, Radiation Quantities and Units, (International Commission on Radiation Units and Measurements, ICRU Report, vol.33, 1980.

E. J. Hall, A. J. Giaccia, and . Radiobiology-for-the-radiologist, , 2012.

, Fundamental Quantities and Units of Ionizing Radiation (International Commission on Radiation Units and Measurements, ICRU Report, vol.60, 1998.

A. Fleet, J. Radiobiology-for-the-radiologist-;-eric, . Hall, J. Amato, and . Giaccia,

;. Hardback, J. Radiother. Pract, vol.5, pp.237-237, 2006.

Y. Lorat, Nanoscale analysis of clustered DNA damage after high-LET irradiation by quantitative electron microscopy -The heavy burden to repair, DNA Repair (Amst), vol.28, pp.93-106, 2015.

W. L. Mclaughlin, THE MEASUREMENT OF ABSORBED DOSE AND DOSE GRADIENTS, pp.9-38, 1980.

W. F. Morgan and W. J. Bair, Issues in Low Dose Radiation Biology: The Controversy Continues. A Perspective, Radiat. Res, vol.179, pp.501-510, 2013.

G. Randers-pehrson, Microbeams, microdosimetry and specific dose, Radiat Prot Dosim, vol.99, pp.471-472, 2002.

A. M. Kellerer and D. Chmelevsky, Concepts of microdosimetry -I. Quantities, Radiat. Environ. Biophys, vol.12, pp.61-69, 1975.

, MD: International Commission on Radiation Units and Measurements, 1983.

K. Suzuki, M. Yamauchi, Y. Oka, M. Suzuki, and S. Yamashita, A novel and simple micro-irradiation technique for creating localized DNA double-strand breaks, Nucleic Acids Res, vol.38, 2010.

K. Suzuki, M. Yamauchi, Y. Oka, M. Suzuki, and S. Yamashita, Creating localized DNA double-strand breaks with microirradiation, Nat. Protoc, vol.6, pp.134-139, 2011.

O. Mortusewicz, H. Leonhardt, and M. C. Cardoso, Spatiotemporal dynamics of regulatory protein recruitment at DNA damage sites, J. Cell. Biochem, vol.104, pp.1562-1569

, Introduction-References, 2008.

N. R. Gassman and S. H. Wilson, Micro-irradiation tools to visualize base excision repair and single-strand break repair, DNA Repair (Amst), vol.31, pp.52-63, 2015.

K. J. Solarczyk, M. Kordon, K. Berniak, and J. W. Dobrucki, Two stages of XRCC1 recruitment and two classes of XRCC1 foci formed in response to low level DNA damage induced by visible light , or stress triggered by heat shock, DNA Repair (Amst), vol.37, pp.12-21, 2016.

L. Feng and J. Chen, The E3 ligase RNF8 regulates KU80 removal and NHEJ repair, Nat. Struct. Mol. Biol, vol.19, pp.201-206, 2012.

N. Mailand, RNF8 Ubiquitylates Histones at DNA Double-Strand Breaks and Promotes Assembly of Repair Proteins, Cell, vol.131, pp.887-900, 2007.

G. A. Drexler and M. J. Ruiz-gómez, Microirradiation techniques in radiobiological research, J. Biosci, vol.40, pp.629-643, 2015.

F. Tobias, M. Durante, G. Taucher-scholz, and B. Jakob, Spatiotemporal analysis of DNA repair using charged particle radiation, Mutat. Res. -Rev. Mutat. Res, vol.704, pp.54-60, 2010.

F. Tobias, Spatiotemporal Dynamics of Early DNA Damage Response Proteins on Complex DNA Lesions, PLoS One, vol.8, p.57953, 2013.

G. Kraft, Irradiation chamber and sample changer for biological samples, Nucl. Instruments Methods, vol.168, pp.175-179, 1980.

M. Belli, R. Cherubini, G. Galeazzi, S. Mazzucato, G. Moschini et al., Proton irradiation facility for radiobiological studies at a 7 MN Can De Graaff accelerator, Lichenol. Lat. Am. Hist. Curr. Knowl. Appl, vol.256, pp.576-580, 1998.

M. Folkard, Inactivation of V79 cells by low-energy protons, deuterons and helium-3 ions, Int. J. Radiat. Biol, vol.69, pp.729-738, 1996.

J. Besserer, An irradiation facility with a vertical beam for radiobiological studies, Nucl. Instrum. Methods Phys. Res. A, vol.430, pp.154-160, 1999.

P. Scampoli, Low-energy light ion irradiation beam-line for radiobiological studies, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, vol.174, pp.337-343, 2001.

A. C. Wéra, H. Riquier, A. C. Heuskin, C. Michiels, and S. Lucas, In vitro irradiation station for broad beam radiobiological experiments, Nucl. Instruments Methods Phys

, Res. Sect. B Beam Interact. with Mater. Atoms, vol.269, pp.3120-3124, 2011.

T. Friedrich, U. Scholz, T. Elsässer, M. Durante, and M. Scholz, Systematic analysis of References 1. Rozenfeld, A. B. Novel detectors for silicon based microdosimetry, their concepts and applications, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip, vol.809, pp.156-170, 2016.

I. A. Zahradnik, scCVD Diamond Membrane based Microdosimeter for Hadron Therapy, Phys. Status Solidi Appl. Mater. Sci, vol.215, pp.1-10, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01959791

Y. Yokota, Development of an ion microbeam system for irradiating single plant cell

, Biol Sci Sp, vol.17, pp.298-301, 2003.

A. , CONSTRUCTION OF AN ENVIRONMENTAL RADON MONITORING SYSTEM USING CR-39 NUCLEAR TRACK DETECTORS, Nucl. Eng. Technol, vol.37, pp.395-400, 2005.

T. Horwacik, P. Bilski, P. Olko, F. Spurny, and K. Turek, Investigations of doses on board commercial passenger aircraft using CR-39 and thermoluminescent detectors

, Radiat. Prot. Dosimetry, vol.110, pp.377-380, 2004.

M. Yoon, Radiation-induced cancers from modern radiotherapy techniques: Intensity-modulated radiotherapy versus proton therapy, Int. J. Radiat. Oncol. Biol. Phys, vol.77, pp.1477-1485, 2010.

S. Peng, Measurements of the targeting accuracy of the Gray Laboratory chargedparticle microbeam, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, vol.179, pp.145-150, 2001.

M. Heiss, Targeted irradiation of Mammalian cells using a heavy-ion microprobe, Radiat. Res, vol.165, pp.231-240, 2006.

S. Bourret, Fluorescence time-lapse imaging of single cells targeted with a focused scanning charged-particle microbeam, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, vol.325, pp.27-34, 2014.
URL : https://hal.archives-ouvertes.fr/in2p3-00956455

G. Muggiolu, Single ? -particle irradiation permits real-time visualization of RNF8 accumulation at DNA damaged sites, Sci. Rep, vol.7, p.41764, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01763042

M. S. Akselrod, A. E. Akselrod, S. S. Orlov, S. Sanyal, and T. H. Underwood, New Part I -References aluminum oxide single crystals for volumetric optical data storage, Opt. Data Storage, vol.5069, p.244, 2003.

M. S. Akselrod, R. C. Yoder, and G. M. Akselrod, Confocal fluorescent imaging of tracks from heavy charged particles utilising new Al2O3:C,Mg crystals, Radiat. Prot. Dosimetry, vol.119, pp.357-362, 2006.

M. S. Akselrod and A. E. Akselrod, New Al2O3:C,Mg crystals for radiophotoluminescent dosimetry and optical imaging, Radiat. Prot. Dosimetry, vol.119, pp.218-221, 2006.

M. Niklas, Ion track reconstruction in 3D using alumina-based fluorescent nuclear track detectors, Phys. Med. Biol, vol.58, 2013.

S. Greilich, Fluorescent nuclear track detectors as a tool for ion-beam therapy research, Radiat. Meas, vol.56, pp.267-272, 2013.

J. Osinga, High-accuracy fl uence determination in ion beams using fl uorescent nuclear track detectors, vol.56, pp.294-298, 2013.

M. S. Akselrod and G. J. Sykora, Fluorescent nuclear track detector technology -A new way to do passive solid state dosimetry, Radiat. Meas, vol.46, pp.1671-1679, 2011.

G. M. Akselrod, M. S. Akselrod, E. R. Benton, and N. Yasuda, A novel Al2O3 fluorescent nuclear track detector for heavy charged particles and neutrons, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, vol.247, pp.295-306, 2006.

M. Niklas, Spatial correlation between traversal and cellular response in ion radiotherapy -Towards single track spectroscopy, Radiat. Meas, vol.56, pp.285-289, 2013.

J. A. Bartz, S. Kodaira, M. Kurano, N. Yasuda, and M. S. Akselrod, High resolution charge spectroscopy of heavy ions with FNTD technology, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, vol.335, pp.24-30, 2014.

J. A. Bartz, C. J. Zeissler, V. V. Fomenko, and M. S. Akselrod, An imaging spectrometer based on high resolution microscopy of fluorescent aluminum oxide crystal detectors, Radiat. Meas, vol.56, pp.273-276, 2013.

S. Greilich, L. Ulrich, J. J. Kouwenberg, and S. Rahmanian, Measurement of Part I -References fluence, LET, and dose in a carbon ion spread-out Bragg-peak using fluorescent nuclear track detectors and an automated reader, pp.1-21, 2017.

C. Greubel, Low LET proton microbeam to understand high-LET RBE by shaping spatial dose distribution, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, vol.404, pp.155-161, 2017.

P. Barberet, Cell micro-irradiation with MeV protons counted by an ultra-thin diamond membrane, Appl. Phys. Lett, vol.111, p.243701, 2017.
URL : https://hal.archives-ouvertes.fr/cea-01874782

J. F. Ziegler and J. P. Biersack, , pp.93-129, 1985.

J. M. Osinga, Fluorescent Nuclear Track Detectors : High-Accuracy Fluence Determination in Ion Beams, Faculty of Natural Sciences II -Chemistry, 2012.

B. Jakob, J. H. Rudolph, N. Gueven, M. F. Lavin, and G. Taucher-scholz, Live cell imaging of heavy-ion-induced radiation responses by beamline microscopy, Radiat. Res, vol.163, pp.681-90, 2005.

B. Jakob, J. Splinter, M. Durante, and G. Taucher-scholz, Live cell microscopy analysis of radiation-induced DNA double-strand break motion, Proc. Natl. Acad. Sci, vol.106, pp.3172-3177, 2009.

F. Tobias, Spatiotemporal Dynamics of Early DNA Damage Response Proteins on Complex DNA Lesions, PLoS One, vol.8, p.57953, 2013.

M. Durante and A. A. Friedl, New challenges in radiobiology research with microbeams, Radiat. Environ. Biophys, vol.50, pp.335-338, 2011.

M. Mosconi, 53BP1 and MDC1 foci formation in HT-1080 cells for low-and high-LET microbeam irradiations, Radiat. Environ. Biophys, vol.50, pp.345-352, 2011.

V. Hable, The live cell irradiation and observation setup at SNAKE, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, vol.267, pp.2090-2097, 2009.

V. Hable, Recruitment kinetics of DNA repair proteins Mdc1 and Rad52 but not 53BP1 depend on damage complexity, PLoS One, vol.7, pp.1-11, 2012.

Z. Francis, C. Villagrasa, and I. Clairand, Simulation of DNA damage clustering after proton irradiation using an adapted DBSCAN algorithm, Comput. Methods Programs Biomed, vol.101, pp.265-270, 2011.

S. Meylan, Simulation of early DNA damage after the irradiation of a fibroblast cell nucleus using Geant4-DNA, Sci. Rep, vol.7, p.11923, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01703528

D. Sakata, Evaluation of early radiation DNA damage in a fractal cell nucleus model using Geant4-DNA, Phys. Medica, vol.62, pp.152-157, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02166564

B. Jakob, DNA double-strand breaks in heterochromatin elicit fast repair protein recruitment, histone H2AX phosphorylation and relocation to euchromatin, Nucleic Acids Res, vol.39, pp.6489-6499, 2011.

F. Tobias, M. Durante, G. Taucher-scholz, and B. Jakob, Spatiotemporal analysis of DNA repair using charged particle radiation, Mutat. Res. -Rev. Mutat. Res, vol.704, pp.54-60, 2010.

A. Asaithamby and D. J. Chen, Mechanism of cluster DNA damage repair in response to high-atomic number and energy particles radiation, Mutat. Res. Mol. Mech. Mutagen, vol.711, pp.87-99, 2011.

N. K. Kolas, Orchestration of the DNA-Damage Response by the RNF8

, Ubiquitin Ligase. Science, vol.318, pp.1637-1640, 2007.

M. T. Mok, A. S. Cheng, and B. R. Henderson, The ubiquitin ligases RNF8 and RNF168 display rapid but distinct dynamics at DNA repair foci in living cells, Int. J. Biochem. Cell Biol, vol.57, pp.27-34, 2014.

M. Chalfie, Y. Tu, G. Euskirchen, W. W. Ward, and D. C. Prasher, Green Fluorescent Protein as a Marker for Gene Expression, Science, vol.263, pp.802-805, 1994.

G. Muggiolu, Deciphering the biological effects of ionizing radiations using charged parti-cle microbeam: from molecular mechanisms to perspectives in emerging cancer therapies. Cancer, <NNT:2017BORD0599>. <tel-01820606>, 2017.

L. Lan, In situ analysis of repair processes for oxidative DNA damage in mammalian cells, Proc. Natl. Acad. Sci, vol.101, pp.13738-13743, 2004.

N. Mailand, RNF8 Ubiquitylates Histones at DNA Double-Strand Breaks and Promotes Assembly of Repair Proteins, Cell, vol.131, pp.887-900, 2007.

S. Okano, L. Lan, K. W. Caldecott, T. Mori, and A. Yasui, Spatial and Temporal Cellular Responses to Single-Strand Breaks in Human Cells, Mol. Cell. Biol, vol.23, pp.3974-3981, 2003.

K. W. Caldecott, Single-strand break repair and genetic disease, Nat. Rev. Genet, vol.9, pp.619-631, 2008.

A. Campalans, Distinct spatiotemporal patterns and PARP dependence of XRCC1 recruitment to single-strand break and base excision repair, Nucleic Acids Res, vol.41, pp.3115-3129, 2013.
URL : https://hal.archives-ouvertes.fr/cea-02386162

K. J. Solarczyk, M. Kordon, K. Berniak, and J. W. Dobrucki, Two stages of XRCC1 recruitment and two classes of XRCC1 foci formed in response to low level DNA damage induced by visible light , or stress triggered by heat shock, DNA Repair (Amst), vol.37, pp.12-21, 2016.

L. Wei, Damage response of XRCC1 at sites of DNA single strand breaks is regulated by phosphorylation and ubiquitylation after degradation of poly(ADP-ribose)

, J. Cell Sci, vol.126, pp.4414-4423, 2013.

O. Mortusewicz, H. Leonhardt, and M. C. Cardoso, Spatiotemporal dynamics of regulatory protein recruitment at DNA damage sites, J. Cell. Biochem, vol.104, pp.1562-1569, 2008.

A. Campalans, Interaction with OGG1 Is Required for Efficient Recruitment of XRCC1 to Base Excision Repair and Maintenance of Genetic Stability after Exposure to Oxidative Stress, Mol. Cell. Biol, vol.35, pp.1648-1658, 2015.
URL : https://hal.archives-ouvertes.fr/cea-02386132

M. Löbrich and P. A. Jeggo, The impact of a negligent G2/M checkpoint on genomic instability and cancer induction, Nat. Rev. Cancer, vol.7, pp.861-869, 2007.

B. L. Mahaney, K. Meek, and S. P. Lees-miller, Repair of ionizing radiation-induced DNA double-strand breaks by non-homologous end-joining, Biochem. J, vol.417, pp.639-650, 2009.

A. Beucher, ATM and Artemis promote homologous recombination of radiationinduced DNA double-strand breaks in G2, EMBO J, vol.28, pp.3413-3427, 2009.

J. Yan and A. M. Jetten, RAP80 and RNF8, key players in the recruitment of repair proteins to DNA damage sites, Cancer Lett, vol.271, pp.179-90, 2008.

T. Thorslund, Histone H1 couples initiation and amplification of ubiquitin signalling after DNA damage, Nature, vol.527, pp.389-93, 2015.

C. Doil, RNF168 Binds and Amplifies Ubiquitin Conjugates on Damaged Chromosomes to Allow Accumulation of Repair Proteins, Cell, vol.136, pp.435-446, 2009.

S. Bourret, Fluorescence time-lapse imaging of single cells targeted with a focused scanning charged-particle microbeam, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, vol.325, pp.27-34, 2014.
URL : https://hal.archives-ouvertes.fr/in2p3-00956455

C. Lukas, Mdc1 couples DNA double-strand break recognition by Nbs1 with its H2AX-dependent chromatin retention, EMBO J, vol.23, pp.2674-2683, 2004.

S. Agostinelli, GEANT4 -A simulation toolkit, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip, vol.506, pp.250-303, 2003.
URL : https://hal.archives-ouvertes.fr/in2p3-00020246

S. Incerti, the Geant4-Dna Project, Int. J. Model. Simulation, Sci. Comput, vol.01, pp.157-178, 2010.
URL : https://hal.archives-ouvertes.fr/in2p3-00468402

S. Incerti, Geant4-DNA example applications for track structure simulations in liquid water: A report from the Geant4-DNA Project, Med. Phys, vol.45, pp.722-739, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01885579

M. A. Bernal, Track structure modeling in liquid water: A review of the Geant4-DNA very low energy extension of the Geant4 Monte Carlo simulation toolkit, Phys. Med, vol.31, pp.861-74, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01288764

W. Friedland, P. Jacob, P. Bernhardt, H. G. Paretzke, and M. Dingfelder, Simulation of DNA damage after proton irradiation, Radiat. Res, vol.159, pp.401-411, 2003.

M. Ester, H. Kriegel, J. Sander, and X. Xu, A density-based algorithm for discovering clusters in large spatial databases with noise, Kdd, vol.96, pp.226-231, 1996.

W. Friedland, Comprehensive track-structure based evaluation of DNA damage by light ions from radiotherapy-relevant energies down to stopping, Nat. Publ. Gr. 1, p.15, 2017.

T. Friedrich, DNA damage interactions on both nanometer and micrometer scale determine overall cellular damage, Sci. Rep, vol.8, 2018.

F. Tommasino, Induction and processing of the radiation-induced gamma-H2AX signal and its link to the underlying pattern of DSB: A combined experimental and modelling study, PLoS One, vol.10, pp.1-25, 2015.

N. Vadhavkar, Combinatorial DNA Damage Pairing Model Based on X-Ray-Induced Foci Predicts the Dose and LET Dependence of Cell Death in Human Breast Cells, Radiat. Res, vol.000, pp.273-281, 2014.

M. A. Tabocchini, A. Campa, and V. Dini, DNA and cellular effects of charged particles, Health Phys, vol.103, pp.547-555, 2012.

N. Guo, Live cell imaging combined with high-energy single-ion microbeam, Rev. Sci. Instrum, vol.87, 2016.

M. S. Huen, RNF8 transduces the DNA-damage signal via histone ubiquitylation and checkpoint protein assembly, Cell, vol.131, pp.901-915, 2007.

C. Bartocci and E. L. Denchi, Put a RING on it: regulation and inhibition of RNF8 and RNF168 RING finger E3 ligases at DNA damage sites, Front. Genet, vol.4, p.128, 2013.

D. T. Goodhead, Mechanisms for the biological effectiveness of high-LET radiations, J. Radiat. Res, vol.40, pp.1-13, 1999.

H. Nikjoo, P. O. Neill, W. E. Wilson, and D. T. Goodhead, Computational Approach for Determining the Spectrum of DNA Damage Induced by Ionizing Radiation, vol.583, pp.577-583, 2001.

J. Reindl, Chromatin organization revealed by nanostructure of irradiation induced ?H2AX, 53BP1 and Rad51 foci, Scientific Reports, vol.7, 2017.

M. Durante and A. A. Friedl, New challenges in radiobiology research with microbeams, Radiat. Environ. Biophys, vol.50, pp.335-338, 2011.

L. G. Griffith and M. A. Swartz, Capturing complex 3D tissue physiology in vitro, Nat. Rev. Mol. Cell Biol, vol.7, pp.211-224, 2006.

P. Barberet and H. Seznec, Advances in microbeam technologies and applications to radiation biology, Radiat. Prot. Dosimetry, vol.166, pp.182-187, 2015.

O. Belyakov, Biological effects in unirradiated human tissue induced by radiation damage up to 1 mm away, PNAS, vol.102, pp.14203-14208, 2005.

F. Merz, Tissue slice cultures from humans or rodents : a new tool to evaluate biological effects of heavy ions, Radiat Env. Biophys, vol.49, pp.457-462, 2010.

K. Fukamoto, Development of the Irradiation Method for the First Instar Silkworm Larvae Using Locally Targeted Heavy-ion Microbeam, J. Radiat. Res, vol.48, pp.247-253, 2007.

W. V. Choi, Adaptive Response in Zebrafish Embryos Induced Using Microbeam Protons as Priming Dose and X-ray Photons as Challenging Dose, J. Radiat. Res, vol.51, pp.657-664, 2010.

W. V. Choi, Triphasic Low-dose Response in Zebrafish Embryos Irradiated by Microbeam Protons, J. Radiat. Res, vol.53, pp.475-481, 2012.

T. Sugimoto, Cell cycle arrest and apoptosis in Caenorhabditis elegans germline cells following heavy-ion microbeam irradiation, Int. J. Radiat. Biol, vol.82, pp.31-38, 2006.

A. Bertucci, R. D. Pocock, G. Randers-pehrson, and D. J. Brenner, Microbeam irradiation of the C. elegans nematode, J. Radiat. Res, vol.50, pp.49-54, 2009.

M. Buonanno, Microbeam irradiation of C. elegans nematode in microfluidic channels, Radiat. Environ. Biophys, vol.52, pp.531-537, 2013.

T. Takanami, Efficient repair of DNA damage induced by heavy ion particles in meiotic prophase I nuclei of Caenorhabditis elegans, J Radiat Res, vol.44, pp.271-277, 2003.

M. Suzuki, Region-specific irradiation system with heavy-ion microbeam for active individuals of Caenorhabditis elegans, J. Radiat. Res, vol.58, pp.881-886, 2017.

F. Vianna, Micro-irradiation ciblée par faisceau d ' ions pour la radiobiologie in vitro et in vivo, 2015.

P. Barberet, Development of a focused charged particle microbeam for the irradiation of individual cells, Rev. Sci. Instrum, vol.76, 2005.
URL : https://hal.archives-ouvertes.fr/in2p3-00025539

, Fundamental Quantities and Units of Ionizing Radiation (International Commission on Radiation Units and Measurements, ICRU Report, vol.60, 1998.

, MD: International Commission on Radiation Units and Measurements, 1983.

H. Nikjoo, S. Uehara, D. Emfietzoglou, and F. A. Cucinotta, Track-structure codes in radiation research, Radiat. Meas, vol.41, pp.1052-1074, 2006.

L. A. Beaton, T. A. Burn, T. J. Stocki, V. Chauhan, and R. C. Wilkins, Development and characterization of an in vitro alpha radiation exposure system, Phys. Med. Biol, vol.56, pp.3645-3658, 2011.

J. C. Roeske and M. Hoggarth, Alpha-particle Monte Carlo simulation for microdosimetric calculations using a commercial spreadsheet, Phys. Med. Biol, vol.52, pp.1909-1922, 2007.

M. Douglass, E. Bezak, and S. Penfold, Development of a randomized 3D cell model for Monte Carlo microdosimetry simulations, Med. Phys, vol.39, pp.3509-3519, 2012.

S. Incerti, Monte Carlo dosimetry for targeted irradiation of individual cells using a microbeam facility, Radiat. Prot. Dosimetry, vol.133, pp.2-11, 2009.
URL : https://hal.archives-ouvertes.fr/in2p3-00373963

J. H. Miller, W. B. Chrisler, X. Wang, and M. B. Sowa, Confocal microscopy for modeling electron microbeam irradiation of skin, Radiat Env. Biophys, vol.50, pp.365-369, 2011.

P. Barberet, Monte-Carlo dosimetry on a realistic cell monolayer geometry exposed to alpha particles, Phys. Med. Biol, vol.57, pp.2189-2207, 2012.
URL : https://hal.archives-ouvertes.fr/in2p3-00695637

S. Incerti, the Geant4-Dna Project, Int. J. Model. Simulation, Sci. Comput, vol.01, pp.157-178, 2010.
URL : https://hal.archives-ouvertes.fr/in2p3-00468402

R. Gilbin, F. Alonzo, and J. Garnier-laplace, Effects of chronic external gamma irradiation on growth and reproductive success of Daphnia magna, J. Environ. Radioact, vol.99, pp.134-145, 2008.

C. Adam-guillermin, S. Pereira, C. Della-vedova, T. Hinton, and G. , J. in Reviews of Environmental Contamination and Toxicology, pp.67-103, 2012.

A. Buisset-goussen, Effects of chronic gamma irradiation: A multigenerational study using Caenorhabditis elegans, J. Environ. Radioact, vol.137, pp.190-197, 2014.
URL : https://hal.archives-ouvertes.fr/ineris-01855551

C. Lecomte-pradines, A dynamic energy-based model to analyze sublethal effects of chronic gamma irradiation in the nematode Caenorhabditis elegans, J. Toxicol. Environ. Heal. -Part A Curr. Issues, vol.80, pp.830-844, 2017.

E. R. Hofmann, Caenorhabditis elegans HUS-1 is a DNA damage checkpoint protein required for genome stability and EGL-1-mediated apoptosis, Curr. Biol, vol.12, pp.1908-1918, 2002.

M. Brauchle, K. Baumer, and P. Gonczy, Differential Activation of the DNA Replication Checkpoint Contributes to Asynchrony of Cell Division in C. elegans Embryos Michael, Curr. Biol, vol.28, pp.819-827, 2003.

J. Kisielewska, P. Lu, and M. Whitaker, GFP-PCNA as an S-phase marker in embryos during the first and subsequent cell cycles, Biol. Cell, vol.97, pp.221-229, 2005.

S. Incerti, M. Douglass, S. Penfold, S. Guatelli, and E. Bezak, Review of Geant4-DNA applications for micro and nanoscale simulations, Phys. Medica, vol.32, pp.1187-1200, 2016.

S. Strome, Spindle dynamics and the role of gamma-tubulin in early Caenorhabditis elegans embryos, Mol. Biol. Cell, vol.12, pp.1751-1764, 2001.

S. Kaitna, *. , M. Mendoza, *. , V. J. et al., Incenp and an Aurora-like kinase form a complex essential for chromosome segregation and efficient completion of cytokinesis, J. Biochem, vol.10, pp.1172-1181, 2000.

D. W. Walsh, Live cell imaging of mitochondria following targeted irradiation in situ reveals rapid and highly localized loss of membrane potential, Sci. Rep, vol.7, p.46684, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01763837

R. Sonneville, M. Querenet, A. Craig, A. Gartner, and J. Julian-blow, The dynamics of replication licensing in live Caenorhabditis elegans embryos, J. Cell Biol, vol.196, pp.233-246, 2012.

E. Torfeh, Monte-Carlo dosimetry and real-time imaging of targeted irradiation consequences in 2-cell stage Caenorhabditis elegans embryo, pp.1-12, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02198356

G. A. Drexler and M. J. Ruiz-gómez, Microirradiation techniques in radiobiological research, J. Biosci, vol.40, pp.629-643, 2015.

E. Koury, K. Harrell, and S. Smolikove, Differential RPA-1 and RAD-51 recruitment in vivo throughout the C. elegans germline, as revealed by laser microirradiation, Nucleic Acids Res, vol.46, pp.748-764, 2018.

M. Toya, Y. Iida, and A. Sugimoto, Imaging of Mitotic Spindle Dynamics in Caenorhabditis elegans Embryos, Methods Cell Biol, vol.97, pp.359-372, 2010.

N. Lampe, Mechanistic DNA damage simulations in Geant4-DNA part 1: A parameter study in a simplified geometry, Phys. Medica, vol.48, pp.135-145, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01815247

N. Lampe, Mechanistic DNA damage simulations in Geant4-DNA Part 2: Electron and proton damage in a bacterial cell, Phys. Medica, vol.48, pp.146-155, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01815184

K. Burnett, E. Edsinger, and D. R. Albrecht, Rapid and gentle hydrogel encapsulation of living organisms enables long-term microscopy over multiple hours, Commun. Biol, vol.1, 2018.