab-
solute distance of objects in the visual field [43]. Recently[89], it has been
demonstrated that subjects were able to detect the relative distance of two
vertical edges, justifying that the retinal blur allowed the subjects to judge
target distance differentially without any other depth cues. Other studies
demonstrated that motor efference and/or sensory feedback related to the
blur-driven accommodative response contain sufficient information to esti-
mate the absolute distance of visual targets [33]. In addition, information
derived from image blur can be integrated by the visual system with other
visual cues (e.g., retinal disparity, size, interposition, etc.), which would as-
sist in enabling one to judge the depth order of objects over a range of dis-
tances [22, 23, 77, 78, 80]. The addition of blur information can improve the
speed and accuracy in such a depth-ordering task [79].

8 depth from defocus

2.2 materials and methods

2.2.1 Event based cameras

Biomimetic neuromoprhic silicon event-based cameras are a novel type of
vision sensor that are data driven. Unlike their frame-based counterparts,
they are not controlled by artificially created timing and control signals
(frame clock) with no relation to the source of the visual input. Events are
generated when significant changes of the relative luminance occur at the
pixel level as shown on Figure 2. The visual output is in the form of an
address event (AER) and encodes the visual information in the time dimen-
sion at the microsecond time precision. As soon as a change of luminance is
detected, the process of communicating the event off-chip is initiated. The
process executes with low latency, of the order of a microsecond, ensuring
that the time at which an event is read out from the camera inherently rep-
resents the time at which a contrast change is detected. Let e(x, y, p, t) be an
event occurring at time t at the spatial location (x, y)T . A positive change of
contrast will result in an "ON" event (p = +1) and a negative change of con-
trast will result in an "OFF" event (p = −1). The threshold n beyond which
a change of contrast is high enough to trigger an event is tuned according to
the scene. Smaller intensity fluctuations do not generate any event and are
not recorded.
The camera used in our setup is an asynchronous sensor which has a 640×
480 pixels resolution [101] with a high temporal resolution of 1µs. This array
of fully autonomous pixels combines both a luminance relative change de-
tector circuit and a conditional exposure measurement block (not used in the
paper). When no change of luminance is detected, no events are generated
and the static information is not recorded. This reduces the data load and
allows high speed online processing at the native resolution of the sensor.

2.2.2 Depth estimation

Geometrical optics relations

Let us consider a single thin convex lens of focal distance fwith an infinite
circular aperture. As shown on the Figure 3, the rays issued from a point
z = d converge to form an image behind the lens onto the detector according
to the geometrical optic formula:

m×m ′ = f2 (1)

In a stigmatic optical system, an object point is in focus when the image
formed is a point as well. Any object out of focus forms a blurry spot on
the detector. We can compute the distance of the camera to the objective as
a function of the focal length of our optical system and the position of the
object in focus:

Dcam/obj = f+m
′ = f+

f2

m
= f+

f2

d− f
. (2)

2.2 materials and methods 9

(a)

(b)

Figure 2 – a) The neuromorphic silicon event based camera with the variable motor-
ized focal lens controlled at 100Hz b) (left) Operating principle of event
detection of an event-based camera: relative changes of the luminance
greater than a predefined threshold n generate ON/OFF events when
there is a positive/negative change of contrast. (right) Events output
from the senors are shown as on the focal plane as a frame for purpose
display, black dots represent OFF events while white dots represent ON
events.

As this distance is fixed in our setup, increasing the focal value f results
in an increase of the distance d at which an object is in focus and vice-versa.
By tuning the focal value of the optical system, every plane of the 3D scene
is successively in focus.

When an object is located before or after the focus point, it will form a
blurry image of size s. Geometrical optic relations (Figure 3) give :

s =
f2

N
× |x− d|

(d− f)z
, (3)

with f the focal value of the optical system, N the numerical aperture, d
the position of the object when in focus and z(t) the variable position of the
object over time. Due to the aberrations, diffraction phenomenon and non-
idealities of the lenses, a Gaussian point spread function is commonly used
to describe the defocus blur spot [64].

A real optical system has a finite aperture size, limited by the dimensions
of the optics. The spatial resolution is also limited by the pixel size below
which it is not possible to distinguish focus. This represents the circle of
confusion, C, of the camera as shown on Figure 3. As a consequence, a
range of several points will form an image "in focus" (the image spot size is

10 depth from defocus

Figure 3 – (left) Stigmatic optical system. (right) Principle of depth from defocus.

smaller than the circle of confusion) on the detector for a given focal length.
This range is called depth of field and the two limiting points are the values
of zclose and zfar for which s = C, i.e.

zclose/far =
d

1± CN(d−f)
f2

, (4)

The depth of field is then given by computing the difference between
zclose and zfar:

DoF = |zf− zc| = 2× CNd(d− f)

f2 −
(CN(d−f))2

f2

. (5)

The DoF of the lens is increasing with the distance of focus. Beyond a
certain distance, called the hyper-focal, the whole scene appears in focus
and differences in depth can no longer be distinguished. Ideally a DFD
sensor should have an infinitely thin DoF for each focusing distance and an
infinite hyper-focal. In practice one needs to minimize the DoF and increase
the hyper-focal to have the best spatial resolution in depth on the longest
distance possible.

Depth from the time of focus

The spread parameter σ(t) is proportional to the diameter s(t) of the ideal
blur circle, i.e. σ(t) = αs(t). The resulting intensity onto the sensor, at a
pixel (xi, yi) is:

Ii,j(x, y, t) = A. exp
(
−

r2i
2σ(t)2

)
. (6)

2.2 materials and methods 11

with r2i = (x − xi)
2 + (y − yi)

2 and A the amplitude. At the pixel level
the evolution of the intensity will depend on how close to the camera the
object is. As a function of time, the standard deviation in I can be used to
determine the time t at which an event is triggered by the pixel, assuming σ
is invertible i.e.:

t = σ−1

(√
r2i

2
(
logA− log Ii,j(x, y, t)

)) (7)

We are dropping subscripts (i, j) for readability purpose as what we are
describing is valid for any pixel. Hence, given the intensity at an arbitrary
time t0, if the variations of its log reach some threshold ±n (described in the
previous section), then:

log
I(x, y, t)

I(x, y, t0)
= ±n and log I(x, y, t) = log I(x, y, t0)±n. (8)

This gives the time when an event is emitted according to (7):

t = σ−1

(√
r2

2(logA− log I0 ∓n)

)
(9)

The sign of n is chosen according to the polarity of the spiking event, itself
related to the sign of the intensity’s derivative:

sign(n) = sign(p) = sign

(
dI

dt

)
(10)

When the derivative is positive the polarity will be +1 (ON event) and -1
when negative (OFF event). Eq(9) expresses when an event will be emitted
w.r.t. n and to a reference event measured at t0. As we reach focus, the value
of σ will be constant for small duration of time, therefore the derivative of
I, ∂I∂t is equal to 0, followed by a polarity change as shown in Fig.4(c) and
expressed in the temporal domain in Fig.4(d) around 50ms. The detection of
focus can then be determined by detecting the time tf of the polarity change
that can be estimated from the average timing between the consecutive ON
and OFF events. We can then estimate the size of the defocus blur s(tf)
according to (7) and deduce from (??), the depth information z(tf) as:

z(tf) =
∓df2/N

S(tf)(d− f)∓ f2/N
. (11)

The change of sign in z corresponds to the focal length that is the closest
to the focus. Parameters d and f are controls of the liquid lens device.

Defocus with an event-based camera

Let us consider a small luminous object that will successively be out of
focus, in focus and out of focus again. When a sweep of the focal length
over its dynamic range is carried out, objects will successively appear out
of focus, then in focus and out of focus again. The blurry spot around the

12 depth from defocus

object will therefore shrink until the object is sharp and grow again as shown
in Fig.4(a) and in Fig.4(b) for a cross section of the blur spot. The size of the
blur spot increases in connection to the distance respectively to the depth of
field (DoF) location. When the object is in focus, the image spot will have its
minimum size and the contrast will be maximum (sharp edges).

0 10 20 30 40 50 60 70 80 90 100
Time (ms)

0

50

100

150

200

250

300

C
ur

re
nt

 (m
A)

183.2
73.3
45.8
33.3
26.1
21.5
18.3
15.9
14.1
12.6
11.4
10.4
9.6
8.9
8.3

D
is

ta
nc

e
(c

m
)

On events
Off events
Lens control
Estimated focus

a)

b)

c)

d)

tf

Figure 4 – (a) Successive snapshots of a sphere when sweeping the focus range.
The red line represents a line of pixels in the y direction. (b) Variations
of the intensity profile along the red y-axis on the above snapshots. (c)
Events corresponding to the sweeping of the focus range, in black are
OFF events and in white ON events. (d) Representation of spikes among
a single pixel, according to the driving current of the liquid lens. Here,
the focus point is estimated to be at 22.6cm from the sensor.

2.2.3 Liquid lens control

The optical system shown in Fig.2(a) is composed of three components:
— an electrically focus-tunable liquid lens with a 10 mm clear aperture

and focus range fll ranging from 50 to 120 mm [16].
— an offset lens with a focal fo = −150 mm. It acts as a relay imaging

system between the focus-tunable lens and the objective and ensures a
proper focus.

2.2 materials and methods 13

— an objective lens with focal length fol = 35 mm, fol/2 objective lens.
This objective is a good compromise between large focal value, large
clear aperture and low bulk (23.4mm length). It is used to form an
image directly on the camera pixel array.

More details are given in Supplemental Data.

The thin lens approximation is given as follows:

d = feq +
f2eq

Dcam/obj − feq
, (12)

where d is the position of the point in focus, feq is the global optical sys-
tem’s equivalent focal value (liquid lens + offset lens + objective lens) and
Dcam/obj is the distance between the camera and the object. See Supple-
mental data for details.

The thin lens approximation assumes that the equivalent focal length feq
of our optical system is :

1

feq
=
1

fll
+
1

fol
+
1

fo
(13)

with fol and fo being respectively the objective lenses and the offset focal
lengths.

2.2.4 Spiking neural network

To estimate tf for each pixel, we are looking for the smallest time interval
between two consecutive events of opposite signs. We implement a Spiking
Neural Network (Figure 5.a) based on Leaky Integrate and Fire neurons
([60]) to process the spikes from the output of the neuromorphic silicon
retina. For every pixel, five neurons are required. Figure 5.a shows events
generated by a circle going in and out of focus. At time t1, the stimulus
in front of the receptive field generates a ON event (orange - Figure 5.c).
The synaptic weight between the ON and Bon neurons is not strong enough
to trigger yet the Bon neuron (Figure 5.d). As a second spike is generated
by the same neuron at time t2, the Bon neuron reaches its threshold value
and spikes (Figure 5.d). A small inhibition link to the OUT neuron ensures
that the OUT neuron won’t fire now. After the focus, at time t3, we have
a polarity inversion : the OFF neuron fires, thus exciting the output neuron
that fires (Figure 5.e). The next OFF spike, at time t4, activates the Boff
neuron, thus preventing the OUT neuron to fire again in response to the
future OFF spikes. Finally, the Sync neuron is triggered by the liquid lens,
warning that the sweep is over and reseting the OUT neuron to its initial
state. The depth can then be extracted as the timing between the OUT and
Sync spikes.

14 depth from defocus

0 50 100 150 200 250

output

input

ON

OFF

OUT

Sync

0 50 100 150 200 250
− 0.50

− 0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

v
(m

V
)

Bloq ON

Bloq OFF

Threshold

0 50 100 150 200 250
Time (ms)

− 0.5

0.0

0.5

1.0

1.5

2.0

2.5

(m
V

)

Output neuron

Threshold

BON

BOFF

Out

ON

OFF

B
on

OUT

B
off

Sync

ON

OFF

B
on

OUT

B
off

Sync

ON

OFF

B
on

OUT

B
off

Sync

ON

OFF

B
on

OUT

B
off

Sync

Circle going in and out of focus Time

Receptive field

ON events OFF events

Focal plane

a)

b)

c)

d)

e)

t1 t2 t3 t4

t1 t2 t3 t4

Figure 5 – Spiking neural network. a) Input data : a circle going in and out of focus,
in front of a receptive field (a single pixel) b) Neural network for focus
detection composed of two input neurons, ON and OFF. They directly
connect to the output neuron, and also to two blocker neurons Bon and
Boff that are inserted to avoid parasite firings of the output neuron due
to a sequence of only ON or OFF polarity events. A synchronization
with the liquid lens via the Sync neuron is added, in order to encode the
depth in the length of the spike train. c-e) Simulation of the SNN with
NEST. (c) The input spikes (ON and OFF events) and the output of the
network (OUT and Sync). The point of focus is given by the OUT neuron,
while the distance is encoded in the timing between the OUT and SYNC
spikes. (d) Membrane potential for the two blockers neurons. After the
first spike of its respective polarity, the blockers send a inhibition to the
output neuron. (e) Membrane potential of the output neuron. Spikes
from the same polarity do not allow the output neuron to reach its firing
threshold, while a succession of ON and OFF events make the output
neuron fire.

2.3 results

Results are obtained for a field of view of 15
◦ and a depth that ranges

from 0.12 to 5.5 m. The distance upper bound corresponds to the hyper-
focal distance of the global optical setup. The sparse nature of the data
allows the algorithm to operate in real time at the native resolution of the

2.3 results 15

sensor (640× 480pixels).

The Spiking Neural Network previously described in section 2.2.4 was im-
plemented using the PyNN framework [28] and simulated using the NEST
neural simulator [39]. All neurons are modeled as Leaky Integrate-and-Fire
(LIF) neurons. Results are presented on Fig.5. We set the dimension of the
network to fit a region of 447× 447 pixels, the network then using 999045
neurons. This amout is compatible with existing neuromorphic hardware
implementation on the TrueNorth platform (1 million neuron [82]) or SpiN-
Naker capability [35].

To better understand the possibilities and limits of the system, we per-
formed a simulation on synthetic data generated with a controlled optical
setup where all parameters can be tuned. The aim of this simulation is
to study the algorithm without constraints from the physical setup. Fig.6
shows three snapshots of the events generated during a sweep of a car. Fig.6-
d) shows the reconstructed depth computed by the system.

(a) (b) (c)

(d) (e)

Figure 6 – (a)-(c) Snapshots during a sweep of an object (d) Reconstructed depth
scene for the car. The depth is also color-coded for clarity. (e) Distri-
bution of the error. The mean relative error is at around 0.1% and a
standard deviation of 0.12%.

All the parameters being known we can estimate the relative error to the
ground truth. We notice that most of the error is located at the front of the
car on the grating where repetitive patterns are located. This is a known
limitation of several vision algorithms such as stereo matching, which will
be further discussed in section 2.3.1. Fig.6 (e) displays the error repartition
with a mean relative error of 10.4%. An example video on a car is available
online[44].

16 depth from defocus

The second experiment, the depth estimated from the DFD is assessed
with our setup on a monitored scene where the ground truth is provided
by a Microsoft Kinect sensor. The Kinect is taken as the reference simi-
larly to previous studies [57][69], reporting reconstruction precisions of few
mm at 50cm to 3cm at 3m. Fig.7 shows the setup and the depthmap com-
puted for the presented neuromorphic technique with a comparison with
the groundtruth depthmap: the error is increasing relative to depth. Up to
1.5m, the relative error is upper-bounded at 4% and increased up to 23% at
2m. This is however an expected result as the optical system’s focal length
is reaching the hyper-focal.

(a)

(c)

Figure 7 – (a) Depth map from the developed setup (raw data, no post-processing)
(b) Conventional Image of scene for display purposes (c) Depth map
from the Kinect used as reference. The yellow square corresponds to
the field of view. (d) Relative error for this scene compared to Microsoft
Kinect. The relative error increases with depth.

The third experiment shows reconstruction for several objects with differ-
ent textures and sizes. Fig.8 shows for each object its corresponding depth
map while the lens is sweeping through the object.

2.3 results 17

T
im

e
 (

m
s)

1
2

3
4

5

Fi
gu

re
8

–
Sn

ap
sh

ot
s

of
th

e
ev

en
t

st
re

am
,a

nd
as

so
ci

at
ed

de
pt

h
m

ap
s

du
ri

ng
a

sw
ee

p
(5

m
s)

fo
r

m
ul

ti
pl

e
ob

je
ct

s.
Bl

ac
k

an
d

w
hi

te
do

ts
ar

e
th

e
O

FF
an

d
O

N
ev

en
ts

fr
om

th
e

ev
en

t-
ba

se
d

si
lic

on
re

ti
na

,a
s

de
sc

ri
be

d
in

Se
ct

io
n

2
.2

.1
.D

is
ta

nc
e

is
co

lo
r-

co
de

d.

18 depth from defocus

2.3.1 Remarks and limitations

The algorithm is inexpensive in computational power, in the presented ex-
periments it is able to deal with more an average of 15 million events per
second. A shaky scene viewed by the event-based camera will generate at
most 2 million events per second. In the worst case, thus the current ap-
proach is 7 times faster than real time. However for most objects used it
is more around 20 times faster than real time using an off-the-shelf laptop.
This algorithm can be easily embedded on portable devices such as smart-
phones or autonomous vehicles as an ideal method for low power solutions
to obstacle side-stepping or 3D scanners.

As pointed out during experiments, repetitive patterns can lead to incor-
rect depth estimation. Fig.9 shows this situation for simulated data. If we
consider two objects that are well separated (Fig.9.f), the sweep of the liq-
uid lens will produce an event stream (Fig.9.l) with non overlapping spikes.
Fig.9.j is a snapshot of the sweeps’ beginning. The four OFF edges are dis-
tinct. As the focus evolves, we reach the focus point for object 1 (Fig.9.i). The
two edges O1L and O1R of object 1 now generate ON events. After the focus
point for object 2 (Fig.9.h), the two other edges O2L and O2R now generate
ON events. As the objects are in a sufficient relative distance, the edges O1R
and O2L are not overlapping.
If we consider two objects that are close each other (Fig.9.a), the sweep of
the liquid lens will now produce the event stream shown in Fig.9.k. As the
sweep starts (Fig.9.e), only the external edges of objects 1 and 2 (O1L and
O2R) generate OFF spikes. As the focus reaches object 1, object 1 generates
ON spikes and object 2 OFF spikes. The two middle edges (O1R and O2L)
are now superimposed, with two different polarities, causing the failure of
the algorithm (Fig.9.d).

2.4 conclusions and discussions

In this paper we proposed a spiking neural network model that solves
the depth from focus efficiently by exploiting an event-based representation
amenable to neuromorphic hardware implementations. The network oper-
ates on visual data in the form of asynchronous events produced by a neu-
romorphic silicon retina. It processes these address-events in a data-driven
manner using artificial spiking neurons computation units. This work intro-
duces a valid explanation and a robust solution to depth estimation from
defocus that has not been reported in the literature. The overall system
matches recent existing literature of neuroscience, biological retinas and psy-
chophysics studies on the role of defocus in the visual system. This network
is nonetheless an abstract simplification of the depth estimation problem
that must surely combine more complex information in biological systems.
More importantly, this study should be coined depth from focus rather than
from defocus as the neural structure developed aims at detecting the exact
time of focus during a sweep.
Although five decades of research tried to solve the problem of depth from
defocus, the fundamental difference and novelty of this work is that the net-

2.4 conclusions and discussions 19

0 100 200 300 400 500 600 700

x (px)

ti
m

e
 (
m

s
)

Overlap, wrong match

object 1

object 2

On events

Off events

Valid Match

Wrong match

0 100 200 300 400 500 600 700

x (px)

5

10

15

20

25

ti
m

e
 (
m

s
)

No Overlap

object 1

object 2

02L
01L

01R

02R

02L01L

01R

02R

O
b
j
e
c
t
2

O
b
j
e
c
t
2

O
b
j
e
c
t
1

O
b
j
e
c
t
1

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k) (l)

Figure 9 – Highlighting of the wrong depth measurements for two closeby edges.
The two central plots show events in the x-time plane, smashing the
y-dimension. Events are color coded with their polarity (red for OFF
events, blue for ON events). The right one is a valid case, with no overlap.
The left one contains an overlap in the event stream, leading to wrong
depth deductions in this case. 4 snapshots of events are presented for
every case

work proposed operates using exclusively precisely-timed temporal contrast
events. These events are measured directly from the neuromorphic silicon
retina, which models only the transient responses of retinal cells (i.e., of the
Y-ganglion cells), without including the sustained ones, yet present in the
system. While the sustained information is present in the silicon retina used,
we show that this information is not necessary to provide depth estimation
from defocus. Silicon retina transient responses produce single events. Their
precise timing plays a crucial role in the estimation of blur and more impor-
tantly in determining when the observed object is in focus.
In contrast, the vast majority of computational models of depth from defo-
cus are based on images that are known to be absent from the visual system
and only rely on luminance information. Additionally, none of them use the
precise timing of spikes. In these models, convolutions techniques are used
to determine the level of blur. These methods are computationally expensive
and meaningfully slower as several acquisitions are often needed to provide
an accurate result. By contrast, the model we presented does not incorpo-
rate any notion of filtering or convolutions. These choices are based on the
perception of spatial contrast, whereas the presented model solely responds
to temporal contrast.

Whether the brain is using such a technique to estimate depth from de-
focus is an open question. However due to the nature of precisely timed
information output by biological retinas [120] convolutions algorithms can-
not provide a viable explanation as the stroboscopic nature of image acqui-
sition and luminance use is incompatible with neural systems. Instead, we

20 depth from defocus

show that the change of polarity at the pixel level contains sufficient infor-
mation to estimate depth from defocus. Recent findings in physiology show
that several mechanisms used by our methodology exist in the Nature. Bi-
ological retinas contain several types of ganglion cells, each informing the
brain about a particular content of the visual scene, such as motion, edges or
chromatic content. In a recent paper, a newly discovered ganglion cell type
‘On-delayed’ is described [72]. This cell has been shown to respond vigor-
ously to increasing blur. Its degree of firing directly encodes the amount of
high spatial frequencies contained in its receptive field. More importantly,
this cell gets input from both ON and OFF polarities. While it is currently
unknown how this defocus information is used by the brain, it is most likely
that this information projects to the visual thalamus and cortex and also to
midbrain structures where accommodation is controlled [4].

We expect the most significant impact of our model to be in the field of
artificial vision. Today’s machine vision processing systems face severe limi-
tations imposed both by the conventional sensors front-ends (which produce
very large amounts of data with fixed sampled frame-rates), and the classical
von Neumann computing architectures (which are a ected by the memory
bottleneck and require high power and high bandwidths to process con-
tinuous streams of images). The emerging field of neuromorphic engineer-
ing has produced efficient event-based sensors, that produce low-bandwidth
data in continuous time, and powerful parallel computing architectures, that
have co-localized memory and computation and can carry out low-latency
event-based processing. This technology promises to solve many of the prob-
lems associated with conventional computer vision systems. However, the
progress so far has been chiefly technological, whereas related development
of event-based models and signal processing algorithms has been compara-
tively lacking (with a few notable exceptions). This work elaborates on an
innovative model that can fully exploit the features of event-based visual
sensors. In addtion, the model can be directly mapped onto existing neu-
romorphic processing architectures. Results show that the full potential is
leveraged when single neurons from the neural network are individually
emulated in parallel. In order to emulate the full-scale network, however, ef-
fcient neuromorphic hardware device capable of emulating large-scale neu-
ral networks are required. The developed architecture requires few neurons
per pixel and is implementable on a variety of existing neuromorphic spik-
ing chips such as the SpiNNaker [35], TrueNorth [82] or LOIHI [27] neural
chips.

3 S PA R S E C O D I N G

This chapter introduces an unsupervised compact architecture that can ex-
tract features and classify the contents of dynamic scenes from the temporal
output of a neuromorphic asynchronous event-based camera. Event-based
cameras are clock-less sensors where each pixel asynchronously reports in-
tensity changes encoded in time at the microsecond precision. While this
technology is gaining more attention, there is still a lack of methodology
and understanding of their temporal properties. This chapter introduces an
unsupervised time-oriented event-based machine learning algorithm build-
ing on the concept of hierarchy of temporal descriptors called time surfaces.
In this work we show that the use of sparse coding allows for a very compact
yet efficient time-based machine learning that lowers both the computational
cost and memory need. We show that we can represent visual scene tempo-
ral dynamics with a finite set of elementary time surfaces while providing
similar recognition rates as an uncompressed version by storing the most
representative time surfaces using clustering techniques. Experiments will
illustrate the main optimizations and trade-offs to consider when implement-
ing the method for online continuous vs. offline learning. We report results
on the same previously published 36 class character recognition task and a
4 class canonical dynamic card pip task, achieving 100% accuracy on each.

3.1 introduction

Neuromorphic event-driven time-based vision sensors operate on a very
different principle than conventional frame-based cameras. Instead of ac-
quiring static images of a scene, these sensors asynchronously record pixel
intensity changes with a high temporal precision (around 1µs). The event
format differs significantly from frames, and therefore conventional machine
learning algorithms cannot be directly applied if one wants to fully use its
potential and temporal properties in terms of power consumption, computa-
tional cost and low memory requirements. Previous notable work on object
recognition using event-driven time-based vision sensors include real-time
event-driven visual pattern recognition that recognizes and tracks circles
of different sizes using a hierarchical spiking network running on custom
hardware [114], a card pip recognition task on FPGAs, implementing differ-
ent hierarchical spiking models inspired by Convolutional Neural Networks
(CNNs) [98] and new methods such as HFirst [93] and recently HOTS [59]
, an unsupervised algorithm which fully considers the spatio-temporal as-
pects of event-based sensors. In this chapter, we introduce a compact hi-
erarchical event-driven multi-temporal framework to learn spatiotemporal
patterns of dynamic scenes extending the concept of hierarchically increas-
ing spatiotemporal-scales time-surfaces introduced in [59] . A time-surface

21

22 sparse coding

is a descriptor that provides a time context around an incoming event and
describes the temporal activity in its surrounding. This descriptor, applied
in a multilayer architecture requires a high number of features to correctly
characterize a dynamic visual input and therefore high memory and compu-
tational costs. Ideally there must be a one to one relation between interesting
spatio-temporal time-surfaces detected in the scene and the ones stored in
each layer of the architecture. The aim of this work is to present a new
formulation of the method in order to reduce the number of features using
sparse coding to express any time-surface as a linear combination of elemen-
tary time-surfaces rather than selecting the most representative ones using
clustering techniques (iterative K-means [6] in the original paper).

3.2 event-based cameras

Biomimetic event-based cameras are a novel type of vision sensor that are
event driven. Unlike their frame-based counterparts, they are not controlled
by artificially created timing and control signals (frame clock) with no rela-
tion to the source of the visual information. Events are generated when sig-
nificant changes of the relative luminance occur at the pixel level as shown
in Figure.10. The visual output is in the form of an Address Event Repre-
sentation and encodes the visual information in the time dimension at the
microsecond time precision. As soon as a change of luminance is detected,
the process of communicating the event off chip is initiated. The process
executes with low latency, of the order of a microsecond, ensuring that the
time at which an event is read out from the camera inherently represents
the time at which a contrast change was detected. The camera used in our
setup is an Asynchronous Time-based Image Sensor (ATIS) [100] which has
a 304× 240 pixel resolution. This array of fully autonomous pixels combines
both a relative luminance change detector circuit and a conditional exposure
measurement block. Only the change detector circuit will be used for our
experiments. When no change of luminance is detected, no events are gen-
erated and the static information is not recorded. This reduces the data load
and allows for high speed online processing.

3.3 methods

In this section, we will introduce the notion of time-surface, describing
the spatio-temporal surrounding of an event, before showing that these so
defined time-surfaces can be clustered using a sparse coding algorithm, thus
allowing a drastic reduction of the total number of features used for classi-
fication, which directly impacts the hardware implementability of the algo-
rithm, as discussed in next section.

3.3 methods 23

Figure 10 – a) The ATIS sensor. b) Functional diagram of an ATIS pixel. Two types
of asynchronous events, encoding change and brightness information,
are generated and transmitted individually by each pixel in the imag-
ing array. Each time the luminance of the considered pixels rises a
level (a relative change from previous measurement), a change detec-
tion event is generated, like at time t0. This triggers a second circuitry
which measures the absolute gray level value. This value is coded in
the timing between two events occurring at t1 and t2. This timing en-
codes the time required to capture a given amount of light, and is then
inversely proportional to the absolute gray level.

3.3.1 Time-surface construction

We consider a stream of visual events (Figure 11.b), which we define as
evi = {xi, yi, ti, pi} where evi is the i-th event, and consists of its spatial
location (xi, yi), its timestamp ti, and its polarity pi, with pi ∈ {-1, 1}, for
respectively a decrease or increase in luminance.
In [59] the notion of time-surface feature Si is introduced. It represents the
previous activity around the spatial location of an incoming event evi. Thus,
for an incoming event evi, we define a time context (Figure 11.d) as an array
of the last activation time in the (2R+ 1)2 neighborhood (of radius R), cen-
tered at (xi, yi).
The time-surface Si (Figure 11.f) around an incoming event evi is then ob-
tained by applying an exponential decay (Figure 11.e) to each element of the
time context [59]) .
For an incoming event evi at location (xi,yi), the value of its associated time-
surface is:

Si(u, v) = e
−(ti−tu,v)/τ

where u ∈ [[xi − R, xi + R]], v ∈ [[yi − R, yi + R]], tu,v the timestamp of the
most recent event that occurred at the respective pixel, ti the timestamp of
the current event and τ the time constant of the exponential decay. As all
the events are processed one after the other, the time difference ti − tu,v
is necessary positive. Figure 11.b shows this full process of time-surface
generation.

3.3.2 Training phase: Finding the patch of projection basis

Following the sparse coding algorithm introduced in [90] , assuming that
any time-surface S(x, y) can be approximated as a linear combination of N

24 sparse coding

functions φj(x, y) for j ∈ [[1,N]] giving its estimation S̃ (for clarity, we omit
the i subscript for each event) :

S̃(x, y) =

N∑
j=1

ajφj(x, y)

where the aj are real linear coefficients (aj ∈ R for j ∈ [[1,N]]). This relation
is equivalent to the projection of a time-surface S onto a subspace defined
by the elementary time-surfaces φj. The feature estimation can be classically
formulated as an optimization problem. The solution is given by minimizing
the following residual error function E, set as the difference between the orig-
inal surface and its reconstruction using the elementary time-surfaces linear
summation (left member) and a measure of the sparseness of the coefficients
(right member):

E =
∑
x,y

S(x, y) − N∑
j=1

ajφj(x, y)

2
︸ ︷︷ ︸

reconstruction error

+ λ

N∑
j=1

|
aj

σ
|︸ ︷︷ ︸

sparseness of the (aj)

(14)

Where λ is a positive constant that determines the influence of the second
term relative to the first, and σ a scaling constant.

The minimization is performed using a training dataset of events from
the event-based camera [90] . Elementary time-surfaces are initialized with
random uniformly distributed values between 0 and 1, while the coefficients
values are initialized with the product between the initial features and the
time-surfaces computed from the training dataset. We use the conjugate
gradient descent method [103] to minimize the error E (i.e. maximize the
similarity between S and S̃, by updating the coefficients aj, while maximiz-
ing the sparseness of the coefficients).
Elementary time-surfaces are then updated by adding the residual error
weighted by the coefficients obtained from the previous iteration of the min-
imization process:

φj ←− E.aj.η+φj

where η is the learning rate. All time-surfaces are computed offline from
the learning dataset. Then, they are fed to the minimization algorithm until
convergence. The number of features is computed iteratively and set as the
one providing the lowest reconstruction error on the training time-surfaces
set.

3.3.3 Building a hierarchical model

In the initial architecture described in [59] , each layer has a set of ele-
mentary time-surface prototypes matching time surfaces from the observed
scenes and learned during the training phase. When an input time-surface
matches a prototype, an event is produced and transmitted to the next layer.
A single input event will produce at most one output event. In the present

3.3 methods 25

ON events OFF events

(b) Stream of

events

(a) ATIS Camera

(c) Spatio-temporal

domain

(e) Exponential kernels

(d) Time context

(f) Time-surface (S)

(g) Basis functions (�)

(h) Reconstructed Time-surface

 (�=�aj�j)

X

S

Figure 11 – Time-surface generation and decomposition over a basis. The ATIS
camera (a) generates a stream of events (b) from an moving X character.
The time context (d) of one event is extracted from the spatio-temporal
domain (c) and convolved with and exponential decay (e), providing
a time-surface (f). This time-surface is projected over a set of basis
functions (g), which gives the resulting (h) reconstruction. Inspired
from [59] .

model, a layer now contains a finite set of N elementary time-surfaces while
the output of a layer represents the linear response of all the N elementary
time-surfaces, represented by the projection coefficients of the input surface
onto this basis.

Figure 14 shows the response obtained at the output of a layer, and how it
is sent to the next layers in order to build the proposed hierarchical model.
Figure 14.a shows an object moving in front of an ATIS camera. Each event
is captured from the stream sent by the event-based camera. In Figure 14.b,
time-surfaces for each event are built by a convolution with an exponential
kernel of time constant τ1, for a neighborhood of (2R1 + 1) side length. As
described in section II, time-surfaces are sent to Layer 1, to find a projec-
tion basis of N1 elementary time-surfaces shown in Figure 14.c. Once the
elementary time-surfaces projection basis has been extracted, the learning
process of Layer 1 is finished. Now each incoming time-surface is directly
projected onto all elementary time-surfaces basis. The projection coefficients
(Figure 14.e) are defined as the least square solutions that minimize the er-
ror function E (Equation 14). The aj coefficients are constrained between -1
and 1. The projection coefficients are split into two groups (Figure 14.f-g),
depending on whether their value is positive or negative, as detailed in [58]
. For each feature j of the basis, a linear decay is applied to the projection
coefficients as shown in Figure 14.g, and a new event evout is generated :

evout = {xout, yout, tout, pout}

where :
(xout, yout) = (xin, yin)

tout = tin +α
(
1− |aj|

)
pout = j | j ∈ [[1,N1]]

(15)

were α is a timing scale factor describing the time span of the newly gen-
erated event-stream. The higher the coefficient, the higher the similarity

26 sparse coding

between the basis and the surface input. We then encode the similarity level
into the time domain, as a delay of the output event depending on the simi-
larity between two surfaces.
As shown in Figure 14.h, new events are convolved with an exponential
decay of time constant τ2, for a neighborhood of (2R2 + 1) side length, in
order to generate new time-surfaces. In Figure 14.i, output delayed spikes,
for positive coefficients, according to the results of convolutions with each
elementary time-surfaces basis are sent to Layer (2,+) for training. The goal
is now to determine the N2 elementary time-surfaces of Layer 2. As shown
in Figure 14.j, steps (d) to (h) are repeated. Then, the same steps (g) and (h)
are applied to Layer (2,−) for negative coefficients.

Since the nature of the input and the output of our model is the same,
events produced at the output of Layers (2,+) and (2,−) can be sent to the
next layer, and the process from step (b) to (g) is repeated (Figure 14.l-k).
Layers are trained consecutively one after the other.

As in [59] , the main idea of the architecture is to gradually increase the
complexity of spatial and temporal information. Information is integrated
over larger and larger time scales. Each layer Li increases its number of ele-
mentary time-surfaces Ni, the neighborhood radius Ri, and the integration
time constant τi:

τi+1 = Kττi

Ri+1 = KRRi

Ni+1 = KNNi

(16)

The network is only defined by a set of six parameters : the initial conditions
(τ0, R0, N0) and the evolution parameters (Kτ, KR, KN). Comparisons with
[59] are provided in the experiments section.

3.3.4 Classification

The output of the last layer of the hierarchical structure is fed to a clas-
sifier for pattern classification. We use a simple classifier to show that the
model provides sufficient discrimination without the need for complex clas-
sification methods. However, in case of larger databases, where a variety of
descriptors are generated for the same class, the use of more advanced classi-
fication algorithms might become necessary. We compute an histogram from
the output of the last layer of the hierarchical model that contains the total
number of responses of each feature to the input pattern, independently
from its spatial position. This is the signature of the observed object, and
will be used for further comparisons. This method is the same as the one
explained in [59] . Figure 13b shows an example of such an histogram.

Each learning example is presented to the model, in order to learn its sig-
nature. In a second step, during the testing phase, the signature of incoming
patterns are computed and compared to the signatures of each learned ex-
amples. The closest one is then identified and finally, the recognized object
is obtained by a majority vote from the results of all the last sub-layers.

We will use two types of distances between signatures : the Euclidean
distance and the Bhattacharyya distance [14] . The histogram signature for

3.4 experiments 27

classification, which is a weak classifier, is here chosen in order to prove
the robustness of the proposed descriptor. Stronger classifiers exist (SVM,
adaboost methods, ...), but their use in this context is outside the focus of
this chapter.

3.4 experiments

(a) (b)

Figure 12 – Representation of the datasets used for the experiments: (a) Letters and
digit dataset: consisting of the 26 characters of the roman alphabet and
the digits from 0 to 9. (b) Flipped cards dataset: consisting of the four
suits of a deck of cards (club, diamond, heart and spade). Inspired
from [59] .

3.4.1 Letters and digits dataset

The model has been used with the "Letters and Digit" dataset, provided
by Orchard et. al [93] (Figure 12-a). It consists of a set of moving charac-
ters. The dataset used for the learning phase contains the representation
of 26 characters from the roman alphabet and ten digits (A-Z, 0-9). The
dataset used for the testing phase contains 12 representations of each char-
acter, in [A-Z] and [0-9]. The goal is to identify the character or the digit.
For this experiment, we tested our method on a three layer architecture, we
set empirically the number of elementary time-surfaces for each layer to be
respectively: N1 = 6, N2 = 9, N3 = 12.

The neighborhood radius is empirically set to R = 2 throughout the whole
architecture, while the integration times for the exponential decays are set
to : τ1 = 10ms, τ2 = 15ms and τ3 = 20ms. We were able to obtain 100%
of accuracy in classification, both with the Euclidean and the Bhattacharyya
distance.

3.4.2 Flipped card deck

The second dataset we used is the "Flipped card deck" dataset, provided
by Linares-Barranco et. al [98] (Figure 12-b). It consists of a deck of cards
whose corner is flipped in front an event-based camera so that only the suit
symbol of the card is visible. The goal is to identify the cards’ suit. The
original dataset contains 40 samples, 10 from each suit. The learning and
testing datasets were generated by randomly taking respectively 7 and 3

examples of each suit from the original dataset. For this experiment, we
tested our method on a three layer architecture, with the same parameters

28 sparse coding

used for the letters and digits experiment. We were able to obtain a 100%
accuracy. We then decreased the number of features for each layer, in order
to see the impact of such a modifications. For (N1, N2, N3) = (3, 6, 9), the
recognition rate drops to 83%, while decreasing the number of generated
spikes by a factor of 2.5 (see Table 1).

Table 1 – Results and comparison with original HOTS model

Algorithm This work HOTS [59]
Dataset Cards Digits Cards Digits

Number of Centers 3-6-9 6-9-12 6-9-12 8-16-32 8-16-32

Recognition Rate 83% 100% 100% 100% 100%
Number of spikes 7 599 450 18 500 730 74 440 535 52 410 513 383

3.5 conclusion

This work exposes a new approach for learning spatiotemporal features
from an event based camera. It allows a compact representation of informa-
tion by reducing the number of prototypes in a hierarchical learning struc-
ture using sparse coding basis decomposition. This reduction induces an in-
crease in the number of events generated by the system. Unlike the original
model, we have shown that it is possible to reduce the number of prototypes
without strongly impacting the precision. Our model increases the activity
of each cell. This, however, is not a limitation since the available neuro-
morphic hardware can handle a large number of spikes (signal constraints)
despite being limited to a small number of neurons (hardware constraints).
Limitations are then shifted to maximal firing rate and bandwidth, not to
mapping constraints due to a lack of available neurons. It is important to
emphasize that we assumed a floating point precision, no consideration was
given to precision limitations. Future work will focus on characterizing a
loss of precision, both in number representation and in basis projection er-
rors. Moreover, the addition of a refractory period to each prototype, in
order to limit the firing rate of a single cell, will be studied. All of this could
lead to a full hardware implementation.

3.5 conclusion 29

(a)

(b) (c)

Figure 13 – Results for the character dataset. a) Output of the 3 layers network
for three characters after learning. This output is color coded accord-
ing to the responding basis (1 out of 24). We can see that some basis
are specialized (red for horizontal edges, dark blue for curves, etc). b)
Signature for two different representations of the same digit. The sig-
natures are very similar between the same class and differ from class
to class, allowing a good classification. c) 24 bases of the third layer of
the model after learning on the letters and digits dataset. Because they
are combination of responses of the previous layer, they are difficult to
interpret as they are, but one can notice that they differ one from the
other.

30 sparse coding

L
a
y
e
r

1

P
ro

je
c
ti

o
n
 C

o
e

�

c
ie

n
ts

S
=

�

a
j �

j
L
a
y
e
r

(2
,+

)

(.
..

 N
2
 t

im
e
s
)

L
a
y
e
r

(2
,-

)

(.
..

 N
2
 t

im
e
s
)

(N
e
x
t

la
y
e
rs

)

(N
e
x
t

la
y
e
rs

)

-1-0
.8

-0
.6

-0
.4

-0
.2

00
.2

0
.4

0
.6

0
.8

1 -1-0
.8

-0
.6

-0
.4

-0
.2

00
.2

0
.4

0
.6

0
.8

1 -1-0
.8

-0
.6

-0
.4

-0
.2

00
.2

0
.4

0
.6

0
.8

1

-1-0
.8

-0
.6

-0
.4

-0
.2

00
.2

0
.4

0
.6

0
.8

1

t o
u
t=

t i
n
+

�

(1

�

|a
j|
)S
(x

,y
)=

e
(-

t/

�

2
)

t t t t

+ -

1
2

3
4

-1

-0
.50

0
.51

-
1

-
0
.5

00
.5

1 -
1

-
0
.5

00
.5

1 -
1

-
0
.5

00
.5

1 -
1

-
0
.5

00
.5

1

-
1

-
0
.5

00
.5

1

-
1

-
0
.5

00
.5

1

-1-0
.8

-0
.6

-0
.4

-0
.2

00
.2

0
.4

0
.6

0
.8

1

N
1

.(
2

R
2
+

1
)2

p
ix

e
ls

t t t t

+ -

(b
)

(a
)

(c
)

(d
)

(e
)

(f
)

(g
)

(h
)

(i
)

(l
)

(k
)

(j
)

S
(x

,y
)=

e
(-

t/

�

1
)

2
.(

2
R

1
+

1
)2

p
ix

e
ls

Fi
gu

re
14

–
D

et
ai

le
d

vi
ew

of
a

tw
o

la
ye

r
ar

ch
it

ec
tu

re
:

(a
)

A
m

ov
in

g
ob

je
ct

is
pr

es
en

te
d

to
th

e
A

TI
S

ca
m

er
a

w
hi

ch
ou

tp
ut

s
a

st
re

am
of

ev
en

ts
.

(b
)

Ea
ch

ev
en

t
e
v
in

is
ac

qu
ir

ed
an

d
a

ti
m

e
su

rf
ac

e
is

co
m

pu
te

d
us

in
g

a
τ
1

ti
m

e
co

ns
ta

nt
.

A
s

th
e

ev
en

t
st

re
am

he
re

co
nt

ai
ns

tw
o

po
la

ri
ti

es
(O

N
an

d
O

FF
),

th
e

ti
m

e-
su

rf
ac

e
co

nt
ai

ns
th

e
tw

o
po

la
ri

ti
es

an
d

is
of

si
ze
2
×

(2
R
1
+
1
)2

.
(c

)
Ti

m
e-

su
rf

ac
es

ar
e

pr
es

en
te

d
to

la
ye

r
1

an
d

an
el

em
en

ta
ry

se
t

of
N
1

pr
ot

ot
yp

es
(c

f.
eq

16
)

is
ex

tr
ac

te
d.

(d
)

A
ft

er
le

ar
ni

ng
th

is
el

em
en

ta
ry

se
t,

re
co

rd
ed

ti
m

e-
su

rf
ac

es
ar

e
pr

es
en

te
d

ag
ai

n
to

La
ye

r
1
,a

nd
pr

oj
ec

te
d

on
to

al
lp

ro
to

ty
pe

s.
(e

)
Th

e
pr

oj
ec

ti
on

co
ef

fic
ie

nt
s

ar
e

ob
ta

in
ed

as
th

e
le

as
t

sq
ua

re
so

lu
ti

on
s

th
at

m
in

im
iz

es
th

e
er

ro
r

fu
nc

ti
on
E

(c
f.

eq
14

).
(f

,g
)

A
ll

th
e

pr
oj

ec
ti

on
co

ef
fic

ie
nt

s
ar

e
sp

lit
be

tw
ee

n
po

si
ti

ve
an

d
ne

ga
ti

ve
va

lu
es

.
Th

e
pr

oj
ec

ti
on

co
ef

fic
ie

nt
s

ar
e

co
nv

ol
ve

d
w

it
h

a
lin

ea
r

de
ca

y,
an

d
th

e
re

su
lt

s
ar

e
us

ed
to

de
te

rm
in

e
th

e
sp

ik
e

ti
m

es
t o
u
t

of
th

e
ne

xt
em

it
te

d
ev

en
ts
e
v
o
u
t

(c
f.

eq
15

).
(h

)
Ti

m
es

ta
m

ps
ar

e
so

rt
ed

in
as

ce
nd

in
g

or
de

r
an

d
co

nv
ol

ve
d

w
it

h
an

ex
po

ne
nt

ia
ld

ec
ay

of
in

te
gr

at
io

n
ti

m
e
τ
2

(c
f.

eq
16

)
to

ob
ta

in
ne

w
ti

m
e-

su
rf

ac
es

,o
f

si
ze
N
1
×
(2
R
2
+
1
)2

.(
i)

Ti
m

e-
su

rf
ac

es
ar

e
pr

es
en

te
d

to
la

ye
r
(2
,+

)(
i)

an
d
(2
,−

)(
j)

an
d

a
pr

oj
ec

ti
on

ba
si

s
of
N
2

(c
f.

eq
16

)
el

em
en

ta
ry

ti
m

e-
su

rf
ac

es
is

es
ti

m
at

ed
.(

k,
l)

Th
e

sa
m

e
pr

oc
es

s
ca

n
be

re
pe

at
ed

fo
r

th
e

ne
xt

la
ye

rs
,b

ui
ld

in
g

in
th

is
w

ay
th

e
pr

op
os

ed
hi

er
ar

ch
ic

al
m

od
el

.I
ns

pi
re

d
fr

om
[5

9
]

.

4 S P I K E S O R T I N G

With the increase of multi-electrode array size, spike sorting algorithm
are often overwhelmed by the quantity of data to process. It is then impos-
sible to have meaningful results in real-time for applications such as closed
loop experiments. Furthermore, there is almost always the need of an ex-
ternal human operation to control and validate results. Here, we show that
neuromorphic computation can yield to very good results in real-time unsu-
pervised spike-sorting tasks. Our results demonstrate that considering the
time as the most valuable information in signals helps extracting coherent in-
formation from noisy data. Comparison between the proposed method and
state-of-the-art algorithms shows that event-driven computation allows to
significantly reduce computation time while increasing efficiency, reaching
up to 90% of recognition rate on real data. We anticipate this work to open
new horizons for embeddable real-time devices for closed-loops applications
and low-cost performance analysis of in-vivo data.

4.1 introduction

State of the art spike sorting methods relies on prior knowledge of the dy-
namic of the signal for discriminant features extraction, and aren’t suitable
for real-time applications. Thus, these methods, regardless their efficiency,
couldn’t be considered as bio-inspired ones. This work aims to show that it is
possible to extract, in real time, the dynamic of the signal. It has been shown
that an event-based approach for pattern recognition [20][117][24][59][1] can
yield to a better conceptualization of each new piece of information, with
respect to past activity, both in spatial and temporal neighborhood. In this
work, we will present a hierarchical event-based approach for spike sorting
applications.

Spike sorting algorithms mainly rely on three steps : spike detection, fea-
ture extraction and classification. The first step often employs an automatic
spike detection method (threshold detection in most of the case [112]). Dur-
ing a second step, a set of features is computed, for example using mixture of
Gaussian kernels (Khadir et Al.[56]), wavelets transformation [105] or PCAs
[112]. Then, the extracted features are assigned to cell types by learning al-
gorithms, such as (un)supervised clustering.
In this chapter, I will first show a novel approach for features extraction, be-
fore explaining how it can be used for spike detection, allowing the whole
pipeline to work in real-time.
The performances of the algorithm were tested both with a synthetic bench-
mark [137] and in-vivo recordings [49], and then compared to state-of-the-art
algorithms [112, 56, 105].

31

32 spike sorting

4.2 methods

Here I detail how, from an analog signal, the proposed algorithm gener-
ates events, extracts features, clusters them in a hierarchical model, and then
classifies unknown examples.

4.2.1 Model description

Level n-1

Level n

Level n+1

Time

Time

Time

A
m
pl
it
ud
e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t
ci+2

t
ci

t
ci−2

t
ci−1

t
ci+1

t0

Co
nt
ex
ta

mp
lit
ud
e

(a) (c)

(b)

Figure 15 – Generation of a context. (a) Level crossing for spike generation. The
sampled signal (red dots) is interpolated. Each time the linearly in-
terpolated signal (dashed red line) crosses a level (horizontal dark
dashed-dotted lines), a spike is generated, either positive or negative
depending of the rising or falling behavior of the signal. (b) Genera-
tion of a context. When a spike occurs at channel ci, all the values
of the exponential decays among a spatial neighborhood are taken
(i ∈ [[i − r, i + r]],r being the current radius value) and are our base
features. (c) Exponential time decay among a spike. The value of the
exponential kernel is color-coded : brighter pixels represent higher val-
ues than darker ones.

We will here give an overview of the proposed algorithm. Detailed expla-
nations and equations can be found in the Method section.

When the input signal changes, our algorithm asynchronously generates
events forming a spatio-temporal point cloud representing the signals’ dy-
namical behavior. The sampled signal is first sent into a spike generator to
(artificially) convert it in an event-based signal. As in silicon retinas [100],
the variation of the signal triggers an event generation. In a more detailed
approach, the sampled signal if first filtered by a high-pass, 3rd order, Infi-
nite Impulse Response (IIR) filter for DC filtering and low frequencies noise
rejection. Then, the filtered signal is compared to a bank of levels. Each

4.2 methods 33

time the signal crosses a level, a spike is triggered, both positive if the signal
is increasing while crossing the level, or negative if the signal is decreasing
(Figure 15-a). A linear interpolation between two samples is used for better
time precision.
Each event ev(i) can be seen as the following triplet :

ev(i) = {ti, ci, pi} , i ∈N (17)

where ti is the timestamp of the event, ci its channel (the crossed level)
and pi its polarity, pi ∈ {−1, 1} (i.e. positive or negative).

Considering a stream of events, we can associate for each event a descrip-
tion of its spatio-temporal neighborhood. This description will be referred
as context, generated by convolving an exponential kernel (Figure 15-b) to
the most recent activity on the surrounding of the incoming event (Figure
15-c). These contexts are then clustered using an online iterative clustering
method [6]. Once this learning phase done (i.e. the centers are determined
and represent the dynamics of the learned signal), we extract the response
of the network for different spikes. Then, events from unknown spikes are
fed in the network, and their signatures compared to the learned ones for
classification.

Input data is presented to the network. Contexts are built with the con-
volution with an exponential kernel of time constant τ1 and considering
a spatial neighborhood of side length (2R1 + 1). Then, these contexts are
clustered into N1 centers. When a cluster is matched, an output event is pro-
duced, constituting the output of Layer 1. This output is of the same type as
its input, as shown in Equation 17 and 24. Thus, the same process applied to
Layer 1 can be applied to layer 2 using different parameters for space-time
integration (τ2, R2, N2).

As stated before, each layer l is only characterized by 3 parameters :
— τl, the time constant of the exponential kernel,
— Rl, the size of the neighborhood,
— Nl, the number of centers to be learned by the clustering algorithm.
The output of the last layer can be used as a feature for shape classification.

The training of the recognition algorithm consists in two distinct steps. In the
first one, learning data is presented in order to learn the centers computed
as described in the previous section. Then, the same inputs are provided
to the network and a histogram of centers activation (signatures) is built for
each different class, using rather TSNE projection or offline KMeans cluster-
ing. These histograms represent the number of centers activated during the
presentation of the example, independently of its spatial position, and are
discriminant enough to allows proper classification.

4.2.2 Event generation

The sampled signal (48 kHz for the benchmark, 20 kHz for ex-vivo record-
ings) is first sent into a spike generator to (artificially) convert it in an event-
based signal. Then, the sampled signal if filtered by a high-pass, 3rd order,
Infinite Impulse Response (IIR) filter for DC filtering and low frequencies
noise rejection. Then, the filtered signal is compared to a bench of levels.

34 spike sorting

Each time the signal crosses a level, a spike is triggered, either positive if
the signal is increasing while crossing the level, or negative if the signal is
decreasing (Figure 15-a). A linear interpolation between two samples is used
for better time precision.
Each event ev(i) can be seen as the following triplet :

ev(i) = {ti, ci, pi} , i ∈N (18)

where ti is the timestamp of the event, ci its channel (the crossed level)
and pi its polarity, pi ∈ {−1, 1} (i.e. positive or negative).

4.2.3 Feature extraction and clustering

A spatio-temporal point cloud is formed with these events, representing
the spike spatial distribution and dynamic behavior. Because this point
cloud may contain information about the spikes dynamic and amplitude,
we introduced the event context Si of the event ev(i) to convey information
about surrounding activity just before time ti.
Let N(ci) be a windowing neighborhood with length 2R + 1 (in channels)
around the event’s channel ci :

N(ci)
c = {ci + c | abs(c) 6 R} (19)

Then, this event’s context Si is defined as :

Sci = exp

(
ti − t

c
ref

τ

)
for {abs(c) 6 R} (20)

where tcref is the last spike time at the cth channel.
When a context has been computed, it is compared to a bank of context,

or centers. The most-closely matching center will then generate an output
event. First, we do have a set of N initial contexts mk, k ∈ [[1,N]] where mk
takes the same form as Si in Equation 20. These contexts are initialized with
the first N incoming contexts. More formally,

mk = Sk k ∈ [[1,N]]

Then, they are clustered using an online Iterative Inverted Weight Kmeans
(IIWKmeans, [6]). This clustering method was preferred to KNNs [26] or
KMeans [68] because of its independence towards the initial conditions and
its ability to work online. For each incoming context S, we define its nearest
center mk∗ :

mk∗ = argmin
k

(||S−mk||) (21)

where mk is the kth center. The update rule is then shown by:

mk∗(ts + 1) = mk∗ − ζaik∗(S−mk∗) (22)

4.3 results 35

with:

aik∗ = −(n+ 1)||xi −mk∗ ||
n−1 −n||xi −mk∗ ||

n−2
∑
j6=k∗

||S−mk∗ || (23)

ζ and n are two learning parameters able to constrain the update rule.
Once the learning is over (i.e. all the centers converged), each context can

be associated with a particular center mk. So, the input stream of events is
transformed into an output stream of centers’ activation :

evout = [ci, ti, ki] (24)

where ki is the index of the matching center mk∗ .
At this point, for noise (isolated context) rejection, it is possible to imple-

ment context rejection based on some thresholding among the distances and
so prevent emitting a new event if the match between the context and the
center was not strong enough.

4.2.4 Classification

The recognition by itself is done by comparing online signatures to the
trained ones. The distance between two histograms (H1, H2) used here is
the Bhattacharyya [14] distance :

db (H1, H2) = − log
∑
i

√
H1(i)

card(H1)

H2(i)

card(H2

4.3 results

4.3.1 Metrics

Noise level

The noise level nl was defined as the reciprocal value to the signal-to-noise
ratio (SNR) [137] :

nl = SNR
−1 =

(
Asignal

Anoise

)−1

where Asignal is the root mean square value from all the extracted spikes,
and Anoise the one for the rest of the signal.

Performance rating

To compare our method to state of the art spike sorting algorithms, we
used the Adjusted Mutual Information. This measure provides information
about how good the clustering is. Unlike the recognition rate (trace of the
confusion matrix divided by the sum of all the elements within the confusion
matrix), this measure is adjusted by chance, meaning that a zero value stands
for chance and a 1 value for a perfect classification. Details and properties
can be found in [129].

36 spike sorting

Table 2 – Model parameters for the artificial benchmarking

L1 L2 L3 L4 L5
τ(µs) 25 50 75 100 125

R(px) 2 4 8 16 32

Nc 4 11 39 147 562

ζ 5.10−5 5.10−5 5.10−5 5.10−5 5.10−5

4.3.2 Benchmarking

The proposed algorithm was tested with a database of artificially gener-
ated data from simulating extracellular signals recorded with a single elec-
trode. Nine real spikes where manually picked from extracellular tungsten
micro-electrode recorded during Deep Brain Stimulation operation from the
sub-thalamus nuclei. They are then corrupted with noise coming from a
superimposition of activity of many distant neurons in the brain [137].

Results

In this section, we will present results of the proposed algorithm on the
benchmarking database [137]. This database contains 32 sets of 9 artificially
generated spikes, corrupted with noise. Figure reffig:voronoi-b shows the
noise-free input data. The training of the algorithm was done with one full
set of the intermediate noise-level. The learned centers where then used
for building signatures and recognition for all the 31 remaining sets. The
parameters used for this benchmark are summarized in Table 2.

0 200 400 600
Time(µs)

100

200

300

le
ve

l #

Shape4

0 200 400 600
Time(µs)

100

200

300

le
ve

l #

Shape6

0 200 400 600
Time(µs)

100

200

300

le
ve

l #

Shape1

0 200 400 600
Time(µs)

100

200

300

le
ve

l #

Shape8

0 200 400 600
Time(µs)

100

200

300

le
ve

l #

Shape2

center 1
center 2

center 3
center 4

center 5
center 6

center 7
center 8

center 9
center 10

center 11
center 12

center 13

0 200 400 600
Time(µs)

100

200

300

le
ve

l #

Shape7

0 200 400 600
Time(µs)

100

200

300

le
ve

l #

Shape9

0 200 400 600
Time(µs)

100

200

300

le
ve

l #

Shape5

0 200 400 600
Time(µs)

100

200

300

le
ve

l #

Shape3

Figure 16 – Output of the last layer. For all the 9 different shapes, the matching clus-
ters among a spike is color-coded. Our algorithm learns and extracts
local curvatures that can be used for classification.

Figure 18-a shows the response among the centers of the fifth and last
layer. The dynamic of the signal is well captured and clusters respond to lo-
cal patterns of the input signal. Using high dimensionality reduction (TSNE,
[67]) for data visualization, the projection of the signatures for some testing

4.3 results 37

0.00-0.15 0.15-0.30 0.30-0.45 0.45-0.60
noise level

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
M
I

HotsL5
HotsL3
WaveClus
KlustaKwik
OSort

Figure 17 – Recognition rate (AMI) with median and standard deviation versus
noise level and comparison to other methods. Blue bars report classi-
fication rates after layer 5, green ones after layer 3. Our method (blue
and green bars) performs better than others : standard deviation is
lower (median is represented in black middle line). For low noise con-
ditions, our median is higher. For noise level between 0.15− 0.3, we are
a bit under WaveClus, but over all the other ones. We can also see that
in noisy conditions (noise level > 0.45) our algorithm is significantly
better than all the others. 3 Layers run real-time.

-25 -20 -15 -10 -5 0 5 10 15 20 25
-40

-30

-20

-10

0

10

20

30

(a) (b)
dimension 1 (a.u.)

d
im

e
n

s
io

n
 2

 (
a
.u

.)

Figure 18 – Classification for the benchmarking data. (a) Voronoi diagram for
the projected signatures in two dimensions and corresponding ground
truth in color. Mostly, the signatures contain enough information to
ensure good discriminant classification. (b) The associated temporal
shapes. We can notice that our algorithm extracts signatures that are
distinguishable one from each other all thereby allows good classifica-
tion.

examples in two dimensions shows the ability of the algorithm to distinguish
different types of spikes (Figure 18-b). Figure 17 presents the AMI score for

38 spike sorting

the presented algorithm compared to state-of-the art methods. It has to be
taken in account that the only previous method working in real time is the
OSort algorithm. The HotsL3 and HotsL5 presented here are for the output
of the third and fifth layer of the hierarchical model. The classification score
after layer 5 overcomes all the other methods. After layer 3, only for inter-
mediate noise level (0.15− 0.30) are we slightly below Waveclus. For noisy
dataset (0.45 and more), the proposed method overcomes drastically all the
others. This shows the very good immunity of the proposed method toward
noise. Regarding the required time to process all these data, our algorithm
performs real time for 1-3 layers on a standard desktop computer (Intel Core
i7-4790 CPU @ 3.60GHz, 16GB of RAM, running Debian 8.5 Jessie). Figure
20 represents the computation time for 1-5 layers.

Extension to in-vivo data

1

3

16

14

8

14

C
ro

s
 e

u
c
li
d
ia

n
 d

is
ta

n
c
e
 b

e
tw

e
e
n

 e
a
c
h

 c
lu

s
te

r

-0.8

-0.9

-0.5

-0.7

-0.3

-0.2

-0.4

-0.6

-0.1

-0

-1

14

(a)

(b) (c)

Figure 19 – Results with data from ex-vivo rat retina. (a) TSNE projection with
output of the last layer. It is possible to distinguish two major types
of cells (c) Clustering is able to find several possible new cells, which
can be merged together. (c) The Euclidian distance allows us to merge
all the clusters to estimate the best number of classes (the darker the
closer). Here, we have two different classes. (b) The two found classes
with mean shape (dark) and some examples (color).

Good results on semi-artificial dataset lead us to benchmark the proposed
method on real data. Buzaki’s lab developed new techniques for simultane-
ous recordings of in-vivo (patch clamp) and ex-vivo (multi electrode array)

4.4 conclusion 39

data [50, 46]. Data from the CA1 hippocampal region of anesthetizided rats
[49], containing both intra and extracellular recordings, was used. The extra-
cellular tetrodes [107] are made of four 13-um polyimide-coated nichrome
wires. The intracellular glass micropipette filed mainly with potassium so-
lution. The extracellular data contains responses from two different cells
(type A and type B), whereas the in-vivo data target only one (type A). So,
the intracellular data can be used as a ground truth to validate the sorting
on extracellular data. Without fine tuning of the parameters, the use of the
same parameters as in previous section leads up to 90% recognition rate.

The dataset was split into 10 subsets, randomly picked, with around 30 %
of type 1 cell. One subset is used for learning the clusters, and the 9 others
to test the algorithm. The experience was run for 100 times. Table Table
3 shows the results of these runs. Our algorithm outperforms state-of-the
art real-time spike, and is slightly lower than the best method reported on
this dataset, which is not real-time. Computation time (on a Intel Core i7-
4790 CPU @ 3.60GHz, 16GB of RAM, running Debian 8.5 Jessie) is about 25

seconds for one set of 80 seconds of data, which is more than 3 times faster
than the real-time. Figure 20 shows the computation time versus the number
of layer. We can see that the proposed method is able to handle in real-time
a 3-layer architecture.

Figure 20 – Average computation time for the proposed architecture. Y-axis rep-
resent the ratio of the computation time required and the duration of
the recording. Baseline of 1 (red line) is real-time. Above is faster than
real-time. The proposed method is able to handle in real time a 3-layer
hierarchy.

4.4 conclusion

We showed that a paradigm shift in the data representation and a fully
event-based hierarchical processing pipeline can lead to very good recogni-
tion rates. As stated in [59], the hereby used "event-based spatiotemporal
context" is speed dependent. This may be a problem for pattern recognition,
where the task is to recognize a given shape, presented in various poses and
motion, but helps us for cellular recordings, as each neuron fires with a spe-

40 spike sorting

Table 3 – Recognition rate on in-vivo data. The bolted algorithms are the only one
working in real-time. Our algorithm performs better than state of the
art online spike-sorting, and are slightly below the known best algorithm
reported on this dataset, which is not real-time.

Method minimum maximum average
Shahid et. Al [115] N/A N/A 66%
Werner et. Al [134] N/A N/A 82.1%
Gasthaus et. Al [38] N/A N/A Fscore 0.91%
Haessig et. Al (proposed method) 84.75% 90.22% 87.33% - Fscore 0.89%

cific dynamic that we want to extract and distinguish. Without optimisations,
the proposed method is able to handle up to a 3-layer architecture, defeat-
ing state-of-the-art algorithms on publicly available datasets. This work is
a major step towards efficient spike sorting, which is today a real challenge
for research purpose, closed-loop applications or brain-machine interfaces
[138].

4.5 discussion

In the framework of this article, the input signal is first sampled and then
converted into events. Intrinsically, this approach cannot reflect the signal’s
exact dynamic. The linear interpolation was a first step toward time pre-
cision, but we are still limited by the sampling frequency. This work was
achieved during my first year of PhD. Meanwhile, Corradi et Al. [25] devel-
oped an event-based Multi Electrode Array (MEA), which directly converts
the spike voltage in events. The BioAmp chip was developed at INI (Insti-
tute of Neuroinformatics, University of Zurich and ETH Zurich). As the only
available part, at the beginning of the project, was the die, I had to design, in
collaboration with Federico Corradi (INI) a PCB to bond the die on, and an
interface board to connect the sensor to the FPGA for readout and control
operations. The bonded die is showed in Figure 21.

Figure 21 – One of the Bioamp chip, bonded on its PCB.

5 O P T I C A L F LO W O N T R U E N O R T H

This chapter describes a fully spike-based neural network for optical flow
estimation from Dynamic Vision Sensor data. A low power embedded imple-
mentation of the method which combines the Asynchronous Time-based Im-
age Sensor with IBM’s TrueNorth Neurosynaptic System is presented. The
sensor generates spikes with sub-millisecond resolution in response to scene
illumination changes. These spike are processed by a spiking neural net-
work running on TrueNorth with a 1 millisecond resolution to accurately
determine the order and time difference of spikes from neighboring pixels,
and therefore infer the velocity. The spiking neural network is a variant of
the Barlow Levick method for optical flow estimation. The system is eval-
uated on two recordings for which ground truth motion is available, and
achieves an Average Endpoint Error of 11% at an estimated power budget of
under 80mW for the sensor and computation.

5.1 introduction

Estimation of optical flow is a computationally intensive task. Modern arti-
ficial systems achieve ever higher accuracy on the task at the expense of more
complex algorithms and more powerful computing hardware such as GPUs.
On the other hand, many biological systems are able to estimate optical flow
both effectively and power-efficiently. Examples include insects such as bees
and drosophilia, which rely heavily on optical flow for navigation [54], but
must estimate optical flow under severe size, weight, and power constraints.
While the optical flow estimated by such insect may not rival modern com-
puter vision approaches in terms of accuracy, the estimated flow is good
enough for the insects to use in navigation, and impressive considering the
tight constraints under which the estimates were generated.

In artificial systems, early optical flow estimation approaches relied on
methods such as velocity-tuned filters in the frequency domain [133, 47],
phase-based methods [10], gradient based methods, and correlation based
methods [118]. The accuracy of these methods for optical flow estimation
on sequences of images has long since been surpassed by even more com-
putationally intensive methods which estimate flow at multiple scales [2],
and more recently by convolutional neural networks [31], which are mostly
running on power inneficient GPUs or dedicated ASICs, which are less ac-
curate, more general, but are more power efficient (PX4Flow [51], optical
mouse). Direction selective neurons are found as early as the retina in frogs
[62], cats [8], rabbits, primates, and many other animals.

A key difference between optical flow estimation in biological and artificial
systems lies in the format of the data from which optical flow is extracted.
Both approaches start off with light from a scene focused on an image sensor,

41

42 optical flow on truenorth

but most artificial systems convert this light signal into a sequence of static
digital images from which optical flow must later be estimated. The retina
works on a different principle, transducing the light signal into a continu-
ous electrical signal, and later into discrete spikes for communication to the
lateral geniculate nucleus and downstream visual cortex.

Not all artificial methods rely on static images though. Tanner and Mead
[121] introduced the first analog two dimensional optical flow chip, extract-
ing a global motion from a given scene on dedicated hardware. Delbruck
[29] also implemented such a network in VLSI. More recently, with the new
event-based cameras, some spike based techniques have been proposed [11],
but they require a dedicated computer for processing. An extensive review
of motion estimation designs can be found in [92].

Over the last decade, so-called silicon-retinae have matured to a level
where they are now publicly available (described later in Section 5.2.2). These
bio-inspired devices provide a spiking output more similar to the biological
retina. Recently many papers have proposed different methods for process-
ing data, including for estimating optical flow. Benosman et al. [11] pro-
posed a plane fitting approach which estimates the motion of sharp edges.
Later, Barranco et al. [9] proposed a method which also estimates flow at
edges, but their method estimates the magnitude of the spatial and tempo-
ral image gradients at the edge and then relies on a gradient-based method
for optical flow estimation. Bardow et al. [7] apply a variational method
which simultaneously estimates both the image grayscale values and optical
flow from events. By enforcing spatial and temporal smoothness constraints,
their method generates optical flow estimates even for image regions where
no gradient information is available.

Some optical flow estimation methods take bio-inspiration a step further
and make use of biologically inspired computation using spiking neurons to
extract optical flow. Examples include Brosch et al. implementing a phase
based method [18], Conradt et al. implementing a Reichardt detector [109],
and Orchard et al. [91] who simulated a method relying on synaptic delays.

In this chapter we propose a Spiking Neural Network variant of the Bar-
low & Levick model [8], using a silicon retina coupled with IBM’s TrueNorth
Neurosynaptic System.

The method exploits precise spike timing provided by the silicon retina
to reliably extract motion direction and amplitude from a scene in real-time.
Such methods promise to allow for low power visual motion estimation in
real-time. TrueNorth is estimated to consume 70mW and the silicon retina
consumes approximately 10mW (chip only, omitting FPGA for communica-
tion, which can be removed for dedicated applications). This setup can then
easily be used in embedded devices such as drones or autonomous driving.
Section 5.2 introduces both the model, IBM’s TrueNorth Neurosynaptic Sys-
tem, and the silicon retina. Details of the model implementation are given
in Section 5.3. Section 5.4 describes how the model was tested, and results
of testing are described in Section 5.5, followed by discussion in Section 5.6.

5.2 background 43

Figure 22 – Working principle of the ATIS camera. (left) A significant relative
change of the luminance (programmable threshold n) generates an ON
(respectively OFF) event when there is an increase (resp. decrease) in
luminosity. (right) Snapshot of events over 100 ms for a car passing in
front of the camera. White dots represents ON events, black ones OFF
events.

5.2 background

5.2.1 Direction Sensitive (DS) Unit

The basis of the network, introduced in [41], is described in Fig. 23. The
original model, inspired by the neural circuitry found in the rabbit’s retina
by Barlow and Levick [8] is based on inhibition-based direction-sensitive
units, combined in motion detectors.

Fig. 23 shows a simplified Direction Selective (DS) neuron which responds
(spikes) to the detection of motion in its preferred direction (rightward). The
DS neuron (gray) receives inputs from two neighboring ATIS pixels (bipolar
cells). Each ATIS pixel (orange and blue) will generate an output spike when
stimulated by the passing of an edge. For motion in the preferred direction
(rightward), the edge will pass over the orange pixel first, and the blue pixel
second.

When the edge passes over the orange pixel, a spike is generated and the
DS neuron is excited. The excitatory input triggers a burst of spikes from
the DS neuron. The burst continues until the edge passes over the blue pixel,
at which point the blue pixel will generate an output spike which inhibits
the DS neuron, causing the spike burst to end. The time-length of the spike
burst encodes the time taken for the edge to pass from the orange pixel to the
blue pixel, thus providing information on the edge velocity in the preferred
direction.

For motion in the opposite direction (leftward) the inhibition from the
blue pixel will arrive before the excitation from the orange pixel. Due to the
initial inhibition, the later excitation from the orange pixel is not sufficient
to drive the DS neuron membrane potential above threshold, and thus the
DS neuron does not spike in response to leftward motion.

44 optical flow on truenorth

The full direction is obtained with a combination of four single DS units,
as shown in Fig. 24.

In implementation, there is a possibility of receiving an isolated noise
spike from the orange pixel, which would cause the DS neuron to begin
bursting, and continue bursting indefinitely. To handle this case, a delayed
copy of the spikes from the orange pixel are used to inhibit the DS neuron,
thus limiting the maximum burst length to the length of delay used.

exc

delay

delay

Preferred direction

time

Exc

Inh

Out
inh

exc

Null direction

inh

time

Exc

Inh

Out NO SPIKES

delayed inhibition

Figure 23 – Direction Sensitive (DS) unit. A stimulus from left to right first excite
(yellow cell) the output (gray), which is self-excitatory until it gets an
strong inhibitory input (blue cell), as a movement in the other direction
(right to left) doesn’t produce any output. Thus, this unit is directive to
a specified direction. More, the timing between the beginning and the
end of the output spiking give an information of the (inverse) velocity.
The excitatory input also copies a spike to the delay unit, to inhibit the
DS cell in case the natural inhibition doesn’t spike. Here, the delayed
inhibition doesn’t have any impact. Inspired by [41].

5.2.2 Event-based Sensor

Conventional image sensors sample the visual scene at fixed temporal
periods (framerate). All pixels acquire light in a synchronous fashion by
integrating photons over a fixed time-period. When observing a dynamic
scene, this framerate, no matter its value, will always be wrong because there
is no relation whatsoever between the temporal dynamics of the scene and
the acquisition period. This leads to simultaneous over-sampling and under-
sampling of different parts of the scene, motion blur for moving objects, and
data redundancy for static background.

5.2 background 45

delay

delay

delay

x,yDS
W

DS
E

DS
N

DS
S

x+1,y

delay

x-1,y

x,y-1

x,y+1

Figure 24 – Assembly of the 4 DS units (North, South, West, East). The direction of
the movement is gathered by taking in consideration, for each pixel, a
vertical and horizontal component. Inspired by [41].

Event-based sensors [102], also known as silicon retinae, are an alternative
to fixed-frequency imaging devices. In these devices, a time-varying signal is
sampled on its amplitude-axis instead of time-axis, leading to a non-uniform
sampling rate that matches the temporal dynamics of the signal, as shown
on Fig. 22. The Asynchronous Time-based Image Sensor (ATIS[100]) is an
QVGA array of asynchronous independent pixels, each combining a change
detection unit and an absolute gray level measurement unit. Each time a
pixel detects a significant change in luminance in its field of view, an event
is generated. Each event can be represented as a triplet evi = (xi, ti, pi), evi
being the i− th event, where xi is the event spatial coordinates, ti its times-
tamp and pi its polarity, indicating if the change is an increase or decrease
in luminance. In this work, only the change detection unit is used.

5.2.3 The TrueNorth Environment

A TrueNorth Chip [82] consists of a network of 64×64=4096 neurosynaptic
cores with programmable connectivity, synapses, and neuron parameters.
Connectivity between neurons follows a block-wise scheme. Each core has
256 input axons, with programmable connectivity to any of the 256 neurons
in that core. Each neuron’s output can be routed to a single axon anywhere
on the chip. All communications to, from, and within chip are performed
asynchronously [83].

46 optical flow on truenorth

Each TrueNorth neurosynaptic core is made of 256 axons, 256×256 synapse
crossbar and 256 neurons (Fig. 25 A). In this chapter, the NS1e board was
used, containing 4096 cores, 1M+ neurons, 268M+ synapses, embedded in
a board with a Zynq FPGA containing an ARM-core (Fig. 25 B).

Synaptic grid

Neurons

…

…

In
p

u
ts

(a) (b)

Figure 25 – a) The TrueNorth topology. Each neurosynaptic core has 256 axons,
256×256 synapse crossbar and 256 neurons. Information flows from
axons to neurons gated by binary synapses, where each axon fans out,
in parallel, to all neurons thus achieving a 256-fold reduction in com-
munication volume compared to a point-to-point approach. Network
operation is governed by a discrete time step. In a time step, if the
synapse value for a particular axon-neuron pair is non-zero and the
axon is active, then the neuron updates its state by the synaptic weight
corresponding to the axon type. Next, each neuron applies a leak, and
any neuron whose state exceeds its threshold fires a spike [19]. b) IBM’s
NS1e board (4096 cores, 1 Million neurons and 256 Million synapses)
and ATIS sensor with native link used for this chapter.

5.3 implementation

TrueNorth implementation of the model was achieved by carefully con-
figuring a single tile-able TrueNorth core, thanks to the tools presented in
[3], to handle a small local region of the input space, and then tiling enough
copies of these cores to cover the full input image.

The TrueNorth environment neuron’s behavior is as following[19] :

Synaptic integration

Vt = Vt−1 +

N∑
i=0

ωixi(t)

Leak

Vt = Vt − l

Threshold

if Vt > Θ

spike

Vt = Vr

5.3 implementation 47

where Vt is the value of the membrane potential at timestep t, ωi the synap-
tic weight for the i − th synapse, l the leak, Θ the threshold, Vr the reset
potential, xi(t) the spike input to the synapse at time t and N the number
of synapse for the considered neuron. The full neuron equations and pa-
rameters can be found in [19], figure 4. The leak is configured to, unless
otherwise stated, leak towards zero. This behavior is detailed in [19].

Within each core, neurons are divided into three main modules, shown
in different colors in Fig. 26. The first module (red) receives input spikes
from ATIS and generates a copy of these spikes which can be used for further
processing by the other two modules. The second module (blue) implements
the delay required to generate the delayed inhibition for the DS neurons. The
third module (green) implements the DS neurons. Each module is described
further below.

̀
x̀

y
 ̀

x
 ̀

y
̀

x̀
yATIS

̀x̀y ̀x ̀y
Refractory Delay DS

̀x̀y ̀x ̀y 4̀x̀y

̀
x̀

y
 ̀

x
 ̀

y

North

West

North

West

S
o

u
th

E
a

st

S
o

u
th

E
a

st

D
S

 o
u

tp
u

t

raw signal

filtered signal

delayed signal

RefractoryRefractory DelayDelay

Neurons

A
xo

n
s

delayed signal

ered signalfiltered signalered signalfiltered signal

raw signal

ered signalered signalered signalered signalered signalered signalered signalfiltered signalfiltered signalfiltered signalfiltfiltfilt

raw signalraw signalraw signalraw signalraw signalraw signalraw signalraw signalraw signal

yed signalyed signalyed signalyed signalyed signalyed signalyed signalyed signalyed signalyed signal

ered signalered signalered signal

delayed signaldelayed signal

ered signal

deladela

ered signalered signalered signalered signalered signal

deladela

raw signalraw signalraw signalraw signalraw signalraw signalraw signalraw signalraw signalraw signalraw signalraw signal

filtered signalfiltered signalfiltered signalfiltered signalfiltered signalfiltered signal

yed signalyed signalyed signal

Figure 26 – Arrangement of a TrueNorth core implementing the motion model. Re-
fractory (red), Delay (Blue), and DS (green) neurons are shown horizon-
tally along the bottom of the core. Input axons are shown vertically on
the left of the core. Text labels indicate the direction inputs are arriving
from and outputs are routed to. The number of neurons (horizontal
axis) and axons (vertical axis) are explicitly indicated for each part of
the model. Shaded regions indicate areas where connections (synapses)
exist between axons on the left and neurons at the bottom.

5.3.1 Input Module

The input stage provides a copy of the input spikes which serve as inputs
to the DS neuron module and delay module. The input stage is also used
to enforce a refractory period which limits the minimum allowable time
between two input spikes from the same pixel by blocking the second spike
if it falls within τr of the first.

A refractory period of τr (ms) is implemented using a refractory neuron
model (see Table 4). When at rest state (membrane potential of zero), the

48 optical flow on truenorth

neuron should fire an output spike as soon as an input spike is received.
This is achieved by enforcing

we + l > Θ (25)

where we is the excitatory synaptic weight.
After spiking, the neuron resets to a large negative voltage and slowly

leaks back to zero, thus implementing a refractory period. The desired re-
fractory period is achieved by setting the reset and leak values such that

τr ≈ Vr
l

Vr = −(2n − 1), n ∈ [[0, 15]]
(26)

where τr is the desired refractory period, Vr is the reset potential, and n the
quantization of the desired value, which can only take on limited values due
to constraints of the chip (here 15 bits).

Input spikes received while the neuron potential is leaking towards zero
will not cause an output spike, but they will shorten the refractory period.
The actual refractory period achieved, τ ′r, is given by:

τ ′r = Vr+wes
l

= τr +
wes
l

(27)

where s is the number of spikes received during the refractory period τ ′r.
To ensure that the achieved refractory period τ ′r is as close as possible to
the desired refractory period, τr, the term wes/l must be minimized. The
minimum value which still satisfies equation 25 occurs when l = 254, we =

255.
Connectivity on TrueNorth is bound by certain constraints, one of which is

that a spike can only be routed to one core. This constraint can be overcome
by implementing multiple identical neurons on the same core. Each neuron
will then generate an identical output, thereby providing multiple copies,
each of which can be routed to different cores.

In the case of our TrueNorth model, there are four co-located DS neurons
at every pixel location, and they each require input from one of the four
neighboring pixels. Thus, the spikes from some pixels serve as input to
neighboring DS neurons which reside on different cores. The input stage
takes care of generating copies of the spikes from these pixels and routing
them to the neighboring cores.

Each core only sends spikes to its neighboring cores lying to the South
and East, and each core receives input spikes from its neighboring cores in
the North and West.

The number of neurons required by the input module is therefore

Nin(∆x,∆y) = ∆x∆y+∆x+∆y, (28)

where ∆x and ∆y specify the pixel size of the image region in x and y

direction processed by a single core.
The input module implementing refraction is shown in red in Fig. 26.

5.3 implementation 49

5.3.2 Delay Module

The delay module implements the delay required by the delayed DS neu-
ron inhibitory input. Delays of τd milliseconds (here, τd = 50ms) are imple-
mented using the Delay neuron model of Table 4.

When at rest (zero membrane potential), the neuron will remain at rest
until an input spike is received. An input spike will push the membrane
potential above zero, and once above zero the neuron membrane potential
will leak towards a positive threshold. The delay is implemented by the
time taken to leak to the positive threshold. Once the threshold is reached,
an output spike is emitted, and the neuron will be reset back to the rest state.

A disadvantage of this approach is that if two input spikes arrive from the
same pixel at times t1 and t2 such that t2 − t1 < τd, only a single delayed
output spike will be generated, and the output spike will be generated with
delay τd − 1 milliseconds after t1. To avoid such complications, we use
the refractory period from the input stage to limit the probability of having
two spikes occur close together. More specifically, we choose τr such that
τr > τd.

All input spikes from the region covered by the core must be delayed,
and copies of the delayed spikes at the South and East boundaries must be
generated for neighboring cores. Thus the total number of neurons required
for the delay module, Ndelay(∆x,∆y), is

Ndelay(∆x,∆y) = Nin(∆x,∆y)

= ∆x∆y+∆x+∆y.
(29)

The delay module (blue in Fig. 26) receives inputs from the refractory
input module (red), as well as input from the refractory input modules of
the cores to the North and West. The delay module generates outputs which
feed back to the same core, as well as output for use in processing of the
cores to the South and East.

5.3.3 DS Module

The DS module holds the DS neurons. The parameters for each neuron
are shown in Table 4. There are four DS neurons per image location, so a
core covering an image region of size ∆x by ∆y pixels will require

NDS(∆x,∆y) = 4∆x∆y (30)

neurons.
The output neuron of the DS module should be self-excitatory until it

receives a strong inhibitory spike, as shown in Figure 23. This behavior was
achieved by setting the reset potential Vr to be higher than the threshold Θ.
Then, when the membrane potential crosses the threshold, the cell enters a
self-excitatory state until a strong inhibition event is received.

Sometimes, due to noise, the inhibitory spike can be missing. To prevent
a cell to spike indefinitely, and second strong inhibition spike is generated
and delayed (typically 100ms) as the excitation spike is generated. So, if the
inhibition is not received, this delayed spike will reset the neuron, and thus

50 optical flow on truenorth

Table 4 – Neuron parameters

Parameter Symbol Refractory DS neuron Delay

excitatory weight (mV) we 255 150 1

inhibitory weight (mV) wi 0 50 0

threshold (mV) Θ 1 125 τd

leak (mV/ms) l −254 −1 1

reset potential (mV) Vr τr.l 127 0

negative floor (mV) β τr.l −50 0

Delay (ms) τd 50

Refractory period (ms) τr 50

putting it in a steady state. It has to be recalled that not all the noise events
will trigger a flow computation, as a valid flow sequence consists of two
spikes in the same neighborhood.

The DS neurons are shown in green in Fig. 26 and receive input from both
the input refractory module, and the delay module of the current core, as
well as from the cores to the North and West.

5.3.4 Parameters

TrueNorth neurons are a variant of linear leaky integrate and fire model
with 23 tunable parameters, as mentioned in [19]. Table 4 contains the neu-
ron parameters for each population.

The total number of neurons N∑ required by a core is

N∑(∆x,∆y) = Nin(∆x,∆y) +Ndelay(∆x,∆y)

+NDS(∆x,∆y)

= 6∆x∆y+ 2∆x+ 2∆y

N∑(∆x,∆y) 6 256.

(31)

The values ∆X = 6 and ∆Y = 6 maximize the image area processed by
the core, subject to the constraint that the core only has 256 neurons. The
number of axons used is less than the number of neurons, so neurons are
the limiting factor.

285 identity cores are used to relay the ATIS input to the motion model
(see Section 5.3.6). For the motion model to cover the 304×240 pixel input
image requires another 304/6× 240/6 ≈ 51× 40 = 2040 cores. In total the
TrueNorth model uses 2040 + 285 = 2325 cores to compute motion at all
locations in the input image space. 240 neurons are used per core (a usage
of 256 neurons per core is achievable if ∆X = 18 and ∆Y = 2, but each core
would still only be processing 36 pixels, and thus such an arrangement is
less efficient).

5.3 implementation 51

5.3.5 Interpreting the Result

To interpret the output spikes from the network at a particular pixel lo-
cation, the outputs of all four of the DS neurons located at the pixel are
combined. The same input spike will excite all four DS neurons, so they
should all start bursting simultaneously (unless they are already inhibited).
We use the notation tx+ to denote the length of the burst from the neuron
sensitive to motion in the positive x-direction. The velocity can then be cal-
culated using

tx = (tx+ − tx−) /δx
ty =

(
ty+ − ty−

)
/δy

vx = tx/
(
t2x + t

2
y

)
vy = ty/

(
t2x + t

2
y

) (32)

where δx and δy represent the inter-pixel distance in the x and y direction
respectively (in our case, δx = δy = 1). vx and vy indicate the component of
velocity in the x and y directions respectively, in units of pixels per millisec-
ond. If the inhibition is missing, the flow computation is discarded.

5.3.6 ATIS-TrueNorth link

The ATIS and TrueNorth chips both use variants of the Address Event-
Representation (AER) protocol [17]. However, the two are not directly com-
patible, so the Opal Kelly XEM6010 board with Xilinx Spartan 6 FPGA which
powers and configures ATIS is also used to convert the ATIS AER signals to
TrueNorth AER signals.

The ATIS AER data consists of an absolute pixel address and a polarity, all
of which are communicated in parallel when the AER request line is active.

The TrueNorth AER data consists of a relative core address, an axon ad-
dress, and a 4 bit target time. The data is communicated in two phases, with
half the bits being communicated in parallel during each phase.

The TrueNorth reset and 1kHz clock tick signals are shared with the Opal
Kelly board so that it can keep track of the state of TrueNorth’s internal 4

bit time. All events are communicated to TrueNorth with a target time 2ms
later than the current time.

A one-to-one mapping from ATIS pixels to TrueNorth neurons is gener-
ated such that each TrueNorth core accepts events from a 16×16 pixel re-
gion, with polarity being ignored (all events are fed in the system, regardless
their polarity). An array of 19×15 = 285 identity cores is instantiated at the
physical core locations targeted by the ATIS interface. These identity cores
generate a copy of the spikes they receive, which can then be routed to the
rest of the TrueNorth model.

This interface arrangement uses an extra 285 cores, but allows the model
to be rapidly changed by only reconfiguring TrueNorth, instead of having to
reprogram the ATIS FPGA to target different cores and neurons for different
TrueNorth models.

52 optical flow on truenorth

5.4 testing

5.4.1 Sources of Visual Data

Two sources of visual data are used in this work: a recording of a black
pipe rotating in front of a white background, originally presented in [91],
and a recording of a rotating spiral [92]. The pipe and spiral sequences are
both ATIS recordings in which ground truth for motion can be predicted
to quantify the accuracy of the output. The pipe and spiral recordings are
shown in Fig. 27. This motion is modeled as described below.

5.4.2 Modeling Motion for the Rotating Pipe

We use a recording of just over half rotation of the pipe due to symmetry
(the second half of the rotation will look almost identical to the first). A full
rotation takes roughly 2.85 seconds, so we use a 1.5 second recording. The
rotating pipe was modeled as having two parallel edges spaced a width of
w apart from each other and rotating about a point centered between them.
Motion of the pipe could then be modeled using

R(t) =

[
cos (tωt) − sin (tωt)

sin (tωt) cos (tωt)

]

Location(l, t) =

[
xc
yc

]
+ R(t)

[
±w2
l

]

Direction(t, l) =

{
tωt l 6 0

tωt + π l > 0

Speed(l) = |l|ωt

l ∈ [−150, 150]

t ∈ [0, π
|ωt|

]

ωt = 2.21rad/s

(33)

where R(t) is a rotation matrix which varies with time (t) to model rotation
of the pipe, ωt is the angular velocity of the pipe, Location(l, t) gives the
pixel location, [x, y]T , of points on the pipe as a function of time, their po-
sition on the edge of the pipe l, and the location of the center of the pipe
[xc, yc]

T . The speed of each point is dependent only on its position on the
pipe l, while the direction depends on t and l because one half of the pipe
is moving in the opposite direction to the other. The pipe has a finite length
of 300 pixels, thereby limiting l. The recording is long enough for half a ro-
tation of the pipe, thereby limiting t. The speed and direction given by (33)
are the components perpendicular to the edges of the pipe. The direction of
the x and y axes are shown top left of Fig. 27.

5.4 testing 53

x

y

a) b)

c) d)

Figure 27 – The two recordings used in this chapter. (a) and (b) show images of a
rotating pipe and spiral respectively from the sensor’s viewpoint. The
direction of rotation is shown by the green arrows inset. (c) and (d)
show 10ms each of the pipe and spiral recordings. Red points indi-
cate OFF-events (decreases in intensity) while blue points indicate ON-
events (increases in intensity). Axes directions used in (33) and (34) are
shown in the top left.

5.4.3 Modeling Motion for the Rotating Spiral

The spiral stimulus does not exhibit the same symmetry as the pipe, so
we use a recording of a full rotation of the spiral, which takes 0.5 seconds.

54 optical flow on truenorth

The shape of the spiral stimulus was parameterized by angle with a variable
θ0 from which the speed, direction, and location of motion can be modeled
using

r(θ0) = 2
θ0
π

Location(θ0, t) =

[
xc
yc

]
+

[
r(θ0) cos (−θ0 + tωt)
r(θ0) sin (−θ0 + tωt)

]

Speed(θ0, t) = 2
θ0
π

ln2
π ωt

1

cos (ln2
πωt

)

Direction(θ0, t) = −θ0 + tωt + sin (ln2
πωt

)

θ0 ∈ [0, 20]

t ∈ [0, π
|ωt

|]

ωt = −12.57rad/s

(34)

where r(θ0) is the radial distance to the spiral from the center, [x0, y0]
T .

Location(θ0, t) describes the [x, y]T location of the spiral edges. Speed(θ0, t)
and Direction(θ0, t) give the speed and direction of motion respectively.
The Cosine and Sine terms in the speed and direction equations account for
the fact that the spiral is not perpendicular to the radial vector (second term
in Location(θ0, t)).

5.4.4 Error Metrics

We use three main metrics to evaluate the results. Average Angular Error
(AAE), Average Endpoint Error (AEE), and density estimation.

The first two error metrics (AAE and AEE) rely on ground truth motion
being available from (33) and (34). Sometimes sensor noise spikes result
in flow being estimated where there is no image motion. The true flow is
assumed to be zero for all locations which do not lie on an edge of the bar
or spiral. For such locations, the error is equal to the flow estimate itself.

AAE is simply the average absolute error in angle between the computed
flow ~V = (v1, v2) and the ground truth ~Gt = (gt1, gt2).

AAE = (~V, ~Gt) = atan

(
gt2 − v2

gt1 − v1

)
(35)

AEE (equation 23 from [5]) takes into account errors in both speed and
direction. It is defined as the squared root of sum of the the squared errors
between the estimated vector and ground truth.

AEE =

√
(v1 − gt1)2 + (v2 − gt2)2

gt21 + gt
2
2

(36)

Density (d) provides a measure of the ratio of optical flow estimates gener-
ated by the model to the number of input events fed to the model. A higher

5.5 results 55

density is better so long as it is not accompanied by a significant decrease in
accuracy. Many event-based methods quote this metric to avoid a situation
where incredibly high accuracies are obtained by discarding all but the very
best flow estimates.

d =
Nvalid
Nall

(37)

whereNvalid is the number of optical flow estimates, andNall is the total
number of input events.

5.5 results

Output spikes are sent from the board as UDP packets. A simple UDP
receiver code for visualizing the output spikes was developed that captures
UDP packets, decodes them and plots the results of the flow (direction and
velocity). All the error analyses were done offline.

200

100
0

0.1

150

0.2

0.3

100

0.4

50 0

0.5

0

0.6

0

50

100

150

200

250

300

350

a
n
g
le

 (
d
e
g
re

e
s
)

Figure 28 – 3D representation of network result on the Spiral data. For clarity pur-
pose, only the direction is here represented. The direction of movement
is color-coded in the HSV space. The individual isolated spikes are flow
estimates generated in response to sensor noise. Video available online
[128].

The implemented network, as presented in Section 5.3, uses as parameters
∆X = 6 and ∆Y = 6, leading to a need of 2325 cores, representing 558000
neurons. Fig. 27 shows snapshots of the input data (rotating bar and rotating
spiral). Feeding this network with these input gives results shown in Figs. 28-
31.

Fig. 28 shows a 3D representation of the optical flow estimates arising
from the spiral data. Only the estimated direction of movement is shown,
indicated by hue.

56 optical flow on truenorth

Fig. 29 shows the AAE for the same spiral recording, in which the direc-
tion of movement is estimate with an AAE of ε̄ ' 8.5deg. This error is
mainly located at the ends of the bar, where no neighborhood is available,
thus giving incorrect measurements.

Fig. 30 shows the AEE for the spiral data. The previously described net-
work is able to extract the optical flow for the spiral with an average AEE of
11.3%. A video of the spiral results is available online at [128].

Fig. 31 shows similar angular error for the pipe data. The plots appear
truncated because the bar was not entirely in the field of view of the camera.
As for the spiral, most of the errors are located at the edges of the pipe, also
due to a lack of neighboring events. The AAE is 8.7◦ for this dataset. A
video of the pipe results can be found online at [127].

Fig. 32 shows a snapshot of the output from data captured with the sensor
hand-held in the lab. We provide this example in order to show the ability
of the network to extract flow in a more complex scene, but ground truth
and error estimates are not available. A video of this data is available online
at [126].

The percentage of flow computations triggered by noise is 3.95%. We
consider a flow computation to have been triggered by noise if the time and
location of the flow estimate is not predicted by (33) or (34).

0 50 100 150

20

40

60

80

100

120

140

0

20

40

60

80

100

120

140

160

180

e
rr

o
r

(d
e

g
re

e
s
)

(a)

0 50 100 150

20

40

60

80

100

120

140

0

50

100

150

200

250

300

350

a
n

g
le

 (
d

e
g

re
e

s
)

(b)

Figure 29 – Rotating spiral. a) Absolute error. One can notice that the error is
mainly located at the end of edges, due to the lack of adjacent active
pixels. In some extend, it is impossible to compute a flow here. b) Top
view of the output of the network.

5.6 discussion

The model presented here is capable of estimating visual motion in real-
time with good accuracy, but there are some limitations.

The method described uses 57% of the cores available on TrueNorth to
estimate optical flow at every pixel over the full ATIS resolution of 304×240.
To extend the method to operate at higher resolutions, such as the prototype
640×480 pixel DAVIS sensor, would require either using multiple TrueNorth
chips, or only computing optical flow at every second pixel in the x and y
directions.

5.6 discussion 57

0

150

100

150
50

100

50

0
0

50

100

Figure 30 – Average Endpoint Error (AEE) for the spiral input. Our network is
able to reconstruct the velocity vector with an average error of 11%,
error which is mainly located at the edges of the spiral, where it is
impossible to know the speed by our method.

50 100 150 200 250 300

0

50

100

150

200

250
0

20

40

60

80

100

120

140

160

180

e
rr

o
r

(d
e

g
re

e
s
)

(a)

50 100 150 200 250 300

0

50

100

150

200

250
0

50

100

150

200

250

300

350

a
n

g
le

 (
d

e
g

re
e

s
)

(b)

Figure 31 – Rotating pipe. a) Absolute error. One can notice that the error is mainly
located at the end of edges, due to the lack of adjacent active pixels. In
some extend, it is impossible to compute a flow here. b) Top view of
the output of the network. Video available online [127].

Of the 256 neurons available on each TrueNorth core, 16 are unused. Of
the 240 remaining neurons, 24 (10%) are used to copy spike signals across the
core boundaries to prevent motion estimation artifacts at the core boundary.
Since copying the signal across the core boundary introduces a 1 tick delay,
the inputs to each core must also be delayed 1 tick before processing, which
uses another 6×6=36 of the 240 used neurons. The block connectivity of
TrueNorth has many advantages for parallelizing local computations in each
core, but at the cost of requiring spikes to be copied between neighboring
blocks, which ends up using 36+ 16 = 52 neurons per core.

Another constraint is imposed by the time resolution of TrueNorth, which
is operating at a 1ms tick interval. This time quantization results in each
DS unit’s output speeds being quantized to 1/n, n ∈ N pixels/ms. Such
quantization can result in large error for large speeds (since the quantized

58 optical flow on truenorth

Left Up Right Down Left

Direction
2501206030157

Speed (pixels/second)

Figure 32 – Snapshot from a video showing optical flow output from TrueNorth
for data captured while moving the ATIS sensor by hand in the lab.
The leftmost image shows the scene from a similar angle captured us-
ing a cellphone camera. The middle shows the direction of motion
detected, and the right shows the speed. Strong vertical and horizontal
edges come out clearly, but the direction of motion differs because the
network estimates the normal component of optical flow.

bins are further apart at high speed), and speeds faster than 1 pixel/ms will
be detected as 0. The maximum detectable speed could be increased by plac-
ing DS input pixels further apart. A spacing of k pixels between the DS
unit input pixels would result in a maximum possible speed of k pixels/ms.
However, this approach would aggravate the edge correspondence problem,
because it becomes less likely that the two pixels are seeing the same edge.
Another possible method for increasing the maximum detectable speed is to
reduce the tick period for TrueNorth. While this is definitely possible, keep-
ing in mind that lowering the tick period may result in problems with spike
delivery (routing issues) and may increase power consumption, a maximum
speed of 1 pixel/ms was deemed good enough (objects shouldn’t cross the
visual field in less than 304ms -i.e. sensor width-. Proper lens selection may
be done according to the desired application), and reducing the tick period
of TrueNorth was not explored further.
The slowest speed which can be detected is 1/τr, set by the length of the
delay, τr. Increasing the spacing of DS pixels to k would also increase this
minimum detectable speed to k/τr. There is a trade-off between the slow-
est detectable stimulus, and the minimum allowable time between two sub-
sequent stimuli. For two nearby, fast moving stimuli to each be uniquely
detected and measured, their onsets must be spaced as least τr ms apart.
Thus for fast moving stimuli it is desirable to have τr be small, but for slow
stimuli, we require τr to be large.

Spike IO bandwidth of the TrueNorth chip also poses a constraint. The
TrueNorth chip has four spike IO ports (North South East West), each capa-
ble of 40k spikes per millisecond. On the NS1e development platform used
in this work, all outputs spikes are communicated to a Xilinx Zynq through
one port. Although 40k spikes/ms is a lot, the model presented in this chap-
ter does generate a lot of output spikes. The worst case scenario happens
in complex scenes with lots of slowly moving edges. Edge density increases
the number of DS units which respond, while slow moving edges generate
a lot more spikes than fast moving edges. An isolated noise event at a single
pixel is a particularly bad culprit for generating spikes since it will simulta-

5.7 conclusion 59

neously activate all four 4 DS units located at that pixel, and each of these
DS units will generate a train of τr spikes before self-inhibiting.

If too many output spikes are generated, the TrueNorth chip tick period
will extend to allow time for the spikes to be communicated, which will
distort the estimated flow (which assumes a 1ms tick). In the case where
pre-recorded data is being run through the model (instead of live ATIS data),
the TrueNorth Neurosynaptic System will input spikes in accordance with
the slowed down tick, thereby still allowing the model to estimate speeds
accurately, but the system will run slower than real-time. On-chip spike
communication is much faster than off-chip spike communication, so in fu-
ture a method which interprets velocity on-chip and more efficiently com-
municates the results off-chip can help to mitigate the IO constraint. The
model described in this chapter can be classified as a token based method,
where a token is generated whenever an edge passes over a pixel. The ac-
tual gradient of the edge is never estimated, the gradient just has to be large
enough to trigger a spike from the ATIS pixel. Large gradients may result
in multiple spikes in response to a single edge, but the refractory period of
the first stage will eliminate these secondary spikes. Much like many other
event-based optical flow methods [41, 11, 9], this method only estimates flow
at edges, and it estimates normal flow (optical flow normal to the edge di-
rection). However, some event-based methods do estimate gradients for use
in optical flow computation [9], or use global constraints to estimate optical
flow for image regions where little or no gradient is present [7].
The data used for this chapter, specifically the spiral one, were chosen be-
cause of their wide spectrum in terms of directions, the full range is covered
within on rotation, and speeds, as the linear speeds depends on the radius
for a constant rotational speed. Currently the output spike signals must
be interpreted off chip to extract the velocity information. Since 43% of the
TrueNorth cores are unused, there remains room to develop on-chip interpre-
tation of the spikes to extract velocity. However, the output of the TrueNorth
chip is always in spiking format, so such development work would simplify,
but not eliminate, the off-chip velocity extraction.

5.7 conclusion

A SNN method for normal optical flow computation from silicon retina
data has been proposed. The method is capable of measuring the speed of
edges in the range of 1/50 pixels/ms to 1 pixel/ms in real time. The light
signal coming into the vision sensor is transduced into spikes by a silicon
retina. These spikes are then fed into the SNN for processing, which pro-
vides an output estimate also encoded as spikes. This network, consuming
80mW (70mW for TrueNorth, 10mW for the ATIS, omitting FPGA used for
communication, which can be removed for targeted applications), running
real time and using 2325 cores, 558000 neurons, is able to extract optical flow
with both a low Average Angular Error rate below 10 degrees, and Average
Endpoint Error of 11% (for the spiral), for a density estimation of 51%.

60 optical flow on truenorth

6 N E U R O M O R P H I C N E T W O R K S O N
S P I N N A K E R

This chapter introduces a pure, event-driven visual encoding approach
that uses precise timing mechanisms to design new computation techniques
in visual processing, with the use of a real-time neuromimetic platform
specifically designed to efficiently exploit the eventdriver nature of the pro-
posed algorithms. The research presented in this chapter resulted in a full
event-driven visual processing system linking a neuromorphic retina[100]
directly to the SpiNNaker system by an Asynchronous Event Representa-
tion (AER) bus. I implemented event-driven early vision models (optical
flow, same network as the one described in Chapter 5) and 3D stereovision
[73] [111] in the SpiNNaker board using a precise timing mechanism. The
work presented in this chapter is part of the work package WP11.3.5 : Asyn-
chronous Computational Retina of the Human Brain Project, and specifically
concerns the milestones 11.3.5.1, 11.3.5.2, 11.3.5.5 and 11.3.5.7.

6.1 introduction

Biomimetic event-driven time-based vision sensors are a novel class of
vision devices that - like the biological retina - are driven by ”events” hap-
pening within the visual scene. They are not like conventional vision sen-
sors, which are driven by artificially created timing and control signals (e.g.
frame clock) that have no relation whatsoever to the source of the visual
information. This work aimed to introduce a whole neuromorphic process-
ing framework implementing optical flow and stereo disparity detector. I
relied only on the output of a circuit contained in the Asynchronous Time-
Based Image Sensor (ATIS) pixels [100] that detects relative changes in pixel
log luminance over time. As soon as a change is detected, the process of
communicating this change event off-chip is initiated. Off-chip communi-
cation executes with low latency (on the order of microseconds), ensuring
that the time at which a change event is readout from the ATIS inherently
represents the time at which the change was detected. This asynchronous
low-latency readout scheme provides the high temporal resolution change
detection data our features rely on. We discuss two types of change de-
tection events: “ON” events and “OFF” events, which respectively indicate
that an increase or decrease in log pixel intensity has been detected. This
representation of the visual information fits the SpiNNaker massively paral-
lel multi-core architecture. It benefits from SpiNNaker’s ability to simulate
millions of neurons, and makes use of its computing power to develop and
map event-driven computation architecture. The flow is inspired by the neu-
ral circuitry found in the rabbit’s retina by Barlow and Levick [8], based on
inhibition-based direction-sensitive units, combined in motion detectors. A
single direction sensitive (DS) unit provides information only if the object

61

62 neuromorphic networks on spinnaker

moves in its preferred direction, otherwise it stays silent. To extract a 2D
time-of-travel vector we combined four DS units together in a single motion
detector. A 64x64 pixels optical flow was implemented and runs real-time
on the platform. We performed stereovision using the asynchronous high
temporal resolution properties of the ATIS camera as developed in [111], us-
ing a modified version of a human stereopsis from Marr & Poggio [73]. The
combination of spatial and temporal constraints fully uses the high temporal
resolution of neuromorphic retinas. It allows us to produce an optimal stereo
algorithm that is able to perform depth computation by detecting coactive
pixels laying on the same epipolar lines.

6.2 the spinnaker platform

« The spiking neural network architecture (SpiNNaker) project aims to
deliver a massively parallel million-core computer whose interconnect ar-
chitecture is inspired by the connectivity characteristics of the mammalian
brain, and which is suited to the modeling of large-scale spiking neural
networks in biological real time. Specifically, the interconnexion allows the
transmission of a very large number of very small data packets, each con-
veying explicitly the source, and implicitly the time, of a single neural action
potential or spike. » [35].

Figure 33 – SpiNNaker chips and development boards. From [87].

6.3 interfacing one event-based camera to spin-
naker

The ATIS camera used in this work is composed of two electronic boards.
The first one, denoted the sensor board contains the ATIS chip itself with all
its required components. The second one is an Opal Kelly XEM3010 FPGA
board housing a XC3S1500-4FG320 Spartan-3 FPGA from Xilinx.

We designed an interface boards which can be plugged in between these
two existing PCBs (see Fig. 36) in order to add the driving electronics and
connectors required to interface the ATIS camera to the SpiNNaker system.
This interface board contains the connector required for the SpiNNaker link

6.3 interfacing one event-based camera to spinnaker 63

(see [123, 99]) and the linking logic. A view of this PCB is presented Fig. 34,
showing the different components sitting on the board.

FPGA connectors

SpiNNaker connector

Voltage level

selector

Power supplies

Sensor board

connectors
Level shifter

Figure 34 – Interface board used to feed data from an ATIS camera to SpiNNaker.
The interface board sits in between the sensor board and the FPGA
board driving the camera.

ATIS events occupy a routing space of 9 + 8 + 1 = 18 bits, as the x-
coordinate can be mapped in the 0-303 range and the y-coordinate can be
mapped between 0-239 and the polarity bit can assume values in the 0, 1

range accordingly to the light intensity change direction.
An original SpiNNaker event on the other side is represented by a 32 bit

routing key/address (8+8 for the x,y chip coordinates, 5 bits for the core
coordinate and 11 bits for the neuron id within a core). An ATIS events need
therefore to be projected in the 32-bit routing space of SpiNNaker. This is
done using the techniques described below, which derives from [99].

Both solutions rely on the idea to represent the spiking sensor as a virtual
SpiNNaker chip, external to an original physical mesh and to convert the
addresses to the same format used by SpiNNaker. By doing so the sensor
can seamlessly be integrated in the network simulated on SpiNNaker; the
sensor itself emits spikes which are no different than the ones produced
by other SpiNNaker chips; its interconnection is therefore transparent to
the system. In other words, spiking sensors are assigned fictional, virtual
chips, which are not physically present on a SpiNNaker board. Sensors
directly feed their spiking data into the SpiNNaker interconnect through the
bespoken SpiNNaker link or through the SATA interface.

The mapping mechanism and the SpiNNaker packet structure are shown
in Figure 35 (after [99]).

Figure 35 – SpiNNaker packet structure and event to MC packet mapping.

64 neuromorphic networks on spinnaker

Injecting spikes from a single ATIS silicon retina into SpiNNaker follows
the same technique presented in [37], they both rely on using the link pro-
vided in chip 0,0 for both boards. A region of interest of 128× 128 pixels is
selected from the original ATIS sensor space, and are assigned a virtual chip
254,254 and injected in chip 0,0. During the mapping process extra neural
applications, called Proxy, are responsible for the translation from the vir-
tual routing key (254,254) to a key which is physically present in the same
chip where the Proxy application is loaded, generally chip 0,0. After the
packet translation, the AER packet containing the address of the event can
be routed in the SpiNNaker system as any other MultiCast packet.

(a)
(b)

Figure 36 – Designed interface board plugged between an ATIS camera (a) and the
SpiNNaker system, or two ATIS cameras (b) to the SpiNN3 platform.

6.4 interfacing two event-based cameras to spin-
naker

6.4.1 SpiNN3 board

Connecting two Atis on the 4-chip SpiNNaker board was developed with
the same approach : the two available SpiNNaker links on the 4-chip board
were used to inject spikes. Figure 36.b shows the two cameras connected
to the SpiNN3 board. The models described in sections 6.5 and 6.6 require
more than the 10k neurons available on the SpiNN3 platform (see Figure
38b). Moreover, the UDP link (over ethernet) for retrieving spikes has a
bandwidth limited to 1Mbits/s. With our 16bit AER events, we can output
64kev/s, which is way lower than the event rate of a single camera (∼ 300
kev/s in standard cases). Then, we need to upgrade to a bigger board in
order to achieve the desired resolution and live streaming of data.

6.4.2 SpiNN5 board

Moving to the SpiNN5 platform (42 chips) required to develop a new
interface for the two cameras : this board does not have a dual SpiNNaker
link, but the SpiNN3 platform is not capable of simulating our networks.

6.4 interfacing two event-based cameras to spinnaker 65

As shown in Figure 38b, the number of neurons required to compute the
disparity map is higher than the one a SpiNN3 board can handle. Work
from [140] was used in order to achieve this: an AERNode board receives
events from both cameras, merge them and send them to the SpiNNaker
board through the SATA bidirectional connection (Xilink High Speed LVDS
connection protocol AURORA [52]). The AER protocol was used to inject
events through SpiNN5 FPGAs [99]. The F1-L01 link (chip 0, 0, link West
from FPGA F1 - Figure 38a) was used to inject the spikes in the platform.
Such a bus reaches up to 2Mev/s. As the ethernet outgoing link was limited
to 64 kev/s (one UDP packet per event per millisecond), the same link was
used to send the events back to the AERNode Board[139], and then back to
the computer through an AER-USB mini2 board[12]. Figure 37 shows two
ATIS sensors connected to the Node board and then going to the SpiNNaker
platform via a SATA link.

Figure 37 – Stereo setup. Two ATIS sensors, with AER connection to the Node
Board, then packed in the Sata link to SpiNNaker

(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Number of neurons 10 5

0

50

100

150

200

250

300

O
pt

ic
al

flo
w

si
ze

0

5

10

15

20

25

30

35

40

45

50

St
er

eo
si

ze

Flow
Stereo

Sp
iN

N3

Sp
iN

N5

(b)

Figure 38 – (a) SpiNN5 hardware description and FPGAs links .(b) Number of neu-
rons needed for presented networks, as a function of the number of
pixel. Two limits are represented : the small 4 chips SpiNN3 board,
and the big 48 chips SpiNN5 board.

66 neuromorphic networks on spinnaker

6.5 optical flow

The full description of the model can be found in Chapter 5.
Our complete model comprises 64× 64× 4 direction sensitive units for a

total of 64× 64 motion detectors. Each motion detector receives input from a
2× 2 macropixel of the original retinal resolution (128× 128) through a sub-
sampling population which acts as a robust edge detector. Figure 39 shows
the output of the network. On the SpiNN3 platform, we can implement up
to a 86× 86 network, 213× 213 on the SpiNN5 (see Figure 38b).

(a) (b) (c)

(d) (e) (f)

(g)

Figure 39 – Output of the flow network for a Counter Clockwise rotation of a pen
(a to f). Direction is encoded among the HSV map given in (g). The
overall direction is the expected one, even if some noise events trigger
false computations.

6.6 disparity detector

Detecting temporal coincidence between two spikes is a widely used fea-
ture in spiking neural networks. As a consequence, we introduce a novel
neuron model for SpiNNaker, as a dedicated core for this task instead of
using standard integrate and fire neurons which would introduce an un-

6.7 conclusion 67

necessary overhead. Each neuron simulated by this core has two types of
synaptic input and a time window. When an incoming spike is received on
one input, the neuron will output a spike if another spike was received on
its second input in the given time window. We added a refractory period to
this process to limit the maximum firing rate of the neurons if required.

We perform stereovision using the asynchronous high temporal resolu-
tion properties of the ATIS camera as developed in [111]. The combination
of spatial and temporal constraints fully exploits the high temporal resolu-
tion of neuromorphic retinas. It allows us to produce a stereo algorithm
that is able to perform stereo computation by detecting coactive pixels lay-
ing on the same epipolar lines. Figure 40 shows a simplified version of the
network, reduced to the matching between to epipolar lines xl and xr. The
input neurons connect to the synchrony detectors in an excitatory fashion. A
Full description of the network can be found in [94]. In our setup, as we are
subsampling the input space by a factor of 4, we assume that the epipolar
lines are lying on the horizontal axis of the camera, thus allowing us to skip
the rectification process. Special care has been taken during the mechanical
assembly to ensure the parallelism of the two sensors.

The hereby described networks required Sx × S2y neurons, where Sx and
Sy are respectively the x and y sizes of the subsampled population. 32768
neurons are required for a Sx = 32, Sy = 32 population. The SpiNN3 board
can contain up to a 24× 24 network, 44× 44 for the SpiNN5 (see Figure 38b).

The same experiment is repeated by taking inputs from the two cameras
and feeding them on the SpiNNaker in real-time. Figure 41 shows different
snapshots of the network output, obtained by waving a pen in front of the
cameras. We show the events coming from each silicon retina and the result
of the disparity computation in a 32× 32 plane. The color encodes the dis-
parity value: a big disparity, or, in other words, a stimulus being close to the
camera corresponds to red colors (Figure 41.c). Likewise, yellowish colors
correspond to a lower level of disparity, representing an object further away
(Figure 41.a).

6.7 conclusion

The research presented in this chapter introduces the first stages of a full
neuromorphic pipeline, from an event-based camera to a fully asynchronous
spiking neural network dedicated hardware. The first contribution consists
in the introduction of the novel interface between our event-based sensors
and the SpiNNaker platform. Most of the work found in the literature con-
sidered in pre-loading data on the platform (and thus preventing real-time
applications), combined with a reduced network size in order to fit in a
single board, as the bandwidth of the on-board ethernet is limited. To get
beyond small, proof-of-concept models, we wanted to connect two 128× 128
pixels sensor, with an event rate up to 1Meps for the two cameras. The
developed architecture is able to both inject and retrieve up to 4Meps in
the SpiNNaker, from two incoming AER nodes. A subsequent contribution

68 neuromorphic networks on spinnaker

Figure 40 – The proposed cooperative network for stereo matching, as described in
[73]. The output from the two epipolar lines xl and xr both connects
to the synchrony detectors. The blue lines represent excitatory links, as
the red ones inhibitory links. The final output encodes a representation
of the original scene in disparity space. For the sake of visibility, only a
horizontal line of retinal cells is considered. The corresponding coinci-
dence and disparity detector units, hence, lie within a horizontal plane.
Again, only few units are shown here, while in the complete network
units would be uniformly distributed over the entire plane.

consists in mapping the Optical Flow and Stereo Vision algorithms on the
SpiNNaker platform. The current SpiNN5 board allows us to implement a
213× 213 pixels optical flow. The main issue that we faced was the insta-
bility of the SpiNNaker platform. As we are injecting and retrieving spikes
from a virtual core, a single physical core sees all the events going through
its router, making it randomly crashing. The problem may come either from
the centralized message passing structure or the (legacy) software toolchain
used, or both. Due to this instability, we weren’t able to benchmark the
provided algorithms. Some effort was put in order to move to the new soft-
ware toolchain provided by University of Manchester, and first encouraging
results were obtained. More, as the University of Dresden is designing the
new SpiNNaker chip, I was able to try some implementations on the new
SpiNNaker2 chip, which seems promising for the future as a single chip will
have the computational abilities of the current SpiNN5 board.

6.7 conclusion 69

(a) (b)

(c)

Figure 41 – Results of disparity computation with real-time input from two ATIS.
A stimulus far from the camera will produce a small disparity, encoded
in yellowish colors, a close one will produce a big disparity, encoded in
red color.

70 neuromorphic networks on spinnaker

7 C O N C L U S I O N

This thesis entitled Neuromorphic computation using event-based sensors : from
algorithms to hardware implementations, is made of a voluntary ambiguity. The
neuromorphic computation using event-based sensors reflects that computation
can be either done by the sensor itself, or with data coming from this kind of
sensors. As previously stated, the event-driven sensors offer a huge dynamic
range, an accurate temporal resolution and a sensor-level data compression.
All along this manuscript, we tried to explore the precise timing of the event
stream, avoiding binarization or events binning, both methods leading to the
classical framework of computing vision : Frames.

hindsights

defocus In Chapter 2, we used the precise timing between two consecu-
tive events with opposite polarity, generated by an event-based camera and
a liquid lens, to extract, in real time, a depth map of the scene. The control
of the liquid lens and the sensitivity of the sensor is the actual limitation for
this algorithm. With available technologies, we were able to compute such
a depth map at 100Hz, which is, as far as we know, the highest refresh rate
reported so far for a monocular system.

sparse coding Chapter 3 presented an evolution of the original HOTS
algorithm, introducing sparse coding methods to reduce the number of pro-
totypes used for spatiotemporal contexts clustering. This can be of a huge
advantage when thinking about hardware implementation, as the number of
neurons available on state-of-the-art neuromorphic hardware is low. But this
reduction of prototypes has an increasing impact on the number of spikes
generated, which can be a problem on some specific hardware, such as the
SpiNNaker platform : too much activity can crash some cores of the plat-
form. This method can not be suitable, in its initial version, for online learn-
ing, as we need to get all the spatiotemporal contexts before running the
optimization process.

spike sorting The spike sorting method presented in Chapter 4 uses
the timing of consecutive spikes to extract low level features in a hierarchi-
cal way. This work has proven its ability to tackle state-of-the-art algorithms,
while running in real-time, and is a good candidate for hardware implemen-
tation. Further work will have to quantify the robustness of this algorithm to
limited precision and noise. If it can be shown that this algorithm stays sta-
ble towards noise and quantization, I do believe this is a very good candidate
for smarter brain-machine interfaces.

71

72 conclusion

flow on truenorth The 22nd edition of the Telluride Neuromorphic
Workshop gave me the possibility to implement an optical flow algorithm
on TrueNorth, IBM’s Neurosynaptic plaform (Chapter 5). This method uses
timing of spikes in a close surrounding to infer the direction of motion in
the scene. To some extent, this work could be strengthened to noise and
false alarm but shaping the excitation and inhibition neurons in circle, in the
manner of the ganglion cells receptive field.

spinnaker Chapter 6 was the first project I was involved in during my
PhD. Here, again, the timing of the spikes is of a crucial importance for the
disparity matcher, as we are looking for co-activation of two pixels among
the same epipolar line in both cameras. Unfortunately, the SpiNNaker plat-
form and the software pipeline were not reliable enough in order to be able
to fully characterize the implemented networks. It was almost impossible to
launch twice the same simulation without crashing a core of the SpiNNaker.
This is, I guess, inherent to the architecture topology, as we are flooding a
single core for inputing/outputting spikes to the platform.

perspectives

Wijekoon et. Al proposed an VLSI implementation of the Izhikevich neu-
ron model[136]. This model does not fully replicate the behavioral equations,
but reflects the trend of the neuron’s state (membrane potential, synaptic cur-
rent) to change towards a given input. There is something beautiful in this
paper : that we do not always have to fit (and stick) to behavioral equations,
but rather to analyze behavior and use available knowledge to build some-
thing that behaves in the same way. Thinking this way is an ability that I
hope I acquired during this PhD, and I hope I will have the opportunity of
applying this during the next years.

All among this thesis, we tried to be as fair as possible by comparing the
proposed method to state-of-the-art algorithms. Unfortunately, due to the
nature of the signals we are dealing with, it is a hard challenge to directly
compare results coming from an event-based algorithm to their standard
machine learning/computer vision counterparts. The performances of the
presented methods in this manuscript were obtained with known/labeled
datasets, when available. As the spike sorting community is willing to get
more powerful analysis tools, there are a lot of synthetic or recorded labeled
databases. This was a great help when developing/tweaking the algorithms.
Unfortunately, this kind of database is not all the time available, especially
in the neuromorphic community. A Real(ly) event-based dataset should,
in my opinion, be developed, so as to unify the results and harmonize the
comparison in between the proposed algorithms. To be completely fair, this
database should contain the same stimulus, recorded both with an event-
based sensor and a regular sensor, thus allowing the whole community to
compete, and then validate the superiority of event-based approaches.

The end of my PhD drove me towards thinking about brain-machine in-
terfaces. Decoding, in real-time, cerebral activity is nowadays an open issue.

conclusion 73

Prior work [138] has shown that it is possible to decode neural activity in the
human brain, after a daily recalibration of the system that takes a significant
amount of time, thus preventing this system to be widely used. Introducing
a paradigm shift in the data representation can lead to a significant gain in
both performances and power consumption. A last chapter could have been
given, introducing some interesting thoughts about the possible VLSI imple-
mentation of the spike sorting algorithm. It has been a chance to discover
this totally new field for me, and also a way to understand more thoroughly
the behavior of such systems (including our silicon retina), and the reason
why of all the biases in such sensors. Future work could be achieved in or-
der to fully characterize the proposed hardware implementation. Moreover,
there were some issues with the MEA chip, preventing us to get recordings
to work with. Merging the MEA chip with some low-level computation, for
embedded, smarter, brain-machine interfaces, could be an interesting project
to conduct...

This achieves more than 3 years of reflection. I had the chance to cover
almost all the neuromorphic spectrum, from algorithms to hardware imple-
mentation and design. Algorithms are entering a maturity phase : the com-
munity now understands that there is a need (and benefit) to use the precise
timing for computation purposes. Even if there is a theoretical gap, as we
do not have any mathematical formulation as Shannon expressed one, there
is hope to achieve major breakthrough in the next years or decades. Nev-
ertheless, standard computers that we are using as computation platforms
for our algorithms are not the most efficient ones, as most of the proposed
algorithms work in a sequential manner, thus preventing to efficiently use
the many core architecture which is nowadays present in all processors. This
is why the mixed-signal community will be of a crucial importance. In the
very beginning of my thesis, I struggled understanding the biases of the sil-
icon retina. Later on, I understood that subthreshold transistors are very
sensitive animals, corrupted by mismatch and noise, and that building a
(working) silicon chip is a hard process. However, every new neuromorphic
chip outperforms the previous one. Research is going its way, and tomorrow
will see the growth of new architectures (either spiking or sequential ones),
that will allow the community to build powerful embedded applications.
All among these years, I had to go through the process of reading and writ-
ing papers. One would open the question of the reviewing scheme. Is this
scheme not from an old and ancient time ? Do we really need peer-reviewed
papers, with all the problems of conflicts it brings ? I was also amazed by
the cost of publishing a paper. Is there an equity there ? Some small labs
could have good ideas, but won’t be able to publish them because they do
not have the funding for. Where does this money go, as the reviewers are
not paid ? This is maybe the most expensive layout I ever saw... Shouldn’t
all the papers be in open access ? Or even free to publish, with a voting
system increasing the impact of the best ones ?

Achieved on August 24, 2018.

74 conclusion

Figure 42 – Chart of this thesis’ words count, generated with www.wordclouds.com

B I B L I O G R A P H Y

[1] S. Afshar, L. George, J. Tapson, A. van Schaik, and T. J. Hamilton.
« Racing to learn: statistical inference and learning in a single spiking
neuron with adaptive kernels ». In: Frontiers in neuroscience 8 (2014),
p. 377 (cit. on p. 31).

[2] L. Alvarez, J. Sánchez, and J. Weickert. « A scale-space approach to
nonlocal optical flow calculations ». In: International conference on scale-
space theories in computer vision. Springer. 1999, pp. 235–246 (cit. on
p. 41).

[3] A. Amir, P. Datta, W. P. Risk, A. S. Cassidy, J. A. Kusnitz, S. K. Esser,
A. Andreopoulos, T. M. Wong, M. Flickner, R. Alvarez-Icaza, et al.
« Cognitive computing programming paradigm: a corelet language
for composing networks of neurosynaptic cores ». In: Neural Networks
(IJCNN), The 2013 International Joint Conference on. IEEE. 2013, pp. 1–
10 (cit. on p. 46).

[4] T. Baden, F. Schaeffel, and P. Berens. « Visual Neuroscience: A Reti-
nal Ganglion Cell to Report Image Focus?. » In: Curr. Biol. 27 (2017),
pp. 138–141 (cit. on p. 20).

[5] S. Baker, D. Scharstein, J. Lewis, S. Roth, M. J. Black, and R. Szeliski.
« A database and evaluation methodology for optical flow ». In: Inter-
national Journal of Computer Vision 92.1 (2011), pp. 1–31 (cit. on p. 54).

[6] W. Barbakh and C. Fyfe. « Online clustering algorithms ». In: Interna-
tional Journal of Neural Systems 18.03 (2008), pp. 185–194 (cit. on pp. 22,
33, 34).

[7] P. Bardow, A. J. Davison, and S. Leutenegger. « Simultaneous optical
flow and intensity estimation from an event camera ». In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition. 2016,
pp. 884–892 (cit. on pp. 42, 59).

[8] H. B. Barlow and W. R. Levick. « The mechanism of directionally
selective units in rabbit’s retina. » In: The Journal of physiology 178.3
(1965), p. 477 (cit. on pp. 41–43, 61).

[9] F. Barranco, C. Fermüller, and Y. Aloimonos. « Contour motion esti-
mation for asynchronous event-driven cameras ». In: Proceedings of the
IEEE 102.10 (2014), pp. 1537–1556 (cit. on pp. 42, 59).

[10] I. Barron. « D.. I. Fleet, and SS Beauchemin, Performance of opti-
cal flow techniques ». In: International Journal of Computer Vision 12.2
(1994) (cit. on p. 41).

[11] R. Benosman, S.-H. Ieng, C. Clercq, C. Bartolozzi, and M. Srinivasan.
« Asynchronous frameless event-based optical flow ». In: Neural Net-
works 27 (2012), pp. 32–37 (cit. on pp. 42, 59).

75

76 Bibliography

[12] R. Berner, T Delbruck, A Civit-Balcells, and A. Linares-Barranco. « A
5 Meps $100 USB2. 0 address-event monitor-sequencer interface ». In:
Circuits and Systems, 2007. ISCAS 2007. IEEE International Symposium
on. IEEE. 2007, pp. 2451–2454 (cit. on p. 65).

[13] M. J. Berry, D. K. Warland, and M. Meister. « The structure and pre-
cision of retinal spike trains ». In: Proceedings of the National Academy
of Sciences 94.10 (1997), pp. 5411–5416. issn: 0027-8424. doi: 10.1073/
pnas.94.10.5411. eprint: http://www.pnas.org/content/94/10/
5411.full.pdf (cit. on p. 5).

[14] A. Bhattacharyya. « On a measure of divergence between two multi-
nomial populations ». In: Sankhyā: the indian journal of statistics (1946),
pp. 401–406 (cit. on pp. 26, 35).

[15] J. Binas, G. Indiveri, and M. Pfeiffer. « Spiking analog VLSI neuron
assemblies as constraint satisfaction problem solvers ». In: Circuits and
Systems (ISCAS), 2016 IEEE International Symposium on. IEEE. 2016,
pp. 2094–2097 (cit. on p. 6).

[16] M Blum, M Büeler, C Grätzel, and M Aschwanden. « Compact optical
design solutions using focus tunable lenses ». In: SPIE Optical Systems
Design. International Society for Optics and Photonics. 2011, 81670W–
81670W (cit. on p. 12).

[17] K. Boahen. « Point-to-point connectivity between neuromorphic chips
using address events ». English. In: IEEE Trans. Circuits Syst. II Analog
Digit. Signal Process. 47.5 (2000), pp. 416–434. issn: 10577130. doi: 10.
1109/82.842110 (cit. on p. 51).

[18] T. Brosch and H. Neumann. « Event-based optical flow on neuromor-
phic hardware ». In: proceedings of the 9th EAI International Conference
on Bio-inspired Information and Communications Technologies (formerly
BIONETICS) on 9th EAI International Conference on Bio-inspired Infor-
mation and Communications Technologies (formerly BIONETICS). ICST
(Institute for Computer Sciences, Social-Informatics and Telecommu-
nications Engineering). 2016, pp. 551–558 (cit. on p. 42).

[19] A. S. Cassidy, P. Merolla, J. V. Arthur, S. K. Esser, B. Jackson, R.
Alvarez-Icaza, P. Datta, J. Sawada, T. M. Wong, V. Feldman, et al.
« Cognitive computing building block: A versatile and efficient digital
neuron model for neurosynaptic cores ». In: Neural Networks (IJCNN),
The 2013 International Joint Conference on. IEEE. 2013, pp. 1–10 (cit. on
pp. 46, 47, 50).

[20] T. N. Chandrapala and B. E. Shi. « The generative adaptive subspace
self-Organizing Map ». In: Neural Networks (IJCNN), 2014 International
Joint Conference on. IEEE. 2014, pp. 3790–3797 (cit. on p. 31).

[21] E. Chicca, F. Stefanini, C. Bartolozzi, and G. Indiveri. « Neuromorphic
electronic circuits for building autonomous cognitive systems. » In:
Proceedings of the IEEE 102 (2014), pp. 1367–1388 (cit. on p. 6).

[22] K. Ciuffreda. « Why two eyes? » In: 13. 2002, pp. 35–37 (cit. on p. 7).

[23] K. Ciuffreda and K. Engber. « Is one eye better than two when view-
ing pictorial art? » In: 35. 2002, pp. 37–40 (cit. on p. 7).

https://doi.org/10.1073/pnas.94.10.5411
https://doi.org/10.1073/pnas.94.10.5411
http://www.pnas.org/content/94/10/5411.full.pdf
http://www.pnas.org/content/94/10/5411.full.pdf
https://doi.org/10.1109/82.842110
https://doi.org/10.1109/82.842110

Bibliography 77

[24] G. K. Cohen, G. Orchard, S.-H. Leng, J. Tapson, R. B. Benosman,
and A. Van Schaik. « Skimming digits: neuromorphic classification of
spike-encoded images ». In: Frontiers in neuroscience 10 (2016), p. 184

(cit. on p. 31).

[25] F. Corradi and G. Indiveri. « A neuromorphic event-based neural
recording system for smart brain-machine-interfaces ». In: IEEE trans-
actions on biomedical circuits and systems 9.5 (2015), pp. 699–709 (cit. on
p. 40).

[26] T. Cover and P. Hart. « Nearest neighbor pattern classification ». In:
IEEE transactions on information theory 13.1 (1967), pp. 21–27 (cit. on
p. 34).

[27] M. Davies, N. Srinivasa, T. Lin, G. Chinya, Y. Cao, S. H. Choday, G.
Dimou, P. Joshi, N. Imam, S. Jain, Y. Liao, C. Lin, A. Lines, R. Liu, D.
Mathaikutty, S. McCoy, A. Paul, J. Tse, G. Venkataramanan, Y. Weng,
A. Wild, Y. Yang, and H. Wang. « Loihi: A Neuromorphic Manycore
Processor with On-Chip Learning ». In: IEEE Micro 38.1 (2018), pp. 82–
99. issn: 0272-1732. doi: 10.1109/MM.2018.112130359 (cit. on pp. 6,
20).

[28] A. P. Davison, D. Brüderle, J. Eppler, J. Kremkow, E. Muller, D. Pecevski,
L. Perrinet, and P. Yger. « PyNN: a common interface for neuronal
network simulators ». In: Frontiers in neuroinformatics 2 (2008) (cit. on
p. 15).

[29] T. Delbrück. « Silicon retina with correlation-based, velocity-tuned
pixels ». In: IEEE Trans. on Neural Networks 4.3 (1993), pp. 529–541.
issn: 1045-9227. doi: 10.1109/72.217194 (cit. on p. 42).

[30] G. Dikov, M. Firouzi, F. Röhrbein, J. Conradt, and C. Richter. « Spik-
ing Cooperative Stereo-Matching at 2 ms Latency with Neuromor-
phic Hardware ». In: Conference on Biomimetic and Biohybrid Systems.
Springer. 2017, pp. 119–137 (cit. on p. 6).

[31] A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser, C. Hazirbas, V. Golkov,
P. van der Smagt, D. Cremers, and T. Brox. « Flownet: Learning op-
tical flow with convolutional networks ». In: Proceedings of the IEEE
International Conference on Computer Vision. 2015, pp. 2758–2766 (cit.
on p. 41).

[32] S. Esser, P. Merolla, J. Arthur, A. Cassidy, R Appuswamy, A An-
dreopoulos, D. Berg, J. McKinstry, T Melano, D. Barch, et al. « Convo-
lutional networks for fast, energy-efficient neuromorphic computing.
2016 ». In: Preprint on ArXiv. http://arxiv. org/abs/1603.08270. Accessed
27 (2016) (cit. on p. 3).

[33] S. Fisher and K. Ciuffreda. « Accommodation and apparent distance ».
In: 17. 1988, pp. 609–621 (cit. on p. 7).

[34] C. Frenkel, J.-D. Legat, and D. Bol. « A 0.086-mm2 9.8-pJ/SOP 64k-
Synapse 256-Neuron Online-Learning Digital Spiking Neuromorphic
Processor in 28nm CMOS ». In: arXiv preprint arXiv:1804.07858 (2018)
(cit. on p. 3).

https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1109/72.217194

78 Bibliography

[35] S. Furber, F. Galluppi, S. Temple, and L. Plana. « The spinnaker project ».
In: Proceedings of the IEEE 102.5 (2014), pp. 652–665 (cit. on pp. 6, 15,
20, 62).

[36] V. Gaganov and A. Ignatenko. « Robust shape from focus via Markov
random fields ». In: Proceedings of Graphicon Conference. 2009, pp. 74–
80 (cit. on p. 7).

[37] F Galluppi, C Denk, M. C. Meiner, T Stewart, L. A. Plana, C Eliasmith,
S Furber, and J Conradt. « Event-based neural computing on an au-
tonomous mobile platform ». In: Proc. of IEEE International Conference
on Robotics and Automation (ICRA). 2014, pp. 1–6 (cit. on p. 64).

[38] J. A. Gasthaus. « Spike sorting using time-varying DIRICHLET pro-
cess mixture models ». PhD thesis. Citeseer, 2008 (cit. on p. 40).

[39] M.-O. Gewaltig and M. Diesmann. « Nest (neural simulation tool) ».
In: Scholarpedia 2.4 (2007), p. 1430 (cit. on p. 15).

[40] S. Ghosh-Dastidar and H. Adeli. « Spiking neural networks ». In: In-
ternational journal of neural systems 19.04 (2009), pp. 295–308 (cit. on
p. 6).

[41] M. Giulioni, X. Lagorce, F. Galluppi, and R. B. Benosman. « Event-
based computation of motion flow on a neuromorphic analog neural
platform ». In: Frontiers in neuroscience 10 (2016) (cit. on pp. 6, 43–45,
59).

[42] T. Gollisch and M. Meister. « Rapid Neural Coding in the Retina with
Relative Spike Latencies ». In: Science 319.5866 (2008), pp. 1108–1111.
issn: 0036-8075. doi: 10 . 1126 / science . 1149639. eprint: http : / /

science.sciencemag.org/content/319/5866/1108.full.pdf (cit. on
p. 5).

[43] V. Grant. « Accommodation and convergence in visual space percep-
tion ». In: 31. 1942, pp. 89–104 (cit. on p. 7).

[44] G. Haessig and X. Berthelon. https://youtu.be/Ia5gfVLn0aY. Youtube.
2017. url: https://youtu.be/Ia5gfVLn0aY (cit. on p. 15).

[45] G. Haessig, A. Cassidy, R. Alvarez, R. Benosman, and G. Orchard.
« Spiking Optical Flow for Event-based Sensors Using IBM’s TrueNorth
Neurosynaptic System ». In: IEEE Transactions on Biomedical Circuits
and Systems 99 (2018), pp. 1–11 (cit. on p. 6).

[46] K. D. Harris, D. A. Henze, J. Csicsvari, H. Hirase, and G. Buzsáki.
« Accuracy of tetrode spike separation as determined by simultane-
ous intracellular and extracellular measurements ». In: Journal of neu-
rophysiology 84.1 (2000), pp. 401–414 (cit. on p. 39).

[47] D. J. Heeger. « Model for the extraction of image flow ». In: JOSA A
4.8 (1987), pp. 1455–1471 (cit. on p. 41).

[48] R. T. Held, E. A. Cooper, J. F. O’Brien, and M. S. Banks. « Using Blur to
Affect Perceived Distance and Size ». In: ACM Transactions on Graphics
29.2 (2010), 19:1–16. doi: 10.1145/1731047.1731057 (cit. on p. 5).

https://doi.org/10.1126/science.1149639
http://science.sciencemag.org/content/319/5866/1108.full.pdf
http://science.sciencemag.org/content/319/5866/1108.full.pdf
https://youtu.be/Ia5gfVLn0aY
https://doi.org/10.1145/1731047.1731057

Bibliography 79

[49] D Henze, K. Harris, Z Borhegyi, J Csicsvari, A Mamiya, H Hirase,
A Sirota, and G Buzsáki. Simultaneous intracellular and extracellular
recordings from hippocampus region CA1 of anesthetized rats. 2009 (cit.
on pp. 31, 39).

[50] D. A. Henze, Z. Borhegyi, J. Csicsvari, A. Mamiya, K. D. Harris, and G.
Buzsáki. « Intracellular features predicted by extracellular recordings
in the hippocampus in vivo ». In: Journal of neurophysiology 84.1 (2000),
pp. 390–400 (cit. on p. 39).

[51] D. Honegger, L. Meier, P. Tanskanen, and M. Pollefeys. « An open
source and open hardware embedded metric optical flow cmos cam-
era for indoor and outdoor applications ». In: Robotics and Automation
(ICRA), 2013 IEEE International Conference on. IEEE. 2013, pp. 1736–
1741 (cit. on p. 41).

[52] X. Inc. Aurora 8B/10B Protocol Specification. Tech. rep. 2011 (cit. on
p. 65).

[53] G. Indiveri, F. Corradi, and N. Qiao. « Neuromorphic architectures
for spiking deep neural networks. » In: IEEE Electron Devices Meeting
(IEDM) (2015), pp. 1–4 (cit. on p. 6).

[54] M. Joesch, B. Schnell, S. V. Raghu, D. F. Reiff, and A. Borst. « ON
and OFF pathways in Drosophila motion vision ». In: Nature 468.7321

(2010), p. 300 (cit. on p. 41).

[55] R. Johansson and I. I. Birznieks. « First spikes in ensembles of hu-
man tactile afferents code complex spatial fingertip events. » In: Nat
Neurosci 7 (2004), pp. 170–177 (cit. on p. 6).

[56] S. N. Kadir, D. F. Goodman, and K. D. Harris. « High-dimensional
cluster analysis with the masked EM algorithm ». In: Neural computa-
tion (2014) (cit. on p. 31).

[57] K. Khoshelham. « Accuracy analysis of kinect depth data ». In: ISPRS
workshop laser scanning. 2011, pp. 133–138 (cit. on p. 16).

[58] X. Lagorce and R. Benosman. « Stick: Spike time interval computa-
tional kernel, a framework for general purpose computation using
neurons, precise timing, delays, and synchrony ». In: Neural computa-
tion (2015) (cit. on p. 25).

[59] X. Lagorce, G. Orchard, F. Galluppi, B. E. Shi, and R. B. Benosman.
« Hots: a hierarchy of event-based time-surfaces for pattern recogni-
tion ». In: IEEE transactions on pattern analysis and machine intelligence
39.7 (2017), pp. 1346–1359 (cit. on pp. 21, 23–28, 30, 31, 39).

[60] L. Lapicque. « Recherches quatitatives sur l’excitation electrique des
nerfs traitee comme polarisation ». In: J. Physiol. Pathol. Gen. 9 (1907),
pp. 620–635 (cit. on p. 13).

[61] Y. LeCun, Y. Bengio, et al. « Convolutional networks for images, speech,
and time series ». In: The handbook of brain theory and neural networks
3361.10 (1995), p. 1995 (cit. on p. 3).

[62] J. Y. Lettvin, H. R. Maturana, W. S. McCulloch, and W. H. Pitts. « What
the frog’s eye tells the frog’s brain ». In: Proceedings of the IRE 47.11

(1959), pp. 1940–1951 (cit. on p. 41).

80 Bibliography

[63] A. Levin, R. Fergus, F. Durand, and W. Freeman. « Image and depth
from a conventional camera with a coded aperture ». In: vol. 26. 3.
2007, pp. 1–70 (cit. on p. 7).

[64] H.-Y. Lin and C.-H. Chang. « Depth recovery from motion and defo-
cus blur ». In: Image Analysis and Recognition (2006), pp. 122–133 (cit.
on p. 9).

[65] R. C. Liu, S. Tzonev, S. P. Rebrik, and K. D. Miller. « Variability and
information in a neural code of the cat lateral geniculate nucleus. »
In: Journal of neurophysiology 86 6 (2001), pp. 2789–806 (cit. on p. 6).

[66] W. Maass. « Computing with spiking neurons ». In: Pulsed neural net-
works 85 (1999) (cit. on p. 6).

[67] L. v. d. Maaten and G. Hinton. « Visualizing data using t-SNE ». In:
Journal of Machine Learning Research 9.Nov (2008), pp. 2579–2605 (cit.
on p. 36).

[68] J. MacQueen. « Some methods for classification and analysis of mul-
tivariate observations ». In: Proceedings of the Fifth Berkeley Symposium
on Mathematical Statistics and Probability, Volume 1: Statistics. Berkeley,
Calif.: University of California Press, 1967, pp. 281–297 (cit. on p. 34).

[69] R. Macknojia, A. Chavez-Aragon, P. Payeur, and R. Laganiere. « Ex-
perimental characterization of two generations of Kinect’s depth sen-
sors ». In: IEEE International symposium on robotic and sensor environe-
ments. 2012. doi: 10.1109/ROSE.2012.6402634 (cit. on p. 16).

[70] M. Mahowald. « VLSI analogs of neuronal visual processing: a syn-
thesis of form and function ». PhD thesis. California Institute of Tech-
nology, 1992 (cit. on p. 2).

[71] Z. Mainen and T. Sejnowski. « Reliability of spike timing in neocorti-
cal neurons. » In: Science 268 (1995), pp. 1503–1506 (cit. on p. 6).

[72] A. Mani and G. Schwartz. « Circuit mechanisms of a retinal ganglion
cell with stimulus-dependent response latency and activation beyond
its dendrites. » In: Curr. Biol. 27 (2017), pp. 471–482 (cit. on p. 20).

[73] D. Marr and T. Poggio. « Cooperative computation of stereo dispar-
ity ». In: Science 194.4262 (1976), pp. 283–287 (cit. on pp. 61, 62, 68).

[74] J. N. Martel, L. K. Müller, S. J. Carey, and P. Dudek. « High-Speed
Depth from Focus on a Programmable Vision Chip Using a Focus
Tunable Lens ». In: Circuits and Systems (ISCAS), 2017 IEEE Interna-
tional Symposium on. IEEE. 2017, pp. 1150–1153 (cit. on p. 7).

[75] J. M. Mateos-Pérez, R. Redondo, R. Nava, J. C. Valdiviezo, G. Cristóbal,
B. Escalante-Ramírez, M. J. Ruiz-Serrano, J. Pascau, and M. Desco.
« Comparative evaluation of autofocus algorithms for a real-time sys-
tem for automatic detection of Mycobacterium tuberculosis ». In: Cy-
tometry Part A 81.3 (2012), pp. 213–221 (cit. on p. 7).

[76] G. Mather. « Image blur as a pictorial depth cue ». In: 263. 1996,
pp. 169–172 (cit. on p. 7).

[77] G. Mather. « The use of image blur as a depth cue ». In: 26. 1997,
pp. 1147–1158 (cit. on p. 7).

https://doi.org/10.1109/ROSE.2012.6402634

Bibliography 81

[78] G. Mather and D. Smith. « Blur discrimination and its relation to blur-
mediated depth perception ». In: 31. 2002, pp. 1211–1219 (cit. on p. 7).

[79] G. Mather and D. Smith. « Combining depth cues: effects upon ac-
curacy and speed of performance in a depth-ordering task ». In: 44.
2004, pp. 557–562 (cit. on p. 7).

[80] G. Mather and D. Smith. « Depth cue integration: stereopsis and im-
age blur ». In: 40. 2000, pp. 3501–3506 (cit. on p. 7).

[81] C. A. Mead and M. A. Mahowald. « A silicon model of early visual
processing ». In: Neural networks 1.1 (1988), pp. 91–97 (cit. on p. 2).

[82] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada,
F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, et al. « A
million spiking-neuron integrated circuit with a scalable communica-
tion network and interface ». In: Science 345.6197 (2014), pp. 668–673

(cit. on pp. 6, 15, 20, 45).

[83] P. Merolla, R. Appuswamy, J. Arthur, S. K. Esser, and D. Modha.
« Deep neural networks are robust to weight binarization and other
non-linear distortions ». In: arXiv preprint arXiv:1606.01981 (2016) (cit.
on p. 45).

[84] M. Moeller, M. Benning, C. Schönlieb, and D. Cremers. « Variational
depth from focus reconstruction ». In: IEEE Transactions on Image Pro-
cessing 24.12 (2015), pp. 5369–5378 (cit. on p. 7).

[85] G. E. Moore et al. « Progress in digital integrated electronics ». In:
Electron Devices Meeting. Vol. 21. 1975, pp. 11–13 (cit. on p. 2).

[86] H. Mostafa, L. K. Müller, and G. Indiveri. « An event-based architec-
ture for solving constraint satisfaction problems ». In: Nature commu-
nications 6 (2015), p. 8941 (cit. on p. 6).

[87] J. Navaridas, S. Furber, J. Garside, X. Jin, M. Khan, D. Lester, M. Luján,
J. Miguel-Alonso, E. Painkras, C. Patterson, et al. « Spinnaker: fault
tolerance in a power-and area-constrained large-scale neuromimetic
architecture ». In: Parallel Computing 39.11 (2013), pp. 693–708 (cit. on
p. 62).

[88] E. e. a. Neftci. « Synthesizing cognition in neuromorphic electronic
systems. » In: Proceedings of the National Academy of Sciences (2013),
pp. 3468–3476 (cit. on p. 6).

[89] V. Nguyen, I. Howard, and R. Allison. « Detection of the depth order
of defocused images ». In: 45. 2005, pp. 1003–1011 (cit. on p. 7).

[90] B. A. Olshausen et al. « Emergence of simple-cell receptive field prop-
erties by learning a sparse code for natural images ». In: Nature 381.6583

(1996), pp. 607–609 (cit. on pp. 23, 24).

[91] G. Orchard, R. Benosman, R. Etienne-Cummings, and N. V. Thakor.
« A spiking neural network architecture for visual motion estima-
tion ». In: Biomedical Circuits and Systems Conference (BioCAS), 2013
IEEE. IEEE. 2013, pp. 298–301 (cit. on pp. 42, 52).

82 Bibliography

[92] G. Orchard and R. Etienne-Cummings. « Bioinspired visual motion
estimation ». In: Proceedings of the IEEE 102.10 (2014), pp. 1520–1536

(cit. on pp. 42, 52).

[93] G. Orchard, C. Meyer, R. Etienne-Cummings, C. Posch, N. Thakor,
and R. Benosman. « HFirst: a temporal approach to object recogni-
tion ». In: IEEE transactions on pattern analysis and machine intelligence
37.10 (2015), pp. 2028–2040 (cit. on pp. 21, 27).

[94] M. Osswald, S.-H. Ieng, R. Benosman, and G. Indiveri. « A spiking
neural network model of 3D perception for event-based neuromor-
phic stereo vision systems ». In: Scientific reports 7 (2017), p. 40703 (cit.
on pp. 6, 67).

[95] A. Pentland. « A new sense for depth of field. » In: 9. 1987, pp. 523–
531 (cit. on p. 7).

[96] A. Pentland, S. Scherock, T. Darrel, and B. Girod. « Simple range cam-
eras based on focal error. » In: vol. 11. 1. 1994, pp. 2925–2934 (cit. on
p. 7).

[97] A. P. Pentland. « A new sense for depth of field ». In: IEEE transactions
on pattern analysis and machine intelligence 4 (1987), pp. 523–531.

[98] J. A. Pérez-Carrasco, B. Zhao, C. Serrano, B. Acha, T. Serrano-Gotarredona,
S. Chen, and B. Linares-Barranco. « Mapping from Frame-Driven to
Frame-Free Event-Driven Vision Systems by Low-Rate Rate Coding
and Coincidence Processing–Application to Feedforward ConvNets ».
In: IEEE transactions on pattern analysis and machine intelligence 35.11

(2013), pp. 2706–2719 (cit. on pp. 21, 27).

[99] L. A. Plana. AppNote 8 - Interfacing AER devices to SpiNNaker using an
FPGA. Tech. rep. Manchester: University of Manchester, 2013 (cit. on
pp. 63, 65).

[100] C. Posch, D. Matolin, and R. Wohlgenannt. « A QVGA 143 dB dy-
namic range frame-free PWM image sensor with lossless pixel-level
video compression and time-domain CDS ». In: IEEE Journal of Solid-
State Circuits 46.1 (2011), pp. 259–275 (cit. on pp. 22, 32, 45, 61).

[101] C. Posch, D. Matolin, and R. Wohlgenannt. « High-dr frame-free pwm
imaging with asynchronous aer intensity encoding and focal-plane
temporal redundancy suppression ». In: Circuits and Systems (ISCAS),
Proceedings of 2010 IEEE International Symposium on. IEEE. 2010, pp. 2430–
2433 (cit. on pp. 6, 8).

[102] C. Posch, T. Serrano-Gotarredona, B. Linares-Barranco, and T. Del-
bruck. « Retinomorphic event-based vision sensors: bioinspired cam-
eras with spiking output ». In: Proceedings of the IEEE 102.10 (2014),
pp. 1470–1484 (cit. on p. 45).

[103] W. H. Press, S. Teukolsky, W. Vetterling, and B. Flannery. « Numerical
recipes in C ». In: Cambridge University Press 1 (1988), p. 3 (cit. on
p. 24).

Bibliography 83

[104] N. Qiao, H. Mostafa, F. Corradi, M. Osswald, F. Stefanini, D. Sumis-
lawska, and G. Indiveri. « A reconfigurable on-line learning spiking
neuromorphic processor comprising 256 neurons and 128K synapses ».
In: Frontiers in neuroscience 9 (2015), p. 141 (cit. on p. 6).

[105] R. Q. Quiroga, Z. Nadasdy, and Y. Ben-Shaul. « Unsupervised spike
detection and sorting with wavelets and superparamagnetic cluster-
ing ». In: Neural computation 16.8 (2004), pp. 1661–1687 (cit. on p. 31).

[106] P. R.S., S. Panzeri, and M. Diamond. « Population Coding of Stimulus
Location in Rat Somatosensory Cortex ». In: Neuron 32 (2001), pp. 503–
414 (cit. on p. 6).

[107] M Recce and J O’keefe. « The tetrode: a new technique for multi-
unit extracellular recording ». In: Soc Neurosci Abstr. Vol. 15. 2. 1989,
p. 1250 (cit. on p. 39).

[108] P. Reinagel and R. C. Reid. « Temporal Coding of Visual Information
in the Thalamus ». In: Journal of Neuroscience 20 (Aug. 2000), pp. 5392–
400 (cit. on p. 6).

[109] C. Richter, F. Röhrbein, and J. Conradt. Bio-inspired optic flow detection
using neuromorphic hardware. Poster. 2014 (cit. on p. 42).

[110] F. Rieke, D. Warland, R. de Ruyter van Steveninck, and W. Bialek.
Spikes: Exploring the Neural Code. Cambridge, MA, USA: MIT Press,
1999. isbn: 0-262-18174-6 (cit. on p. 6).

[111] P. Rogister, R. Benosman, S.-H. Ieng, P. Lichtsteiner, and T. Delbruck.
« Asynchronous event-based binocular stereo matching ». In: IEEE
Transactions on Neural Networks and Learning Systems 23.2 (2012), pp. 347–
353 (cit. on pp. 61, 62, 67).

[112] C. Rossant, S. N. Kadir, D. F. Goodman, J. Schulman, M. Belluscio, G.
Buzsaki, and K. D. Harris. « Spike sorting for large, dense electrode
arrays ». In: Nat Neurosci (2015), pp. 634–641 (cit. on p. 31).

[113] R. e. a. Serrano-Gotarredona. « CAVIAR: A 45K Neuron, 5M Synapse,
12G Connects AER Hardware Sensory-Processing- Learning-Actuating
System for High-Speed Visual Object Recognition and Tracking ». In:
IEEE Transactions on Neural Networks (2009), pp. 1417–1438 (cit. on
p. 6).

[114] R. Serrano-Gotarredona, M. Oster, P. Lichtsteiner, A. Linares-Barranco,
R. Paz-Vicente, F. Gomez-Rodriguez, L. Camunas-Mesa, R. Berner,
M. Rivas-Perez, T. Delbruck, S.-C. Liu, R. Douglas, P. Hafliger, G.
Jimenez-Moreno, A. Civit Ballcels, T. Serrano-Gotarredona, A. J. Acosta-
Jimenez, and B. Linares-Barranco. « CAVIAR: a 45k neuron, 5M synapse,
12G connects/s AER hardware sensory-processing- learning-actuating
system for high-speed visual object recognition and tracking. » In:
IEEE transactions on neural networks / a publication of the IEEE Neu-
ral Networks Council 20.9 (2009), pp. 1417–38. issn: 1941-0093. doi:
10.1109/TNN.2009.2023653 (cit. on p. 21).

[115] S. Shahid, J. Walker, and L. S. Smith. « A new spike detection algo-
rithm for extracellular neural recordings ». In: IEEE Transactions on
Biomedical Engineering 57.4 (2010), pp. 853–866 (cit. on p. 40).

https://doi.org/10.1109/TNN.2009.2023653

84 Bibliography

[116] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den
Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanc-
tot, et al. « Mastering the game of Go with deep neural networks and
tree search ». In: nature 529.7587 (2016), pp. 484–489 (cit. on p. 3).

[117] A. Sironi, M. Brambilla, N. Bourdis, X. Lagorce, and R. Benosman.
« HATS: Histograms of Averaged Time Surfaces for Robust Event-
based Object Classification ». In: arXiv preprint arXiv:1803.07913 (2018)
(cit. on p. 31).

[118] M. Sutton, W. Wolters, W. Peters, W. Ranson, and S. McNeill. « De-
termination of displacements using an improved digital correlation
method ». In: Image and vision computing 1.3 (1983), pp. 133–139 (cit.
on p. 41).

[119] S. Suwajanakorn, C. Hernandez, and S. M. Seitz. « Depth from focus
with your mobile phone ». In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 2015, pp. 3497–3506 (cit. on
p. 7).

[120] « Eye smarter than scientists believed: neural computations in circuits
of the retina. » In: Neuron 65-2 (2010). Ed. by G. T and M. M., pp. 150–
64 (cit. on p. 19).

[121] J. Tanner and C. Mead. « An integrated analog optical motion sen-
sor ». In: (1986) (cit. on p. 42).

[122] M. W. Tao, S. Hadap, J. Malik, and R. Ramamoorthi. « Depth from
Combining Defocus and Correspondence Using light-Field Cameras ».
In: 2013 (cit. on p. 7).

[123] S Temple. AppNote 1 - SpiNN-3 Development Board. Tech. rep. Manch-
ester: University of Manchester, 2011 (cit. on p. 63).

[124] S. J. Thorpe, A. Delorme, and R. VanRullen. « Spike-based strategies
for rapid processing ». In: NEURAL NETWORKS 14 (2001), pp. 715–
725 (cit. on p. 6).

[125] S. Thorpe. « Spike arrival times: A highly efficient coding scheme for
neural networks ». In: Parallel processing in neural systems (Jan. 1990)
(cit. on p. 6).

[126] [Video]. Lab Scene Optical Flow Result. 2017. url: https://youtu.be/
tTk1GbV7-9w (visited on 09/20/2017) (cit. on p. 56).

[127] [Video]. Pipe Optical Flow Result. 2017. url: https://youtu.be/cjt
PA0-tAEE (visited on 09/20/2017) (cit. on pp. 56, 57).

[128] [Video]. Spiral Optical Flow Result. 2017. url: https://youtu.be/
Nt9tlMyv2_Q (visited on 09/20/2017) (cit. on pp. 55, 56).

[129] N. X. Vinh, J. Epps, and J. Bailey. « Information theoretic measures
for clusterings comparison: Variants, properties, normalization and
correction for chance ». In: The Journal of Machine Learning Research 11

(2010), pp. 2837–2854 (cit. on p. 35).

[130] D. Vishwanath and E. Blaser. « Retinal blur and the perception of
egocentric distance ». In: vol. 10. 26. 2010, pp. 1–16 (cit. on p. 5).

https://youtu.be/tTk1GbV7-9w
https://youtu.be/tTk1GbV7-9w
https://youtu.be/cjtPA0-tAEE
https://youtu.be/cjtPA0-tAEE
https://youtu.be/Nt9tlMyv2_Q
https://youtu.be/Nt9tlMyv2_Q

Bibliography 85

[131] B. Wandell, A. E. Gamal, and B. Girod. « Common principles of image
acquisition systems and biological Vision ». In: vol. 90. 1. 2002, pp. 5–
17 (cit. on p. 7).

[132] M. Watanabe and S. Nayar. « Rational filters for passive depth from
defocus ». In: vol. 27. 1. 1997, pp. 203–225 (cit. on p. 7).

[133] A. B. Watson and A. J. Ahumada Jr. « A look at motion in the fre-
quency domain ». In: (1983) (cit. on p. 41).

[134] T. Werner, E. Vianello, O. Bichler, D. Garbin, D. Cattaert, B. Yvert,
B. De Salvo, and L. Perniola. « Spiking Neural Networks based on
OxRAM Synapses for Real-time Unsupervised Spike Sorting ». In:
Frontiers in Neuroscience 10 (2016), p. 474 (cit. on p. 40).

[135] N. H. Weste and D. Harris. CMOS VLSI design: a circuits and systems
perspective. Pearson Education India, 2015 (cit. on p. 2).

[136] J. H. Wijekoon and P. Dudek. « Integrated circuit implementation of
a cortical neuron ». In: Circuits and Systems, 2008. ISCAS 2008. IEEE
International Symposium on. IEEE. 2008, pp. 1784–1787 (cit. on p. 72).

[137] J. Wild, Z. Prekopcsak, T. Sieger, D. Novak, and R. Jech. « Perfor-
mance comparison of extracellular spike sorting algorithms for single-
channel recordings ». In: Journal of neuroscience methods 203.2 (2012),
pp. 369–376 (cit. on pp. 31, 35, 36).

[138] B Wodlinger, J. Downey, E. Tyler-Kabara, A. Schwartz, M. Boninger,
and J. Collinger. « Ten-dimensional anthropomorphic arm control in
a human brain- machine interface: difficulties, solutions, and limita-
tions ». In: Journal of neural engineering 12.1 (2014), p. 016011 (cit. on
pp. 40, 73).

[139] A. Yousefzadeh, M. Jablonski, T. Iakymchuk, A. Linares-Barranco, A.
Rosado, L. A. Plana, S. Temple, T. Serrano-Gotarredona, S. B. Furber,
and B. Linares-Barranco. « On multiple AER handshaking channels
over high-speed bit-serial bidirectional LVDS links with flow-control
and clock-correction on commercial FPGAs for scalable neuromor-
phic systems ». In: IEEE transactions on biomedical circuits and systems
11.5 (2017), pp. 1133–1147 (cit. on p. 65).

[140] A. Yousefzadeh, L. A. Plana, S. Temple, M. T. Serrano Gotarredona,
S. B. Furber, and B. Linares Barranco. « Fast predictive handshak-
ing in synchronous FPGAs for fully asynchronous multisymbol chip
links: Application to SpiNNaker 2-of-7 links ». In: IEEE Transactions
on Circuits and Systems-II-Express Briefs, 63 (8), 763-767. (2016) (cit. on
p. 65).

[141] C. Zhou, S. Lin, and S. Nayar. « Coded aperture pairs for depth from
defocus and defocus blurring ». In: vol. 93. 1. 2011, pp. 53–69 (cit. on
p. 7).

	Titlepage
	Abstract
	Résumé

	Avant-Propos
	Contents
	Publications
	1 Introduction
	2 Depth from defocus
	2.1 Introduction
	2.2 Materials and Methods
	2.2.1 Event based cameras
	2.2.2 Depth estimation
	2.2.3 Liquid lens control
	2.2.4 Spiking neural network

	2.3 Results
	2.3.1 Remarks and limitations

	2.4 Conclusions and Discussions

	3 Sparse Coding
	3.1 Introduction
	3.2 Event-based cameras
	3.3 Methods
	3.3.1 Time-surface construction
	3.3.2 Training phase: Finding the patch of projection basis
	3.3.3 Building a hierarchical model
	3.3.4 Classification

	3.4 Experiments
	3.4.1 Letters and digits dataset
	3.4.2 Flipped card deck

	3.5 Conclusion

	4 Spike Sorting
	4.1 Introduction
	4.2 Methods
	4.2.1 Model description
	4.2.2 Event generation
	4.2.3 Feature extraction and clustering
	4.2.4 Classification

	4.3 Results
	4.3.1 Metrics
	4.3.2 Benchmarking

	4.4 Conclusion
	4.5 Discussion

	5 Optical flow on TrueNorth
	5.1 Introduction
	5.2 Background
	5.2.1 Direction Sensitive (DS) Unit
	5.2.2 Event-based Sensor
	5.2.3 The TrueNorth Environment

	5.3 Implementation
	5.3.1 Input Module
	5.3.2 Delay Module
	5.3.3 DS Module
	5.3.4 Parameters
	5.3.5 Interpreting the Result
	5.3.6 ATIS-TrueNorth link

	5.4 Testing
	5.4.1 Sources of Visual Data
	5.4.2 Modeling Motion for the Rotating Pipe
	5.4.3 Modeling Motion for the Rotating Spiral
	5.4.4 Error Metrics

	5.5 Results
	5.6 Discussion
	5.7 Conclusion

	6 Neuromorphic networks on SpiNNaker
	6.1 Introduction
	6.2 The SpiNNaker platform
	6.3 Interfacing one event-based camera to SpiNNaker
	6.4 Interfacing two event-based cameras to SpiNNaker
	6.4.1 SpiNN3 board
	6.4.2 SpiNN5 board

	6.5 Optical flow
	6.6 Disparity detector
	6.7 Conclusion

	7 Conclusion
	 Bibliography

