Skip to Main content Skip to Navigation

Hypothesis of a Non-SNARE-Function of Syntaxin-5

Abstract : The introduction of my PhD manuscript starts with describing plant and bacterial toxins (chapter 9.1), in particular Shiga toxin and Shiga-like toxins (SLTs) (chapter 9.1.2). Small molecule inhibitors of these toxins are summarized afterwards in chapter 9.1.3, notably the Retro-2 compound. Since these toxins rely on intracellular trafficking to reach their molecular targets, a general overview of endocytosis and endosomal trafficking is provided (chapter 9.2). Next, the retrograde route entry is presented (chapter 9.2.5), with focus on clathrin, the retromer and GPP130, a protein that constantly cycles between Golgi, plasma membrane, and endosomes. SNARE proteins, particularly syntaxin-5 and syntaxin-16, are then introduced (chapter 9.2.6). After a brief section of the micro RNA family 199 (chapter 9.3), the introduction finishes with the description of some salient techniques that were used in my work, such as - bio-orthogonal Click-Chemistry, anterograde trafficking synchronization with the retention using selective hooks (RUSH) assay, and the antibody-based proximity ligation assay (chapter 10.6.1, 0, 10.11.1).Herein, my submitted publication opens the results part (chapter 11.1), in which I present the utility of biorthogonal click chemistry for the search of the cellular targets of Retro-2, a small molecule inhibitor that was previously shown to protect cells and animals against Shiga toxin and ricin. I describe that Sec16A is a likely cellular target candidate, and illustrate using the RUSH approach how interfering with Sec16A functions leads to the partial relocalization of syntaxin-5 to the endoplasmic reticulum (ER) by slowing-down its anterograde transport. The second part of the paper describes how syntaxin-5 relocalization causes the inhibition of Shiga toxin trafficking from endosomes to the TGN. I present a novel interaction between syntaxin-5 and the Golgi protein GPP130, which both have been already described in relation to Shiga toxin trafficking. My work connects both trafficking factors in retrograde trafficking at the endosomes-TGN interface. Strikingly, I demonstrate that this interaction is most probably based on a non-SNARE function of syntaxin-5.In collaboration with Juan Francisco Aranda and Carlos Fernandez in the US, we put micro RNAs into an endogenous regulation context of Shiga toxin retrograde trafficking (chapter 11.2). An extended discussion will be given in chapter 12.Last, a general outlook of ongoing projects is given in the perspectives section (chapter 13), in which further collaborations are highlighted.Keywords: Retrograde transport, Shiga toxin, Shiga-like toxin (SLT), STxB, syntaxin-5, Sec16A, GPP130, Retro-2, Retro-2.1, azide-functionalized Retro-2, copper-free click chemistry, small molecule target identification, mass spectrometry, non-SNARE function, anterograde trafficking inhibition, miRNA, miR199, retromer, VPS26
Complete list of metadatas

Cited literature [396 references]  Display  Hide  Download
Contributor : Abes Star :  Contact
Submitted on : Friday, December 13, 2019 - 1:05:54 AM
Last modification on : Tuesday, July 21, 2020 - 3:59:15 AM
Long-term archiving on: : Saturday, March 14, 2020 - 12:58:51 PM


Version validated by the jury (STAR)


  • HAL Id : tel-02408332, version 1



Stefan Rathjen. Hypothesis of a Non-SNARE-Function of Syntaxin-5. Molecular biology. Université Paris-Saclay, 2017. English. ⟨NNT : 2017SACLS450⟩. ⟨tel-02408332⟩



Record views


Files downloads