, de fond pour les instruments spatiaux permettent aux relevés utilisant cette technique d'obtenir des catalogues conséquents avec une grande précision spectro-photométrique. Néanmoins, la spectroscopie sans fente sou re de nombreux inconvénients qui sont principalement des e ets de contamination. L'inter-contamination due à la superposition potentielle des spectrogrammes d'objets voisins et l'auto-contamination : la résolution spectrale e ective est reliée à l'étendue spatiale de l'objet résolu. Dans cette thèse, nous avons choisi de nous concentrer sur la prise en compte de l'e et d'autocontamination. A n de contraindre au mieux le redshift, nous avons construit un modèle prédictif réaliste des spectrogrammes qui peut ainsi être comparé aux données des relevés actuels dans une approche forward. Cette approche permet également de mesurer d'autres quantités résolues pouvant dégrader la précision sur le redshift tels que la cinématique interne de la galaxie, La spectroscopie sans fente est devenue une technique largement utilisée dans les relevés spectroscopiques. En e et

É. Dans-notre, Chapitre 3) : l'approximation d'un disque n, froid et axisymétrique en rotation qui reste valable pour des galaxies spirales ne présentant pas de structures complexes asymétriques. La seconde a plus une motivation technique car elle suppose la séparabilité du cube de données de la galaxie i.e. que le spectre intrinsèque (dans le référentiel au repos) soit le même en tout point de la galaxie. À l'inverse des approches traditionnelles de méthode inverses qui e ectuent des statistiques sur les spectrogrammes et ne tiennent généralement pas compte de l'e et d'auto-contamination

, Nous sommes en mesure de contraindre conjointement notre modèle sur plusieurs régions d'émission, sur plusieurs spectrogrammes observés sous di érents angles de dispersion. Il est possible d'ajuster simultanément notre modèle pour plusieurs observations de la même galaxie avec di érents grisms. Comme noté ci-dessus, nous pourrions même le contraindre sur plusieurs ordres (on rappelle par exemple que le second ordre est deux fois plus dispersé). Nous pouvons également envisager d'autres extensions, par exemple en utilisant des images à haute résolution ou en H?, Nous soulignons que ce choix de modélisation permet une grande exibilité comme nous l'avons montré dans le Chapitre 4

, La mesure précise du redshift à partir des spectrogrammes est essentielle pour les futures relevés de spectroscopie sans fente. La future mission Euclid nécessite par exemple une mesure du redshift avec une incertitude ? z /(1 + z) < 1 × 10 ?3 (pour la sonde des BAO)

, e et d'auto-contamination et donc la résolution spectrale e ective ne dépend plus de l'extension spatiale de la source même en l'absence de la modélisation de la cinématique interne de la galaxie, + z) 4 × 10 ?4 à bas SNR (<10)

, On rappelle que n'avons pas accès aux détails de la calibration des relevés de HST pour estimer les erreurs systématiques liées à la calibration. En n, nous avons remarqué que le fait d'inclure la cinématique dans le modèle permettait de potentiellement enlever des dégénérescences entre les paramètres spectraux et fournissait donc en moyenne une meilleure précision statistique sur le redshift. En comparaison, les méthodes actuelles de réduction de données en spectroscopie sans fente obtiennent des précisions globales (incluant les erreurs systématiques) d'un ordre de grandeur supérieur, De plus, l'application de notre approche forward (même sans modéliser la cinématique) sur des sous-échantillons de galaxies résolues des sondages GLASS et 3D-HST a montré qu

. Lelli, Pour ce faire, l'approche forward est nécessaire car des méthodes inverses ne peuvent tenir compte de tels e ets sous-pixels. Nous avons simulé la courbe de rotation de la galaxie grâce à deux paramètres : le gradient central et le plateau de vitesse (cf. Chapitre 3). Le modèle a alors été appliqué à des observations de galaxies spirales de type tardif a n de tester la faisabilité de la mesure de la cinématique, Mesure de la cinématique interne des galaxies C'est essentiellement de potentielles applications à des études de relations d'échelles telle que la relation de Tully-Fisher, 2019.

, Nous rappelons toutefois que nous avons vu que la mesure du gradient de vitesse en spectroscopie sans fente est entachée de nombreuses erreurs systématiques. A n de réduire ces dernières, la mesure de celui-ci devra donc par exemple être obtenue à partir de l'ajustement conjoint de plusieurs spectrogrammes observés sous di érentes directions de dispersion. De telles mesures à partir du relevé WIDE et surtout du relevé DEEP de la mission Euclid devraient permettre de contraindre assez précisément le CVG. On pourrait alors explorer si de tels ajustements pourraient potentiel, De plus, on rappelle que de nombreuses études ont con rmé l'étroite corrélation entre le CVG w 0 et la brillance de surface µ 0 (cf. équation (1.29) et gure 1.14)

K. N. Abazajian, The Seventh Data Release of the Sloan Digital Sky Survey. The Astrophysical, Journal Supplement Series, vol.182, issue.2, p.543, 2009.

R. G. Abraham, The star formation history of the Hubble sequence : spatially resolved colour distributions of intermediate-redshift galaxies in the Hubble Deep Field, The Morphologies of Distant Galaxies. II. Classi cations from the Hubble Space Telescope Medium Deep Survey, vol.107, p.641, 1996.

D. S. Aguado, The Fifteenth Data Release of the Sloan Digital Sky Surveys : First Release of MaNGA-derived Quantities, Data Visualization Tools, and Stellar Library, The Astrophysical Journal Supplement Series, vol.240, issue.2, p.23, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02020976

S. Alam, The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey : cosmological analysis of the DR12 galaxy sample, Monthly Notices of the Royal Astronomical Society, vol.470, issue.3, p.2617, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01582830

R. J. Allen, The spiral galaxy M101. III. Integral properties of several companion galaxies obtained from neutral hydrogen measurements, Astronomy and Astrophysics, vol.64, p.359, 1978.

R. A. Alpher and R. C. Herman, On the Relative Abundance of the Elements, Phys. Rev, vol.74, p.1737, 1948.

L. Anderson, The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey : baryon acoustic oscillations in the Data Release 9 spectroscopic galaxy sample, Monthly Notices of the Royal Astronomical Society, vol.427, issue.4, p.3435, 2012.
URL : https://hal.archives-ouvertes.fr/in2p3-00706836

E. Aquino-ortíz, Kinematic scaling relations of CALIFA galaxies : A dynamical mass proxy for galaxies across the Hubble sequence, Monthly Notices of the Royal Astronomical Society, vol.479, issue.2, p.2133, 2018.

H. Atek, The WFC3 Infrared Spectroscopic Parallel (WISP) Survey, The Astrophysical Journal, vol.723, issue.1, p.104, 2010.

R. Bacon, The MUSE second-generation VLT instrument. Ground-based and Airborne Instrumentation for, Astronomy III, vol.7735, p.773508, 2010.

I. K. Baldry, Galaxy And Mass Assembly (GAMA) : the galaxy stellar mass function at z &lt ; 0.06, Monthly Notices of the Royal Astronomical Society, vol.421, issue.1, p.621, 2012.

M. Barden, GEMS : The Surface Brightness and Surface Mass Density Evolution of Disk Galaxies, The Astrophysical Journal, vol.635, issue.2, p.959, 2005.

A. J. Barger, L. L. Cowie, and I. G. Wold, A Flux-limited Sample of z~1 Ly Emitting Galaxies in the Chandra Deep Field South, The Astrophysical Journal, vol.749, issue.2, p.106, 2012.

K. G. Begeman, H I rotation curves of spiral galaxies. I -NGC 3198, Astronomy and Astrophysics, vol.223, p.47, 1989.

R. Bender, D. Burstein, and S. M. Faber, Dynamically Hot Galaxies. I. Structural Properties, vol.399, p.462, 1992.

M. Bernardi, Galaxy luminosities, stellar masses, sizes, velocity dispersions as a function of morphological type, Monthly Notices of the Royal Astronomical Society, vol.404, issue.4, p.2087, 2010.

G. Bertin and C. C. Lin, Spiral structure in galaxies a density wave theory. Spiral structure in galaxies a density wave theory, p.262023962, 1996.

M. Betoule, Improved cosmological constraints from a joint analysis of the SDSS-II and SNLS supernova samples, Astronomy and Astrophysics, vol.568, p.22, 2014.
URL : https://hal.archives-ouvertes.fr/cea-01271043

F. Beutler, The 6dF Galaxy Survey : baryon acoustic oscillations and the local Hubble constant, Monthly Notices of the Royal Astronomical Society, vol.416, issue.4, p.3017, 2011.

C. Blake, The WiggleZ Dark Energy Survey : mapping the distance-redshift relation with baryon acoustic oscillations, Monthly Notices of the Royal Astronomical Society, vol.418, issue.3, p.1707, 2011.

M. R. Blanton and J. Moustakas, Physical Properties and Environments of Nearby Galaxies, Annual Review of Astronomy and Astrophysics, vol.47, issue.1, p.159, 2009.

M. R. Blanton, Sloan Digital Sky Survey IV : Mapping the Milky Way, Nearby Galaxies, and the Distant Universe, vol.154, p.28, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01593779

A. Bosma, 21-cm line studies of spiral galaxies. I. Observations of the galaxies NGC 5033, 3198, 5055, 2841, and 7331, The Astronomical Journal, vol.86, p.1791, 1981.

G. B. Brammer, P. G. Van-dokkum, and P. Coppi, EAZY : A Fast, Public Photometric Redshift Code, The Astrophysical Journal, vol.686, issue.2, p.1503, 2008.

G. B. Brammer, 3D-HST : A Wide-eld Grism Spectroscopic Survey with the Hubble Space Telescope, The Astrophysical Journal Supplement Series, p.13, 0200.

J. C. Brandt, On the Distribution Of mass in Galaxies. I. The Large-Scale Structure of Ordinary Spirals with Applications to M 31, The Astrophysical Journal, vol.131, p.293, 1960.

J. Brinchmann and R. S. Ellis, The Mass Assembly and Star Formation Characteristics of Field Galaxies of Known Morphology, vol.536, p.77, 2000.

J. Brinchmann, Hubble Space Telescope Imaging of the CFRS and LDSS Redshift Surveys. I. Morphological Properties, Monthly Notices of the Royal Astronomical Society, vol.499, issue.1, p.1151, 1998.

A. H. Broeils, The mass distribution of the dwarf spiral NGC 1560, Astronomy and Astrophysics, vol.256, p.19, 1992.

K. Bundy, Overview of the SDSS-IV MaNGA Survey : Mapping nearby Galaxies at Apache Point Observatory, The Astrophysical Journal, vol.798, p.7, 2015.

A. Böhm and B. L. Ziegler, Disk galaxy scaling relations at intermediate redshifts. I. The Tully-Fisher and velocity-size relations, Astronomy and Astrophysics, vol.592, p.64, 2016.

A. Böhm, The Tully-Fisher relation at intermediate redshift, Astronomy and Astrophysics, vol.420, p.97, 2004.

M. Cappellari, The ATLAS<SUP>3D</SUP> project -XV. Benchmark for early-type galaxies scaling relations from 260 dynamical models : mass-to-light ratio, dark matter, Fundamental Plane and Mass Plane, The ATLAS<SUP>3D</SUP> project -VII. A new look at the morphology of nearby galaxies : the kinematic morphology-density relation, vol.416, p.1709, 2011.

D. Carton, Inferring gas-phase metallicity gradients of galaxies at the seeing limit : a forward modelling approach, Monthly Notices of the Royal Astronomical Society, vol.468, issue.2, p.2140, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01678381

S. Casertano and J. H. Van-gorkom, Declining Rotation Curves : The End of a Conspiracy ?, The Astronomical Journal, vol.101, p.1231, 1991.

B. Cherinka, Marvin : A Toolkit for Streamlined Access and Visualization of the SDSS-IV MaNGA Data Set, 2018.

, The DESI Experiment Part I : Science,Targeting, and Survey Design, 2016.

L. D. Collaboration, Large Synoptic Survey Telescope : Dark Energy Science Collaboration, 2012.

, The Dark Energy Survey. arXiv e-prints, 2005.

M. Colless, The 2dF Galaxy Redshift Survey : spectra and redshifts, Monthly Notices of the Royal Astronomical Society, vol.328, issue.4, p.1039, 2001.

T. Contini, Deep MUSE observations in the HDFS. Morpho-kinematics of distant starforming galaxies down to 10<SUP>8</SUP>M<SUB></SUB>, Astronomy and Astrophysics, vol.591, p.49, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01440741

R. L. Corradi and M. Capaccioli, Does the dark component in uence the shape of the inner rotation curves of spiral galaxies ?, Astronomy and Astrophysics, vol.237, p.36, 1990.

L. Cortese, The SAMI Galaxy Survey : Toward a Uni ed Dynamical Scaling Relation for Galaxies of All Types, vol.795, p.37, 2014.

S. Courteau, Optical Rotation Curves and Linewidths for Tully-Fisher Applications, The Astronomical Journal, vol.114, p.2402, 1997.

S. Courteau and H. W. Rix, Maximal Disks and the Tully-Fisher Relation, The Astrophysical Journal, vol.513, issue.2, p.561, 1999.

H. M. Courtois and R. B. Tully, Cosmic Flows surveys and CLUES simulations, Astronomische Nachrichten, p.436, 2012.
URL : https://hal.archives-ouvertes.fr/in2p3-00699941

H. M. Courtois, Cosmic Flows : Green Bank Telescope and Parkes H I observations, Monthly Notices of the Royal Astronomical Society, vol.414, 2005.
URL : https://hal.archives-ouvertes.fr/in2p3-00631729

G. Cresci, The SINS Survey : Modeling the Dynamics of z~2 Galaxies and the High-z Tully-Fisher Relation, vol.697, p.115, 2009.

S. M. Croom, The Sydney-AAO Multi-object Integral eld spectrograph, Monthly Notices of the Royal Astronomical Society, vol.421, p.872, 2012.

E. Da-cunha, The Taipan Galaxy Survey : Scienti c Goals and Observing Strategy. Publications of the Astronomical Society of Australia, vol.34, p.47, 2017.

E. Daddi, Passively Evolving Early-Type Galaxies at 1.4 &lt ;~z &lt ;~2.5 in the Hubble Ultra Deep Field, The Astrophysical Journal, vol.626, issue.2, p.680, 2005.

S. E. Dahm, The Young Cluster NGC 2362, The Astronomical Journal, vol.130, issue.4, p.1805, 2005.

D. A. Dale, Seeking the Local Convergence Depth. IV. Tully-Fisher Observations of 35 Abell Clusters, Seeking the Local Convergence Depth. II. Tully-Fisher Observations of the Clusters A114, A119, A194, A2295, A2457, A2806, A3193, A3381, and A3744, vol.114, p.1468, 1997.

T. M. Davis and M. I. Scrimgeour, Deriving accurate peculiar velocities (even at high redshift), Monthly Notices of the Royal Astronomical Society, vol.442, issue.2, p.1117, 2014.

K. S. Dawson, The Baryon Oscillation Spectroscopic Survey of SDSS-III, The Astronomical Journal, vol.145, issue.1, p.10, 2013.
URL : https://hal.archives-ouvertes.fr/in2p3-00731047

, The SDSS-IV Extended Baryon Oscillation Spectroscopic Survey : Overview and Early Data, The Astronomical Journal, vol.151, issue.2, p.44, 2016.

W. J. De-blok and S. S. Mcgaugh, Does Low Surface Brightness Mean Low Density ?, The Astrophysical Journal, vol.469, p.89, 1996.

J. T. De-jong, The Kilo-Degree Survey, Experimental Astronomy, vol.35, issue.1-2, p.25, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01633890

F. De-lorenzi, V. P. Debattista, and O. E. Gerhard, Dynamics of Rotating Elliptical Galaxies. Planetary Nebulae Beyond the Milky Way, p.311, 2006.

G. De-vaucouleurs and W. D. Pence, Velocity elds in late-type galaxies from Halpha Fabry-Perot interferometry. I. Instrumentation and data reduction, The Astrophysical Journal, vol.242, p.18, 1980.

P. T. De-zeeuw, The SAURON project -II. Sample and early results, Monthly Notices of the Royal Astronomical Society, vol.329, p.513, 2002.
URL : https://hal.archives-ouvertes.fr/in2p3-00012009

H. Desmond and R. H. Wechsler, The Faber-Jackson relation and Fundamental Plane from halo abundance matching, Monthly Notices of the Royal Astronomical Society, vol.465, issue.1, p.820, 2017.

S. Djorgovski and M. Davis, Fundamental Properties of Elliptical Galaxies, The Astrophysical Journal, p.59, 1987.

R. Doyon, The JWST Fine Guidance Sensor (FGS) and Near-Infrared Imager and Slitless Spectrograph (NIRISS). t. 8442, p.84422, 2012.

A. Dressler, Spectroscopy and Photometry of Elliptical Galaxies. I. New Distance Estimator, The Astrophysical Journal, p.42, 1987.

M. J. Drinkwater, The WiggleZ Dark Energy Survey : survey design and rst data release, Monthly Notices of the Royal Astronomical Society, vol.401, issue.3, p.1429, 2010.

S. P. Driver, Galaxy and Mass Assembly (GAMA) : survey diagnostics and core data release, Monthly Notices of the Royal Astronomical Society, vol.413, issue.2, p.971, 2011.

N. Drory, The MaNGA Integral Field Unit Fiber Feed System for the Sloan 2.5 m Telescope, vol.149, p.77, 2015.

D. J. Eisenstein, Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies, The Astrophysical Journal, vol.122, issue.5, p.560, 2001.

D. M. Elmegreen, Resolved Galaxies in the Hubble Ultra Deep Field : Star Formation in Disks at High Redshift, vol.658, p.763, 2007.

E. Emsellem, The SAURON project -IX. A kinematic classi cation for early-type galaxies, The ATLAS<SUP>3D</SUP> project -III. A census of the stellar angular momentum within the e ective radius of early-type galaxies : unveiling the distribution of fast and slow rotators, vol.379, p.888, 2007.

B. Epinat, GHASP : an H kinematic survey of spiral and irregular galaxies -VI. New H data cubes for 108 galaxies, Monthly Notices of the Royal Astronomical Society, vol.388, issue.2, p.500, 2008.

S. Erroz-ferrer, H kinematics of S<SUP>4</SUP>G spiral galaxies -II. Data description and non-circular motions, Monthly Notices of the Royal Astronomical Society, vol.451, issue.1, p.1199, 2015.

S. M. Faber and R. E. Jackson, Velocity dispersions and mass-to-light ratios for elliptical galaxies, The Astrophysical Journal, vol.204, p.668, 1976.

H. C. Ferguson, M. Dickinson, and R. Williams, The Hubble Deep Fields, Annual Review of Astronomy and Astrophysics, vol.38, p.667, 2000.

H. C. Ferguson, The Size Evolution of High-Redshift Galaxies, The Astrophysical Journal, vol.600, issue.2, p.107, 2004.

A. Franceschini, Cosmic evolution of the galaxy's mass and luminosity functions by morphological type from multi-wavelength data in the CDF-South, Astronomy and Astrophysics, vol.453, issue.2, p.397, 2006.

K. C. Freeman, On the Disks of Spiral and S0 Galaxies, The Astrophysical Journal, vol.160, p.811, 1970.

W. Freudling, The Hubble Legacy Archive NICMOS grism data, Astronomy and Astrophysics, vol.490, issue.3, p.1165, 2008.

A. Friedmann, Über die Krümmung des Raumes, Zeitschrift fur Physik, vol.10, p.377, 1922.

A. S. Fruchter and R. N. Hook, Drizzle : A Method for the Linear Reconstruction of Undersampled Images, Publications of the Astronomical Society of the Paci c, vol.114, p.144, 2002.

L. Fu, Very weak lensing in the CFHTLS wide : cosmology from cosmic shear in the linear regime, Astronomy and Astrophysics, vol.479, issue.1, p.9, 2008.

F. Schreiber and N. M. , Constraints on the Assembly and Dynamics of Galaxies. I. Detailed Rest-frame Optical Morphologies on Kiloparsec Scale of z~2 Star-forming Galaxies, vol.731, p.65, 2011.

J. P. Gardner, The STIS Parallel Survey : Introduction and First Results, The Astrophysical Journal Letters, vol.492, p.99, 1998.

O. Garrido, GHASP : an H kinematic survey of spiral and irregular galaxies -IV. 44 new velocity elds. Extension, shape and asymmetry of H rotation curves, Monthly Notices of the Royal Astronomical Society, vol.387, issue.1, p.127, 2002.

R. Giovanelli, The I Band Tully-Fisher Relation for Cluster Galaxies : a Template Relation, its Scatter and Bias Corrections, The Astronomical Journal, vol.113, p.53, 1997.

S. Gottloeber, Y. Ho-man, and G. Yepes, Constrained Local UniversE Simulations (CLUES). arXiv e-prints, 1005, 2010.

R. Graziani, The peculiar velocity eld up to z 0.05 by forward-modeling Cosmic ows-3 data, Monthly Notices of the Royal Astronomical Society, p.130, 2019.

N. A. Grogin, CANDELS : The Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey, The Astrophysical Journal Supplement Series, vol.197, issue.2, p.35, 2011.

F. Grupp, The optical baseline concept of the NISP near infrared spectrometer and photometer on board of the ESA/EUCLID satellite, Space Telescopes and Instrumentation 2012 : Optical, Infrared, and Millimeter Wave, vol.8442, p.84420, 2012.

J. E. Gunn, The 2.5 m Telescope of the Sloan Digital Sky Survey, The Astronomical Journal, vol.131, issue.4, p.2332, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00848528

P. L. Gómez, Galaxy Star Formation as a Function of Environment in the Early Data Release of the Sloan Digital Sky Survey, The Astrophysical Journal, vol.584, issue.1, p.210, 2003.

C. M. Harrison, The KMOS Redshift One Spectroscopic Survey (KROSS) : rotational velocities and angular momentum of z 0.9 galaxies, Monthly Notices of the Royal Astronomical Society, vol.467, issue.2, 1965.

M. P. Haynes, The I-Band Tully-Fisher Relation for SC Galaxies : 21 Centimeter H I Line Data, The Astronomical Journal, vol.117, issue.5, p.2039, 1999.

O. Hernandez, GHFaS : Galaxy H Fabry-Perot System for the William Herschel Telescope, vol.120, p.665, 2008.

L. Holmes, The incidence of bar-like kinematic ows in CALIFA galaxies, Monthly Notices of the Royal Astronomical Society, vol.451, issue.4, p.4397, 2015.

A. M. Hopkins, Galaxy And Mass Assembly (GAMA) : spectroscopic analysis, Monthly Notices of the Royal Astronomical Society, vol.430, issue.3, p.2047, 2013.

K. Horne, An optimal extraction algorithm for CCD spectroscopy, Publications of the Astronomical Society of the Paci c, vol.98, p.609, 1986.

C. Howlett, 2MTF -VI. Measuring the velocity power spectrum, Monthly Notices of the Royal Astronomical Society, vol.471, p.3135, 2017.

M. Huertas-company, The evolution of the mass-size relation for early-type galaxies from z 1 to the present : dependence on environment, mass range and detailed morphology, Monthly Notices of the Royal Astronomical Society, vol.428, issue.2, p.1715, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01439479

R. A. Ibata, The Canada-France Imaging Survey : First Results from the u-Band Component, The Astrophysical Journal, vol.848, issue.2, p.128, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01714623

J. C. Jackson, A critique of Rees's theory of primordial gravitational radiation, Monthly Notices of the Royal Astronomical Society, vol.156, p.1, 1972.

F. James and M. Roos, Minuit -a system for function minimization and analysis of the parameter errors and correlations, Computer Physics Communications, vol.10, issue.6, p.343, 1975.

D. H. Jones, The 6dF Galaxy Survey : nal redshift release (DR3) and southern large-scale structures, Monthly Notices of the Royal Astronomical Society, vol.355, issue.3, p.683, 2004.

N. Kaiser, Clustering in real space and in redshift space, Monthly Notices of the Royal Astronomical Society, vol.227, p.1, 1987.

N. Kaiser, Pan-STARRS : A Large Synoptic Survey Telescope Array. Survey and Other Telescope Technologies and Discoveries, vol.4836, p.154, 2002.

V. Kalinova, Towards a new classi cation of galaxies : principal component analysis of CALIFA circular velocity curves, Monthly Notices of the Royal Astronomical Society, vol.469, issue.3, p.2539, 2017.

A. J. Kalnajs, Theory of spiral structure, Internal Kinematics and Dynamics of Galaxies, vol.100, p.109, 1983.

H. Katz, The tight empirical relation between dark matter halo mass and at rotation velocity for late-type galaxies, Monthly Notices of the Royal Astronomical Society, vol.483, issue.1, p.98, 2019.

G. Kau-mann, The environmental dependence of the relations between stellar mass, structure, star formation and nuclear activity in galaxies, Monthly Notices of the Royal Astronomical Society, vol.341, issue.1, p.713, 2003.

S. M. Kent, Dark Matter in Spiral Galaxies. II. Galaxies with H I Rotation Curves, vol.93, p.816, 1987.

R. A. Kimble, The On-Orbit Performance of the Space Telescope Imaging Spectrograph, The Astrophysical Journal, vol.492, issue.2, p.83, 1998.

T. Kitayama and Y. Suto, Constraints on the Fluctuation Amplitude and Density Parameter from X-Ray Cluster Number Counts, The Astrophysical Journal, vol.490, issue.2, p.557, 1997.

J. Koda, Are peculiar velocity surveys competitive as a cosmological probe ?, Monthly Notices of the Royal Astronomical Society, vol.445, issue.4, p.4267, 2014.

A. M. Koekemoer, HST Calibration Workshop : Hubble after the Installation of the ACS and the NICMOS Cooling System, p.337, 2003.

, CANDELS : The Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey-The Hubble Space Telescope Observations, Imaging Data Products, and Mosaics, The Astrophysical Journal Supplement Series, vol.197, issue.2, p.36, 2011.

M. Korsaga, GHASP : an H kinematical survey of spiral galaxies -XI. Distribution of luminous and dark matter in spiral and irregular nearby galaxies using WISE photometry, Monthly Notices of the Royal Astronomical Society, vol.478, issue.1, p.50, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02015352

M. W. Kuemmel, aXedrizzle -Spectral 2D Resampling using Drizzle. Astronomical Data Analysis Software and Systems XIV, vol.347, p.138, 2005.

H. Kuntschner, WFC3 SMOV proposal 11552 : Calibration of the G102 grism, Space Telescope WFC Instrument Science Report, p.18, 2009.

, WFC3 SMOV proposal 11552 : Calibration of the G141 grism, Space Telescope WFC Instrument Science Report, p.17, 2009.

, Revised Flux Calibration of the WFC3 G102 and G141 grisms, HST/WFC3 in-orbit grism performance. Space Telescopes and Instrumentation 2010 : Optical, Infrared, and Millimeter Wave, vol.7731, p.5, 2010.

M. Kümmel, The Slitless Spectroscopy Data Extraction Software aXe, Publications of the Astronomical Society of the Paci c, vol.121, issue.875, p.59, 2009.

R. Lange, Galaxy And Mass Assembly (GAMA) : M_star -R_e relations of z = 0 bulges, discs and spheroids, Monthly Notices of the Royal Astronomical Society, vol.462, issue.2, p.1470, 2016.

R. Laureijs, Euclid De nition Study, 2011.

D. R. Law, The Data Reduction Pipeline for the SDSS-IV MaNGA IFU Galaxy Survey, The Astronomical Journal, vol.150, issue.1, p.83, 2015.

O. Le-fèvre, Commissioning and performances of the VLT-VIMOS instrument. t. 4841, pp.1670-1681, 2003.

F. Lelli, F. Fraternali, and M. Verheijen, A scaling relation for disc galaxies : circular-velocity gradient versus central surface brightness, Monthly Notices of the Royal Astronomical Society, vol.433, p.30, 2013.

F. Lelli, S. S. Mcgaugh, and J. M. Schombert, The Small Scatter of the Baryonic Tully-Fisher Relation, The Astrophysical Journal, vol.816, issue.1, p.14, 2016.

, SPARC : Mass Models for 175 Disk Galaxies with Spitzer Photometry and Accurate Rotation Curves, The Astronomical Journal, vol.152, issue.6, p.157, 2016.

F. Lelli, The baryonic Tully-Fisher relation for di erent velocity de nitions and implications for galaxy angular momentum, 1901.

G. Lemaître, Annales de la Société Scienti que de Bruxelles, p.53, 1933.

S. Lilly, Hubble Space Telescope Imaging of the CFRS and LDSS Redshift Surveys. II. Structural Parameters and the Evolution of disk Galaxies to z~1<SUP>1</SUP>, The Astrophysical Journal, vol.500, issue.1, p.75, 1998.

J. Liske, Galaxy And Mass Assembly (GAMA) : end of survey report and data release 2, Monthly Notices of the Royal Astronomical Society, vol.452, issue.2, p.2087, 2015.

G. M. Macalpine, S. B. Smith, and D. W. Lewis, Curtis Schmidt -thin prism survey for extragalactic emission-line objects. University of Michigan List I, The Astrophysical Journal Supplement Series, vol.34, p.95, 1977.

S. Mao, H. J. Mo, and S. D. White, The evolution of galactic discs, Monthly Notices of the Royal Astronomical Society, vol.297, issue.3, p.71, 1998.

L. Marian and G. M. Bernstein, Dark energy constraints from lensing-detected galaxy clusters, Physical Review D, vol.73, issue.12, p.123525, 2006.

B. E. Markarian, Galaxies with an ultraviolet continuum, Astro zika, vol.3, p.55, 1967.

D. C. Martin, The Galaxy Evolution Explorer : A Space Ultraviolet Survey Mission, The Astrophysical Journal, vol.619, issue.1, p.1, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00015169

T. P. Martinsson, The DiskMass Survey. VII. The distribution of luminous and dark matter in spiral galaxies, Astronomy and Astrophysics, vol.557, p.131, 2013.

R. Massey, COSMOS : Three-dimensional Weak Lensing and the Growth of Structure, The Astrophysical Journal Supplement Series, vol.172, issue.1, p.239, 2007.

D. S. Mathewson and V. L. Ford, Parameters of 2447 Southern Spiral Galaxies for Use in the Tully-Fisher Relation, The Astrophysical Journal Supplement Series, vol.107, p.97, 1996.

D. S. Mathewson, V. L. Ford, and M. Buchhorn, A Southern Sky Survey of the Peculiar Velocities of 1355 Spiral Galaxies, The Astrophysical Journal Supplement Series, vol.81, p.413, 1992.

N. U. Mayall, A Low-Dispersion UV Glass Spectrograph for the Crossley Re ector, Publications of the Astronomical Society of the Paci c, vol.48, issue.281, p.14, 1936.

P. J. Mccarthy, Emission-Line Galaxies from the NICMOS/Hubble Space Telescope Grism Parallel Survey, The Astrophysical Journal, vol.520, issue.2, p.548, 1999.

S. H. Miller, The Assembly History of Disk Galaxies. I. The Tully-Fisher Relation to z~= 1.3 from Deep Exposures with DEIMOS, The Astrophysical Journal, vol.741, issue.2, p.115, 2011.

A. J. Mo-ett, Galaxy and Mass Assembly (GAMA) : the stellar mass budget of galaxy spheroids and discs, Monthly Notices of the Royal Astronomical Society, vol.462, issue.4, p.4336, 2016.

I. G. Momcheva, The 3D-HST Survey : Hubble Space Telescope WFC3/G141 Grism Spectra, Redshifts, and Emission Line Measurements for~100,000 Galaxies, The Astrophysical Journal Supplement Series, vol.225, p.27, 2016.

E. J. Nelson, Spatially Resolved H Maps and Sizes of 57 Strongly Star-forming Galaxies at z~1 from 3D-HST : Evidence for Rapid Inside-out Assembly of Disk Galaxies, The Astrophysical Journal Letters, vol.747, p.28, 2012.

E. Noordermeer, The mass distribution in early-type disc galaxies : declining rotation curves and correlations with optical properties, Monthly Notices of the Royal Astronomical Society, vol.376, issue.4, p.1513, 2007.

H. K. Palmer, An application of the Crossley re ector of the Lick Observatory to the study of very faint spectra, The Astrophysical Journal, vol.18, p.218, 1903.

P. Palunas and T. B. Williams, Maximum Disk Mass Models for Spiral Galaxies, The Astronomical Journal, vol.120, issue.6, p.2884, 2000.

A. Pasquali, APPLES : A Parallel Slitless Imaging Survey for ACS, Cosmology and Fundamental Physics, p.471, 2003.

, Slitless Grism Spectroscopy with the Hubble Space Telescope Advanced Camera for Surveys, Publications of the Astronomical Society of the Paci c, vol.118, issue.840, p.270, 2006.

D. Pelliccia, HR-COSMOS : Kinematics of star-forming galaxies at z 0.9, Astronomy and Astrophysics, vol.599, p.25, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01582433

S. Perlmutter, Measurements of and from 42 High-Redshift Supernovae. The Astrophysical, Journal, vol.517, issue.2, p.565, 1999.
URL : https://hal.archives-ouvertes.fr/in2p3-00130951

M. Persic and P. Salucci, Dark and visible matter in spiral galaxies, The Universal Galaxy Rotation Curve, vol.234, p.60, 1988.

M. Persic, P. Salucci, and F. Stel, The universal rotation curve of spiral galaxies -I. The dark matter connection, Monthly Notices of the Royal Astronomical Society, vol.281, issue.1, p.27, 1996.

N. Pirzkal, GRAPES, Grism Spectroscopy of the Hubble Ultra Deep Field : Description and Data Reduction, Spectrophotometrically Identi ed Stars in the PEARS-N and PEARS-S Fields, vol.154, p.1591, 2004.

, A Two-Dimensional Spectroscopic Study of Emission Line Galaxies in the Faint Infrared Grism Survey (FIGS) I : Detection Method and Catalog, Emission-line Galaxies from the Hubble Space Telescope Probing Evolution and Reionization Spectroscopically (PEARS) Grism Survey. II. The Complete Sample, vol.772, p.84, 2013.

J. Pizagno, The Tully-Fisher Relation and its Residuals for a Broadly Selected Sample of Galaxies, The Astronomical Journal, vol.134, issue.3, p.945, 2007.

, Planck 2018 results. VI. Cosmological parameters. arXiv e-prints, 1807, 2018.

L. Pozzetti, Modelling the number density of H emitters for future spectroscopic near-IR space missions, Astronomy and Astrophysics, vol.590, p.3, 2016.

J. M. Pérez-martínez, Galaxy kinematics in the XMMU J2235-2557 cluster eld at z 1.4, Astronomy and Astrophysics, p.127, 2017.

T. H. Randriamampandry, Estimating non-circular motions in barred galaxies using numerical N-body simulations, Monthly Notices of the Royal Astronomical Society, vol.454, issue.4, p.3743, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02399701

S. Ravindranath, The Evolution of Disk Galaxies in the GOODS-South Field : Number Densities and Size Distribution, The Astrophysical Journal, vol.604, issue.1, p.9, 2004.

B. Reid, SDSS-III Baryon Oscillation Spectroscopic Survey Data Release 12 : galaxy target selection and large-scale structure catalogues, Monthly Notices of the Royal Astronomical Society, vol.455, issue.2, p.1553, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01440126

R. Reyes, Calibrated Tully-Fisher relations for improved estimates of disc rotation velocities, Monthly Notices of the Royal Astronomical Society, vol.417, issue.3, p.2347, 2011.

A. G. Riess, Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant, The Astronomical Journal, vol.116, issue.3, p.1009, 1998.

M. S. Roberts and M. P. Haynes, Physical Parameters along the Hubble Sequence, Annual Review of Astronomy and Astrophysics, vol.32, p.115, 1994.

H. P. Robertson, Kinematics and World-Structure III, The Astrophysical Journal, vol.83, p.257, 1936.

J. G. Robertson, Optical extraction of single-object spectra from observations with twodimensional detectors, Publications of the Astronomical Society of the Paci c, vol.98, p.1220, 1986.

Y. Rong, SDSS-IV MaNGA : a distinct mass distribution explored in slow-rotating earlytype galaxies, Monthly Notices of the Royal Astronomical Society, vol.477, issue.1, p.230, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02021145

V. C. Rubin, W. K. Ford, and N. Thonnard, Rotational properties of 21 SC galaxies with a large range of luminosities and radii, from NGC 4605 (R=4kpc) to UGC 2885 (R=122kpc), The Astrophysical Journal, vol.238, p.471, 1980.

V. C. Rubin, Rotation velocities of 16 SA galaxies and a comparison of Sa, SB and SC rotation properties, The Astrophysical Journal, vol.289, p.81, 1985.

J. Ryan, R. E. Casertano, S. Pirzkal, and N. , LINEAR : A Novel Algorithm for Reconstructing Slitless Spectroscopy from HST/WFC3. ArXiv e-prints, 1801, 2018.

R. K. Sachs and A. M. Wolfe, Perturbations of a Cosmological Model and Angular Variations of the Microwave Background, The Astrophysical Journal, vol.147, p.73, 1967.

R. Sancisi, The visible matter -dark matter coupling. Dark Matter in Galaxies, vol.220, p.233, 2004.

C. L. Sarazin, X-ray emission from clusters of galaxies, Reviews of Modern Physics, vol.58, issue.1, p.1, 1986.

K. B. Schmidt, Through the Looking GLASS : HST Spectroscopy of Faint Galaxies Lensed by the Frontier Fields Cluster MACSJ0717.5+3745, The Astrophysical Journal Letters, vol.782, p.36, 2014.

M. Schmidt, D. P. Schneider, and J. E. Gunn, Spectroscopic CCD Surveys for Quasars at Large Redshift. I. A Deep PFUEI Survey, The Astrophysical Journal, vol.306, p.411, 1986.

G. Schwarz, Estimating the Dimension of a Model, Annals of Statistics, vol.6, issue.2, p.461, 1978.

J. L. Sersic, Atlas de Galaxias Australes, 1968.

M. Sirianni, The Photometric Performance and Calibration of the Hubble Space Telescope Advanced Camera for Surveys, Publications of the Astronomical Society of the Paci c, vol.117, issue.836, p.1049, 2005.

R. E. Skelton, 3D-HST WFC3-selected Photometric Catalogs in the Five CANDELS/3D-HST Fields : Photometry, Photometric Redshifts, and Stellar Masses, The Astrophysical Journal Supplement Series, vol.214, issue.2, p.24, 2014.

S. A. Smee, The Multi-object, Fiber-fed Spectrographs for the Sloan Digital Sky Survey and the Baryon Oscillation Spectroscopic Survey, The Astronomical Journal, vol.146, issue.2, p.32, 2013.

M. G. Smith, Emission-line galaxies and quasars in the southern hemisphere. I. Description and applications of an objective-prism survey, The Astrophysical Journal, vol.202, p.591, 1975.

J. G. Sorce, Cosmic ows Constrained Local UniversE Simulations, Monthly Notices of the Royal Astronomical Society, vol.455, 2016.

D. Spergel, Wide-Field InfrarRed Survey Telescope-Astrophysics Focused Telescope Assets WFIRST-AFTA 2015 Report. arXiv e-prints, 2015.

C. M. Springob, A Digital Archive of H I 21 Centimeter Line Spectra of Optically Targeted Galaxies, The Astrophysical Journal Supplement Series, vol.160, issue.1, p.149, 2005.

J. P. Stott, The KMOS Redshift One Spectroscopic Survey (KROSS) : dynamical properties, gas and dark matter fractions of typical z 1 star-forming galaxies, Monthly Notices of the Royal Astronomical Society, vol.457, issue.2, p.1888, 2016.

A. N. Straughn, Emission-Line Galaxies from the Pears Hubble Ultra Deep Field : a 2d Detection Method and First Results, The Astronomical Journal, vol.135, issue.4, p.1624, 2008.

M. A. Strauss, Spectroscopic Target Selection in the Sloan Digital Sky Survey : The Main Galaxy Sample, vol.124, p.1810, 2002.

R. A. Swaters, The rotation curves shapes of late-type dwarf galaxies, Astronomy and Astrophysics, vol.493, issue.3, p.871, 2009.

S. F. Sánchez, CALIFA, the Calar Alto Legacy Integral Field Area survey. I. Survey presentation, Astronomy and Astrophysics, vol.538, p.8, 2012.

M. Takada and S. Bridle, Probing dark energy with cluster counts and cosmic shear power spectra : including the full covariance, New Journal of Physics, vol.9, issue.12, p.446, 2007.

A. Tamm and P. Tenjes, Surface photometry and structure of high redshift disk galaxies in the HDF-S NICMOS eld, Astronomy and Astrophysics, vol.449, issue.1, p.67, 2006.

D. S. Taranu, Self-consistent Bulge/Disk/Halo Galaxy Dynamical Modeling Using Integral Field Kinematics, vol.850, p.70, 2017.

J. A. Tauber, Planck pre-launch status : The Planck mission, Astronomy and Astrophysics, vol.520, p.1, 2010.
URL : https://hal.archives-ouvertes.fr/in2p3-00533343

R. I. Thompson, Initial On-Orbit Performance of NICMOS, The Astrophysical Journal, vol.492, issue.2, p.95, 1998.

A. L. Tiley, KROSS-SAMI : a direct IFS comparison of the Tully-Fisher relation across 8 Gyr since z 1, Monthly Notices of the Royal Astronomical Society, vol.460, issue.1, p.2166, 2016.

T. Treu, The Grism Lens-Ampli ed Survey from Space (GLASS). I. Survey Overview and First Data Release, The Astrophysical Journal, vol.812, issue.2, p.114, 2015.

I. Trujillo and M. Pohlen, Stellar Disk Truncations at High z : Probing Inside-Out Galaxy Formation, The Astrophysical Journal, vol.630, issue.1, p.17, 2005.

I. Trujillo, Extremely compact massive galaxies at z~1.4, Monthly Notices of the Royal Astronomical Society, vol.373, issue.1, p.36, 2006.

, Strong size evolution of the most massive galaxies since z 2, Monthly Notices of the Royal Astronomical Society, vol.382, issue.1, p.109, 2007.

R. B. Tully, The Kinematics and Dynamics of M51. 1. the Observations, The Astrophysical Journal Supplement Series, vol.27, p.415, 1974.

R. B. Tully and J. R. Fisher, A new method of determining distances to galaxies, Astronomy and Astrophysics, vol.54, p.661, 1977.

R. B. Tully and M. A. Verheijen, The Ursa Major Cluster of Galaxies. II. Bimodality of the Distribution of Central Surface Brightnesses, The Astrophysical Journal, vol.484, issue.1, p.145, 1997.

R. B. Tully, Our Peculiar Motion Away from the Local Void, The Astrophysical Journal, vol.676, issue.1, p.184, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00416760

O. J. Turner, The KMOS Deep Survey (KDS) II : The evolution of the stellar-mass Tully-Fisher relation since z~4, 2017.

O. Valenzuela, Is There Evidence for Flat Cores in the Halos of Dwarf Galaxies ? The Case of NGC 3109 and NGC 6822, The Evolution of Galaxy Morphology for Galaxies in the Canada-France Redshift Survey, vol.657, p.621, 2001.

A. Van-der-wel, Recent Structural Evolution of Early-Type Galaxies : Size Growth from z = 1 to z = 0, The Astrophysical Journal, vol.688, issue.1, p.28, 2008.

P. G. Van-dokkum, Con rmation of the Remarkable Compactness of Massive Quiescent Galaxies at z~2.3 : Early-Type Galaxies Did not Form in a Simple Monolithic Collapse, vol.677, p.5, 2008.

, First Results from the 3D-HST Survey : The Striking Diversity of Massive Galaxies at z > 1, The Astrophysical Journal Letters, vol.743, p.15, 2011.

M. R. Varidel, The SAMI Galaxy Survey : Bayesian inference for gas disc kinematics using a hierarchical Gaussian mixture model, Monthly Notices of the Royal Astronomical Society, vol.485, p.4024, 2019.

D. A. Wake, The SDSS-IV MaNGA Sample : Design, Optimization, and Usage Considerations, The Astronomical Journal, vol.154, issue.3, p.86, 2017.

A. G. Walker, On Milne's Theory of World-Structure, Proceedings of the London Mathematical Society, vol.42, issue.2, p.90, 1937.

S. Wang, Constraining the evolution of dark energy with a combination of galaxy cluster observables, Physical Review D, vol.70, issue.12, p.123008, 2004.

Y. Wang, Designing a space-based galaxy redshift survey to probe dark energy, Monthly Notices of the Royal Astronomical Society, vol.409, issue.2, p.737, 2010.

A. J. Wasilewski, The space density and spectroscopic properties of a new sample of emission-line galaxies, The Astrophysical Journal, p.68, 1983.

B. J. Weiner, A Survey of Galaxy Kinematics to z~1 in the TKRS/GOODS-N Field. I. Rotation and Dispersion Properties, The Astrophysical Journal, vol.653, issue.2, p.1027, 2006.

K. B. Westfall, The Data Analysis Pipeline for the SDSS-IV MaNGA IFU Galaxy Survey : Overview. arXiv e-prints, 2019.

S. D. White, G. Efstathiou, and C. S. Frenk, The amplitude of mass uctuations in the universe, Monthly Notices of the Royal Astronomical Society, vol.262, issue.4, p.1023, 1993.

E. Wisnioski, The KMOS3D Survey : Design, First Results, and the Evolution of Galaxy Kinematics from 0.7 <= z <= 2.7, vol.799, p.209, 2015.

R. Yan, SDSS-IV MaNGA IFS Galaxy Survey-Survey Design, Execution, and Initial Data Quality, The Astronomical Journal, vol.152, issue.6, 2016.

G. Yepes, The CLUES project : Constrained Local UniversE Simulations. t. 1178, pp.64-75, 2009.

D. G. York, The Sloan Digital Sky Survey : Technical Summary, The Astronomical Journal, vol.120, p.1579, 2000.

S. Zaroubi, Wiener Reconstruction of the Large-Scale Structure, The Astrophysical Journal, p.446, 1995.

F. Zwicky, Die Rotverschiebung von extragalaktischen Nebeln, Helvetica Physica Acta, vol.6, p.110, 1933.

H. Übler, The Evolution of the Tully-Fisher Relation between z 2.3 and z 0.9 with KMOS<SUP>3D</SUP>, The Astrophysical Journal, vol.842, issue.2, p.121, 2017.