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Titre : �Etude et pr�ediction d'attention visuelle avec les outils d'appr entissage

profond en vue d'�evaluation des patients atteints des maladies neur o-d�eg�en�eratives

R�esum�e : Cette th�ese est motiv�ee par le diagnostic et l'�evaluation des maladies

neurod�eg�en�eratives et dans le but de diagnostique sur labase de l'attention visuelle.

N�eanmoins, le d�epistage �a grande �echelle de la population n'est possible que si des mod�eles

de pr�ediction automatique su�samment robustes peuvent être construits. Dans ce con-

texte nous nous int�eressons �a la conception et le d�eveloppement des mod�eles de pr�ediction

automatique pour un contenu visuel sp�eci�que �a utiliser dans l'exp�erience psycho-visuelle

impliquant des patients atteints des maladies neurod�eg�en�eratives. La di�cult�e d'une telle

pr�ediction r�eside dans une tr�es faible quantit�e de donn�ees d'entrâ�nement.

Les mod�eles de saillance visuelle ne peuvent pas être fond�es sur les caract�erisitiques

\bottom-up" uniquement, comme le sugg�ere la th�eorie de l'int�egration des caract�eristiques.

La composante \top-down" de l'attention visuelle humaine devient pr�epond�erante au fur

et �a mesure d'observation de la sc�ene visuelle. L'attention visuelle peut être pr�edite en se

basant sur les sc�enes d�ej�a observ�ees. Les r�eseaux de convolution profonds (CNN) se sont

r�ev�el�es être un outil puissant pour pr�edire les zones saillantes dans les images statiques.

Dans le but de construire un mod�ele de pr�ediction automatique pour les zones saillantes

dans les vid�eos naturels et intentionnellement d�egrad�ees, nous avons con�cu une architec-

ture sp�eci�que de CNN profond. Pour surmonter le manque de donn�ees d'apprentissage,

nous avons con�cu un syst�eme d'apprentissage par transfert d�eriv�e de la m�ethode de Bengio.

Nous mesurons ses performances lors de la pr�ediction de r�egions saillantes. Les r�esultats

obtenus sont int�eressants concernant la r�eaction des sujets t�emoins normaux contre les

zones d�egrad�ees dans les vid�eos. La comparaison de la carte de saillance pr�edite des vid�eos

intentionnellement d�egrad�ees avec des cartes de densit�e de �xation du regard et d'autres

mod�eles de r�ef�erence montre l'int�erêt du mod�ele d�evelopp�e.

Mots cl�es : R�eseaux de convolution profond, apprentissage par transfer t, vi-

sion par ordinateur, mod�ele de saillance, attention visuelle, mala dies neuro-

d�eg�en�eratives, mouvement r�esiduel, vid�eos naturels

INRIA Bordeaux Sud-Ouest-200818243Z Institut de Math�ematiques de

Bordeaux (IMB)-UMR 5251 Laboratoire Bordelais de Recherche en

Informatique (LABRI)-UMR 5800
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Title : Study and prediction of visual attention with deep learning net-

works in view of assessment of patients with neurodegenerative dis eases

Abstract :

This thesis is motivated by the diagnosis and the evaluationof the dementia diseases

and with the aim of predicting if a new recorded gaze presentsa complaint of these

diseases. Nevertheless, large-scale population screeningis only possible if robust prediction

models can be constructed. In this context, we are interested in the design and the

development of automatic prediction models for speci�c visual content to be used in the

psycho-visual experience involving patients with dementia (PwD). The di�culty of such

a prediction lies in a very small amount of training data.

Visual saliency models cannot be founded only on bottom-up features, as suggested by

feature integration theory. The top-down component of human visual attention becomes

prevalent as human observers explore the visual scene. Visual saliency can be predicted

on the basis of seen data. Deep Convolutional Neural Networks (CNN) have proven to

be a powerful tool for prediction of salient areas in static images. In order to construct

an automatic prediction model for the salient areas in natural and intentionally degraded

videos, we have designed a speci�c CNN architecture. To overcome the lack of learning

data we designed a transfer learning scheme derived from bengio's method. We measure

its performances when predicting salient regions. The obtained results are interesting

regarding the reaction of normal control subjects against degraded areas in videos. The

predicted saliency map of intentionally degraded videos gives an interesting results com-

pared to gaze �xation density maps and other reference models.

Keywords : Deep convolutional networks, transfer learning, computer vi sion,

saliency models, visual attention, neuro-degenerative diseases, resi dual mo-

tion, natural videos

INRIA Bordeaux Sud-Ouest-200818243Z Institut de Math�ematiques de

Bordeaux (IMB)-UMR 5251 Laboratoire Bordelais de Recherche en

Informatique (LABRI)-UMR 5800
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General introduction

Neurodegenerative diseases with dementia are a real public health problem that increases

with the aging of population in developed countries. Indeed, about 860,000 people su�er

from dementia of Alzheimer type in subjects older than 65 years in the French population

[90]. Tunisian Ministry of Public Health has reported about 20,000 con�rmed cases [139].

A timely and non-invasive diagnosis of dementia is essential. Various experiments were

performed in order to identify early symptoms of dementia. Oculomotor evaluation is one

of them [134].

Before making experiments with Alzheimer patients inclusion, it is important to mea-

sure the impact of generated degradations on the visual attention of normal control sub-

jects. Hence, our �rst goal is to compare visual �xation maps built upon gaze �xations

on normal and intentionally degraded video sequences. Furthermore, automatic predic-

tion of visual attention of normal populations has been an intensively researched subject

since the last two decades [52]. Here natural video content, but also non-intentionally

degraded one due to the coding artifacts and transmission errors [14] were used. It is also

interesting to build a predictive model for the normal attention to intentionally degraded

content as produced for this study. As the designed degradations are applied to spe-

ci�c areas of interest in the video content, it seems naturalto consider machine learning

approaches, and in particular Deep Covolutional Neural Networks [130]. Nevertheless,

in medical applications visual datasets are usally very small. The reasons are two fold

i) limitations in including of patients in medical researchexperiments, ii) constraints in

experiments due to the patients conditions. For the task of saliency prediction the �rst

reason means the impossibility of conducting of psycho-visual experiment on hundreds

of patients; and the second reason means that elderly and fragile patients with \NDD"

cannot observe visual content during tens of minutes. Hence,the targeted visual content

has to be small in volume. In this thesis we try to answer the question how can we use

deep learning approaches in such a situation : relatively small amount of measurments

on a small database.
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Thesis objectives

Three main objectives are involved in this thesis.

First, we wish to better understand the attentional processes that guide the gaze

towards particular regions of the visual �eld.

Second, to model these processes by machine learning tools in view of their approved

successes.

And �nally to apply this saliency prediction model for testing of patients with neuro-

degenerative diseases.

The modeling of visual attention with deep convolution networks will allow us to

combine the low-level features with the high-level ones forthe prediction of regions viewed

by a set of subjects when viewing a natural video. Several works and models designed

for visual attention with deep learning exist concerned thestatic image but still quite

few who propose to study the videos. We will be interested in this work in the study of

dynamic scenes through a database of videos.

We will adapt two complementary approaches. A �rst one allows to designate the

architecture of the deep convolution network ensuring the prediction of salient zones. We

de�ne the problem of learning as the bi-class classi�ctaion problem (salient, Non-salient)

with referring to the recordings of the eye movements of subjects viewing natural videos

with various contents. The second approach of transfer learning will allow us to propose

a model inspired from the already designated architecture to solve the problem of small

size of available data sets.

Thesis contributions

In this thesis, we propose to model the saliency in videos by machine learning tools

speci�cally with the deep convolution networks. A designedmodel allows to insert the

residual motion information side by side with the RGB value for each frame of the video.

This model, called \ChaboNet4k" classi�es input information (residual motion and RGB

values) into two classes: salient and Non-salient classes.

The main contributions of the thesis are:

� The proposal of a deep network architecture taking as input :four channels (R,

G, B, residual motion), eleven channels (R, G, B, residual motion, and 7 kind of

contrasts).

� The study of the e�ect of data noise on deep networks learning(training and pre-

diction).
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� Proposition of a method inspired from wooding method [131] for the generation of

a dense saliency map from the probability responses of the proposed deep network

model.

� Proposition of a method of transfer learning to solve the problem of few size of

available datasets.

� Creation of speci�c database video for testing of patients with neuro-degenerative

diseases.

� Applying transfer learning method for the created speci�c database.

Thesis outline

In order to be better organized, we have chosen to divide our work into three major parts,

each containing two chapters. The �rst part involves the state-of-the-art on visual saliency

prediction and the deep learning for visual saliency prediction. Second part presents the

deep CNN designed for prediction of visual saliency in natural video \ChaboNet", and

the speci�c saliecny features used for traning deep CNN. Thirdpart is dedicated for the

transfer learning. One chapter was for the proposition of the transfer learning with deep

CNN for saliency prediction and the other chapter was for the application of saliency

prediction for testing of patients with neuro-degenerative diseases.
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Part I

State-of-the-art on visual saliency

and deep learning

The goal of this Ph.D thesis is to brought a saliency model that considers the signi�cant

content of natural videos. Since the last two decades, saliency prediction in images and

digital video is extensively studied by the research community. The current trend in this

research topic is the use of deep convolutional networks in order to integrates the semantic

aspect.

The outline of this part is as follows: Chapter 1 provides information about the visual

saliency prediction. Chapter 2 describes deep convolutional networks for the saliency

prediction task.
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Chapter 1

Visual Saliency prediction

1.1 Introduction

The oculomotor and particularly rapid eye movements are at the interface of decision-

making and motor systems of spatial working memory processes. The study of voluntary

saccades has renewed its interest for neurodegenerative diseases \NDD" diagnostics due

to the recording simplicity thanks to technical progress and automatic signal analysis.

The integration of visual perception of natural scenes in the classi�cation of patients and

assessment of disease progression in experimental conditions approaching the ecological

situation represents a real scienti�c challenge. The classi�cation of the degree of disease

is based on multiple indicators such as the distribution of the amplitudes of saccades and

�xation times, but also on the relationship between the visual �xation maps of patients

and normal control subjects. The di�erences in occulomotorbehavior of normal control

subjects and subjects with Alzheimer disease, due to the lackof curiosity, with regard to

intentionally degraded still images, were reported in [123]. The experiments conducted in

the framework of LYLO project \Les Yeux L'Ont" [123]: ocular saccade abnormalities in

prodromal Alzheimer's disease", at the University Hospital ofBordeaux (CHU) were also

devoted to studies of such phenomena. Such di�erences can bemeasured via comparison

of visual �xation density maps, GFDM [131] built upon recorded gaze �xations. The

goal of the present chapter consists �rst in understanding the anatomy of human visual

system. Second, it gives the state-of-the-art on visual saliency modeling. Finally, this

chapter mades an overview on applying saliency prediction for neuro-degenerative disease

studies.
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1.2 Human visual System

1.2.1 The human eye

In order to study the internal morphology of the eyeball, thefollowing �gure 1.11presents

a median sagittal section of the eye. Three di�erent tunics are present: the �brous tunic,

the uvea tunic and the nerve tunic. The �brous or external tunic consists of the opaque

sclera (white of the eye) in backward and the transparent cornea toward the front. The

uvea tunic consists of three elements iris, ciliary body andchoroid. Here the nerve tunic

that consists of the retina, is well descriped in order to understand the transduction of

the luminous message coming from the outside into nerve signals sent to the brain. Two

areas are distinguished from the retina: the visual retina which is de�ned by the presence

of detecting cells. The disappearance of these cells will transform the retina into a simple

epithelial seating in the anterior part of the eye which constitutes the blind retina.

Figure 1.1: Sagittal section of the eye1

The central area of the visual retina called macula, presents the daytime and accurate

1https : ==theodora:com=anatomy=theaccessoryorgans of the eye:html
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viewing area as it can see the colors, shapes and details. Theperipheral area specialized

in night vision can see just the details. The retina is composed of �ve layers of neurons

(see �gure 1.2): photoreceptors, horizontal cells, bipolar cells, amacrine cells and ganglion

cells. Optical �bers coming from ganglion cells meet on a disc called the optic papilla

which corresponds to the birth of the optic nerve.

Photoreceptors: they constitute the deepest layer of the retina. Two groups of pho-

toreceptors (cones and sticks) are distributed unevenly onthe retina. Cones are color

sensitive. They intervene in daytime vision. The sticks areinvolved in the detection

of low light intensities and night vision. The photoreceptors which are interconnected

in order to smooth the visual information are connected to the bipolar cells and to the

horizontal cells.

The horizontal cells which are interconnected in order to smooth the information

coming from the photoreceptors, convey information of average luminance to the bipolar

cells.

Bipolar cells that connect photoreceptors to a ganglion cell are sensitive to spatial

luminance contrast through the center-surround mechanism.

The amarcin cells that laterally share the signal to modulate the response gain of

bipolar and ganglion cells are sensitive to temporal contrast and play a role in the detection

of motion.

The ganglion cells which constitute the last neuronal layerof the retina transmit the

nervous signal in the form of action potentials. Their axonsmeet to form the optic nerve.

Figure 1.2: An image of the cup is focused on the retina, which lines the back of the eye.
The close-up of the retina on the right shows the receptors and other neurons
that make up the retina. [36]
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1.2.2 Eye movements

Six oculomotor muscles ensure the displacement of the eyeball (see �gure 1.32): Four rec-

tus muscles, superior, inferior, lateral and medial; And twooblique, superior and inferior.

The superior rectus is an elevator. Its antagonizes, the inferior rectus ensures the depres-

sion. The lateral rectus is an abductor which carries the cornea outside. Its antagonizes,

the medial rectus is adductor which carries the cornea inside. The anatomical peculiarity

of the retina, detailed in above section, pushes the human tomove his eyes. The density

of photoreceptors on the central area of the fovea (about 5 degree of the visual �eld) com-

pared to the peripheral zone impacts on the resolution of thevisual information. That

explain the necessity to move the gaze in order to have the region that we want to analyze

in detail in the center of the retina which gives the best visual acuity.

Figure 1.3: Eye motion: Field of action of the oculomotor muscles (right eye2).

The saccades, the smooth pursuit and the micro-saccades arethe three main eye

movements.

� The saccades are a very rapid movements which ensures the setting of the region of

interest in the center of the fovea. The movement of the saccades is extremely fast

between 30 and 80 ms. Between two saccades the eye stops moving to �x a region

for a variable length of time. This period is called a �xationand generally lasts

between 250 and 500 ms during this period the visual information is treated.

� smooth pursuit movements allow the tracking of a moving object with a slow speed

with a maximum of 100 ms . If the eyes follow the moving object correctly the

2(Photo credits Wael CHAABOUNI.)
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image of the object is stationary on the retina and remains infoveal vision, allowing

the visual system to extract more information about the moving object. These

movements are continually corrected so as to track the object.

� The micro-saccades are small movements allows the refreshment of the image on

the photoreceptors.

Perceiving a motion is executed when something moves acrossthe �eld of view. Actual

motion of an object is called real motion [36]. Apparent motion involves stimuli that are

not moving. It is when two stimuli in slightly di�erent locat ions are alternated with the

correct timing just like motion perceives in movies. Induced motion occurs when motion

of one object causes a nearby stationary object to appear to move. Motion aftere�ects

occur after viewing a moving stimulus for 30 to 60 seconds andthen viewing a stationary

stimulus, which appears to move.

1.2.3 Depth percetion

By controlling the eye axes and the lens focus using the eye muscles, depth estimation is

possible with ocolumotor cues. The interaction of this kindof cues ensure the counting

of the convergence and accomodation. The angle of convergence of the two eyes and their

accommodative states are one source of scaling information.

� Monocular depth cues work with just one eye.

� Binocular depth cues based on the ability to sense the position of eyes and the

tension in eye muscles. The di�erence in the viewpoint of theimages received by

two eyes creates the cue of binocular disparity.

1.3 Visual saliency modeling

As the quantity of information that reaches the eyes is very high, the processing of the

whole information was obstructed. That explain the focusing of the attention only on a

part of visual information. This attentional focus towardsa particular region of the visual

�eld will lead to move the eyes towards it. For analyse visualperception, attention shift

and assessing user interfaces, visual prediction modelingsuch as eye-tracking technique

was used. Here we can speak on two forms or representations of visual prediction that

analysing sequences of �xations: dynamic representation called scanpath, and static one

called saliency map. Scanpath prensents a sequences of gazeshifts that follow visual

attention over an image. While, saliency map is obtained by convolving the �xation
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map which represents the spatial coordinates of the set of visual �xation, by an isotropic

bi-dimensional gaussian function [67].

Di�erent researchers focused their works to study and to predict scanpaths. Repetitive

scanpaths that are made at multiple viewings of the same stimulus, contribute to where

people look. A key prediction of scanpath theory [99] is thatthe top-down recapitulation

of scanpaths but also bottom-up guidance might explained it[29].

Liu and al [79] modeled scanpaths based on low-level featuresaliency, spatial position,

and semantic content [79]. Here, the image was segmented intoregions and the proposed

model gaze shifts in terms of transition probabilities fromone region to another. Transi-

tion probabilities between di�erent image regions were calculated through the di�erences

of YUV color values and �ve scales of Gabor features and eight orientations features.

For spatial position and in order to obtain a random walk withsteps in an isotropically

random direction and a step length subject to a heavy-taileddistribution, steps were mod-

eled with Cauchy distribution. Finally, for extract the semantic content, Hidden Markov

Model (HMM) with a Bag-of-Visual-Words descriptor of image regions were used. Next

�gure 1.4 presents an illustraion of the gaze shifts from Liuand al model [79] .

Figure 1.4: The left and right images show human scanpath segments and corresponding
estimates from Liu and al [79] algorithm, respectively, where the correspon-
dences are indicated by matching colors (Ref. [79] ).

Recent research work used deep learning for prediction of scanpaths. Here we can

cite the work of Assens et al [5] that sampled scanpath by a stochastic approach. The

deep network train a model that take a set of image as input anda saliency volumes that

are a presentation of spatial and temporal saliency information for images, as output.

They have three axes that represent the width and height of the image, and the temporal

dimension. Here, they uses the proposed saliency volumes to generate the scanpaths

by determining three keys values. First, the the number of �xations of each scanpath,

second the duration in seconds for each �xation, were sampled from their probability

distributions learned from the training data. And �nally, th e location of each �xation
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point was generated by sampling the time from the corresponding temporal slice.

Simon [116] proposed a model for automatic scanpath generation using a convolutional

neural network and long short-term memory modules due to thetemporal nature of eye

movement data.

In this section, we are more interested by static representation of visual prediction

\saliency map". The subjective saliency maps that are builtfrom eye position measure-

ments, the objective saliency maps that are extracted from image or video signal and the

comparison metrics between these two kind of saliency maps were well detailed.

1.3.1 Gaze Fixation Density Map (GFDM)

The visual attention map on the group of subjects - the so-called \subjective saliency map"

is constructed with the recorded gaze �xations of all subjects in the group. We obtain a

map which collects the density of eye positions. Generally,the subjective saliency map

Sg , or �xation dense map \GFDM" is obtained by convolving the �xation map by an

isotropic bi-dimentional Gaussian functionG� [67].

Sg(X ) = [
1

Nobs

NobsX

i =1

(
M f ixX

m=1

� (X � x f ( m ) ))] � G� (X ) (1.1)

where
{ X is a vector representing the spatial coordinates,

{ x f ( m ) is the spatial coordinates of themth visual �xation,

{ M f ix is the number of visual �xation for the i th observer,

{ Nobs is the number of observers,

{ � (:) is the Kronecker symbol� (t) = 1 if t = 1, otherwise � (t) = 0,

An intensive study to densify a �xation coordinates was proposed by Wooding [131].

The method allows the creation of a density map of �xation from a set of views recorded

from an oculometer. This method, tested with more than 5000 participants on the digi-

tized images of paintings of the National Gallery, consists of three stages. The �rst ensures

the application of a two-dimensional Gaussian at the centerof the eye measurement. And

this allows the computing of the partial saliency map for each gaze record. Then the set

of partial saliency maps of all subjects are summed in a global saliency map. Finally, the

global map was normalized by its maximum value.

For a more describe these three steps, Wooding proposed to �xthe Gaussian� prop-

agation at an angle� of 2� , based on an imitation of the functioning of the fovea of the

human eye which covers an area of 1:5� to 2� of the diameter in the center of the retina.
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The Gaussian reects the projection of the fovea on the screen. To ensure this projection,

the Gaussian spread� is de�ned as follows:

� = R � D � tan(� ) (1.2)

with R is the resolution of the screen in pixels per mm andD must be equal to three

times the height of the screen (3H ) according to ITU-R Rec. BT.500-11 [53]. From the

equation 1.1 the partial saliency mapS
0

g(I; m ) of the imageI for the measurementm of

the eye is calculated according to the following equation [19]:

S
0

g(I; m ) = Ae
� (

( x � x 0m ) 2

2� 2
x

+
( y � y0m ) 2

2� 2
y

)
(1.3)

where� x = � y = � and A = 1.

Then all partial saliency maps of all subjects are summed in aglobal saliency map.

At the third step, summed up map is normalized by its maximum value, the so-called

\saliency peak" in the image. The �nal GFDM is computed as follow:

Sg(I ) =
1
d

NobsX

m=0

S
0

g(I; m ) (1.4)

where d = max (x;y )2 Sg (S
0

g(I; m )) is the highest peak andNobs is the total number of

subjects.

The following �gure 1.5 shows the �xation map of 21 subjects computed with the

Wooding's method.

(a) # f rame 42 (b) # f rame 783

Figure 1.5: The GFDM saliency map computed during a free task ofvisualisation of
normal sequences by normal subjects.

In next section, we will describe di�erent saliency models that automatically determine

regions that attract human gaze on image or video.
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1.3.2 Saliency models

A saliency map is a model of neurobiology and psychology thatdescribes how the strik-

ing details of the visual environment in the brain, processed as a priority. This model

inuences pre-attentive (or automatic) exogenous visual stimuli (reexive, low-level or

bottom-up) or endogenous (top-down). Low level factors aredescribed as luminance,

orientation and color. Thus, high-level factors may concern cognitive processes, memory,

emotional state or task. Therefore, di�erent models of visual attention are designed to

clear the salient areas of an image or sequence of images. These models are divided into

so-called bottom-up models and top-down models.

Several saliency models [91], [124], [18] have been proposed in various �elds of re-

search which are based on the feature integration theory [125]. These research models

the so-called \bottom-up" saliency with the theory that suggests the visual characteris-

tics of low-level as luminance, color, orientation and movement to provoke human gaze

attraction [30], [31], [48]. The \bottom-up" models have been extensively studied in

the literature [10]. They su�er from insu�ciency of low-level features in the feature in-

tegration theory framework, especially when the scene contains signi�cant content and

semantic objects. In this case, the so-called \top-down" attention [104] becomes preva-

lent, the human subject observes visual content progressively with increasing the time of

looking of the visual sequence. Famous examples of top-downattention guidance which

showed that eye movements depend on the current taskis is presented by Yarbus in 1967

[133].

Di�erent models of visual attention are designed to clear the salient areas of an image

or sequence of images. The most popular and referenced models are detailed in follow.

Bottum-up models

{ Model of Itti and Koch, 1998: The general idea of the model [52] is summarized

by two steps. The �rst allows the combination of the featuresof the multi-scale im-

age into a single topographic saliency map. And the second, ensures the selection of

the places frequented in decreasing order of saliency thanks to a network of dynamic

neurons. The multi-scale analysis depends on a Gaussian �ltering step, followed by

a subsampling step. Indeed, for the subsampling step, horizontal and vertical image

reduction factors range from 1 : 1 to 1 : 256 in eight octaves. These two stages

give rise to pyramidal shapes. To summerize, 42 features maps were computed: six

for intensity, 12 for color, and 24 for orientation. Applyinga normalization step

followed by a merge of the maps with the \ across-scale addition " operator Itti gets
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the �nal saliency map. A simple browse on the obtained map forthe pixel hav-

ing the highest value, followed by a feedback inhibition mechanism until a de�ned

threshold, performs the identi�cation of the salient areasin decreasing order (see

next �gure 1.6).

Figure 1.6: Illustration of the architecture of the Itti and Koch model (Ref. [52])

{ Model of Harel GBVS [41] : Graph-Based Visual Saliency (GBVS) presents a

simple, and biologically plausible model that consists of two steps:

i) forming activation maps on certain feature channels thatare extracted by linear

�ltering followed by some elementary nonlinearity. Suppose a given a feature map

Featuremap : [n]2 �! R, to compute an activation mapActivation map : [n]2 �! R:

Activation map (i; j ) = � log(p(i; j )) (1.5)

wherep(i; j ) = P rf Featuremap (i; j )jneighborhoodg

ii) normalizing the activation maps in a way which highlights conspicuity and admits

combination with other maps. For each node (i,j) and every node (p,q) to wich it
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is connected, an edge from (i,j) to (p,q) with weight was introduced:

w2(( i; j ); (p; q)) = Activation map (p; q):Featuremap (i � p; j � q): (1.6)

{ Model of Harel signatureSal[47]: SignatureSal model uses the image signature

that is a descriptor of natural scenes. This descriptor can be used to approximate

the spatial location of a sparse foreground hidden in a spectrally sparse background.

For the problem of �gure-ground separation, the spatial support of �gure signal is

assumed to be sparsely supported in the standard spatial basis. The background is

also assumed to be sparsely supported in the basis of the Discrete Cosine Transform.

The image signature is de�ned as

ImageSignature(X ) = Sign(DCT (X )): (1.7)

The �gure-ground separation problem is formulated in the framework of sparse sig-

nal analysis. The Inverse Discrete Cosine Transform (IDCT)of the image signature

concentrates the image energy at the locations of a spatially sparse foreground,

relative to a spectrally sparse background.

{ Model of Seo [113]: presents a bottom-up model that combines static and space-

time saliency detection. The space-time saliency detection method does not require

explicit motion estimation. First, from a given image or video a local regression

kernels was computed and used as features. The use of these kernels ensures obtain-

ing the local structure of images by analyzing the pixel value di�erences based on

estimated gradients. Then, a nonparametric kernel densityestimation for such fea-

tures was used. The saliency map is constructed from a local measure that indicates

likelihood of saliency.

{ Model of Marat [86]: A biologically inspired model (see next �gure 1.7 ) separated

a video frame into two signals corresponding to the two main outputs of the retina

was proposed by Marat et all [86]. Both signals: spatial information of the visual

scene and the motion information, are decomposed into elementary feature maps

which are used to form a static saliency map and a dynamic one.These maps are

fused into a spatio-temporal saliency map. Three di�erent fusions are used : mean

fusion, max fusion and a pixel by pixel multiplicative fusion.
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Figure 1.7: Spatio-temporal saliency model for video (Ref. [86] ).

Top-down models

Due to the greater di�culty to emulate high-level cognitive process such as scene under-

standing [49] and task-controlled or objects recognition [19], few researchs were conducted

to solve complex vision tasks. Recently, with the high performance of convolutional neu-

ral networks on visual tasks, various models has been proposed as a source of top-down

attention prediction.

Palazzi [100] aim to predict the driver's focus of attentionby answering two major

questions: what a person would pay attention to while driving, and which part of the scene

around the vehicle is more critical for the task. A multi-path identical deep architecture

that integrates visual cues (RGB image), motion by the estimation of optical ow and

scene semantics that processes the segmentation prediction on the scene, were proposed.
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Each branch of the proposed model is a multiple-input multiple-output architecture de-

signed in the purpose of addressing the strong central bias that occurs in driving gaze

data.

Ramanishka et al [108] proposed a top-down saliency approach to expose the region-

to-word mapping in modern encoder-decoder networks. This model produces spatial and

temporal saliency attention for still images or video. For each word in the sentence, they

proposed to compute the saliency value of each item in the input sequence by measuring

the decrease in the probability of predicting that word based on observing just that single

item.

Murabito et al [94] presented a SalClassNet approach based onCNN framework con-

sisting of two networks jointly trained. the �rst network \C NN saliency detector" gener-

ates a top-down saliency maps from input images that consistof eye-gaze data recorded.

And the second \CNN classi�er" ensures exploiting the computed saliency maps for visual

classi�cation.

1.3.3 Comparison metrics of saliency maps

In the literature, di�erent evaluation metrics were used todetermine the likelihood ratio

between the saliency maps and the points recording the eye movements. Four metrics

allow a simple interpretation of the results: the Pearson and Spearman correlation coe�-

cients used in various domains to judge the similarity of twodistributions, the area under

the ROC curve allowing the evaluation of the quality of a prediction, and the NSS \Nor-

malized scanpath saliency" which is de�ned in the studies ofvisual attention to compare

the salient areas determined by a model with the areas observed by the subjects.

{ Normalized scanpath saliency is a Z-score that express the divergence between

saliency map and human visual attention. The aim is to measure the value of

the saliency in the �xation zones along the entire length of the gaze path. After

normalization of the saliency mapSM in order to have a zero average and a standard

deviation equal to one, the NSS value is calculated on a small centered neighborhood

for each �xing location [85]. Due to pre-normalization of the saliency map, a positive

value of NSS suggest a greater correspondence than expected by chance between the

�xation areas and the predicted salient points; a null valueindicates the absence of

this correspondence, while negative value indicate an anti-correspondence between

the �xation points and the salient points. In conclusion, the higher the positive NSS
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value, the more the �xed points are salient. NSS is written as follow:

NSS =
Sg � SM � SM

� (SM )
(1.8)

whereSM is the mean ofSM and � presents its standard deviation.

{ Pearson Correlation Coe�cient is a metric that measures the force and direction

of a linear relationship between two saliency maps. The aim is to calculate the

intensity of the connection between the saliency mapSM and the gaze �xation

map GFM Sg. This intensity reects the degree of similarity between the two

maps. The calculation of the standard deviation of each saliency maps and the

covariance between these two maps makes it possible to determine the PCC value.

The coe�cient PCC is bounded between [� 1 1]. The closer the PCC value is to the

upper bound (1), the more the areas viewed correspond to areas of strong saliency.

A value of zero indicates the absence of correspondence between the saliency and the

eye positions, ie the absence of linear relationship between the two maps. Whereas

the negative values (PCC tends to -1) indicate the correspondence of the observed

zones with low saliency zones. The following equation calculate the PCC value.

PCC(SM ; Sg) =
cov(SM ; Sg)

� SM � Sg

(1.9)

where, cov(SM ; Sg) is the covariance betweenSM and Sg; � SM , � Sg represent the

standard deviation of mapsSM and Sg respectively.

{ Area under the ROC Curve is a metric that measures the accuracy of a system

that categorizes entities into two distinct groups based ontheir characteristics. The

pixels of the image can belong either to the category of pixels viewed by subjects

or to the category of pixels that have not been viewed by any subject. The curve is

obtained from plotting of the points having as abscissa the rate of false positives and

as ordered the rate of true positive. The rate of true positivesTV P = tp
(tp+ fn ) shows

the number of pixels �xed by the subjects and having a saliency value greater than

the threshold, divided by the total number of pixels �xed. The false positive rate

TFP = fp
(fp + tn ) collects the number of pixels with a saliency value higher than the

threshold but which have not been �xed and divides it by the number of pixels not

�xed. The larger of the area, the more the curve deviates fromthe random classi�er

line (area 0.5) and approximate the ideal classi�er (area of1.00). A value close to 1

of Auc indicates a correspondence between the saliency map and the gaze �xations.
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While a value close to 0.5 presents a random generation of the saliency zones by

the model. And then the objective and subjective maps are verydissimilar. The

following algorithm 1 de�nes the instructions for calculating the AUC.

Algorithm 1 compute AUC

Require: f Sgg : map ( pixels vector) of gaze �xation

f SM g : objective saliency map

f subj thresholdg : threshold ofSg

Ensure: f auc valueg : value of AUC metric.

m thresholdTab[nbr] : nbr thresholds uniformly distributed between the min and max

of the map SM

for for each valuecount of the table m thresholdTab[nbr] do

for for each pixeli of the framedo

if (Sg[i ] � subj threshold) then

if (SM [i ] � m thresholdTab[count]) then

+ + tp : increase of the number of true positive

else

+ + fn : increase of the number of false negative

end if

else

if (Sg[i ] � m thresholdTab[count]) then

+ + fp : increase of the number of false positive

else

+ + tn : increase of the number of true negative

end if

end if

end for

calculation of the True Positive Rate :TV P[count] = tp
(tp+ fn )

calculation of the false Positive Rate :TFP[count] = fp
(fp + tn )

end for

for for each valuecount of the table m thresholdTab[nbr] do

auc value+ = ( (T V P[count � 1]+ T V P[count ])
2 ) � (TFP[count] � TFP[count � 1])

end for

return auc value
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{ Spearman's Ranc-Order Correlation is a metric that measures the correlation

between the ranks of the values taken from the two variables rather than the exact

values. Since the PCC and the AUC area should vary jointly to some degree even if

they have di�erent objectives [26], the SROC coe�cient was computed to identify

the degree of interaction between these two metrics. To determine this coe�cient,

one rank is assigned for each PCC value and AUC calculated fromthe saliency maps

of each frame of the video sequence. The calculation of the Pearson correlation

coe�cient between the ranks of the PCC and AUC values of each frame allows us

to obtain the value of the coe�cient SROC. The sign of the Spearman correlation

indicates the direction of binding between PCC and AUC. If AUC tends to increase

when PCC increases, Spearman's correlation coe�cient is positive. If AUC tends

to decrease when PCC increases, Spearman's correlation coe�cient is negative. A

Spearman correlation of zero indicates that there is no tendency for AUC to increase

or decrease when PCC increases. The Spearman correlation increases in magnitude

as PCC and AUC approximate being perfect monotone functions.For calculating

the SROC metric whereRankP CC and RankAUC present the ranks of the scores

PCC and AUC respectively:

SROC(RankP CC ; RankAUC ) =
cov(RankP CC ; RankAUC )

� Rank P CC � Rank AUC

(1.10)

1.4 Saliency prediction for NDD studies

Neurodegenerative diseases mainly a�ecting neurons, causedamage to the nervous sys-

tem (brain and spinal cord). And since neurons are not renewed, damage or death of

a neuron can never be replaced. For this, preventive treatment is essential in order to

�ght against these diseases. The clinical diagnosis of these diseases, is based on �nding

speci�c symptoms of disease syndromes. In addition to the cognitive disturbances, slow-

ness, sti�ness and tremors that are the main symptoms of neurodegenerative diseases,

several studies have to prove that an oculomotor evaluationmakes it possible to diag-

nose these diseases [35] [83]. Oculomotricity and in particular rapid eye movements are

at the interface of decision-making engine systems and spatial work memory processes.

The study of voluntary saccades bene�ts from a renewed interest in neurodegenerative

pathologies due to the simplicity of recording thanks to technical advances and automatic

analysis of the signal. The integration of the visual perception modeling of natural scenes

into patient classi�cation and the quanti�cation of disease progress under experimental

conditions approaching the ecological situation represents a real scienti�c challenge.
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The classi�cation and quanti�cation of the degree of disease in patients is based on

multiple indicators, such as the distribution of saccade amplitudes and duration of �xa-

tion, and also on the relationship between the visual �xation maps of patients and control

subjects. Delays in the oculomotor function of patients with neurodegenerative diseases

must be characterized by a time lag in the �xation maps. Otherdi�erences are hypothet-

ically expected. Neurodegenerative diseases show eye movement disorders. Indeed, and

contrary to their slowed-down movement, people with Parkinson's disease produce auto-

matic rapid movements of the eye to sensory stimuli and show an impairment of the ability

to generate voluntary eye movements in cognitive tasks. Thestudy of [20] has shown that

participants with Parkinson's have de�cits in their ability to inhibit automatic saccades

(more express, more errors in direction ...). Thus they takelonger time for volitious jerks

(anti-saccade task). And regarding the processes of spatialmemory work, Parkinsonians

show de�cits in moving their eyes to goals called in the rightorder. To determine the

mental state of patients with neuro-degenerative disease and the evolution of the disease,

di�erent experiments have been put in place. In the next section, we will describe the

experiment carried out by [126] allowing the classi�cationof clinical populations from the

natural vision ocular movements and the [4] study which allows to examine the error rates

and visual exploration strategies of Parkinson's patients.

1.4.1 Experiment of Tseng,2013 [126]

To extract the essential characteristics that di�erentiate patients from control subjects,

Tseng [126] used automatic learning in a workow inspired bymicroarrays analysis. In-

deed, this experiment involved two con�gurations of eye tracking (one for children and

another for young adult subjects) but it is still identical in �eld of view to the stimuli.

Participants who sit in front of the screen, watch ten videosof one minute each. The

right eye of the observers was measured at 500 Hz.

To create the learning model, Tseng [126] used ten saliency maps: nine were extracted

from the various low-level visual features, and one top-down map was generated by the

instantaneous viewing positions of 19 of young adults. The nine saliency maps are created

from the itti saliency model [52]. Tseng [126] used the Itti model to identify visually

highlight regions that can attract the attention on natural videos. As a result, all ten

saliency maps provide information that controls attentionfrom top-down in addition to

low-level features. The following �gure 1.8 summarizes theevaluation of the deployment of

the attention proposed by Tseng [126]. In fact the movementsof the eyes of the observers

are recorded (red curve) during the free viewing of videos ofnatural scenes. And, the

implementation of the architecture of Itti's model was extended (C, color , I, intensity,
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O, orientation, F, icker, M, motion, J, junction of line).

Based on previous studies of high prevalence neurological disorders involve oculomotor

and attention de�cit dysfunctions, Tseng [126] extracted alarge number of characteris-

tics (224) from the eye movement records, and then based on its characteristics, they

constructed a classi�er to di�erentiate patients from healthy subjects.

Figure 1.8: Evaluation of the deployment of visual attention: 'A' presents the extracts
of the traces of the attention. 'B', it summarizes the extended architecture of
Itti's model. (Ref. [127])

1.4.2 Experiment of Archibald,2013 [4]

Abnormal eye movements, such as the depreciation of rapid eyemovements (saccades) and

the interspersed �xings appeared under the inuence of cortical and subcortical networks

often targeted by neurodegeneration seen in Parkinson's disease. From this marker of

cognitive decline, the study of Archibald [4] examines the error rates and visual exploration

strategies of Parkinson's with and without cognitive impairment. Here, the creation of

a predictive model of the �xation duration from a data analysis of the tasks, makes it

possible to predict both cognitive disorders and severity of the disease.

The stimuli used in this study are presented in �ve blocks (Figure 1.9): a task corre-

sponding to the angle, a task corresponding to the clock and the reverse clock, a shape

position task and �nally a task of overlapping �gures. Each block consists of 16 test

images and is arranged in such a way that a stimulus is presented at the center and four

comparators are arranged just below it. Stimuli were thrownon a 20-inch screen at a

distance of 80 cm to participants in a dimly lit room.
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Figure 1.9: Test used in the eye-tracking battery. (Ref.[4])

The �rst hypothesis of the Archibald [4] study concerning theexploration strategy,

as de�ned by the time of the �rst correct �xation, the number of central passages and

the number of passages, shows that patients with dementia di�er in all e�ectiveness of

the exploration strategy compared to cognitively normal Parkinson's patients and the

healthy subjects. Second, this study shows that there is a small, but signi�cant, di�erence

in �xation time. The cognitively normal subjects in the Parkinson's disease group made

�xations always slower than the control subjects, of the order of 18 ms. This prolongation

of the duration of �xation was more pronounced in subjects with Parkinson's disease with

dementia.

1.5 Conclusion

In this chapter, a state-of-the-art of visual saliency prediction was provided after detailing

the anatomy of human eyes . We briey presented the biology ofthe human visual system,

especially the retina and ocular movements. Hence, in order to perceive the world, human

attention was focused on small regions in order to receive more detail. These regions

are selected according to attentional processes \bottum-up" which depends on low level

factors and \top-down" which may concern cognitive processes, memory, emotional state
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or task. The visual attention precedes the displacement of the human gaze through various

ocular movements towards the region on which the visual attention is directed.

We discussed the commonly saliency prediction model and described the ones we

considered most relevant for the rest of our work. These models are inspired by the

feature integration theory and the recent deep convolutional networks that ensures the

combination of \top-down" and \bottum-up"visual stimuli.

Then we introduced how these models and what kind of real-life applications can

emerge from it, precisely, for neuro-degenerative diseases studies. Hence, rapid eye move-

ments are the interface of spatial work memory processes.

In next chapter, we explain deep convolutional networks used for predict visual atten-

tion.
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Chapter 2

Deep learning for visual saliency

prediction

2.1 Introduction

Machine Learning is a set of techniques used to achieve, automatically, a task by learning

from a training data set. There is a plethora of methods basedon di�erent mathematical

fundamentals. Neural networks were intended to model learning and pattern recognition

done by physiological neurons. This was �rst introduced by Hebb (1949) who modeled

synapses by weighted links from the outputs of nodes to the inputs of other nodes. Rosen-

blatt (1958) continued the Hebb model and investigated how the links between neurons

could be developed, in particular, he de�ned the basic mathematical model for neural

networks (NN for short). His basic unit was called the perceptron, which when it receives

a signal, would either respond or not, depending on whether afunction exceeded a thresh-

old. Figure 2.1 presents a formal neurone. It receives input signals (x1; x2; � � � ; xp), and

applies an activation functionf to a linear combination of the signals. This combination

is determined by a vector of weightsw1; w2; � � � ; wp and a biasb0. More formally, the

output neurone valuey de�ned as follows:

y = f

 

b0 +
pX

i =1

wi x i

!

: (2.1)

A neural network is then a network whose nodes are formal neurones, and to de�ne a

neural network, one needs to design its architecture (the number of hidden layers and the

number of nodes per layer, etc) as well as estimation of parameters once the network is

�xed. Figure 2.2 gives an example of such a network.
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Figure 2.1: A formal neurone.

x1

x2

...

xp

P
j f

P
j f

...
P

j f

P
j f y

Figure 2.2: An example of a NN. DataX is fed into the �rst (and here only) hidden
layer. Each node in the hidden layer is the composition of a sigmoid function
with an a�ne function of X . The outputs from hidden layer are combined
linearly to give the output y.

This chapter consists �rst in understanding the deep convolutional neural network.

Here, the set of steps constituting the design of a convolutional neural network are de-

scribed: the di�erent commun layers and a state of the art of deep architecture for speci�c

tasks was conducted. Then, the di�erent loss functions and optimization methods were

explored. Section 2.4 describes the problem of training Deep CNNs when processing a

noisy traning dataset. Section 2.5 presents transfer learning. Finally, this chapter mades

an overview on saliency prediction by machine learning.

2.2 Deep Convolutional Neural Networks

Deep learning is a branch of machine learning introduced in 1980s. Nevertheless, its emer-

gence started really by the computational power of the 2000s. It is a machine learning

process structured on a so-called convolutional neural network (CNN). A CNN is com-

50



CHAPTER 2. DEEP LEARNING FOR VISUAL SALIENCY Souad CHAABOUNI

posed of several stacked layers of di�erent types: convolutional layers (CONV), pooling

(POOL) layers, non-linearity layers such as ReLu layers or sigmoid layers, and (generally

the last layer) fully connected layers (FC). Figure 2.3 givesan example of an architecture

of a CNN.

Figure 2.3: An example of a CNN.

2.2.1 Commun layers

Convolutional layers (CONV)

In order to extract the most important information for furth er analysis or exploitation of

image patches, the convolution with a �xed number of �lters is needed. It is necessary

to determine the size of the convolution kernel to be appliedto the input image in order

to highlight its areas. Two stages are conceptually necessary to create a convolutional

layer. The �rst refers to the convolution of the input image with linear �lters. The second

consists in adding a bias term.

Generally, the equation of convolution can be written as (2.2):

X l
j =

X

k2 
 j

X l � 1
k � W l

k + bl
j (2.2)

with 
 j - is the kernel support, i.e. the receptive �eld ofj -th neuron;

l- is the netwok layer;

X l
j - is the input of j -th neuron at layer l , that is feature-map vector;

W l
k - is the wieght ofk-th neuron in the receptive �eld 
 j ;

bl
j - is the bias ofj -th neuron at the layer l .

� is Hadamard product which is a coordinate-wise operation.

In practice, each Conv layer is de�ned by four parameters: the number of �lters K ,

the spatial extend or the kernel sizeF , the stride between each region~S and �nally

the amount of zero padding ~P . The Conv layer accepts as input a volume of a size

W1 � H 1 � D1 whereW1, H 1 and D1 present the width, the height and the channels
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number respectively that correspond to the input blob (in the �rst conv layer the blob is

the input image). In order to de�ne the four parameters of theConv layer, some equation

should be respected to produces the output volume of sizeW2 � H 2 � D2 :

W2 = ( W1 � F + 2 ~S)=~P + 1 (2.3)

H 2 = ( H 1 � F + 2 ~S)=~P + 1 (2.4)

D2 = K (2.5)

Pooling layers (POOL)

Pooling reduces the computational complexity for the upperlayers and summarizes the

outputs of neighboring groups of neurons from the same kernel map. It reduces the size

of each input feature map by the acquisition of a value for each receptive �eld of neurons

of the next layer. Di�erent function could be used in the pooling operation such as

average or maximum. With the fallen out of average pooling, recent deep networks used

max-pooling, see equation (2.6):

hn
j (x; y) = max

�x; �y2 N
hn� 1

j (�x; �y) (2.6)

Here N denotes the neighborhood of (x,y).

In practice, each POOL layer is de�ned by two parameters: thespatial extend or the

kernel sizeF , the stride between each region~S. Commonly, these parameters are de�ned

asF = 2 and ~S = 2; but we can also used the overlapping pooling withF = 3 and ~S = 2.

The Pool layer accepts as input a volume of a sizeW1� H 1� D1 and produces the output

volume of sizeW2 � H 2 � D2 where:

W2 = ( W1 � F )=~S + 1 (2.7)

H 2 = ( H 1 � F )=~S + 1 (2.8)

D2 = D1 (2.9)

Activation layers

Acitvation layers used a non-linearity function that takes asingle number and performs

a certain �xed mathematical operation on it. Here, we will describe several activation

functions :

ReLu layers
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The Recti�ed Linear Unit (ReLu for short) has become very popular in the last few

years. It computes the functionf (x) = max(0 ; x) (see �gure 2.4). Thus, the activation

is thresholded at zero. It was found to accelerate the convergence of a very popular

parameter optimization method, stochastic gradient descent, compared to the sigmoid

function.

Figure 2.4: Recti�ed Linear Unit (ReLU) activation function

A �rst variation of ReLu layer was available to resolve the \dying ReLU" problem :

Parameterized Recti�ed Linear Unit [42] where a non-linearity function is applied f (x i ) =

max(0; x i ) + ai min(0; x i ) where ai is a small constant. The di�erences from ReLULayer

are 1) negative slopes (of 0.01, or so) are learnable though backprop and 2) negative slopes

can vary across channels.

The second variation of Relu layer generalizes the ReLU and its �rst variation to be

written as f (W T x + b) [38]. Here, the dot product between the weightsW T and the data

x presents a non-linearity function.

Sigmoid layersThe sigmoid non-linearity takes a real-valued number and \squashes"

it into range between 0 and 1 ( see �gure 2.5). It has the mathematical form � (x) = 1
1+ e� x .

It was well used in neural network since its nice interpretation (large negative numbers

become 0 and large positive numbers become 1). With convolutional network, the sigmoid

function saturates at either of 0 or 1 and then it kills gradients.

Figure 2.5: Sigmoid activation function
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TanH layers

The tanh squashes a real-valued number to the range [� 1; 1] (see �gure 2.6). The

tanh neuron with the non-linearity function f (x) = 2 � (2x) � 1 is a scaled sigmoid neuron.

Here, its activations saturate and its output is zero-centered.

Figure 2.6: TanH activation function

Local response normalization layers (LRN and ReLu)

A local Response Normalization (LRN) layer normalizes valuesof feature maps which are

calculated through the neurons having unbounded (due to ReLU) activations to detect

the high-frequency characteristics with a high response ofthe neuron, and to scale down

answers that are uniformly greater in a local area. The output computation is presented

in equation (2.10):

 (Z (x; y)) = Z (x;y )

(1+ �
N 2

P min( S;x � [N= 2]+ N )
x 0=max(0 ;x � [N= 2])

P min( S;y � [N= 2]+ N )
y 0=max(0 ;y � [N= 2])

(Z (x0;y0)) 2 ) �

(2.10)

Here Z(x; y) represents the value of the feature map after ReLU operation at (x; y)

coordinates and the sums are taken in the neighbourhood of (x; y) of sizeN � N , � and

� regulate normalization strength. Normalization is also a coordinate-wise opeartion.

Fully-connected layer

Neurons in a fully connected layer have full connections to all activations in the previous

layer, as seen in regular Neural Networks (see �gure 2.2). Their activations can hence be

computed with a matrix multiplication followed by a bias o�set. As Convolution layer,

the Fully-connected layer compute dot products. The only di�erence between these two

layers is that the neurons in the Convolution layer are connected only to a local region in

the input.
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2.2.2 Deep CNN architecture for speci�c tasks

As detailed before, the main layers of a deep CNN are the convolutional layer which will

compute the output of neurons by a dot product between their weights and the connected

local regions in the input. Generally, the convolutional layer is followed by an elementwise

activation function which leaves the size of the volume unchanged. Using deep networks

for classi�cation in image processing, ensures the transformation of the input image pixels

considered as neurons to �nally yield a single output that presents the label of the input

image. Indeed, the input values go through the network, undergoing subsampling, non

linear transformation and linear combination as they pass through the layers to �nally

classify the image. Each neuron in the CNN can be seen as a feature extractor, by

applying a �lter to the image. The inputs of the intermediate layers are the result of a

combination of �lters from the layer above. This means that neurones of the �rst layers

extract a \simple" features and those in deep layers are usedto extract more complex

features.

Historically, the �rst hypothetical neural machine was illustrated by the perceptron

of Rosenblatt [111]. It presents the analogy to biological systems. In next �gure 2.7, the

sensory units of retina response with an all-or-nothing to the stimilus intensity. These

impulses are transmetted to a set of association cells in a projection area. Here, each

cells receive a number of connections from the sensory points. Connections between the

projection area and the association areaA II are random. TheR1,R2, : : : ,Rn cells response

like the units of association area. Here, a feedback connections between cells response and

the association area are used.

Retina AIprojectionArea AIIassociationArea

R1

R2

...

Rn

Figure 2.7: Organization of the perceptron of Rosenblatt [111] : localized connection
betwen the retina and AI projection area; random connection otherwise.
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The authors of [32] designed a fast and reliable face detection system using convolu-

tional neural networks, to detect face patterns of variablesize and appearance, that are

rotated up to � 20 degrees in image plane and turned up to� 60 degrees, in complex real

world images. The proposed CNN consisted of a two convolutional layers which ensure

the feature extraction, each one is followed by a sapsamlinglayer which reduce of dimen-

sionality (average Pooling) (see �gure 2.8). Fully connected layersN 1 and N 2 contain

simple sigmoid neurons in order to perform classi�cation of\face" or \no-face" problem.

Figure 2.8: Architecture of face detection network. (Ref. [32] )

The �rst successful applications of Convolutional Networkswas proposed by LeCun

in [69]. Here, a convolutional neural network LeNet was speci�cally designed for on-line

handwriting recognition. As illustrated in �gure 2.9, the deep network is constructed

with 7 layers. The lower-layers are composed to alternatingconvolution and max-pooling

layers. The upper-layers however are fully-connected and correspond to a traditional MLP

with a logistic regression (see �gure 2.2). The proposed convolutional neural network

eliminates the need for hand-crafted features extractors and reduce the need of hand-

crafted heuristics and manual parameter tuning in documentrecognition systems.

56



CHAPTER 2. DEEP LEARNING FOR VISUAL SALIENCY Souad CHAABOUNI

Figure 2.9: Architecture of LeNet network. (Ref. [69] )

The popular deep convolutional neural network proposed by Krizhevsky [62], used

eight layers with weights to classify the 1.2 million high-resolution images [112] into a

1000 di�erent classes. This depth architecture achieved a record-breaking results using

purely supervised learning. The �rst �ve layers are convolutional and the remaining three

layers are fully connected. The output of the last fully-connected layer is fed to a 1000-

way softmax which produces a distribution over the 1000 class labels. The network used

to maximize the multinomial logistic regression. The neurons in the fullyconnected layers

are connected to all neurons in the previous layer. Response-normalization layers follow

the �rst and second convolutional layers. Max-pooling layers. The ReLU non-linearity is

applied to the output of every convolutional and fully-connected layer

Figure 2.10: Architecture of AlexNet network for object recognition. (Ref. [62] )

Today with the di�erent frameworks available for deep networks training, such as

tensor ow [1], torch [21], Ca�e [54], Theano [9], ... an explosion of network architecture

for di�erent tasks has emerged ZF-Net [136] , GoogLeNet [121], VGGNet [118] and ResNet

[43].
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2.3 Loss Functions and Optimization Methods

A neural network be it a fully connected NN or a CNN is a supervised machine learning

model. It learns a prediction function from a training set[129]. Each sample from this

set can be modeled by a vector which describes the observation and its corresponding

response. The learning model aims to construct a function which can be used to predict the

responses for new observations while committing a prediction error as lowest as possible.

More formally, a samplei from the training set is denoted (x i
1; x i

2; � � � ; x i
n ; yi ) and the

response of the model is denoted ^yi .

2.3.1 Loss functions

There are many functions used to measure prediction errors.They are calledloss func-

tions. A loss function somehow quanti�es the deviation of the output of the model from

the correct response. We are speaking here about \empiricalloss" functions [129], that

is the error computed on all available ground truth trainingdata. Here we will shortly

present one of them.

One-hot encoding

Back to the training set, the known response of each observation is encoded in a one-hot

labels vector. More formally, given an observation (x i
1; x i

2; � � � ; x i
n ; yi ), we introduce a

binary vector L i = ( L i
1; L i

2; � � � ; L i
k) such that if yi = cj then L i

j = 1 and 8m 6= j , L i
m = 0.

This is the function which ensures a \hard" coding of class labels.

Softmax

Given a vector Y = ( y1; y2; � � � ; yk) with positive real-valued coordinates, the softmax

function aims to transform the values ofY to a vector S = ( p1; p2; � � � ; pk) of real values

in the range (0; 1) that sums to 1. More precisely, it is de�ned for eachi 2 f 1; 2; � � � ; kg

by:

pi =
eyi

P k
j =1 eyj

: (2.11)

The softmax function is used in the last layer of multi-layerneural networks which are

trained under a cross-entropy (we will de�ne this function in next paragraphs) regime.

When used for image recognition, the softmax computes the estimated probabilities, for

each input data, of being in a class from a given taxonomy.
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Cross-Entropy

The cross-entropy loss function is expressed in terms of theresult of the softmax and the

one-hot encoding. It is de�ned as follows:

O(S; L) = �
kX

i =1

L i log (pi ) : (2.12)

The de�nition of one-hot encoding and the equation (2.12) means that only the output

of the classi�er corresponding to the correct class label isincluded in the cost.

Average Cross Entropy

To deal with the cross-entropy of all the training set, we introduce the average cross-

entropy. This is simply the average value, over all the set, of the cross-entropy introduced

in equation (2.12):

L =
1
N

NX

i =1

O(Si ; L i ): (2.13)

The loss function corresponds then to the average cross-entropy.

As claimed before, the machine learning models aim to construct a prediction function

which minimizes the loss function. There are many algorithms which aim to minimize

the loss function. Most of them are iterative and operate by decreasing the loss function

following a descent direction. These methods solve the problem when the loss function

is supposed to be convex. The main idea can be expressed simply as follows: starting

from initial arbitrary (or randomly) chosen point in the parameter space, they allow the

\descent" to the minimum of the loss function accordingly tothe chosen set of directions

[106]. Here we discuss some of the most known and used optimization algorithms in this

�eld.

2.3.2 Optimization methods

The process of learning the network parameters and �nding good hyperparameters have to

be considered through the variation of loss value during theforward pass in training step.

Hence, with a low learning rates the improvements will be linear. With high learning rates

they will start to look more exponential. Higher learning rates will decay the loss faster,

but they get stuck at worse values of loss. The second important quantity to track while
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training a deep network is the validation/training accuracy. The plot of accuracy values

during learning the model can give a valuable insights into the amount of over�tting in

the learned model. The gap between the training and validation accuracy indicates the

amount of over�tting [57]. Figure 2.11, plot the loss and acuracy values over di�erent

units of epochs, which measure how many times every example has been seen during

training.

(a) Loss curve during training (b) training and validation accuracy curves.

Figure 2.11: Di�erent learning rate where training and validation of a Deep CNN [57].

The Gradient Descent Algorithm

The gradient descent algorithm is the most simple and most used algorithm to �nd param-

eters for the learning model under the assumption of convexity of function to minimize.

There are mainly two versions of this algorithm, the �rst oneacts in a batch mode and

the other in on-line mode. The batch mode: when we aim to minimize globally the loss

function (this is why it is named batch), we �rst initialize r andomly the parameters and

we iteratively minimize the loss function by updating the parameters. This updating is

done following the opposite direction of the gradient of theloss function which, locally,

shows the highest slope of this function. Hence, at iterationt, the new values of the

weights w(t+1) are estimated using the values of the weights at stept and the gradient of

the loss function estimated at weightw(t ) :

8t 2 N; W(t+1) = W(t ) � � r L
�
W(t )

�
; (2.14)

where� 2 R�
+ is a positive real called learning rate. One fundamental issue is how to
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choose the learning rate. If this rate is too large, than we may obtain oscillations around

the minimum. If it is two small, then the convergence toward the minimum will be too

slow and in same cases it may never happen.

The on-line mode: when we are dealing with large set of data, batch algorithms are

not useful anymore since they are not scalable. Many works have been done to overcome

this issue and to design on-line algorithms. These algorithms consider a single example

at each iteration and are shown to be more e�cient both in timeand space complexities.

Among all the on-line algorithms, thestochastic gradient Descent(SGD for short)

is considered as the most popular and the most used one. Many works have proved its

e�ciency and its scalability.

The SGD algorithm is an iterative process which acts as follows: at each iteration

t, a training example (X t ; Yt ): (x t
1; xt

2; � � � ; xt
n ; yt ) is chosen uniformly at random and is

used to update the weights of the loss function following theopposite of the gradient

of this function. The SGD algorithm belongs to �rst-order methods, i.e., those that

form the parameter update on the basis of only �rst order gradient information. First-

order methods, when used to solve convex optimization problems, have been shown to

have a convergence speed, when used with large dimension problems, which can not

be better than sub-linear in means oft � 1=2, [105], wheret is the number of iterations.

This theoretical result implies that �rst-order methods can not be used to solve, scalable

problems in an acceptable time and with high accuracy.

Momentum is a method that helps accelerate SGD in the relevant direction. It achieves

this by adding a fraction of the update vector of the past timestep to the current update

vector. The most popular is the method of Nesterov Momentum [96]:

8t 2 N; Y(t ) = W(t ) +
t

t + 1

�
W(t ) � W(t � 1)

�

W(t+1) = Y(t ) � � r L
�
Y(t )

�
; (2.15)

Nesterov momentum enjoys stronger theoretical converge guarantees for convex functions.

Instead of evaluating gradient at the current position, with Nesterov momentum, the

gradient is evaluated at the "looked-ahead" position.

2.4 Problem of Noise in training data

In data mining, noise has two di�erent main sources [141]. Di�erent types of measurement

tools induce implicit errors that yield noisy labels in training data. Besides, random

errors introduced by experts or batch processes when the data are gathered can produce
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the noise as well. Noise of data could adversely disturb the classi�cation accuracy of

classi�ers trained on this data. In the study [97], four supervised learners (naive Bayesian

probabilistic classi�er, the C4.5 decision tree, the IBk instance-based learner and the SMO

support vector machine) were selected to compare the sensitivity with regard to di�erent

degrees of noise. A systematic evaluation and analysis of the impact of class noise and

attribute noise on the system performance in machine learning was presented in [141].

The Deep CNNs use the stacking of di�erent kinds of layers (convolution, pooling,

normalization,...) that ensures the extraction of features which lead to the learning of

the model. The training of deep CNN parameters is frequently done with the stochastic

gradient descent 'SGD' technique [54], see section 2.3.2. For a simple supervised learning

the SGD method still remains the best learning algorithm when the training set is large.

With the wide propagation of convolutional neural networks,and the massive labeled data

needed to train the CNNs networks, studies of the impact of noisy data was needed. A

general framework to train CNNs with only a limited number of clean labels and millions

of noisy labels was introduced in [132] in order to model the relationships between images,

class labels and label noises with a probabilistic graphical model and further integrate it

into an end-to-end deep learning system. In [110], substantial robustness to label noise

of deep CNNs was proposed using a generic way to handle noisy andincomplete labeling.

This is realized by augmenting the prediction objective with a notion of consistency.

Our research focused on noise produced by random errors was typically addresses a

two-class classi�cation problem: for each region in an image/video plane it is necessary to

give the con�dence to be salient or not for a human observer. One main contribution of

this chapter is to identify how noise of data impacts performance of deep networks in the

problem of visual saliency prediction. Here, to study the impact of the noise in ground

truth labels, two experiments on the large data set were conducted. In the �rst experiment

non-salient windows were randomly selected in an image plane in a standard way, just

excluding already selected salient windows. Nevertheless,in video, dynamic switching of

attention to distractors or to smooth pursuit of moving objects, makes such a method

fail. This policy of selection of non-salient areas yields random errors. In the second

experiment, cinematographic production rule of 3/3 for non-salient patches selection was

used, excluding the patches already de�ned as salient area in all the videos frames and

excluding the area where the content producers - photographers or cameramen place

important scene details. The results show the increase in accuracy in the most e�cient

model up to 8%, all other settings being equal : the network architecture, optimization

method, input data con�guration.
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2.5 Transfer Learning

Generally, in machine learning a simple classi�er compute an output scoreY from a vector

X . It can be written as follow :

Y = f (W:X ) = f (
X

j

W:X ) (2.16)

where W is a vector of weights and f is a function that converts the dotproduct of the

two vectors into the desired output. Transfer learning techniques answer the question

\How to use the vector of weightsW that already trained on one problem to a di�erent

related problem?"

Transfer learning also de�ned as a �ne-tuning techniques [6], presents a technique used

in the �eld of machine learning that increases the accuracy of learning either by using it

in di�erent tasks, or in the same task [134] . Training CNNs fromscratch is relatively

hard due to the insu�cient size of available training dataset in real-world classi�cation

problems. Pre-training a deep CNNs by using an initializationor a �xed feature extractor

presents the heart of the transfer method. In the literature, for supervised learning with

�ne-tuning a variant was explored and introduced in 2006 in [45].

1. Initialize the supervised predictor (parametrized representation functionhL (x) and

the linear or non-linear predictor),

2. Fine-tune the supervised predicor with respect to a supervised training criterion,

based on a labled training set of (x,label) pairs, and optimizing the parametres of

the supervised predictor.

Gradient descent can be used for �ne-tuning the weights in such \autoencoder" networks,

but this works well only if the initial weights are close to a good solution. The e�ective

way of initializing the weights is by allowing deep autoencoder networks to learn low-

dimensional codes [45]. This idea work better than principal components analysis as

a tool to reduce the dimensionality of data. Starting with random weights in the two

networks (see �gure 2.12), they can be trained together by minimizing the discrepancy

between the original data and its reconstruction. Pretraining consists of learning a stack

of restricted Boltzmann machines (RBMs), each having only one layer of feature detectors.

The learned feature activations of one RBM are used as the \data" for training the next

RBM in the stack. After the pretraining, the RBMs are \unrolled" to create a deep

autoencoder, which is then �ne-tuned using backpropagation of error derivatives.

In the research of Bengio et al. [134] addressing object recognition problem, the au-

thors show that the �rst layers of a Deep CNN learn characteristics similar to the responses
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Figure 2.12: Process of transfer learning proposed by [45]. (Ref. [45] )

of Gabor's �lters regardless of the data set or task. Hence in their transfer learning scheme

just the three �rst convolutional layers already trained onone training set are used for the

initialization for parameter training on another training set. The coe�cients on deeper

layers are left free for optimization, that is initialized randomly. Several studies have

proven the power of this technique [136] , [90] . Here, two famous scenarios of transfer

learning with CNNs were followed :

i) using a �xed feature extractor with removing the last fully-connected layer. Here the

training is ful�lled just for the linear classi�er on the new dataset.

ii) Fine-tuning the weights of the pre-trained deep CNN by continuing the back-propagation

[134]. Transfer learning with deep CNN shows its e�ciency in di�erent application domain

such as person re-identi�cation [33].
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2.6 Saliency prediction by Deep CNNs

Saliency is useful tool that can be used in a plethora of computer vision applications

such as image quality [138], superpixel [82], localization[25], retrieval [2], etc. Recently,

saliency methods have been also used as the main data to predict visual �xations (scan-

paths) [68]. A lot of methods to predict the saliency have been proposed in the literature.

Some of them are based on low-level features by considering texture, color, intensity and

orientation [52], while some others are based on high-level features or based on perceptual

aspects [74]. In this section, we are interested only on methods that are based on deep

learning.

Deep learning models have been used in di�erent applications (segmentation, classi�-

cation, scene understanding and so on). They have been also used to predict the saliency

in image. This last decade, several saliency methods based on convolutional neural net-

works have been proposed in the literature. Among the �rst CNN model for Saliency

prediction has been proposed in [69].

The basic deep learning architectures is hierarchically created with neural networks.

The architectures of these networks can di�er essentially by the formulation of the main

problem. This formulation a�ects the quantity and the scheduling of convolution and

pooling layers, the pooling strategies, the input data, thenature of the �nal classi�ers

and the loss functions to optimize.

Shen [115] proposes a model that approximates human gaze �xations. This model is

formed by three layer sequences of \sparse coding �ltering"and \max pooling", followed

by a layer of linear SVM classi�er to extract salient areas in images. The proposed deep

learning model providing ranked \salient" or \non-salient" areas of the image, allows the

learning of the relevant characteristics of the saliency ofnatural images, and the prediction

of the eye �xations on objects with semantic content.

In Vig's work [130], the proposed learning model tackles prediction of saliency of pixels

for a human visual system (HVS) and corresponds to a free-viewing visual experiment.

The learning model of the saliency of image for a speci�ed class is de�ned in [117].

The challenge of this research [117] is the creation of the saliency map for each class using

deep convoltional neural networks \CNN" with optimization of parameters by stochastic

gradient descent. Therefore the classi�cation problem is multi-class, and can be expressed

as a \task-dependent" visual experiment, where the subjects are asked to look for an object

of a given class of considered taxonomy in the images. After generating the map that

maximizes the score of the speci�c class, the saliency map ofeach class is de�ned by the

amplitude of the weight calculated from the convolution network with a single layer. In
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our case, we tackle a two class classi�cation problem: for each region in a video frame, the

con�dence has to be computed to belong to a \salient" class orto a \non-salient" one.

In [80], a multiresolution convolutional neural network, so called Mr-CNN, model has

been proposed. The raw image is �rst rescaled to three di�erent scales. Batches centered

on �xation and non-�xation points with a size equal to 42x42,are extracted from the

rescaled images and are used as inputs to train the proposed CNN model. Eye �xations

are here used as targets.

In [75],the authors propose a multi-scale neural network architecture to predict the

saliency. The input of the proposed method is the raw image decomposed into regions

(segmentation). Each of these image regions has almost the same saliency value. From

each considered region, three patches are then extracted (three scales), which are respec-

tively the bounding box of the considered region, the bounding box of its neighboring

regions and the whole image, and are used as input to three CNN models. In [77], an

extended version has been proposed. The authors propose to boost the saliency perfor-

mance by concatenating handcrafted low-level features: color and Texture (color RGB,

LAB and HSV histograms, LBP histogram and the histogram of the max responses of

LM �lters).

In order to not predict the saliency of the whole image from patches and thus to get out

the blurry �ltering generally applied in this kind of method, some authors proposed fully

convolutional network models, so called \end-to-end convolutional network", to predict

saliency [101], [76]. This kind of models has been also applied to resolve segmentation

problem [114]. In [101], the model is composed of 5 layers andpredict the saliency from

the image with a size of 96� 96� 3. The authors propose to adopt the end-to-end solution

as a regression problem. In [76], the authors proposed also an end-to-end model. This

method uses the whole image as input and it is based on two maincomponents: pixel-level

fully convolutional and a segment-wise spatial pooling streams. The �rst stream aims to

take into account the multi-scale properties, while the second stream aims to consider the

saliency discontinuities.

In [135], a multi-scale and multi-levels model has been described. The raw image is

�rst convoluted with some learned �lters (k-means). The obtained maps are then pooled

at multiple scales (four di�erent sizes) and intermediate saliency maps are computed at

multiple levels with di�erent �lters. The global saliency map is �nally given summing all

intermediate saliency maps and weighting it with a 2D Gaussian heat map.

In [140], the authors focus on the pooling step and proposed aglobal average pooling

method, so-called class activation maps (CAM). This poolingstep aims to produce the

desired output (class) and is applied on the last convolutional layer. So, from a same
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image di�erent saliency maps can be obtained according to theobject category.

In [59], the authors propose to design a CNN model for collecting eye tracking data

on mobile devices. This model is composed of four inputs : left eye, right eye face images

and a binary mask that provides the position of the face in thecaptured image.

In [70], the authors propose to combine High and low level features. The high level

features are extracted from the VGG-net model, while the lowlevel features are given by

some handcrafted features based on color and Gabor �lter responses. A low level distance

map is then derived from the comparison of the obtained low level features and other parts

of the image. The �nal saliency map is achieved by combining the high level features and

the encoded version of the low level distance map.

A lot of works today, are devoted to saliency prediction in still images using fully

convolutional network\FCN".

In [24] proposed a mixture of experts based model to predict image saliency. This

model which was trained in an end-to-end manner, used globalscene information in

addition to local information from a convolutional neural network. The global scene

information was trained on diverse categories of an eye-tracking dataset. The �nal saliency

map is a weighted sum of the expert saliency maps.

[92] present an architectural extension to any Convolutional Neural Network (CNN)

to �ne-tune traditional 2D saliency prediction to Omnidirectional Images (ODIs) in an

end-to-end manner. This extension present a re�nement architecture that is added after

the Base CNN. It takes a 3-channel feature map as input: the output saliency map of the

Base CNN and the spherical coordinates per pixel as two channels.

[66] presented an approach integrating class-speci�c saliency maps into an end-to-

end architecture to perform a weakly supervised object detection. It exploits saliency

information thoroughly to boost the performance of both detection and classi�cation. A

highly con�dent object proposals was selected under the guidance of class-speci�c saliency

maps. The location information, together with semantic andsaliency information, of the

selected proposals are then used to explicitly supervise the network by imposing two

additional losses.

[71] proposed a uni�ed deep learning framework for accurateand e�cient saliency de-

tection. The method used low-level features and high-levelfeatures which are extracted

using GoogLeNe for saliency detection. The low-level features evaluate the relative im-

portance of a local region using its di�erences from other regions in an image.

In [64], the authors proposed a deep CNN that predicts eye �xations and segments

salient objects. The authors work on a kind of scenes with a very well distinguishable

salient object and rather uninteresting background. [65] reuses an existing neural network
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pretrained on the task of object recognition to predict eye �xations. [102] formulated the

prediction of eye �xations as a minimization of a loss function that measures the Euclidean

distance of the predicted saliency map with the provided ground truth. Despite the

popularity of these models they still need a thorough study in real-life situation, which is

our case.

2.7 Conclusion

In this chapter, a state-of-the-art of deep learning for visual saliency prediction was pro-

vided. We �rst presented the important de�nitions and characteristics about machine

learning and especially deep convolutional networks.

Then we introduced the problem the noise in big data. Hence, a noisy data could

adversely disturb the classi�cation accuracy of learned classi�ers.

We answer to the question, how transfer learning can increases the accuracy of learning

and then resolve training on small data.

Finally, we provided a state-of-the-art of saliency prediction by deep CNNs. Hence,

several saliency methods based on convolutional neural networks have been proposed in

the literature.

In the next chapter we will present our contribution in saliency modeling using deep

networks.
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Part II

Deep CNNs for saliency prediction

This part describes the contribution of saliency prediction with a deep CNN. The

architecture of deep CNN and the strategy of reconstruction of the saliency map are

analysed here. The �rst chapter details the deep CNN architecture designed for the

saliency prediction task. We de�ne the classi�cation problem for saliency prediction and

propose a method to densify the response of the trained modelin order to generate the

�nal saliency map. Speci�c features as contrasts have demonstrated e�ciency in state-of-

the-art methods for saliency prediction. Second chapter resumes the use of these speci�c

features and tests the inuence of noisy data, for training adeep CNN.
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Chapter 3

ChaboNet : a deep CNN designed

for prediction of visual saliency in

natural video

3.1 Introduction

Supervised learning techniques help with the detection of salient regions in images by

predicting attractors on the basis of seen data[130]. Recent research has been directed

towards the creation of a basic deep learning model that ensures the detection of salient

areas. While a signi�cant e�ort has been already made for building such models from

still images, very few models have been built for saliency prediction in video content

with supervised learning approaches [40]. Video has a supplementary dimension: the

temporality expressed by apparent motion in the image plane.

The actual trend for prediction of salient areas consists in the use of supervised learn-

ing tools such as Deep CNNs. Deep CNNs were developed in Computer Vision, �rstly by

Yann LeCun with the LeNet [69] architecture that was used to recognize digits. Then,

AlexNet[63] network has become very popular as architecture for visual recognition tasks.

It has a very similar architecture to LeNet, but is larger in terms of number of convolu-

tional �lters, deeper, and featured Convolutional Layers are stacked on top of each other.

In prediction of visual saliency, the deep CNNs are becoming popular as well [130], [122],

[115], [117] .

Deep learning architectures, which have recently been proposed for the prediction of

salient areas in images, di�er essentially by the quantity of convolution and pooling layers,

the input data, pooling strategies, the nature of the �nal classi�ers, the loss functions to

optimize and the formulation of the problem.
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3.2 General approach

In the variety of predictors of visual attention in images and video we are interested in

predicting \static" visual attention, which means that for each pixel (x; y) in image plane

depicting a visual scene, we aim to predict its importance orsalincy SM (x; y). Never-

theless, unlike classical methods for prediction of staticsaliency maps, in our supervised

learning framework we propose a two step approach:

Step1: here we wish to roughly delimit, \spotify" regions-of-interest in the image

plane. Hence the problem consists in the prediction of saliency not of a single pixel but of

a whole region. Without any pre-segmentaiton of the image plane we work with regular

grid of squared patchesPi .

Step2: Then on the basis of densly sampled patches we can interpolate the saliency

map SM (x; y) for each pixel(x; y).

The overall block diagram of proposed approach for saliencyprediction is depicted

in �gure 3.1 . After a various number of training and validation iterations, a trained

deep CNN model was obtained. This trained model ensures the prediction of saliency

probability for each regions that are obtained by dense sampling the input image frame.

Using the responses of trained model on sampled patches, we interpolate the �nal saliency

map.

Figure 3.1: Overall block diagram of proposed approach for saliency prediction.
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3.3 Policy of data set creation: salient and Non-

salient patches

Whatever is the architecture of a Deep CNN for saliency prediction, selection of a traning

dataset which would contain as less noise as possible is the must. The training set has to

be built to comprise salient and Non-salient regions in videoframes. The ground-truth

for saliency here are the Gaze Fixation Density Maps (GFDM). They are built upon gaze

�xations of a cohort of subjects recorded during a psycho-visual experiment. We formalize

it in subsection 3.3.1.

For salient patches extraction the intuition is clear: we need to extract patches in the

video frames where the GFDM has strong values. For Non-salientpatches extraction,the

situation is more complex. Due to the distractors and visualfatigue, the areas in a given

video frame which are salient can become Non-salient in the next frame. Thus the noise is

introduced in the training set of Non-salient patches. We thus proposed a strategy based

on video production rules which will allow to avoid the noiseas much as possible. It is

presented in subsection 3.3.2.

3.3.1 Salient patches extraction

In the following equations bold variables will denote vectors. A squared patchP of size

s � s � k (s = 100 adapted to the spatial resolution of standard de�nition (SD) video) in

a video frame is de�ned as a vector inRs� s� k . Herek stands for the quantity of primary

feature maps serving as an input to the deep CNN. In case when conventional RGB planes

are used as input data for the network, thenk = 3; if supplementary data layer, such as

motion is added, thenk = 4.

Patch saliency is de�ned on the basis of its interest for subjects. The interest is

measured by the magnitude of a GFDM built upon gaze �xations for each video frame.

GFDMs are built by the method of Wooding [131]. Such a mapSg(x; y) represents a

multi-Gaussian surface. Each Gaussian is centered on a gaze�xation point. Then the

Gaussians are summed up and the surface is normalized by its global maximum.

A binary label is associated with each patchP i using equation (3.1).

L(P i ) =

(
1 if S g(x0;i ; y0;i ) � � J

0 otherwise
(3.1)

with ( x0;i ; y0;i ) the coordinates of the patch center in the image plane. A setof thresholds

is selected starting by the global maximum value of the normalized GFDM and then
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relaxing threshold values as in equation (3.2):

(
� 0 = max( Sg(x; y))( x; y) 2 D

� (j +1) = � j � �� j

(3.2)

HereD is the image de�nition domain, 0< � < 1 is a relaxation parameter,j = 0; � � � ; J ,

and J limits the relaxation of saliency. It was chosen experimentally as J = 5, while

� = 0:04. In complex scenes several details or objects can attracthuman attention.

Thus the map Sg(x; y) can contain several local maxima. In order to highlight them,

morphological erosion with 3x3 structuring element was applied to Sg(x; y).

Figure 3.2 summarizes di�erent steps to select salient patches. Firstly, the GFDMs

were computed, then the operation of erosion was applied. The illustration is given at

a frame from HOLLYWOOD 1 dataset. Patches centered on local maxima with saliency

values satisfying the equations (3.1), (3.2) are selected as salient. Retained salient patches

should be distanced at least by (12 � s). Non-salient patches extraction is described in

section 3.3.2.

Figure 3.2: Policy of patch selection : example and steps (HOLLYWOOD[88] [89] data
set `actioncliptest00003'.

1available at http://www.di.ens.fr/ � laptev/actions/hollywood2/
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3.3.2 Non-salient patches extraction

A Non-salient patch is a squared region in the image plane which is not supposed to

attract human gaze. In the following we will expose two methods of selection of Non-

salient patches for training of \Non-salient" class in our supervised-learning framework

for saliency prediction.

Method 1

Let us, for a given video frame at timet denote SP(t) a set of pixels belonging to

selected salient patches andSP(t) [ SP(t) = D(t) . Then any patch P j with all its pixels

in SP(t) can be considered as a Non-salient. Therefore, thef irst method of selection of

Non-salient patches consists in random selection of patch centers in SP(t) that verify the

two following conditions. For each selected patchP j :

i) pixels of the selected patch are not inSP(t);

ii) The intersection for any two selected Non-salient patches P j and P k , is empty.

The �rst condition guaranties that Non-salient patches correspond to the area of the

current video frame, where the GFDMSg(x; y) values are low relatively to the condition

3.1 The second condition ensures a large spread of selected Non-salient patches in the

image plane.

An illustration of selected salient and Non-salient patches in a video frame generated

by the �rst method is presented in �gure 3.3. \salient" patches are presented by green

square and \Non-salient"by black one.

In the bottom-up saliency de�nition, local contrasts can invoke human gaze. Here,

when analysing selected patches, we can state that Non-salient patches can contain parts

of contrasted objects (a \Non-saillent" patch in �gure 3.3 (b) is selected on a contrasted

background. In �gure 3.3 (c) it is selected even on the movingobject (red ball).). For

saliency prediction tasks, the main di�erence when designingof supervised learning ap-

proches vs bottom-up methodes is that Non-salient patches can contains a contrasted

area. The former exploit the interest of subjects in the visual content expressed by gaze

�xation density maps only, while the latter are purely stimuli(/image)- driven.

Nevertheless, such a straight-forward method for Non-salient patches extraction yields

a noise in the training data. According to our observations, in video areas of high saliency

can change in-between frames, this is due to the distractors. We namely have observed

such a phenomenon in the intentioally degraded content thatwe produced for assessment

of patients with neuro-degenerative diseases. The focus ofattention of healthy subjects

change when they observe the degraded sequence and especially during an appear of

unusual intentionnally degraded area in video frame (see chapter 6). This is illustrated

in �gure 3.4 below:
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(a) heat map of frame #0013 (b) selected patches on frame #0013

(c) heat map of frame #0014 (d) selected patches on frame #0014

Figure 3.3: Extraction of Non-salient patches by random selection in the Non-salient
area of a video frame: Random selection of Non-salient patches on successive
frames of SRC07 video IRCCyN [16].

(a) frame #388 (b) frame #399 (c) frame #533

Figure 3.4: Change of focus of attention due to distractors : Switched saillent object
(degraded elephent and car) on degraded sequence create noise (heat map on
frames #388, #399 and #533).
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Such a change yields the erros in selection of Non-salient patches, indeed, as the focus

of attention is shifted in frame at t + 1 a non salient patch can be selected on the object

which was salient in the frame att. Thus selected a Non-salient patchP j is then a noise

data in a \Non-salient" class of the training set.

The problem of noise in training data and its inuence on class-prediction accuracy

in Deep learning is one of the open and urgent problems of the machine learning that

community is facing now [55], [60] , [81]. In the context of saliency prediction in visual

content, it is important not only for video, but also for the approaches on co-saliency

detection from collections of images [137]:

To our best knwoledge this problem has not been adressed yet in the context of pre-

diction of visual saliency. Hence to overcome this particular noise generation, we propose

a second method for the extraction of Non-salient patches based on visual content pro-

duction rules.

Method 2

According to the rule of thirds in produced and post-produceddigital visual content,

the most interesting details of the image or of a video frame have to cover the frame center

and the intersections of the three horizontal and vertical lines that divide the image into

nine equal parts [84].

Let (x0;i ; y0;i ) be the coordinates of the center of the patchP i , width is the width

size of the video frame andheight is its height size. Let us denote bySP the set of all

pixels belonging to salient patches selected as described in section 3.3.1. To exclude such

pixels and the area-of-interest, the one-�fth band of the frame was chosen starting from

its border. Then Non-salient patch centers are randomly selected in this area. Hence the

generated coordinates (x0;i ; y0;i ) of i-th Non-salient patch satisfy the following conditions:

[(x0;i ; y0;i ) 62SP]^
8
>>>>>>><

>>>>>>>:

[0 � x0;i < width
5 ] ^ [0 � y0;i < height ]

or[((width � width
5 ) � x0;i < width ) ^ (0 � y0;i < height )]

or[(( width
5 ) � x0;i < (width � width

5 )) ^ (0 � y0;i < height
5 ))]

or[(( width
5 ) � x0;i < (width � width

5 ))

^ (height � height
5 ) � y0;i < height )]

(3.3)

Schematically, the center of Non-salient patch should be in the blue�sh area shown in

�gure 3.5. The yellow lines depict the lines of interest.
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Figure 3.5: Space of selection of Non-salient patches `actioncliptest00003'.

The table 3.1 below presents the group of salient patches on the left and Non-salient

patches on the right. The rows contain some examples taken from frames of a set of

video sequences \actioncliptrain" from the HOLLYWOOD2 data set. Once more we note

that Non-salient patches can contain rather strong contrasts (e.g. as in the �rst row on

the right), but these patches have not attracted visual attention of subjects and are not

situated in the area-of-interest acccordingly to the thirds rule.

Table 3.1: Training data from HOLLYWOOD data set

2available at http://www.di.ens.fr/ � laptev/actions/hollywood2/
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3.4 Deep Convolutional Neural Network for visual

saliency: ChaboNet

In this section, the proposed architecture ChaboNet for the visual saliency prediction

problem is presented. As the purpose is in predicting visual saliency in video, speci�c

features which are added to conventional RGB pixel values are described �rst. Then the

architecture in terms of layers is presented. The implementation of ChaboNet is realized

on the basis of Ca�e framework [54].

3.4.1 A speci�c input data layer

When adressing visual attention prediction in video, the sensitivity of HVS to motion has

to be taken into account [10]. Indeed in classical bottom-upsaliency prediction models,

the sensitivity of HVS to motion in a dynamic scene is modeled byresidual motion [87].

Human observers accommodate to the global motion in a visual scene, such as camera

motion, and are attracted by speci�c local motions of objects. They �rst execute a saccade

to a moving target and then continue with the \smooth pursuit" or visual tracking [107]

keeping focus-of-attention on it. Local motion, i.e. motion of the target is expressed by

residual motion relatively to the camera motion observed inthe image plane [87]. The

global motion in the plane of video frames expresses camera motion. To compute residual

motion, the approach described in detail in next chapter 4.2.1 was followed. Here a pixel-

wise motion �eld is computed by an optical ow method �rst. Using the dense motion

�eld vectors as raw measures, the a�ne linear model of global motion is estimated by

RANSAC algorithm [28]. Finally, the residual motion is the vector - di�erence between

the initial motion vector and the one generated by the estimated a�ne model. As motion

features, the squaredL2 norm of residual motion vectors in each pixel in a video frame,

normalized by its maximum in the frame, is used.

The composition of the input layer of the CNN is illustrated in�gure 3.6. Here for each

patch the input layer is composed of three color channel values and the residual motion

feature map. Due to this con�guration, the model is called \ChaboNet4k" in contrast to

\ChaboNet3k", where only color channel values are used.

3.4.2 The ChaboNet network architecture design

ChaboNet architecture was designed for the two-class classi�cation problem: prediction

of category of a patch in a given video frame as salient or Non-salient. We aimed i) to

preserve a reasonable deepness and ii) to remain comparablein the number of layers with

79



3.4. DEEP CONVOLUTIONAL NEURAL NETWORK FOR VISUAL SALIENCY:
CHABONET Souad CHAABOUNI

Figure 3.6: Input data layer : di�erent features to ingest in the network.

a quite e�cient network Alexnet [63]. The ChaboNet architecture is summarized in �gure

3.7.

As in the majority of Deep CNN architectures designed for imageclassi�cation tasks

[54], ChaboNet is composed of a hierarchy of patterns. Each pattern consists of a cascade

of operations, followed by a normalization operation in some cases. The cascading of linear

and nonlinear operations successively produces high-level features. They are trasmitted

via a fully connected layer to the deepest layer which is a soft-max classi�er. It assigns

the con�dence for each patch to be salient or not. Due to quitea limited size of input

patches three patterns were proposed in this architecture.The pattern P1 below is a

usual combination of convolution, pooling and non-linear layers, P2 and P3 have the

same structure. The whole network can be detailed as follows.

Pattern P 1 :

Input convolution������! Conv1 pooling
����! Pool1 RELU����! R1

Pattern P p : with p 2 f 2; 3g

N p� 1 convolution������! Convp RELU����! Rp convolution������! Convpp RELU����! Rpp pooling
����! Poolp

The normalization operation was added after the patternsP1 and P2 only, as after

the pattern P3 the features are quite sparse. The architecture of ChaboNet is depicted in

�gure 3.7. The features after convolution layers are presented for the example image from

�gure 3.6. It can be seen that the �rst layer of the network performs more as low-pass

�lters and deeper the convolution layer is more \high-pass"e�ect is observable.
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Figure 3.7: Architecture of video saliency convolution network `ChaboNet'.
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Inspired by literature as [63], [115] where the size of convolution kernels is either

maintained constant or is decreasing with the depth of layers, in ChaboNet network, 32

kernels were used with the size of 12� 12 for the convolution layer of the �rst pattern P1.

In the second patternP2, 128 kernels for each convolutional layer were used. InP2 the

size of the kernels for the �rst convolutional layer was chosen as 6� 6 and for the second

convolution layer, a kernel of 3� 3 was used. Finally, 288 kernels with the size of 3� 3

were used for each convolution layer of the last patternP3. This allows a progressive

reduction of highly dimensional data before conveying themto the fully connected layers.

The number of convolution �lters is growing, on the contrary, to explore the richness of

the original data and to highlight structural patterns. For the �lter size, several tests were

made with the same values as in AlexNet [63], Shen's network [115], LeNet [69], Cifar

[61] and �nally, the size of 12� 12 was retained in the �rst layer of the patternP1 as it

yielded the best accuracy in saliency prediction problem.

Figure 3.8 summarizes the parameters used for each layer of the three patterns.

Figure 3.8: Detailed setting of each layer of `ChaboNet' network.

3.4.3 Visualization of features

It is interesting to visualize the purely spatial features computed by the designed CNN in

case when the network is con�gured to predict saliency only with primary RGB values. As

the feature integration theory states, the HVS is sensitive toorientations and contrasts.

This is what we observe in features going through layers of the network. The output of

convolution layers (see �gures 3.9, 3.10 and 3.11) yields more and more contrasted and

structured patterns. In these �guresconvi and convii stand for consecutive convolution

layers without pooling layers in between.
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Figure 3.9: (a) Input patch, (b) the output of �rst convolutio n layer and (c) the output
of the �rst pooling layer.

Figure 3.10: The output of the 2nd convolution layer, ' Conv2'and 'Conv22'.

Figure 3.11: The output of the third convolution layer, ' Conv3' and 'Conv33'.
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3.4.4 Training and validation of the model

To solve the learning problem and to validate the network with the purpose to generate a

robust model for salient area prediction, the solver of Ca�e[54] is repetitively optimizing

the network parameters in a forward-backward loop. The optimization method used is the

stochastic gradient descent `SGD' with a simple momentum. Indeed, in [120] the authors

explain the necessity of momentum method, which allows for avoiding of oscillations of a

simple gradient descent method in Deep networks optimization. In is caracterized by an

introduction of a speci�c term - velocity. It is a technique to accelerate gradient descent

by accumulating a velocity vector in directions of persistent reduction in the objective

function across iterations. The method is expressed by the following equation.

8
<

:

Vi +1 = mo � Vi �  � � � Wi � � � h@L
@WjWi i D i

Wi +1 = Wi + Vi +1

(3.4)

With W convolution coe�cients, V is the velocity vector,� = 0:001- is a �xed learning

rate, mo = 0:9 - is a momentum coe�cient,  = 0:00004 is the weight decay. The initial

value of the velocityV0 was set to zero. These parameter values are inspired by the values

used in [54] with the same �xed learning rate and show the bestperformances on a large

training dataset. Further in the manuscript we will come back to the algorithm and study

di�erent ways of its initialization. In the present chapter the initialization of convolution

coe�cients is realized randomly according to Gaussian distribution as proposed in [54].

The parameterization of the solver requires also setting the number of iterations at

training step. The number of iterations was de�ned accordingly to the equation (3.5):

iterations numbers = epochs�
Total images number

batch size
(3.5)

herebatch size represents the number of images for each network switching,epochsis the

number of times the totality of the dataset is switched by thenetwork. We will study this

parameter in the experimental part of the present chapter.

3.5 Generation of saliency map

The saliency map of each frameI of the video is constructed using the output value,

for each patch, of the trained deep CNN model. We proposed to interpolate sparse

classi�cation results. The soft-max classi�er that takes the output of the inner product
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layer as input, gives the probability for a patch to belonging to the salient class. Function

de�ned in equation 3.6 presents a generalization of the logistic function that compresses

a vector U of arbitrary real values of dimensiond to a vector of the same dimension but

with actual coordinate values in the range (0; 1).

� (U )q =
euq

P
r eur

; r = 1; :::; d (3.6)

Hence, from each frameI local regions having the same size as training patches (here

s = 100) are selected in a raster-scan scanning process. The output value of the soft-

max classi�er with regard to the salient class on each local region de�nes its degree of

saliency. If the score is assigned to the center of each patch, a sparse saliency map is

obtained M (x; y). It has a non-zero values only in the center of patch (x0; y0). In a

scanning process densely sampled, with a stride of 5 pixels,local regions were classi�ed.

Then score values assigned to the centers were interpolatedwith Gaussian �lters: in the

center of each local region, a GaussianG(x; y) was applied with a pick value ofA� M (x0 ;y0 )
2�� 2 .

The A-parameter value was experimentally choosen as 10. The spread parameter� was

�xed as a half-size of the patch. For each pixel in the image plane the Gaussians were

summed-up. Finally the map was normalized by saliency peak asin Wooding method for

GFDM (see section 1.3.1).

Figure 3.12: Psycho-visual 2D Gaussian depending to the fovea area on the local region
center predicted as salient.
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Algorithm 2 Predict saliency map (frameRGB, frame RMotion)

Require: frame RGB : RGB frame I of the video,
frame RMotion : residual motion map corresponds to I frame

Ensure: saliency map tabsaliency
begin
f rame 4k = concatenate(f rame RGB; f rame RMotion; 2)
SizePATCH = 100
STRIDE = 5
kernelXY = Matrix Zero[Height(f rame 4k)][W idth (f rame 4k)]
numCores = number of CPU processor
for each process Pi in numCoresdo

arrayRes = ( delayed(getPatchClassif ication )(patch)
for (x; y; patch)inslidingWindow (f rame 4k; STRIDE; (SizePATCH; SizePATCH)))

end for
positions = Research (positions in arrayRes> 0:0)
for x, y in positions do

for probI in range (0; int (10 � arrayRes[x][y])): do
kernelX = getGaussianKernelW ithCenter (int (HEIGHT ); x � STRIDE +
int (SizePATCH=2); sigma)
kernelY = getGaussianKernelW ithCenter (int (WIDTH ); y � STRIDE +
int (SizePATCH=2); sigma)
kernelXY = kernelXY + kernelX � kernelY:transpose()

end for
end for
kernelXY = kernelXY � (1=maxV al(kernelXY )) � 255
save saliency map :tab saliency = saveImage(kernelXY )

Algorithm 3 procedure getPatchClassi�cation (Patch)

Require: Patch size 100� 100
Ensure: Salient � prob= probability of Patch saliency

transformer = ca�e.io.Transformer()
transformer.set-transpose()
transformer.set-mean()
transformer.set-raw-scale()
transformer.set-channel-swap()
net.blobs['data'].data[...] = transformer.preprocess('data', Patch)
out = net.forward()
return Salient-prob = out[prob(Patch)] * Label[out[prob(Patch)]];
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Algorithm 4 procedure getGaussianKernelWithCenter(length, center, sigma):

Require: length, center, sigma
Ensure: Compute the gaussian kernel of saliency : gaussianKernel

auxKernel = cv2:getGaussianKernel(length � 3; sigma; cv2:CV 32F )
gaussianKernel = auxKernel [length+ ( length=2� center) : 2 � length+ ( length=2�
center); 0 :]

return gaussianKernel

3.6 Experiments and results

3.6.1 Data sets

To learn the model, HOLLYWOOD[88] [89] data set with approximately 20 hours of

recordings in total was used.

The HOLLYWOOD database contains 823 training videos and 884 videos for the

validation step. Video resolution are from 480� 320 to 720� 576 at 24� 25fps. The

distribution of spatial resolutions of videos are shown in �gure 3.13. The number of

subjects with recorded gaze �xations varies according to each video with up to 19 subjects.

The spatial resolution of videos varies as well. Despite thediscrepancy of these parameters,

we use it for model building as it is the only large-scale video database with recorded gaze

�xations. The HOLLYWOOD dataset contains 229825 frames for training and 257733

frames for validation. From the frames of the training set, 222863 salient patches and

221868 Non-salient patches were extracted. During the validation phase, 251294 salient

patches and 250169 Non-salient patches were used respectively. The distribution of the

data between \salient" and \Non-salient" classes is presented in table 3.2.

(a) training step (b) validation step

Figure 3.13: Histogram of video resolutions (W � H ) of \HOLLYWOOD" database in
training and validation step.
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Table 3.2: Distribution of learning data: total number of salient and Non-salient patches
selected from each database.

data sets training step validation step

HOLLYWOOD
SalientPatch 222863 251294

Non-salientPatch 221868 250169
total 444731 501463

3.6.2 Evaluation of patches' saliency prediction with deep CNN

The network was implemented using a powerful graphic card Tesla K40m and processor

(2 � 14 cores). Therefore a su�ciently large amount of patches, 256, was used per iter-

ation (see thebatch size parameter in equation (3.5)). After a �xed number of training

iterations, a model validation step was implemented: here the accuracy of the model at

the current iteration was computed on the validation data set, we call it \Test accuracy"

as mentionned in the �gure 3.15. In the following we �rst evaluate our proposal of patch

selection for training with �ltering of noise in training data (Method 2) against random

patch selection (Method 1), see section 3.3.2.

Evaluation of Noise �ltering in the training set for Non-salient patche s

In �gure 3.14 below, the curves of accuracy were shown on validation dataset a) for

selection of training Non-salient patches by random sampling with Method 1, and b)

when Non-salient patches are selected according to our proposed Method 2 using the

thirds rule.

(a) Non-salient patches by random sampling (b) Non-salient patches using the rule of third

Figure 3.14: Inuence of Non-salient patches selection method on resulting accuracy.
a)Random selection of patches; b) Selection of patches accordingly to 3/3
rule.
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It is clear, that the �ltering of noisy data in training datat set in our problem of

prediction of saliency of patches in video frames, allows toincrease classi�cation accuracy.

We also summarize these results in terms of peak an mean statistics in the table 3.3

below. The proposed method of �ltering noise in traning datain Non-salient class yields

the increase of max and mean accuracy of more than 7%.

Table 3.3: The accuracy results with two methods of Non-salient patch extraction: a) Random
Sampling in Non-salient area; b) Selection accordingly to 3/3 rule

ChaboNet3k with random sampling ChaboNet4k with 3 =3 rule selection

min (# iter ) 49:8% (#0) 50:11% (#0)

max (# iter ) 75:1% (#5214) 77:98% (#5214)

avg � std 71:6% � 0:072 77:30% � 0:864

In the following experiments we thus retain the second method for selection of Non-

salient patches: the 3/3 rule.

Evaluation of motion features

To evaluate our deep network and to prove the importance of the addition of the residual

motion map, two models were created with the same parameter settings and architecture

of the network: the �rst one contains R, G and B primary pixel values in patches, denoted

as ChaboNet3k. The ChaboNet4k is the model which uses RGB values and the normal-

ized energy of residual motion as input data. Figure 3.15 illustrates the variations of

the accuracy along iterations of all the models tested for the database "HOLLYWOOD".

Peak and mean accuracy values are presented in table 3.4).

The results of learning experiments on HOLLYWOOD data set yield the following

conclusions:

i)When adding residual motion as an input feature to RGB planevalues, the accuracy

is improved by almost 2%.

ii) The accuracy curve (�gure 3.15 (a) ) and the corresponding loss curve (�gure 3.15

(b)) show that the best trained model reached 80% of accuracywith the smallest loss (

at the iteration #8690 see table 3.4 ). Thus, it does not present an over-�tting situation.

The model obtained after 8690 iterations is used to predict saliency on the validation

set of this database, and to initialize the parameters when learning with transfer on

other used data sets in the Chapter 5. Graphs (c) and (d) of �gure 3.15 show a better

performance of theChaboNet4k model in terms of speed for training and validation.

Mean accuracy is also slightly higher: 1:53% of mean accuracy increase is observed with
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Figure 3.15: Training the network - Accuracy and loss vs iterations and seconds of
ChaboNet3k and ChaboNet4k for \HOLLYWOOD" database : (a) Accu-
racy vs iterations, (b) Loss on validation data set vs iterations, (c) Train loss
vs seconds, (d) Loss on validation data set vs seconds.

merely the same stability of training. The latter is expressed by the standard deviation

in the table 3.4.

Table 3.4: The accuracy results on HOLLYWOOD data set

ChaboNet 3k ChaboNet 4k

training � time 7h 47m 33s 6h 27m 2s

min � Accuracy (# iter ) 50:11% (#0) 65:73% (#0)

max � Accuracy (# iter ) 77:98% (#5214) 80:05% (#8690)

avg � Accuracy � std 77:30% � 0:864 78:73% � 0:930
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3.6.3 Validation of the ChaboNet architecture

To evaluate the ChaboNetarchitecture designed for saliency prediction, an experiment

was conducted with the HOLLYWOOD dataset. The popular AlexNet [63] and the

original LeNet [69] network architectures that are described in section 2.2.2, were used

as a base-line with data patches extracted from HOLLYWOOD data. They were trained

with two classes in the output corresponding to salient/Non-salient categories of patches.

For AlexNet, the network settings were taken exactly as in [63], that means the same

number and size of �lters at all layers, the same learning parameteres : leaning rate(0:01),

momentum coe�cient(0:9), weight decay(0:0005) and number of iterations (450:000). To

better visualize, in �gure 3.16 the iterations of AlexNet werelimited to 70:000. Similarly,

the original settings of LeNet were preserved from [69]. Here the number of iterations was

10:000. Chabonet Network training was performed with 17:400 iterations.

Obtained results summarized in �gure 3.16 showed that the ChaboNet network out-

performed the AlexNet and LeNet architectures (see table 3.5).In fact, with 17:400 iter-

ations, ChaboNet outperformed by 2% in mean accuracy the AlexNet architecture which

needed 450:000 iterations. When comparing the 10:000 �rst iterations of ChaboNet and

LeNet, mean accuracy was discovered to be better by more than 20%. Furthermore, the

stability of training expressed by small standard deviation is much stronger, see line 4 of

the table 3.5.

Figure 3.16: Comparison of ChaboNet architecture vs AlexNet andLeNet on Hollywood
4k data set.
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Table 3.5: Accuracy results : validation of ChaboNet 4k architecture vs AlexNet and
LeNet networks on HOLLYWOOD dataset.

ChaboNet4k AlexNet 4k LeNet4k
min (# iter ) 65:73%(#0) 49; 84%(#0) 49; 2%(#5500)

max (# iter ) 80:05%(#8690) 80; 27%(#3000) 51; 56%(#8500)

avg � std 78:73%� 0; 930 76; 77%� 6; 633 50; 17%� 0; 575

3.6.4 Evaluation of predicted visual saliency maps

After training and validation of the model on HOLLYWOOD data set, we choose the

model obtained at the iteration #8690 having the maximum value of accuracy 80:05%.

This model will be used to predict the probability of a local region to be salient. Hence,

the �nal saliency map will be built.

To evaluate our method of saliency prediction, performances were compared with the

most popular saliency models from the literature. A spatialsaliency models was choosen

: Signature Sal [47](the algorithm introduces a simple image descriptor referred to as

the image signature, performing better than Itti [52] model), GBVS (regularized spatial

saliency model of Harel[41]). and the spatio-temporal modelof Seo[113] built upon optical

ow.

The comparison of generated predicted saliency maps is performed on the basis of

AUC metric (see Chapter 1 for its de�nition).

In tables 3.6 below, the comparison of Deep CNN prediction of pixel-wise saliency

maps with the Gaze Fixations Maps (GFM) is shown.

The quality of predicted maps is compared with prediction byclassical saliency models

(Signature Sal, GBVS, Seo) also compared to the same reference: GFM. The comparison

is given in terms of the widely used AUC metric [67]. Mean valueof the metric for each

saliency model compared to the GFM is given together with standard deviation for a

sample of videos. Hence, in table 3.6 the maps built on HOLLYWOODdatabase with its

best patch saliency prediction modelChabonet4K are compared with GBVS, Signature

Sal, Seo.

The best AUC metric values are underscored. It can be stated that in general spatial

models (Signature Sal, GBVS or Itti) performed better in halfof the tested videos. This

is due to the fact that these videos contain very contrasted areas in the video frames,

which attract human gaze. They do not contain areas having aninteresting residual

motion. Nevertheless, theChaboNet4K model sytematically outperforms Seo's model

which uses motion features. This shows de�nitively that theuse of a Deep CNN is a way

for prediction of visual saliency in video scenes.
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Table 3.6: The comparison of AUC metric of gaze �xations 'GFM' vs predicted saliency
'GBVS', 'SignatureSal' and 'Seo') and our ChaboNet4k for the videos from
HOLLYWOOD data set

VideoName T otF rame = 2248 GFM vs GBVS GFM vs SignatureSal GFM vs Seo GFM vs ChaboNet4k

clipTest56 137 0; 76 � 0; 115 0; 75 � 0; 086 0; 64 � 0; 116 0; 77 � 0; 118

clipTest105 154 0; 63 � 0; 169 0; 57 � 0; 139 0; 54 � 0; 123 0; 69 � 0; 186

clipTest147 154 0; 86 � 0; 093 0; 90 � 0; 065 0; 70 � 0; 103 0; 81 � 0; 146

clipTest250 160 0; 74 � 0; 099 0; 69 � 0; 110 0; 47 � 0; 101 0; 71 � 0; 180

clipTest350 66 0; 65 � 0; 166 0; 68 � 0; 249 0; 57 � 0; 124 0; 72 � 0; 177

clipTest400 200 0; 75 � 0; 127 0; 67 � 0; 110 0; 60 � 0; 106 0; 71 � 0; 146

clipTest451 132 0; 70 � 0; 104 0; 59 � 0; 074 0; 57 � 0; 068 0; 63 � 0; 151

clipTest500 166 0; 82 � 0; 138 0; 84 � 0; 150 0; 75 � 0; 152 0; 84 � 0; 156

clipTest600 200 0; 75 � 0; 131 0; 678 � 0; 149 0; 53 � 0; 108 0; 71 � 0; 180

clipTest650 201 0; 72� ; 106 0; 74 � 0; 087 0; 61 � 0; 092 0; 70 � 0; 078

ClipTest700 262 0; 74 � 0; 128 0; 76 � 0; 099 0; 50 � 0; 059 0; 78 � 0; 092

clipTest800 200 0; 70 � 0; 096 0; 75 � 0; 071 0; 53 � 0; 097 0; 66 � 0; 141

ClipTest803 102 0; 86 � 0; 106 0; 87 � 0; 068 0; 73 � 0; 148 0; 88 � 0; 078

ClipTest849 114 0; 75 � 0; 155 0; 91 � 0; 070 0; 55 � 0; 122 0; 74 � 0; 132

Table 3.7, presents the time needed for testing one patch andthe creation of the

saliency map across one frame with a stride of 5 pixels.

Table 3.7: Time for testing one patch and one frame of video.

machine 8 �p machine 20 �p machine 2 � 14cores�p

patch 100 � 100 0.015s 0.028s 0.011s

frame 720 � 576 42.31s 18.49s 8.56s

3.7 Conclusion

Hence, in this chapter, we proposed our solution for prediction of saliency maps in video

in the framework of Deep learning. It consists in two steps. First, a deep convolutional

network to predict salient areas (patches) in video contentwas designed. Then dense

predicted visual saliency maps was computed on the basis of sparce patch classi�cation

results.

We have built an adequate Deep CNN architecture on the basis ofCa�e CNN. Deep

CNNs being sensitive to noise in training data, we proposed an adapted solution for

reducing it. In our case of salincy prediction of image patches, the video production rules
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such as the rule of thirds used for Non-salient patches prediction allowed for increase of

accuracy.

While the state-of-the art research used only RGB primary values for saliency pre-

diction in visual content, we have shown that for video, adding of features expressing

sensitivity of the human visual system to residual motion, is important.

The performances of prediction with Deep CNNs when di�erent kinds of features were

ingested by the network, such as color pixel values only, or color values with residual

motion- were compared.

We desigend a relatively shallow Deep CNN architecture and have compared it to

similar architectures AlexNet and LeNet. It has showed better prediction power in terms

of mean accuracy and stability of training phase.

Finally, a method for building pixel-wise saliency maps, using the probability of

patches to be salient, was extensively tested against reference spatial and spatio-temporal

saliency prediction models.

In the next chapter, we further explore the power of our Deep CNN architecture using

research �ndings on prediction of saliency by classical models.
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Chapter 4

Speci�c saliency features for deep

learning

4.1 Introduction

On the contrary to still natural images where saliency is \spatial", based on color con-

trasts, saturation contrasts, intensity contrasts� � � , the saliency of the video is also based

on the motion information of the objects with regard to the background. In the previ-

ous chapter, we have briey introduced motion features thatwe have added to primary

colour values in order to build a speci�c saliency predictorin video. In this chapter, we

will formalize them and go deeper in our experiments. Next in this chapter, we are also

interested in combination of learnt features and \engineered" features. Indeed, in the

classical saliency models [52], [41], [17], [15], the features were calculated on the basis of

phsycho-physiological �ndings on the sensitivity of HVS to above mentionned contrasts,

colours and orientations. These features are then integrated via fusion of feature maps

accordingly to the feature integration theory of Treisman and Gelade [125]. Hence the

question that we ask in this chapter is \Would known engineered features for saliency

prediction improve the prediction accuracy with our designed architecture". Here, we se-

lect one model for feature computation and perform a set of experiments on the proposed

architecture, integrating all methods of data and feature selection.
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4.2 Feature maps

4.2.1 Residual motion feature maps

In video, motion in the frame is a strong visual attractor[95]. Visual attention is not

attracted by the motion in general, but by the di�erence between the global motion in

the scene, expressing the camera work, and the \local" motion, that one of a moving

object[17] . This di�erence is called the \residual motion"[87]. In the previous chapter,

we have proposed to form a feature map expressing residual motion by its magnitude

energy. We used the method developed in[17], [87], [37]. Theprinciple of it consists in

computation of residual motion as the di�erence between rawmotion vectors estimated on

a pixel-wise basis, i.e. optical ow and a global motion model, expressing camera motion,

which is estimated from raw motion vectors. Hence calculation of the residual motion is

performed in three steps:

- i) the optical ow estimation, Here we used the optical ow estimator from [78].The

method is based on clasical Horn&Schunk formulation [46] of error functional to optimize.

Its main improvement compared to Horn&Schunk numerical scheme consists in the use of

congugated gradinet method for solving the linear system for the components of a motion

vector. In the following we will denote thus estimated motion vectors for each pixel in a

video frame by
�!
M c(x; y).

- ii) the estimation of the global motion from optical ow accordingly to the �rst

order complete a�ne model � . This model calculates the global or dominant motion by

reducing three types of movements of the camera (translations, rotations and zooms), the

following equation gives the displacement of the block (dx; dy) of the point (x0; y0) to the

position (x1; y1). We will denot the global motion vectors as
�!
M � (x; y).

8
<

:

dxi = a1 + a2(x1 � x0) + a3(x1 � x0)

dyi = a4 + a5(y1 � y0) + a6(y1 � y0)
(4.1)

Here, � = ( a1; a2; :::; a6)T ,

iii)The residual motion
�!
M r (x; y) expresses the di�erence between the global motion

�!
M � (x; y) and the local motion

�!
M c((x; y)) . The computation of residual motion is ful�lled

according to the equation(4.2):

�!
M r (x; y) =

�!
M � (x; y) �

�!
M c(x; y) (4.2)

An example of residual motion map is given in Figure 4.1.
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(a) Original frame of SRC14: # f rame 30. (b) Original frame of SRC14: # f rame 31.

(c) Absolute value of dx component #f rame 30.(d) Absolute value of dy component #f rame 30.

(e) Normalized energy of movement #f rame 30.

Figure 4.1: Energy of motion and its components on SRC14 (#frame 30) from IRCCyN
dataset [16] .
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In order to link the strength of motion to the dynamics of eachframe, as a �nal feature

map we take the squared normL2 of vectors
�!
M r (x; y) normalised by its maximum in the

frame. According to our experience this allows to reduce parasite e�ectos on contrasted

static contours, compared to the real motion of objects. Thefeature map at a pixel

position (x,y) is computed acordingly to the following equation :

f mot (I; (x; y)) =
k

�!
M r (x; y) k2

2

max(x;y )in 
 k
�!
M r (x; y) k2

2

(4.3)

The sensitivity of HVS to motion is selective. Daly [23] proposes a pixel-wise linear

model of sensitivity accordingly to the speed of motion. Here, the at area detection

is performed by calculating and thresholding energy gradient. The temporal saliency

St (I; (x; y)) is then deduced by �ltering the residual motion by the maximum tracking

capacity of the eye. Indeed, the authors [17] reported that the human eye can not follow

objects with a speed greater than 80� =s [23]. Also the value of the motion saliency acheive

its maximum between the speed of 6� =s and 30� =s. Psychovisual �ltering proposed by

Daly [23] follows the following equation:

St (I; (x; y)) =

8
>>>>>><

>>>>>>:

1
6

�!
M r (x; y); if 0 �

�!
M r ((x; y)) < �! � 1

1; if �! � 1 �
�!
M r (x; y) < �! � 2

� 1
50

�!
M r (x; y) + 8

5 ; if �! � 2 �
�!
M r (x; y) < �! � max

0; if �! � max �
�!
M r (x; y)

(4.4)

where�! � 1 = 6 � =s, �! � 2 = 30� =s and �! � max = 80� =s.

In our work we use a simpli�ed version, supposing that objectmotion is in the interval

of linearity of Daly's model, which it is not too strong. Hencethe energy is a good indicator

of interest to a moving object.

The choice of primary spatial features to complete the primary RGB values with \en-

gineered" spatial contrasts can be multiple. Indeed variousways of contrast computation

were proposed in [17], [103], [128]. In the present research, we resort to the work in [17]

which yields coherent results accordingly to previous sutdies in [15].

To prove the signi�cance of the energy of residual motion, wehave conducted an

experiment. In this experiment, we compute the AUC metric (well described in the �rst

chapter 1.3.3) between gaze �xation map and the energy of residual motion map. We

see that such an experience is obligatory to perform since itwill count how many gaze

�xation will fall on an area having an interesting residual movement. Here, we used the
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most older and popular datasets CRCNS [51] and IRCCyN [16] that are created and

benchmarked for the task of saliency prediction in natural videos. These two data sets

are deeply described and detailed in next chapter 5.3.1. Usedvideos of CRCNS data set

was illustrated in table 4.2.

Results summerized in table 4.1 and 4.3 show an interesting correspondence between

gaze �xation and residual motion map especially for the \gamecube02" video of CRCNS

database where we got a 0:56 value of auc metric, and for the \SRC23" video of IRCCyN

database where we obtain a very interesting result (auc = 0:68). In table 4.3, 8 videos

on 12 tested videos give an auc value more than 0:55. Here, we can explain the low

value of auc for \SRC02", \SRC07" and \SRC13' videos by that objects in movement are

not signi�cant for those scenes. This experience can just encourage us to go further and

deeply to prove our fundamental idea of the interest of the integration of residual motion

as input to deep CNNs.

Table 4.1: The comparison of AUC metric of gaze �xations 'GFM' vs the energy of Resid-
ualMotion map for 890 frames of CRCNS videos.

VideoName T otF rame = 890 GFM vs ResidualMotion

beverly03 80 0:54� 0:119

gamecube02 303 0:56� 0:152

monica05 102 0:52� 0:110

standard02 86 0:499� 0:06

tv-announce01 73 0:472� 0:181

tv-news04 82 0:535� 0:186

tv-sports04 164 0:500� 0:147

Table 4.2: Frames of CRCNS videos.

beverly03 gamecube02 monica05 standard02 tv-announce01 tv-news04 tv-sports04
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Table 4.3: The comparison of AUC metric of gaze �xations 'GFM' vs the energy of
ResidualMotion map for 456 frames of IRCCyN videos.

VideoName T otF rame = 456 GFM vs ResidualMotion
SRC02 37 0:46� 0:025
SRC03 28 0:55� 0:112
SRC04 35 0:55� 0:191
SRC05 35 0:57� 0:148
SRC06 36 0:603� 0:156
SRC07 36 0:48� 0:028
SRC10 33 0:55� 0:086
SRC13 35 0:59� 0:147
SRC17 42 0:48� 0:071
SRC19 33 0:64� 0:078
SRC23 40 0:68� 0:094
SRC24 33 0:51� 0:045
SRC27 33 0:53� 0:074

4.2.2 Primary spatial features

For saliency prediction, the primary spatial features suchas simple RGB values are fre-

quently used[117]. Nevertheless, feature integration theory [125] stipulates that HVS is

sensetive to speci�c contrasts: colours, brightness, orientations. Hence, we found inter-

esting to add \engineered" contrast features to the input layer of our network. Would it

increase the predictive power of a deep architecture? To answer to our question, we used

the contrast features from the saliency model [17] .

The choice of features from [17] is conditioned by their relatively low computational

cost and a good performance we have stated. The authors propose seven color contrast

descriptors. As the color space 'Hue Saturation Intensity' (HSI) is more appropriate to

describe the perception and color interpretation by humans, the descriptors of the spatial

saliency are built in this color space. Five of these seven local descriptors depend on the

value of the hue, saturation and/or intensity of the pixel. These values are determined

for each frameI of a video sequence, from a saturation factorf sat and an intensity factor

f int , calculated using the equations (4.5),(4.6):

f sat (I; i; j ) =
Sat(I; i ) + Sat(I; j )

2
� (kmin + (1 � kmin ) � Sat(I; i )) (4.5)

f int (I; i; j ) =
Int (I; i ) + Int (I; j )

2
� (kmin + (1 � kmin ) � Int (I; i )) (4.6)

Here Sat(I; i ) is the saturation of the pixel i at coordinates (x i ; yi ) and the value

at Sat(I; j ) is the saturation of the pixel at coordinates (x j ; yj ) adjacent to the pixel i .
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Int (I; i ) and Int (I; j ) are the intensity values respectively. The constantkmin = 0; 21 sets

the minimum value for the protection of the interaction of pixel i when the saturation

approaches zero [17]. Contrast descriptors are calculatedby equations (4.7: : : 4.14):

1. color contrast: it is obtained from the two factors of saturation and intensity. This

descriptor X 1(I; i ) is calculated for each pixeli and its eight connected neighborsj of the

frame I , as in equation(4.7):

X 1(I; i ) =
X

j 2 � i

f sat (I; i; j ) � f int (I; i; j ) (4.7)

2. hue contrast: a hue angle di�erence on the color wheel can produce a contrast.

In other words, this descriptor is related to the pixels having a hue value far from their

neighbors (the largest angle di�erence value is equal to 180� ), see equation (4.8):

X 2(I; i ) =
X

j 2 � i

f sat (I; i; j ) � f int (I; i; j ) � � hue(I; i; j ) (4.8)

The di�erence in color � hue between the pixeli and its neighborsj = 1 : : : 8 is calcu-

lated accordingly to equations (4.9) and (4.10) :

� hue =

8
<

:

� � (I; i; j ) if � � (I; i; j ) � 0:5

1 � � � (I; i; j ) else
(4.9)

� � (I; i; j ) = jHue(I; i ) � Hue(I; j )j (4.10)

3. contrast of opponents: the colors located on the opposite sides of the hue wheel are

creating a very high contrast. An important di�erence in tone level will make the contrast

between active color (hue < 0; 5 ' 180� ) and passive, more salient. This contribution to

the saliency of the pixeli is de�ned by equation (4.11):

8
<

:

X 3(I; i ) =
P

j 2 � i
f sat (I; i; j ) � f int (I; i; j ) � � hue(I; i; j )

if Hue (I; i ) < 0:5 and Hue(I; j ) � 0:5
(4.11)

4. contrast of saturation: occurs when low and high color saturation regions are

close to each other. Highly saturated colors tend to attract visual attention, unless a low

saturation region is surrounded by a very saturated area. Itis de�ned by equation (4.12):
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X 4(I; i ) =
X

j 2 � i

f sat (I; i; j ) � f int (I; i; j ) � � sat (I; i; j ) (4.12)

with � sat denoting the saturation di�erence between the pixeli and its 8 neighborsj , see

equation (4.13):

� sat (I; i; j ) = jSat(I; i ) � Sat(I; j )j (4.13)

5. contrast of intensity: a contrast is visible when dark colors and shiny ones coexist.

The bright colors attract visual attention unless a dark region is completely surrounded

by highly bright regions. The contrast of intensity is de�ned by equation (4.14):

X 5(I; i ) =
X

j 2 � i

f sat (I; i; j ) � f int (I; i; j ) � � int (I; i; j ) (4.14)

where � int denotes the di�erence of intensity between the pixeli and its 8 neighborj .

� int (I; i; j ) = jInt (I; i ) � Int (I; j )j (4.15)

6. dominance of warm colors: the warm colors -red, orange and yellow- are visually

attractive. These colors (hue < 0:125 ' 45� ) are still visually appealing, although the

lack of contrast (hot and cold colors in the area) is observedin the surroundings. This

feature is de�ned by equation (4.16):

V6(I; i ) =

8
<

:

Sat(I; i ) � Int (I; i ) if 0 � Hue(I; i ) < 0:125

0 otherwise
(4.16)

7. dominance of brightness and saturation: highly bright, saturated colors are con-

sidered attractive regardless of their hue value. The feature is de�ned by equation (4.17):

V7(I; i ) = Sat(I; i ) � Int (I; i ) (4.17)

The normalization (V1��� 5(I; i ) = X 1��� 5
j � i j

) of the �rst �ve descriptors ( X 1��� 5) by the num-

ber of neighboring pixels (j� i j = 8) is performed. In [15]; [23] it is reported that mixing a

large quantity of di�erent features increases the performance of prediction. This is why

it is attractive to mix primary features (1-7) with those which have been used in previous

works of saliency prediction[117], that is simple RGB planes of a video frame.

In the follow-up of this chapter we will evaluate performance of our designed ChaboNet
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architecture with input layers completed with engineered contrat features, but also con-

sider these choices of input layers in the overall testing framework including �ltering of

noise in \Non-salient" training patches that we proposed in the previous chapter.

4.2.3 Evaluation of parameters of Deep network

The network was implemented using a powerful graphic card Tesla K40m and processor

(2� 14 cores). Therefore a su�ciently large amount of patches, 256, was used per iteration,

see thebatch size parameter in equation (3.5). After a �xed number of training iterations,

a model validation step is implemented. At this stage the accuracy of the model at the

current iteration is computed. In this section, we put in place and study the inuence of

input features to accelerate the training of the network. Hence, an increase in network

accuracy achieves the training stabilization in a lesser number of iterations and then

ensures the complexity reduction. In these two experiments, purely random selection

process of Non-salient patches was used in our training dataset.

F irst experiment . To evaluate our deep network and to prove the importance of the

addition of the residual motion map, we pretrained two created models with the same

parameter settings and architecture of the network: the �rst one contained R, G and

B, primary pixel values in patches ( denoted asDeepSaliency3k). The DeepSaliency4k

presents the model using RGB and the normalized magnitude ofresidual motion as input

data. In this experiment, we have used a big number of epochs (epochs= 100:15) in order

to ensure more process of the database and therfore to obtainbetter trained model. The

other parameters of the solver (baselr : 0:001; max iter : 174000;lr policy : \ f ixed 00;

momentum : 0:9 and weight decay : 4e � 05; test iter : 1958test interval : 1000) are

�xed to run this experiment.

The following �gure 4.2 illustrates the variations of the accuracy along iterations of

the both models 3k and 4k for the \HOLLYWOOD" database.

Table 4.4: The accuracy results on HOLLYWOOD dataset in the �rst experiment

3k model 4k model

HOLLYWOOD

min (# iter ) 50:1%(#0) 49:8%(#0)

max (# iter ) 74:8%(#3000) 76:6%(#3000)

avg � std 71:6%� 0:018 73:2%� 0:020
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Figure 4.2: First experiment: Accuracy vs iterations of the both models 3k and 4k for
\HOLLYWOOD" database.

Second experiment. The second experiment for saliency prediction is conducted when

limiting the maximal number of iterations to prevent us fromfalling into over�tting prob-

lem. Instead of increasing the number of training iterations with a limited number of data

samples before each validation iteration, as this is the case in the work of [62], we pass

all the training set before the validation of the parametersand limit the maximal number

of iterations in the whole training process. We used the sameequation (3.5) but with a

smaller value of epochs in training step (epochs= 10:15). Here, a validation step is only

started when the whole training data has passed through the network. The equation of

validation intervall is written as follows (4.18):

V alidation interval =
f Total images numbergtrainingstep

f batch sizegtrainingstep
(4.18)

In this experiment, the used parameters for the Hollywood dataset are:test iter : 1958 ;

test interval : 1738;baselr : 0:001; max iter : 17400;lr policy : \ f ixed 00; momentum :

0:9; weight decay: 4e� 05; The results are presented in table 4.5 and illustrated in�gure

4.3.
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Figure 4.3: Second experiment: Accuracy vs iterations of 3k, 4k for \HOLLYWOOD"
database.

Table 4.5: The accuracy results on HOLLYWOOD dataset during the second experiment

3k model 4k model

min (# iter ) 49:8%(#0) 55:6%(#0)

max (# iter ) 75:1%(#5214) 76:6%(#5214)

avg � std 71:6%� 0:072 73:6%� 0:060

This drastically decreases (12 times approximately) the training complexity, without

the loss of accuracy (see tables 4.4 and 4.5 for 3k and 4k models).

For the HOLLYWOOD database, adding residual motion map improves the accuracy

with almost 2% on the 4k model compared to the 3k model. The resulting accuracy of

our proposed network along a �xed number of iterations showsthe interest of adding

the residual motion as a new feature together with spatial feature maps R, G and B.

Nevertheless, the essential of accuracy is obtained with purely spatial features (RGB).

This is why we add spatial contrast features which have been proposed in classical visual

saliency prediction framework [17] in the second experiment in next section.
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4.2.4 Evaluation of prediction of saliency of patches

The salient patches were extracted on the basis of Wooding'smap according to the process

described in section 3.3.1. The maximum number of salient patches extracted by frame

was two. In the �rst experiment we have selected Non-salient patches randomly excluding

the area of salient patches. The results of classi�cation accuracy are shown in �gure 4.4

for all models, we have considered in our work : 3k � model were only RGB values were

considered ; 4k � model were we added residual motion; 8k � model were contrast features

together with residual motion ; RGB 8k � model where we used all features with RGB

values; and �nally HSV 8k � model presents the HSV values with all features.

(a) Accuracy vs iterations

Figure 4.4: Random selection of Non-salient patches: variations of accuracy along itera-
tions of 3k, 4k, 8k, RGB8k and HSV8k for HOLLYWOOD dataset.

Table 4.6: The accuracy results on HOLLYWOOD dataset during random selection of Non-
salient patches experiment.

3k model 4k model 8k model RGB8k model HSV8k model

min (# iter ) 49:8%(#0) 55:6%(#0) 49:8%(#0) 50:1%(#0) 50:1%(#0)

max (# iter ) 75:1%(#5214) 76:6%(#5214) 72:9%(#12166) 76:9%(#5214) 73:5%(#3476)

avg � std 71:6%� 0:072 73:6%� 0:060 70:1%� 0:067 73:5%� 0:078 70:5%� 0:068
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We can state that 4k � model outperforms all other models in terms of mean accuracy

and that adding contrast features does not make improvementas the network learns the

contrast features throw its layers. Analyzing the results, we have noticed that purely

random selection process of Non-salient patches yielded errors in our training dataset.

Hence, we have applied the second method based on 3/3 rule for Non-salient patches

selection (see section 3.3.2). The results of this experiment are shown in �gure 4.7. We

can state that in terms of mean statistics adding \engineered" contrast features to the

input layer does not improve prediction accuracy, which remains the best in the case of

4K model.

Figure 4.5: Selection of Non-salient patches according to 3=3 rule : Accuracy vs iterations
of 3k, 4k, 8k and RGB8k for \HOLLYWOOD" database.

Table 4.7: The accuracy results on HOLLYWOOD dataset during the selection of Non-salient
patches according to 3=3 rule.

3k model 4k model 8k model RGB8k model

min (# iter ) 50:11%(#0) 65:73%(#0) 49:88%(#0) 49:92%(#0)

max (# iter ) 77:98%(#5214) 80:05%(#8690) 75:98%(#8690) 79:19%(#6952)

avg � std 77:30%� 0:864 78:73%� 0:930 74:55%� 0:968 78:14%� 0:703
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4.2.5 Evaluation of predicted visual saliency maps

In the literature, various evaluation criteria were used todetermine the level of similarity

between visual attention maps and gaze �xations of subjectslike the normalized scanpath

saliency 'NSS', Pearson Correlation Coe�cient 'PCC', and the area under the ROC curve

'AUC' [85][26]. The \Area under the ROC Curve" measures the precision and accuracy

of a system with the goal of categorizing entities into two distinct groups based on their

features. The image pixels may belong either to the categoryof pixels �xated by subjects,

either to the category of pixels that are not �xated by any subject. More the area is large,

more the curve deviates from the line of the random classi�er(area 0:5) and approaches

to the ideal bend of the classi�er (area 1:00). A value of AUC close to 1 indicates a

correspondence between the predicted saliency and the eye positions. While a value

close to 0:5 presents a random generation of the salient areas by the model computing

the saliency maps. Therefore the objective and subjective saliency di�ers strongly. In

our work, visual saliency being predicted by a deep CNN classi�er, we have computed

the hybrid AUC metric between predicted saliency maps and gaze-�xations as in [67] (

detailed description of AUC metric is given in 1.3.3). The results of the experiments

are presented in the tables 4.8, 4.9 and 4.10 below on an arbitrary chosen subset of 12

videos from HOLLYWOOD dataset. The �gures depicted in the tables correspond to the

maximum value obtained during the training and validation (as presented in table 4.6 ).

Indeed, with 4k model the results are better for almost all clips, see highlighted �gures

in table 4.8. For the �rst experiment the maximal number of iterations was set to 174000

and for the second experiment, this number was �xed 10 times lower. From table 4.8 it

can be stated that i) adding primary motion features, such asresidual motion improves

the quality of predicted visual attention maps whatever is the training of the network.

The improvement is systematic and goes up to 38% in case of clipTest105 (in the �rst

experiment); ii) the way to train the network, we propose with lower number of iterations

and all training data used does not strongly a�ect the performances.

From table 4.9 it can be stated that adding primary features to color space improves

the quality of predicted visual attention maps. In table 4.9we compare all our predicted

saliency models with gaze �xations. It comes out that more complex models yield better

results: up to 42% of improvement in clipTest250. The quality of the prediction of patches

(see table 4.6 and �gure 4.4 ) RGB8kmodel outperforms HSV8kmodel. Therefore, for

comparison with reference models from the state of the art,GBV S, SignatureSal and

spatio-temporal model by Seo [113], named \Seo" we useRGB 8k model, see table 4.10

below.
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Table 4.8: The comparison, with AUC metric, of the two experiments for 3K and 4K
saliency models vs gaze �xations 'GFM' on a subset of HOLLYWOOD dataset

First Experiment Second Experiment

VideoName GFM vs 3k model GFM vs 4k model GFM vs 3k model GFM vs 4k model

clipTest1 0; 58612� 0; 19784 0; 61449� 0; 17079 0; 55641� 0; 20651 0; 77445� 0; 14233

clipTest56 0; 74165� 0; 17394 0; 75911� 0; 12509 0; 65480� 0; 19994 0; 82034� 0; 12727

clipTest105 0; 35626� 0; 33049 0; 74312� 0; 19479 0; 66285� 0; 20553 0; 74740� 0; 14689

ClipTest200 0; 50643� 0; 241466 0; 59407� 0; 20188 0; 53926� 0; 21976 0; 69309� 0; 16428

ClipTest250 0; 548647� 0; 240311 0; 754679� 0; 15476 0; 41965� 0; 28409 0; 72621� 0; 15028

ClipTest300 0; 58236� 0; 22632 0; 66156� 0; 16352 0; 33808� 0; 19672 0; 79186� 0; 09732

ClipTest350 0; 67679� 0; 29777 0; 739803� 0; 16859 0; 47971� 0; 40607 0; 80467� 0; 15750

ClipTest500 0; 58351� 0; 20639 0; 75242� 0; 15365 0; 36761� 0; 36777 0; 82230� 0; 15196

ClipTest704 0; 59292� 0; 18421 0; 68858� 0; 16278 0; 46192� 0; 21286 0; 76831� 0; 11186

ClipTest752 0; 41710� 0; 11422 0; 63240� 0; 16870 0; 25651� 0; 25830 0; 58621� 0; 21568

ClipTest803 0; 67961� 0; 24997 0; 82489� 0; 14023 0; 55019� 0; 18646 0; 87474� 0; 06946

ClipTest849 0; 39952� 0; 31980 0; 67103� 0; 20623 0; 30190� 0; 27491 0; 81148� 0; 10363

Table 4.9: The comparison metric of gaze �xations 'GFM' vs Deep saliency '3k', '4k', '8k'
, 'RGB8k' and 'HSV8k' model) for the video from HOLLYWOOD

VideoName GFM vs 3k model GFM vs 4k model GFM vs 8k model GFM vs RGB8k model GFM vs HSV8k model

clipTest1 0; 55641� 0; 20651 0; 77445� 0; 14233 0; 58518� 0; 17991 0; 725073� 0; 168168 0; 76923� 0; 09848

clipTest56 0; 65480� 0; 19994 0; 82034� 0; 12727 0; 78106� 0; 090992 0; 82244� 0; 07295 0; 81651� 0; 06100

ClipTest105 0; 66285� 0; 20553 0; 74740� 0; 14689 0; 71597� 0; 11538 0; 63652� 0; 22207 0; 81365� 0; 08808

ClipTest200 0; 53926� 0; 21976 0; 69309� 0; 16428 0; 74225� 0; 19740 0; 77948� 0; 17523 0; 68396� 0; 17425

ClipTest250 0; 41965� 0; 28409 0; 72621� 0; 15028 0; 51697� 0; 21393 0; 84299� 0; 10787 0; 69886� 0; 13633

ClipTest300 0; 33808� 0; 19672 0; 79186� 0; 09732 0; 79265� 0; 10030 0; 74878� 0; 12161 0; 83009� 0; 08418

ClipTest350 0; 47971� 0; 40607 0; 80467� 0; 15750 0; 78924� 0; 16506 0; 72284� 0; 16996 0; 80009� 0; 232312

ClipTest500 0; 36761� 0; 36777 0; 82230� 0; 15196 0; 68157� 0; 15676 0; 85621� 0; 16137 0; 88067� 0; 09641

ClipTest704 0; 46192� 0; 21286 0; 76831� 0; 11186 0; 80725� 0; 11455 0; 78256� 0; 09523 0; 79551� 0; 071867

ClipTest752 0; 25651� 0; 25830 0; 58621� 0; 21568 0; 78029� 0; 08851 0; 59356� 0; 17804 0; 76665� 0; 07837

ClipTest803 0; 55019� 0; 18646 0; 87474� 0; 06946 0; 84338� 0; 06868 0; 88170� 0; 10827 0; 85641� 0; 06181

ClipTest849 0; 30190� 0; 27491 0; 81148� 0; 10363 0; 70777� 0; 08441 0; 91089� 0; 05217 0; 71224� 0; 07434
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Table 4.10: The comparison of AUC metric gaze �xations 'GFM' vspredicted saliency
'GBVS', 'SignatureSal' and 'Seo') and our RGB8kmodel for the videos from
HOLLYWOOD dataset

VideoName GFM vs GBVS GFM vs SignatureSal GFM vs Seo GFM vs RGB8k model

clipTest1 0; 81627� 0; 10087 0; 69327� 0; 13647 0; 50090� 0; 06489 0; 725073� 0; 168168

clipTest56 0; 76594� 0; 11569 0; 75797� 0; 08650 0; 64172� 0; 11630 0; 82244� 0; 07295

clipTest105 0; 63138� 0; 16925 0; 57462� 0; 13967 0; 54629� 0; 12330 0; 63652� 0; 22207

clipTest200 0; 75904� 0; 17022 0; 87614� 0; 10807 0; 65675� 0; 13202 0; 77948� 0; 17523

clipTest250 0; 74555� 0; 09992 0; 69339� 0; 11066 0; 47032� 0; 10193 0; 84299� 0; 10787

clipTest300 0; 82822� 0; 11143 0; 81271� 0; 12922 0; 75965� 0; 13658 0; 74878� 0; 12161

clipTest350 0; 65136� 0; 16637 0; 68849� 0; 249027 0; 57134� 0; 12408 0; 72284� 0; 16996

clipTest500 0; 82347� 0; 13901 0; 84531� 0; 15070 0; 75748� 0; 15382 0; 85621� 0; 16137

ClipTest704 0; 80168� 0; 08349 0; 85520� 0; 06826 0; 57703� 0; 07959 0; 78256� 0; 09523

ClipTest752 0; 73288� 0; 17742 0; 54861� 0; 15555 0; 71413� 0; 13138 0; 59356� 0; 17804

ClipTest803 0; 86825� 0; 106833 0; 87556� 0; 06896 0; 73847� 0; 14879 0; 88170� 0; 10827

ClipTest849 0; 75279� 0; 15518 0; 91888� 0; 07070 0; 55145� 0; 12245 0; 91089� 0; 05217

Proposed RGB8kmodel saliency model turns to be winner more systematically(6/12

clips) than each reference model.

4.2.6 Discussion

Visual saliency prediction with deep CNN is still a recent while intensive research. The

major bottle-neck in it is the computation power-and memoryrequirements. We have

shown, that a very large amount of iterations - hundreds of thousands are not needed for

prediction of interesting patches in video frames. Indeed,to get better maximal accuracy

with smaller amount of iterations we added motion feature, and the maximal number

of iterations can be limited (up to 18000 in our case comparedto 450000 in AlexNet or

180000 in our �rst experience) accompanied by another data selection strategy: all data

from training set are passed before each validation iteration of the learning, see tables

4.4, 4.5. Next, we have shown that in case of a su�cient training set, adding primary

motion features improves prediction accuracy up to 2% in average on a very large data

set (HOLLYWOOD test) containing 257733 video frames. Hence thedeep CNN captures

the sensitivity of Human Visual System to motion.

When applying a supervised learning approach to visual saliency prediction in video,

one has to keep in mind that gaze-�xation maps, which serve for selection of training

\salient" regions in video frames, not only express the \bottom-up" attention. Humans

are attracted by stimuli, but in case of video when understanding a visual scene with time,

they focus on the objects of interest, thus reinforcing the \top-down" mechanisms of visual
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attention[40]. Hence, the prediction of patches of interestby a supervised learning, we

mix all mechanisms: bottom-up and top-down.

In order to re-inforce the bottom-up sensitivity of HVS to contrasts, we completed the

input data layers by speci�c contrast features well studiedin classical saliency prediction

models. As we could not state the improvement of performance in prediction of saliency

of patches in video frames in average (see table 4.5) a more detailed experience clip -

by- clip was performed on a sample of clips from HOLLYWOOD dataset when comparing

resulting predicted saliency maps. This series of experiments resumed in table 4.11, shows

that indeed adding features, expressing local color contrast slightly improves performances

with regard to the reference bottom-up spatial (GBVS, SignatureSal) and spatio-temporal

models (Seo)). Hence, the mean improvement of AUC of the complete model with motion,

contrast features and primary HSV colour pixel values with regard to Itti, Harell and Seo

models are 0:00677, 0:01560, 0:15862 respectively. These results are not large (except for

Seo model). Hence, we retained the 4k-model de�nitively for further experiments.

Table 4.11: The mean improvement of the complete model for 1614 frames.

� (RGB8k model - GBVS) � (RGB8k model - SignatureSal) � (RGB8k model - Seo)

AUC 0; 00677� 0; 16922 0; 01560� 0; 19025 0; 15862� 0; 21036

4.3 Conclusion

Hence in this chapter, we completed the RGB pixel values by low-level features of contrast

and colour which are easy to compute and have proven e�cient in former spatio-temporal

predictors of visual attention. Furthermore, we compared di�erent proposed input layers

in both frameworks of training data selection: random an dusing the 3/3 rule of visual

content production. Despite the accuracy of prediction of saliency of patches is not

imporved with added contrast input layer, the quality of predicted saliency maps is sligtly

better in terms of AUC metric. What is clearly seen from the experimental results is that

adding residual motion maps in the input layer of the networkis necessary for prediction

of visual saliency in the dynamic video content.

An important point in Deep learning is the availablility of a large amount of training

data. Unfortunately in rela-world applications, speci�cally in health care and medical ap-

plications the databases are quite small, and merely encounts hudreds of training samples

in various medical studies. Therefore, the next part of the manuscript will be dedicated

to studying the transfer learning and its application whenasmall amount of data are

available.
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Part III

Transfer Learning

In real life problems such as medical applications, the limited number and size of

available data sets could be an obstacle for using powerful Deep learning algorithms. The

deep CNNs cannot be trained on a small data. The transfer learning, and speci�cally a

part of it which is \�ne tunning" [6] presents a solution to overcome this limits. This

part of the manuscript is composed of two chapters. In the �rst one, the transfer learning

scheme for saliency prediction is explained and benchmarked. In the second chapter, the

di�culty of the very small amount of data for testing patient s with dementia is adressed

and a solution is proposed.



Souad CHAABOUNI
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Chapter 5

Transfer learning with deep CNN for

saliency prediction

5.1 Introduction

The main purpose of transfer learning is to resolve the problem of di�erent data distribu-

tion, generally, when the training samples of source domainare di�erent from the training

samples of the target domain. Visual saliency models cannot be founded only on bottom-

up features, as suggested by feature integration theory. The central bias hypothesis, is

not respected neither. In this case, the top-down componentof human visual attention

becomes prevalent. Visual saliency can be predicted on the basis of seen data.

To predict saliency in video using Deep CNN, the biggest problem is the low number

of available video benchmarks with the recorded gaze �xation data. Di�erent databases

which have been recorded and made publicly available for e.g. video quality prediction

[16] dozens up to one or two hundred of videos. The only publiclarge database is HOL-

LYWOOD [88] with 1707 videos available with gaze recordings.If saliency prediction

in video is realized with a supervised learning approach we are in the framwork of any

supervised classi�cation problem requiring su�cient amount of data for training.

In this chapter, the main contribution is to transfer the features learned with the deep

network on a large data set in order to train a new network on a small data set with the

purpose to predict salient areas.

5.2 Transfer learning with deep networks

The generalization power of Deep CNN classi�ers strongly depends on the quantity of

data and on the coverage of data space in the training data set. In real-life applications,
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e.g. saliency prediction for visual quality assessment [16] the database volumes are small.

In order to predict saliency in these small collections of videos, transfer learning approach

was nedeed. It presents a technique used in the �eld of machine learning that increases

the accuracy of learning either by using it in di�erent tasks, or in the same task [134].

Transfer learning in Deep CNN presents a powerful tool to enable training on a smaller

data set than the base data set [134]. Several studies focused on transferring from higher

layers [136], on transferring a pretrained layer to set an unsupervised learning [90].

Transfer learning scheme which we developed in this chapter, is de�ned as a �ne-tuning

techniques [6]. Here the authors [6], de�ned two variants which have been explored in

the literature for supervised learning with �ne-tuning. The �rst which was introduced in

2006 in [44] [45] [109] [7], combines two steps: Letx is the raw input, hl (x) is the ouput

of the representation functionh at the level l of the input data.

1. Initialize the supervised predictor (parametrized representation functionhL (x) and

the linear or non-linear predictor),

2. Fine-tune the supervised predicor with respect to a supervised training criterion,

based on a labled training set of (x; label) pairs, and optimizing the parametres of

the supervised predictor.

The second variant of �ne-tuning involves using all the levels of representation as input

to the predictor. Here, the representation function is �xed and only the linear or non-

linear predictor parametres were optimized [72], [73].\ Train a supervised learner taking

as input (hk(x); hk+1 (x); : : : ; hL (x)) for some choice of 0� k � L , using a labeled training

set of (x; label) pairs."

Our problem is typically a �ne-tunning. We use the same architecture of ChaboNet,

the same number and size of �lters. Indeed, we propose to adress the same (binary)

classi�cation problem on both datasets for prediction of salient or Non-salient class of

patches. Its solution consists of two steps: i) learning thewhole binary classi�cation

model on a large data set, ii) transfer on small data set : initialization of parameters'

values in learning process by the optimal parameter values obtained on a large data set. As

the classi�cation task is the same in i) and ii) the initialized parameters were supposed to

yield a \better" local minimum of loss function, than in the case of a random initialization

when training on a small dataset.

In terms of optimization method which is SGD, transfer learning means that the

network parameters are not initialized randomly, but theirinitialization corresponds to a

local mimimum of loss function for a large data set. A small database can be considered as

di�erent data, thus there won't be the risk of over�tting accordingly to [134]. Starting from
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pre-trained parameter values can bring improvement in optimization. Two initialization

schemes were tested: that one proposed by Bengio et al. [134]and ours explained in the

following (see next �gure 5.1).

(a) (b)

Figure 5.1: Comparaison between our proposed scheme of transfer learning and the Ben-
gio's one : a) transfer scheme proposed by Bengio et al. [134], (b) Our
proposed scheme of transfer learning for saliency prediction.

Bengio et al train the models on two datastes: A and B, which hetakes as a half of

ImageNet database. The coloured rectangles in the �gure 5.1 depict network parameters

trained independently (see �rst two rows of the �gure a)). Then the two lower rows de-

pict di�erent ways of initialization of parameters in the training proposed by him. In the

self fer control, the parameters at the �rst three layers of the network that is trained

on the database B, are used for initialization of training. Parameters of remaining layers

are initialized randomly ( see B3B and B3B+ notation in the third line of �gure 5.1 a).

Finally, the network is re-trained. Here, these parameters are either \freezed" , as in B3B

scheme or retarined together with the randomly initializedlayers (B3B+). Such a scheme

makes sense when the two databases are su�ciently large. In case when the database (B)

is small the second scheme seems to be more e�cient. Here the parameters of three �rst

layers are initialized by the parameters trained on the database A. The argumentation of

the authors of using parameters of only �rst layers for such an initialization [134] consists

in saying that the �rst network layers act merely as wavelet �lters, producing features

such as blobs and lines on all kinds of databases, and only in deeper layers the network

parameters will be adapted to highlight speci�c structuresin images to be classi�ed.

Our classi�cation problem consists in saliency predictionfor a given patch in a video
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frame. And if we put aside the \top-down" aspects of visual saliency related to the

scene interpretation, then the structures related to our classi�cation problems should be

the same everywhere accordingly to feature integration theory [125] : contrasts, bright

colours, changes in orientations and local singularities of motion. This is why we propose

a scheme of A6B+ (see the last line of �gure 5.1 b)). This means that the network

parameters for training on a small database are initializedfor all layers by the parameter

values optimized on a large database. In the following section we will formalize this model

with regard to the parameter optimization method which has been choosen as stochastic

gradient descent accordingly to the litterature [62], [117] ...

5.2.1 Stochastic gradient descent 'SGD'

The learning of Deep CNN parameters is frequently done with the technique of Stochastic

Gradient Descent (SGD) [12]. The basic iterative equation for �nding optimal parame-

ters W optimizing (minimizing in our case) an objective functionf (W) is expressed in a

classical gradient method [11] [58], by the following equation: repeat until convergence

8
<

:

Wi +1 = Wi � � @
@Wi

f (Wi ); i = 1; :::T

W0 = N (0; � 2)
(5.1)

HereWi are network parameters of each convolutional layer at the iteration i , T is the

total number of iterations, W0 is the initial value of parameters. The common approach in

optimization with Deep NNs consists in a random initialization by a Gaussian distirbution

with a zero mean and a small variance of the order of 10� 3. We denote it by N (0; � 2),

� is the learning rate, andf is the loss function to minimise. The stochastisity in SGD

consists in a random selection of packets of data from training set which are used at

each iteration. The main SGD problem is that, as a usual gradient descent method, it

converges to a local optimum in case when the loss function isnot convex. However, it is

still the best learning algorithm when the training set is large accordingly to the results

reported for visual classi�cation tasks [13].

5.2.2 Transfer learning method

Taking as the basic formulation of the SGD method (see eq. 5.1) and to transfer the

classi�cation features obtained from the larger database into the new smaller database as
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we have proposed in 2.5, the following principle (5.2) is used for each deep CNN layer.

8
<

:

Wi +1 = Wi � � @
@Wi

f (Wi )

W0 = W 0
n

(5.2)

with W 0
n presents the best learned model parameters pretrained on the large data set.

In optimization for Deep CNNs and namely in Ca�e framework [63], more sophisticated

method of gradient descent is used, namely the \momentum". Indeed, as stated in [98]

in Deep learning, the objective would have the form of a long shallow ravine leading

to the optimum and steep walls on the sides. In this case standard SGD will tend to

oscillate across the narrow ravine since the negative gradient will point down one of the

steep sides rather than along the ravine towards the optimum. The objectives of deep

architectures have this form near local optima and thus standard SGD can lead to very

slow convergence particularly after the initial steep gains. Momentum is one method for

pushing the objective more quickly [54] along the shallow ravine. The momentum update

is given by, 5.3. In this equation, we omit any indexes exceptiteration number i for

simplicity:

8
<

:

Vi +1 = m � Vi �  � � � Wi � � � h@L
@WjWi i D i

Wi +1 = Wi + Vi +1 j W0 = W 0
(5.3)

With � = 0:001- a �xed learning rate,m = 0:9 - momentum coe�cient,  = 0:00004 -

wieght decay andW 0 presents the best learned model parameters pre-trained on the large

dataset. The initial value of the velocityV0 was set to zero. These parameter values are

inspired by the values used in [54] with the same �xed learning rate and show the best

performances on a large training dataset.

5.3 Experiments and results

5.3.1 Real-life problem : small data sets

To e�ciently train a deep network, a very large amount of training data is needed. Hence,

in [34] they used hundreds of thousands of windows for training a network in an object

recognition task. In the problem of saliency prediction, a very large video data set with

available gaze �xations was needed. After reviewing di�erent data sets, we found the only

large publicly available data set, the so-called HOLLYWOOD[88], [89]. In this data set
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gaze �xations were recorded in a task-driven experiment of action recognition. This data

set was used for saliency prediction in video. We have described this dataset in 3.6. Here

we just remind the total number of video frames with available gaze �xations: 229825

frames for training and 257733 frames for validation. Application-oriented data sets are

usually small.

One of the oldest and well-studied datasets for saliency models benchmarking is CR-

CNS proposed by Itti [51]. It contains just 46:000 frames. Aonther well-known dataset

recorded for video quality assessment tasks is IRCCyN [16] data set. Its number of frames

is 61 times smaller than of HOLLYWOOD data set.

We also wish to evaluate the predictive power of proposed Deep CNN classi�er in the

problem of \top-down" visual attention prediction. From previous research at LaBRI, we

have at our disposal an egocentric video dataset with gaze �xations of 31 subjects recorded

in a task-driven visual experiment. The subjects were instructed to look at manipulated

objects. This dataset, GTEA [27], consists of 17 videos totalling 17632 frames. Therefore,

it is also too small for training attention prediction with deep CNNs.

Table 5.1, summarizes the total number of salient and Non-salient patches selected from

video frames of the three small data sets.

Table 5.1: Distribution of learning data: total number of salient and Non-salient patches
selected from each database.

Datasets training step validation step

CRCNS
SalientPatch 33370 8373

Non-salientPatch 30491 7730
total 63861 16103

IRCCyN-MVT
SalientPatch 2013 511

Non-salientPatch 1985 506
total 3998 1017

GTEA
SalientPatch 9961 7604

Non-salientPatch 9949 7600
total 19910 15204

In the follow-up of this section we describe these datasets and present statistics of

selected training data.
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CRCNS data set

In the CRCNS 1 data set [51], 50 videos of 640� 480 resolution are available with gaze

recordings of up to eight di�erent subjects. To create the training, validation and testing

set, each video of CRCNS was split according to the following scheme: one frame for

testing, one frame for validation and four frames for training set. From the training

set, 30370 salient- and 30491 Non-salient patches were selected. From the validation set,

a total of 16103 patches were extracted. Table 5.1 resumes the number of salient and

Non-salient patches selected for each step : \train" and \validation".

Table 5.2: Preview of CRCNS Data set.

IRCCYN data set

IRCCYN [16] database is composed of 31 SD videos and gaze �xations of 37 subjects.

These videos contain certain categories of attention attractors such as high contrast, faces

(see table 5.3). However, videos with objects in motion are not frequent. Our purpose

of saliency prediction modeling the \smooth pursuit" cannot be evaluated by using all

available videos of IRCCyN data set. Videos that do not contain a real object motion

were eliminated. Therefore, only SRC02, SRC03, SRC04, SRC05, SRC06, SRC07, SRC10,

SRC13, SRC17, SRC19, SRC23, SRC24 and SRC27 were used in experiments, this data

set is referenced as IRCCyN-MVT in the following. For each chosen video of this database,

one frame is taken for the testing step, one frame for the validation step and four frames

for the training step. The distribution of the data between \salient" and \Non-salient"

1available at https://crcns.org/data-sets/eye/eye-1
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classes is presented in the table 5.1.

Table 5.3: Preview of IRCCyN Data set.

GTEA data set

Egocentric video is becoming popular in various important applications such as monitoring

and re-education of patients and disabled persons [56]. Publicly available GTEA corpus

[27] contains 17 egocentric videos with a total duration of 19 min . GTEA data set

consists of videos with 15fps rate and a 640� 480 pixel resolution. The subjects who

recorded the video were preparing meal and manipulating di�erent every day life objects

(table 5.4 presents a preview of some video from GTEA corpus). On this data set, we have

conducted a psycho-visual experiment with the task of observation of manipulated objects.

The gaze �xations have been recorded with a HS-VET 250Hz eye-tracker from Cambridge

Research Systems Ltd at a rate of 250 Hz per second. The experiment conditions and

the experiment room were compliant with the recommendationITU-R BT.500-11 [53].

Videos were displayed on a 23 inches LCD monitor with a native resolution of 1920� 1080

pixels. To avoid image distortions, videos were not re-sized to screen resolution. A mid-
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gray frame was inserted around the displayed video. 31 participants have been gathered

for this experiment, 9 women and 22 men. For 3 participants some problems occurred

in the eye-tracking recording process. These 3 records werethus excluded. From the

17 available videos of GTEA data set, 10 were selected for thetraining step with a total

number of frames of 10149. And 7 videos with 7840 frames were selected for the validation

step. The split of salient and Non-salient patches for the total of 19910 at the training

step and 15204 at the validation step is presented in table 5.1 .

Table 5.4: Preview of GTEA Data set.

5.3.2 Learning on small data sets

To apply the proposed transfer learning scheme, the learning of a whole binary classi�ca-

tion model on a large data set is required. In chapter 3, the experiment of training and

validation of a model for saliency prediction in natural videos was done under the large

\HOLLYWOOD" data set. As described in section 3.6 of chapter 3, the best ChaboNet4k

model trained on \HOLLYWOOD" data set was obtained at the iteration 8690 with an ac-

curacy value of 80:05%. While the best ChaboNet3k model trained on \HOLLYWOOD"

data set was obtained at the iteration 5214 with an accuracy value of 77:98%. These

two models were used to initialize features values in learning process of ChaboNet3k and

ChaboNet4k on \CRCNS", \IRCCyN-MVT" and \GTEA".

Proposed Transfer learning method on CRCNS data set

Figure 5.2 illustrates the variations of the accuracy and loss along iterations and time in

seconds for trainingChaboNet3k and ChaboNet4k models on \CRCNS" data set. The
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gain of using 4k against 3k as input to the deep CNNs is about 0:22% in terms of mean

accuracy. The best model is obtained at the iteration #32500with an accuracy of 91:66%.

Figure 5.2: Accuracy and loss vs iterations of ChaboNet3k and ChaboNet4k for \CR-
CNS" database : a) Accuracy vs iterations, (b) Loss on validation data set vs
iterations, (c) Train loss vs seconds, (d) Loss on validation data set vs seconds
.

Table 5.5: The accuracy results on CRCNS data set

ChaboNet 3k ChaboNet 4k

training � time 1h 3min 42s 1h 7min 58s

interval � stabilization [7500 : : : 30000] [12500 : : : 33500]

min � Accuracy (# iter ) 87:65% (#11500) 88:48% (#15750)

max � Accuracy (# iter ) 91:45% (#28500) 91:66% (#32500)

avg � Accuracy � std 90:26% � 0:892 90:48% � 0:631
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Proposed Transfer learning method on IRCCyN-MVT data set

Figure 5.3 illustrates the variations of the accuracy along iterations of all models tested

for \IRCCyN-MVT". Almost four thousand patches were used for the training of the deep

CNN. To overcome the lack of data, the learning was transferredfrom the best obtained

models on \HOLLYWOOD" data set to train the IRCCyN-MVT.

Figure 5.3: Accuracy and loss vs iterations of ChaboNet3k and ChaboNet4k for videos
with motion from \IRCCyN-MVT" database : (a) Accuracy vs iterat ions, (b)
Loss on validation data set vs iterations, (c) Train loss vs seconds, (d) Loss
on validation data set vs seconds.

With the same number ofepoch= 100, the ChaboNet4k model reached the interval of

stabilization, expressed by smaller standard deviation ofaccuracy values at all iterations

before theChaboNet3k model did. With an interesting accuracy of 92:77% (see table

5.6) and a small loss of almost 0:35, the best trainedChaboNet4k model was obtained.
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Table 5.6: The accuracy results on IRCCyN-MVT data set.

ChaboNet 3k ChaboNet 4k

training � time 0h 4m 6s 0h 4m 25s

interval � stabilization [5584 : : : 6800] [8976 : : : 10288]

min � Accuracy (# iter ) 89:94% (#5632) 90:72% (#9264)

max � Accuracy (# iter ) 92:67% (#6544) 92:77% (#9664)

avg � Accuracy � std 91:84 � 0:592 92:24% � 0:417

Proposed Transfer learning method on GTEA data set

The results of accuracy on GTEA data set are rather good : average accuracy is about

90% (see table 5.7 ). Here,ChaboNet3k and ChaboNet4k models were tested. From

the plots in �gure 5.4, we can see that theChaboNet4k model is little less e�cient than

ChaboNet3k model. It is not surprising, the salient patches are predicted by our method

according to each visual task : on the Hollywood data set the subjects are instructed to

observe actions. They are attracted by the dynamic content of the visual scene. Hence,

residual motion is important in the global model. In GTEA data set, the subjects are

interested in speci�c objects be they moving or not. Hence, the spatial appearance is

important.

Table 5.7: The accuracy results on GETA data set

ChaboNet 3k ChaboNet 4k

training � time 0h 22m 20s 0h 24min 03s

interval � stabilization [6630 : : : 12948] [12090 : : : 16458]

min � Accuracy (# iter ) 86; 46% (#7566) 89; 80% (#9750)

max � Accuracy (# iter ) 91:61% (#6786) 90; 30% (#15678)

avg � Accuracy � std 90:78% (#0 : 647) 90; 13% (#0 ; 106)
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(a) (b)

(c) (d)

Figure 5.4: Accuracy and loss vs iterations of ChaboNet3k and ChaboNet4k for \GTEA"
database : a) Accuracy vs iterations, (b) Loss on validation data set vs iter-
ations, (c) Train loss vs seconds, (d) Loss on validation data set vs seconds
.

5.3.3 Validation of the proposed transfer learning vs learning

from scratch

On three \small" data sets, two experiments were conducted.In the �rst experiment, the

parameters of CNN were initialized randomly from scratch foreach layer. In the second

experiment the best parameters of the network trained on thelarge HOLLYWOOD data

set were used as the initialization of parameter learning oneach \small" data set. The

architecture of the CNN remained unchanged in both experiments.

i) First experiment: start training of all ChaboNet layers randomly from scratch.
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ii) Second experiment: initialize features parameters of all ChaboNet layers from the

best model \features" already trained on the large HOLLYWOODdata set (see section

3.6 of chapter 3) and then �ne-tuned on the target data set.

The results presented in �gure 5.5, 5.6 and 5.7 show that using the transfer learning

of CNN parameters improves not only the value of mean accuracybut also the gain in

terms of stabilty of training on the three \small" data sets.

(a) Proposed transfer learning method (b) Learning from scratch

ChaboNet3k ChaboNet4k

Learning from scratch

min# iter 51:72%#0 52:00%#0

max# iter 90:18%#28250 90:25%#31000

avg� std 87:11%� 4:655 87:85%� 4:169

Proposed transfer scheme

min# iter 75:71%#5250 77:95%#8750

max# iter 91:45%#28500 91:66%#32500

avg� std 89:77%� 2:085 89:81%� 2:035

(c) Deep Network performance

Figure 5.5: Evaluation and comparison of our proposed methodof transfer learning VS
learning from scratch on CRCNS data set.

Figure 5.5 illustrates obtained results of the both experiments conducted on CRCNS

data set. Here, using transfer learning of the best model trained on HOLLYWOOD

data set, we found a higher mean accuracy with almost 2% increase on the both models

(�gure 5.5). The maximum value of accuracy obtained on the CRCNS data set with the

\ChaboNet4k" model is 90:25% at the iteration 31000 using random initialization and

91:66% at the iteration 32500 using pretrained HOLLYWOOD model (see table (c) of

�gure 5.5). The mean performance of the \ChaboNet4k" model still remains better than

performance of the \ChaboNet3k" model.

On the second \small" IRCCyN-MVT database, the following �gure 5.6 illustrates
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the variations of the accuracy the both models \ChaboNet3k" and \ChaboNet4k" for

each experiment. The results show that starting the training with the best parameters of

HOLLYWOOD2 model ensures the gain of 6% in the mean accuracy on the \ChaboNet4k"

model and the gain of 3% in the mean accuracy on the \ChaboNet3k". The second

important point is that with the �rst experiment of \learnin g from scratch", the training

need more than 1500 iterations to achieve the stabilizationin terms of accuracy. Just

about twenty iterations is enough to stabilize the accuracyusing the proposed transfer

learning method.

(a) Proposed transfer learning method (b) Learning from scratch

ChaboNet3k ChaboNet4k

Learning from scratch

min# iter 50:19%#0 50%#16

max# iter 92:48%#2864 89:74%#2480

avg� std 86:46%� 8:592 85:40%� 6:818

Proposed transfer scheme

min# iter 70:80%#5216 77:83%#8848

max# iter 92:67%#6544 92:77%#9664

avg� std 89:96%� 4:159 91:08%� 3:107

(c) Deep Network performance

Figure 5.6: Evaluation and comparison of our proposed methodof transfer learning VS
learning from scratch on IRCCyN-MVT data set.

The results of accuracy on \GTEA" data set are rather good : average accuracy

is about 90% (see table (c) in �gure 5.7). Here, we have tested \ChaboNet3k" and

\ChaboNet4k" models. From the plots and the table in �gure 5.7, we can see that results

are improved in the second experiment with the proposed transfer scheme. Mean accuracy

of the both models was executed an increase of almost 2%.
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(a) Proposed transfer learning method (b) Learning from scratch

ChaboNet3k ChaboNet4k

Learning from scratch

min# iter 50:03%#0 44:63%#0

max# iter 91:45%#2106 91:50%#2418

avg� std 88:62%� 4:827 88:44%� 4:990

Proposed transfer scheme

min# iter 83:32%#6396 85:48%#9282

max# iter 91:61%#6786 91:03%#9438

avg� std 90:27%� 1:528 89:85%� 0:801

(c) Deep Network performance

Figure 5.7: Evaluation and comparison of our proposed methodof transfer learning VS
learning from scratch on GTEA data set.

5.3.4 Validation of the proposed transfer learning vs state-of-

the-art transfer learning method

To validate our proposed scheme of transfer learning, the initialization schemes proposed

by Bengio et al.[134] was tested. In the research of Bengio etal. [134] addressing object

recognition problem, the authors show that the �rst layers of a Deep CNN learn char-

acteristics similar to the responses of Gabor's �lters regardless of the data set or task.

Hence in their transfer learning scheme just the three �rst convolutional layers already

trained on a database are used as the initialization of parameters for other database with

the same size. The coe�cients on deeper layers are left free for optimization, that is ini-

tialized from scratch. Here, the context is not the same. Indeed, saliency prediction task

is di�erent from object recognition task. Thus the proposalis to initialize all parameters

in all layers of the network to train on a small data set by the best model trained on a

large data set.

Two experiments were conducted with the same small data set CRCNS and IRCCyN-
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MVT , and the same de�nition of network \ChaboNet4k":

i) Our method: start training of all ChaboNet4k layers from the best model already

trained on the large HOLLYWOOD data set (see section 5.2.2).

ii) Bengio's method: the three �rst convolutional layers are trained on the HOLLY-

WOOD data set and then �ne-tuned on the target data set, otherlayers are trained on

target data set with random initialization.

The following �gure 5.8 illustrates the variations of the accuracy along iterations of the

two methods performed with the data sets \CRCNS" , \IRCCyN-MVT" and \GTEA".

One can see less stable behaviour when the transfer method ofBengio et al. is applied.

(a) Comparison on IRCCyN-MVT data set (b) Comparison on CRCNS data set

(c) Comparison on GTEA data set

Figure 5.8: Evaluation and comparison of our proposed methodof transfer learning.
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Table 5.8: The accuracy results on IRCCyN-MVT, CRCNS and GTEA dataset.

Our transfer method BENGIO transfer method
IRCCyN-MVT CRCNS GTEA IRCCyN-MVT CRCNS GTEA

max (# iter ) 92:77%(#9664) 91:66%(#32500) 91%(#9438) 92:08%(#9680) 91:55%(#31250) 91%(#9750)

avg � std 91:08%� 3:107 89:81%� 2:035 89%(#0 :8) 87:48%� 7:243 89:37%� 3:099 90%(#1 :9)

5.3.5 Evaluation of predicted visual saliency maps

After training and validation of the model on CRCNS data set, wechoose the model

obtained at the iteration #32500 having the maximum value ofaccuracy 91:66%. This

model will be used to predict the probability of a local region to be salient. Hence, the

�nal saliency map will be built. For the IRCCyN-MVT data set, th e model obtained at

the iteration #9664 with the accuracy of 92:77% is used to predict saliency. In the same

manner, the model with the accuracy of 91:03% obtained at the iteration #9438 is used

for the GTEA data set.

To evaluate our method of saliency prediction, performances were compared with the

most popular saliency models from the literature. Two spatial saliency models were chosen

: Itti and Koch spatial model [52], Signature Sal [47] (the algorithm introduces a simple

image descriptor referred to as the image signature, performing better than Itti model),

GBVS (regularized spatial saliency model of Harel [41]). and the spatio-temporal model

of Seo [113] built upon optical ow. The mean value of the AUC metric together with

standard deviation were computed.

In tables 5.10 and 5.11 below, we show the comparison of Deep CNN prediction of

pixel-wise saliency maps with the gaze �xations \GFM" and compare performances with

the most popular saliency prediction models (Signature Sal, GBVS, Seo). Hence, in table

5.9, we compare ourChaboNet4k model with the model of Itti, GBVS and Seo.

Table 5.9: The comparison of AUC metric of gaze �xations 'GFM' vs predicted saliency
'GBVS', 'IttiKoch' and 'Seo') and our ChaboNet4k for 890 frames of CRCNS
videos

VideoName T otF rame = 890 GFM vs GBVS GFM vs IttiKoch GFM vs Seo GFM vs ChaboNet4k

beverly03 80 0:78 � 0:151 0:77 � 0:124 0:66 � 0:172 0:79 � 0:118

gamecube02 303 0:73 � 0:165 0:74 � 0:180 0:61 � 0:179 0:82 � 0:126

monica05 102 0:75 � 0:183 0:73 � 0:158 0:54 � 0:156 0:79 � 0:133

standard02 86 0:78 � 0:132 0:72 � 0:141 0:61 � 0:169 0:71 � 0:181

tv-announce01 73 0:60 � 0:217 0:64 � 0:203 0:52 � 0:206 0:63 � 0:215

tv-news04 82 0:78 � 0:169 0:79 � 0:154 0:61 � 0:162 0:72 � 0:145

tv-sports04 164 0:68 � 0:182 0:69 � 0:162 0:56 � 0:193 0:78 � 0:172
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Table 5.10: The comparison of AUC metric of gaze �xations 'GFM'vs predicted saliency
'GBVS', 'SignatureSal' and 'Seo') and our ChaboNet4k for the videos from
IRCCyN-MVT data set

VideoName T otF rame = 1227 GFM vs GBVS GFM vs SignatureSal GFM vs Seo GFM vs ChaboNet3k GFM vs ChaboNet4k

src02 37 0; 68 � 0; 076 0; 49 � 0; 083 0; 44 � 0; 017 0; 012 � 0; 077 0; 48 � 0; 073

src03 28 0; 82 � 0; 088 0; 87 � 0; 057 0; 76 � 0; 091 0:00 � 0:000 0; 70 � 0; 149

src04 35 0; 79 � 0; 058 0; 81 � 0; 029 0; 59 � 0; 057 0; 12 � 0; 214 0; 57 � 0; 135

src05 35 0; 73 � 0; 101 0; 67 � 0; 122 0; 48 � 0; 071 0; 39 � 0; 186 0; 53 � 0; 128

src06 36 0; 85 � 0; 080 0; 71 � 0; 151 0; 73 � 0; 148 0:00 � 0:000 0; 60 � 0; 180

src07 36 0; 72 � 0; 070 0; 73 � 0; 060 0; 57 � 0; 060 0; 34 � 0; 284 0; 55 � 0; 135

src10 33 0; 87 � 0; 048 0; 92 � 0; 043 0; 82 � 0; 101 0:00 � 0:000 0; 60 � 0; 173

src13 35 0; 79 � 0; 103 0; 75 � 0; 111 0; 64 � 0; 144 0; 36 � 0; 201 0; 52 � 0; 138

src17 42 0; 55 � 0; 092 0; 33 � 0; 099 0; 45 � 0; 033 0:00 � 0:000 0; 51 � 0; 098

src19 33 0; 76 � 0; 094 0; 68 � 0; 086 0; 59 � 0; 117 0; 46 � 0; 075 0; 75 � 0; 123

src23 40 0; 76 � 0; 050 0; 69 � 0; 070 0; 58 � 0; 067 0; 03 � 0; 169 0; 66 � 0; 105

src24 33 0; 63 � 0; 071 0; 58 � 0; 054 0; 55 � 0; 059 0; 23 � 0; 252 0; 50 � 0; 052

src27 33 0; 59 � 0; 117 0; 64 � 0; 091 0; 52 � 0; 057 0:00 � 0:000 0; 54 � 0; 106

Table 5.11: The comparison of AUC metric gaze �xations 'GFM' vspredicted saliency
'GBVS', 'SignatureSal' and 'Seo') and our 4k model for the videos from
GTEA data set

VideoName T otF rame = 7693 GFM vs GBVS GFM vs SignatureSal GFM vs Seo GFM vs ChaboNet4k

S 1 CofHoney C 1 undist 1099 0; 811 � 0; 109 0; 800 � 0; 091 0; 578 � 0; 120 0; 732 � 0; 157

S 1 P ealate C 1 undist 1199 0; 824 � 0; 099 0; 846 � 0; 080 0; 594 � 0; 139 0; 568 � 0; 185

S 1 T ea C 1 undist 1799 0; 770 � 0; 127 0; 816 � 0; 074 0; 567 � 0; 135 0; 745 � 0; 211

S 2 Cheese C 1 undist 499 0; 813 � 0; 116 0; 766 � 0; 0138 0; 552 � 0; 127 0; 643 � 0; 218

S 2 Cof fee C 1 undist 1599 0; 802 � 0; 098 0; 720 � 0; 094 0; 594 � 0; 116 0; 636 � 0; 193

S 3 Hotdog C 1 undist 699 0; 768 � 0; 103 0; 851 � 0; 088 0; 585 � 0; 114 0; 415 � 0; 145

S 3 P eanut C 1 undist 799 0; 757 � 0; 115 0; 758 � 0; 135 0; 519 � 0; 100 0; 570 � 0; 162

In general, it can be stated from the results on CRCNS data set (table 5.9) that spatial

models (Signature Sal, GBVS or Itti) performed better in three tested videos. This is

due to the fact that these videos contain very contrasted areas in the video frames, which

attract human gaze. They do not contain areas having an interesting residual motion.

Nevertheless, theChaboNet4K model outperforms the Seo model which uses motion

features such as optical ow.
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However, for IRCCyN-MVT data set, see table 5.10, despite videos without any motion

were set aside, the gain in the proposed model is not very clear due to the complexity of

these visual scenes, such as presence of strong contrasts and faces.

The comparison for some videos of GTEA data set with di�erentmanipulated objects

was conducted. In general we can state that spatial models perform better (Signature

Sal, GBVS). Nevertheless, our \ChaboNet4k" model outperformsthat one of Seo in 4

cases on this 7 examples. This shows that de�nitly the use of aDeep CNN is a way for

prediction of top-down visual saliency in video scenes.

5.4 Conclusion

The transfer learning in the task of saliency prediction is interesting and allows to solve

the problem of the insu�ciency training data. The transfer learning scheme introduced

and applied to the prediction of saliency on small data sets by �ne-tuning parameters

pre-trained on a large data set (Hollywood) successfully outperforms the state-of-the-art,

i.e. Bengio's method.

Hence in this chapter we tackled the problem of prediction of visual attention on

video content in a realistic context, when the volume of training data is small. We have

developed a transfer learning/�ne-tunning approach wherethe parameters at all layers of

the network were initialized by pre-trained on a large data base values. It gives a relatively

small, but still a gain compared to the state-of-the art method. Furthermore, the stability

of training caracterized by the standard deviation of accuracy along iterations is improved

by almost 50%.

The next chapter deals with the second use case of this work which is the application

for testing of patients with neuro-degenerative diseases.
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Chapter 6

Application of saliency prediction for

testing of patients with neuro -

degenerative diseases

6.1 Introduction

Studies of visual attention of patients with Dementia such as Parkinson's Disease Demen-

tia and Alzheimer Disease is a promising way for non-invasivediagnostics. Past research

showed, that people su�ering from dementia are not reactivewith regard to degradations

on still images [22]. Attempts are being made to study their visual attention relatively to

the natural video content [126]. If a degraded visual content is displayed for patients with

dementia, the delays in their reactions on novelty and \unusual" novelty of the visual

scene are expected. Nevertheless, large-scale screening ofpopulation is possible only if

su�ciently robust automatic prediction models can be built. In the medical protocols

the detection of Dementia behavior in visual content observation is always performed in

comparison with healthy, \normal control" subjects. Hence,it is a research question per

see as to develop an automatic prediction models for speci�cvisual content to use in

psycho-visual experience involving Patients with Dementia (PwD). The di�culty of such

a prediction resides in a very small amount of training data both in terms of quantity

subjects as in terms of quantity of speci�cally post-produced content. In litterature, the

di�erence in saccadic eye movements of PwD compared to control subjects of the same

age have been stated [22]. We hypothesize that a di�erence invisual �xation maps of

healthy subjects and PwD will also exist.

In this chapter we aim to build an automatic prediction modelof attention of healthy

subjects with regard to intentionally degraded content. Hence, the �rst study conducted
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in this framework aimed to identify the di�erence of reaction of healthy subjects to \nor-

mal" dynamic video content and \unusual distractors", which are intentionnaly introduced

degaradation. Then, taking into account a small amount of speci�cally produced video

content, optimal transfer learning strategy for training the model in case of very small

amount of training data was deployed. The comparison with gaze �xation maps and clas-

sical visual attention prediction models was performed. Results are interesting regarding

the reaction of normal control subjects against degraded areas in videos.

6.2 Material and methods

To analyze the anomalies of eye saccades at the prodromal stage of neurodegenerative

diseases, and respecting the bio-medical research protocol \LYLO" [123] cf, Appendix,

two types of full HD video (1920x1080 with the frame-rate of 25frames per second)

were created : normal videos and a set of arti�cially degraded videos. The purpose is to

conduct a psycho-visual experiment to compare �xations on the degraded regions and the

induced visual attention maps for normal control subjects and patients with dementia.

In this experiment, medical researchers choose the nature and locus of degradations as

texture modi�cation. The duration of video clips was chosento avoid the phenomena

of visual fatigue and is of 28 seconds. Hence, this database isspeci�ed by a very small

size: only 700 frames in each of the two video clips. The original \normal" video content

and degraded one were displayed to the normal control subjects and are supposed to be

displayed to PwD in a free viewing conditions. We will now describe the nature and the

methods for creating degradations on natural video for thispurpose.

6.2.1 De�nition of degradations

As the original material for creation of \degraded videos" wehave selected full HD video

(1920 x 1080 pixels) at 25 fps produced in the framework of theproject ICOS-HD at Labri

and available on OpenVideo.org platform [93], [8]. Each natural video was processed frame

by frame in order to create naturally degraded areas.

Hence, degradations were added, such as Gaussian blur or pixelation, on objects in

speci�c areas at di�erent locations in the video frames maintaining spatial coherency

along the time (the objects in the center, right or left, top or bottom). Two kinds of

placement were performed: i) on an environmental object, ii) on the background. We

avoided placing the degradations on moving objects in the video sequences, as they are

natural attractors of attention and the goal of the experiment is to measure the curiosity

of the subjects with regard to an unusual content. A Gaussianblur was used with the
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size of [30x30]. The spread parameter value was chosen as� = 50 accordingly to the size

of degraded areas with regard to the resolution of frames (see Gaussian equation 6.1).

G(x; y) =
1

2�� 2
e

� ( x 2+ y 2 )
2� 2 (6.1)

After applying the degradation on videos, two video sequences have been created, one

for \normal" video and one for degraded videos (see �gure 6.1). Hence, each sequence is

composed of two videos separated by a black screen of 200 milliseconds duration ensuring

resetting the status of the visual attention of observers. The overall duration of thus

Figure 6.1: (A) Normal video, (B) degraded video.

produced video clips were 56s corresponding to the amount of 1411 frames.

6.2.2 Validation of degraded maps: Creation of visual attention

maps

To validate the degraded sequences, visual attention maps of normal control subjects were

compared on the two kinds of videos : normal sequences �rst and then the degraded ones.
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In the following the psycho-visual experiment for recording the �xations and the reference

method for creation of visual attention maps are described.

Setting up of the psycho-visual experiment

The human visual attention is measured by recording the movement of the eye. Eye

movements are portrayed with a sequence of saccades, �xations and smooth pursuits.

The jerks are movements with large amplitude that allow exploration of the visual �eld.

Instead, the bindings are micro-saccades with a low amplitude that place the object of

interest on the fovea. Consequently, �ne details are extracted over the fasteners. Smooth

pursuits are triggered when tracking a moving object [39]. Their role is to keep the object

on the fovea.

Eye-trackers are used to record and measure eye movements. These devices emit an

infrared light and contain an infrared camera. Infrared light illuminates the eye and

the camera records its movement. The recording of eye movements represents a digital

processing that is required to follow the white spot and black pupil (see �gure 6.2).

Figure 6.2: Digital recording of the eye movement (A) Eye tracker provides an infrared
mirror reecting infrared light. (B) The benchmark for measuring eye move-
ments (the white spot on the pupil presents a reection of theinfrared light
on the eye).

During the psycho-visual experiment and respecting the LYLOprotocol [123], recorded

eye movements were obtained with the Cambridge Technology EyeTracker device (see

�gure 6.3). It contains a monocular infra-red camera and ensures recording frequency of

250 Hz.
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Figure 6.3: Recording of eye movement (saccade, �xation) of the left eye with the Cam-
bridge Technology EyeTracker device during observation ofa video sequence.

The number of subjects which have participated in the experience was 21 with age

from 20 to 44 years old.

{ All subjects have signed a consent form for the use of their anonymous data for

research. These forms are safety stored in LaBRI.

{ The gaze tracking data are anonymous.

{ Subjective test (see �gure 6.4) : pure Snellen [119] and Ishihara [50]. We have not

identi�ed defective subjects in our volunteers.

(a) Ishihara test (b) Snellen test

Figure 6.4: Snellen [119] and Ishihara [50] tests.
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The experimental protocol was the following:

1. The eye tracker was positioned at a distance of 80cm from the screen which size was

of 21 inches in diagonal. The eye-tracker was \chin-rest".

2. The instructions to the subjects corresponded to the freeviewing conditions without

any prede�ned visual task. Before viewing the videos, the subject was instructed

like \Please, watch the video".

3. The examination was carried out in two stages. Initially two series of \normal" or

non-degraded videos were presented, then, in a second time two series of \degraded"

videos were shown to the subjects.

The visual protocol content for each sequence is illustrated in �gure 6.5 and all pa-

rameters are summerized in table 6.1.

Figure 6.5: Visual protocol content : Sequence of \degraded" videos

Table 6.1: Experiment protocol.

Features Values

Video

Video resolution 1280� 720

Video format 2D

Number of videos 2

Subjective test

Observer distance 80

Environment ITU-R BT.500-11

Duration 56 second

Pre screening Snellen, Ishihara

Observers

Number of observers 21

Age : Mean [Range] 26 [20 44]years

Male / Female repartition 14/8

Eyetracker

Eyetracker HS-VET

Eyetracker model mono ocular

Eyetracker acquisition frequency 250Hz

Display
Display model HP LP2475w

Display resolution 1920� 1200
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Comparaison of saliency maps between normal and degraded sequences

Before conducting experiments with patients, it is important to analyze if the induced

degradations attract attention of normal control subjectswith regard to non-degraded

natural visual content. Hence we will compare subjective saliency maps on a both normal

video sequence and corresponding degraded one, frame by frame. Amongst a variety of

metrics for comparison of saliency maps those ensuring a simple interpretation of results

were chosen. These metrics are: the Pearson correlation coe�cient (PCC) and \Normal-

ized scanpath saliency" (NSS) [67] (see 1.3.3).

(a) NSS variations

NSS metric

normVSdeg 0; 36522 �
0; 18139

normVSdeg-
withoutPeak

0; 27335 �
0; 15923

(b) mean NSS metric

(c) PCC variations

PCC metric

normVSdeg 0; 38843 �
0; 08566

normVSdeg-
withoutPeak

0; 32412 �
0; 14740

(d) mean PCC metric

Figure 6.6: Variations of NSS and PCC metrics during the comparaison of GFDM created
for both sequences in the psycho-visual experiment.

Analysing the values of the NSS and PCC metrics when comparing the salient areas

of the normal sequence with the degraded sequence, two points were stated (see �gure

6.6). First, the values of NSS and PCC are low, that means a largedi�erence between the

�xations on areas of the normal sequence and the degraded oneby normal control subjects.

Therefore, the arti�cially induced degradations are valuable for further experiments on the

patients. Second, we observe four peaks in the sequence (�rst peak from frame #118 to
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#147, second peak from frame #865 to #902, third peak from frame #1081 to #1134, and

the fourth one from frame #1327 to #1391). These peaks mean a good correspondence

between what attracts attention in the normal sequence and in the degraded one. The

frames at these pics correspond to new signi�cant objects entering in the scene. Therefore,

normal subjects are attracted by signi�cant objects. They pursue to the new objects

dropping the degradation. The mean value of NSS metric without the consideration of

the peaks is 0; 27335 (see table (b) of �gure 6.6). We can conclude that normal people

are attracted by both areas: the signi�cant items and degradation.

6.3 Deep model for study of neuro-degenerative dis-

eases : Mixed model and Merged model

A Deep CNN requires a large amount of data for training. It is impossible to produce

such amount of data in the scenario of experiments with patients. Elderly subjects are not

able to watch a large amount of visual data in the conditions of eye-tracking experiment.

Hence, we try to predict visual attention on degraded sequences with a model trained on

a large amount of publicly available data.

When the training samples of source domain are di�erent from the training samples

of the target domain, we are in front of the problem of di�erent data distributions. In

saliency prediction, a supervised learning approach triesto simulate the sensitivity of HVS

to primary features such as contrasts, color saturation andothers [125], [10], [104] . One

should have expected that if trained on one database ( in our case Hollywood) the same

model can be successfully applied to another database. Indeed, HVS neurons are sensitive

to the same \relative" features. This was our hypothesis in this chapter. Nevertheless,

the experiments show that this assumption is not hold. Our explanation is that when

observing a content humans interpret it. Here, we try to \�ne-tune" a pretrained model

on a very speci�c and small database. We therefore resort to transfer learning. The

only public large videos with gaze �xations is HOLLYWOOD2 [88][89], it is described in

chapter 3.6.

As de�ned in our previous study [27], we modify the StochasticGradient Descent

(SGD) [12] algorithm used in the learning of Deep CNN parameters. We transfer the

model learned on large dataset to the small one. Hence, we start the learning on the

small dataset with the best deep CNN parameters already learned on the large database,

instead of the random initialization from a gaussian distribution.

With its classical initialization, our transfer method presents the starting of learning

from the best weight matrix for each layer of the Deep CNN. In thecontrary of the work
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of Bengio [3] which uses the transfer of just the three �rst convolutional layer. The very

few available data for training presents the reason to transfer learning of each Deep CNN

layers.

Once the binary classi�cation problem : \salient" \Non-salient" has been solved for

regions, we need to build predicted saliency maps upon thesedecisions. (see chapter 3 for

more details)

In order to resolve the limitation of the number of frames of produced videos, the data

augmentation technique was used to increase the number of salient patches. Since object

or area that attracts human gaze is never precisely centeredone point in the frame, the

translation of the center is required. With the purpose of expanding the variability of the

salient class in training dataset, we choose to move the center of salient patch of 5 pixels

twice in each direction. The results of this training are presented in the next section

together with the benchmarking of proposal saliency prediction model.

6.3.1 Mixed model

As mentioned in LYLO project [123] and proved in our experimentdescribed in section

6.2.2, normal control subjects are attracted by salient areas. The latter can contain an

area that contains scene details important for its understanding (a contrast, a moving

object ...) or an area that contains a designed degradation.Hence, our �rst approach

consists on mixing the two kinds of salient areas to train onemodel, we call it \Mixed

model".

According to the same approach used to select patches and thento create the dataset

for training and validation (see section 3.3.1) , the dataset on degraded sequence for

\Mixed model" was created. Here, salient patches can contain: i) degraded area. ii)

object of interest. Hence, the two kinds of salient patches were mixed together and the

Deep CNN network was trained : \Mixed model". Following table6.2 presents some

examples of patches selected from the degraded sequence to train the \Mixed model".
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Table 6.2: Data from degraded sequence to train \Mixed model"

Mixed model is then the combination of all kind of saliency degradations or natural

attractors in the training data. It uses exacty the same architecture ChaboNet as de-

scribed in section 3.4.2 with 4k con�guration, that is training RGB values and residual

motion energy (see section 3.4.1).

6.3.2 Merged model

According to LYLO project [123] a degraded area is salient for normal subject. This is

clear in the �rst experiment in section 6.2.2. Hence, a salient area can be either an area

that attract human gaze either a degraded area. The idea hereis to create two separated

data sets for each kind of salient areas. The �rst one \ NormalInterest" data set is built

with reference to GFDM map on normal video sequence without any degradation. The

second data set is designed \ DegradedInterest". Here, the degraded patches were built

upon the mask of degradation. These degraded patches were labled as \saillent". Table

6.3 and 6.4 present an overview of \ NormalInterest" and \ DegradedInterest" data sets.

Table 6.3: Extract of \ NormalInterest" data set.

Salient patches Non-salient patches
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Table 6.4: Extract of \ DegradedInterest" data set.

Salient patches Non-salient patches

\MergeDinTraning" : Fusion of Normal and Degraded saliency model in tra in-

ing step

Since we have two kinds of interest areas (degradations and normal human gaze attrac-

tors), a \ChaboNet" architecture of each kind of interest areas was proposed . The input

dataset was 4k con�gured (RGB values with residual motion energy). The networks are

completely identical \seamese" and joint in fully connected layers. The only condition is

that two input data images have to be in the same category (salient or Non-salient) . The

fusion lies in the last fully connected \FC" layer; a concatenation layer combines these

\FC" layers from each single network (see Fig 6.7).

\MergeDinPrediction" : Fusion of Normal and Degraded saliency model at

prediction step

The idea in this proposed model, is to make a logical operation on the decision results

(Softmax) of the two independent networks, as shown in Fig 6.8. Note that in this

approach, �rstlly each network was trained separately, then the fusion operation (logical

OR) was applied for each forward input data in test step.

6.4 Saliency Generation for Mixed model

Training Deep CNN on degraded sequences from scratch is not thinkable because of the

need of a very large database. Therefore, our �rst idea was tolearn the prediction model

on a large base (Hollywood2), and use the best model to predictsalient areas on the

degraded sequence. Sensitivity of HVS to contrasts, color saturation and other low-level

features is maintained. Therefore, the predictive power ofthus obtained model would be

su�ciently good. It was not the case. Despite of the use of a better performing model

\Deep saliency RGB8k", with seven kinds of contrasts, residual motion and RGB values,

the results of comparison with the ground truth GFDM map were very poor. Indeed,

the PCC metric was 0:155� 0:069 and NSS was 0:173� 0:081. Analyzing predicted
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Figure 6.7: Architecture of \MergeDinTraning" model
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Figure 6.8: Architecture of \MergeDinPrediction" model

maps frame by frame, we discovered that the contrasted degradations were predicted

rather satisfactory. Indeed, they are similar to the natural contrasts in video frames.

Nevertheless, the intentionally blurred areas were poorly predicted. Such kind of areas

was not \seen" by the network in the training data. Thus the adaptation of the models

is the must.

6.4.1 Results of transfer learning on Mixed model

Frames available for the learning of the \Mixed model" are very few, just 1404 frames are

in our disposal. We have divided them into three sub groups \train", \validation" and

\test". From the 939 frames of train, 16028 salient and Non-salient patches were selected.

After the creation of the dataset as described in Section 6.3.1 for \Mixed model", the

ChaboNet3k andChaboNet4k models were learned. Transfer learning approach presented

in section 5 has been applied. The bestChaboNet3k model trained on the Hollywood

dataset is found at the iteration 5214. The learning of theChaboNet3k for the \Mixed

model" was started from the iteration 5214 by transferring the best learned model param-

eters pretrained on the large dataset. The best modelChaboNet4k learned on HOLLY-

WOOD2 dataset was found at the iteration 8690, hence, the learning of the ChaboNet4k

for the Mixed model on our degraded sequences was started from this iteration (see �gure

6.9).

Results summarized in �gure 6.9 show the importance of accuracy which attained
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(a) Accuracy vs iterations

ChaboNet 3k ChaboNet 4k

min (# iter ) 94; 84% (#5270) 96; 22% (#8742)

max (# iter ) 99; 14% (#6634) 99; 27% (#9672)

avg � std 98; 18% � 0; 745 98; 46% � 0; 542

(c)The accuracy results

Figure 6.9: Learning of features - Accuracy vs iterations ofChaboNet3k andChaboNet4k
for the \Mixed model".

99:27% at the iteration 9672 for theChaboNet4k model. We can state thatChaboNet4k

outperforms other model in terms of mean accuracy. Nevertheless the gain is not strong.

6.4.2 Results of transfer learning on Merged model

Training of MergeDinTraining

To evaluate the proposed MergeDinTraining architecture, the network was trained to

predict the probability of a local region to be salient. The model uses RGB values and

the normalized energy of residual motion as input. The MergeDinTraining model was

learned from scratch. In the following, obtained results were summarized in �gure 6.10.

148



CHAPTER 6. APPLICATION OF SALIENCY PREDICTION FOR TESTING OF
PATIENTS WITH NEURO - DEGENERATIVE DISEASES Souad CHAABOUNI

(a) accuracy curve (b) Loss curve

Figure 6.10: Learning of features - Accuracy and loss vs iterations of the MergeDinTrain-
ing model.

The results of learning experiments on NormalInterest 6.3 and DegradedInterest 6.4

data sets yield the following observations:

i) The results of accuracy are rather good : average accuracyis about 97:74% (see

table 5.7 ).

ii) The accuracy curve (�gure 6.10 (a) ) and the corresponding loss curve (�gure

6.10(b)) show that the best trained model reached 98:33% of accuracy with the smallest

loss ( at the iteration #3100 see table 6.5 ). Thus, it does notpresent an over-�tting

situation.

Table 6.5: The accuracy results on learned MergeDinTraining model.

min Accuracy (# iter ) 55:80% (#0)

max Accuracy (# iter ) 98:33% (#3100)

avg Accuracy � std %97 :74 � 3:115

Training of MergeDinPrediction

Figure 6.11 illustrates the variations of the accuracy alongiterations of ChaboNet3k and

ChaboNet4k networks for DegradedInterest 6.4 data set. To overcome the lack of data,

the learning was transferred from the best obtained models on \HOLLYWOOD" data

set. The gain of using 4k against 3k as input to the deep CNNs is about 0:2% in terms
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of mean accuracy. The best model is obtained at the iteration#11718 with an accuracy

of 99:60%.

(a) Accuracy vs iterations

ChaboNet 3k ChaboNet 4k

min (# iter ) 97:65% (#5270) 97:83% (#8742)

max (# iter ) 99:32% (#6820) 99:60% (#11718)

avg � std 98:9% � 0:355 99:18% � 0:3048

(c)The accuracy results on degraded model

Figure 6.11: Learning of features - Accuracy vs iterations ofChaboNet3k and
ChaboNet4k for the \DegradedInterest" data set.

Figure 6.12 illustrates the variations of the accuracy alongiterations of ChaboNet3k

and ChaboNet4k networks for NormalInterest 6.3 data set. To overcome the lack of data,

the learning was transferred from the best obtained models on \HOLLYWOOD" data

set. From the plots (a) in �gure 6.12, we can see that theChaboNet4k model is little less

e�cient than ChaboNet3k model. It is not surprising, the salient patches are predicted

by our method according to each visual task: on the Hollywood data set the subjects are

instructed to observe actions. They are attracted by the dynamic content of the visual

scene. Hence residual motion is important in the global model. In NormalInterest data
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set, the subjects are interested in speci�c objects be they moving or not. Hence, the

spatial appearance is important.

(a) Accuracy vs iterations

ChaboNet 3k ChaboNet 4k

min (# iter ) 96:71% (#5270) 96:84% (#8742)

max (# iter ) 98:88% (#8060) 98:25% (#10354)

avg � std 98:46% � 0:333 97:95% � 0:222

(c)The accuracy results

Figure 6.12: Learning of features - Accuracy vs iterations ofChaboNet3k and
ChaboNet4k for the \NormalInterest" data set.

6.5 Comparaison of predicted saliency maps on de-

graded sequence

In literature, di�erent evaluation metric were used to determine the rate of similarity

between the saliency maps and the gaze �xations of subjects.Three criteria allowing an

easy interpretation of results were chosen. These criteriaare: the correlation coe�cients

'CC' used in various areas to assess the similarity of two distributions, the receiver e�-
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ciency (AUC) for evaluating the quality of a prediction, and NSS \Normalized scanpath

saliency" which is de�ned to compare the salient areas determined by a model with areas

observed by the subjects [85].

The average and the standard deviation of the NSS, AUC and CC metric were com-

puted for all test frames (see table 6.6). The proposed modelwas compared with the static

model of Itti [52] and the dynamic model of Seo [113] which arethe common benchmarks

in literature. For the AUC metric, the proposed \Mixed model" outperforms the Seo

model. Nevertheless, the latter have a quite better mean value of NSS and CC but the

standard deviation is strong that reects that our proposedmodel presents more stable re-

sults. The proposed \Mixed model" outperforms in mean valueof NSS and CC metric the

Itti model. Nevertheless, the latter outperforms our \Mixedmodel" in mean AUC metric.

The proposed \Mixed model" outperforms other proposed models MergeDinTraining and

MergeDinTraining.

Table 6.6: comparison with AUC, NSS and CC metric of gaze �xations `GFM' vs pre-
dicted saliency of Mixed model, Itti model and Seo model for the 235 test
frame of degraded sequence

Metric GFM vs Mixed model GFM vs MergeDinTraining GFM vs MergeDinPrediction GFM vs Itti model GFM vs Seo model
AUC 0:756� 0:227 0; 58� 0; 218 0:494� 0:163 0:769� 0:163 0:630� 0:216
NSS 1:029� 0:990 0; 43� 1; 292 � 0:0529� 0:8086 0:952� 0:780 1:185� 2:65
CC 0:042� 0:041 0; 02� 0; 058 � 0:0022� 0:0344 0:040� 0:032 0:046� 0:096

Next table 6.7 presents some examples of predicted saliency map with the proposed

\Mixed model". For these frames, a very interesting value ofAUC compared to gaze

�xation was obtained. We can see that our model predict the objects of interest speci�ed

by contrast or residual motion likewise the intentionally degraded area.
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Table 6.7: Examples of predicted saliency map withChaboNet4k of proposed \Mixed
model"

FRAME #38 #68 #146

AUC 0:957 0:935 0:99

FRAME #230 #260 #326

AUC 0:974 0:988 0:828

FRAME #416 #506 #584

AUC 0:870 0:912 0:991

FRAME #608 #734 #830

AUC 0:971 0:999 0:961

FRAME #878 #920 #1016

AUC 0:887 0:871 0:907

FRAME #1094 #1142 #1388

AUC 0:924 0:978 0:902153
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6.6 Conclusion

Hence, in this research we produced and we validated a video content for psycho-visual

experiments with dementia patients. Furthermore, we have built a reference model for

normal subjects observing intentionally degraded content. The model was built on the

basis of Deep CNNs. In a medical study, we face a typical situation of a very small

database. Even very good models applied on the new unseen content in the same saliency

prediction task not performing well, we proposed a transferlearning scheme. Here we

�ne-tuned the initial model. Several models were proposed in this chapter.

Mixed model, which is trained on a very low amount of data (ourdegraded sequences)

was developed. It gives very good results, such as a predictive accuracy of 99:27% due to

the e�ciency of transfer learning method. From what we can see in the obtained results,

many frames achieved 0:9 of AUC value. This means that our model predicts well both

gaze attraction by semantic objects and unusual degradations.

Two merged models were learned: MergeDinTraining siamese network model and

MergeDinPrediction which implement the fusion of two separately learned models by

logical OR operation (max).

154



General conclusion and perspectives

In this work, we were interested in prediction of visual saliency in video content with

the new classi�cation tools such as Deep Convolutional Neural Networks. The target

application of this research was building of a model for prediction of saliency of regions

in video for studies of attention of patients with neuro-degenerative diseases. To build an

e�cient model, we explored di�erent aspects of these supervised classi�ers in the problem

of saliency prediction such as

- design of an adequate architecture of a Deep CNN;

- studies of possible input layers of the architecture on thebasis of domain knowledge,

such as sensitivity of human visual system to contrasts, colour and residual motion in

dynamic content;

- sensitivity of these classi�ers to the noise in training data;

- e�cient initialization of parameters by transfer learning;

- fusion of classi�cation results in the problem of recognition of various kinds of intentional

degradations designed for studies of attention of patients.

To explore a video, we focus our attention on certain salientregions whose the move-

ment and the semantic aspect of the object-of interest represent visual attractors. For

this purpose in collaboration with medical researchers we have designed speci�c degra-

dations in video succeptible to attract attention, designed and conducted psycho-visual

experiment and studied the reaction of normal control subjects on these degaradations

for groundtrouthing of prediction model. This small database was used in the present

work together with larger video databases with available gaze �xation recordings such

as Hollywood large-scale data base or well-known in video quality assessment commu-

nity IRCCyN database. We did mastering of these databases bycontent selection for

training and validation of our models. Benchmarking of our contributions with regard to

the available ground trouth, but also with regard to classical visual saliency prediction

models form the litterature was performed. In the followingparagraphs we will focus on

our contributions and propose perspectives of the present research.
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Contributions of this PhD and their Assessment

Firstly, a model with four channels based on the colors R, G, B and motion was proposed.

Then this model was enriched with seven other channels summarizing the di�erent kinds of

contrast already studied for the saliency prediction. Throughout this thesis, we have used

databases that collect information on the human gaze recorded through a psychovisual

experiments. The use of this information allowed us to de�nethe target class of salient

regions.

{ ChaboNet: a Deep CNN architecture built on the basis of AlexNet [63]. The chal-

lenge here was to design an architecture which would not be \too deep" in order to

have reasonable times of training and also to limit numbers of learning parameters

in order to get a stability. Our contribution was in adding supplementary architec-

tural patterns of convolution and non-linearity layers before pooling layers with the

goal to increase the \expressivity" of features. The latteris important in saliency

prediction as HVS is sensitive to contrasts and singularitiesboth spatial and tem-

poral. We have also reduced the number of �lters to learn. Thebenchmarking of

the proposed architecture with regard to base-line AlexNet architecture has shown

a slight increase of accuracy in prediction of saliency of regions in video.

{ A speci�c input data layer of Deep CNN for visual saliency prediction. First, the

use of eye �xation dense map in training deep CNNs models ensures the combina-

tion of both bottum-up and top-down saliency cues. Second, for video processing,

the temporal cues are mainly prevalent to detect salient region. The experiments

have shown promising results. Furthermore, to explore the domain knwoled on the

sensitivity of HVS to speci�c contrasts we have conducted experiments using seven

kinds of contrasts as input of the deep CNN. This allowed us to besure of certain

choices of the model and to limit the input model on temporal component with the

RGB values.

{ Sensitivity of deep CNNs to noise in training data. We have stated the noise in

the automatic production of training data in video with reference Gaze Fixation

Density Maps only. And we have proposed training data selection process on the

basis of visual content production rules reducing the noise. Despite a systematic

study of the inuence of noise in the input data was out-of-scope of our research,

we have shown that �ltering noise in training data allows forincreasing of accuracy

of prediction.

{ Transfer learning with deep CNNs. A typical situation in real-life applications of
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Deep learning, speci�cally in medical research domain, is the limited number of

training data. Hence, we have proposed and tested a method of transfer learning,

as a �ne-tunning of parameters initialized with training on a large dataset in the

same saliency prediction problem. This method was fully studied and experimented

on three small datasets. Finally, we have applied it to a task with very small

amount of training data in the problem of prediction of reference normal control

visual attention for studies of neuro-degenerative diseases.

{ Generation of saliency map: we proposed a speci�c method togenerate the �nal

saliency map. Inspired from GFDM with Wooding's method, we used the probabil-

ity responses of deep CNNs model to create a saliency map with the same size of

input frames. The codes were optimized with a parallel algorithm that reduces the

time of generation of saliency maps.

{ eye-tracking experiences : an eye-tracking experiment was designed for testing pa-

tients with neurodegenerative diseases. First of all speci�c video content with in-

tended degradation was produced in collaboration with researchers in medicine.

Then the experiment was conducted on healthy volunteers in free viewing condi-

tions.

We have been able to draw several conclusions such as normal subjects are attracted

by signi�cant objects. They pursue to the new objects dropping the degradation.

Experimenting with our prediction model, we have designed fusion strategy for

learning and prediction of di�erent kinds of degradations.

Last but not least for a PhD in Computer Science, a total of tensoftwares and scripts

were developed for this research project using di�erent opensource frameworks or

matlab.

In this work we have not systematically quantized the performances of our approach

in terms of execution time, for the reason of heterogeneous equipements we have

used along this research. Nevertheless, a systematic tracking of accuracies along the

iteration of training of our models has allowed us to drastically (order of 10) reduce

the number of iterations compared to the state-of-the-art research.

Perspectives

This work opens many perspectives which can be envisaged either as its improvement or

its direct extension or as requiring extensive and longer-term studies. Deeper exploitation
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of the model possibilities can be made by boosting theChaboNet4k with a step of �ne-

tuning from other trained models in particular by net surgely operation.

Using Fully convolutional networks for saliency predictionon natural videos, presents

a new research perspective which we would like to explore.

Furthermore, temporal consistency of saliency maps can also be improved using other

kinds of architectures, than CNNs.

In conclusion, we believe that the proposed saliency model using deep CNNs has a very

good application perspective, especially in neurodegenerative diseases diagnostics and

several other saliency prediction applications such as video compression, watermarking

and selective indexing of visual content.
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