A. E. Abbas, A comparison of two probability encoding methods: fixed probability vs. fixed variable values, Decision Analysis, vol.5, issue.4, pp.190-202, 2008.

A. Birchall and A. C. James, Uncertainty analysis of the effective dose per unit exposure from radon progeny and implications for ICRP risk-weighting factors, Radiation Protection Dosimetry, vol.53, issue.1-4, pp.133-140, 1994.

D. Thomas, D. Stram, and H. Dwyer, Exposure measurement error: influence on exposure-disease relationships and methods of correction. Annual Review of Public Health, vol.14, pp.69-93, 1993.

H. M. Kim, Y. Yasui, and I. Burstyn, Attenuation in risk estimates in logistic and Cox proportionalhazards models due to group-based exposure assessment strategy, Annals of Occupational Hygiene, vol.50, issue.6, pp.623-635, 2006.

L. W. Physick, M. E. Cope, S. Lee, and P. J. Hurley, An approach for estimating exposure to ambient concentrations, Journal of Exposure Science and Environmental Epidemiology, vol.17, pp.76-83, 2007.

R. J. Carroll, Measurement error in epidemiologic studies, Encyclopedia of biostatistics, vol.5, 2005.

A. Blair, K. Thomas, J. Coble, D. P. Sandler, C. J. Hines et al., Impact of pesticide exposure misclassification on estimates of relative risks in the Agricultural Health Study, Occupational and Environmental Medicine, vol.68, issue.7, pp.537-578, 2011.

R. J. Carroll, D. Ruppert, L. A. Stefanski, and C. M. Crainiceanu, Measurement error in nonlinear models: a modern perspective, 2006.

S. Richardson and L. Leblond, Some comments on misspecification of priors in Bayesian modelling of measurement error problems, Statistics in Medicine, vol.16, pp.203-213, 1997.

J. De-dieu-tapsoba, S. M. Lee, and C. Y. Wang, Expected estimating equation using calibration data for generalized linear models with a mixture of Berkson and classical errors in covariates, Statistics in Medicine, vol.33, issue.4, pp.675-692, 2013.

F. Perrier, L. Giorgis-allemand, R. Slama, and C. Philippat, Within-subject pooling of biological samples to reduce exposure misclassification in biomarker-based studies, Epidemiology, vol.27, issue.3, pp.378-388, 2016.

A. M. Jurek, G. Maldonado, S. Greenland, and T. R. Church, Exposure-measurement error is frequently ignored when interpreting epidemiologic study results, European Journal of Epidemiology, vol.21, pp.871-876, 2006.

D. Spiegelman, Approaches to uncertainty in exposure assessment in environmental epidemiology, Annual Review of Public Health, vol.31, pp.149-63, 2010.

K. Steenland, C. Karnes, L. Darrow, and V. Barry, Attenuation of exposure-response rate ratios at higher exposures: A simulation study focusing on frailty and measurement error, Epidemiology, vol.26, issue.3, pp.395-401, 2015.

S. Greenland, H. J. Fischer, and L. Kheifets, Methods to Explore Uncertainty and Bias Introduced by Job Exposure Matrices, Risk Analysis, vol.36, issue.1, pp.74-82, 2016.

H. Kromhout, Design of measurement strategies for workplace exposures, Occupational and Environmental Medicine, vol.59, pp.349-354, 2002.

L. Stayner, K. Steenland, M. Dosemeci, and I. Hertz-picciotto, Attenuation of exposure-response curves in occupational cohort studies at high exposure levels, Scandinavian Journal of Work, vol.29, pp.317-324, 2003.

A. Blair, P. Stewart, J. H. Lubin, and F. Forastiere, Methodological issues regarding confounding and exposure misclassification in epidemiological studies of occupational exposures, American Journal of Industrial Medicine, vol.50, issue.3, pp.199-207, 2007.

R. J. Preston, J. D. Boice, A. B. Brill, R. Chakraborty, R. Conolly et al., Uncertainties in estimating health risks associated with exposure to ionising radiation, Journal of Radiological Protection, vol.33, issue.3, pp.573-88, 2013.

A. Birchall and J. W. Marsh, Radon dosimetry and its implication for risk, International Congress Series, pp.81-84, 2005.

. Iarc-wg, Man-made mineral fibres and radon / IARC Working Group on the Evaluation of Carcinogenic Risks to Humans which met in Lyon, pp.16-23, 1987.

J. M. Samet and G. R. Eradze, Radon and lung cancer risk: taking stock at the millenium. Environmental Health Perspectives, vol.108, pp.635-641, 2000.

S. Darby, D. Hill, A. Auvinen, J. Barros-dios, H. Baysson et al., Radon in homes and risk of lung cancer: collaborative analysis of individual data from 13 European case-control studies, BMJ, vol.330, issue.7485, p.223, 2005.

J. H. Lubin, J. D. Boice, and J. M. Samet, Errors in exposure assessment, statistical power and the interpretation of residential radon studies, Radiation Research, vol.144, issue.3, pp.329-341, 1995.

D. Stram, B. Langholz, M. Huberman, and D. Thomas, Correcting for exposure measurement error in a reanalysis of lung cancer mortality for the Colorad Plateau uranium miners cohort, Health Physics, vol.77, issue.3, 1999.

G. K. Reeves, D. R. Cox, S. C. Darby, and E. Whitley, Some aspects of measurement error in explanatory variables for continuous and binary regression models, Statistics in Medicine, vol.17, pp.2157-2177, 1998.

S. Darby, E. Whitley, P. Silcocks, B. Thakrar, M. Green et al., Risk of lung cancer associated with residential radon exposure in south-west England: a case-control study, British Journal of Cancer, vol.78, issue.3, 1998.

I. Heid, H. Küchenhoff, J. Wellmann, M. Gerken, L. Kreienbrock et al., On the potential of measurement error to induce differential bias on odds ratio estimates: an example from radon epidemiology, Statistics in Medicine, vol.21, pp.3261-3278, 2002.

I. M. Heid, H. Küchenhoff, J. Miles, L. Kreienbrock, and H. E. Wichmann, Two dimensions of measurement error: Classical and Berkson error in residential radon exposure assessment, Journal of Exposure Analysis and Environmental Epidemiology, vol.14, pp.365-377, 2004.

W. F. Heidenreich, E. G. Luebeck, and S. H. Moolgavkar, Effects of exposure uncertainties in the TSCE model and application to the Colorado miners data, Radiation Research, vol.161, issue.1, pp.72-81, 2004.

R. Bender, A. T. Blettner, and M. , Generating survival times to simulate Cox proportional hazards models, Statistics in Medicine, vol.24, issue.11, pp.1713-1723, 2005.

H. Küchenhoff, R. Bender, and I. Langner, Effect of Berkson measurement error on parameter estimates in Cox regression models, Lifetime Data Analysis, vol.13, issue.2, pp.261-272, 2007.

R. S. Allodji, K. Leuraud, S. Bernhard, S. Henry, J. Bénichou et al., Assessment of uncertainty associated with measuring exposure to radon and decay products in the French uranium miners cohort, Journal of Radiological Protection, vol.32, issue.1, pp.85-100, 2012.

R. S. Allodji, K. Leuraud, A. C. Thiébaut, S. Henry, D. Laurier et al., Impact of measurement error in radon exposure on the estimated excess relative risk of lung cancer death in a simulated study based on the French Uranium Miners' Cohort. Radiation and Environmental, Biophysics, vol.51, issue.2, pp.151-163, 2012.

R. S. Allodji, A. Thiébaut, K. Leuraud, E. Rage, S. Henry et al., The performance of functional methods for correcting non-Gaussian measurement error within Poisson regression: corrected excess risk of lung cancer mortality in relation to radon exposure among French uranium miners, Statistics in Medicine, vol.31, issue.30, pp.4428-4443, 2012.

W. Heidenreich, L. Tomasek, B. Grosche, K. Leuraud, and D. Laurier, Lung cancer mortality in the European uranium miners cohorts analyzed with a biologically based model taking into account radon measurement error, Radiation and Environmental Biophysics, vol.51, issue.3, pp.263-275, 2012.

J. W. Marsh and A. Birchall, Sensitivity analysis of the weighted equivalent lung dose per unit exposure from radon progeny, Radiation Protection Dosimetry, vol.87, issue.3, pp.167-178, 2000.

J. W. Marsh, A. Birchall, G. Butterweck, M. D. Dorrian, C. Huet et al., Uncertainty analysis of the weighted equivalent lung dose per unit exposure to radon progeny in the home, Radiation Protection Dosimetry, vol.102, issue.3, pp.229-277, 2002.

J. W. Marsh and A. Birchall, Uncertainty analysis of the absorbed dose to regions of the lung per unit exposure to radon progeny in a mine, 2009.

, Advisory Group on Ionising Radiation AGIR. Radon and Public Health. Health Protection Authority, 2009.

A. C. George, A. S. Paschoa, and F. Steinhäusler, World hisotry of radon research and measurement from the early 1900's to today, AIP Conference Proceedings, vol.1034, pp.20-33, 2008.

R. F. Robinson, Mining and selling radium and uranium, 2015.

G. Saccomanno, V. E. Archer, R. P. Saunders, L. A. James, and P. A. Beckler, Lung cancer of uranium miners on the colorado plateau, Health Physics, vol.10, pp.1195-1201, 1964.

J. Porstendörfer, Properties and behaviour of radon and thoron and their decay products in the air, Journal of Aerosol Science, vol.25, issue.2, pp.219-263, 1994.

W. F. Bale, Hazards associated with radon and thoron, Health Physics, vol.38, issue.6, pp.1062-1066, 1951.

G. Saccomanno, G. C. Huth, O. Auerbach, and M. Kuschner, Relationship of radioactive radon daughters and cigarette smoking in the genesis of lung cancer in uranium miners, Cancer, vol.62, issue.7, pp.1402-1408, 1988.

M. Tirmarche, J. Harrison, D. Laurier, E. Blanchardon, F. Paquet et al., Risk of lung cancer from radon exposure: contribution of recently published studies of uranium miners, Annals of the ICRP, issue.3, pp.368-377, 2012.

R. Rhodes, The making of the atomic bomb. Simon & Schuster, 1987.

V. I. Ferronsky, Nuclear Geophysics -Applications to Hydrology, Hydrogeology, Engineering Geology, Agriculture and Environmental Science, 2015.

H. Domenech, Radiation Safety -Management and Programs, 2017.

, Pathways to Modern Chemical Physics, 2012.

J. L. Basdevant, J. Rich, and M. Spiro, Fundamentals in nuclear physics, 2005.

J. W. Gooch, Encyclopedic dictionary of polymers, 2007.

T. Jevremovic, Nuclear principles in engineering, p.146, 2005.

T. Fényes, Basic properties of the atomic nucleus

, Nature's building blocks, 2001.

H. C. Griffin, Natural Radioactive Decay Chains. In: Handbook of nuclear chemistry. Attila Vértes and Sándor Nagy and Zoltán Klencsár and Rezso G Lovas and Frank Rösch, 2011.

J. Lecomte, Radon and the system of radiological protection, Annals of the ICRP, vol.41, issue.3, pp.389-396, 2011.

J. W. Marsh, J. D. Harrison, D. Laurier, E. Blanchardon, F. Paquet et al., Dose conversion factors for radon: recent developments, Health Physics, vol.99, issue.4, pp.511-516, 2010.

J. W. Marsh, E. Blanchardon, D. Gregoratto, W. Hofmann, K. Karcher et al., Dosimetric calculations for uranium miners for epidemiological studies, Radiation Protection Dosimetry, vol.149, issue.4, pp.371-383, 2012.

B. P. Jelle, Development of a model for radon concentration in indoor air, Science of the Total Environment, vol.416, pp.343-50, 2012.

J. H. Lubin, J. D. Boice, C. Edling, R. W. Hornung, G. R. Howe et al., Lung cancer in radon-exposed miners and estimation of risk from indoor exposure, Journal of the National Cancer Institute, vol.87, issue.11, pp.817-827, 1995.

V. I. Beir, Comittee on health risks of exposure to radon, Board on radiation effects research, Commission on life sciences, National Research council, 1999.

D. Laurier, M. Tirmarche, N. Mitton, M. Valenty, P. Richard et al., An update of cancer mortality among the French cohort of uranium miners: extended follow-up and new source of data for causes of death, European Journal of Epidemiology, vol.19, issue.2, pp.139-146, 2004.

F. Hatton, M. Bouvier-colle, E. Michel, and L. Maujol, Les causes de décès en France, Mortalité et causes de décès en France, pp.111-145, 1990.

J. H. Lubin, J. D. Boice, C. Edling, R. W. Hornung, G. Howe et al., Radon-exposed underground miners and inverse dose-rate (protraction enhancement) effects. Health Physics, vol.69, pp.494-500, 1995.

P. Waggit, Uranium mining legacies remediation and renaissance development: an international overview, pp.11-18, 2008.

R. S. Lane, S. E. Frost, G. R. Howe, and L. B. Zablotska, Mortality (1950-1999) and cancer incidence (1969-1999) in the cohort of Eldorado uranium workers, Radiation Research, vol.174, issue.6a, pp.773-785, 2010.

M. Maru?iaková, Z. Gregor, and L. Tomá?ek, A review of exposures to radon, long-lived radionuclides and external gamma at the Czech uranium mine, Radiation Protection Dosimetry, vol.145, issue.2-3, pp.248-51, 2011.

B. Vacquier, A. Rogel, K. Leuraud, S. Caer, A. Acker et al., Radon-associated lung cancer risk among French uranium miners: modifying factors of the exposure-risk relationship, Radiation and Environmental Biophysics, vol.48, issue.1, pp.1-9, 2008.

M. Kreuzer, M. Schnelzer, A. Tschense, L. Walsh, and B. Grosche, Cohort profile: the German uranium miners cohort study, International Journal of Epidemiology, vol.39, issue.4, pp.980-987, 2010.

L. Tomasek, A. R. Tirmarche, M. Mitton, N. Laurier, and D. , Lung cancer in French and Czech uranium miners: radon-associated risk at low exposure rates and modifying effects of time since exposure and age at exposure. Radiation Research, vol.169, pp.125-137, 2008.

G. Navarajan, C. Berriault, M. Do, P. Villeneuve, and P. A. Demers, Cancer incidence and mortality from exposure to radon progeny among Ontario uranium miners, Occupational and Environmental Medicine, vol.73, pp.838-845, 2016.

M. Tirmarche, A. Raphalen, A. F. Chameaud, J. Bredon, and P. , Mortality of a cohort of French uranium miners exposed to relatively low radon concentrations, British Journal of Cancer, vol.67, pp.1090-1097, 1993.

M. Tirmarche, The present state of an epidemiological study of uranium miners in France. In: Occupational radiation safety in mining, 1984.

H. J. Fischer, X. P. Vergara, M. Yost, M. Silva, D. A. Lombardi et al., Developing a jobexposure matrix with exposure uncertainty from expert elicitation and data modeling, Journal of Exposure Science and Environmental Epidemiology, vol.27, issue.1, pp.7-15, 2017.

A. Rogel, D. Laurier, M. Tirmarche, and B. Quesne, Lung cancer risk in the French cohort of uranium miners, Journal of Radiological Protection, vol.22, issue.3A, p.101, 2002.

P. Zettwoog, Radiation hazards in mining: Control, measurements and medical aspects, pp.4-9, 1981.

A. C. George, The history, development and the present status of the radon measurement programme in the United States of America, Radiation Protection Dosimetry, vol.167, issue.1-3, pp.8-14, 2015.

L. Tomasek, Lung cancer mortality among Czech uranium miners -60 years since exposure, Journal of Radiological Protection, vol.32, issue.3, pp.301-314, 2012.

E. Rage, S. Caër-lorho, D. Drubay, S. Ancelet, P. Laroche et al., Mortality analysis in the updated French cohort of uranium miners (1946 -2007), International Archives of Occupational and Environmental Health, vol.88, issue.6, pp.717-730, 2015.

D. Loomis, D. B. Richardson, and L. Elliott, Poisson regression analysis of ungrouped data. Occupational and Environmental Medicine, vol.62, pp.325-334, 2005.

N. R. Council, Health Risks from Exposure to Low Levels of Ionizing Radiation: BEIR VII-Phase 2, 2005.

M. K. Schubauer-berigan, R. D. Daniels, and L. E. Pinkerton, Radon exposure and mortality among white and American Indian uranium miners: an update of the Colorado Plateau cohort

, American Journal of Epidemiology, vol.169, issue.6, pp.718-730, 2009.

M. Kreuzer, C. Sobotzki, N. Fenske, J. W. Marsh, and M. Schnelzer, Leukaemia mortality and lowdose ionising radiation in the WISMUT uranium miner cohort (1946-2013), Occupational and Environmental Medicine, vol.74, pp.252-258, 2017.

L. Walsh, F. Dufey, A. Tschense, M. Schnelzer, B. Grosche et al., Radon and the risk of cancer mortality -Internal Poisson models for the German uranium miners cohort, Health Physics, issue.3, p.99, 2010.

M. Kreuzer, N. Fenske, M. Schnelzer, and L. Walsh, Lung cancer risk at low radon exposure rates in German uranium miners, British Journal of Cancer, vol.113, issue.9, pp.1367-1369, 2015.

E. Rage, B. Vacquier, E. Blanchardon, R. S. Allodji, J. W. Marsh et al., Risk of lung cancer mortality in relation to lung doses among French uranium miners: follow-up 1956-1999, Radiation Research, vol.177, pp.288-297, 2012.

R. W. Hornung, J. Deddens, and R. Roscoe, Modifiers of exposure-response estimates for lung cancer among miners exposed to radon progeny, Environmental Health Perspectives, p.103, 1995.

N. Hunter, C. R. Muirhead, L. Tomasek, M. Kreuzer, D. Laurier et al., Joint analysis of three European nested case-control studies of lung cancer among radon exposed miners: exposure restricted to below 300 WLM, Health Physics, vol.104, issue.3, pp.282-292, 2013.

M. Kreuzer, C. Sobotzki, M. Schnelzer, and N. Fenske, Factors modifying the radon-related lung cancer risk at low exposures and exposure rates among German uranium miners, 2017.

L. Tomásek, Czech miner studies of lung cancer risk from radon, Journal of Radiological Protection, vol.22, issue.3A, pp.107-119, 2002.

K. Leuraud, S. Billon, D. Bergot, M. Tirmarche, S. Caër et al., Lung cancer risk associated to exposure to radon and smoking in a case-control study of French uranium miners. Health Physics, vol.92, pp.371-378, 2007.

K. Leuraud, M. Schnelzer, L. Tomasek, N. Hunter, M. Timarche et al., Radon, smoking and lung cancer risk: results of a joint analysis of three European case-control studies among uranium miners, Radiation Research, vol.176, issue.3, pp.375-387, 2011.

G. R. Howe and R. H. Stager, Risk of lung cancer mortality after exposure to radon decay products in the Beaverlodge cohort based on revised exposure estimates, Radiation Research, vol.146, issue.1, pp.37-42, 1996.

L. Tomásek, S. C. Darby, T. Fearn, A. J. Swerdlow, V. Placek et al., Patterns of lung cancer mortality among uranium miners in West Bohemia with varying rates of exposure to radon and its progeny, Radiation Research, vol.137, issue.2, pp.251-61, 1994.

H. I. Morrison, P. J. Villeneuve, J. H. Lubin, and D. E. Schaubel, Radon-progeny exposure and lung cancer risk in a cohort of newfoundland fluorspar miners, Radiation Research, vol.150, pp.58-65, 1998.

B. Kanyár and G. J. Köteles, Dosimetry and Biological Effects of Ionizing Radiation Dosimetry and biological effects of ionizing radiation. In: Handbook of nuclear chemistry. Attila Vértes and Sándor Nagy and Zoltán Klencsár and Rezso G Lovas and Frank Rösch, pp.2215-2257, 2011.

, on Radiation Units TIC, Measurements. Measurement and reporting of radon exposures. ICRU, 2015.

, The 2007 recommendations of the International Commission of Radiological Protection, ICRP Publication, vol.103, 2007.

A. El-hussein, A. A. Ahmed, and A. Mohammed, Radiation dose to the human respiratory tract from inhalation of radon-222 and its progeny, Applied Radiation and Isotopes, vol.49, issue.7, pp.783-90, 1998.

I. , Human respiratory tract model for radiological protection, ICRP Publication, vol.66, pp.1-3, 1994.

M. Bailey, E. Ansoborlo, G. Etherington, D. Gregoratto, R. Guilmette et al., Proposed updating of the ICRP human respiratory tract model, 12th international congress of the International Radiation Protection Association (IRPA), pp.19-24, 2008.

J. W. Marsh, J. D. Harrison, D. Laurier, A. Birchall, E. Blanchardon et al., Doses and lung cancer risks from exposure to radon and plutonium, International Journal of Radiation Biology, vol.90, issue.11, pp.1080-1087, 2014.

E. S. Gilbert, The impact of dosimetry uncertainties on dose-response analyses, Health Physics, vol.97, issue.5, pp.487-92, 2009.

M. P. Little, D. Kwon, K. Doi, S. L. Simon, D. L. Preston et al., Association of chromosome translocation rate with low dose occupational radiation exposures in U.S. radiologic technologists, Radiation Research, vol.182, 2014.

V. Drozdovitch, V. Minenko, I. Golovanov, A. Khrutchinsky, T. Kukhta et al., Thyroid Dose Estimates for a Cohort of Belarusian Children Exposed to (131)I from the Chernobyl Accident: Assessment of Uncertainties, Radiation Research, vol.184, issue.2, pp.203-221, 2015.

N. H. Harley, B. S. Cohen, and E. S. Robbins, The variability in radon decay product bronchial dose, Environment International, vol.22, pp.959-964, 1996.

R. Winkler-heil, W. Hofmann, J. Marsh, and A. Birchall, Comparison of radon lung dosimetry models for the estimation of dose uncertainties. Radiation Protection Dosimetry, vol.127, pp.27-30, 2007.

W. U. Müller, A. Giussani, W. Rühm, J. F. Lecomte, J. Harrison et al., Current knowledge on radon risk: implications for practical radiation protection? radon workshop, Nature Conservation, Building and Nuclear Safety). Radiation and Environmental Biophysics, vol.1, pp.267-280, 2015.

D. Nosske, E. Blanchardon, W. E. Bolch, B. Breustedt, K. F. Eckerman et al., New developments in internal dosimetry models, Radiation Protection Dosimetry, vol.144, issue.1-4, pp.314-334, 2011.

V. E. Archer, J. D. Gillam, and J. K. Wagoner, Respiratory disease mortality among uranium miners, Annals of the New York Academy of Sciences, vol.271, pp.280-93, 1976.

V. M. Markovic, D. Krstic, and D. Nikezic, Gamma and beta doses in human organs due to radon progeny in human lung, Radiation Protection Dosimetry, vol.135, issue.3, pp.197-202, 2009.

I. , Lung cancer risk from radon and progeny and statement on radon, Annals of the ICRP, vol.115, issue.1, p.40, 2010.

G. Butterweck, J. Porstendörfer, A. Reineking, and J. , Unattached fraction and the aerosol size distribution of the radon progeny in a natural cave and mine atmospheres, Radiation Protection Dosimetry, vol.45, pp.167-170, 1992.

J. W. Marsh, Y. Bessa, A. Birchall, E. Blanchardon, W. Hofmann et al., Dosimetric models used in the Alpha-Risk project to quantify exposure of uranium miners to radon gas and its progeny, Radiation Protection Dosimetry, vol.130, issue.1, pp.101-107, 2008.

A. Broadbent, Conceptual and methodological issues in epidemiology: An overview. Preventive Medicine, vol.53, pp.215-216, 2001.

D. O. Stram, D. L. Preston, M. Sokolnikov, B. Napier, K. J. Kopecky et al., Shared dosimetry error in epidemiological dose-response analyses, PLoS One, vol.10, issue.3, p.119418, 2015.

S. L. Simon, F. O. Hoffman, and E. Hofer, The two-dimensional Monte Carlo: a new methodological paradigm for dose reconstruction for epidemiological research, Radiation Research, vol.183, pp.27-41, 2015.

W. Pan, D. Zeng, and X. Lin, Estimation in semiparametric transition measurement error models for longitudinal data, Biometrics, vol.65, issue.3, pp.728-736, 2009.

K. B. Michels, A renaissance for measurement error, International Journal of Epidemiology, vol.30, pp.421-422, 2001.

K. B. Michels, S. A. Bingham, R. Luben, A. A. Welch, and N. E. Day, The effect of correlated measurement error in multivariate models of diet, American Journal of Epidemiology, vol.160, issue.1, pp.59-67, 2004.

B. Rosner, W. C. Willett, and D. Spiegelman, Correction of logistic regression relative risk estimates and confidence intervals for systematic within-person measurement error, Statistics in Medicine, vol.8, pp.1051-1069, 1989.

V. Kipnis, R. J. Carroll, L. S. Freedman, and L. Li, Implications of a new dietary measurement error model for estimation of relative risk: Application to four calibration studies, American Journal of Epidemiology, vol.150, pp.642-651, 1999.

V. Kipnis, D. Midthune, L. S. Freedman, S. Bingham, A. Schatzkin et al., Empirical evidence of correlated biases in dietary assessment instruments and its implications

, American Journal of Epidemiology, vol.153, issue.4, pp.394-403, 2001.

N. E. Day, M. Y. Wong, S. Bingham, K. T. Khaw, R. Luben et al., Correlated measurement error -implications for nutritional epidemiology, International Journal of Epidemiology, vol.33, pp.1272-1281, 2004.

A. Thiébaut, L. S. Freedman, R. J. Carroll, and V. Kipnis, Is it necessary to correct for measurement error in nutritional epidemiology?, Annals Internal Medicine, vol.146, issue.1, pp.65-72, 2007.

M. Thoresen and P. Laake, On the simple linear regression model with correlated measurement errors, Journal of Statistical Planning and Inference, vol.137, pp.68-78, 2007.

V. Kipnis and L. S. Freedman, Impact of exposure measurement error in nutritional epidemiology, Journal of the National Cancer Institute, vol.100, issue.23, pp.1658-1659, 2008.

B. Rosner, K. B. Michels, Y. H. Chen, and N. E. Day, Measurement error correction for nutritional exposures with correlated measurement error: Use of the method of triads in a longitudinal setting, Statistics in Medicine, issue.18, p.27, 2008.

T. Augustin, A. Döring, and D. Rummel, Regression calibration for Cox regression under heteroscedastic measurement error-Determining risk factors of cardiovascular diseases from error-prone nutritional replication data, Recent advances in linear models and related areas, pp.253-278, 2008.

C. Y. Wang, Non-parametric maximum likelihood estimation for cox regression with subjectspecific measurement error, Scandinavian Journal of Statistics, vol.35, pp.613-628, 2008.

V. Kipnis, D. Midthune, D. W. Buckman, K. W. Dodd, P. M. Guenther et al., Modeling data with excess zeros and measurement error: Application to evaluating relationships between episodically consumed foods and health outcomes, Biometrics, vol.65, issue.4, pp.1003-1010, 2009.

J. P. Buonaccorsi, I. Dalen, P. Laake, A. Hjartaker, D. Engeset et al., Sensitivity of regression calibration to non-perfect validation data with application to the Norwegian Women and Cancer Study, Statistics in Medicine, vol.34, 2015.

D. O. Stram and K. J. Kopecky, Power and uncertainty analysis of epidemiological studies of radiation-related disease risk in which dose estimates are based on a complex dosimetry system: Some observations, Radiation Research, vol.160, issue.4, pp.408-417, 2003.

J. Bennett, M. P. Little, and S. Richardson, Flexible dose-response models for Japanese atomic bomb survivor data: Bayesian estimation and prediction of cancer risk, Radiation and Environmental Biophysics, vol.43, issue.4, pp.233-245, 2004.

D. W. Schafer and E. S. Gilbert, Some statistical implications of dose uncertainty in radiation dose-response analyses, Radiation Research, vol.166, issue.1, pp.303-315, 2006.

D. Kwon, F. O. Hoffman, B. E. Moroz, and S. L. Simon, Bayesian dose-response analysis for epidemiological studies with complex uncertainty in dose estimation, Statistics in Medicine, vol.35, issue.3, pp.399-423, 2016.

D. L. Preston and D. O. Stram, The growth of biostatistics and estimation of cancer risk estimates: Past, current and future challenges, Radiation Protection Dosimetry, vol.173, issue.1, pp.32-35, 2017.

K. M. Holliday, C. L. Avery, C. Poole, K. Mcgraw, R. Williams et al., Estimating personal exposures from ambient air pollution measures: using meta-analysis to assess measurement error, Epidemiology, vol.25, issue.1, pp.35-43, 2014.

S. Hsu, K. Ito, and M. Lippmann, Effects of thoracic and fine PM and their components on heart rate and pulmonary function in COPD patients, Journal of Exposure Science and Environmental Epidemiology, vol.21, issue.5, pp.464-72, 2011.

H. H. Suh and A. Zanobetti, Exposure error masks the relationship between traffic-related air pollution and heart rate variability, Journal of Occupational and Environmental Medicine, vol.52, issue.7, pp.685-92, 2010.

M. Reginatto, Bayesian approach for quantifying the uncertainty of neutron doses derived from spectrometric measurements, Radiation Protection Dosimetry, vol.121, issue.1, pp.64-73, 2006.

J. W. Bartlett and R. H. Keogh, Bayesian correction for covariate measurement error: A frequentist evaluation and comparison with regression calibration, Statistical Methods in Medical Research, 2016.

W. A. Fuller, Measurement error models, 1987.

E. Biewen, S. Nolte, and M. Rosemann, Perturbation by multiplicative noise and the simulation extrapolation method, Advances in Statistical Analysis, vol.92, pp.375-389, 2008.

B. G. Armstrong, Effect of measurement error on epidemiological studies of environmental and occupational exposures, Occupational and Environmental Medicine, vol.55, issue.10, pp.651-656, 1998.

P. Gustafson, Measurement error and misclassification in statistics and epidemiology -Impacts and Bayesian adjustments, 2004.

A. Majumdar, Maximum likelihood estimation of measurement error models based on the

M. Carlo and E. M. Algorithm, , 2007.

D. A. Pierce, D. O. Stram, and M. Vaeth, Allowing for Random Errors in Radiation Dose Estimates for the Atomic Bomb SurvivorData, Radiation Research, vol.123, pp.275-284, 1990.

J. H. Lubin, Z. Y. Wang, L. D. Wang, J. D. Boice, H. X. Cui et al., Adjusting lung cancer risks for temporal and spatial variations in radon concentration in dwellings in Gansu Province, China. Radiation Research, vol.163, issue.5, pp.571-580, 2005.

R. Lyles and L. Kupper, A detailed evaluation of adjustement methods for multiplicative measurement error in linear regression with applications in occupational epidemiology, Biometrics, vol.53, issue.3, pp.1008-1025, 1997.

Z. Zhang, D. L. Preston, M. Sokolnikov, B. A. Napier, M. Degteva et al., Correction of confidence intervals in excess relative risk models using Monte Carlo dosimetry systems with shared errors, PLoS One, vol.12, issue.4, 2017.

J. Berkson, Are there two regressions, Journal of the American Statistical Association, vol.45, pp.164-180, 1950.

H. M. Kim, D. Richardson, D. Loomis, M. Van-tongeren, and I. Burstyn, Bias in the estimation of exposure effects with individual-or group-based exposure assessment, Journal of Exposure Science and Environmental Epidemiology, vol.21, issue.2, pp.212-233, 2011.

A. Althubaiti and A. Donev, Non-Gaussian Berkson errors in bioassay data, Statistical Methods in Medical Research, vol.25, issue.1, pp.430-445, 2016.

S. Hoffmann, E. Rage, D. Laurier, P. Laroche, C. Guihenneuc et al., Accounting for Berkson and classical measurement error in radon exposure using a Bayesian structural approach in the analysis of lung cancer mortality in the French cohort of uranium miners, Radiation Research, vol.187, issue.2, pp.196-209, 2017.

B. Mallick, F. O. Hoffman, and R. J. Carroll, Semiparametric regression modeling with mixtures of Berkson and classical error, with application to fallout from the Nevada test site, Biometrics, vol.58, issue.1, pp.13-20, 2002.

W. Ahrens and I. Pigeot, Handbook of epidemiology, 2005.

J. S. Buzas, L. A. Stefanski, and T. D. Tosteson, Measurement error. In: Handbook of epidemiology, pp.1241-1282, 2014.

A. Guolo, Robust techniques for measurement error correction: a review, Statistical Methods in Medical Research, vol.17, issue.6, pp.555-80, 2008.

J. P. Buonaccorsi, Measurement error -Models, methods and applications, 2010.

G. Atkinson and A. M. Nevill, Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine, Sports Medicine, vol.26, issue.4, pp.217-255, 1998.

G. Espino-hernandez, P. Gustafson, and I. Burstyn, Bayesian adjustment for measurement error in continuous exposures in an individually matched case-control study, BMC Medical Research Methodology, vol.11, issue.67, 2011.

Y. Li, A. Guolo, F. O. Hoffman, and R. J. Carroll, Shared uncertainty in measurement error problems, with application to Nevada Test Site fallout data, Biometrics, vol.63, issue.4, pp.1226-1262, 2007.

J. P. Buonaccorsi and C. D. Lin, Berkson measurement error in designed repeated measures studies with random coefficients, Journal of Statistical Planning and Inference, vol.104, pp.53-72, 2002.

D. Spiegelman and B. Valanis, Correcting for bias in relative risk estimates due to exposure measurement error: a case study of occupational exposure to antineoplastics in pharmacists

, American Journal of Public Health, vol.88, issue.3, pp.406-412, 1998.

M. D. Hughes, Regression dilution in the proportional hazards model, Biometrics, vol.49, pp.1056-1066, 1993.

R. J. Carroll and L. A. Stefanski, Measurement error, instrumental variables and corrections for attenuation with applications to meta-analyses, Statistics in Medicine, vol.13, issue.12, pp.1265-82, 1994.

S. Greenland, Causation and causal inference, International Encyclopedia of Statistical Science, pp.216-221, 2011.

D. C. Thomas, Some Contributions of Statistics to Environmental Epidemiology, Journal of the American Statistical Association, vol.95, issue.449, pp.315-319, 2000.

P. G. Lindqvist, E. Epstein, M. Landin-olsson, C. Ingvar, K. Nielsen et al., Avoidance of sun exposure is a risk factor for all-cause mortality: results from the Melanoma in Southern Sweden cohort, Journal of Internal Medicine, vol.276, issue.1, pp.77-86, 2014.

P. G. Lindqvist and H. Olsson, Answer to IM-16-0459, Journal of Internal Medicine, 2016.

D. Thomas, New techniques for the analysis of cohort studies, Epidemiologic Reviews, vol.20, issue.1, pp.122-134, 1998.

E. Tielemans, L. Kupper, H. Kromhout, D. Heederik, and R. Houba, Individual-based and groupbased occupational exposure assessment: Some equations to evaluate different strategies, Annals of Occupational Hygiene, vol.42, issue.2, pp.115-119, 1998.

G. E. Fraser and D. O. Stram, Regression calibration in studies with correlated variables measured with error, American Journal of Epidemiology, vol.154, issue.9, pp.836-844, 2001.

A. M. Jurek, S. Greenland, G. Maldonado, and T. R. Church, Proper interpretation of non-differential misclassification effects: expectations vs observations, International Journal of Epidemiology, vol.34, issue.3, pp.680-687, 2005.

A. M. Jurek, S. Greenland, and G. Maldonado, How far from non-differential does exposure or disease misclassification have to be to bias measures of association away from the null?, International Journal of Epidemiology, vol.37, issue.2, pp.382-387, 2008.

I. Burstyn, Y. Yang, and A. R. Schnatter, Effects of non-differential exposure misclassification on false conclusions in hypothesis-generating studies, International Journal of Environmental Research and Public Health, vol.11, issue.10, pp.10951-66, 2014.

D. R. Cox, Regression models and life-tables, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.34, issue.2, pp.187-220, 1972.

R. L. Prentice, Covariate measurement errors and parameter estimation in a failure time regression model, Biometrika, vol.69, pp.331-342, 1982.

J. S. Buzas, Unbiased scores in proportional hazards regression with covariate measurement error, Journal of Statistical Planning and Inference, pp.247-257, 1998.

G. Y. Yi and J. F. Lawless, A corrected likelihood method for the proportional hazards model with covariates subject to measurement error, Journal of Statistical Planning and Inference, pp.1816-1828, 2007.

R. H. Keogh, A. D. Strawbridge, and I. R. White, Effects of classical exposure measurement error on the shaoe of exposure-disease associations, Epidemiological Methods, vol.1, issue.1, 2012.

N. E. Breslow and N. E. Day, International Agency for Research on Cancer Lyon, vol.1, 1980.

D. B. Richardson and D. Loomis, The impact of exposure categorisation for grouped analyses of cohort data, Occupational and Environmental Medicine, vol.61, issue.11, pp.930-935, 2004.

K. M. Flegal, P. M. Keyl, and F. J. Nieto, Differential misclassification arising from nondifferential errors in exposure measurement, American Journal of Epidemiology, vol.134, issue.10, pp.1233-1246, 1991.

R. H. Keogh, A. D. Strawbridge, and I. R. White, Correcting for bias due to misclassification when error prone continuous exposures are misclassified, Epidemiological Methods, vol.1, issue.1, 2012.

I. Hertz-picciotto and A. H. Smith, Observations on the dose-response curve for arsenic exposure and lung cancer, Scandinavian Journal of Work, vol.19, pp.217-226, 1993.

S. R. Cole, H. Chu, and S. Greenland, Multiple-imputation for measurement-error correction, International Journal of Epidemiology, vol.35, issue.4, pp.1074-81, 2006.

S. Muff, A. Riebler, L. Held, H. Rue, and P. Saner, Bayesian analysis of measurement error models using integrated nested laplace approximation, Journal of the Royal Statistical Society: Series C (Applied Statistics), vol.64, issue.2, pp.231-252, 2015.

R. Und and T. A. Schwarz, Cox's proportional hazars model under covariate measurement error -A review and comparison of methods, Sonderforschungsbereich, 2001.

S. Richardson and W. R. Gilks, A Bayesian approach to measurement error problems in epidemiology using conditional independence models, American Journal of Epidemiology, vol.138, issue.6, pp.430-442, 1993.

S. Richardson and W. R. Gilks, Conditional independence models for epidemiological studies with covariate measurement error, Statistics in Medicine, vol.12, pp.1703-1722, 1993.

P. Congdon, Bayesian Statistical Modelling, 2006.

D. W. Schafer and K. G. Purdy, Likelihood analysis for errors-in-variables regression with replicate measurements, Biometrika, vol.83, issue.4, pp.813-824, 1996.

H. Küchenhoff and R. J. Carroll, Segmented regression with errors in predictors: semi-parametric and parametric methods, Statistics in Medicine, vol.16, pp.169-188, 1997.

R. J. Carroll, D. Ruppert, C. M. Crainiceanu, T. D. Tosteson, and M. R. Karagas, Nonlinear and nonparametric regression and instrumental variables, Journal of the American Statistical Association, vol.99, issue.467, pp.736-750, 2004.

K. Messer and L. Natarajan, Maximum likelihood, multiple imputation and regression calibration for measurement error adjustment, Statistics in Medicine, vol.27, issue.30, pp.6332-50, 2008.

I. R. White, Commentary: dealing with measurement error: multiple imputation or regression calibration?, International Journal of Epidemiology, vol.35, pp.1081-1082, 2006.

B. N. Sánchez, S. Kim, and M. D. Sammel, Estimators for longitudinal latent exposure models: examining measurement model assumptions, Statistics in Medicine, vol.36, issue.13, pp.2048-2066, 2017.

C. Fornell and D. F. Larcker, Evaluating structural equation models with unobservable variables and measurement error, Journal of Marketing Research, vol.18, issue.1, pp.39-50, 1981.

R. Bakker, Re-measuring left-right: A comparison of SEM and Bayesian measurement models for extracting left-right party placements, Electoral Studies, vol.28, pp.413-421, 2009.

K. Goldsmith, T. Chalder, P. D. White, M. Sharpe, and A. Pickles, Measurement error, time lag, unmeasured confounding: Considerations for longitudinal estimation of the effects of a mediator in randomised clinical trials, Statistical Methods in Medical Research, 2016.

H. Murad, V. Kipnis, and L. S. Freedman, Estimating and testing interactions when explanatory variables are subject to non-classical measurement error, Statistical Methods in Medical Research, vol.25, issue.5, pp.1991-2013, 2016.

L. Wang, . Hsu, Z. D. Feng, and R. L. Prentice, Regression calibration in failure time regression, Biometrics, vol.53, pp.131-145, 1997.

X. Liao, D. M. Zucker, Y. Li, and D. Spiegelman, Survival analysis with error-prone time-varying covariates: A risk set calibration approach, Biometrics, vol.67, issue.1, pp.50-58, 2011.

R. J. Carroll, H. Küchenhoff, F. Lombard, and L. A. Stefanski, Asymptotics for the SIMEX estimator in nonlinear measurement error models, Journal of the American Statistical Association, issue.433, p.91, 1996.

D. Spiegelman, R. Logan, and D. Grove, Regression calibration with heteroscedastic error variance, The International Journal of Biostatistics, vol.7, issue.1, 2011.

J. R. Cook and L. A. Stefanski, Simulation-extrapolation estimation in parametric measurement error models, Journal of the American Statistical Association, vol.89, issue.428, pp.1314-1328, 1994.

M. Misumi, K. Furukawa, J. B. Cologne, and H. M. Cullings, Simulation-extrapolation for bias correction with exposure uncertainty in radiation risk analysis utilizing grouped data, Journal of the Royal Statistical Society: Series C (Applied Statistics, 2017.

R. Higdon and D. W. Schafer, Maximum likelihood computations for regression with measurement error, Computational Statistics & Data Analysis, vol.35, pp.283-299, 2001.

D. H. Wolpert, The lack of a priori distrinctions between learning algorithms. Neural Computation, vol.8, pp.1341-1390, 1996.

D. H. Wolpert and W. G. Macready, No free lunch theorems for optimization, IEEE Transactions on Evolutionary Computation, vol.1, issue.1, pp.67-82, 1997.

Y. Li and X. Lin, Functional inference in frailty measurement error models for clustered survival data using the SIMEX approach, Journal of the American Statistical Association, vol.98, issue.461, 2003.

P. Hu, A. A. Tsiatis, and M. Davidian, Estimating the parameters in the Cox model when covariate variables are measured with error, Biometrics, vol.54, pp.1407-1419, 1998.

A. Guolo and A. R. Brazzale, A simulation-based comparison of techniques to correct for measurement error in matched case-control studies, Statistics in Medicine, vol.27, pp.3755-3775, 2008.

M. Torabi, Likelihood inference in generalized linear mixed measurement error models, Computational Statistics & Data Analysis, pp.549-557, 2013.

M. Noh, L. Wu, and Y. Lee, Hierarchical likelihood methods for nonlinear and generalized linear mixed models with missing data and measurement errors in covariates, Journal of Multivariate Analysis, pp.42-51, 2012.

Y. Li and X. Lin, Covariate measurement error in frailty models for clustered survival data, Biometrika, vol.87, issue.4, pp.849-866, 2000.

M. P. Little, A. G. Kukush, S. V. Masiuk, S. Shkylar, R. J. Carroll et al., Impact of uncertainties in expsoure assessment on estimates of thyroid cancer risk among Ukranian children and adolescents exposed from the Chernobyl accident, PLoS one, vol.9, issue.1, 2014.

L. Stayner, M. Vrijheid, E. Cardis, D. O. Stram, I. Deltour et al., A Monte Carlo maximum likelihood method for estimating uncertainty arising from shared errors in exposures in epidemiological studies of nuclear workers, Radiation Research, vol.168, issue.6, pp.757-763, 2007.

I. J. Good, The Bayesian influence, or how to sweep subjectivism under the carpet. In: Foundations of probability theory, statistical inference, and statistical theories of science, pp.125-174, 1976.

S. B. Mcgrayne, The theory that would not die: how Bayes' rule cracked the enigma code, hunted down Russian submarines & emerged triumphant from two centuries of controversy

A. Gelman and C. Robert, Rejoinder: The anti-Bayesian moment and its passing, The American Statistician, vol.67, issue.1, 2013.

J. M. Marin and C. Robert, Bayesian core: a practical approach to computational Bayesian statistics, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00450489

C. Robert and G. Casella, A short history of Markov chain Monte Carlo: Subjective recollections from incomplete data, Statistical Science, vol.26, issue.1, pp.102-115, 2011.

P. C. Lambert, A. J. Sutton, P. R. Burton, K. R. Abrams, and D. R. Jones, How vague is vague? A simulation study of the impact of the use of vague prior distributions in MCMC using WinBUGS, Statistics in Medicine, vol.24, pp.2401-2428, 2005.

T. Hamelryck, An overview of Bayesian inference and graphical models, Bayesian methods in structural bioinformatics, pp.3-48, 2012.

A. O'hagan, Eliciting expert beliefs in substantial practical applications, Journal of the Royal Statistical Society Series D (The Statistician), vol.47, issue.1, pp.21-35, 1998.

C. P. Robert and G. Casella, Monte Carlo statistical methods -Second Edition, 2004.

S. P. Brooks, Bayesian computation: a statistical revolution, Philosophical Transactions of the Royal Society of London, vol.361, pp.2681-2697, 2003.

C. Andrieu, A. Doucet, and C. P. Robert, Computational advances for and from Bayesian analysis, Statistical Science, vol.19, issue.1, pp.118-127, 2004.

I. Albert, S. Ancelet, O. David, J. B. Denis, D. Makowski et al., Initiationà la statistique bayésienne -Base théoriques et applications en alimentation, environnement, epidémiologie et génétique. Edition Ellipses, 2015.

C. R. Rao and . Fisher, The founder of modern statistics, Statistical Science, vol.7, issue.1, pp.34-48, 1992.

T. Krishnan, Fisher's contributions to statistics, Resonance, vol.2, issue.9, pp.32-37, 1997.

J. Sterne and G. D. Smith, Sifting the evidence -what's wrong with significance tests?, Physical Therapy, vol.81, issue.8, 2001.

A. Spanos, Where do statistical models come from? Revisiting the problem of specification, Optimality: The second Erich L. Lehmann Symposium. vol, vol.49, pp.98-119, 2006.

B. Efron, Why isn't everyone a Bayesian, The American Statistician, vol.40, issue.1, pp.1-5, 1986.

T. J. Loredo, From Laplace to supernova SN 1987A: Bayesian inference in astrophysics, Maximum entropy and Bayesian methods, pp.81-142, 1990.

S. E. Fienberg, A brief history of statistics in three and one-half chapters: A review essay, Statistical Science, vol.7, issue.2, pp.208-225, 1992.

B. Efron, Bayesians, frequentists and scientists, Journal of the American Statistical Association, vol.100, issue.469, pp.1-5, 2005.

S. E. Fienberg, When did Bayesian inference become "Bayesian, Bayesian Analysis, vol.1, issue.1, pp.1-40, 2006.

S. Greenland, Bayesian perspectives for epidemiological research: I. Foundations and basic methods, International Journal of Epidemiology, vol.35, pp.765-775, 2006.

J. Berger, The case of objective Bayesian analysis, Bayesian Analysis, vol.1, issue.3, pp.385-402, 2006.

A. Hald, A history of parametric statistical inference from Bernoulli to Fisher, pp.1713-1935

, Springer Science & Business Media, 2008.

B. Efron, The future of indirect evidence, Statistical Science, vol.25, issue.2, 2010.

S. E. Fienberg, Bayesian models and methods in public policy and government settings, Statistical Science, vol.26, issue.2, 2011.

S. M. Stigler and . Thomas, Bayes's Bayesian inference, Journal of the Royal Statistical Society: Series A (Statistics in Society), vol.145, pp.250-258, 1982.

S. M. Stigler, Laplace's 1774 memoir on inverse probability, Statistical Science, vol.1, issue.3, pp.359-378, 1986.

D. V. Lindley, Understanding uncertainty, 2006.

T. Bayes, An essay towards solving a problem in the doctrine of chances, Philosophical Transactions of the Royal Society of London, vol.53, pp.370-418, 1763.

J. Bijak and J. Bryant, Bayesian demography 250 years after Bayes, Population Studies, vol.70, issue.1, pp.1-19, 2016.

S. M. Stigler, Stigler's law of eponymy, Transactions of the New York Academy of Sciences, vol.39, pp.147-158, 1980.

R. K. Merton, Priorities in scientific discovery: A chapter in the sociology of science, American Sociological Review, vol.22, issue.6, 1957.

D. L. Block, Georges Lemaître and Stigler's law of eponymy, Georges Lemaître: Life, science and legacy, 2013.

S. M. Stigler, Poisson on the Poisson distribution, Statistics & Probability Letters, vol.1, issue.1, pp.33-35, 1982.

J. H. Gaddum, Lognormal distributions, Nature, vol.156, pp.463-466, 1945.

L. Cam, L. , Y. Lang, and G. , Asymptotics in Statistics: Some Basic Concepts, 2000.

S. Goodman, A comment on replication, p-values and evidence, Statistics in Medicine, vol.11, pp.875-879, 1992.

E. T. Lehmann and . Fisher, Neyman-Pearson theories of testing hypotheses: One theory or two, Journal of the American Statistical Association, vol.88, issue.424, pp.1242-1249, 1993.

J. B. Kadane, Prime time for Bayes, Controlled Clinical Trials, vol.16, pp.313-318, 1995.

B. R. Efron, Fisher in the 21st century, Statistical Science, vol.13, issue.2, pp.95-122, 1998.

G. Gigerenzer, Why the distinction between single-event probabilities and frequencies is important for psychology (and vice versa), Subjective probability, pp.129-161, 1994.

R. Hubbard and M. J. Bayarri, Confusion over measures of evidence (p's) versus errors (?'s) in classical statistical testing, The American Statistician, vol.57, issue.3, 2003.

R. Hubbard and R. M. Lindsay, Why p values are not a useful measure of evidence in statistical significance testing, Theory & Psychology, vol.18, issue.1, pp.69-88, 2008.

J. C. Berger and . Fisher, Jeffreys and Neyman have agreed on testing?, Statistical Science, vol.18, issue.1, pp.1-32, 2003.

A. Gelman and C. Hennig, Beyond subjective and objective in statistics, 2015.

S. L. Zabell, R A Fisher and the fiducial argument, Statistical Science, vol.7, issue.3, pp.369-387, 1992.

J. Lenhard, Models and statistical inference: The controversy between Fisher and Neyman-Pearson, British Journal of the Philosophy of Science, vol.57, pp.69-91, 2006.

E. L. Lehmann and . Fisher, Neyman, and the creation of classical statistics, 2011.

J. R. Aldrich, Fisher on Bayes and Bayes' theorem, Bayesian Analysis, vol.3, issue.1, pp.161-170, 2008.

R. Fisher, Statistical methods and scientific induction, Journal of the Royal Statistical Society: Series B (Methodological), vol.17, issue.1, pp.69-78, 1955.

G. Box, An apology for ecumensim in statistics. Wisconsin University -Madison mathematics research center, 1982.

S. Zabell, Fisher on the history of inverse probability, Statistical Science, vol.4, issue.3, pp.247-263, 1989.

S. E. Fienberg, Comment: Bayesian ideas reemerged in the 1950s, The American Statistician, vol.67, issue.1, 2013.

J. O. Berger, Bayesian analysis: a look at today and thoughts of tomorrow, Journal of the American Statistical Association, vol.95, issue.452, pp.1269-1276, 2000.

D. Simpson, H. Rue, T. G. Martins, A. Riebler, and S. H. Sørbye, Penalising model component complexity: A principled, practical appraoch to constructing priors, Statistical Science, vol.32, issue.1, pp.1-28, 2017.

A. O'hagan, C. E. Buck, A. Daneshkhah, J. R. Eiser, P. H. Garthwaite et al., Uncertain judgements: eliciting experts' probabilities, 2006.

G. S. , The unity and diversity of probability, Statistical Science, vol.5, issue.4, pp.435-444, 1990.

L. Wassermann, All of statistics: A concise course in statistical inference, 2013.

O. Ore, Pascal and the invention of probability theory, The American Mathematical Monthly, vol.67, issue.5, pp.409-419, 1960.

G. Shafer, The early development of mathematical probability. Companion Encyclopedia of the history and philosophy of the mathematical sciences, vol.2, pp.1293-1302, 1993.

I. Hacking, The emergence of probability: A philosophical study of early ideas about probability, induction and statistical inference, 2006.

T. O'hagan, Dicing with the unknown, Significance, vol.1, issue.3, pp.132-133, 2004.

P. Diaconis and B. C. Mazur, The problem of thinking too much, Bulletin of the American Academy of Arts and Sciences, vol.56, issue.3, pp.26-38, 2003.

T. Breuer, The impossibility of accurate state self-measurements, Philosophy of Science, vol.62, issue.2, pp.197-214, 1995.

P. M. Binder, Philosophy of science: Theorie of almost everything, Nature, vol.455, issue.7215, pp.884-885, 2008.

R. F. Nau, De Finetti was right: Probability does not exist, Theory and Decision, vol.51, pp.89-124, 2001.

M. C. Galavotti and . Subjectivism, Bruno de Finetti's Bayesianism, 2001.

A. E. Gelfand and A. F. Smith, Sampling-based approaches to calculating marginal densities, Journal of the American Statistical Association, vol.85, issue.410, pp.398-409, 1990.

C. Robert, The Bayesian choice: from decision-theoretic foundations to computational implementation, 2007.

A. Gelman and C. R. Shalizi, Philosophy and practice of Bayesian statistics, British Journal of Mathematical and Statistical Psychology, vol.66, issue.1, pp.8-38, 2013.

C. P. Robert, The expected demise of the Bayes factor, Journal of Mathematical Psychology, vol.72, pp.33-37, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01409264

B. Dennis, Discussion: should ecologists become Bayesians?, Ecological Applications, vol.6, issue.4, pp.1095-1103, 1996.

L. J. Savage, Contributions to the Theory of Statistics. The Regents of the University of California, Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, vol.1, p.162, 1961.

L. J. Savage, R. A. On, and . Fisher, The Annals of Statistics, vol.1, issue.3, pp.441-500, 1976.

P. J. Green, K. Latuszy?ski, M. Pereyra, and C. P. Robert, Bayesian computation: a summary of the current state, and samples backwards and forwards, Statistics and Computing, vol.25, issue.4, pp.835-862, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01409252

W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, Markov chain Monte Carlo in practice, 1996.

G. O. Roberts and J. S. Rosenthal, Examples of adaptive MCMC, Journal of Computational and Graphical Statistics, vol.18, issue.2, pp.349-367, 2009.

J. Besag and P. J. Green, Spatial statistics and Bayesian computation, Journal of the Royal Statistical Society: Series B (Methodological), vol.55, issue.1, pp.25-37, 1993.

N. Metropolis, The beginning of the Monte Carlo method, Los Alamos Science Special Issue, pp.125-130, 1987.

D. P. Landau and K. Binder, A guide to Monte-Carlo simulations in statistical physics, 2014.

R. W. Shonkwiler and F. Mendivil, Explorations in Monte Carlo methods, 2009.

G. O. Roberts and A. F. Smith, Simple conditions for the convergence of the Gibbs sampler and Metropolis-Hastings algorithms. Stochastic processes and their applications, vol.49, pp.207-216, 1994.

A. Gelman and D. B. Rubin, Inference from iterative simulation using multiple sequences. Statistical Science, pp.457-472, 1992.

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, Equation of state calculations by fast computing machines, The Journal of Chemical Physics, vol.21, issue.6, pp.1087-1092, 1953.

J. E. Gubernatis, Marshall Rosenbluth and the Metropolis algorithm, Physics of Plasmas, vol.12, issue.5, 2005.

H. L. Anderson, Scientific uses of the MANIAC, Journal of Statistical Physics, vol.43, issue.5-6, pp.731-748, 1986.

B. Holian, A history of consitutive modeling via molecular dynamics: Shock waves in fluids and gases, EPJ Web of Conferences. vol, vol.10, 2010.

L. Waltman, An empirical analysis of the use of alphabetical authorship in scientific publishing, Journal of Informetrics, vol.6, issue.4, pp.700-711, 2012.

W. K. Hastings, Monte Carlo Sampling Methods Using Markov Chains and Their Applications, Biometrika, vol.57, issue.1, pp.97-109, 1970.

C. Andrieu, A. Doucet, and R. Holenstein, Particle Markov chain Monte Carlo methods, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.72, pp.269-342, 2010.

S. Chib and E. Greenberg, Understanding the metropolis-hastings algorithm, The American Statistician, vol.49, issue.4, pp.327-335, 1995.

W. K. Morris, P. A. Vesk, and M. A. Mccarthy, Profiting from pilot stides: Analysing mortality using Bayesian models with informative priors, Basic and Applied Ecology, 2012.

S. Geneletti, A. G. O'keefe, L. D. Sharples, S. Richardson, and G. Baio, Bayesian regression discontinuity designs: Incorporating clinical knowledge in the causal analysis of primary care data, Statistics in Medicine, vol.34, issue.15, pp.2334-2352, 2015.

E. T. Jaynes, Highly informative priors, pp.329-360, 1985.

E. Parent and J. Bernier, Encoding prior experts judgements to improve risk analysis of extreme hydrological events via POT modeling, Journal of Hydrology, vol.283, pp.1-18, 2003.

M. Goldstein, Subjective Bayesian analysis: Principles and practice, Bayesian Analysis, vol.1, issue.3, pp.403-420, 2006.

S. Greenland, Bayesian perspectives for epidemiological research: II. Regression analysis, International Journal of Epidemiology, vol.36, pp.195-202, 2007.

L. F. Miranda-moreno, S. Heydari, D. Lord, and L. Fu, Bayesian road safety analysis: Incorporation of past evidence and effect of hyper-prior choice, Journal of Safety Research, vol.46, pp.31-40, 2013.

P. Gustafson, Robustness considerations in Bayesian analysis, Statistical Methods in Medical Research, vol.5, pp.357-373, 1996.

R. E. Kass and L. Wassermann, The selection of prior distributions by formal rules, Journal of the American Statistical Association, vol.91, issue.435, pp.1343-1370, 1996.

J. M. Bernardo, Reference posterior distirbutions for Bayesian inference, Journal of the Royal Statistical Society: Series B (Methodological), vol.41, issue.2, pp.113-147, 1979.

X. Guo and B. P. Carlin, Seperate and joint modeling of longitudinal and event time data using standard computer packages, The American Statistician, vol.58, issue.1, 2004.

A. Gelman, The boxer, the wrestler, and the coin flip: a paradox of robust Bayesian inference and belief functions, The American Statistician, vol.60, issue.2, pp.146-150, 2006.

B. De-finetti, Bayesianism: Its unifying role for both the foundations and applications of statistics, International Statistical Review, vol.42, issue.2, pp.117-130, 1974.

J. O. Berger and J. M. Bernardo, On the development of reference priors, Bayesian statistics 4, pp.35-60, 1992.

J. O. Berger, J. M. Bernardo, and D. Sun, The formal definition of reference priors, The Annals of Statistics, vol.37, issue.2, pp.905-938, 2009.

A. Gelman and . Bayes, Jeffreys, prior distributions and the philosophy of statistics, Statistical Science, vol.24, issue.2, pp.176-178, 2009.

E. Parent, A. C. Favre, J. Bernier, and L. Perreault, Copula models for frequency analysis what can be learned from a Bayesian perspective, Advances in Water Resources, vol.63, pp.91-103, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01197621

A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin, Bayesian data analysis, vol.2, 2014.

L. Held and D. S. Bové, Applied statistical inference -Likelihood and Bayes, 2014.

C. P. Robert, N. Chopin, and J. Rousseau, Harold Jeffreys's theory of probability revisited, Statistical Science, vol.24, issue.2, pp.141-172, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02403322

J. M. Bernardo, Reference analysis. In: Handbook of statistics, pp.17-90, 2005.

A. Gelman, Bayesian model-building by pure thought: some principles and examples. Statistica Sinica, vol.6, pp.215-232, 1996.

A. Gelman, Prior distributions for variance parameters in hierarchical models, Bayesian Analysis, vol.1, issue.3, pp.515-533, 2006.

D. L. Burke, S. Bujkiewicz, and R. D. Riley, Bayesian bivariate meta-analysis of correlated effects: Impact of the prior distributions on the between-study correlation, borrowing of strength, and joint inferences, Statistical Methods in Medical Research, 2016.

A. Gelman, P values and statistical practice, Epidemiology, vol.24, issue.1, pp.69-72, 2013.

M. J. Bayarri and J. O. Berger, The interplay of Bayesian and frequentist analysis, Statistical Science, vol.19, issue.1, pp.58-80, 2004.

D. V. Lindley, The use of prior probability distributions in statistical inference and decision, Proc. 4th Berkeley Symp. on Math. Stat. and Prob, pp.453-468, 1961.

S. E. Fienberg, Does it make sense to be an "objective Bayesian"? (Comment on articles by Berger and Goldstein), Bayesian Analysis, vol.1, issue.3, pp.429-432, 2006.

J. B. Kadane, Comment on article by Gelman, Bayesian Analysis, vol.3, issue.3, pp.455-458, 2008.

I. Albert, S. Donnet, C. Guihenneuc-jouyaux, S. Low-choy, K. Mengersen et al., Combining expert opinions in prior elicitation, Bayesian Analysis, vol.7, issue.3, pp.503-532, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01004440

S. Senn, You may believe you are a Bayesian but you are probably wrong. Rationality, Markets and Morals, vol.2, pp.48-66, 2011.

R. T. Clemen and R. L. Winkler, Combining probability distributions from experts in risk analysis, Risk Analysis, vol.19, issue.2, pp.187-203, 1999.

P. H. Garthwaite, J. B. Kadane, and A. O'hagan, Statistical methods for eliciting probability distributions, Journal of the American Statistical Association, vol.100, issue.470, pp.680-701, 2005.

R. E. Zapata-vásquez, A. O'hagan, and L. S. Bastos, Eliciting expert judgements about a set of proportions, Journal of Applied Statistics, 2014.

R. M. Cooke and L. L. Goossens, TU Delft expert judgment data base. Reliability Engineering & System Safety, vol.93, pp.657-674, 2008.

M. O. Soares, L. Bojke, J. Dumville, C. Iglesias, N. Cullum et al., Methods to elicit experts' beliefs over uncertain quantities: application to a cost effectiveness transition model of negative pressure wound therapy for severe pressure ulceration, Statistics in Medicine, vol.30, pp.2363-2380, 2011.

D. Budescu, A. Abbas, and L. Wu, Does probability weighting matter in probability elicitation, Journal of Mathematical Psychology, vol.55, pp.320-327, 2011.

R. Cox, J. Sanchez, and C. W. Revie, Multi-criteria decision analysis tools for prioritising emerging or re-emerging infectious diseases associated with climate change in Canada, PLoS One, vol.8, issue.8, p.68338, 2013.

K. Edlmann, J. Bensabat, A. Niemi, R. S. Haszeldine, and C. I. Mcdermott, Lessons learned from using expert elicitation to identify, assess and rank the potential leakage scenarios at the Heletz pilot CO2 injection site, International Journal of Greenhouse Gas Control, vol.49, pp.473-487, 2016.

, Source Attribution Task Force. Research synthesis methods in an age of globalized risks: Lessons from the global burden of foodborne disease expert elicitation, Risk Analysis, vol.36, issue.2, pp.191-202, 2016.

A. Tversky and D. Kahneman, Availability: a heuristic for judging frequency and probability, Cognitive Psychology, vol.5, pp.207-232, 1973.

A. Tversky and D. Kahneman, Judgment under uncertainty: Heuristics and biases, Science, vol.185, pp.1124-1131, 1974.

C. Genest and J. V. Zidek, Combining probability distributions: A critique and annotated bibliography, Statistical Science, vol.1, issue.1, pp.114-148, 1986.

J. B. Kadane and L. J. Wolfson, Experiences in elicitation, Journal of the Royal Statistical Society Series D (The Statistician), vol.47, pp.3-19, 1998.

M. C. Baddeley, A. Curtis, and R. Wood, An introduction to prior information derived from probabilistic judgements: elicitation of knowledge, cogntive bias and herding, vol.239, pp.15-27, 2004.

M. Kynn, The 'heuristics and biases' bias in expert elicitation, Journal of the Royal Statistical Society: Series A (Statistics in Society), vol.171, pp.239-264, 2008.

L. J. Wolfson, N. Bousquet, and . Elicitation, Wiley StatsRef: Statistics Reference online, pp.1-11, 2016.

J. R. Van-dorp and T. A. Mazzuchi, Statistics Textbooks and Monographs. Statistics Textbooks and Monographs, vol.174, pp.283-318, 2004.

J. D. Cook, Determining distribution parameters from quantiles, 2010.

G. Gigerenzer and U. Hoffrage, How to improve Bayesian reasoning without instruction: Frequency formats, Psychological Review, vol.102, issue.4, pp.684-704, 1995.

G. Gigerenzer, On narrow norms and vague heuristics: A reply to Kahneman and Tversky, Psychological Review, vol.103, issue.3, pp.592-596, 1996.

L. Cosmides and J. Tooby, Are humans good intuitive statisticians after all? Rethinking some conclusions from the literature on judment under uncertainty, Cognition, vol.58, pp.1-73, 1996.

P. Sedlmeier and G. Gigerenzer, Teaching Bayesian reasoning in less than two hours, Journal of Experimental Psychology: General, vol.130, issue.3, pp.380-400, 2001.

S. Low-choy, A. James, and K. Mengerson, Expert elicitation and its interface with technology: a review with a view to designing Elicitator, 18th World IMACS / MODSIM Congress, 2009.

M. A. Burgman, M. Mcbride, R. Ashton, A. Speirs-bridge, L. Flander et al., Expert status and performance, PLoS One, vol.6, issue.7, p.22998, 2011.

P. Ferrari, R. J. Carroll, P. Gustafson, and E. Riboli, A Bayesian multilevel model for estimating the diet/disease relationship in a multicenter study with exposures measured with error: The EPIC study, Statistics in Medicine, vol.27, pp.6037-6054, 2008.

S. Greenland, Principles of multilevel modelling, International Journal of Epidemiology, vol.29, pp.158-167, 2000.

S. Richardson, Markov chain Monte Carlo in practice, pp.401-417, 1996.

S. Richardson, L. Leblond, I. Jaussent, and P. J. Green, Mixture models in measurement error problems, with reference to epidemiological studies, Journal of the Royal Statistical Society: Series A (Statistics in Society), vol.165, issue.3, pp.549-566, 2002.

D. G. Clayton, Models for the analysis of cohort and case-control studies with inaccurately measured exposures, pp.301-331, 1992.

M. I. Jordan, Graphical models. Statistical Science, vol.19, issue.1, pp.140-155, 2004.

B. K. Mallick and A. E. Gelfand, Semiparametric errors-in-variables models -A Bayesian approach, Journal of Statistical Planning and Inference, vol.52, pp.307-321, 1996.

S. M. Berry, R. J. Carroll, and D. Ruppert, Bayesian smoothing and regression splines for measurement error problems, Journal of the American Statistical Association, vol.97, issue.457, pp.160-169, 2002.

P. Lambert and P. Eilers, Bayesian proportional hazards model with time-varying regression coefficients: A penalized Poisson regression approach, Statistics in Medicine, vol.24, pp.3977-3989, 2005.

N. Laird and D. Olivier, Covariance analysis of censored survival data using log-linear analysis techniques, Journal of the American Statistical Association, vol.76, issue.374, pp.231-240, 1981.

J. G. Ibrahim, M. H. Chen, and D. Sinha, Bayesian survival analysis, 2001.

D. G. Kleinbaum and M. Klein, Survival analysis, 1996.

J. P. Klein and M. M. Moeschberger, Survival analysis -Techniques for censored and truncated data, 2003.

L. Fahrmeir and A. Hennerfeind, Nonparametric Bayesian hazard rate models based on penalized splines. Discussion paper Sonderforschungsbereich 386 der Ludwig-Maximilians-Universität München, 2003.

M. Hauptmann, K. Berhane, B. Langholz, and J. Lubin, Using splines to analyse latency in the Colorado Plateau uranium miners cohort, Journal of Epidemiology and Biostatistics, vol.6, issue.6, pp.417-424, 2001.

B. Langholz, D. Thomas, A. Xiang, and D. Stram, Latency analysis in epidemiologic studies of occupational exposures: application to the Colorado Plateau uranium miners cohort

, American Journal of Industrial Medicine, vol.35, issue.3, pp.246-256, 1999.

D. B. Richardson, S. R. Cole, H. Chu, and B. Langholz, Lagging exposure information in cumulative exposure-response analyses, American Journal of Epidemiology, p.260, 2011.

A. Thiébaut and J. Bénichou, Choice of time-scale in Cox's model analysis of epidemiologic cohort data: a simulation study, Statistics in Medicine, vol.23, issue.24, pp.3803-3820, 2004.

E. L. Korn, B. I. Graubard, and D. Midthune, Time-to-event analysis of longitudinal follow-up of a survey: choice of the time-scale, American Journal of Epidemiology, vol.145, issue.1, pp.72-80, 1997.

J. Cologne, W. L. Hsu, R. D. Abbott, W. Ohishi, E. J. Grant et al., Proportional hazards regression in epidemiologic follow-up studies: an intuitive consideration of primary time scale, Epidemiology, vol.23, issue.4, pp.565-573, 2012.

M. Wolkewitz, A. Allignol, S. Harbarth, G. De-angelis, M. Schumacher et al., Timedependent study entries and exposures in cohort studies can easily be sources of different and avoidable types of bias, Journal of Clinical Epidemiology, vol.65, issue.11, pp.1171-80, 2012.

T. Therneau and P. Grambsch, Modeling Survival Data, Extending the Cox model, 2000.

T. Therneau and C. Crowson, Using Time Dependent Covariates and Time Dependent Coefficients in the Cox Model. The survival Package (R help guide), 2013.

C. Van-walraven, D. Davis, A. J. Forster, and G. A. Wells, Time-dependent bias was common in survival analyses published in leading clinical journals, Journal of Clinical Epidemiology, vol.57, issue.7, pp.672-82, 2004.

J. Beyersmann, P. Gastmeier, M. Wolkewitz, and M. Schumacher, An easy mathematical proof showed that time-dependent bias inevitably leads to biased effect estimation, Journal of Clinical Epidemiology, vol.61, issue.12, pp.1216-1237, 2008.

A. G. Barnett, J. Beyersmann, A. Allignol, V. D. Rosenthal, N. Graves et al., The timedependent bias and its effect on extra length of stay due to nosocomial infection, Value Health, vol.14, issue.2, pp.381-387, 2011.

S. Martino, R. Akerkar, and H. Rue, Approximate Bayesian inference for survival models, Scandinavian Journal of Statistics, vol.38, issue.3, 2011.

M. G. Tadesse, J. G. Ibrahim, R. Gentleman, S. Chiaretti, J. Ritz et al., Bayesian Error-in-Variable Survival Model for the Analysis of GeneChip Arrays, Biometrics, vol.61, issue.2, pp.488-497, 2005.

. Li, Bayesian proportional hazard analysis of the timing of high school dropout decisions, Econometric Reviews, vol.26, issue.5, pp.529-556, 2007.

B. He and S. Luo, Joint modeling of multivariate longitudinal measurements and survival data with applications to Parkinson's disease. Statistical Methods in Medical Research, 2014.

S. Caër-lorho, Base de données des taux de mortalité de référence, 2013.

A. Jemal, M. M. Center, C. Desantis, and E. M. Ward, Global patterns of cancer incidence and mortality rates and trends, Cancer Epidemiology Biomarkers & Prevention, vol.19, issue.8, pp.1893-1907, 2010.

I. Heid, Measurement error in exposure assessment: an error model and its impact on studies on lung cancer and residential radon exposure in Germany (thesis). Ludwig-Maximilians-Universität, 2002.

N. Hunter, C. R. Muirhead, and J. Miles, Two error components model for measurement error: application to radon in homes, Journal of Environmental Radioactivity, vol.102, pp.799-805, 2011.

A. El-hussein, A. Mohammed, M. A. El-hady, A. A. Ahmed, A. E. Ali et al., Diurnal and seasonal variation of short-lived radon progeny concentration and atmospheric temporal variations of 210Ph and 7Be in Egypt, Atmospheric Environment, vol.35, pp.4305-4313, 2001.

E. Flüry-herard and F. Paquet, Les méthodes et les limites de la dosimétrie après contamination interne, Radioprotection, vol.42, issue.4, pp.501-517, 2007.

M. Kreuzer, B. Grosche, F. Dufey, M. Schnelzer, A. Tschense et al., The German uranium miners cohort study, Bundesamt für Strahlenschutz, p.169, 2011.

J. Porstendörfer and A. Reineking, Radon: Characteristics in air and dose conversion factors. Health Physics, vol.76, pp.300-305, 1999.

D. Bouland and J. C. Chouard, Submicron-sized aerosol and radon progeny measurements in a uranium mine, Radiation Protection Dosimetry, vol.45, issue.1-4, pp.91-94, 1992.

J. Bigu, Electrical charge characteristics of long-lived radioactive dust, Health Physics, vol.58, issue.3, pp.341-350, 1990.

J. Porstendörfer, Physical parameters and dose factors of the radon and thoron decay products, Radiation Protection Dosimetry, vol.94, issue.4, pp.365-373, 2001.

J. W. Marsh and A. Birchall, Uncertainty analyis of the absorbed dose to regions of the lung per unit exposure to radon progeny in a mine. Health Protection Agency, Radiation Protection Division, 2008.

L. S. Ruzer, V. Na, and N. H. Harley, Assessment of lung deposition and breathing rate of underground miners in Tadjikistan, Radiation Protection Dosimetry, vol.58, pp.261-268, 1995.

A. Dasgupta, Probability for statistics and machine learning -Fundamentals and advanced topics, 2011.

S. French, Comment on Article by Albert et al, Bayesian Analysis, vol.7, issue.3, pp.533-536, 2012.

H. Rue, S. Martino, and N. Chopin, Approximate Bayesian Inference for latent Gaussian models by using integrated nested laplace approximation, Journal of the Royal Statistical Society: Series B (Statistical Methodology), issue.2, p.71, 2009.

H. Rue, A. Riebler, S. H. Sørbye, J. B. Illian, D. P. Simpson et al., Bayesian computing with INLA: A review, Annual Review of Statistics and its Application, vol.4, pp.395-421, 2017.

F. Höppner, F. Klawonn, L. C. Jain, M. Sato-ilic, M. Virvou et al., Clustering with size constraints, Computational Intelligence Paradigms, pp.167-180, 2008.

S. Zhu, D. Wang, and T. Li, Data clustering with size constraints. Knowledge-based systems, vol.23, pp.883-889, 2010.

P. Dellaportas and G. O. Roberts, An introduction to MCMC, Spatial statistics and computational methods, 2003.

D. Janzen and H. Saiedian, Test-driven development concepts, taxonomy, and future direction, Computer, vol.38, issue.9, pp.43-50, 2005.

H. Erdogmus, G. Melnik, and R. Jeffries, Encyclopedia of Software Engineering, pp.1211-1229, 2011.

E. M. Maximilien and L. Williams, Assessing test-driven development at IBM, Proceedings -International Conference on Software Engineering, vol.6, pp.564-569, 2003.

L. Williams, E. M. Maximilien, and M. Vouk, Test-driven development as a defect-reduction practice, 14th International Symposium on Software Reliability Engineering, pp.34-45, 2003.

T. Bhat and N. Nagappan, Evaluating the efficacy of test-driven development: industrial case studies, Proceedings of the 2006 ACM/IEEE international symposium on Empirical software engineering, pp.356-363, 2006.

D. J. Spiegelhalter, N. G. Best, B. P. Carlin, and A. Van-der-linde, Bayesian measures of model complexity and fit, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.64, issue.4, pp.583-639, 2002.

D. Spiegelhalter, N. G. Best, B. P. Carlin, and A. Van-der-linde, The deviance information criterion: 12 years on, Journal of the Royal Statistical Society: Series B (Methodological), vol.76, issue.3, pp.485-493, 2014.

C. E. Land, D. Kwon, F. O. Hoffman, B. Moroz, V. Drozdovitch et al., Accounting for Shared and Unshared Dosimetric Uncertainties in the Dose Response for Ultrasound-Detected Thyroid Nodules after Exposure to Radioactive Fallout, Radiation Research, vol.183, issue.2, pp.159-173, 2015.

M. P. Sylvestre and M. Abrahamowicz, Comparison of algorithms to generate event times conditional on time-dependent covariates, Statistics in Medicine, vol.27, issue.14, pp.2618-2652, 2008.

P. C. Austin, Generating survival times to simulate Cox proportional hazards models with time-varying covariates, Statistics in Medicine, vol.31, pp.3946-3958, 2012.

D. J. Hendry, Data generation for the Cox proportional hazards model with time-dependent covariates: a method for medical researchers, Statistics in Medicine, vol.33, pp.436-454, 2014.

P. C. Austin, A comparison of regression trees, logistic regression, generalized additive models, and multivariate adaptive regression splines for predicting AMI mortality, Statistics in Medicine, vol.26, issue.15, pp.2937-57, 2007.

M. Zhou, Understanding the Cox regression model with time-change covariates. The American Statistician, vol.55, pp.153-155, 2001.

K. Steenland, J. Deddens, and S. Zhao, Biases in estimating the effect of cumulative exposure in log-linear models when estimated exposure levels are assigned, Scandinavian Journal of Work, vol.26, issue.1, pp.37-43, 2000.

L. A. Stefanski, Measurement error models, Statistics in the 21st Century. CHAPMAN and HALL, 2002.

S. 435-van-roesbroeck, L. Ruifeng, G. Hoek, E. Lebret, B. Brunekreef et al., Trafficrelated outdoor pollution and respiratory symptoms in children -The impact of adjustment for exposure measurement error, Epidemiology, vol.19, issue.3, pp.409-416, 2008.

C. Gössl and H. Küchenhoff, Bayesian analysis of logistic regression with an unknown change point and covariate measurement error, Statistics in Medicine, vol.20, pp.3109-3121, 2001.

M. D. Hoffman and A. Gelman, The No-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo, Journal of Machine Learning Research, vol.15, issue.1, pp.1593-1623, 2014.

A. Blair, P. A. Stewart, D. D. Zaebst, L. Pottern, J. N. Zey et al., Mortality of industrial workers exposed to acrylonitrile, Scandinavian Journal of Work, vol.24, issue.2, pp.25-41, 1998.

A. Thiébaut, V. Kipnis, S. C. Chang, A. F. Subar, F. E. Thompson et al., Dietary fat and postmenopausal invasive breast cancer in the National Institutes of Health-AARP Diet and Health Study cohort, Journal of the National Cancer Institute, vol.99, issue.6, pp.451-62, 2007.

J. E. Hart, X. Liao, B. Hong, R. C. Puett, J. D. Yanosky et al., The association of long-term exposure to PM2.5 on all-cause mortality in the Nurses' Health Study and the impact of measurement-error correction, Environ Health, vol.14, p.38, 2015.

A. H. Khan and V. D. Puranik, Radiation protection and environmental safety surveillance in uranium mining and ore processing in India, The new uranium mining boom, 2012.

F. P. Banzi, P. Msaki, and N. Mohammed, Challenging issues in regulating uranium mining in Tanzania, 2015.

W. E. Falck and H. Coetzee, Making uranium-mining more sustainable -the FP7 project EO-MINERS, The new uranium mining boom

F. P. Banzi, P. Msaki, and N. Mohammed, Uranium boom in Namibia -Hausse or Baisse, 2015.

S. C. Darby and D. C. Hill, Health effects of residential radon: a European perspective at the end of 2002, Radiation Protection Dosimetry, vol.104, issue.4, pp.321-329, 2003.

D. Taeger, U. Krahn, T. Wiethege, K. Ickstadt, G. Johnen et al., A study on lung cancer mortality related to radon, quartz, and arsenic exposures in German uranium miners, Journal of Toxicology and Environmental Health, Part A, vol.71, pp.859-865, 2008.

Y. Sun, F. Bochmann, A. Nold, and M. Mattenklott, Diesel Exhaust Exposure and the Risk of Lung Cancer-A Review of the Epidemiological Evidence, International Journal of Environmental Research and Public Health, vol.11, issue.2, pp.1312-1340, 2014.

I. Brüske-hohlfeld, A. S. Rosario, G. Wölke, J. Heinrich, M. Kreuzer et al., Lung cancer risk among former uranium miners of the WISMUT Company in Germany, Health Physics, vol.90, issue.3, pp.208-216, 2006.

L. Walsh, F. Dufey, M. Möhner, M. Schnelzer, A. Tschense et al., Differences in baseline lung cancer mortality between the German uranium miners cohort and the population of the former German Democratic Republic, Radiation and Environmental Biophysics, vol.50, issue.1, pp.57-66, 1960.

D. Krewski, J. H. Lubin, J. M. Zielinski, M. Alavanja, V. S. Catalan et al., Residential radon and risk of lung cancer: a combined analysis of 7 North American case-control studies, Epidemiology, vol.16, issue.2, pp.137-145, 2005.

D. B. Richardson, D. Laurier, M. K. Schubauer-berigan, T. Tchetgen, E. et al., Assessment and indirect adjustment for confounding by smoking in cohort studies using relative hazards models, American Journal of Epidemiology, vol.180, issue.9, pp.933-973, 2014.

A. P. Keil, D. B. Richardson, and M. A. Troester, Healthy worker survivor bias in the Colorado Plateau uranium miners cohort, American Journal of Epidemiology, vol.181, issue.10, pp.762-770, 2015.

J. S. Puskin and C. A. James, Radon Exposure assessment and dosimetry applied to epidemiology and risk estimation, Radiation Research, vol.166, pp.193-208, 2006.

D. B. Chambers and R. H. Stager, Prediction of the variation in risks from exposure to radon at home or at work. Radiation Protection Dosimetry, vol.146, pp.34-41, 2011.

M. Susser, The logic of Sir Karl Popper and the practice of epidemiology, American Journal of Epidemiology, vol.124, 1986.

C. A. Sims, Pitfalls of a minimax approach to model uncertainty, The American Economic Review, vol.91, issue.2, pp.51-54, 2001.

, United Nations Scientific Committee on the Effects of Atomic Radiation, Sources-to-effects assessment for radon in homes and workplaces. UNSCEAR 2006 Report to the General Assembly, with scientific annexes, vol.II, pp.197-334, 2006.

R. J. Carroll, D. Ruppert, L. A. Stefanski, and C. M. Crainiceanu, Measurement error in nonlinear models: a modern perspective, 2006.

J. R. Cook and L. A. Stefanski, Simulation-extrapolation estimation in parametric measurement error models, J Am Stat Assoc, vol.89, pp.1314-1342, 1994.

R. Bender, A. T. Blettner, and M. , Generating survival times to simulate Cox proportional hazards models, Stat Med, vol.24, pp.1713-1736, 2005.

W. Heidenreich, L. Tomasek, B. Grosche, K. Leuraud, and D. Laurier, Lung cancer mortality in the European uranium miners cohorts analyzed with a biologically based model taking into account radon measurement error, Radiat Environ Biophys, vol.51, pp.263-75, 2012.

R. S. Allodji, K. Leuraud, S. Bernhard, S. Henry, J. Bénichou et al., Assessment of uncertainty associated with measuring exposure to radon and decay products in the French uranium miners cohort, J Radiol Prot, vol.32, pp.85-100, 2012.

X. Liao, D. M. Zucker, Y. Li, and D. Spiegelman, Survival analysis with error-prone time-varying covariates: A risk set calibration approach, Biometrics, vol.67, pp.50-58, 2011.

D. W. Schafer and K. G. Purdy, Likelihood analysis for errors-in-variables regression with replicate measurements, Biometrika, vol.83, pp.813-837, 1996.

H. Kuchenhoff and R. J. Carroll, Segmented regression with errors in predictors: semi-parametric and parametric methods, Stat Med, vol.16, pp.169-88, 1997.

I. Albert, S. Donnet, C. Guihenneuc-jouyaux, S. Low-choy, K. Mengersen et al., Combining expert opinions in prior elicitation, Bayesian Anal, vol.7, pp.503-535, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01004440

E. Rage, S. Caer-lorho, D. Drubay, S. Ancelet, P. Laroche et al., Mortality analysis in the updated French cohort of uranium miners (1946-2007), Int Arch Occup Environ Health, vol.88, pp.717-747, 2015.

S. Richardson and W. R. Gilks, A Bayesian approach to measurement error problems in epidemiology using conditional independence models, Am J Epidemiol, vol.138, pp.430-472, 1993.

E. Rage, B. Vacquier, E. Blanchardon, R. S. Allodji, J. W. Marsh et al., Risk of lung cancer mortality in relation to lung doses among French uranium miners: Follow-up, 1956.

, Radiat Res, vol.177, pp.288-97, 2012.

J. G. Ibrahim, M. H. Chen, and D. Sinha, Bayesian survival analysis, 2001.

B. Vacquier, A. Rogel, K. Leuraud, S. Caer, A. Acker et al., Radon-associated lung cancer risk among French uranium miners: modifying factors of the exposure-risk relationship, Radiat Environ Biophys, vol.48, pp.1-9, 2008.

I. Heid, H. Kuchenhoff, J. Wellmann, M. Gerken, L. Kreienbrock et al., On the potential of measurement error to induce differential bias on odds ratio estimates: an example from radon epidemiology, Stat Med, vol.21, pp.3261-78, 2002.

P. Zettwoog, Society of Mining Engineers of the American Institute of Mining, Metallurgical, and Petroleum Engineers, International conference radiation hazards in mining: Control, measurements and medical aspects, pp.4-9, 1981.

M. Kreuzer, B. Grosche, F. Dufey, M. Schnelzer, A. Tschense et al., The German uranium miners cohort study, pp.1946-2003, 2011.

G. O. Roberts and J. S. Rosenthal, Examples of adaptive MCMC, J Comput Graph Stat, vol.18, pp.349-67, 2009.

J. Friedman, T. Hastie, and R. Tibshirani, The elements of statistical learning, Springer series in statistics, vol.1, 2001.

A. Gelman and D. B. Rubin, Inference from iterative simulation using multiple sequences, Stat Sci, pp.457-72, 1992.

D. J. Spiegelhalter, N. G. Best, and B. P. Carlin, Van Der Linde A. Bayesian measures of model complexity and fit, J R Stat Soc Series B Stat Methodol, vol.64, pp.583-639, 2002.

M. P. Little, D. Kwon, K. Doi, S. L. Simon, D. L. Preston et al., Association of chromosome translocation rate with low dose occupational radiation exposures in U.S. radiologic technologists, Radiat Res, vol.182, pp.1-17, 2014.

L. Stayner, M. Vrijheid, E. Cardis, D. O. Stram, I. Deltour et al., A Monte Carlo maximum likelihood method for estimating uncertainty arising from shared errors in exposures in epidemiological studies of nuclear workers, Radiat Res, vol.168, pp.757-63, 2007.

S. Darby, D. Hill, A. Auvinen, J. Barros-dios, H. Baysson et al., Radon in homes and risk of lung cancer: collaborative analysis of individual data from 13 European casecontrol studies, BMJ, vol.330, p.223, 2005.

K. M. Flegal, P. M. Keyl, and F. J. Nieto, Differential misclassification, p.208

. Hoffmann and . Al, arising from nondifferential errors in exposure measurement, Am J Epidemiol, vol.134, pp.1233-1279, 1991.

L. Stayner, K. Steenland, M. Dosemeci, and I. Hertz-picciotto, Attenuation of exposure-response curves in occupational cohort studies at high exposure levels, Scand J Work Environ Health, vol.29, pp.317-341, 2003.

N. Hunter, C. R. Muirhead, L. Tomasek, M. Kreuzer, D. Laurier et al., Joint analysis of three European nested casecontrol studies of lung cancer among radon exposed miners: exposure restricted to below 300 WLM, Health Phys, vol.104, pp.282-92, 2013.

J. A. Hoeting, D. Madigan, A. Raftery, and C. T. Volinsky, Bayesian model averaging: a tutorial, Stat Sci, pp.382-401, 1999.

L. Tomasek, A. R. Tirmarche, M. Mitton, N. Laurier, and D. , Lung cancer in French and Czech uranium miners: radon-associated risk at low exposure rates and modifying effects of time since exposure and age at exposure, Radiat Res, vol.169, pp.125-162, 2008.

M. Tirmarche, J. Harrison, D. Laurier, F. Paquet, E. Blanchardon et al., Lung cancer risk from radon and progeny and statement on radon, Ann ICRP, vol.40, pp.1-64, 2010.

D. J. Hendry, Data generation for the Cox proportional hazards model with time-dependent covariates: A method for medical researchers, Stat Med, vol.33, pp.436-54, 2014.

, UNCERTAINTY IN RADON EXPOSURE: A BAYESIAN APPROACH 209

D. Stram, B. Langholz, M. Huberman, and D. Thomas, Correcting for exposure measurement error in a reanalysis of lung cancer mortality for the Colorad Plateau uranium miners cohort. Health physics

R. J. Carroll, D. Ruppert, L. A. Stefanski, and C. M. Crainiceanu, Measurement error in nonlinear models: a modern perspective

I. Hertz-picciotto and A. H. Smith, Observations on the dose-response curve for arsenic exposure and lung cancer, Scandinavian Journal of Work, vol.19, pp.217-226, 1993.

L. Stayner, K. Steenland, M. Dosemeci, and I. Hertz-picciotto, Attenuation of exposure-response curves in occupational cohort studies at high exposure levels, Scandinavian Journal of Work, vol.29, pp.317-324, 2003.

K. Steenland, C. Karnes, L. Darrow, and V. Barry, Attenuation of exposure-response rate ratios at higher exposures: A simulation study focusing on frailty and measurement error, Epidemiology, vol.26, issue.3, pp.395-401, 2015.

B. G. Armstrong, Effect of measurement error on epidemiological studies of environmental and occupational exposures, Occupational and Environmental Medicine, vol.55, issue.10, pp.651-656, 1998.

R. Bender, A. T. Blettner, and M. , Generating survival times to simulate Cox proportional hazards models, Statistics in Medicine, vol.24, issue.11, pp.1713-1723, 2005.

H. Küchenhoff, R. Bender, and I. Langner, Effect of Berkson measurement error on parameter estimates in Cox regression models, Lifetime Data Analysis, vol.13, issue.2, pp.261-272, 2007.

G. K. Reeves, D. R. Cox, S. C. Darby, and E. Whitley, Some aspects of measurement error in explanatory variables for continuous and binary regression models, Statistics in Medicine, vol.17, pp.2157-2177, 1998.

B. Mallick, F. O. Hoffman, and R. J. Carroll, Semiparametric regression modeling with mixtures of Berkson and classical error

, application to fallout from the Nevada test site, Biometrics, vol.58, issue.1, pp.13-20, 2002.

D. O. Stram and K. J. Kopecky, Power and uncertainty analysis of epidemiological studies of radiation-related disease risk in which dose estimates are based on a complex dosimetry system: Some observations, Radiation Research, vol.160, issue.4, pp.408-417, 2003.

M. P. Little, A. G. Kukush, S. V. Masiuk, S. Shkylar, R. J. Carroll et al., Impact of uncertainties in expsoure assessment on estimates of thyroid cancer risk among Ukranian children and adolescents exposed from the Chernobyl accident, PLoS one, vol.9, issue.1, 2014.

D. O. Stram, D. L. Preston, M. Sokolnikov, B. Napier, K. J. Kopecky et al., Shared dosimetry error in epidemiological dose-response analyses, PLoS One, vol.10, issue.3, p.119418, 2015.

Z. Zhang, D. L. Preston, M. Sokolnikov, B. A. Napier, M. Degteva et al., Correction of confidence intervals in excess relative risk models using Monte Carlo dosimetry systems with shared errors

, PLoS One, vol.12, issue.4, 2017.

S. L. Simon, F. O. Hoffman, and E. Hofer, The two-dimensional Monte Carlo: a new methodological paradigm for dose reconstruction for epidemiological research, Radiation Research, vol.183, pp.27-41, 2015.

D. Kwon, F. O. Hoffman, B. E. Moroz, and S. L. Simon, Bayesian dose-response analysis for epidemiological studies with complex uncertainty in dose estimation, Statistics in medicine, vol.35, issue.3, pp.399-423, 2016.

S. Greenland, H. J. Fischer, and L. Kheifets, Methods to Explore Uncertainty and Bias Introduced by Job Exposure Matrices, Risk Analysis, vol.36, issue.1, pp.74-82, 2016.

H. Kromhout, Design of measurement strategies for workplace exposures, Occupational and Environmental Medicine, vol.59, pp.349-354, 2002.

R. Lyles and L. Kupper, A detailed evaluation of adjustement methods for multiplicative measurement error in linear regression with applications in occupational epidemiology, Biometrics, vol.53, issue.3, pp.1008-1025, 1997.

H. J. Gibb, P. S. Lees, P. F. Pinsky, and B. C. Rooney, Lung cancer among workers in chromium chemical production, American Journal of Industrial Medicine, vol.38, issue.2, pp.115-126, 2000.

P. Cocco, C. H. Rice, J. Q. Chen, M. A. Mccawley, J. K. Mclaughlin et al., Lung cancer risk, silica exposure, and silicosis in Chinese mines and pottery factories: the modifying role of other workplace lung carcinogens, American Journal of Industrial Medicine, vol.40, issue.6, pp.674-682, 2001.

P. Zettwoog, Radiation hazards in mining: Control, measurements and medical aspects, pp.4-9, 1981.

B. Vacquier, S. Caer, A. Rogel, M. Feurprier, M. Tirmarche et al., Mortality risk in the French cohort of uranium miners: extended follow-up 1946-1999, Occupational and Environmental Medicine, vol.65, issue.9, pp.597-604, 2008.

E. Rage, S. Caër-lorho, D. Drubay, S. Ancelet, P. Laroche et al., Mortality analysis in the updated French cohort of uranium miners (1946 -2007), International Archives of Occupational and Environmental Health, vol.88, issue.6, pp.717-730, 2015.

M. Kreuzer, N. Fenske, M. Schnelzer, and L. Walsh, Lung cancer risk at low radon exposure rates in German uranium miners, British Journal of Cancer, vol.113, issue.9, pp.1367-1369, 2015.

S. Hoffmann, E. Rage, D. Laurier, P. Laroche, C. Guihenneuc et al., Accounting for Berkson and classical measurement error in radon exposure using a Bayesian structural approach in the analysis of lung cancer mortality in the French cohort of uranium miners, Radiation Research, vol.187, issue.2, pp.196-209, 2017.

R. S. Allodji, K. Leuraud, A. C. Thiébaut, S. Henry, D. Laurier et al., Impact of measurement error in radon exposure on the estimated excess relative risk of lung cancer death in a simulated study based on the French Uranium Miners' Cohort, Radiation and Environmental Biophysics, vol.51, issue.2, pp.151-163, 2012.

R. S. Allodji, A. Thiébaut, K. Leuraud, E. Rage, S. Henry et al., The performance of functional methods for correcting non-Gaussian measurement error within Poisson regression: corrected excess risk of lung cancer mortality in relation to radon exposure among French uranium miners, Statistics in Medicine, vol.31, issue.30, pp.4428-4443, 2012.

D. J. Hendry, Data generation for the Cox proportional hazards model with time-dependent covariates: a method for medical researchers, Statistics in Medicine, vol.33, pp.436-454, 2014.

R. S. Allodji, K. Leuraud, S. Bernhard, S. Henry, J. Bénichou et al., Assessment of uncertainty associated with measuring exposure to radon and decay products in the French uranium miners cohort, Journal of Radiological Protection, vol.32, issue.1, pp.85-100, 2012.

I. Heid, H. Küchenhoff, J. Wellmann, M. Gerken, L. Kreienbrock et al., On the potential of measurement error to induce differential bias on odds ratio estimates: an example from radon epidemiology, Statistics in Medicine, vol.21, pp.3261-3278, 2002.

K. Steenland, J. Deddens, and S. Zhao, Biases in estimating the effect of cumulative exposure in log-linear models when estimated exposure PLOS, vol.32, p.33

, Scandinavian Journal of Work, vol.26, issue.1, pp.37-43, 2000.

J. W. Bartlett and R. H. Keogh, Bayesian correction for covariate measurement error: A frequentist evaluation and comparison with regression calibration, Statistical Methods in Medical Research, 2016.

E. Tielemans, L. Kupper, H. Kromhout, D. Heederik, and R. Houba, Individual-based and group-based occupational exposure assessment: Some equations to evaluate different strategies, Annals of occupational Hygiene, vol.42, issue.2, pp.115-119, 1998.

R. J. Carroll, D. Ruppert, L. A. Stefanski, and C. M. Crainiceanu, Measurement error in nonlinear models: a modern perspective, 2006.

K. B. Michels, A renaissance for measurement error, International Journal of Epidemiology, vol.30, pp.421-422, 2001.

S. L. Simon, F. O. Hoffman, and E. Hofer, The two-dimensional Monte Carlo: a new methodological paradigm for dose reconstruction for epidemiological research,Radiation Research, vol.183, pp.27-41, 2015.

J. R. Cook and L. A. Stefanski, Simulation-extrapolation estimation in parametric measurement error models, Journal of the American Statistical Association, vol.89, pp.1314-1328, 1994.

L. Stayner, M. Vrijheid, E. Cardis, D. O. Stram, I. Deltour et al., A Monte Carlo maximum likelihood method for estimating uncertainty arising from shared errors in exposures in epidemiological studies of nuclear workers, Radiation Research168, pp.757-763, 2007.

D. Kwon, F. O. Hoffman, B. E. Moroz, and S. L. Simon, Bayesian dose-response analysis for epidemiological studies with complex uncertainty in dose estimation, Statistics in medicine, vol.35, pp.399-423, 2016.

R. S. Allodji, K. Leuraud, A. C. Thiébaut, S. Henry, D. Laurier et al., Impact of measurement error in radon exposure on the estimated excess relative risk of lung cancer death in a simulated study based on the French Uranium Miners' Cohort, Radiation and Environmental Biophysics, vol.51, pp.151-163, 2012.

R. S. Allodji, A. Thiébaut, K. Leuraud, E. Rage, S. Henry et al., The performance of functional methods for correcting non-Gaussian measurement error within Poisson regression: corrected excess risk of lung cancer mortality in relation to radon exposure among French uranium miners, Statistics in Medicine, vol.31, issue.30, pp.4428-4443, 2012.

S. Hoffmann, E. Rage, D. Laurier, P. Laroche, C. Guihenneuc et al., Accounting for Berkson and classical measurement error in radon exposure using a Bayesian structural approach in the analysis of lung cancer mortality in the French cohort of uranium miners, Radiation Research, vol.187, pp.196-209, 2017.

H. Küchenhoff, R. Bender, and I. Langner, Effect of Berkson measurement error on parameter estimates in Cox regression models, Lifetime Data Analysis, vol.13, pp.261-272, 2007.

J. P. Buonaccorsi and C. D. Lin, Berkson measurement error in designed repeated measures studies with random coefficients, Journal of Statistical Planning and Inference, vol.104, pp.53-72, 2002.