H. C. Kolb, M. G. Finn, and K. B. Sharpless, Angew. Chem. Int. Ed, p.40, 2001.

M. Meldal, C. W. Tornøe-;-b)-j, V. V. Hein, and . Fokin, Coord. Chem. Rev, p.1, 1174.

H. C. Kolb and K. B. Sharpless, Drug Disc. Today, vol.8, 1128.

J. H. Amblard, R. F. Cho, ). W. Schinazi-;-c, M. L. Tang, and . Becker, Chem. Sc. Rev, vol.109, p.3086, 2009.

W. H. Binder, R. Sachsenhofer-;-b, ). D. Fournier, R. Hoogenboom, U. S. Schubert et al., Macromol. Rapid Commun, vol.36, p.29, 1016.

P. L. Golas and K. Matyjaszewski, Chem. Soc. Rev, 1338.

A. Kempe, C. M. Krieg, and . Berce, Chem. Soc. Rev, vol.41, p.176, 2012.

N. K. Delaittre, C. Guimard, and . Barner-kowollik, Acc. Chem. Res, p.1296, 2015.

A. H. El-sagheer, T. Brown-;-p.-thimurugan, D. Matosiuk, and K. Jozwiak, Chem. Soc. Rev, vol.113, p.4905, 1388.

S. Svenson, Drug. Discov. Today, vol.44, p.118, 2015.

J. F. Lutz, ;. Castro, H. Rodrigue, and F. Abeico, Angew. Chem. Int. Ed, vol.46, p.1, 1018.

V. V. Rostovtsev, L. G. Geen, V. V. Fokin, and K. B. Sharpless, Angew. Chem. Int. Ed, p.2596, 2002.

C. W. Tornøe, C. Christensen, and M. , J. Org. Chem, p.3057, 2002.

M. T. Reetz and J. G. De-vries, Chem. Commun, 1559.

F. Astruc, J. Lu, R. S. Ruiz-;-v.-polshettiwar, and . Varma, Angew. Chem. Int Ed, vol.44, p.743, 2005.

M. G. Meyers, E. V. Weier, D. F. Carino, S. Yancey, R. M. Pande et al., Chem. Soc. Rev, vol.40, issue.4973, 1632.

M. Haruta, Angew. Chem. Int. Ed, vol.53, p.409, 2014.

D. Wang and D. Astruc, Chem. Soc. Rev, vol.46, p.816, 2017.

F. Alonso, Y. Moglie, G. B. Radivoy-;-m, A. Gawande, F. X. Goswami et al., Acc. Chem. Res, vol.48, p.3722, 2015.

T. N. Jin, M. Yan, Y. M. Yamamoto-;-b)-t, V. V. Vishwanatha, J. Sureshbabu et al., Helv. Chim. Acta, vol.52, p.1210, 1217.

Z. F. Zhang, C. M. Dong, C. H. Yang, D. Hu, J. Long et al., Adv. Syn. Catal, vol.352, p.310, 1600.

Y. Alonso, G. Moglie, M. Radivoy, . S. Yus-;-a, S. Nia et al., J. Am. Chem. Soc, vol.50, issue.72, p.13127, 2012.

V. H. Reddy, Y. V. Reddy, B. Sridhar, and B. V. Reddy, Adv. Syn. Catal, vol.358, p.24, 1088.

N. G. Connelly and W. E. Geiger, Chem. Rev, p.877, 1996.

C. Schöttle, P. Bockstaller, R. Popescu, D. Gerthsen, C. Feldmann-;-c.-schöttle et al., Angew. Chem. Int Ed, vol.54, p.6316, 2015.

E. Seo, J. Kim, Y. Hong, Y. S. Kim, D. Lee et al., J. Phys. Chem. C, vol.117, p.11686, 2013.

H. Maeda, Adv. Enzyme Regul, p.187, 2001.

M. Salavati-niasari, F. Davar-;-b, ). X. Liu, D. Gregurec, J. Irigoyen et al., Mater. Lett, vol.63, p.441, 2009.

J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, Handbook of X-ray Photoelectron Spectroscopy, 1995.

H. Langecker, H. J. Schumann, and K. Junkmann, Arch. Exptl. Pathol. Pharmakol, p.130, 1953.

W. Nickel, G. Bialek, and F. Grosse, J. Biol. Chem, p.848, 1992.

P. Thirumurugan, D. Matosiuk, and K. Jozwiak, Chem. Rev, p.4905, 2013.

L. Zhou, A. Amer, M. Korn, R. Burda, J. Balzarini et al., Antiviral Chem. Chemother, vol.16, p.375, 2005.

V. R. Sirivolu, S. K. Vernekar, T. Ilina, N. S. Myshakina, M. A. Parniak et al., J. Med. Chem, p.8765, 2013.

D. Baraniak, K. Kacprzak, and L. Celewicz, Bioorg. Med. Chem. Lett, 2011.

P. W. Szafra?ski, P. Kasza, M. K?pczy?ski, and M. T. Ceg?a, Heterocycl. Commun, 2015.

Y. Yue, F. Huo, P. Ning, Y. Zhang, J. Chao et al., J. Am. Chem. Soc, p.3181, 2017.

C. Wang, D. Wang, S. L. Yu, T. Cornilleau, J. Ruiz et al., , vol.6, p.5424, 2016.

S. Jang, Y. J. Sa, S. H. Joo, and K. H. Park, Catal. Commu, p.24, 2016.

W. L. Wang, J. L. Wu, C. G. Xia, and F. W. Li, Green Chem, p.3440, 2011.

S. Saha, M. Kaur, and J. K. Bera, Organometallics, vol.34, p.3047, 2015.

X. Liu, N. Novoa, C. Manzur, D. Carrillo, and J. R. Hamon, New J. Chem, p.3308, 2016.

R. Jahanshahi, B. Akhlaghinia, and . Adv, , 2016.

V. R. Sirivolu, S. K. Vernekar, T. Ilina, N. S. Myshakina, M. A. Parniak et al., Med. Chem, p.8765, 2013.

, Nanoparticles: From Theory to Application, 2004.

Y. N. Xia, Y. J. Xiong, B. Lim, and S. E. Skrabalak, Angew. Chem. Int. Ed. Engl, p.60, 2009.

M. Daniel and D. Astruc, Chem. Rev, vol.104, p.293, 2004.

M. L. Brongersma, N. J. Halas, and P. Nordlander, Nat. Nanotechnol, p.25, 2015.

M. Haruta, Angew. Chem., Int. Ed, vol.53, p.52, 2014.

A. Fihri, M. Bouhrara, B. Nekoueihahraki, J. M. Basset, and V. Polhettiwar, Chem. Soc. Rev, p.5181, 2011.

A. Corma and H. Garcia, Chem. Soc. Rev, 2008.

V. S. Myers, M. G. Weir, E. V. Carino, D. F. Yancey, S. Pande et al., Chem. Sci, 1632.

R. M. Crooks, M. Q. Zhao, L. Sun, V. Chechik, and L. K. Yeung, Acc. Chem. Res, p.181, 2001.

E. Gross, J. H. Liu, F. D. Toste, and G. A. Somorjai, Nat. Chem, 0947.

M. Sankar, N. Dimitratos, P. J. Miedziak, P. P. Wells, C. J. Kiely et al., Chem. Sci, 1920.

L. M. Bronstein and Z. B. Shifrina, Chem. Rev, pp.111-5301, 2011.

J. E. Mondloch, E. Bayram, and R. G. Finke, J. Mol. Catal. A, vol.355, p.1, 2012.

M. T. Reetz and J. G. De-vries, Chem. Commun, p.1559, 2004.

A. Balanta, C. Godard, and C. Claver, Chem. Soc. Rev, p.4973, 2011.

C. Amiens, D. Ciuculescu-pradines, and K. Philippot, Coord. Chem. Rev, p.409, 2016.

V. Polshettiwar and R. S. Varma, Green Chem, p.743, 2010.

D. Astruc, F. Lu, and J. Ruiz, Angew. Chem. Int Ed. Engl, p.7852, 2005.

H. You, S. Yang, B. Ding, and H. Yang, Chem. Soc. Rev, p.2880, 2013.

H. Goesmann and C. Feldmann, Angew. Chem. Int. Ed, p.49, 2010.

M. R. Buck and R. E. Schaak, Angew. Chem. Int. Ed, p.6154, 2013.

Y. Lu and W. Chen, Chem. Soc. Rev, p.3594, 2012.

T. K. Sau and A. L. Rogach, Adv. Mater, p.1781, 2010.

S. Mourdikoudis and L. M. Liz-marzan, Chem. Mater, 1465.

C. Vollmer and C. Janiak, Coord. Chem. Rev, 2011.

B. Lim and Y. Xia, Angew. Chem. Int. Ed, p.76, 2011.

J. M. Yan, X. B. Zhang, S. Han, H. Shioyama, and Q. Xu, Angew. Chem. Int. Ed, p.2287, 2008.

L. Xiong and T. He, Chem. Mater, 2006.

N. G. Connelly and W. E. Geiger, Chem. Rev, p.877, 1996.

H. Braunschweig, R. D. Dewhurst, K. Hammond, J. Mies, K. Radacki et al., Science, vol.336, p.1420, 2012.

W. D. Woodul, E. Carter, R. Miller, A. F. Richards, A. Stasch et al., J. Am. Chem. Soc, p.133, 2011.

K. Suzuki, T. Matsuo, D. Hashizume, H. Fueno, K. Tanaka et al., Science, 1306.

W. W. Brennessel, V. G. Young, and J. E. Ellis, Angew. Chem. Int. Ed, p.7268, 2006.

C. Schottle, P. Bockstaller, R. Popescu, D. Gerthsen, and C. Feldmann, Angew. Chem. Int. Ed, p.9866, 2015.

C. Schottle, D. E. Doronkin, R. Popescu, D. Gerthsen, J. Grunwaldt et al., Chem. Commun, p.6316, 2016.

B. M. Leonard, Q. Zhou, D. Wu, and F. J. Disalvo, Chem. Mater, 1136.

T. Ghosh, B. M. Leonard, Q. Zhou, and F. J. Disalvo, Chem. Mater, p.2190, 2010.

G. Saravanan, H. Abe, Y. Xu, N. Sekido, H. Hirata et al., Langmuir, p.11446, 2010.

M. Schultz-dobrick, S. K. Vijaya, and M. Jansen, J. Am. Chem. Soc, p.12816, 2005.

Y. Tsuji, M. Kitano, K. Kishida, M. Sasase, T. Yokoyama et al., Chem. Commun, p.14369, 2016.

D. Wang and D. Astruc, Chem. Soc. Rev, vol.46, p.816, 2017.

C. Deraedt, L. Salmon, S. Gatard, R. Ciganda, R. Hernandez et al., Chem. Commun, p.14194, 2014.

F. Fu, A. Martinez, C. Wang, R. Ciganda, L. Yate et al., Chem. Commun, p.5384, 2017.

F. E. Bailey and J. V. Koleske, Alkylene oxides and their polymers, p.27, 1991.

J. V. Jokerst, T. Lobovkina, R. N. Zare, and S. S. Gambhir, Nanomedicine, vol.6, p.72, 2011.

J. S. Suk, Q. Xu, N. Kim, J. Hanes, and L. M. Ensign, Adv. Drug Deliv. Rev, p.28, 2016.

C. Wang, R. Ciganda, L. Salmon, D. Gregurec, J. Irigoyen et al., Angew. Chem. Int. Ed, vol.55, p.1, 2016.

X. Liu, C. Li, J. Xu, J. Lv, M. Zhu et al., Phys.Chem. C, vol.112, p.10778, 2008.

H. Kawasaki, H. Yamamoto, H. Fujimori, R. Arakawa, M. Inada et al., Chem. Commun, p.3759, 2010.

R. Jin, Nanoscale, issue.2, p.343, 2010.

A. Loupy, B. Tchoubar, and D. Astruc, Chem. Rev, p.1141, 1992.

N. Pradhan, A. Pal, and T. , Colloids Surf. A, p.247, 0196.

T. Aditya, A. Pal, and T. , Chem. Commun, p.9410, 2015.

K. Esumi, K. Miyamoto, and T. Yoshimura, J. Colloid Interface Sci, p.402, 2002.

P. Zhao, X. Feng, D. Huang, G. Yang, and D. Astruc, Coord. Chem. Rev, p.114, 2015.

K. Kuroda, T. Ishida, and M. Haruta, J. Mol. Catal. A: Chem, p.7, 2009.

R. Ciganda, N. Li, C. Deraedt, S. Gatard, P. Zhao et al., Chem. Commun, p.10126, 2014.

A. Corma and P. Serna, Science, p.332, 2006.

Z. Zhang, C. Shao, P. Zou, P. Zhang, M. Zhang et al., Chem. Commun, p.3906, 2011.

A. Gangula, R. Podila, M. Ramakrishna, L. Karanam, C. Janardhana et al., Langmuir, 2011.

I. Biondi and G. Laurenczy, Inorg. Chem, 2011.

Y. Mei, Y. Lu, F. Polzer, M. Ballauff, and . Drechsler, Chem. Mater, 1062.

S. Wunder, F. Polzer, Y. Lu, Y. Mei, and M. Ballauff, J. Chem. Phys, p.8814, 2010.

S. Wunder, Y. Lu, M. Albrecht, and M. Ballauff, ACS Catal, 0908.

P. Herves, M. Perez-lorenzo, L. M. Liz-marzan, J. Dzubiella, Y. Lu et al., Chem. Soc. Rev, p.5577, 2012.

Y. Lu and M. Ballauff, Prog. Polym. Sci, p.86, 2016.

J. Ruiz, D. Astruc, D. C. Acad, and . Sci, , 1998.

I. Noviandri, K. N. Brown, D. S. Fleming, P. T. Gulyas, P. A. Lay et al., J. Phys. Chem. B, p.6713, 1999.

J. Ruiz, M. Daniel, and D. Astruc, Can. J. Chem, p.288, 2006.

W. E. Geiger, J. Am. Chem. Soc, 1974.

W. E. Geiger, W. L. Bowden, and N. Murr, Inorg. Chem, 1979.

W. E. Geiger, Organometallics, p.5738, 2007.

J. B. Flanagan, S. Margel, A. J. Bard, and F. C. Anson, J. Am. Chem. Soc, p.4248, 1978.

N. Miyaura and A. Suzuki, Chem. Rev, p.2457, 1995.

A. Suzuki, In Modern Arene Chemistry

D. Astruc, E. Wiley, and -. Vch, , p.53, 2002.

K. Sonogashira, Y. Tohda, and N. Hagihara, Tetrahedron Lett, p.4467, 1975.

K. Sonogashira, T. Yatake, Y. Tohda, S. Takahashi, and N. Hagihara, Chem. Commun, p.291, 1977.

R. Chinchilla and C. Najera, Chem. Rev, p.874, 2007.

R. Chinchilla and C. Najera, Chem. Rev, vol.114, p.1783, 2014.

H. Doucet and J. Hierso, Angew. Chem., Int. Ed, vol.46, p.834, 2007.

A. Alimardanov, L. Schmieder-van-de-vondervoort, A. H. De-vries, and J. G. De-vries, Adv. Synth. Catal, p.1812, 2004.

S. Ogasawara and S. Kato, J. Am. Chem. Soc, p.4608, 2010.

C. Deraedt, N. Pinaud, and D. Astruc, J. Am. Chem. Soc, p.12092, 2014.

C. Deraedt and D. Astruc, Acc. Chem. Res, p.494, 2014.

I. Maluendra and O. Navarro, Molecules, 2014.

G. M. Scheurmann, L. Rumi, P. Steurer, W. Bannwarth, and R. Mulhaupt, J. Am. Chem. Soc, p.8262, 2009.

S. Ding, J. Gao, Q. Wang, Y. Zhang, W. G. Song et al., J. Am. Chem. Soc, p.133, 2011.

A. K. Rathi, M. B. Gawande, J. Pechousek, J. Tuck, C. Airicio et al., Green Chem, vol.18, p.2363, 2016.

S. Handa, Y. Wang, F. Gallou, and B. H. Lipshutz, Science, p.1087, 2015.

S. Huebner, J. G. De-vries, and V. Farina, Adv. Syn. Catal, vol.358, p.3, 2016.

P. Das and W. Linert, Coord. Chem. Rev, p.1, 2016.

R. Ye, B. Yuan, J. Zhao, W. T. Ralston, C. Y. Wu et al., Angew. Chem. Int. Ed, vol.138, pp.52-56, 2014.

. Angew and . Chem, , vol.126, pp.54-58, 2014.

P. J. Dimitratos, P. P. Miedziak, C. J. Wells, G. J. Kiely, A. Hutchings-;-d)-a.-corma et al., Modern Surface Organometallic Chemistry, vol.41, pp.7852-7872, 2005.

. Angew, . T. Chem-;-m, J. G. Reetz, and . De-vries, Chem. Commun, vol.117, pp.1559-1563, 2004.

M. Brust, M. Walker, D. Bethel, D. J. Schiffrin, R. G. Whyman-;-b)-y et al., J. Chem. Soc. Chem. Commun, vol.3, pp.158-164, 1994.

M. He, Q. Wang, R. Wang, Y. Xie, W. F. Zhao et al., ACS Appl. Mater. Interfaces, vol.9, pp.14194-14196, 2014.

J. M. Yan, X. B. Xhang, S. Han, H. Shioyama, and Q. Xu, Angew. Chem. Int. Ed, vol.47, pp.2287-2289, 2008.

. Angew, P. Chem-;-c.-schçttle, R. Bockstaller, D. Popescu, C. Gerthsen et al., Angew. Chem. Int. Ed, vol.120, pp.9866-9870, 2008.

. Angew, D. E. Chem-;-c.-schçttle, R. Doronkin, D. Popescu, J. D. Gerthsen et al., Chem. Commun, vol.127, pp.6316-6319, 2015.

J. Hamon, D. Astruc, P. Michaud, J. Am, J. C. Green et al., J. Am. Chem. Soc, vol.103, pp.377-383, 1981.

A. Rapakousiou, C. Belin, L. Salmon, J. Ruiz, and D. Astruc, Chem. Commun, vol.53, pp.6267-6270, 2017.

R. Ciganda, J. Irigoyen, D. Gregurec, R. Hernández, S. Moya et al., Inorg. Chem, vol.55, pp.2784-2791, 2016.

A. N. Nesmeyanov, N. A. Volkenau, and I. N. Bolesova, Dokl. Akad. Nauk SSSR, vol.217, pp.104-106, 1974.

D. Astruc, J. Hamon, G. Althoff, E. Román, P. Batail et al.,

F. Mariot, D. Varret, and . Cozak, J. Am. Chem. Soc, vol.101, pp.5445-5447, 1979.

E. Moinet, D. Román, and . Astruc, J. Electroanal. Chem, vol.121, pp.241-253, 1981.

I. U. Khand, P. L. Pauson, and W. E. Watts, b) For redox and hydride transfer reactions of organometallic sandwich complexes, see Ref. [10 c], chapt. 12; c) D. Astruc, Organome-tallic Chemistry and Catalysis, J. Chem. Soc. C, pp.2257-2259, 1968.

M. L. Green, L. Pratt, and G. Wilkinson, J. Chem. Soc, pp.3753-3767, 1959.

M. Daniel and D. Astruc, Chem. Rev, vol.104, pp.293-346, 2004.

R. A. Marcus and N. Sutin, 265-322 ; b) D. Astruc, Electron Transfer and Radical Processes in Transition Metal Chemistry, Biochim. Biophys. Acta Rev. Bioenerg, vol.811, 1985.

N. Pradhan, A. Pal, T. Pal, C. Surf-;-b, ). P. Hervés et al., Coord. Chem. Rev, vol.196, pp.114-136, 2002.

N. Miyaura, A. Suzuki-;-b, and ). A. Suzuki, Modern Arene Chemistry, vol.95, p.53, 1995.

A. N. Nesmeyanov, S. P. Solodovnikov, and N. A. , J. Organomet. Chem, vol.148, pp.5-7, 1978.

E. O. Fischer, W. Pfab, ;. Wilkinson, M. Rosenblum, M. C. Whiting et al., Z. Naturforsch. B, vol.7, pp.2125-2126, 1952.

N. G. Connelly and W. E. Geiger, Chem. Rev, vol.96, pp.877-910, 1996.

W. E. Geiger, J. Am. Chem. Soc, vol.96, pp.2632-2634, 1974.

I. Noviandri, K. N. Brown, D. S. Fleming, P. T. Gulyas, P. A. Lay et al., J. Phys. Chem. B, vol.103, pp.288-299, 1999.

A. J. Bard and L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2001.

Y. Mei, F. Lu, M. Polzer, M. Ballauff, ). S. Dreshler-;-b et al., Prog. Polym. Sci, vol.19, pp.86-104, 2007.

J. Lee, J. Park, H. Song-;-b, ). Z. Zhang, C. Shao et al., Chem. Commun, vol.20, pp.15268-15274, 2008.

R. Wang, L. Ciganda, S. Yate, L. Moya, J. Salmon et al., J. Mater. Sci. A, vol.52, pp.9465-9476, 2017.

S. Harish, J. Mathiyarasu, K. L. Phani, and V. Yegnaraman, Catal. Lett, vol.128, pp.197-202, 2009.

B. Liu, S. Yu, Q. Wang, W. Hu, P. Jing et al., Chem. Commun, vol.49, pp.3757-3759, 2013.

C. Deraedt, L. Salmon, and D. Astruc, Adv. Synth. Catal, vol.356, pp.2525-2538, 2014.

H. Li, L. Han, J. Cooper-white, I. Kim, and G. Chem, , vol.14, pp.586-591, 2012.

K. Jiang, H. X. Zhang, Y. Y. Yang, R. Mothes, H. Lang et al., Chem. Commun, vol.47, pp.11924-11926, 2011.

X. Lu, X. Bian, G. Nie, C. Zhang, C. Wang et al., J. Mater. Chem, vol.22, pp.12723-12730, 2012.

J. Morhre, M. J. Tenorio, M. J. Torralvo, C. Pando, J. A. Renuncio et al., J. Supercrit. Fluids, vol.56, pp.213-222, 2011.

R. Bhandari and M. R. Knecht, , vol.1, pp.89-98, 2011.

Y. Mei, G. Sharma, Y. Lu, M. Ballauff, M. Dreshler et al., Langmuir, vol.21, pp.12229-1234, 2005.

S. Gatard, L. Salmon, C. Deraedt, J. Ruiz, D. Astruc et al., Eur. J. Inorg. Chem, pp.4369-4375, 2014.

C. Wang, R. Ciganda, L. Salmon, D. Gregurec, J. Irigoyen et al., Angew. Chem. Int. Ed, vol.55, pp.3091-3095, 2016.

. Angew and . Chem, , vol.128, pp.3143-3147, 2016.

F. Fu, A. M. Martinez-villacorta, A. Escobar, J. Irigoyen, S. Moya et al., Inorg. Chem. Front, vol.4, pp.2037-2044, 2017.

H. Yamamoto, H. Yano, H. Kouchi, Y. Obora, R. Arakawa et al., Nanoscale, vol.4, pp.4148-4154, 2012.

R. Fenger, E. Fertitta, H. Kirmse, A. F. Thunemann, and K. Rademann, Phys. Chem. Chem. Phys, vol.14, pp.9343-9349, 2012.

E. Seo, J. Kim, Y. Hong, Y. S. Kim, D. Lee et al., J. Phys. Chem. C, vol.117, pp.11686-11693, 2013.

C. Xiao, S. Chen, L. Zhang, S. Zhou, and W. Wu, Chem. Commun, vol.48, pp.11751-11753, 2012.

T. Huang, F. Meng, and L. Qi, J. Phys. Chem. C, vol.113, pp.13636-13642, 2009.

J. Han, L. Li, and R. Guo, Macromolecules, vol.43, pp.10636-10644, 2010.

I. Biondi, G. Laurenczy, and P. J. Dyson, Inorg. Chem, vol.50, pp.8038-8045, 2011.

K. Esumi, K. Miyamoto, and T. Yoshimura, J. Colloid Interface Sci, vol.268, pp.501-506, 2003.

K. Hayakawa, T. Yoshimura, and K. Esumi, Langmuir, vol.19, pp.5517-5521, 2003.

N. Li, P. Zhao, N. Liu, M. Echeverria, S. Moya et al., Chem. Eur. J, vol.20, pp.8363-8369, 2014.

N. Li, M. Echeverr&a, S. Moya, J. Ruiz, and D. Astruc, Inorg. Chem, vol.53, pp.11802-11808, 2014.

R. Ciganda, N. Li, C. Deraedt, S. Gatard, P. Zhao et al., Chem. Commun, vol.50, pp.10126-10129, 2014.

S. Das, B. G. Bag, and R. Basu, Appl. Nanosci, vol.5, pp.867-873, 2015.

A. G. Majouga, E. K. Beloglazkina, E. A. Manzheliy, D. A. Denisov, E. G. Evtushenko et al., Appl. Surf. Sci, vol.325, pp.73-78, 2015.

Y. Ju, X. Li, J. Feng, Y. Ma, J. Hu et al., Appl. Surf. Sci, vol.316, pp.132-140, 2014.

H. Woo, J. W. Kim, M. Kim, S. Park, K. H. Park et al., , vol.5, pp.7554-7558, 2015.

P. Zhao, N. Li, N. Liu, L. Salmon, J. Ruiz et al., Chem. Commun, vol.49, pp.3218-3220, 2013.

C. Deraedt, L. Salmon, L. Etienne, J. Ruiz, and D. Astruc, Acc. Chem. Res, vol.49, pp.494-503, 2013.

Y. Handa, F. Wang, B. H. Gallou, and . Lipshutz, Science, vol.349, pp.1087-1091, 2015.

G. Schmid, Nanoparticles: From Theory to Application, 2004.

Y. N. Xia, Y. J. Xiong, B. Lim, and S. E. Skrabalak, Shape-controlled Synthesis of Metal Nanocrystals: Simple Chemistry Meets Complex Physics?, Angew. Chem. Int. Ed. Engl, vol.48, pp.60-103, 2009.

M. L. Brongersma, N. J. Halas, and P. Nordlander, Plasmon-induced Hot Carrier Science and Technology, Nat. Nanotechnol, vol.10, pp.25-34, 2015.

M. Daniel and D. Astruc, Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology, Chem. Rev, vol.104, pp.293-346, 2004.

J. Basset, R. Psaro, D. Roberto, and R. Ugo, Modern Surface Organometallic Chemistry, 2009.

V. S. Meyers, M. G. Weier, E. V. Carino, D. F. Yancey, S. Pande et al., Dendrimer-encapsulated Nanoparticles: New Synthetic and Characterization Methods and Catalytic Applications, Chem. Sci, vol.2, pp.1632-1646, 2011.

L. M. Bronstein and Z. B. Shifrina, Dendrimers as Encapsulating, Stabilizing, or Directing Agents for Inorganic Nanoparticles, Chem. Rev, vol.111, pp.5301-5344, 2011.

R. Ye, B. Yuan, J. Zhao, W. T. Ralston, C. Y. Wu et al., Metal Nanoparticles Catalyzed Selective Carbon-Carbon Bond Activation in the Liquid Phase, J. Am. Chem. Soc, vol.138, pp.8533-8537, 2016.

M. T. Reetz and J. G. De-vries, Ligand-free Heck Reactions Using Low Pd-loading, Chem. Commun, pp.1559-1563, 2004.

M. Haruta, Chance and Necessity: My Encounter with Gold Catalysts, Angew. Chem., Int. Ed, vol.53, pp.52-56, 2014.

M. Sankar, N. Dimitratos, P. J. Miedziak, P. P. Wells, C. J. Kiely et al., Designing Bimetallic Catalysts for a Green and Sustainable Future, Chem. Sci, vol.2012, pp.20-44

A. Balanta, C. Godard, and C. Claver, Pd Nanoparticles for C-C Coupling Reactions, Chem. Soc. Rev, vol.40, pp.4973-4985, 2011.

V. Polshettiwar and R. S. Varma, Green Chemistry by Nano-catalysis, Green Chemistry, vol.12, pp.743-754, 2010.

A. Corma, A. Leyva-perez, . Maria, and J. Sabater, Gold-Catalyzed Carbon?Heteroatom Bond-Forming Reactions, Chem. Rev, vol.111, pp.1657-1712, 2011.

B. Cornils and W. A. Herrmann, Applied Homogeneous Catalysis with Organometallic Compounds, 1996.

A. T. Bell, The Impact of Nanoscience on Heterogeneous Catalysis, Science, vol.299, pp.1688-1691, 2003.

C. H. Cui, L. Gan, M. Heggen, S. Rudi, and P. Strasser, Compositional Segregation in Shaped Pt Alloy Nanoparticles and their Structural Behaviour During Electrocatalysis, Nat. Mater, vol.12, pp.765-771, 2013.

G. Prieto, J. Ze?evi?, H. Friederich, K. P. De-jong, and P. E. De-jongh, Towards Stable Catalysts by Controlling Collective Properties of Supported Metal Nanoparticles, Nat. Mater, vol.12, pp.34-39, 2013.

K. Na, M. Choi, O. M. Yaghi, and G. A. Somorjai, Metal Nanocrystals Embedded in Single Nanocrystals of MOFs Give Unusual Selectivity as Heterogeneous Catalysts, Nano Letters, vol.14, pp.5979-5983, 2014.

D. Astruc, F. Lu, and J. Ruiz, Nanoparticles as Recyclable Catalysts: the Frontier between Homogeneous and Heterogeneous Catalysis, Angew. Chem. Int Ed. Engl, vol.44, pp.7852-7872, 2005.

J. M. Yan, X. B. Zhang, S. Han, H. Shioyama, and Q. Xu, Iron-nanoparticle-catalyzed Hydrolytic Dehydrogenation of Ammonia Borane for Chemical Hydrogen Storage, Angew. Chem. Int. Ed, vol.47, pp.2287-2289, 2008.

C. Schöttle, P. Bockstaller, R. Popescu, D. Gerthsen, and C. Feldmann, Sodium-Naphthalenide-Driven Synthesis of Base-Metal Nanoparticles and Follow-up Reactions, Angew. Chem., Int Ed, vol.54, pp.9866-9870, 2015.

C. Schöttle, D. E. Doronkin, R. Popescu, D. Gerthsen, J. D. Grünwald et al., Ti 0 Nanoparticles via Lithium-naphthalenide-driven Reduction, Chem. Commun, vol.52, pp.6316-6319, 2016.

G. Wilkinson, The Preparation and Some Properties of Ruthenocene and Ruthenicinium Salts, J. Am. Chem. Soc, vol.74, pp.6148-6150, 1952.

D. Astruc, Organometallic Chemistry and Catalysis, 2007.

D. Astruc, Organoiron Electron-reservoir Complexes, Acc. Chem. Res, vol.19, pp.377-383, 1986.
URL : https://hal.archives-ouvertes.fr/jpa-00209725

N. G. Connelly and W. E. Geiger, Chemical Redox Agents for Organometallic Chemistry, Chem. Rev, vol.96, pp.877-910, 1996.

W. E. Geiger, Electroreduction of Cobaltocene. Evidence for a Metallocene Anion, J. Am. Chem. Soc, vol.96, pp.2632-2634, 1974.

J. E. Sheats and M. D. Rausch, Synthesis and Properties of Cobalticinium Salts. I. Synthesis of Monosubstituted Cobalticinium Salts, J. Org. Chem, vol.35, pp.3245-3255, 1970.

H. C. Kolb, M. G. Finn, and K. B. Sharpless, Click Chemistry: Diverse Chemical Function from a Few Good Reactions, Angew. Chem., Int. Ed, vol.40, 2001.

M. Meldal, C. W. Tornøe, J. E. Hein, V. V. Fokin, E. Hald-n et al., Copper-catalyzed Azide-alkyne Cycloaddition (CuAAC) and Beyond: New Reactivity of Copper(I) Acetylides, J. Org. Biomol. Chem, vol.108, 1302.

C. Wang, D. Ikhlef, S. Kahlal, J. Saillard, and D. Astruc, Metal-Catalyzed Azide-Alkyne "Click" Reactions: Mechanistic Overview and Recent Trends
URL : https://hal.archives-ouvertes.fr/hal-01282461

M. S. Singh, S. Chowdhury, and S. Koley, Advances of Azide-alkyne Cycloaddition-click Chemistry over the Recent Decade, Coord. Chem. Rev, vol.316, pp.5257-5283, 2016.

V. V. Rostovtsev, L. G. Geen, V. V. Fokin, and K. B. Sharpless, A Stepwise Huisgen Cycloaddition Process: Copper(I)-catalyzed Regioselective "Ligation" of Azides and Terminal Alkynes, Angew. Chem., Int. Ed, vol.114, 2002.

P. Etayo, C. Ayats, and M. A. Pericas, Synthesis and Catalytic Applications of C3-symmetric Tris(triazolyl)methanol Ligands and Derivatives, Chem. Commun, vol.52, 1997.

X. Liu, D. Gregurec, J. Irigoyen, A. Martinez, S. Moya et al., Precise Localization of Metal Nanoparticles in Dendrimer Nanosnakes or Inner Periphery and Consequences in Catalysis, Nat. Commun, vol.7, p.13152, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01395476

F. Fu, A. Martinez, C. Wang, R. Ciganda, L. Yate et al., Exposure to Air Boosts CuAAC Reactions Catalyzed by PEG-stabilized Cu Nanoparticles, Chem. Commun, vol.53, pp.5384-5387, 2017.

F. Alonso, Y. Moglie, and G. Radivoy, Copper Nanoparticles in Click Chemistry, Acc. Chem. Res, vol.48, pp.2516-2528, 2015.

M. B. Gawande, A. Goswami, F. X. Felpin, T. Asefa, X. X. Huang et al., Cu and Cu-Based Nanoparticles: Synthesis and Applications in Catalysis, Chem.Rev, vol.116, pp.3722-3811, 2016.

M. R. Decan, S. Impellizzeri, M. L. Marin, and J. C. Scaiano, Copper Nanoparticle Heterogeneous Catalytic 'Click' Cycloaddition Confirmed by Single-molecule Spectroscopy, Nat. Commun, vol.5, p.4612, 2014.

M. Rycenga, C. M. Cobley, J. Zeng, W. Y. Li, C. H. Moran et al., Controlling the Synthesis and Assembly of Silver Nanostructures for Plasmonic Applications, Chem. Rev, vol.111, pp.3669-3712, 2011.

T. K. Sau, A. Pal, T. Pal, P. Hervés, M. Pérez-lorenzo et al., Basic Concepts and Recent Advances in Nitrophenol Reduction by Gold-and Other Transition Metal Nanoparticles, Coord. Chem. Rev, vol.105, pp.114-136, 2001.

S. Wunder, Y. Lu, M. Albrecht, M. Ballauff, Y. Lu et al., Spherical Polyelectrolyte Brushes as Nanoreactors for the Generation of Metallic and Oxidic Nanoparticles: Synthesis and Application in Catalysis, Prog. Polym. Sci, vol.59, pp.86-104, 2011.

F. Fu, Q. Wang, R. Ciganda, A. M. Martinez-villacorta, A. Escobar et al., Electron-and Hydride-Reservoir Organometallics as Precursors of Catalytically Efficient Transition Metal Nanoparticles in Water, Chem. Eur. J, vol.24, pp.6645-6653, 2018.

C. Ornelas, J. Ruiz, E. Cloutet, S. Alves, and D. Astruc, Click Assembly of 1,2,3-Triazole-Linked Dendrimers, Including Ferrocenyl Dendrimers, Which Sense Both Oxo Anions and Metal Cations, Angew. Chem. Int. Ed, vol.46, pp.872-877, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00275204

J. Liu, S. Mendoza, E. Roma-n, M. J. Lynn, R. Xu et al., Cyclodextrin-Modified Gold Nanospheres. Host?Guest Interactions at Work to Control Colloidal Properties, J. Am. Chem. Soc, vol.121, pp.4304-4305, 1999.

Y. Wang, H. Li, Q. Jin, and J. Ji, Intracellular Host-guest Assembly of Gold Nanoparticles Triggered by Glutathione, Chem. Commun, vol.52, pp.582-585, 2016.

Y. Yue, F. Huo, P. Ning, Y. Zhang, J. Chao et al., Dual-Site Fluorescent Probe for Visualizing the Metabolism of Cys in Living Cells, J. Am. Chem. Soc, vol.139, pp.3181-3185, 2017.

R. Ciganda, J. Irigoyen, D. Gregurec, R. Hernández, S. Moya et al., Liquid-Liquid Interfacial Electron Transfer from Ferrocene to Gold(III): An Ultrasimple and Ultrafast Gold Nanoparticle Synthesis in Water under Ambient Conditions, Inorg. Chem, vol.55, pp.6361-6363, 2016.

D. Astruc, Why is Ferrocene so Exceptional?, Eur. J. Inorg. Chem, pp.6-29, 2017.

P. G. Hu, L. M. Chen, X. W. Kang, and S. W. Chen, Surface Functionalization of Metal Nanoparticles by Conjugated Metal?Ligand Interfacial Bonds: Impacts on Intraparticle Charge Transfer, Acc. Chem. Res, vol.49, pp.2251-2260, 2016.

K. Judai, S. Numao, J. Nishijo, and N. Nishi, Situ Preparation and Catalytic Activation of Copper Nanoparticles from Acetylide Molecules, J. Mol. Catal. A-Chemical, vol.347, pp.28-33, 2011.

W. W. Yam, K. K. Lo, W. K. Fung, and C. R. Wang, Design of Luminescent Polynuclear Copper(I) and Silver(I) Complexes with Chalcogenides and Acetylides as the Bridging Ligands, Coord. Chem. Rev, vol.171, pp.17-41, 2010.

, See (a) Sheats, J. E. A Comprehensive Review up to 1976 of Cobalt Sandwich Compounds, Cobaltocene, a purple black solid, is available at Sigma-Aldrich or is readily best synthesized by reaction between CoBr2 and NaCp in THF, vol.7, p.244, 1979.

C. Wang, D. Wang, S. Yu, T. Cornilleau, J. Ruiz et al., Design and Applications of an Efficient Amphiphilic "Click" CuI Catalyst in Water, ACS Catal, vol.6, pp.5424-5431, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01934976

R. Jin-;-b)-h.-hakkinen-;-c)-r.-jin, C. J. Zeng, M. Zhou, and Y. X. Chen, Nat. Chem, vol.2, pp.10346-10413, 2010.

C. ;. Yan, T. Chakraborty, ;. Pradeep, T. Yao, X. Chen et al., Acc. Chem. Res, vol.322, pp.279-282, 2016.

M. W. Heaven, A. Dass, P. S. White, K. M. Holt, R. W. Murray et al., J. Am. Chem. Soc, vol.130, pp.5883-5885, 2008.

J. F. Parker, J. Choi, W. Wang, R. W. Murray, ;. Zhu et al., Int. J. Hydrogen Energy, vol.112, pp.2788-2795, 2008.

Z. Liu, M. Zhu, X. Meng, G. Xu, and R. Jin, J. Phys. Chem. Lett, vol.2, pp.10833-10840, 2011.

D. Astruc, Angew. Chem., Int. Ed. Engl, vol.100, pp.662-680, 1988.

H. Chong, P. Li, S. Wang, F. Fu, J. Xiang et al., Sci. Rep, issue.3, p.3214, 2013.

A. M. Madonik and D. Astruc, J. Am. Chem. Soc, vol.106, pp.2437-2439, 1984.

M. Desbois, D. Astruc, J. Guillin, F. Varret, A. X. Trautwein et al.,

. Villeneuve, J. Am. Chem. Soc, vol.111, pp.5800-5809, 1989.

J. Hamon, D. Astruc, P. Michaud-;-b, ). J. Green, M. R. Kelly et al., J. Am. Chem. Soc, vol.103, pp.377-383, 1981.

U. Koelle and F. Khouzoumi, 640-641; b) B. Gloaguen and D. Astruc, Angew. Chem. Int. Ed, vol.19, pp.4607-4609, 1980.

D. Astruc, Electron-transfer and Radical Processes in Transition-Metal Chemistry, 1995.

F. Fu, R. Ciganda, Q. Wang, A. Tabey, C. Wang et al., ACS Catal, vol.8, pp.8100-8106, 2018.

I. Noviandri, K. N. Brown, D. S. Fleming, P. T. Gulyas, P. A. Lay et al., J. Phys. Chem. B, vol.103, pp.288-299, 1998.

R. Marcus and N. Sutin, Biochem. Biophys. Acta, vol.811, pp.265-322, 1985.

D. Rehm and A. H. Weller, Isr. J. Chem, vol.8, pp.259-271, 1970.

M. L. Green, L. Pratt, G. U. Wilkinson-;-i, P. L. Khand, W. E. Pauson et al., J. Chem. Soc. C, pp.2257-2259, 1959.

F. Fu, R. Ciganda, A. M. Martinez-villacorta, S. Moya, E. Fouquet et al., Chem. Eur. J, vol.24, pp.6645-6653, 2018.

P. Michaud, D. Astruc, and J. Ammeter, J. Am. Chem. Soc, vol.104, pp.3755-3757, 1982.

M. Zhu, E. Lanni, N. Garg, M. E. Bier, and R. Jin, Kinetically Controlled, High-Yield Synthesis of Au25 Clusters, J. Am. Chem. Soc, vol.130, pp.1138-113, 2008.

L. Schlapbach, A. Zuttel, W. Grochala, and P. P. Edwards, Angew. Chem. Int. Ed, vol.414, pp.8116-8118, 2001.

F. H. Stephens, V. Pons, R. T. Baker, . Dalton, C. W. Hamilton et al., Energy Environ. Sci, vol.38, pp.478-512, 2007.

W. Chen, D. Li, Z. Wang, Q. Qian, Z. Sui et al., , vol.63, pp.60-65, 2017.

?. Metin, V. Mazumder, S. ?zkar, and S. Sun, J. Am. Chem. Soc, vol.132, pp.1468-1469, 2010.

J. M. Yan, X. B. Zhang, T. Akita, M. Haruta, Q. Xu et al., Acs Appl. Mater. Interfaces, vol.132, p.13, 2010.

D. Ke, J. Wang, H. Zhang, Y. Li, L. Zhang et al., Int. J. Hydrogen Energy, vol.42, pp.26617-26625, 2017.

Q. L. Zhu, J. Li, Q. J. Xu, W. Chen, J. Ji et al., J. Am. Chem. Soc, vol.135, pp.71-76, 2013.

C. Wang, J. Tuninetti, Z. Wang, C. Zhang, R. Ciganda et al., Int. J. Hydrog. Energy, vol.139, pp.162-170, 2014.

H. C. Johnson, A. S. Weller, X. B. Wang, L. H. Xie, K. Huang et al., Angew. Chem. Int. Ed, vol.54, pp.7610-7613, 2015.

C. Peng, L. Kang, S. Cao, Y. Chen, and Z. Lin,

W. Fu, C. Hou, Q. Li, C. Wang, C. Peng et al., Angew. Chem. Int. Ed, vol.54, pp.1770-1776, 2015.

Z. Lu, L. Schweighauser, H. Hausmann, and H. A. Wegner, Angew. Chem. Int. Ed, vol.54, pp.15556-15559, 2015.

J. Y. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen et al., Angew. Chem. Int. Ed, vol.38, pp.7502-7513, 2009.

. Hydrog, A. Energy-;-d)-dhakshinamoorthy, H. Garcia, J. Liu, L. Chen et al., Chem. Soc. Rev, vol.35, pp.7935-7947, 2010.

A. Aijaz, A. Karkamkar, Y. J. Choi, N. Tsumori, E. Rönnebro et al., Int. J. Hydrogen Energy, vol.134, pp.9419-9422, 2012.

G. Lu, S. Li, Z. Guo, O. K. Farha, B. G. Hauser et al., J. Am. Chem. Soc, vol.4, pp.356-362, 2012.

K. S. Park, Z. Ni, A. P. Côté, J. Y. Choi, R. Huang et al., , vol.13, pp.10186-10191, 2006.

M. Mahyari, A. J. Shaabani, . Mater, . Chem, A. Bulut et al., Angew. Chem. Int. Ed, vol.2, pp.8946-8953, 2014.

;. Mater, H. Zhang, X. Gu, P. Liu, J. Song et al., J. Mater. Chem. A, vol.9, pp.816-854, 2017.

X. Li, C. Zeng, G. Fan, X. Li, C. Zeng et al., Int. J. Hydrogen Energy, vol.40, pp.3128-3135, 2015.

D. A. Hansgen, D. G. Vlachos, J. G. Chen, . Nat, . Chem et al., Angew. Chem. Int. Ed, vol.2, pp.160-534, 2010.

R. J. Keaton, J. M. Blacquiere, R. T. Baker, P. Bhattacharya, J. A. Krause et al., J. Am. Chem. Soc, vol.129, pp.11272-11275, 2007.

Z. C. Fu, Y. Xu, S. L. Chan, W. W. Wang, F. Li et al., Chem. Commun, vol.53, pp.705-708, 2013.

Q. Yao, K. Yang, X. Hong, . X. Chen, and . Lu, Z. H. Catal. Sci. Technol, vol.8, pp.870-877, 2018.

Q. Xu and M. Chandra, J. Power Sources, vol.163, pp.364-370, 2006.

S. B. Kalidendi, U. Sanyal, and B. R. Jagirdar, Phys. Chem. Chem. Phys, vol.10, pp.5870-5874, 2008.

H. Ma, C. Na, and . Catal, , vol.5, pp.1726-1735, 2015.

Z. Li, T. He, L. Liu, W. Chen, M. Zhang et al., Chem. Sci, vol.8, pp.6762-6769, 2017.

A. Stanislaus, B. H. Cooper, P. Ji, K. Manna, Z. Lin et al., Catal. Rew.-Sci. ENG, vol.36, pp.7004-7011, 1994.

T. Karaca, M. Sevim, and ?. Metin, ChemCatChem, vol.9, pp.4185-4190, 2017.

G. Fan, X. Li, Y. Ma, Y. Zhang, J. Wu et al., J. New J. Chem, vol.41, pp.2793-2799, 2017.

W. Chen, J. Ji, X. Duan, G. Qian, P. Li et al., Chem. Commun, vol.50, pp.2142-2144, 2014.

S. Wang, D. Zhang, Y. Ma, H. Zhang, J. Gao et al., ACS Appl. Mater. Interfaces, vol.6, pp.12429-12435, 2014.

J. Kang, T. Chen, D. Zhang, and L. Guo, Nano Energy, vol.23, pp.145-152, 2016.

Z. Li, T. He, D. Matsumura, S. Miao, A. Wu et al., , vol.7, pp.6762-6769, 2017.

D. Ke, J. Wang, H. Zhang, Y. Li, L. Zhang et al., Int. J. Hydrogen Energy, vol.42, pp.26617-26625, 2017.

Y. Ge, W. Ye, Z. H. Shah, X. Lin, R. Lu et al., Acs Appl. Mater. Interfaces, vol.9, pp.3749-3756, 2017.

J. Zhang, C. Chen, S. Chen, Q. Hu, Z. Gao et al., Qin, Y. Catal. Sci. Technol, vol.7, pp.322-329, 2017.

A. Aijaz, A. Karkamkar, Y. J. Choi, N. Tsumori, E. Roennebro et al., J. Am. Chem. Soc, vol.134, pp.13926-13929, 2012.

M. Li, J. Hu, Z. Chen, H. Lu, and . Adv, , vol.4, pp.41152-41158, 2014.

M. Rakap, Appl. Catal., A, vol.478, pp.15-20, 2014.

Y. Ge, Z. H. Shah, X. Lin, R. Lu, Z. Liao et al., , vol.5, pp.1675-1684, 2017.

M. Chandra and Q. Xu, J. Power Sources, vol.168, pp.135-142, 2007.

X. Wang, D. P. Liu, S. Y. Song, and H. J. Zhang, Chem. Commun, vol.48, pp.10207-10209, 2012.

Y. Hu, Y. Wang, Z. Lu, X. Chen, and L. Xiong, Appl. Surf. Sci, vol.341, pp.185-189, 2015.

X. Cui, H. Li, G. Yu, M. Yuan, J. Yang et al., Z. Int. J. Hydrogen Energy, vol.42, pp.27055-27065, 2017.

Q. Xu and M. Chandra, J. Alloys Compd, pp.729-732, 2007.

X. J. Yang, F. Y. Cheng, J. Z. Liang, L. Tao, and . Chen, J. Int. J. Hydrogen Energy, vol.36, 1984.

X. J. Yang, F. Y. Cheng, Z. L. Tao, and J. Chen, J. Power Sources, vol.196, pp.2785-2789, 2011.

Q. Zhou and C. Xu, Chem. -Asian J, vol.11, pp.705-712, 2016.

A. J. Amali, K. Aranishi, T. Uchida, and Q. Xu, Part. Part. Syst. Charact, vol.30, pp.888-892, 2013.

X. Yang, F. Cheng, J. Liang, Z. Tao, and J. Chen, Int. J. Hydrogen Energy, vol.34, pp.8785-8791, 2009.

X. Qi, X. Li, B. Chen, H. Lu, L. Wang et al., ACS Appl. Mater. Interfaces, vol.8, pp.1922-1928, 2016.

C. F. Yao, L. Zhuang, Y. L. Cao, X. P. Ai, and H. X. Yang, Int. J. Hydrogen Energy, vol.33, pp.2462-2467, 2008.

X. Qi, X. Li, B. Chen, H. Lu, L. Wang et al., ACS Appl. Mater. Interfaces, vol.8, pp.1922-1928, 2016.

, Nanoparticles and Catalysis, Thematic Chem. Rev. issue, 2020.

X. Liu, C. Manzur, N. Novoa, S. Seledon, D. Carrillo et al., Multidentate unsymmetrically-substituted Schiff bases and their metal complexes: Synthesis, functional materials properties, and applications to catalysis, Coord. Chem. Rev, vol.357, pp.144-172, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01671629

R. V. Jagadeesh, K. Murugesan, A. S. Alshammari, H. Neumann, M. Pohl et al., MOF-derived cobalt nanoparticles catalyze a general synthesis of amines, vol.358, pp.326-332, 2017.

Q. Wang and D. Astruc, State of the Art and Prospects in Metal-Organic Framework (MOF)-Based and MOF-Derived Nanocatalysis, Chem. Rev

C. S. Diercks, Y. Liu, K. E. Cordova, and O. M. Yaghi, The role of reticular chemistry in the design of CO2 reduction catalysts, Nat. Mater, vol.17, pp.301-307, 2018.

Y. Chen, S. Ji, C. Chen, Q. Peng, D. Wang et al., Single-Atom Catalysts: Synthetic Strategies and Electrochemical Applications, Joule, vol.2, pp.1242-1264, 2018.

P. Yin, T. Yao, Y. Wu, L. Zheng, Y. Lin et al., Single Cobalt Atoms with Precise N-Coordination as Superior Oxygen Reduction Reaction Catalysts, Angew. Chem., Int. Ed, vol.55, pp.10800-108005, 2016.

X. Wang, W. Chen, L. ;. Zhang, T. Yao, W. Liu et al., Uncoordinated Amine Groups of Metal-Organic Frameworks to Anchor Single Ru Sites as Chemoselective Catalysts toward the Hydrogenation of Quinoline, J. Am. Chem. Soc, vol.139, pp.9419-9422, 2017.

Y. Qu, Z. Li, W. Chen, Y. Lin, T. Yuan et al., Direct transformation of bulk copper into copper single sites via emitting and trapping of atoms, Nature Catalysis, vol.1, pp.781-786, 2018.

L. Liu, Y. Song, H. Chong, S. Yang, J. Xiang et al., Size-confined growth of atom-precise nanoclusters in metal-organic frameworks and their catalytic applications, Nanoscale, vol.8, pp.1407-1412, 2016.

Y. Du, H. Sheng, D. Astruc, and M. Zhu, Atomically Precise Noble Metal Nanoclusters as Efficient Catalysts: A Bridge between Structure and Properties, Chem. Rev

L. Sun, Y. Yun, H. Sheng, Y. Du, Y. Ding et al., Rational encapsulation of atomically precise nanoclusters into metal-organic frameworks by electrostatic attraction for CO2 conversion, J. Mater. Chem. A, vol.6, pp.15371-15376, 2018.

Q. Ren, H. Wang, X. Lu, Y. Tong, and G. Li, Recent Progress on MOF-Derived Heteroatom-Doped Carbon-Based Electrocatalysts for Oxygen Reduction Reaction, Adv. Sci, vol.5, p.1700515, 2018.

S. Ji, Y. Chen, Q. Fu, Y. Chen, J. Dong et al., Confined Pyrolysis within Metal-Organic Frameworks To Form Uniform Ru3 Clusters for Efficient Oxidation of Alcohols, J. Am. Chem. Soc, vol.139, pp.9795-9798, 2017.

F. Fu, A. Dedieu, W. Wang, T. Chen, Y. Song et al., Stabilization of a New Nanocomposite Family by Reduction of Gold Nanoclusters with Electron-reservoir Complexes, Chem. Commun, vol.55, pp.10277-10280, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02303388

F. Fu, C. Wang, Q. Wang, and A. M. Martinez-villacorta,

H. Escobar, X. Chong, S. Wang, L. Moya, E. Salmon et al.,

J. Ruiz, D. Astruc, and *. , Highly Selective and Sharp Volcano-type Synergistic Ni2Pt@ZIF-8-Catalyzed Hydrogen Evolution from Ammonia Borane Hydrolysis
URL : https://hal.archives-ouvertes.fr/hal-01961782

, Am. Chem. Soc, vol.140, pp.14-357, 2018.

F. Fu, R. Ciganda, *. , and Q. Wang,

A. M. Escobar, R. Martinez-villacorta, S. Hernández, and . Moya,

J. Fouquet, D. Ruiz, and *. Astruc, Cobaltocene Reduction of Cu and Ag Salts and Catalytic Behavior of the Nanoparticles Formed, ACS Catal, vol.8, pp.11-384, 2018.

F. Fu, Q. Wang, R. Ciganda, and A. M. Martinez-villacorta,

S. Escobar, E. Moya, and . Fouquet, Jaime Ruiz and Didier Astruc*. Electron-and Hydride-Reservoir Organometallics as Precursors of Catalytically Efficient Transition Metal Nanoparticles in Water, Chem. Eur. J, vol.24, pp.5-16, 2018.

F. Fu, A. Martinez, C. Wang, R. Ciganda, and L. Yate,

S. Escobar, E. Moya, J. Fouquet, D. Ruiz, and *. Astruc, Exposure to air boosts CuAAC reactions catalyzed by PEG-stabilized Cu nanoparticles

. Commun, , vol.53, pp.6-29, 2017.

F. Fu, A. M. Martinez-villacorta, A. Escobar, and J. Irigoyen,

E. Moya, J. Fouquet, D. Ruiz, and *. Astruc, Synthesis of late transition-metal nanoparticles by Na naphthalenide reduction of salts and their catalytic efficiency

, Inorg. Chem. Front, pp.5-106, 2017.

Q. Wang, F. Fu, S. Yang, M. M. Moro, M. De-los et al., Dramatic Synergy in CoPt Nanocatalysts Stabilized by "Click" Dendrimers for Evolution of Hydrogen from Hydrolysis of Ammonia Borane, ACS Catal, vol.9, pp.11-384, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02335325

N. Kang, R. Djeda, Q. Wang, F. Fu, J. Ruiz et al., Didier Astruc*. Efficient "Click"-Dendrimer-Supported Synergistic Bimetallic Nanocatalysis for Hydrogen Evolution by Sodium Borohydride Hydrolysis

, ChemCatChem, vol.11, pp.2341-2349, 2019.

C. Luo, F. Fu, X. Yang, J. Wei, C. Wang et al., Didier Astruc,* and Pengxiang Zhao*. Highly Efficient and Selective Co@ZIF-8 Nanocatalyst for Hydrogen Release from Sodium Borohydride Hydrolysis

, ChemCatChem, vol.11, pp.1643-1649, 2019.

Q. Wang, F. Fu, A. Escobar, S. Moya, J. Ruiz et al.,

*. Astruc, Dendrimer-Stabilized Nanocatalysts for Efficient Hydrogen Release upon Ammonia-Borane Hydrolysis, ChemCatChem, vol.10, pp.2673-2680, 2018.

Q. Wang, F. Fu, A. M. Martinez-villacorta, S. Moya, L. Salmon et al., Electron Flow in Large Metallomacromolecules and Electronic Switching of Nanoparticle Stabilization: Click Ferrocenyl Dentromers that Reduce Au III to Au Nanoparticles, Chem. Eur. J, vol.24, pp.5-16, 2018.

, Synthèses et Applications Catalytiques de Nanoparticules d'Elements de Transition Résumé

, La synthèse des nanoparticules (NPs) catalytiques a utilisé des ions des éléments de transition de la droite du tableau périodique et des réducteurs capables de réduire rapidement ces cations en atomes de degré d'oxydation nul s'agrégeant en petites NPs métalliques très actives en catalyse. Les réducteurs choisis ont été des composés réservoirs d'électron organique (naphthyl sodium) ou organométalliques (complexes sandwichs à 19 électrons de valence du fer tel que [Fe(I)Cp*(? 6 -C6Me6)] ou du cobalt tel que [Co(II)Cp*2], (Cp* = ? 5 -C5Me5)). Les supports limitant l'agrégation des NPs métalliques ont été le solvant (polyéthylène glycol, 1ère partie de la thèse, La catalyse constitue un élément clé en synthèse chimique et la recherche actuelle tend à rendre les procédés catalytiques plus propres dans le contexte de la chimie verte. Dans cet esprit, cette thèse a impliqué la recherche de catalyseurs nanoparticulaires utilisés en milieu aqueux, sans ligand toxique et en très faible quantité

O. Nanoparticules, C. Homogène, and C. Hétérogène, Synthesis and Catalytic Applications of the Transition Elements Nanoparticles Abstract: Catalysis is a key element in chemical synthesis, and current research is focusing on making catalytic processes cleaner in the context of green chemistry. In this spirit, this thesis involves the research of nanoparticle (NP) catalysts used in aqueous medium, without toxic ligand and in very small quantities toward a variety of useful processes. The synthesis of the catalytic NPs used cations of the transition elements of the right of the periodic table and of reducing agents capable of rapidly reducing these cations to atoms of zero oxidation state aggregating into small catalytically active metal NPs. The chosen reducing agents were organic (naphthyl sodium) or organometallic (19-electron) sandwich complexes of iron such as [Fe(I)Cp*(? 6 -C6Me6)] or cobalt such as [Co(II)Cp*2], (Cp* = ? 5 -C5Me5)) used as electron reservoirs. The supports limiting the aggregation of the metal NPs were the solvent (polyethylene glycol, Mots Clés: Réservoir à Electrons, Métal de Transition

, R = CH2CH2Ph) as a precursor, in which case the reduction was limited to a simple electron transfer producing an anionic cluster stabilized by the congested sandwich counter cation of the electron reservoir. The small NPs thus stabilized proved to be excellent "green" catalysts for several C-C or C-N reactions and hydrogen production by hydrolysis of metal hydrides in an aqueous medium under very mild conditions. This latter reaction was efficiently catalyzed by Ni2Pt@ZIF-8 bimetallic NPs with a spectacular synergy between the two metals

, Institut des Sciences Moléculaires (ISM, UMR CNRS 5255)