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profond en vue dévaluation des patients atteints des maladies neur o-ckgpreratives

Resune Cette these est motivee par le diagnostic et levaluation des maladies
neurocegereratives et dans le but de diagnostique sur ldase de l'attention visuelle.
Neanmoins, le tepistagea grandeechelle de la populatin n‘est possible que si des moctles
de pediction automatique su samment robustes peuvent #&e construits. Dans ce con-
texte nous nous ineressonsa la conception et le cevelg@ement des moceles de pediction
automatique pour un contenu visuel speci quea utiliser cans l'experience psycho-visuelle
impliquant des patients atteints des maladies neurocegeratives. La di cule d'une telle
pediction eside dans une tes faible quantie de donres d'entrahement.

Les mockles de saillance visuelle ne peuvent pas etre fmagur les caracerisitiques
\bottom-up" uniguement, comme le suggere la treorie de I'negration des caraceristiques.
La composante \top-down" de l'attention visuelle humaine dvient peponderante au fur
eta mesure d'observation de la s@ne visuelle. L'attenbin visuelle peut étre pedite en se
basant sur les senes tep obsenees. Les eseaux dersmlution profonds (CNN) se sont
eweks etre un outil puissant pour pedire les zones sillantes dans les images statiques.
Dans le but de construire un mocele de pediction automatjue pour les zones saillantes
dans les viceos naturels et intentionnellement degraces, nous avons corcu une architec-
ture speci que de CNN profond. Pour surmonter le manque de doees d'apprentissage,
NOUS avons corcu un syseme d'apprentissage par transteerive de la nethode de Bengio.
Nous mesurons ses performances lors de la pediction de egs saillantes. Les esultats
obtenus sont ineressants concernant la eaction des sefis Emoins normaux contre les
zones cegrackes dans les vickos. La comparaison de lateagle saillance pedite des videos
intentionnellement dcegracees avec des cartes de densitle xation du regard et d'autres
mockles de ekrence montre l'inerét du mocele ceveloppe.

Mots cks : Reseaux de convolution profond, apprentissage par transfer t, vi-
sion par ordinateur, mockle de saillance, attention visuelle, mala dies neuro-
cegereratives, mouvement esiduel, vickos naturels

INRIA Bordeaux Sud-Ouest-200818243Z Institut de Mattematiques de
Bordeaux (IMB)-UMR 5251 Laboratoire Bordelais de Recherche en
Informatique (LABRI)-UMR 5800






Title : Study and prediction of visual attention with deep learning net-
works in view of assessment of patients with neurodegenerative dis eases

Abstract :

This thesis is motivated by the diagnosis and the evaluatioof the dementia diseases
and with the aim of predicting if a new recorded gaze presents complaint of these
diseases. Nevertheless, large-scale population screergmgly possible if robust prediction
models can be constructed. In this context, we are interestan the design and the
development of automatic prediction models for speci ¢ visl content to be used in the
psycho-visual experience involving patients with demerti(PwD). The di culty of such
a prediction lies in a very small amount of training data.

Visual saliency models cannot be founded only on bottom-upafieires, as suggested by
feature integration theory. The top-down component of humavisual attention becomes
prevalent as human observers explore the visual scene. Vissaliency can be predicted
on the basis of seen data. Deep Convolutional Neural Network€NN) have proven to
be a powerful tool for prediction of salient areas in staticmages. In order to construct
an automatic prediction model for the salient areas in nata and intentionally degraded
videos, we have designed a speci ¢ CNN architecture. To overne the lack of learning
data we designed a transfer learning scheme derived from gars method. We measure
its performances when predicting salient regions. The oliteed results are interesting
regarding the reaction of normal control subjects againstedraded areas in videos. The
predicted saliency map of intentionally degraded videos\gis an interesting results com-
pared to gaze xation density maps and other reference model
Keywords : Deep convolutional networks, transfer learning, computer vi sion,
saliency models, visual attention, neuro-degenerative diseases, resi dual mo-
tion, natural videos

INRIA Bordeaux Sud-Ouest-200818243Z Institut de Matlematiques de
Bordeaux (IMB)-UMR 5251 Laboratoire Bordelais de Recherche en
Informatique (LABRI)-UMR 5800






Acknowledgements

First | would like to thank my supervisor Prof. Jenny Benois-RPieau and Prof. Chokri
Ben Amar for guiding me throughout these three years with theiscienti ¢ rigor and
numerous advices.

| am truly thankful that Prof. Frederic Precioso and Prof. Napua Essoukri-Ben
Amara have accepted to review this manuscript. | also wouldki to thank the members
of the jury Prof. Patrick Le Callet, Prof. Mohamed Chtourou, Prof. Frarcois Tison and
Prof. Pascal Desbarats to be part of my thesis defense comted.

Regarding my own laboratory, the LaBRI, | would like to thankin particular Dr.
Boris Mansencal for his technical advice especially whenatshing master level. | would
like to thank all the people from the administration and the gstem team who helped me
so many times and de nitely contribute to the good mood at thd.aBRI, thank you all.

| would like to thank the Linnaeus-university and especiall Prof. Andrei Khren-
nikov for his two-month invitation to the mathematical depatment, which allowed us to
understand the mathematical aspect of deep network.

| would like to thank all phd-students and research enginegreven | met in LaBRI
or in the conferences. Lamis, Rahma, Manel, Samiha, Piefarie, Mariem, my cousin
Nadia and her brother Amine, Miguel, Sou ane, Kilian, Remi, aad Christelle,..., | am
very happy to know you and you have a special place in my heart.

| would like to thank all the team of Erasmus Mendus (UnetBa). Imet a special
friends with more than 25 nationality, Asma, Abir, Nina, Natsukiand Sami, ... | would
like to thank you for your support and love.

And nally I cannot nish without expressing all the gratitud e | have for my family
for their support during these three years but really, simpi for all these years of my life,
period.






for my parentsMou da and Fayal

for my brother Wael ,

for my sister Wiem ,

for the princesses of the familyfassmine and Farah .



10



Souad CHAABOUNI

Contents
(General Introduction | 23
[ State-of-the-art on visual saliency and deep learning | 27
[L Visual Saliency prediction | 29
[L.1 Introductionl . . . . . . . . . . . e p2)
(1.2 Human visual Systemqn . . . . . . . . ... 30
(1.2.1 Thehumaneye ... ... ... . . . ... ... ... 30
(1.2.2 Eyemovemenis . . . . . . . . . . .. ... 32
(1.2.3 Depth percetion . . . ... ... . .. . . . . .. . . ... ..., 33
(1.3 Visual saliency modeling . . . . .. . ... ... ... .. .. 33
[1.3.1 Gaze Fixation Density Map (GFDM) . . . . .. ... ... ... .. 35
[(1.3.2 Sallency modells . . . . . . . ... .. 37
[1.3.3 Comparison metrics of sallency maps . . . . . ... .. ... ... 41
(1.4 Saliency prediction for NDD studies . . . . . .. ... ... ... ..... 44
4.1 Experiment of TSeng,2018 [I26] . . . .« v oo oo, 45
(1.4.2 Experiment of Archibald,2013 4] . . . ... ... ... ...... 46
L5 Conclusion . . . . . . . a7
2 Deep learning for visual saliency prediction | 49
2.1 Introductionl . . . . . . . . . . .. i)
[2.2 Deep Convolutional Neural Networks . . . . . ... ... ... ...... 50
[2.2.1 Communlayerns . . . . . . . . . . . . . . . ... 51
[2.2.2 Deep CNN architecture for specictasks . .. ... ... ..... 55
[2.3 Loss Functions and Optimization Methods . . . . . . .. ... ... ... 58
231 Tossfunctions . .. .. .. .. ... . .. .. .. .. ... ..., 58
[2.3.2 Optimization method$s . . . . . . . . . ... ... ... ....... 59
2.4 Problem of Noise intrainingdata . . . . .. ... ... .......... 61
[2.5 Transter Learning . . . . . . . . . . . ... e 63




12

[2.6  Saliency prediction by Deep CNNs . . . . . . . . ... ... 0. 65
27 Conclusioh . . . . . . . . . e 68
[T Deep CNNs for saliency prediction | 69
[3 ChaboNet : a deep CNN designed for prediction of visual saliency In |
[__natural video | 71
B1 Infroductionl . . . . . . . . . . ... a
[3.2 General approadh . . . . . . . . .. 27
[3.3 Policy of data set creation: salient and Non-salient pates . . . . . . . .. 73
[3.3.1 Salient patches extractign . . . . . . . .. ... ... ....... 73
[3.3.2 Non-salient patches extractian . . . . . . ... .. ... ...... 75
[3.4  Deep Convolutional Neural Network ftor visual saliency: @mooNet . . . . . 79
[3.4.1 Aspecicinputdatalayer . . ... ... ... ... ......... §?)
[3.4.2 The ChaboNet network architecture design . . . . . . ... . ... 79
3.4.3 Visualization of featurels . . . . ... ... ... ... ... ... .. 82
[3.4.4  Training and validation of the model . . . . ... .. .... ... 84
[3.5 Generationof sallency map. . . . . . . . .. . 0 84
[3.6 EXxperiments andresults . . . ... ... ... ... ... ..., 87
B61 Datasets ... ... ... . . ... 87
[3.6.2  Evaluation of patches" saliency prediction with deeNN| . . . . . 88
[3.6.3 Validation of the ChaboNet architecture . . ... ... ... ... 91
[3.6.4 Evaluation of predicted visual saliency maps 92
B7 Conclusioh . . . . . . . . e 93
{4 Speci c saliency features for deep learning | 95
M1 Infroductionl . . . . . . . . . . . %
[4.2 Feature maps . . . . . . . . . . . 96
[4.2.1 Residual motion feature maps . . . . . . . . . ... ... ... .. 96
[4.2.2 Primary spatial features . . . . . . ... ... ... ..., 100
[4.2.3 Evaluation of parameters of Deep netwark . . . ... ... .... 103
[4.2.4  Evaluation of prediction of saliency of patches . . . ... ... .. 106
[4.2.5 Evaluation of predicted visual saliency maps . . . . . .... .. .. 108
M.26 DISCUSSION . . . . . . o e 110
M3 Conclusioh . . . . . .. . . . e m




(I Transter Learning | 113
[ Transfer learning with deep CNN for saliency prediction 115

6.1 Introductionl . . . . . . . . . . e 15

[5.2  Transfer learning with deep networks . . . . . . . .. ... ... ... .. 115

[.2.1 Stochastic gradient descent 'SGD' . . . . . ... ... ... ..., 118

[5.2.2 Transferlearningmethod . . . . . . .. ... ... ......... 118

5.3 Experiments andresults . . ... ... ... ... ... ... ... 119

[5.3.1 Real-lite problem : smalldatasets. . . ... ............ 119

[©.3.2 Learningonsmalldatasets ... ... ................ 28

[5.3.3 Validation of the proposed transter learning vs leammg from scratch 127

[5.3.4 Validation of the proposed transter learning vs statef-the-art trans- |

[ ferlearningmethod . . . . . ... ... ... ... ... . ... 130
[5.3.5 Evaluation of predicted visual sallency maps . . . .. ... . ... 132
0.4 Conclusion. . . . . . . %1

[6  Application of saliency prediction for testing of patients with neuro - |

| degenerative diseases | 135
6.1 Introductionl . . . . . . . . . . . B5
6.2 Materialand methods . . . . ... ... ... ... .. .. .. .. .. ... 36

[6.2.1 De nition of degradations . . .. ... ... ... .. ........ 136
[6.2.2 Validation of degraded maps: Creation of visual attéon maps . . 137
6.3 Deep model for study of neuro-degenerative diseases xé&dl model and |
| Merged model . . . . .. . .. . .. . ... 142
631 Mixedmodel ... ....... ... . . . ... .. .. .. ... 143
[6.3.2 Mergedmodeél . . . ... ... ... .. ... ... ... 144
[6.4  Saliency Generation for Mixed model . . . . .. ... ... ... ..... 145
[6.4.1 Results of transfer learning on Mixed model . . . . ... ... .. 147
[6.4.2 Results of transfer learning on Merged model . . .. .. .... .. 148
[6.5 Comparaison of predicted saliency maps on degraded ssme . . . . . . . 151
6.6 Conclusion . . . . . . . . . %)
(General conclusion | 155
[Publications | 173

|A LYLO protocol | 175




14



List of Figures

[1.1 Sagittal section of theeye| . . ... ... ... ... . ... ........ 30
(1.2 An image of the cup Is focused on the retina, which lines timack of the |
| eye. The close-up of the retina on the right shows the recepsoand other |
| neurons that make up the retina. [[36] . . . . .. ... ........... 31
[1.3 Eye motion: Field of action of the oculomotor muscles (ifig eye?).| . . . . 32

(1.4 The left and right Images show human scanpath segmentsdacorrespond- |
| Ing estimates from Liu and al[/9] algorithm, respectivelywhere the cor- |

| respondences are indicated by matching colors (Ref. [79]).. . . . . . .. 34
[1.5 The|Gaze xation density map (GFDM) saliency map computediuring a |
[ Tree task of visualisation of normal sequences by normal gsects| . . . . . 36
(1.6 lllustration of the architecture of the Itti and Koch model (Ref. [52])] . . . 38
[1.7 Spatio-temporal saliency model for video (Ref. [86]).... . ... ... .. 40

(1.8 Evaluation of the deployment of visual attention: 'A" presents the extracts |
| of the traces of the attention. 'B', it summarizes the extendd architecture |

of Itt's model. (Ref. DI 46
(1.9 Test used in the eye-tracking battery. (Ret.[4]) . . ... ... ... ... a7
21 Aformalneurond. . . . . . . . . . . . 6)

[2.2 An example of 8 Neural Network (NN). DataX Is fed into the rst (and |
| here only) hidden layer. Each node in the hidden layer is th@mposition of |
| a sigmoid function with an a ne function of X. The outputs from hidden |

| layer are combined linearly to give the outputy.| . . . . . . ... ... ... 50
2.3 Anexampleofa CNN. . . . ... ... ... ... ... ... . .. 51
[2.4 Recti ed Linear Unit (ReLU) activation function | . . . . . ... ... ... 53
[2.5  Sigmoid activation function . . . . . . ... 53
2.6 _TanH activation function . . . . . . . . . .. ... ... ... 54
2.7 Organization of the perceptron of Rosenblati [111] : labzed connection

| betwen the retina and Al projection area; random connectiontoerwise.| . 55
[2.8 Architecture of face detection network. (Ref/[32]) ... ... ...... 56
[2.9 Architecture of LeNet network. (Ref. [[69]]) . . . . . . ... ... ... .. 57

15



16

[2.10 Architecture of AlexNet network for object recognition. Ref. [62]) . ... 57
[2.11 Di erent learning rate where training and validation ¢ a Deep CNN[57]. . 60
2.12 Process of transfer learning propose 45]. (Retof4 . . . . . . .. .. 64
[3.1 Overall block diagram of proposed approach for salienpyediction.| . . . . 72
[3.2 Policy of patch selection : example and steps (HOLLYWOODS83|89] data |
| set actioncliptestO0003') . . . . . . . . . . . ... ... 74

[3.3 Extraction of Non-salient patches by random selection ithe Non-salient |

area of a video frame: Random selection of Non-salient paishen succes- |

sive frames of SRCO7 video IRCCyN [16]. . . . . . .. ... ... ..... 76

[3.4  Change of focus of attention due to distractors : SwitcHesaillent object |

(degraded elephent and car) on degraded sequence creats@&dheat map |

| on frames #388, #399 and #533)| . . . . . ... ... ... L. 76
[3.5 Space of selection of Non-salient patches "actionclsi@003] . . . . . .. 78
[3.6 Input data layer . di erent features to ingest in the netvork.| . . . . . . .. 80
|o./ Architecture of video saliency convolution network ChaboNet'| . . . . . . . .. 81
[3.8 Detalled setting of each layer of ‘'ChaboNet network. . ... .. ... .. 82
(3.9 (@) Input patch, (b) the output of rst convolution layer and (c) the output |

[ of the rst pooling layer.| . . . . . . . . . . . .. . ... ... . ... 8
[3.10 The output of the 2nd convolution layer, " Conv2" and 'Cov22'| . . . . . . 83
[3.11 The output of the third convolution layer, " Conv3' and Conv33'| . . . . . 83
[3.12 Psycho-visual 2D Gaussian depending to the fovea arematbe local region |

[ center predictedassalient. . . . . ... ... ... ... ... ... .... 85
[3.13 Histogram of video resolutionsW H) of \HOLLYWOOD" database in |

| training and validation step . . . . . . . . . . ... o oo 87

[3.14 Tn uence of Non-salient patches selection method on téng accuracy. |

a)Random selection of patches; b) Selection of patches atbogly to 3/3 |

[3.15 Training the network - Accuracy and loss Vs Iterations a@nseconds of

|
ChaboNeBk and ChaboNet#k for \HOLLYWOOD" database : (a) Ac- |
curacy vs iterations, (b) Loss on validation data set vs itations, (c) Train |

loss vs seconds, (d) Loss on validation data set vs secopds. ... . . . .. 90

[3.16 Comparison of ChaboNet architecture vs AlexNet and LeNet dtollywood |

4.1 Energy of motion and its components on SRC14 {#ame 30) from IRC- |

CyNdataset [I6]] . . . . . . . . . . . e 97




[4.2  First experiment: Accuracy Vs Iterations of the both model3k and 4k tor

4.4 Random selection of Non-salient paiches: variations otairacy along it-

erations of 3K, 4k, 8k, RGB8k and HSV8k for HOLLYWOOD dataset. . .

4.5 Selection of Non-salient patches according te3rule : Accuracy vs itera-

tions of 3k, 4k, 8k and RGB8k for \HOLLYWOOD" database| . . . . . . .

[5.1 Comparaison between our proposed scheme of transfernesy and the

Bengio's one : a) transfer scheme proposed by Bengio et ai34]L, (b) Our

proposed scheme of transter learning for saliency predostf . . . ... ..

[6.2 Accuracy and loss vs iterations of ChaboNet3k and ChaboNEkt#hr \CR-

CNS" database : a) Accuracy vs iterations, (b) Loss on validain data set

vs iterations, (c) Train loss vs seconds, (d) Loss on validam data set vs

5.3~ Accuracy and loss vs iterations of ChaboNet3k and ChaboNEki#br videos

with motion from \IRCCyN-MVT" database : (a) Accuracy vs iterat ions,

(b) Loss on validation data set vs iterations, (c) Train losys seconds, (d)

[5.4 Accuracy and loss vs iterations of ChaboNet3k and ChaboNgtbr \GTEA"

database : a) Accuracy vs Iterations, (b) Loss on validationada set vs iter-

ations, (c) Train loss vs seconds, (d) Loss on validation daiset vs seconds

[0.5 Evaluation and comparison of our proposed method of trafer learning VS

learning from scratch on CRCNS dataset. . . . ... ... ........

[.6 Evaluation and comparison of our proposed method of trarer learning VS

learning from scratch on IRCCyN-MVT dataset. . . ... ... ......

[5.7 Evaluation and comparison of our proposed method of trafer learning VS

learning from scratch on GTEAdataset. . . . ... ... .........

[5.8 Evaluation and comparison of our proposed method of trarer learning.

6.1 (A) Normal video, (B) degraded video. . . . . .. ... ... .......

. 131

137

[6.2 Digital recording of the eye movement (A) Eye tracker prades an infrared

mirror re ecting infrared light. (B) The benchmark for measuring eye

movements (the white spot on the pupil presents a re ectionfahe infrared

lightontheeye)| . .. ... ... . .. ... .. ...




18

[6.3 Recording of eye movement (saccade, xation) of the le@iye with the |

Cambridge Technology EyeTracker device during observanoof a video |

[ SEAUENCE. . . . . . e e e e e e e e e e e 139
[6.4 Snellen[[119] and Ishihara [50] tests. . . . . . ... ... .. ... ..... 139
[6.5 Visual protocol content . Sequence of \degraded” videps ... . . . .. .. 140
[6.6 Variations of NSS and PCC metrics during the comparaisont 6FDM |

[ created for both sequences In the psycho-visual experiment . . . . . . . 141
[6.7 Architecture of \MergeDinTraning” model| . . . . ... ... ........ 146
[6.8 Architecture of \MergeDinPrediction" mode| . . . . . . ... .. ... ... 147

[6.9 Learning of features - Accuracy vs iterations @haboNeBk and ChaboNetdk |

[6.10 Learning of features - Accuracy and 10ss VS iterations tte MergeDin- |

Training model] . . . . . . . . . 149

[6.11 Learning of features - Accuracy vs Iterations @haboNeBk and ChaboNetdk |

for the \DegradedInterest" dataset, . . . . . .. ... ... ... ...... 150

[6.12 Learning of features - Accuracy vs Iterations @haboNeBk and ChaboNetdk |




List of Tables

3.1

Training data from HOLLYWOOD dataset . ... .. ... ... ..... B

3.2

Distribution of learning data: total number of salient ad Non-salient |

patches selected from each database. . . .. ... ... ......... 88

[3.3 The accuracy results with two methods of Non-salient patch extraction a) Ran-

dom Sampling in Non-salient area; b) Selection accordingly to 3/3rule. . . . . 89
[3.4  The accuracy results on HOLLYWOOD datasef . ... ... ... ... ... 90
[3.5 Accuracy results : validation of ChaboNet 4k architecturgs AlexNet and |
[ LeNet networks on HOLLYWOOD dataset. . . ... ............ 92
[3.6  The comparison of AUC metric of gaze xations ‘GFM"vs predited saliency |
'‘GBVS', 'SignatureSal' and 'Seo’) and our ChaboNet4k for the ideos from |
[ HOLLYWOOD dataset] . .. ... .... ... .. .. ... ... ..... 93
[3.7 Time for testing one patch and one frame of video. 93
4.1 The comparison of AUC metric of gaze xations 'GFM' vs the eargy of |
ResidualMotion map for 890 frames of CRCNS videos. 99

4.2 Frames of CRCNS videos. . . . . . . . . . . . . . i 99

4.3 The comparison of AUC metric of gaze xations 'GFM' vs the eergy of

ResidualMotion map for 456 frames of IRCCyN videags. . . . . . .. ..

4.4 The accuracy results on HOLLYWOOD dataset in the rst expement . . 1

. 100

03

45  The accuracy results on HOLLYWOOD dataset during the secdrexperiment105

4.0 The accuracy results on HOLLYWOOD dataset during random selection of Non-

salient patches experiment.. . . . . . . . . . . . . ... e 106
4./ The accuracy results on HOLLYWOOD dataset during the selection of Non- |
salient patches according to 33 rule] . . . . . .. .. ... ... L. 107
[4.8 The comparison, with AUC metric, of the two experiments 103K and |
4K saliency models vs gaze xations 'GFM' on a subset of HOLLYWOO |
datasel . . . . . . . e 109

4.9 The comparison metric of gaze xations 'GFM' vs Deep sahey '3k', "4k’,

'8k’ , 'RGB8k' and 'HSV8k' model) for the video from HOLLYWOOD | . . 1

19

09



[4.10 The comparison of AUC metric gaze xations 'GFM'vs predted saliency |

'‘GBVS', 'SignatureSal' and 'Seo’) and our RGB8kmodel for the videos |

[.1 Distribution of learning data. total number of salient ad Non-salient |

[5.5 The accuracy resultison CRCNS datasét . . . . . .. .. .. .. .. ..... 124
[>.6 The accuracy results on IRCCyN-MVT dataset.. . . .. ... ... ... 126
[6.7 The accuracy results on GETAdataset . . . . . . .. ... .. ... ..... 126

[5.8 The accuracy results on IRCCyN-MVT, CRCNS and GTEA dataset.. . . 132
[5.9 The comparison of AUC metric of gaze xations 'GFM'vs predited saliency |

'GBVS', 'lttiKoch' and 'Seo’) and our ChaboNet4k for 890 frames of CR- |

[.10 The comparison of AUC metric of gaze xations GFM'vs pregted saliency |

'GBVS', 'SignatureSal' and 'Seo’) and our ChaboNet4k for the ieos from |

IRCCyN-MVT dataset|. . . . ... .. ... ... ... . ... ...... 133

[5.11 The comparison of AUC metric gaze xations 'GFM'vs predted saliency |

'GBVS', 'SignatureSal' and 'Seo’) and our 4 _model for the videos from |

[ GTEAdatasefl . ... ... .. .. . . . .. ... 133
[6.1 Experiment protocol.| . .. ... ... ... ... ... .. . .. .. 140
[6.2 Data from degraded sequence to train \Mixed model" . . . . ... .. .. 144
6.3 Extract of \ Normallnterest" data set. |. . . . .. ... ... ........ 144
[6.4 Extract of \ Degradedinterest” dataset.| . . . . . ... ... ... ..... 145
[6.5 The accuracy results on learned MergeDinTraining model. . . . . . . .. . .. 149

[6.6 comparison with AUC, NSS and CC metric of gaze xations GFMvs |

predicted saliency of Mixed model, Tttt model and Seo modedif the 235 |

test frame of degraded sequence . . . . . . . . . . . e e e 152

[6.7 Examples of predicted saliency map witt haboNe#k of proposed \Mixed |




Glossary

AUC Area Under the Curve.[4D2

CAM Class activation map.[ 6f

CNN Convolutional neural network.[25][ 4[1] 57, 58, 73
CONV Convolutional layer. [50,[51

FC Fully Connected.

FCN Fully Convolutional Network. 67

GFDM Gaze xation density map.[15,[29[ 35, 36, T3

GFM Gaze xation map.

HMM Hidden Markov Model.[34

HVS Human visual system/[ 80, 82, 99

LRN Local Response Normalization. 54

LYLO Les Yeux L'ont.

NDD Neuro Degenerative Diseasé. 29

NN Neural Network. [15,50[ 58

NSS Normalized Scanpath Saliency. 41

POOL Pooling layer.[50] 5P

RGB Red Green Blue color spacé¢. P, 79,182

ROC Receiver Operating Characteristic| 42

21



SD Standard De nition.
SGD Stochastic Gradient Descentl_61

SVM Support vector machine[ 65



General introduction

Neurodegenerative diseases with dementia are a real publaalth problem that increases
with the aging of population in developed countries. Indeg@bout 860,000 people su er
from dementia of Alzheimer type in subjects older than 65 yesiin the French population
[9Q]. Tunisian Ministry of Public Health has reported about 2,000 con rmed cases [139].
A timely and non-invasive diagnosis of dementia is esseritidvarious experiments were
performed in order to identify early symptoms of dementia. Qulomotor evaluation is one
of them [134].

Before making experiments with Alzheimer patients inclusig it is important to mea-
sure the impact of generated degradations on the visual attiéon of normal control sub-
jects. Hence, our rst goal is to compare visual xation maps bilt upon gaze xations
on normal and intentionally degraded video sequences. Fhdarmore, automatic predic-
tion of visual attention of normal populations has been an tensively researched subject
since the last two decades [52]. Here natural video contentutbalso non-intentionally
degraded one due to the coding artifacts and transmissiorrers [14] were used. It is also
interesting to build a predictive model for the normal attetion to intentionally degraded
content as produced for this study. As the designed degradatis are applied to spe-
ci c areas of interest in the video content, it seems naturaio consider machine learning
approaches, and in particular Deep Covolutional Neural Netwks [130]. Nevertheless,
in medical applications visual datasets are usally very sitha The reasons are two fold
i) limitations in including of patients in medical researchexperiments, ii) constraints in
experiments due to the patients conditions. For the task ofaiency prediction the rst
reason means the impossibility of conducting of psycho-ual experiment on hundreds
of patients; and the second reason means that elderly and die patients with \NDD"
cannot observe visual content during tens of minutes. Hendie targeted visual content
has to be small in volume. In this thesis we try to answer the @stion how can we use
deep learning approaches in such a situation : relatively sth amount of measurments
on a small database.
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Thesis objectives

Three main objectives are involved in this thesis.

First, we wish to better understand the attentional processethat guide the gaze
towards particular regions of the visual eld.

Second, to model these processes by machine learning toolgiew of their approved
successes.

And nally to apply this saliency prediction model for testing of patients with neuro-
degenerative diseases.

The modeling of visual attention with deep convolution netarks will allow us to
combine the low-level features with the high-level ones fire prediction of regions viewed
by a set of subjects when viewing a natural video. Several wsrand models designed
for visual attention with deep learning exist concerned thetatic image but still quite
few who propose to study the videos. We will be interested iris work in the study of
dynamic scenes through a database of videos.

We will adapt two complementary approaches. A rst one allow to designate the
architecture of the deep convolution network ensuring therpdiction of salient zones. We
de ne the problem of learning as the bi-class classi ctaionrpblem (salient, Non-salient)
with referring to the recordings of the eye movements of sudjts viewing natural videos
with various contents. The second approach of transfer leang will allow us to propose
a model inspired from the already designated architecturetsolve the problem of small
size of available data sets.

Thesis contributions

In this thesis, we propose to model the saliency in videos byaeghine learning tools
speci cally with the deep convolution networks. A designednodel allows to insert the
residual motion information side by side with th¢ RGB valuedr each frame of the video.
This model, called \ChaboNet4k" classi es input informatio (residual motion andRGB
values) into two classes: salient and Non-salient classes.

The main contributions of the thesis are:

The proposal of a deep network architecture taking as input four channels (R,
G, B, residual motion), eleven channels (R, G, B, residual rtion, and 7 kind of
contrasts).

The study of the e ect of data noise on deep networks learnin@raining and pre-
diction).
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Proposition of a method inspired from wooding method [131¢if the generation of
a dense saliency map from the probability responses of theoposed deep network
model.

Proposition of a method of transfer learning to solve the pldem of few size of
available datasets.

Creation of speci ¢ database video for testing of patients i neuro-degenerative
diseases.

Applying transfer learning method for the created speci ¢ d@base.

Thesis outline

In order to be better organized, we have chosen to divide ouovk into three major parts,
each containing two chapters. The rst part involves the stee-of-the-art on visual saliency
prediction and the deep learning for visual saliency predion. Second part presents the
deep[CNN designed for prediction of visual saliency in naturaideo \ChaboNet", and
the speci ¢ saliecny features used for traning de¢p CNIN. Thirgart is dedicated for the
transfer learning. One chapter was for the proposition of thtransfer learning with deep
for saliency prediction and the other chapter was for thepgplication of saliency
prediction for testing of patients with neuro-degeneratie diseases.
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Part |

State-of-the-art on visual saliency
and deep learning

The goal of this Ph.D thesis is to brought a saliency model thaonsiders the signi cant
content of natural videos. Since the last two decades, salay prediction in images and
digital video is extensively studied by the research commitp The current trend in this
research topic is the use of deep convolutional networks irder to integrates the semantic
aspect.

The outline of this part is as follows: Chapter 1 provides iwirmation about the visual
saliency prediction. Chapter 2 describes deep convoluta@nnetworks for the saliency
prediction task.
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Chapter 1

Visual Saliency prediction

1.1 Introduction

The oculomotor and particularly rapid eye movements are athe interface of decision-
making and motor systems of spatial working memory processerlhe study of voluntary
saccades has renewed its interest for neurodegenerativeedses[\NDIDD" diagnostics due
to the recording simplicity thanks to technical progress ah automatic signal analysis.
The integration of visual perception of natural scenes in #hclassi cation of patients and
assessment of disease progression in experimental condgi approaching the ecological
situation represents a real scienti ¢ challenge. The classation of the degree of disease
is based on multiple indicators such as the distribution ofte amplitudes of saccades and
xation times, but also on the relationship between the visal xation maps of patients
and normal control subjects. The di erences in occulomotdbehavior of normal control
subjects and subjects with Alzheimer disease, due to the laok curiosity, with regard to
intentionally degraded still images, were reported in [123The experiments conducted in
the framework of LYLQ| project \Les Yeux L'Ont" [L23]: ocular saccade abnormalities in
prodromal Alzheimer's disease", at the University Hospital oBordeaux (CHU) were also
devoted to studies of such phenomena. Such di erences canrbeasured via comparison
of visual xation density maps, [131] built upon recorde gaze xations. The
goal of the present chapter consists rst in understandinghie anatomy of human visual
system. Second, it gives the state-of-the-art on visual ghcy modeling. Finally, this
chapter mades an overview on applying saliency predictioarfneuro-degenerative disease
studies.
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1.2 Human visual System

1.2.1 The human eye

In order to study the internal morphology of the eyeball, théollowing gure [L.Jpresents
a median sagittal section of the eye. Three di erent tunicsra present: the brous tunic,
the uvea tunic and the nerve tunic. The brous or external tumc consists of the opaque
sclera (white of the eye) in backward and the transparent coea toward the front. The
uvea tunic consists of three elements iris, ciliary body anchoroid. Here the nerve tunic
that consists of the retina, is well descriped in order to uratstand the transduction of
the luminous message coming from the outside into nerve sa® sent to the brain. Two
areas are distinguished from the retina: the visual retinalich is de ned by the presence
of detecting cells. The disappearance of these cells wilhisform the retina into a simple
epithelial seating in the anterior part of the eye which cortgutes the blind retina.

Figure 1.1: Sagittal section of the eyé

The central area of the visual retina called macula, presenthe daytime and accurate

Thitps : ==theodora:com=anatomy=theaccessoryrgans_of _the_eye:html
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viewing area as it can see the colors, shapes and details. feripheral area specialized
in night vision can see just the details. The retina is comped of ve layers of neurons
(see gure[1.2): photoreceptors, horizontal cells, bipalaells, amacrine cells and ganglion
cells. Optical bers coming from ganglion cells meet on a discalled the optic papilla

which corresponds to the birth of the optic nerve.

Photoreceptors: they constitute the deepest layer of the tiea. Two groups of pho-
toreceptors (cones and sticks) are distributed unevenly athe retina. Cones are color
sensitive. They intervene in daytime vision. The sticks arévolved in the detection
of low light intensities and night vision. The photoreceptos which are interconnected
in order to smooth the visual information are connected to th bipolar cells and to the
horizontal cells.

The horizontal cells which are interconnected in order to sooth the information
coming from the photoreceptors, convey information of avage luminance to the bipolar
cells.

Bipolar cells that connect photoreceptors to a ganglion dehre sensitive to spatial
luminance contrast through the center-surround mechanism

The amarcin cells that laterally share the signal to modula the response gain of
bipolar and ganglion cells are sensitive to temporal contsaand play a role in the detection
of motion.

The ganglion cells which constitute the last neuronal layesf the retina transmit the
nervous signal in the form of action potentials. Their axonmeet to form the optic nerve.

Figure 1.2: Animage of the cup is focused on the retina, whicmés the back of the eye.
The close-up of the retina on the right shows the receptors dmother neurons
that make up the retina. [36]
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1.2.2 Eye movements

Six oculomotor muscles ensure the displacement of the eyklfsee gure: Four rec-
tus muscles, superior, inferior, lateral and medial; And twoblique, superior and inferior.
The superior rectus is an elevator. Its antagonizes, the erior rectus ensures the depres-
sion. The lateral rectus is an abductor which carries the coea outside. Its antagonizes,
the medial rectus is adductor which carries the cornea ingd The anatomical peculiarity
of the retina, detailed in above section, pushes the human toove his eyes. The density
of photoreceptors on the central area of the fovea (about 5gliee of the visual eld) com-
pared to the peripheral zone impacts on the resolution of thesual information. That
explain the necessity to move the gaze in order to have the reg that we want to analyze
in detail in the center of the retina which gives the best visal acuity.

Figure 1.3: Eye motion: Field of action of the oculomotor muses$ (right eye).

The saccades, the smooth pursuit and the micro-saccades #ne three main eye
movements.

The saccades are a very rapid movements which ensures theisgtof the region of
interest in the center of the fovea. The movement of the saabes is extremely fast
between 30 and 80 ms. Between two saccades the eye stops ngoton x a region
for a variable length of time. This period is called a xationand generally lasts
between 250 and 500 ms during this period the visual informan is treated.

smooth pursuit movements allow the tracking of a moving obge with a slow speed
with a maximum of 100 ms . If the eyes follow the moving objectocrectly the

2(Photo credits Wael CHAABOUNI.)
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image of the object is stationary on the retina and remains ifoveal vision, allowing
the visual system to extract more information about the movig object. These
movements are continually corrected so as to track the objec

The micro-saccades are small movements allows the refregiminof the image on
the photoreceptors.

Perceiving a motion is executed when something moves acrtiss eld of view. Actual
motion of an object is called real motion [36]. Apparent motio involves stimuli that are
not moving. It is when two stimuli in slightly di erent locat ions are alternated with the
correct timing just like motion perceives in movies. Induakmotion occurs when motion
of one object causes a nearby stationary object to appear tooke. Motion aftere ects
occur after viewing a moving stimulus for 30 to 60 seconds atften viewing a stationary
stimulus, which appears to move.

1.2.3 Depth percetion

By controlling the eye axes and the lens focus using the eye soles, depth estimation is
possible with ocolumotor cues. The interaction of this kinef cues ensure the counting
of the convergence and accomodation. The angle of convergenf the two eyes and their
accommodative states are one source of scaling information

Monocular depth cues work with just one eye.

Binocular depth cues based on the ability to sense the positi of eyes and the
tension in eye muscles. The di erence in the viewpoint of thenages received by
two eyes creates the cue of binocular disparity.

1.3 Visual saliency modeling

As the quantity of information that reaches the eyes is very gh, the processing of the
whole information was obstructed. That explain the focusip of the attention only on a
part of visual information. This attentional focus towardsa particular region of the visual
eld will lead to move the eyes towards it. For analyse visugberception, attention shift
and assessing user interfaces, visual prediction modelisigch as eye-tracking technique
was used. Here we can speak on two forms or representations istial prediction that
analysing sequences of xations: dynamic representatiomlted scanpath, and static one
called saliency map. Scanpath prensents a sequences of gaméts that follow visual
attention over an image. While, saliency map is obtained by owolving the xation

33



1.3. VISUAL SALIENCY MODELING Souad CHAABOUNI

map which represents the spatial coordinates of the set osuial xation, by an isotropic
bi-dimensional gaussian function [67].

Di erent researchers focused their works to study and to pict scanpaths. Repetitive
scanpaths that are made at multiple viewings of the same stutus, contribute to where
people look. A key prediction of scanpath theory [99] is thahe top-down recapitulation
of scanpaths but also bottom-up guidance might explained [29].

Liu and al [79] modeled scanpaths based on low-level featsadiency, spatial position,
and semantic content(|79]. Here, the image was segmented intgions and the proposed
model gaze shifts in terms of transition probabilities fronone region to another. Transi-
tion probabilities between di erent image regions were calilated through the di erences
of YUV color values and ve scales of Gabor features and eightientations features.
For spatial position and in order to obtain a random walk withsteps in an isotropically
random direction and a step length subject to a heavy-tailedistribution, steps were mod-
eled with Cauchy distribution. Finally, for extract the semantic content, Hidden Markov
Model with a Bag-of-Visual-Words descriptor of image rgions were used. Next
gure presents an illustraion of the gaze shifts from Liand al model [79] .

Figure 1.4: The left and right images show human scanpath segnts and corresponding
estimates from Liu and al [[79] algorithm, respectively, whe the correspon-
dences are indicated by matching colors (Ref._[79] ).

Recent research work used deep learning for prediction olagpaths. Here we can
cite the work of Assens et all|5] that sampled scanpath by a stwastic approach. The
deep network train a model that take a set of image as input ana saliency volumes that
are a presentation of spatial and temporal saliency inforntian for images, as output.
They have three axes that represent the width and height of thimage, and the temporal
dimension. Here, they uses the proposed saliency volumes &negrate the scanpaths
by determining three keys values. First, the the number of x@ons of each scanpath,
second the duration in seconds for each xation, were samgldrom their probability
distributions learned from the training data. And nally, th e location of each xation
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point was generated by sampling the time from the correspoimd) temporal slice.

Simon [116] proposed a model for automatic scanpath genéoatusing a convolutional
neural network and long short-term memory modules due to theemporal nature of eye
movement data.

In this section, we are more interested by static represenian of visual prediction
\saliency map". The subjective saliency maps that are builfrom eye position measure-
ments, the objective saliency maps that are extracted fronmiage or video signal and the
comparison metrics between these two kind of saliency mapsre& well detailed.

1.3.1 Gaze Fixation Density Map (GFDM)

The visual attention map on the group of subjects - the so-datl \subjective saliency map"
is constructed with the recorded gaze xations of all subjés in the group. We obtain a
map which collects the density of eye positions. Generallihe subjective saliency map
Sy , or xation dense map \GFDM] is obtained by convolving the xation map by an

Isotropic bi-dimentional Gaussian functionG [67].

Sy(X) = ( X xm)] G (X) (1.1)

where
{ X is a vector representing the spatial coordinates,
{ X;m is the spatial coordinates of then™ visual xation,
{ My is the number of visual xation for the i observer,
{ Nops is the number of observers,
{ (:)is the Kronecker symbol (t) =1 if t =1, otherwise (t) =0,

An intensive study to densify a xation coordinates was propsed by Wooding [[131].
The method allows the creation of a density map of xation fron a set of views recorded
from an oculometer. This method, tested with more than 5000apticipants on the digi-
tized images of paintings of the National Gallery, consistd three stages. The rst ensures
the application of a two-dimensional Gaussian at the centaf the eye measurement. And
this allows the computing of the partial saliency map for edcgaze record. Then the set
of partial saliency maps of all subjects are summed in a gldisaliency map. Finally, the
global map was normalized by its maximum value.

For a more describe these three steps, Wooding proposed tothe Gaussian prop-
agation at an angle of 2, based on an imitation of the functioning of the fovea of the
human eye which covers an area ofSl to 2 of the diameter in the center of the retina.
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The Gaussian re ects the projection of the fovea on the screeTo ensure this projection,
the Gaussian spread is de ned as follows:

=R D tan() (1.2)

with R is the resolution of the screen in pixels per mm and must be equal to three
times the height of the screen (B) according to ITU-R Rec. BT.500-11([53]. From the
equation the partial saliency mapsg(l; m) of the imagel for the measuremenim of
the eye is calculated according to the following equation 9}

(v Xom )2 | (Y yom)z)

2§ 2§ (1.3)

0
Sy(I;m) = Ae

where , = = andA=1.

Then all partial saliency maps of all subjects are summed in global saliency map.
At the third step, summed up map is normalized by its maximum &lue, the so-called
\saliency peak" in the image. The nal[GFDM]is computed as folbw:

15(0135 .
Se(1)= 4 Se(im) (1.4)

m=0
whered = max(x;y)zsg(sg(l;m)) is the highest peak andNs is the total number of
subjects.

The following gure shows the xation map of 21 subjects amputed with the
Wooding's method.

(a) # frame 42 (b) # frame 783

Figure 1.5: The| GFDM saliency map computed during a free task ofisualisation of
normal sequences by normal subjects.

In next section, we will describe di erent saliency modeldat automatically determine
regions that attract human gaze on image or video.

36



CHAPTER 1. VISUAL SALIENCY PREDICTION Souad CHAABOUNI

1.3.2 Saliency models

A saliency map is a model of neurobiology and psychology thdescribes how the strik-
ing details of the visual environment in the brain, processeas a priority. This model
in uences pre-attentive (or automatic) exogenous visualtinuli (re exive, low-level or
bottom-up) or endogenous (top-down). Low level factors ardescribed as luminance,
orientation and color. Thus, high-level factors may concercognitive processes, memory,
emotional state or task. Therefore, di erent models of visal attention are designed to
clear the salient areas of an image or sequence of images. sehodels are divided into
so-called bottom-up models and top-down models.

Several saliency models [91], [124], 18] have been progosevarious elds of re-
search which are based on the feature integration theory B2 These research models
the so-called \bottom-up" saliency with the theory that sugyests the visual characteris-
tics of low-level as luminance, color, orientation and mowgent to provoke human gaze
attraction [30], [31], [48]. The \bottom-up” models have ben extensively studied in
the literature [10]. They su er from insu ciency of low-level features in the feature in-
tegration theory framework, especially when the scene caimts signi cant content and
semantic objects. In this case, the so-called \top-down" &ntion [104] becomes preva-
lent, the human subject observes visual content progressly with increasing the time of
looking of the visual sequence. Famous examples of top-doattention guidance which
showed that eye movements depend on the current taskis is peated by Yarbus in 1967
[133].

Di erent models of visual attention are designed to clear ta salient areas of an image
or sequence of images. The most popular and referenced medet detailed in follow.

Bottum-up models

{ Model of Itti and Koch, 1998: The general idea of the model [52] is summarized
by two steps. The rst allows the combination of the feature®f the multi-scale im-
age into a single topographic saliency map. And the secondseres the selection of
the places frequented in decreasing order of saliency thartk a network of dynamic
neurons. The multi-scale analysis depends on a Gaussiareling step, followed by
a subsampling step. Indeed, for the subsampling step, harital and vertical image
reduction factors range from 1 : 1 to 1 : 256 in eight octaves. h€se two stages
give rise to pyramidal shapes. To summerize, 42 features nsapere computed: six
for intensity, 12 for color, and 24 for orientation. Applyinga normalization step
followed by a merge of the maps with the \ across-scale additi " operator Itti gets

37



1.3. VISUAL SALIENCY MODELING Souad CHAABOUNI

the nal saliency map. A simple browse on the obtained map fathe pixel hav-
ing the highest value, followed by a feedback inhibition miaanism until a de ned
threshold, performs the identi cation of the salient areasn decreasing order (see

next gure [L.6).

Figure 1.6: lllustration of the architecture of the Itti and Koch model (Ref. [[52])

{ Model of Harel GBVS [41]:] Graph-Based Visual Saliency (GBVS) presents a
simple, and biologically plausible model that consists ofvb steps:

i) forming activation maps on certain feature channels thaare extracted by linear
Itering followed by some elementary nonlinearity. Suppaes a given a feature map
Featuremsp : [N]?! R, to compute an activation mapActivation map : [n]° ! R:

Activation map (i;j ) = log(p(i;j )) (1.5)

wherep(i;j ) = PrfFeaturemap(i;j )jneighborhood

i) normalizing the activation maps in a way which highlighs conspicuity and admits
combination with other maps. For each node (i,j) and every rde (p,q) to wich it
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is connected, an edge from (i,j) to (p,q) with weight was inwduced:

w2((i5 ); (p; @) = Activation map (p; Q):F eaturemap (i p;j  0): (1.6)

{ Model of Harel signatureSal[47]: SignatureSal model uses the image signature
that is a descriptor of natural scenes. This descriptor canebused to approximate
the spatial location of a sparse foreground hidden in a speaily sparse background.
For the problem of gure-ground separation, the spatial suport of gure signal is
assumed to be sparsely supported in the standard spatial lsThe background is
also assumed to be sparsely supported in the basis of the Déte Cosine Transform.
The image signature is de ned as

ImageSignature(X) = Sign(DCT (X)): 1.7)

The gure-ground separation problem is formulated in the fimework of sparse sig-
nal analysis. The Inverse Discrete Cosine Transform (IDCT9f the image signature
concentrates the image energy at the locations of a spatialsparse foreground,
relative to a spectrally sparse background.

{ Model of Seo [113]i presents a bottom-up model that combines static and space-
time saliency detection. The space-time saliency deteationethod does not require
explicit motion estimation. First, from a given image or vide a local regression
kernels was computed and used as features. The use of thesadds ensures obtain-
ing the local structure of images by analyzing the pixel vakidi erences based on
estimated gradients. Then, a nonparametric kernel densitgstimation for such fea-
tures was used. The saliency map is constructed from a locatasure that indicates
likelihood of saliency.

{ Model of Marat [86]:] A biologically inspired model (see next gur¢ 1]7 ) separate
a video frame into two signals corresponding to the two mainugputs of the retina
was proposed by Marat et all[[86]. Both signals: spatial infmation of the visual
scene and the motion information, are decomposed into elemey feature maps
which are used to form a static saliency map and a dynamic onghese maps are
fused into a spatio-temporal saliency map. Three di erentusions are used : mean
fusion, max fusion and a pixel by pixel multiplicative fusia.

39



1.3. VISUAL SALIENCY MODELING Souad CHAABOUNI

Figure 1.7: Spatio-temporal saliency model for video (Ref84] ).

Top-down models

Due to the greater di culty to emulate high-level cognitive process such as scene under-
standing [49] and task-controlled or objects recognitio§], few researchs were conducted
to solve complex vision tasks. Recently, with the high penfmance of convolutional neu-
ral networks on visual tasks, various models has been propdsas a source of top-down
attention prediction.

Palazzi [100] aim to predict the driver's focus of attentiorby answering two major
guestions: what a person would pay attention to while drivig, and which part of the scene
around the vehicle is more critical for the task. A multi-pah identical deep architecture
that integrates visual cues (RGB image), motion by the estiation of optical ow and
scene semantics that processes the segmentation predittin the scene, were proposed.
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Each branch of the proposed model is a multiple-input multig-output architecture de-
signed in the purpose of addressing the strong central biasat occurs in driving gaze
data.

Ramanishka et al[[108] proposed a top-down saliency apprbao expose the region-
to-word mapping in modern encoder-decoder networks. Thisadel produces spatial and
temporal saliency attention for still images or video. Forach word in the sentence, they
proposed to compute the saliency value of each item in the mfpsequence by measuring
the decrease in the probability of predicting that word basgon observing just that single
item.

Murabito et al [94] presented a SalClassNet approach based[GNN] framework con-
sisting of two networks jointly trained. the rst network \C NN]saliency detector" gener-
ates a top-down saliency maps from input images that consist eye-gaze data recorded.
And the second classi er" ensures exploiting the computksaliency maps for visual
classi cation.

1.3.3 Comparison metrics of saliency maps

In the literature, di erent evaluation metrics were used todetermine the likelihood ratio
between the saliency maps and the points recording the eye vements. Four metrics
allow a simple interpretation of the results: the Pearson ahSpearman correlation coe -
cients used in various domains to judge the similarity of twdistributions, the area under
the ROC curve allowing the evaluation of the quality of a preidtion, and the NSS \Nor-
malized scanpath saliency” which is de ned in the studies afisual attention to compare
the salient areas determined by a model with the areas obsedvby the subjects.

{ Normalized scanpath saliency is a Z-score that express the divergence between
saliency map and human visual attention. The aim is to measerthe value of
the saliency in the xation zones along the entire length oflte gaze path. After
normalization of the saliency magBy in order to have a zero average and a standard
deviation equal to one, the NSS value is calculated on a smadintered neighborhood
for each xing location [85]. Due to pre-normalization of tle saliency map, a positive
value of[NS$ suggest a greater correspondence than expectediance between the
xation areas and the predicted salient points; a null valuendicates the absence of
this correspondence, while negative value indicate an amrrespondence between
the xation points and the salient points. In conclusion, tre higher the positive NSS
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value, the more the xed points are salient[ NSS is written asflow:

S Su_ Sw

NSS= =9 5 (1.8)

whereSy is the mean ofSy, and presents its standard deviation.

{ Pearson Correlation Coe cient Is a metric that measures the force and direction
of a linear relationship between two saliency maps. The ains to calculate the
intensity of the connection between the saliency mafy and the gaze xation
map Sy. This intensity re ects the degree of similarity between tie two
maps. The calculation of the standard deviation of each saticy maps and the
covariance between these two maps makes it possible to detare the PCC value.
The coe cient PCC is bounded between [ 1 1]. The closer the PCC value is to the
upper bound (1), the more the areas viewed correspond to aseaf strong saliency.
A value of zero indicates the absence of correspondence leswthe saliency and the
eye positions, ie the absence of linear relationship betwethe two maps. Whereas
the negative values (PCC tends to -1) indicate the correspdance of the observed
zones with low saliency zones. The following equation calate the PCC value.

coU(Sy ; Sg)

Sw  Sg

PCC(Su;Sy) = (1.9)

where, covBy ; Sy) is the covariance betweerby and S;; s, ., s, represent the
standard deviation of mapsSy and Sy respectively.

{ Area under the ROC Curve is a metric that measures the accuracy of a system
that categorizes entities into two distinct groups based otheir characteristics. The
pixels of the image can belong either to the category of piseViewed by subjects
or to the category of pixels that have not been viewed by any bject. The curve is
obtained from plotting of the points having as abscissa thate of false positives and
as ordered the rate of true positive. The rate of true positesTV P = (tp%n) shows
the number of pixels xed by the subjects and having a saliegovalue greater than
the threshold, divided by the total number of pixels xed. The false positive rate
TFP = P
threshold but which have not been xed and divides it by the nmber of pixels not

collects the number of pixels with a saliency value higher &ém the

xed. The larger of the area, the more the curve deviates frortihe random classi er
line (area 0.5) and approximate the ideal classi er (area df.00). A value close to 1
of Auc indicates a correspondence between the saliency majpl éine gaze xations.
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While a value close to 0.5 presents a random generation of thaiency zones by
the model. And then the objective and subjective maps are vewissimilar. The
following algorithm[1] de nes the instructions for calculaing the [AUC]

Algorithm 1 compute AUC
Require: fSyg : map ( pixels vector) of gaze Xxation

fSw g : objective saliency map
f subj_thresholdg : threshold of Sy
Ensure: faucvalueg : value of AUC metric.
m_thresholdT aldnbr] : nbr thresholds uniformly distributed between the min and max
of the map Sy
for for each valuecount of the table m_thresholdT aljnbr] do
for for each pixeli of the framedo

if (Syfi] subj_threshold) then

if (Su[i] m_thresholdT aljcount]) then
++ tp : increase of the number of true positive
else
++ fn : increase of the number of false negative
end if
else

if (Sg[i] m_thresholdT alfcount]) then
++ fp : increase of the number of false positive
else

++ tn : increase of the number of true negative

end if
end if
end for
calculation of the True Positive Rate : TV P[count] = (tp%n)
calculation of the false Positive Rate TFP[count] = (fp%n)

end for
for for each valuecount of the table m_thresholdT alfnbr] do

auc.value+ >

end for

return auc.value
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{ Spearman’'s Ranc-Order Correlation is a metric that measures the correlation
between the ranks of the values taken from the two variablegather than the exact
values. Since the PCC and the AUC area should vary jointly to soe degree even if
they have di erent objectives |26], the SROC coe cient was omputed to identify
the degree of interaction between these two metrics. To deteine this coe cient,
one rank is assigned for each PCC value and AUC calculated frahe saliency maps
of each frame of the video sequence. The calculation of thealPson correlation
coe cient between the ranks of the PCC and AUC values of eachdme allows us
to obtain the value of the coe cient SROC. The sign of the Speanan correlation
indicates the direction of binding between PCC and AUC. If AUC énds to increase
when PCC increases, Spearman's correlation coe cient is pitive. If AUC tends
to decrease when PCC increases, Spearman's correlation ceet is negative. A
Spearman correlation of zero indicates that there is no teedcy for AUC to increase
or decrease when PCC increases. The Spearman correlaticcré@ases in magnitude
as PCC and AUC approximate being perfect monotone functiondsor calculating
the SROC metric whereRankpcc and Rankayc present the ranks of the scores
P CC and AUC respectively:

Rankpcc; Rank
SROC(Rankecc: Rankayc) = SOURaMKecei Rankayc)

(1.10)

Rank PCC Rank AUC

1.4 Saliency prediction for NDD studies

Neurodegenerative diseases mainly a ecting neurons, cawdamage to the nervous sys-
tem (brain and spinal cord). And since neurons are not renewedamage or death of

a neuron can never be replaced. For this, preventive treatmieis essential in order to

ght against these diseases. The clinical diagnosis of thesliseases, is based on nding
speci ¢ symptoms of disease syndromes. In addition to the guaitive disturbances, slow-

ness, stiness and tremors that are the main symptoms of neatlegenerative diseases,
several studies have to prove that an oculomotor evaluatiomakes it possible to diag-

nose these diseases [356]1[83]. Oculomotricity and in padiiar rapid eye movements are
at the interface of decision-making engine systems and spgtwork memory processes.
The study of voluntary saccades bene ts from a renewed intest in neurodegenerative
pathologies due to the simplicity of recording thanks to tédmical advances and automatic

analysis of the signal. The integration of the visual percéipn modeling of natural scenes
into patient classi cation and the quanti cation of disease progress under experimental
conditions approaching the ecological situation repressma real scienti ¢ challenge.
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The classi cation and quanti cation of the degree of diseasin patients is based on
multiple indicators, such as the distribution of saccade apiitudes and duration of xa-
tion, and also on the relationship between the visual xatia maps of patients and control
subjects. Delays in the oculomotor function of patients wit neurodegenerative diseases
must be characterized by a time lag in the xation maps. Othedi erences are hypothet-
ically expected. Neurodegenerative diseases show eye mamndisorders. Indeed, and
contrary to their slowed-down movement, people with Parkison's disease produce auto-
matic rapid movements of the eye to sensory stimuli and showm anpairment of the ability
to generate voluntary eye movements in cognitive tasks. Thetudy of [20] has shown that
participants with Parkinson's have de cits in their ability to inhibit automatic saccades
(more express, more errors in direction ...). Thus they takenger time for volitious jerks
(anti-saccade task). And regarding the processes of spatraemory work, Parkinsonians
show de cits in moving their eyes to goals called in the righorder. To determine the
mental state of patients with neuro-degenerative diseasadthe evolution of the disease,
di erent experiments have been put in place. In the next sewn, we will describe the
experiment carried out by [[126] allowing the classi catiomf clinical populations from the
natural vision ocular movements and the [4] study which ales to examine the error rates
and visual exploration strategies of Parkinson's patients

1.4.1 Experiment of Tseng,2013 [126]

To extract the essential characteristics that di erentiae patients from control subjects,
Tseng [126] used automatic learning in a work ow inspired bynicroarrays analysis. In-
deed, this experiment involved two con gurations of eye treking (one for children and
another for young adult subjects) but it is still identical in eld of view to the stimuli.
Participants who sit in front of the screen, watch ten video®f one minute each. The
right eye of the observers was measured at 500 Hz.

To create the learning model, Tseng |126] used ten saliencaps: nine were extracted
from the various low-level visual features, and one top-dowmap was generated by the
instantaneous viewing positions of 19 of young adults. Thene saliency maps are created
from the itti saliency model [52]. Tseng[[126] used the Itti mdel to identify visually
highlight regions that can attract the attention on natural videos. As a result, all ten
saliency maps provide information that controls attentionfrom top-down in addition to
low-level features. The following guré 1.8 summarizes thevaluation of the deployment of
the attention proposed by Tseng[126]. In fact the movements the eyes of the observers
are recorded (red curve) during the free viewing of videos oatural scenes. And, the
implementation of the architecture of Itti's model was extaded (C, color , I, intensity,
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O, orientation, F, icker, M, motion, J, junction of line).

Based on previous studies of high prevalence neurologicaatders involve oculomotor
and attention de cit dysfunctions, Tseng [126] extracted darge number of characteris-
tics (224) from the eye movement records, and then based ois itharacteristics, they
constructed a classi er to di erentiate patients from healhy subjects.

Figure 1.8: Evaluation of the deployment of visual attention 'A' presents the extracts
of the traces of the attention. 'B', it summarizes the extendd architecture of
Itti's model. (Ref. [127])

1.4.2 Experiment of Archibald,2013 [4]

Abnormal eye movements, such as the depreciation of rapid epevements (saccades) and
the interspersed xings appeared under the in uence of cotal and subcortical networks
often targeted by neurodegeneration seen in Parkinson'ssdase. From this marker of
cognitive decline, the study of Archibald]4] examines the & rates and visual exploration
strategies of Parkinson's with and without cognitive impament. Here, the creation of
a predictive model of the xation duration from a data analyss of the tasks, makes it
possible to predict both cognitive disorders and severityf the disease.

The stimuli used in this study are presented in ve blocks (Figre[1.9): a task corre-
sponding to the angle, a task corresponding to the clock antie reverse clock, a shape
position task and nally a task of overlapping gures. Each lock consists of 16 test
images and is arranged in such a way that a stimulus is presedtat the center and four
comparators are arranged just below it. Stimuli were throwron a 20-inch screen at a
distance of 80 cm to participants in a dimly lit room.
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Figure 1.9: Test used in the eye-tracking battery. (Ref.[4])

The rst hypothesis of the Archibald [4] study concerning theexploration strategy,
as de ned by the time of the rst correct xation, the number of central passages and
the number of passages, shows that patients with dementia eli in all e ectiveness of
the exploration strategy compared to cognitively normal P&inson's patients and the
healthy subjects. Second, this study shows that there is a aih) but signi cant, di erence
in xation time. The cognitively normal subjects in the Parkinson's disease group made
xations always slower than the control subjects, of the orer of 18 ms. This prolongation
of the duration of xation was more pronounced in subjects wh Parkinson's disease with
dementia.

1.5 Conclusion

In this chapter, a state-of-the-art of visual saliency predtion was provided after detailing
the anatomy of human eyes . We brie y presented the biology tfie human visual system,
especially the retina and ocular movements. Hence, in order perceive the world, human
attention was focused on small regions in order to receive reodetail. These regions
are selected according to attentional processes \bottunpliwhich depends on low level
factors and \top-down" which may concern cognitive process, memory, emotional state
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or task. The visual attention precedes the displacement dfi¢ human gaze through various
ocular movements towards the region on which the visual attéon is directed.

We discussed the commonly saliency prediction model and debed the ones we
considered most relevant for the rest of our work. These mddeare inspired by the
feature integration theory and the recent deep convolutial networks that ensures the
combination of \top-down" and \bottum-up"visual stimuli.

Then we introduced how these models and what kind of realdifapplications can
emerge from it, precisely, for neuro-degenerative diseastudies. Hence, rapid eye move-
ments are the interface of spatial work memory processes.

In next chapter, we explain deep convolutional networks uddor predict visual atten-
tion.
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Chapter 2

Deep learning for visual saliency
prediction

2.1 Introduction

Machine Learning is a set of techniques used to achieve, amtatically, a task by learning
from a training data set. There is a plethora of methods basewh di erent mathematical
fundamentals. Neural networks were intended to model leang and pattern recognition
done by physiological neurons. This was rst introduced by Hib (1949) who modeled
synapses by weighted links from the outputs of nodes to thepuats of other nodes. Rosen-
blatt (1958) continued the Hebb model and investigated how #hlinks between neurons
could be developed, in particular, he de ned the basic mathsatical model for neural
networks (NN for short). His basic unit was called the perceptin, which when it receives
a signal, would either respond or not, depending on whetheffanction exceeded a thresh-
old. Figure presents a formal neurone. It receives inpugsals (X1; X2,  ;Xp), and
applies an activation functionf to a linear combination of the signals. This combination
is determined by a vector of weightswy; ws; ;Wp and a biasky. More formally, the
output neurone valuey de ned as follows:

XP
y=f b+ wx (2.1)

i=1

A neural network is then a network whose nodes are formal neumes, and to de ne a
neural network, one needs to design its architecture (the mber of hidden layers and the
number of nodes per layer, etc) as well as estimation of paratars once the network is
xed. Figure gives an example of such a network.
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Figure 2.2: An example of . DataX is fed into the rst (and here only) hidden
layer. Each node in the hidden layer is the composition of agshoid function
with an a ne function of X. The outputs from hidden layer are combined
linearly to give the output y.

This chapter consists rst in understanding the deep convational neural network.
Here, the set of steps constituting the design of a convolutial neural network are de-
scribed: the di erent commun layers and a state of the art of eep architecture for speci c
tasks was conducted. Then, the di erent loss functions andptimization methods were
explored. Sectior] 2J4 describes the problem of training De€NNs when processing a
noisy traning dataset. Section 2]5 presents transfer leang. Finally, this chapter mades
an overview on saliency prediction by machine learning.

2.2 Deep Convolutional Neural Networks

Deep learning is a branch of machine learning introduced i®80s. Nevertheless, its emer-
gence started really by the computational power of the 20004t is a machine learning
process structured on a so-called convolutional neural meirk (CNN). A CNN]is com-
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posed of several stacked layers of di erent types: convoiabal layers ([CONV), pooling
(POOL) layers, non-linearity layers such as RelLu layers oiggnoid layers, and (generally
the last layer) fully connected layers[(FC). Figur¢ 2]3 givean example of an architecture
of a[CNN.

Figure 2.3: An example of a CNN.

2.2.1 Commun layers

Convolutional layers (CONV) |

In order to extract the most important information for furth er analysis or exploitation of
image patches, the convolution with a xed number of lters § needed. It is necessary
to determine the size of the convolution kernel to be applieb the input image in order
to highlight its areas. Two stages are conceptually necesgdo create a convolutional
layer. The rst refers to the convolution of the input image wth linear lIters. The second
consists in adding a bias term.

Generally, the equation of convolution can be written ag (2):

X
X{=  Xg' wi+h (2.2)
k2

with ; - is the kernel support, i.e. the receptive eld of -th neuron;

|- is the netwok layer;

Xj' - is the input of j -th neuron at layer |, that is feature-map vector;

W, - is the wieght ofk-th neuron in the receptive eld |;

q - is the bias ofj -th neuron at the layerl.

iIs Hadamard product which is a coordinate-wise operation.

In practice, each Conv layer is de ned by four parameters: thnumber of Iters K,
the spatial extend or the kernel sizeé-, the stride between each regiors and nally
the amount of zero paddingP . The Conv layer accepts as input a volume of a size
W1l H1 D1whereWl, H1 andD1 present the width, the height and the channels
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number respectively that correspond to the input blob (in tle rst conv layer the blob is
the input image). In order to de ne the four parameters of theConv layer, some equation
should be respected to produces the output volume of sivé2 H2 D2:

W2=(W1 F+2S)=P+1 (2.3)
H2=(H1 F+2S)=P+1 (2.4)
D2 =K (2.5)

Pooling layers (POOL)

Pooling reduces the computational complexity for the uppeiayers and summarizes the
outputs of neighboring groups of neurons from the same ketmeap. It reduces the size
of each input feature map by the acquisition of a value for egeceptive eld of neurons
of the next layer. Dierent function could be used in the poahg operation such as
average or maximum. With the fallen out of average pooling, cent deep networks used

max-pooling, see equatior] (2,6):
h(x;y) = max h! *(x;y) (2.6)
X;¥y2N

Here N denotes the neighborhood of (x,y).

In practice, eacH POOL layer is de ned by two parameters: thepatial extend or the
kernel sizeF, the stride between each regio®. Commonly, these parameters are de ned
asF =2 and S = 2; but we can also used the overlapping pooling witk =3 and S = 2.
The Pool layer accepts as input a volume of asiX¥1 H1 D1 and produces the output
volume of sizeWw2 H2 D2 where:

W2= (W1 F)=S+1 2.7)
H2=(H1 F)=S+1 (2.8)
D2=D1 (2.9)

Activation layers

Acitvation layers used a non-linearity function that takes asingle number and performs
a certain xed mathematical operation on it. Here, we will desribe several activation
functions :

ReLu layers
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The Recti ed Linear Unit (ReLu for short) has become very poplar in the last few
years. It computes the functionf (x) = max(0;x) (see gure[2.4). Thus, the activation
is thresholded at zero. It was found to accelerate the congemce of a very popular
parameter optimization method, stochastic gradient desne compared to the sigmoid
function.

Figure 2.4: Recti ed Linear Unit (ReLU) activation function

A rst variation of ReLu layer was available to resolve the \djing ReLU" problem :
Parameterized Recti ed Linear Unit [42] where a non-lineaty function is applied f (x;) =
max(0; x;) + a min(0; X;) where & is a small constant. The di erences from ReLULayer
are 1) negative slopes (of 0.01, or so) are learnable thougitkprop and 2) negative slopes
can vary across channels.

The second variation of Relu layer generalizes the ReLU antd irst variation to be
written as f (W Tx + b) [38]. Here, the dot product between the weight®/ " and the data
X presents a non-linearity function.

Sigmoid layersThe sigmoid non-linearity takes a real-valued number and tpiashes”
it into range between 0 and 1 ( see gur.5). It has the matheatical form (x) = —=

l+e *°

It was well used in neural network since its nice interpretédn (large negative numbers
become 0 and large positive numbers become 1). With convotutal network, the sigmoid
function saturates at either of 0 or 1 and then it kills gradiets.

Figure 2.5: Sigmoid activation function
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TanH layers

The tanh squashes a real-valued number to the range I; 1] (see gure[2.6). The
tanh neuron with the non-linearity functionf (x) =2 (2x) 1is a scaled sigmoid neuron.
Here, its activations saturate and its output is zero-cented.

Figure 2.6: TanH activation function

Local response normalization layers (LRN and RelLu)

A local Response Normalization| (LRN) layer normalizes values feature maps which are
calculated through the neurons having unbounded (due to Ré&l) activations to detect

the high-frequency characteristics with a high response tife neuron, and to scale down
answers that are uniformly greater in a local area. The outpwcomputation is presented

in equation (2.10):

- — 5 Z{Xy)
(Z (X’ y)) - 1+ P min( S;x [N=2]+ N) F min( Sy [N=2]+ N) Z (XO' O))Z)
N2 xO:max(O X [N=2]) yO:max(O iy [N=2)) Y
(2.10)

Here Z(x;y) represents the value of the feature map after ReLU operatioat (X;y)
coordinates and the sums are taken in the neighbourhood of, ¥) of sizeN N, and
regulate normalization strength. Normalization is also a @rydinate-wise opeartion.

Fully-connected layer

Neurons in a fully connected layer have full connections tolalctivations in the previous

layer, as seen in regular Neural Networks (see gufe .2). Theictivations can hence be
computed with a matrix multiplication followed by a bias o set. As Convolution layer,

the Fully-connected layer compute dot products. The only dérence between these two
layers is that the neurons in the Convolution layer are coniéed only to a local region in
the input.
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2.2.2 Deep CNN architecture for speci c tasks

As detailed before, the main layers of a deep CNN are the convitunal layer which will
compute the output of neurons by a dot product between their @&ghts and the connected
local regions in the input. Generally, the convolutional iger is followed by an elementwise
activation function which leaves the size of the volume unelmged. Using deep networks
for classi cation in image processing, ensures the transfoation of the input image pixels
considered as neurons to nally yield a single output that pFsents the label of the input
image. Indeed, the input values go through the network, undgoing subsampling, non
linear transformation and linear combination as they passhtough the layers to nally
classify the image. Each neuron in the CNN can be seen as a featextractor, by
applying a lter to the image. The inputs of the intermediate layers are the result of a
combination of lters from the layer above. This means that surones of the rst layers
extract a \simple" features and those in deep layers are used extract more complex
features.

Historically, the rst hypothetical neural machine was illustrated by the perceptron
of Rosenblatt [111]. It presents the analogy to biologicaystems. In next gure[2.7, the
sensory units of retina response with an all-or-nothing tohe stimilus intensity. These
impulses are transmetted to a set of association cells in aopection area. Here, each
cells receive a number of connections from the sensory psinConnections between the
projection area and the association ared,, are random. TheR,R,, :::,R,, cells response
like the units of association area. Here, a feedback connecis between cells response and
the association area are used.

Figure 2.7: Organization of the perceptron of Rosenblati [1] : localized connection
betwen the retina and Al projection area; random connectiontierwise.
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The authors of [32] designed a fast and reliable face detectisystem using convolu-
tional neural networks, to detect face patterns of variablsize and appearance, that are
rotated up to 20 degrees in image plane and turned up to60 degrees, in complex real
world images. The proposed CNN consisted of a two convolut@nlayers which ensure
the feature extraction, each one is followed by a sapsamlitayer which reduce of dimen-
sionality (average Pooling) (see gur¢ 2]|8). Fully conneet layersN1 and N2 contain
simple sigmoid neurons in order to perform classi cation dface" or \no-face" problem.

Figure 2.8: Architecture of face detection network. (Ref[[32

The rst successful applications of Convolutional Networksvas proposed by LeCun
in [69]. Here, a convolutional neural network LeNet was specally designed for on-line
handwriting recognition. As illustrated in gure P.9, the deep network is constructed
with 7 layers. The lower-layers are composed to alternatingpnvolution and max-pooling
layers. The upper-layers however are fully-connected androespond to a traditional MLP
with a logistic regression (see gur¢ 2|2). The proposed ogiutional neural network
eliminates the need for hand-crafted features extractorsnd reduce the need of hand-
crafted heuristics and manual parameter tuning in documerntcognition systems.
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Figure 2.9: Architecture of LeNet network. (Ref.[[69] )

The popular deep convolutional neural network proposed by rikhevsky [62], used
eight layers with weights to classify the 1.2 million highesolution images/[[112] into a
1000 di erent classes. This depth architecture achieved acord-breaking results using
purely supervised learning. The rst ve layers are convoltional and the remaining three
layers are fully connected. The output of the last fully-comected layer is fed to a 1000-
way softmax which produces a distribution over the 1000 cladabels. The network used
to maximize the multinomial logistic regression. The neure in the fullyconnected layers
are connected to all neurons in the previous layer. Responsarmalization layers follow
the rst and second convolutional layers. Max-pooling lays. The ReLU non-linearity is
applied to the output of every convolutional and fully-conected layer

Figure 2.10: Architecture of AlexNet network for object recogtion. (Ref. [62] )

Today with the di erent frameworks available for deep netwdks training, such as
tensor ow [1], torch |21], Ca e [54], Theano[]9], ... an expision of network architecture
for di erent tasks has emerged ZF-Net[136] , GoogLeNeét [121]G&GNet [118] and ResNet
143].
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2.3 Loss Functions and Optimization Methods

A neural network be it a fully connected NN or & CNN is a supervisemachine learning

model. It learns a prediction function from a training set[29]. Each sample from this
set can be modeled by a vector which describes the observatiand its corresponding
response. The learning model aims to construct a function veh can be used to predict the
responses for new observations while committing a prediati error as lowest as possible.

More formally, a samplei from the training set is denoted };x,;  ;x!;y') and the
response of the model is denoted.”

2.3.1 Loss functions

There are many functions used to measure prediction error$hey are calledloss func-
tions. A loss function somehow quanti es the deviation of the outypt of the model from
the correct response. We are speaking here about \empiridaks" functions [129], that
Is the error computed on all available ground truth trainingdata. Here we will shortly
present one of them.

One-hot encoding

Back to the training set, the known response of each obsenat is encoded in a one-hot
labels vector. More formally, given an observationxf; x,;  ;xl;y'), we introduce a
binary vector L' = (L};L5;  ;Lj)suchthatify' = ¢ thenL] =1and8m#6 j, L, =0.
This is the function which ensures a \hard" coding of class leels.

Softmax
Given a vectorY = (yi1;Y>;, ;Y«) Wwith positive real-valued coordinates, the softmax
function aims to transform the values ofY to a vector S = (p1;p2;  ; pk) of real values

in the range (Q 1) that sums to 1. More precisely, it is de ned for each 2 f 1;2; ;kg

by:
eyi
pi = Pr— -
j=1 ©

(2.11)

The softmax function is used in the last layer of multi-layeneural networks which are
trained under a cross-entropy (we will de ne this functionm next paragraphs) regime.
When used for image recognition, the softmax computes the msated probabilities, for
each input data, of being in a class from a given taxonomy.
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Cross-Entropy

The cross-entropy loss function is expressed in terms of thesult of the softmax and the
one-hot encoding. It is de ned as follows:

Xk
o(S;L) = Lilog (o) (2.12)
i=1
The de nition of one-hot encoding and the equation[(2.12) nmans that only the output
of the classi er corresponding to the correct class label iscluded in the cost.

Average Cross Entropy

To deal with the cross-entropy of all the training set, we inbbduce the average cross-
entropy. This is simply the average value, over all the setf the cross-entropy introduced

in equation (2.12):

X

L = O(S';L"): (2.13)

1
N i=1
The loss function corresponds then to the average cross+enply.

As claimed before, the machine learning models aim to consttia prediction function
which minimizes the loss function. There are many algorithemwhich aim to minimize
the loss function. Most of them are iterative and operate byeatreasing the loss function
following a descent direction. These methods solve the pitetn when the loss function
Is supposed to be convex. The main idea can be expressed syngd follows: starting
from initial arbitrary (or randomly) chosen point in the parameter space, they allow the
\descent" to the minimum of the loss function accordingly tahe chosen set of directions
[106]. Here we discuss some of the most known and used optirtiaraalgorithms in this

eld.

2.3.2 Optimization methods

The process of learning the network parameters and nding gd hyperparameters have to
be considered through the variation of loss value during thferward pass in training step.

Hence, with a low learning rates the improvements will be lirge. With high learning rates

they will start to look more exponential. Higher learning raés will decay the loss faster,
but they get stuck at worse values of loss. The second impontaquantity to track while
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training a deep network is the validation/training accurag. The plot of accuracy values
during learning the model can give a valuable insights intcthe amount of over tting in
the learned model. The gap between the training and validatn accuracy indicates the
amount of over tting [57]. Figure [2.1], plot the loss and aclacy values over di erent
units of epochs, which measure how many times every examplashbeen seen during
training.

(a) Loss curve during training (b) training and validation accuracy curves.

Figure 2.11: Di erent learning rate where training and valiction of a Deep CNNI[S7].

The Gradient Descent Algorithm

The gradient descent algorithm is the most simple and most ed algorithm to nd param-
eters for the learning model under the assumption of convéxiof function to minimize.
There are mainly two versions of this algorithm, the rst oneacts in a batch mode and
the other in on-line mode. The batch mode: when we aim to miniae globally the loss
function (this is why it is named batch), we rst initialize randomly the parameters and
we iteratively minimize the loss function by updating the peameters. This updating is
done following the opposite direction of the gradient of théoss function which, locally,
shows the highest slope of this function. Hence, at iteratiofy the new values of the
weightsw(*Y) are estimated using the values of the weights at stepand the gradient of
the loss function estimated at weighw(®:

8t 2 N; W(t+l) = W(t) rL W(t) ; (214)

where 2 R, is a positive real called learning rate. One fundamental is8 is how to
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choose the learning rate. If this rate is too large, than we mngaobtain oscillations around
the minimum. If it is two small, then the convergence toward ie minimum will be too
slow and in same cases it may never happen.

The on-line mode: when we are dealing with large set of dataatich algorithms are
not useful anymore since they are not scalable. Many worksuebeen done to overcome
this issue and to design on-line algorithms. These algoritis consider a single example
at each iteration and are shown to be more e cient both in timeand space complexities.

Among all the on-line algorithms, thestochastic gradient Descen(SGD for short)
is considered as the most popular and the most used one. Mangriss have proved its
e ciency and its scalability.

The SGD algorithm is an iterative process which acts as folle: at each iteration
t, a training example X¢;Y.): (x};x5;  ;xt;yY) is chosen uniformly at random and is
used to update the weights of the loss function following thepposite of the gradient
of this function. The SGD algorithm belongs to rst-order mehods, i.e., those that
form the parameter update on the basis of only rst order graent information. First-
order methods, when used to solve convex optimization pr@whs, have been shown to
have a convergence speed, when used with large dimensionbfmms, which can not
be better than sub-linear in means of ¥, [105], wheret is the number of iterations.
This theoretical result implies that rst-order methods can not be used to solve, scalable
problems in an acceptable time and with high accuracy.

Momentum is a method that helps accelerate SGD in the releviadiirection. It achieves
this by adding a fraction of the update vector of the past timestep to the current update
vector. The most popular is the method of Nesterov Momentum 69

8t 2 N; Y(t) = W(t) + W(t) W(t 1)

t+1
W(t+1) = Y(t) rL Y(t) ; (215)

Nesterov momentum enjoys stronger theoretical converge gaatees for convex functions.
Instead of evaluating gradient at the current position, wih Nesterov momentum, the
gradient is evaluated at the "looked-ahead" position.

2.4 Problem of Noise in training data

In data mining, noise has two di erent main sources [141]. [@rent types of measurement
tools induce implicit errors that yield noisy labels in traning data. Besides, random
errors introduced by experts or batch processes when the daire gathered can produce
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the noise as well. Noise of data could adversely disturb theaski cation accuracy of
classi ers trained on this data. In the study [97], four superised learners (naive Bayesian
probabilistic classi er, the C4.5 decision tree, the 1Bk istance-based learner and the SMO
support vector machine) were selected to compare the sensty with regard to di erent
degrees of noise. A systematic evaluation and analysis oketimpact of class noise and
attribute noise on the system performance in machine learng was presented in[141].

The Deep CNNs use the stacking of di erent kinds of layers (coolution, pooling,
normalization,...) that ensures the extraction of feature which lead to the learning of
the model. The training of deep CNN parameters is frequentlyathe with the stochastic
gradient descent 'SGD' technique[[54], see sectibn 2|3.2r & simple supervised learning
the SGD method still remains the best learning algorithm whrethe training set is large.
With the wide propagation of convolutional neural networksand the massive labeled data
needed to train the CNNs networks, studies of the impact of ngiddata was needed. A
general framework to train CNNs with only a limited number of @an labels and millions
of noisy labels was introduced i [132] in order to model thelationships between images,
class labels and label noises with a probabilistic graphicaodel and further integrate it
into an end-to-end deep learning system. In [110], substaaltrobustness to label noise
of deep CNNs was proposed using a generic way to handle noisy armbmplete labeling.
This is realized by augmenting the prediction objective wit a notion of consistency.

Our research focused on noise produced by random errors wggidally addresses a
two-class classi cation problem: for each region in an imagyvideo plane it is necessary to
give the con dence to be salient or not for a human observer. @ main contribution of
this chapter is to identify how noise of data impacts perforance of deep networks in the
problem of visual saliency prediction. Here, to study the imgct of the noise in ground
truth labels, two experiments on the large data set were condted. In the rst experiment
non-salient windows were randomly selected in an image p&m a standard way, just
excluding already selected salient windows. Neverthelessvideo, dynamic switching of
attention to distractors or to smooth pursuit of moving objets, makes such a method
fail. This policy of selection of non-salient areas yieldsandom errors. In the second
experiment, cinematographic production rule of 3/3 for nofsalient patches selection was
used, excluding the patches already de ned as salient araa all the videos frames and
excluding the area where the content producers - photograpseor cameramen place
important scene details. The results show the increase incgacy in the most e cient
model up to 8%, all other settings being equal : the network ehitecture, optimization
method, input data con guration.
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2.5 Transfer Learning

Generally, in machine learning a simple classi er computenautput scoreY from a vector
X. It can be written as follow :

X
Y=f(WX)=f( WX) (2.16)

j
whereW is a vector of weights and f is a function that converts the doproduct of the
two vectors into the desired output. Transfer learning techiques answer the question
\How to use the vector of weightsW that already trained on one problem to a di erent
related problem?"

Transfer learning also de ned as a ne-tuning technique§[6presents a technique used
in the eld of machine learning that increases the accuracyf ¢earning either by using it
in di erent tasks, or in the same task [134] . Training CNNs fromscratch is relatively
hard due to the insu cient size of available training dataseé in real-world classi cation
problems. Pre-training a deep CNNSs by using an initializatioor a xed feature extractor
presents the heart of the transfer method. In the literaturefor supervised learning with
ne-tuning a variant was explored and introduced in 2006 in4s].

1. Initialize the supervised predictor (parametrized regsentation functionh,_ (x) and
the linear or non-linear predictor),

2. Fine-tune the supervised predicor with respect to a supesed training criterion,
based on a labled training set of (x,label) pairs, and optiming the parametres of
the supervised predictor.

Gradient descent can be used for ne-tuning the weights in sh \autoencoder" networks,
but this works well only if the initial weights are close to a god solution. The e ective
way of initializing the weights is by allowing deep autoena®r networks to learn low-
dimensional codes [45]. This idea work better than princiba&aomponents analysis as
a tool to reduce the dimensionality of data. Starting with radom weights in the two
networks (see gure] 2.1R), they can be trained together by mimizing the discrepancy
between the original data and its reconstruction. Pretraimg consists of learning a stack
of restricted Boltzmann machines (RBMs), each having onlyne layer of feature detectors.
The learned feature activations of one RBM are used as the \@id for training the next
RBM in the stack. After the pretraining, the RBMs are \unrolled" to create a deep
autoencoder, which is then ne-tuned using backpropagatioof error derivatives.

In the research of Bengio et al.[[134] addressing object rgodion problem, the au-
thors show that the rst layers of a Deep CNN learn characterigs similar to the responses
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Figure 2.12: Process of transfer learning proposed by [[45Ref. [45] )

of Gabor's lters regardless of the data set or task. Hence imeir transfer learning scheme
just the three rst convolutional layers already trained onone training set are used for the
initialization for parameter training on another training set. The coe cients on deeper
layers are left free for optimization, that is initialized andomly. Several studies have
proven the power of this technique[136] [ [90] . Here, two fam® scenarios of transfer
learning with CNNs were followed :

1) using a xed feature extractor with removing the last fully-connected layer. Here the
training is ful lled just for the linear classi er on the new dataset.

i) Fine-tuning the weights of the pre-trained deep CNN by corntiuing the back-propagation
[134]. Transfer learning with deep CNN shows its e ciency in derent application domain
such as person re-identi cation([33].

64



CHAPTER 2. DEEP LEARNING FOR VISUAL SALIENCY Souad CHAABOUNI

2.6 Saliency prediction by Deep CNNs

Saliency is useful tool that can be used in a plethora of comjen vision applications
such as image quality[[138], superpixel [82], localizati§BS5], retrieval [2], etc. Recently,
saliency methods have been also used as the main data to pecedisual xations (scan-
paths) [68]. A lot of methods to predict the saliency have bagroposed in the literature.
Some of them are based on low-level features by consideriegttre, color, intensity and
orientation [52], while some others are based on high-leveafures or based on perceptual
aspects[[74]. In this section, we are interested only on meitts that are based on deep
learning.

Deep learning models have been used in di erent applicatisr{segmentation, classi -
cation, scene understanding and so on). They have been alsed to predict the saliency
in image. This last decade, several saliency methods basedconvolutional neural net-
works have been proposed in the literature. Among the rst CNN mwdel for Saliency
prediction has been proposed in[69].

The basic deep learning architectures is hierarchically eated with neural networks.
The architectures of these networks can di er essentiallyybthe formulation of the main
problem. This formulation a ects the quantity and the schedling of convolution and
pooling layers, the pooling strategies, the input data, theature of the nal classiers
and the loss functions to optimize.

Shen [115] proposes a model that approximates human gazetigas. This model is
formed by three layer sequences of \sparse coding lIteringind \max pooling", followed
by a layer of linear[SVM classi er to extract salient areas inmages. The proposed deep
learning model providing ranked \salient" or \non-salient areas of the image, allows the
learning of the relevant characteristics of the saliency aatural images, and the prediction
of the eye xations on objects with semantic content.

In Vig's work [130], the proposed learning model tackles prietion of saliency of pixels
for a human visual system (HVS) and corresponds to a free-viewgi visual experiment.

The learning model of the saliency of image for a specied skis de ned in [117].
The challenge of this researchi [1117] is the creation of thdisacy map for each class using
deep convoltional neural networks \CNN" with optimization of parameters by stochastic
gradient descent. Therefore the classi cation problem isufti-class, and can be expressed
as a \task-dependent” visual experiment, where the subjectre asked to look for an object
of a given class of considered taxonomy in the images. Afterngeating the map that
maximizes the score of the speci c class, the saliency mapeaich class is de ned by the
amplitude of the weight calculated from the convolution nevork with a single layer. In

65



2.6. SALIENCY PREDICTION BY DEEP CNNS Souad CHAABOUNI

our case, we tackle a two class classi cation problem: foramaregion in a video frame, the
con dence has to be computed to belong to a \salient" class @o a \non-salient" one.

In [80], a multiresolution convolutional neural network, e called Mr-CNN, model has
been proposed. The raw image is rst rescaled to three di eréscales. Batches centered
on xation and non- xation points with a size equal to 42x42,are extracted from the
rescaled images and are used as inputs to train the proposeNINXC model. Eye xations
are here used as targets.

In [[75],the authors propose a multi-scale neural network enitecture to predict the
saliency. The input of the proposed method is the raw image cdemposed into regions
(segmentation). Each of these image regions has almost ther® saliency value. From
each considered region, three patches are then extractetirge scales), which are respec-
tively the bounding box of the considered region, the bounady box of its neighboring
regions and the whole image, and are used as input to three CNNodels. In [77], an
extended version has been proposed. The authors propose toét the saliency perfor-
mance by concatenating handcrafted low-level features: looand Texture (color RGB,
LAB and HSV histograms, LBP histogram and the histogram of the @ax responses of
LM lters).

In order to not predict the saliency of the whole image from gehes and thus to get out
the blurry Itering generally applied in this kind of method, some authors proposed fully
convolutional network models, so called \end-to-end conhgional network", to predict
saliency [101],[176]. This kind of models has been also apglito resolve segmentation
problem [114]. In[[101], the model is composed of 5 layers gmedict the saliency from
the image with a size of 96 96 3. The authors propose to adopt the end-to-end solution
as a regression problem. Ir[76], the authors proposed also end-to-end model. This
method uses the whole image as input and it is based on two m@omponents: pixel-level
fully convolutional and a segment-wise spatial pooling ssams. The rst stream aims to
take into account the multi-scale properties, while the sead stream aims to consider the
saliency discontinuities.

In [135], a multi-scale and multi-levels model has been debed. The raw image is
rst convoluted with some learned lters (k-means). The obained maps are then pooled
at multiple scales (four di erent sizes) and intermediate aiency maps are computed at
multiple levels with di erent lters. The global saliency map is nally given summing all
intermediate saliency maps and weighting it with a 2D Gaussn heat map.

In [140Q], the authors focus on the pooling step and proposedjkbal average pooling
method, so-called class activation maps (CAM). This poolingtep aims to produce the
desired output (class) and is applied on the last convolutial layer. So, from a same
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image di erent saliency maps can be obtained according to thabject category.

In [59], the authors propose to design a CNN model for colleetj eye tracking data
on mobile devices. This model is composed of four inputs :tlef/e, right eye face images
and a binary mask that provides the position of the face in theaptured image.

In [[7Q], the authors propose to combine High and low level faaes. The high level
features are extracted from the VGG-net model, while the lolevel features are given by
some handcrafted features based on color and Gabor Iter pnses. A low level distance
map is then derived from the comparison of the obtained lowuel features and other parts
of the image. The nal saliency map is achieved by combinindné high level features and
the encoded version of the low level distance map.

A lot of works today, are devoted to saliency prediction in gt images using fully
convolutional network\ECNI'.

In [24] proposed a mixture of experts based model to predianage saliency. This
model which was trained in an end-to-end manner, used globstene information in
addition to local information from a convolutional neural retwork. The global scene
information was trained on diverse categories of an eye-tidng dataset. The nal saliency
map is a weighted sum of the expert saliency maps.

[92] present an architectural extension to any Convolutial Neural Network (CNN)
to ne-tune traditional 2D saliency prediction to Omnidirectional Images (ODIs) in an
end-to-end manner. This extension present a re nement aritacture that is added after
the Base CNN. It takes a 3-channel feature map as input: the outpsaliency map of the
Base CNN and the spherical coordinates per pixel as two chamne

[66] presented an approach integrating class-speci ¢ saicy maps into an end-to-
end architecture to perform a weakly supervised object detigon. It exploits saliency
information thoroughly to boost the performance of both dedction and classi cation. A
highly con dent object proposals was selected under the glance of class-speci ¢ saliency
maps. The location information, together with semantic andaliency information, of the
selected proposals are then used to explicitly superviseetmetwork by imposing two
additional losses.

[71] proposed a uni ed deep learning framework for accuraéad e cient saliency de-
tection. The method used low-level features and high-levidatures which are extracted
using GooglLeNe for saliency detection. The low-level feaas evaluate the relative im-
portance of a local region using its di erences from other gigons in an image.

In [64], the authors proposed a deep CNN that predicts eye xains and segments
salient objects. The authors work on a kind of scenes with aryewell distinguishable
salient object and rather uninteresting background [ [65puses an existing neural network
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pretrained on the task of object recognition to predict eyexations. [102] formulated the
prediction of eye xations as a minimization of a loss functin that measures the Euclidean
distance of the predicted saliency map with the provided gumd truth. Despite the
popularity of these models they still need a thorough studynireal-life situation, which is
our case.

2.7 Conclusion

In this chapter, a state-of-the-art of deep learning for vigal saliency prediction was pro-
vided. We rst presented the important de nitions and characteristics about machine
learning and especially deep convolutional networks.

Then we introduced the problem the noise in big data. Hence, aoisy data could
adversely disturb the classi cation accuracy of learned a&$si ers.

We answer to the question, how transfer learning can incresssthe accuracy of learning
and then resolve training on small data.

Finally, we provided a state-of-the-art of saliency prediabn by deep CNNs. Hence,
several saliency methods based on convolutional neural wetks have been proposed in
the literature.

In the next chapter we will present our contribution in sali@cy modeling using deep
networks.
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Part ||

Deep CNNSs for saliency prediction

This part describes the contribution of saliency predictio with a deep CNN. The
architecture of deep CNN and the strategy of reconstructionfahe saliency map are
analysed here. The rst chapter details the deep CNN architéere designed for the
saliency prediction task. We de ne the classi cation prol#m for saliency prediction and
propose a method to densify the response of the trained modelorder to generate the
nal saliency map. Speci c features as contrasts have demsinated e ciency in state-of-
the-art methods for saliency prediction. Second chaptersemes the use of these specic
features and tests the in uence of noisy data, for training aeep CNN.
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Chapter 3

ChaboNet : a deep CNN designed
for prediction of visual saliency in
natural video

3.1 Introduction

Supervised learning techniques help with the detection oflgent regions in images by
predicting attractors on the basis of seen data]130]. Red¢emsearch has been directed
towards the creation of a basic deep learning model that enes the detection of salient
areas. While a signi cant e ort has been already made for buding such models from
still images, very few models have been built for saliency gatiction in video content

with supervised learning approaches [40]. Video has a suppbntary dimension: the

temporality expressed by apparent motion in the image plane

The actual trend for prediction of salient areas consists irhe use of supervised learn-
ing tools such as Deep CNNs. Deep CNNs were developed in Computesidh, rstly by
Yann LeCun with the LeNet [69] architecture that was used to @ognize digits. Then,
AlexNet[63] network has become very popular as architecturerfvisual recognition tasks.
It has a very similar architecture to LeNet, but is larger in tems of number of convolu-
tional lters, deeper, and featured Convolutional Layers e stacked on top of each other.
In prediction of visual saliency, the deep CNNs are becoming pdar as well [130],[1122],
[115], [117] .

Deep learning architectures, which have recently been praged for the prediction of
salient areas in images, di er essentially by the quantity foconvolution and pooling layers,
the input data, pooling strategies, the nature of the nal chssi ers, the loss functions to
optimize and the formulation of the problem.
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3.2 General approach

In the variety of predictors of visual attention in images ad video we are interested in
predicting \static" visual attention, which means that for each pixel &;y) in image plane
depicting a visual scene, we aim to predict its importance @alincy Sy (x;y). Never-
theless, unlike classical methods for prediction of statgaliency maps, in our supervised
learning framework we propose a two step approach:

Stepl: here we wish to roughly delimit, \spotify" regions-of-iterest in the image
plane. Hence the problem consists in the prediction of sal®nnot of a single pixel but of
a whole region. Without any pre-segmentaiton of the image pi@ we work with regular
grid of squared patche;.

Step2: Then on the basis of densly sampled patches we can integdel the saliency
map Sy (X;y) for each pixelk;y).

The overall block diagram of proposed approach for saliengyediction is depicted
in gure B.I]. After a various number of training and validation iterations, a trained
deep CNN model was obtained. This trained model ensures theediction of saliency
probability for each regions that are obtained by dense saripg the input image frame.
Using the responses of trained model on sampled patches, weripolate the nal saliency
map.

Figure 3.1: Overall block diagram of proposed approach forlgacy prediction.
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3.3 Policy of data set creation: salient and Non-

salient patches

Whatever is the architecture of a Deep CNN for saliency predicin, selection of a traning
dataset which would contain as less noise as possible is thasin The training set has to
be built to comprise salient and Non-salient regions in videframes. The ground-truth
for saliency here are the Gaze Fixation Density Maps (GFDM). Téy are built upon gaze
xations of a cohort of subjects recorded during a psycho-sual experiment. We formalize
it in subsection[3.3.1.

For salient patches extraction the intuition is clear: we ned to extract patches in the
video frames where the GFDM has strong values. For Non-saligpatches extraction,the
situation is more complex. Due to the distractors and visudhtigue, the areas in a given
video frame which are salient can become Non-salient in thextédrame. Thus the noise is
introduced in the training set of Non-salient patches. We thsi proposed a strategy based
on video production rules which will allow to avoid the nois@s much as possible. It is
presented in subsectioph 3.3.2.

3.3.1 Salient patches extraction

In the following equations bold variables will denote vects. A squared patchP of size
s s k(s=100 adapted to the spatial resolution of standard de niti (SD)) video) in
a video frame is de ned as a vector iflRS S X. Herek stands for the quantity of primary
feature maps serving as an input to the deep CNN. In case when gentional RGB planes
are used as input data for the network, therk = 3; if supplementary data layer, such as
motion is added, thenk = 4.

Patch saliency is de ned on the basis of its interest for suegts. The interest is
measured by the magnitude of built upon gaze xations foeach video frame.
GFDMs are built by the method of Wooding [[131]. Such a ma,(x;y) represents a
multi-Gaussian surface. Each Gaussian is centered on a gazation point. Then the
Gaussians are summed up and the surface is normalized by itslgl maximum.

A binary label is associated with each patcl?; using equation [3.1).

1 if  Sy(XoisYoi) 3

L(P;) =
(Pi) 0 otherwise

(3.1)

with (Xo;; Yoi) the coordinates of the patch center in the image plane. A sef thresholds
is selected starting by the global maximum value of the norniaed GFDM and then
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relaxing threshold values as in equatior] (3.2):

0 = max(Sy(x;y))(x;y) 2 D (3.2)

(+1) = j
HereD is the image de nition domain, 0< < 1 is a relaxation parameterj =0; ;J,
and J limits the relaxation of saliency. It was chosen experimeally as J = 5, while
= 0:04. In complex scenes several details or objects can attrdaiman attention.
Thus the map Sy(x;y) can contain several local maxima. In order to highlight then,
morphological erosion with 3x3 structuring element was afipd to Sy(X;y).

Figure [3.2 summarizes di erent steps to select salient pateb. Firstly, the GFDMs
were computed, then the operation of erosion was applied. &hllustration is given at
a frame from HOLLYWOOD [ dataset. Patches centered on local maxima with saliency
values satisfying the equationd (3]1)[ (3| 2) are selectes salient. Retained salient patches
should be distanced at least by%( s). Non-salient patches extraction is described in
section[3.3.2.

Figure 3.2: Policy of patch selection : example and steps (HOYWOODI[B8] |89] data
set “actioncliptest00003'.

Lavailable at http://www.di.ens.fr/  laptev/actions/hollywood2/
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3.3.2 Non-salient patches extraction

A Non-salient patch is a squared region in the image plane vehi is not supposed to
attract human gaze. In the following we will expose two methds of selection of Non-
salient patches for training of \Non-salient” class in our spervised-learning framework
for saliency prediction.

Method 1

Let us, for a given video frame at timet denote SP(t) a set of pixels belonging to
selected salient patches an8P(t)[ SP(t) = D(t) . Then any patch P; with all its pixels
in SP(t) can be considered as a Non-salient. Therefore, thiest method of selection of
Non-salient patches consists in random selection of patchnters in SP(t) that verify the
two following conditions. For each selected patcR;:

I) pixels of the selected patch are not iIrSP(t);

ii) The intersection for any two selected Non-salient patctseP; and Py, is empty.

The rst condition guaranties that Non-salient patches corespond to the area of the
current video frame, where the GFDMS,(x;y) values are low relatively to the condition
[3.1 The second condition ensures a large spread of selecteah-Salient patches in the
image plane.

An illustration of selected salient and Non-salient patchesia video frame generated
by the rst method is presented in gure[3.3. \salient" patches are presented by green
square and \Non-salient"by black one.

In the bottom-up saliency de nition, local contrasts can ivoke human gaze. Here,
when analysing selected patches, we can state that Non-salipatches can contain parts
of contrasted objects (a \Non-saillent" patch in gure[3.3 (b is selected on a contrasted
background. In gure[3.3 (c) it is selected even on the movingbject (red ball).). For
saliency prediction tasks, the main di erence when desigmyof supervised learning ap-
proches vs bottom-up methodes is that Non-salient patchesrcaontains a contrasted
area. The former exploit the interest of subjects in the visaal content expressed by gaze
xation density maps only, while the latter are purely stimuli(/image)- driven.

Nevertheless, such a straight-forward method for Non-saligmatches extraction yields
a noise in the training data. According to our observationsnivideo areas of high saliency
can change in-between frames, this is due to the distractor¥Ve namely have observed
such a phenomenon in the intentioally degraded content thate produced for assessment
of patients with neuro-degenerative diseases. The focusatfention of healthy subjects
change when they observe the degraded sequence and espediairing an appear of
unusual intentionnally degraded area in video frame (seeayter 6). This is illustrated
in gure B.4]below:
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(a) heat map of frame #0013 (b) selected patches on frame #0013
(c) heat map of frame #0014 (d) selected patches on frame #0014

Figure 3.3: Extraction of Non-salient patches by random selgon in the Non-salient
area of a video frame: Random selection of Non-salient patshen successive
frames of SRCO7 video IRCCyN[16].

(a) frame #388 (b) frame #399 (c) frame #533
Figure 3.4: Change of focus of attention due to distractors : wiched saillent object

(degraded elephent and car) on degraded sequence creats@&dheat map on
frames #388, #399 and #533).
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Such a change yields the erros in selection of Non-salient glas, indeed, as the focus
of attention is shifted in frame att + 1 a non salient patch can be selected on the object
which was salient in the frame att. Thus selected a Non-salient patcl?; is then a noise
data in a \Non-salient" class of the training set.

The problem of noise in training data and its in uence on clasprediction accuracy
in Deep learning is one of the open and urgent problems of theaahine learning that
community is facing now [[55],[160] /[ 181]. In the context of Bancy prediction in visual
content, it is important not only for video, but also for the gproaches on co-saliency
detection from collections of images [137]:

To our best knwoledge this problem has not been adressed yetthe context of pre-
diction of visual saliency. Hence to overcome this particulanoise generation, we propose
a second method for the extraction of Non-salient patches lek on visual content pro-
duction rules.

Method 2

According to the rule of thirds in produced and post-producedigital visual content,
the most interesting details of the image or of a video frameakie to cover the frame center
and the intersections of the three horizontal and verticalines that divide the image into
nine equal parts([84].

Let (Xo:i;Yoi) be the coordinates of the center of the patctr;, width is the width
size of the video frame andheight is its height size. Let us denote by5P the set of all
pixels belonging to salient patches selected as describadection[3.3.L. To exclude such
pixels and the area-of-interest, the one- fth band of the fime was chosen starting from
its border. Then Non-salient patch centers are randomly seled in this area. Hence the
generated coordinatesXp; ; Yoi) of i-th Non-salient patch satisfy the following conditions

[(Xo:i; Yoi) 62SPI?
[0 Xoj < YM]AT0 o < height]
or[((width %) Xo;i <width ) * (0 yo; < height)]
or[((@) Xoi < (width @)) A0y < @))]
orf((Wdh)  xg < (width ~— vidihy)

A(height  229M)  yq; < height)]

(3.3)

TV AR 00

Schematically, the center of Non-salient patch should be imé blue sh area shown in
gure B.5| The yellow lines depict the lines of interest.
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Figure 3.5: Space of selection of Non-salient patches "actitiptest00003'.

The table[3.1 below presents the group of salient patches dmetleft and Non-salient
patches on the right. The rows contain some examples takerofn frames of a set of
video sequences \actioncliptrain” from the HOLLYWOOLY| data set. Once more we note
that Non-salient patches can contain rather strong contrast(e.g. as in the rst row on
the right), but these patches have not attracted visual attation of subjects and are not
situated in the area-of-interest acccordingly to the third rule.

Table 3.1: Training data from HOLLYWOOD data set

2available at http://www.di.ens.fr/  laptev/actions/hollywood2/
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3.4 Deep Convolutional Neural Network for visual

saliency. ChaboNet

In this section, the proposed architecture ChaboNet for theisual saliency prediction
problem is presented. As the purpose is in predicting visuahlgency in video, specic
features which are added to convention@dl RGB pixel valuesedescribed rst. Then the
architecture in terms of layers is presented. The implemeation of ChaboNet is realized
on the basis of Ca e framework([54].

3.4.1 A specic input data layer

When adressing visual attention prediction in video, the saitivity of HVS to motion has
to be taken into account[10]. Indeed in classical bottom-ugaliency prediction models,
the sensitivity of[HVS to motion in a dynamic scene is modeled hgsidual motion [87].
Human observers accommodate to the global motion in a visualene, such as camera
motion, and are attracted by speci c local motions of objest They rst execute a saccade
to a moving target and then continue with the \smooth pursuit or visual tracking [107]
keeping focus-of-attention on it. Local motion, i.e. motin of the target is expressed by
residual motion relatively to the camera motion observed ithe image plane([87]. The
global motion in the plane of video frames expresses cameration. To compute residual
motion, the approach described in detail in next chaptdr 4.3 was followed. Here a pixel-
wise motion eld is computed by an optical ow method rst. Using the dense motion
eld vectors as raw measures, the a ne linear model of global otion is estimated by
RANSAC algorithm [28]. Finally, the residual motion is the veobr - di erence between
the initial motion vector and the one generated by the estintad a ne model. As motion
features, the squared.2 norm of residual motion vectors in each pixel in a video fraen
normalized by its maximum in the frame, is used.

The composition of the input layer of the CNN is illustrated in gure 8.6] Here for each
patch the input layer is composed of three color channel vaa and the residual motion
feature map. Due to this con guration, the model is called \@aboNet4k" in contrast to
\ChaboNet3k", where only color channel values are used.

3.4.2 The ChaboNet network architecture design

ChaboNet architecture was designed for the two-class clasation problem: prediction
of category of a patch in a given video frame as salient or Noalent. We aimed i) to
preserve a reasonable deepness and ii) to remain comparablthe number of layers with
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Figure 3.6: Input data layer : di erent features to ingest in he network.

a quite e cient network Alexnet [63]. The ChaboNet architectue is summarized in gure
[3.4.

As in the majority of Deep CNN architectures designed for imageassi cation tasks
[54], ChaboNet is composed of a hierarchy of patterns. Eachtfgain consists of a cascade
of operations, followed by a normalization operation in soecases. The cascading of linear
and nonlinear operations successively produces high-lefeatures. They are trasmitted
via a fully connected layer to the deepest layer which is a $ahax classi er. It assigns
the con dence for each patch to be salient or not. Due to quita limited size of input
patches three patterns were proposed in this architectureThe pattern P! below is a
usual combination of convolution, pooling and non-linearayers, P? and P2 have the
same structure. The whole network can be detailed as follows

Pattern P1:

Input !convolution ConVl!pooling POOH RELU Rl
Pattern PP: with p 2f2;3g

NP 1 !convolution Conw RELU RP !convolution Conv? RELU

RPp1 PN p o op

The normalization operation was added after the pattern®* and P2 only, as after
the pattern P32 the features are quite sparse. The architecture of ChaboNetdepicted in
gure B.7] The features after convolution layers are prestd for the example image from
gure B.6l It can be seen that the rst layer of the network peforms more as low-pass
Iters and deeper the convolution layer is more \high-pass® ect is observable.
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Figure 3.7: Architecture of video saliency convolution network “ChaboNet'.
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Inspired by literature as [63], [[115] where the size of coruton kernels is either
maintained constant or is decreasing with the depth of laysy in ChaboNet network, 32
kernels were used with the size of 1212 for the convolution layer of the rst pattern P2.
In the second patternP?2, 128 kernels for each convolutional layer were used. RY the
size of the kernels for the rst convolutional layer was ches as 6 6 and for the second
convolution layer, a kernel of 3 3 was used. Finally, 288 kernels with the size of 33
were used for each convolution layer of the last patterR3. This allows a progressive
reduction of highly dimensional data before conveying theto the fully connected layers.
The number of convolution lters is growing, on the contrary to explore the richness of
the original data and to highlight structural patterns. Forthe Iter size, several tests were
made with the same values as in AlexNet [63], Shen's netwofk Bl1LeNet [69], Cifar
[61] and nally, the size of 12 12 was retained in the rst layer of the patternP?! as it
yielded the best accuracy in saliency prediction problem.

Figure[3.8 summarizes the parameters used for each layer oé three patterns.

Figure 3.8: Detailed setting of each layer of "ChaboNet' netwa

3.4.3 Visualization of features

It is interesting to visualize the purely spatial features amputed by the designed CNN in
case when the network is con gured to predict saliency onlyith primary RGB jalues. As

the feature integration theory states, thé HVS is sensitive torientations and contrasts.
This is what we observe in features going through layers ofémetwork. The output of

convolution layers (see gure$ 3|9, 3.10 ar{d 3]11) yields reoand more contrasted and
structured patterns. In these guresconvi and convii stand for consecutive convolution
layers without pooling layers in between.
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Figure 3.9: (a) Input patch, (b) the output of rst convolutio n layer and (c) the output
of the rst pooling layer.

Figure 3.10: The output of the 2nd convolution layer, ' Conv2and ‘Conv22'.

Figure 3.11: The output of the third convolution layer, ' ConB' and 'Conv33'.
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3.4.4 Training and validation of the model

To solve the learning problem and to validate the network wit the purpose to generate a
robust model for salient area prediction, the solver of Ca ¢54] is repetitively optimizing
the network parameters in a forward-backward loop. The optiization method used is the
stochastic gradient descent "'SGD' with a simple momentumndieed, in [120] the authors
explain the necessity of momentum method, which allows fovaiding of oscillations of a
simple gradient descent method in Deep networks optimizati. In is caracterized by an
introduction of a speci c term - velocity. It is a technique b accelerate gradient descent
by accumulating a velocity vector in directions of persistd reduction in the objective
function across iterations. The method is expressed by thellbwing equation.

8
SV =M, V, Wi hZRWwi

. Di (3.4)
" Wi = Wi+ Vi

With W convolution coe cients, V is the velocity vector, = 0:001-is a xed learning
rate, my, = 0:9 - is a momentum coe cient, = 0:00004 is the weight decay. The initial
value of the velocityV, was set to zero. These parameter values are inspired by théues
used in [54] with the same xed learning rate and show the beperformances on a large
training dataset. Further in the manuscript we will come bak to the algorithm and study
di erent ways of its initialization. In the present chapter the initialization of convolution
coe cients is realized randomly according to Gaussian digbution as proposed in[[54].

The parameterization of the solver requires also setting ¢hnumber of iterations at
training step. The number of iterations was de ned accordigly to the equation (3.5):

T otal_images_.number
batchsize

iterations _numbers = epochs (3.5)

herebatch size represents the number of images for each network switchirepochsis the
number of times the totality of the dataset is switched by thenetwork. We will study this
parameter in the experimental part of the present chapter.

3.5 Generation of saliency map

The saliency map of each framé of the video is constructed using the output value,
for each patch, of the trained deep CNN model. We proposed totémpolate sparse
classi cation results. The soft-max classi er that takes he output of the inner product
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layer as input, gives the probability for a patch to belongig to the salient class. Function
de ned in equation[3.6 presents a generalization of the Iagic function that compresses
a vector U of arbitrary real values of dimensiord to a vector of the same dimension but
with actual coordinate values in the range ().

(U), = %;r =1;::5d (3.6)
r

Hence, from each framé local regions having the same size as training patches (here
s = 100) are selected in a raster-scan scanning process. Thdpo value of the soft-
max classi er with regard to the salient class on each locakgion de nes its degree of
saliency. If the score is assigned to the center of each patehsparse saliency map is
obtained M (x;y). It has a non-zero values only in the center of patchxg;yp). In a
scanning process densely sampled, with a stride of 5 pixds;al regions were classi ed.
Then score values assigned to the centers were interpolatedh Gaussian lters: in the
center of each local region, a Gaussid®(x; y) was applied with a pick value o> *g¥e)
The A-parameter value was experimentally choosen as 10. The smgparameter was
xed as a half-size of the patch. For each pixel in the image ghe the Gaussians were
summed-up. Finally the map was normalized by saliency peak esWooding method for

GFDM (see sectior] 1.3]1).

Figure 3.12: Psycho-visual 2D Gaussian depending to the favarea on the local region
center predicted as salient.
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Algorithm 2 Predict saliency map (frameRGB, frame_RMotion)

Require: frame.RGB : RGB frame | of the video,
frame_RMotion : residual motion map corresponds to | frame
Ensure: saliency map tahsaliency
begin
frame _4k = concatenat¢frame RGB;frame _RMotion; 2)
SizePATCH =100
STRIDE =5
kernelXY = Matrix _Zero[Height(frame _4k)][Width (frame _4k)]
numCores = number of CPU processor
for each process Pi in numCoredo
arrayRes = ( delayedgetP atchClassification )(patch)
for (x;y; patch)inslidingWindow (frame _4k; STRIDE; (SizeP AT CH; SizeP AT CH)))
end for
positions = Research (positions in arrayRes 0:0)
for X, y in positions do
for probl in range (G int(10 arrayRes[x][y])): do
kernelX = getGaussianKernelWithCenter (int(HEIGHT );x STRIDE +
int (SizeP AT CH=2); sigma)
kernelY = getGaussianKernelWithCenter (int(WIDTH );y  STRIDE +
int (SizeP AT CH=2); sigma)
kernelXY = kernelXY + kernelX kernelY:transpos«)
end for
end for
kernelXY = kernelXY (1=maxV al(lkernelXY)) 255
save saliency map tab_saliency = savelmagdgkernelXY )

Algorithm 3  procedure getPatchClassi cation (Patch)

Require: Patch size 100 100
Ensure: Salient prob= probability of Patch saliency
transformer = ca e.io. Transformer()
transformer.set-transpose()
transformer.set-mean()
transformer.set-raw-scale()
transformer.set-channel-swap()
net.blobs['data’].data[...] = transformer.preprocessdata’, Patch)
out = net.forward()
return Salient-prob = out[prob(Patch)] * Label[out[prob(Patch)]];
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Algorithm 4  procedure getGaussianKernelWithCenter(length, centerjgna):

Require: length, center, sigma

Ensure: Compute the gaussian kernel of saliency : gaussianKernel
auxKernel = cv2.getGaussianKernel(length 3;sigma; cv2:CV _32F)
gaussianKernel = auxKernel [length+ (length=2 center) : 2 length+ (length=2
center); 0 :]

return gaussianKernel

3.6 Experiments and results

3.6.1 Data sets

To learn the model, HOLLYWOOD|[88] [89] data set with approximgely 20 hours of
recordings in total was used.

The HOLLYWOOD database contains 823 training videos and 884 wds for the
validation step. Video resolution are from 480 320 to 720 576 at 24 25 ps. The
distribution of spatial resolutions of videos are shown ingure[3.1I3. The number of
subjects with recorded gaze xations varies according to elavideo with up to 19 subjects.
The spatial resolution of videos varies as well. Despite tligscrepancy of these parameters,
we use it for model building as it is the only large-scale videdatabase with recorded gaze
xations. The HOLLYWOOD dataset contains 229825 frames for w@ining and 257733
frames for validation. From the frames of the training set, 22863 salient patches and
221868 Non-salient patches were extracted. During the vadition phase, 251294 salient
patches and 250169 Non-salient patches were used respeltiv€he distribution of the
data between \salient" and \Non-salient" classes is preseetl in table[3.2.

(a) training step (b) validation step

Figure 3.13: Histogram of video resolutionsWf H) of \HOLLYWOOD" database in
training and validation step.
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Table 3.2: Distribution of learning data: total number of séient and Non-salient patches
selected from each database.

L data sets training step | validation step |
[ SalientPatch | 222863 | 251294
HOLLYWOOD | Non-salientPatch 221868 250169
total 444731 501463

3.6.2 Evaluation of patches' saliency prediction with deep CNN

The network was implemented using a powerful graphic card & K40m and processor
(2 14 cores). Therefore a su ciently large amount of patches,55, was used per iter-
ation (see thebatchsize parameter in equation [(3.5)). After a xed number of training
iterations, a model validation step was implemented: heréné accuracy of the model at
the current iteration was computed on the validation data sewe call it \Test accuracy"
as mentionned in the gure[3.1p. In the following we rst evalate our proposal of patch
selection for training with ltering of noise in training data (Method 2) against random
patch selection Method 1), see section 3.3/2.

Evaluation of Noise lItering in the training set for Non-salient patche S

In gure below, the curves of accuracy were shown on \gdition dataset a) for
selection of training Non-salient patches by random sampljnwith Method 1, and b)
when Non-salient patches are selected according to our prged Method 2 using the
thirds rule.

(a) Non-salient patches by random sampling (b) Non-salient patches using the rule of third
Figure 3.14: Inuence of Non-salient patches selection metthoon resulting accuracy.

a)Random selection of patches; b) Selection of patches aaclingly to 3/3
rule.
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It is clear, that the Itering of noisy data in training datat set in our problem of
prediction of saliency of patches in video frames, allows lacrease classi cation accuracy.
We also summarize these results in terms of peak an mean stdts in the table[3.3
below. The proposed method of Itering noise in traning datan Non-salient class yields
the increase of max and mean accuracy of more than 7%.

Table 3.3: The accuracy results with two methods of Non-salient patch extraction a) Random
Sampling in Non-salient area; b) Selection accordingly to 3/3 rule

ChaboNet3k with random sampling ChaboNet4k with 3 =3 rule selection
min- e iter ) 49:8% (10 50:11% (x0)
max & jter ) 75:1% (#5214) 77:98% (45214)
avg std 71:6%  0:072 77:30% 0:864

In the following experiments we thus retain the second methkofor selection of Non-
salient patches: the 3/3 rule.

Evaluation of motion features

To evaluate our deep network and to prove the importance of éhaddition of the residual
motion map, two models were created with the same parametegtBngs and architecture
of the network: the rst one contains R, G and B primary pixel \alues in patches, denoted
as ChaboNeBk. The ChaboNet#k is the model which uses RGB values and the normal-
ized energy of residual motion as input data. Figurg 3.15 iktrates the variations of
the accuracy along iterations of all the models tested for éhdatabase "HOLLYWOOD".
Peak and mean accuracy values are presented in taple| 3.4).

The results of learning experiments on HOLLYWOOD data set yidl the following
conclusions:

i)When adding residual motion as an input feature to RGB plan&alues, the accuracy
Is improved by almost 2%.

i) The accuracy curve (gure[3.1% (a) ) and the correspondinloss curve ( gure[3.15
(b)) show that the best trained model reached 80% of accuraeyith the smallest loss (
at the iteration #8690 see tablg 3.4 ). Thus, it does not prese an over- tting situation.

The model obtained after 8690 iterations is used to predicabency on the validation
set of this database, and to initialize the parameters wheredrning with transfer on
other used data sets in the Chaptef|5. Graphs (c) and (d) of ge[3.1% show a better
performance of theChaboNe#k model in terms of speed for training and validation.
Mean accuracy is also slightly higher: :53% of mean accuracy increase is observed with
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Figure 3.15: Training the network - Accuracy and loss vs iterans and seconds of
ChaboNeBk and ChaboNetk for \HOLLYWOOD" database : (a) Accu-
racy vs iterations, (b) Loss on validation data set vs iterabns, (c) Train loss
vs seconds, (d) Loss on validation data set vs seconds.

merely the same stability of training. The latter is expressd by the standard deviation
in the table [3.4.

Table 3.4: The accuracy results on HOLLYWOOD data set

ChaboNet 3k ChaboNet 4k
training time 7h47m 33s 6h27m 2s
min Accuracy (4 ter ) 50:11% (x0) 65:73% (10)
max Accuracy (4 jter ) 77:98% (45214) 80:05% (48690)
avg Accuracy std 77:30%  0:864 78:73%  0:930
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3.6.3 Validation of the ChaboNet architecture

To evaluate the ChaboNetarchitecture designed for saliency prediction, an experiment
was conducted with the HOLLYWOOD dataset. The popular AlexNet[[8] and the
original LeNet [69] network architectures that are descrilikin section[2.2.2, were used
as a base-line with data patches extracted from HOLLYWOOD dataThey were trained
with two classes in the output corresponding to salient/Norsalient categories of patches.

For AlexNet, the network settings were taken exactly as in [63lhat means the same
number and size of lters at all layers, the same learning pameteres : leaning rate(01),
momentum coe cient(0:9), weight decay(00005) and number of iterations (450@00). To
better visualize, in gure[3.16 the iterations of AlexNet werdimited to 70:000. Similarly,
the original settings of LeNet were preserved frorn [69]. Hered number of iterations was
13:000. Chabonet Network training was performed with 1400 iterations.

Obtained results summarized in gurg 3.16 showed that the GlboNet network out-
performed the AlexNet and LeNet architectures (see tabJe 3.5 fact, with 17:400 iter-
ations, ChaboNet outperformed by 2% in mean accuracy the AlexNarchitecture which
needed 45MO00 iterations. When comparing the 1000 rst iterations of ChaboNet and
LeNet, mean accuracy was discovered to be better by more tha@%. Furthermore, the
stability of training expressed by small standard deviatio is much stronger, see line 4 of
the table[3.5.

Figure 3.16: Comparison of ChaboNet architecture vs AlexNet ariceNet on Hollywood
4k data set.
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Table 3.5: Accuracy results : validation of ChaboNet 4k archéicture vs AlexNet and

LeNet networks on HOLLYWOOD dataset.

ChaboNetdk AlexN et 4k LeNet4k
min (# iter ) 65730/({#0) 49; 840/({#0) 49; 20/0(#5500)
maX iter) | 80:05%usge900) 80; 27%u3000) 51; 56%us500)
avg std 7873% 0;930| 76;77% 6;633 | 50;17% 0;575

3.6.4 Evaluation of predicted visual saliency maps

After training and validation of the model on HOLLYWOOD data set, we choose the
model obtained at the iteration #8690 having the maximum vale of accuracy 8M5%.
This model will be used to predict the probability of a local egion to be salient. Hence,
the nal saliency map will be built.

To evaluate our method of saliency prediction, performansevere compared with the
most popular saliency models from the literature. A spatiadaliency models was choosen
. Signature Sal [[47](the algorithm introduces a simple imagdescriptor referred to as
the image signature, performing better than Itti [52] modg| GBVS (regularized spatial
saliency model of Harell[41]). and the spatio-temporal modef Sed[113] built upon optical
ow.

The comparison of generated predicted saliency maps is menied on the basis of
AUC metric (see Chapter 1 for its de nition).

In tables[3.6 below, the comparison of Deep CNN prediction ofixel-wise saliency
maps with the Gaze Fixations Maps (GFM) is shown.

The quality of predicted maps is compared with prediction bglassical saliency models
(Signature Sal, GBVS, Seo) also compared to the same refeenGFM. The comparison
is given in terms of the widely used AUC metric [67]. Mean valuef the metric for each
saliency model compared to the GFM is given together with stalard deviation for a
sample of videos. Hence, in tab[e 3.6 the maps built on HOLLYWOOBatabase with its
best patch saliency prediction modeChabonetlK are compared with GBVS, Signature
Sal, Seo.

The best AUC metric values are underscored. It can be statedahin general spatial
models (Signature Sal, GBVS or Itti) performed better in halof the tested videos. This
is due to the fact that these videos contain very contrasted aas in the video frames,
which attract human gaze. They do not contain areas having amteresting residual
motion. Nevertheless, theChaboNe#K model sytematically outperforms Seo's model
which uses motion features. This shows de nitively that thaise of a Deep CNN is a way
for prediction of visual saliency in video scenes.
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Table 3.6: The comparison of AUC metric of gaze xations 'GFM' g predicted saliency
'GBVS', 'SignatureSal' and 'Seo') and our ChaboNet4k for the ideos from
HOLLYWOOD data set

VideoName TotFrame =2248 GFM vs GBVS GFM vs SignatureSal GFM vs Seo GFM vs ChaboNet4k
clipTest56 137 0;76 0;115 0;75 0; 086 0;64 0;116 0;77 0;118
clipTest105 154 0;63 0;169 0;57 0;139 0;54 0;123 0;69 0; 186
clipTest147 154 0;86 0;093 0;90 0; 065 0;70 05103 0;81 0;146
clipTest250 160 0;74 0; 099 0;69 0;110 0;47 0;101 0;71 0;180
clipTest350 66 0;65 0;166 0;68 0;249 0;57 0;124 0;72 0;177
clipTest400 200 0;75 0;127 0;67 0;110 0;60 0; 106 0;71 0;146
clipTest451 132 0;70 0;104 0;59 0;074 0;57 0;068 0;63 0;151
clipTest500 166 0;82 0;138 0;84 0;150 0;75 0;152 0;84 0; 156
clipTest600 200 0;75 0;131 0; 678 0; 149 0;53 0;108 0;71 0; 180
clipTest650 201 0;72 ;106 0;74 0;087 0;61 0;092 0;70 0;078
ClipTest700 262 0;74 0;128 0;76  0;099 0;50 0;059 0;78 0; 092
clipTest800 200 0;70 0;096 0;75 0;071 0;53 0;097 0;66 0;141
ClipTest803 102 0;86 0; 106 0;87 0;068 0;73 0;148 0;88 0;078
ClipTest849 114 0;75 0;155 0;91 0;070 0;55 0;122 0;74 0;132

Table [3.7, presents the time needed for testing one patch arnie creation of the
saliency map across one frame with a stride of 5 pixels.

Table 3.7: Time for testing one patch and one frame of video.

machine 8 p machine 20 p machine 2 l4coresp
patch 100 100 0.015s 0.028s 0.011s
frame 720 576 42.31s 18.49s 8.56s

3.7 Conclusion

Hence, in this chapter, we proposed our solution for predioi of saliency maps in video
in the framework of Deep learning. It consists in two steps. f&t, a deep convolutional
network to predict salient areas (patches) in video contenivas designed. Then dense
predicted visual saliency maps was computed on the basis pasce patch classi cation
results.

We have built an adequate Deep CNN architecture on the basis 6 e CNN. Deep
CNNs being sensitive to noise in training data, we proposed ardapted solution for
reducing it. In our case of salincy prediction of image patels, the video production rules

93



3.7. CONCLUSION Souad CHAABOUNI

such as the rule of thirds used for Non-salient patches pretian allowed for increase of
accuracy.

While the state-of-the art research used only RGB primary vaks for saliency pre-
diction in visual content, we have shown that for video, addig of features expressing
sensitivity of the human visual system to residual motion,siimportant.

The performances of prediction with Deep CNNs when di erent kids of features were
ingested by the network, such as color pixel values only, oplor values with residual
motion- were compared.

We desigend a relatively shallow Deep CNN architecture and V& compared it to
similar architectures AlexNet and LeNet. It has showed betternediction power in terms
of mean accuracy and stability of training phase.

Finally, a method for building pixel-wise saliency maps, usg the probability of
patches to be salient, was extensively tested against redace spatial and spatio-temporal
saliency prediction models.

In the next chapter, we further explore the power of our Deep KN architecture using
research ndings on prediction of saliency by classical mels.
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Chapter 4

Speci ¢ saliency features for deep
learning

4.1 Introduction

On the contrary to still natural images where saliency is \satial", based on color con-
trasts, saturation contrasts, intensity contrasts , the saliency of the video is also based
on the motion information of the objects with regard to the bakground. In the previ-
ous chapter, we have brie y introduced motion features thatve have added to primary
colour values in order to build a speci c saliency predictoin video. In this chapter, we
will formalize them and go deeper in our experiments. Next irhts chapter, we are also
interested in combination of learnt features and \engineed" features. Indeed, in the
classical saliency models[52], [41], [17],][15], the faaiwere calculated on the basis of
phsycho-physiological ndings on the sensitivity of HVS to abve mentionned contrasts,
colours and orientations. These features are then integeat via fusion of feature maps
accordingly to the feature integration theory of Treisman ad Gelade [125]. Hence the
guestion that we ask in this chapter is \Would known engineed features for saliency
prediction improve the prediction accuracy with our desigreearchitecture”. Here, we se-
lect one model for feature computation and perform a set of p&riments on the proposed
architecture, integrating all methods of data and featureedection.
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4.2 Feature maps

4.2.1 Residual motion feature maps

In video, motion in the frame is a strong visual attractor|9% Visual attention is not
attracted by the motion in general, but by the di erence betveen the global motion in
the scene, expressing the camera work, and the \local" motipthat one of a moving
object[17] . This dierence is called the \residual motion"[87]. In the previous chapter,
we have proposed to form a feature map expressing residualtimo by its magnitude
energy. We used the method developed in[17], [87],1[37]. Timenciple of it consists in
computation of residual motion as the di erence between ramotion vectors estimated on
a pixel-wise basis, i.e. optical ow and a global motion modleexpressing camera motion,
which is estimated from raw motion vectors. Hence calculatioof the residual motion is
performed in three steps:

- i) the optical ow estimation, Here we used the optical ow eimator from [[78].The
method is based on clasical Horn&Schunk formulation [46] aofrer functional to optimize.
Its main improvement compared to Horn&Schunk numerical schee consists in the use of
congugated gradinet method for solving the linear systemrfthe components of a motion
vector. In the flollowing we will denote thus estimated motin vectors for each pixel in a
video frame byM.(x;y).

- ii) the estimation of the global motion from optical ow acordingly to the rst
order complete a ne model . This model calculates the global or dominant motion by
reducing three types of movements of the camera (translatis, rotations and zooms), the
following equation gives the displacement of the blocklx; dy|) of the point (Xo; Yo) to the
position (x1;y:). We will denot the global motion vectors adM (x;y).

8

Sdx; = ap+ a)(Xy  Xo)+ ax(X1  Xo)

. (4.1)
Cdy = ast+ as(yr Yo)+ as(yr  Yo)

Here, =(ay;a;:a)",
| iii)The residual motion 'er(x;y) expresses the di erence between the global motion
‘M (x;y) and the local motionM((x;y)) . The computation of residual motion is ful lled

according to the equatiori(4.p):

M6y)= M (6y)  Mo(y) (4.2)

An example of residual motion map is given in Figure 4.1.
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(a) Original frame of SRC14: #frame 30. (b) Original frame of SRC14: #frame 31.

(c) Absolute value of dx component #frame 30.(d) Absolute value of dy component #frame 30.

(e) Normalized energy of movement #rame 30.

Figure 4.1: Energy of motion and its components on SRC14 {#ame 30) from IRCCyN
dataset [16] .
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In order to link the strength of motion to tlhe dynamics of eaclframe, as a nal feature
map we take the squared norni. 2 of vectorsM, (x;y) normalised by its maximum in the
frame. According to our experience this allows to reduce paite e ectos on contrasted
static contours, compared to the real motion of objects. Théeature map at a pixel
position (x,y) is computed acordingly to the following equion :

|
kM, (x;y) ks
MaXuxyyin KM (X;y) K3

f ™15 (x;y)) = (4.3)

The sensitivity of HVS to motion is selective. Daly[[23] prop@&s a pixel-wise linear
model of sensitivity accordingly to the speed of motion. Herdhe at area detection
iIs performed by calculating and thresholding energy gradie The temporal saliency
Si(1; (x;y)) is then deduced by ltering the residual motion by the maxmum tracking
capacity of the eye. Indeed, the authors [17] reported thahe human eye can not follow
objects with a speed greater than 8&s[23]. Also the value of the motion saliency acheive
its maximum between the speed of &s and 30=s. Psychovisual Itering proposed by
Daly [23] follows the following equation:

8
%%!Mr(x;y); 10 M(ay) < s
Sl (xy) = ! 8 I.. o Y <| 2 (4-4)
% M (X y) + 5 if" 2 M(XY) < max
"o, 1 e M (Y)

Wheré 1=6 :s! >, =30 =s and max = 80 =s.

In our work we use a simpli ed version, supposing that objecghotion is in the interval
of linearity of Daly's model, which it is not too strong. Hencehe energy is a good indicator
of interest to a moving object.

The choice of primary spatial features to complete the prirmg RGB values with \en-
gineered" spatial contrasts can be multiple. Indeed variousays of contrast computation
were proposed in[[17]1103], 1128]. In the present researale resort to the work in [17]
which yields coherent results accordingly to previous suts in [15].

To prove the signi cance of the energy of residual motion, whave conducted an
experiment. In this experiment, we compute the AUC metric (wedescribed in the rst
chapter[1.3.3) between gaze xation map and the energy of idsal motion map. We
see that such an experience is obligatory to perform sincewill count how many gaze
xation will fall on an area having an interesting residual novement. Here, we used the
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most older and popular datasets CRCNS [51] and IRCCyN [16] thare created and

benchmarked for the task of saliency prediction in naturalideos. These two data sets
are deeply described and detailed in next chapter 5.8.1. Usedeos of CRCNS data set
was illustrated in table[4.2.

Results summerized in tablé¢ 4]1 and 4.3 show an interestingreespondence between
gaze xation and residual motion map especially for the \gamcube02" video of CRCNS
database where we got a:66 value of auc metric, and for the \SRC23" video of IRCCyN
database where we obtain a very interesting resulagc = 0:68). In table[4.3, 8 videos
on 12 tested videos give an auc value more than58. Here, we can explain the low
value of auc for \SRC02", \SRCO07" and \SRC13' videos by that djects in movement are
not signi cant for those scenes. This experience can just @urage us to go further and
deeply to prove our fundamental idea of the interest of the fagration of residual motion
as input to deep CNNs.

Table 4.1: The comparison of AUC metric of gaze xations 'GFM' g the energy of Resid-
ualMotion map for 890 frames of CRCNS videos.

VideoName | TotFrame =890 | GFM vs ResidualMotion
beverly03 80 0:54 0:119
gamecube02 303 0:56 0:152
monica05 102 0:52 0:110
standard02 86 0:499 0:06
tv-announce0l 73 0:472 0:181
tv-news04 82 0:535 0:186
tv-sports04 164 0:500 0:147

Table 4.2: Frames of CRCNS videos.

beverly03 gamecube02 monica05 standard02 tv-announce0l tv-news04 tv-sports04
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Table 4.3: The comparison of AUC metric of gaze xations 'GFM' 8 the energy of
ResidualMotion map for 456 frames of IRCCyN videos.

VideoName | TotFrame =456 | GFM vs ResidualMotion
SRCO02 37 0:46 0:025
SRCO03 28 055 0:112
SRC04 35 0:55 0:191
SRCO05 35 0:57 0:148
SRCO06 36 0:603 0:156
SRCO07 36 0:48 0:.028
SRC10 33 0:55 0:086
SRC13 35 0:59 0:147
SRC17 42 0:48 0:071
SRC19 33 0:64 0.078
SRC23 40 0:68 0:.094
SRC24 33 0:51 0:045
SRC27 33 0:53 0.074

4.2.2 Primary spatial features

For saliency prediction, the primary spatial features suclas simple RGB values are fre-
quently used[117]. Nevertheless, feature integration thgo[125] stipulates that[HVS is
sensetive to speci ¢ contrasts: colours, brightness, oni@tions. Hence, we found inter-
esting to add \engineered" contrast features to the input Iger of our network. Would it
increase the predictive power of a deep architecture? To avex to our question, we used
the contrast features from the saliency model [17] .

The choice of features from[17] is conditioned by their relaely low computational
cost and a good performance we have stated. The authors prgpcseven color contrast
descriptors. As the color space 'Hue Saturation Intensity' (H$ is more appropriate to
describe the perception and color interpretation by humanshe descriptors of the spatial
saliency are built in this color space. Five of these seven &daescriptors depend on the
value of the hue, saturation and/or intensity of the pixel. These values are determined
for each framel of a video sequence, from a saturation facté*® and an intensity factor

f " calculated using the equations| (4]5],(4]6):

ooy = SREDE MDD v k) Satii)) @5)

FI()j ) = Int(l;i)+2Int(I;j)

Here Sat(l;i) is the saturation of the pixeli at coordinates ;;y;) and the value

(kmin + (1 kmin ) Int (I; i )) (4-6)

at Sat(l;j ) is the saturation of the pixel at coordinates X;;y;) adjacent to the pixeli.
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Int (I;i) and Int (I;] ) are the intensity values respectively. The constark,, = 0;21 sets
the minimum value for the protection of the interaction of pkel i when the saturation
approaches zerd [17]. Contrast descriptors are calculated equations [4.7::: [4.14):

1. color contrast: it is obtained from the two factors of saturation and intengy. This
descriptor X (I;1) is calculated for each pixel and its eight connected neighborg of the

framel, as in equation((4.7):

X .
Xa(liiy= £330 ) £ (050)) (4.7)
j2
2. hue contrast a hue angle di erence on the color wheel can produce a cordta
In other words, this descriptor is related to the pixels havig a hue value far from their
neighbors (the largest angle di erence value is equal to 1§0see equation[(4.8):

X
Xo(l;i) = f50 ) F™E ) M) (4.8)

12

The di erence in color M€ petween the pixeli and its neighborsj =1 :::8 is calcu-

lated accordingly to equations[(4]9) and[(4.30) :

8
hue — . (I’I’J ) if (I’LJ ) 0:5 (4.9)
1 (;55) else

(1555 ) = jHue(l;i)  Hue(l;] ) (4.10)

3. contrast of opponents the colors located on the opposite sides of the hue wheel are
creating a very high contrast. An important di erence in tore level will make the contrast
between active color jlue < 0;5' 180) and passive, more salient. This contribution to
the saliency of the pixeli is de ned by equation [4.11):

8
P .
SXa(li)= o, fSGE ) P ) Me(hi)

: (4.12)
“if Hue (I;1) < 0:5and Hue(l;j) 05

4. contrast of saturation: occurs when low and high color saturation regions are
close to each other. Highly saturated colors tend to attractigual attention, unless a low
saturation region is surrounded by a very saturated area. Is de ned by equation [4.12):
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X
Xa(l;i)y= £33%(05) £™055)  200)) (4.12)

i2
with 2 denoting the saturation di erence between the pixel and its 8 neighborg , see

equation (4.13):

155 ) = jsatli) - sat(l])j (4.13)

5. contrast of intensity: a contrast is visible when dark colors and shiny ones coexis
The bright colors attract visual attention unless a dark regpn is completely surrounded
by highly bright regions. The contrast of intensity is de nel by equation (4.14):

X
Xs(lii)y=" £9(0)) f™@05)  ™0;0)) (4.14)
i2

where " denotes the di erence of intensity between the pixdl and its 8 neighborj .

"R ) = int (i) Int ()] (4.15)

6. dominance of warm colors the warm colors -red, orange and yellow- are visually
attractive. These colors flue < 0:125"' 45) are still visually appealing, although the
lack of contrast (hot and cold colors in the area) is observad the surroundings. This
feature is de ned by equation [(4.1f):

8

. S<sat(l;i) Int(l;i) if 0 Hue(l;i)< 0:125
Ve(l;i) = (4.16)
"0 otherwise

7. dominance of brightness and saturatianhighly bright, saturated colors are con-
sidered attractive regardless of their hue value. The featis de ned by equation [4.1]):

V(i) = Sat(l;i) Int(l;i) (4.17)

The normalization (V; s(1;i) = %) of the rst ve descriptors ( X1 s) by the num-
ber of neighboring pixels( ij = 8) is performed. In [15] [23] it is reported that mixing a
large quantity of di erent features increases the performae of prediction. This is why
it is attractive to mix primary features (1-7) with those which have been used in previous
works of saliency prediction[117], that is simple RGB plaseof a video frame.

In the follow-up of this chapter we will evaluate performane of our designed ChaboNet
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architecture with input layers completed with engineeredantrat features, but also con-
sider these choices of input layers in the overall testingaimework including Itering of
noise in \Non-salient" training patches that we proposed inlte previous chapter.

4.2.3 Evaluation of parameters of Deep network

The network was implemented using a powerful graphic card 3k K40m and processor
(2 14 cores). Therefore a su ciently large amount of patches,55, was used per iteration,
see thebatch size parameter in equation (3.5). After a xed number of training terations,
a model validation step is implemented. At this stage the aacacy of the model at the
current iteration is computed. In this section, we put in plae and study the in uence of
input features to accelerate the training of the network. Hege, an increase in network
accuracy achieves the training stabilization in a lesser mber of iterations and then
ensures the complexity reduction. In these two experimentpurely random selection

process of Non-salient patches was used in our training dagas

First experiment . To evaluate our deep network and to prove the importance ohé
addition of the residual motion map, we pretrained two crea&d models with the same
parameter settings and architecture of the network: the rsone contained R, G and
B, primary pixel values in patches ( denoted aBeepSaliency8k). The DeepSaliencylk
presents the model using RGB and the normalized magnitude i@sidual motion as input
data. In this experiment, we have used a big number of epocteppchs= 100:15) in order
to ensure more process of the database and therfore to obt&etter trained model. The
other parameters of the solverl{aselr : 0:001; max_iter : 174000;lr _policy : \fixed °°;
momentum : 0:9 and weight_decay: 4e 05; test_iter : 1958test_interval : 1000) are
xed to run this experiment.

The following gure 4.7 illustrates the variations of the acuracy along iterations of
the both models 3k and 4k for the \HOLLYWOOD" database.

Table 4.4: The accuracy results on HOLLYWOOD dataset in the rsexperiment

3k_model 4k_model
min (# iter ) 50 10/({#0) 49:80/((#0)
HOLLYWOOD MaX @ iter ) 74:8()/q#3000) 76:6(yq#3000)
avg std | 716% 0:018| 732% 0:020
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Figure 4.2: First experiment: Accuracy vs iterations of the bt models 3k and 4k for
\HOLLYWOOD" database.

Second experiment The second experiment for saliency prediction is conductevhen
limiting the maximal number of iterations to prevent us fromfalling into over tting prob-
lem. Instead of increasing the number of training iteratios with a limited number of data
samples before each validation iteration, as this is the @ the work of [62], we pass
all the training set before the validation of the parameterand limit the maximal number
of iterations in the whole training process. We used the saneguation (3.5) but with a
smaller value of epochs in training stepegpochs= 10:15). Here, a validation step is only
started when the whole training data has passed through theetwork. The equation of
validation intervall is written as follows (4.18):

f T otal_images.numbergyainingstep

: 4.18
f batch.sizegyainingstep ( :

V alidation _interval =

In this experiment, the used parameters for the Hollywood dastet are:test iter : 1958 ;
test_interval : 1738;baselr : 0:001; max_iter : 17400;Ir _policy : \ fixed °® momentum :
0:9; weight decay: 4e 05; The results are presented in table 4.5 and illustrated igure
4.3.
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Figure 4.3: Second experiment: Accuracy vs iterations of 3kk 4or \HOLLYWOOD"
database.

Table 4.5: The accuracy results on HOLLYWOOD dataset during th second experiment

3k_model 4k_model
min (# iter ) 498(y0(#0) 556(y0(#0)

maX itery | 79:1%us214) 76:6%5214)
avg std | 716% 0.072| 73.6% 0.060

This drastically decreases (12 times approximately) the aning complexity, without
the loss of accuracy (see tabl¢s 4.4 ahd 4.5 for 3k and 4k mejlel

For the HOLLYWOOD database, adding residual motion map improgs the accuracy
with almost 2% on the 4k model compared to the 3k model. The nédsing accuracy of
our proposed network along a xed number of iterations showthe interest of adding
the residual motion as a new feature together with spatial &ure maps R, G and B.
Nevertheless, the essential of accuracy is obtained with mly spatial features (RGB).
This is why we add spatial contrast features which have beemgposed in classical visual
saliency prediction framework([17] in the second experinten next section.
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4.2.4 Evaluation of prediction of saliency of patches

The salient patches were extracted on the basis of Wooding'sp according to the process
described in sectiorh 3.3]1. The maximum number of salient fghes extracted by frame
was two. In the rst experiment we have selected Non-salientgiches randomly excluding
the area of salient patches. The results of classi cation esracy are shown in gure[ 4.4
for all models, we have considered in our work k3 model were only RGB values were
considered ; & modelwere we added residual motion;l8 modelwere contrast features

together with residual motion ; RGB 8k
values; and nally HSV8k model presents the HSV values with all features.

Figure 4.4: Random selection of Non-salient patches: variatis of accuracy along itera-

model where we used all features with RGB

(a) Accuracy vs iterations

tions of 3k, 4k, 8k, RGB8k and HSV8k for HOLLYWOOD dataset.

Table 4.6: The accuracy results on HOLLYWOOD dataset during random selection of Non-

salient patches experiment.

3k_model 4k_model 8k_model RGB8k_model | HSV8k_model
min (# iter ) 498(%(#0) 556(y0(#0) 4980/0(#0) 50]_0/0(#0) 501(%(#0)
maXy iter) | 75:1%u#s214) 76:6%us214) | 7129%12166) 76:9%45214) 73:5%3476)
avg std | 716% 0:072| 736% 0:.060| 70:1% 0:067 | 735% 0:078 | 70:5% 0:068
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We can state that & model outperforms all other models in terms of mean accuracy
and that adding contrast features does not make improvemeas the network learns the
contrast features throw its layers. Analyzing the results, & have noticed that purely
random selection process of Non-salient patches yieldedagsr in our training dataset.
Hence, we have applied the second method based on 3/3 rule fornNsalient patches
selection (see section 3.3.2). The results of this experimere shown in gure[4.7. We
can state that in terms of mean statistics adding \engineed® contrast features to the
input layer does not improve prediction accuracy, which reains the best in the case of
4K model.

Figure 4.5: Selection of Non-salient patches according te3rule : Accuracy vs iterations
of 3k, 4k, 8k and RGB8k for \HOLLYWOOD" database.

Table 4.7: The accuracy results on HOLLYWOOD dataset during the selection of Non-saknt
patches according to 33 rule.

3k_model 4k_model 8k_model RGB8k_model
min (# iter ) 50110/((#0) 6573(yq#0) 4988(yq#0) 4992(%{#0)
max (# iter ) 77:980/({#5214) 80:050/({#8690) 75:980/({#8690) 79:190/({#6952)
avg std 77.30% 0:864| 7873% 0:930| 7455% 0:968| 7814% 0:703

107




4.2. FEATURE MAPS Souad CHAABOUNI

4.2.5 Evaluation of predicted visual saliency maps

In the literature, various evaluation criteria were used taletermine the level of similarity
between visual attention maps and gaze xations of subjectike the normalized scanpath
saliency 'NSS', Pearson Correlation Coe cient 'PCC', and tte area under the ROC curve
'AUC' [85][26]. The \Area under the ROC Curve" measures the pr@sion and accuracy
of a system with the goal of categorizing entities into two gtinct groups based on their
features. The image pixels may belong either to the categooy pixels xated by subjects,
either to the category of pixels that are not xated by any sulject. More the area is large,
more the curve deviates from the line of the random classi garea Q5) and approaches
to the ideal bend of the classier (area D0). A value of AUC close to 1 indicates a
correspondence between the predicted saliency and the eyasigons. While a value
close to 05 presents a random generation of the salient areas by the nebadomputing
the saliency maps. Therefore the objective and subjectivalency di ers strongly. In
our work, visual saliency being predicted by a deep CNN clasi we have computed
the hybrid AUC metric between predicted saliency maps and gezxations as in [67] (
detailed description of AUC metric is given in 1.3]3). The rests of the experiments
are presented in the table§ 418, 4.9 arjd 4]10 below on an araiy chosen subset of 12
videos from HOLLYWOOD dataset. The gures depicted in the tabés correspond to the
maximum value obtained during the training and validation s presented in tabl¢ 416 ).

Indeed, with 4k model the results are better for almost all s, see highlighted gures
in table [4.8. For the rst experiment the maximal number of ierations was set to 174000
and for the second experiment, this number was xed 10 timeswer. From table[4.8 it
can be stated that i) adding primary motion features, such agesidual motion improves
the quality of predicted visual attention maps whatever is lte training of the network.
The improvement is systematic and goes up to 38% in case ofp@kst105 (in the rst
experiment); ii) the way to train the network, we propose wit lower number of iterations
and all training data used does not strongly a ect the perfanances.

From table[4.9 it can be stated that adding primary featuresd color space improves
the quality of predicted visual attention maps. In tablg 4.pwe compare all our predicted
saliency models with gaze xations. It comes out that more eoplex models yield better
results: up to 42% of improvement in clipTest250. The quaiitof the prediction of patches
(see table[ 46 and gurd 4}4 ) RGB8kmodel outperforms HSV8kmodel. Therefore, for
comparison with reference models from the state of the alGBV S, SignatureSal and
spatio-temporal model by Sed [113], named \Seo" we uR&B 8k_model, see tablg 4.10
below.
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Table 4.8: The comparison, with AUC metric, of the two experirants for 3K and 4K
saliency models vs gaze xations 'GFM' on a subset of HOLLYWOOD ataset

First Experiment Second Experiment
VideoName GFM vs 3k_model GFM vs 4k_model GFM vs 3k_model | GFM vs 4k_model
clipTestl 0;58612 0;19784 0;61449 0;17079 0;55641 0;20651| 0;77445 0;14233

clipTest56 0;74165 0;17394 0;75911 0;12509 0;65480 0;19994| 0;82034 0;12727
clipTest105 0;35626 0;33049 0; 74312 0;19479 0;66285 0;20553| 0;74740 0;14689
ClipTest200 0;50643 0;241466 0;59407 0;20188 | 0;53926 0;21976| 0;69309 O0;16428
ClipTest250 | 0;548647 0;240311| 0;754679 0;15476 | 0;41965 0;28409| 0;72621 0;15028
ClipTest300 0;,58236 0;22632 0;,66156 0;16352 | 0,33808 0;19672| 0;79186 0;09732
ClipTest350 0,67679 0;,29777 0;,739803 0;16859 | 0;47971 0,40607| 0,80467 0;15750
ClipTest500 0;58351 0;20639 0; 75242 0;15365 0;36761 0;36777| 0,82230 0;15196
ClipTest704 0;59292 0;18421 0;68858 0;16278 0;46192 0;21286| 0;,76831 0;11186
ClipTest752 0;41710 0;11422 0;63240 0;16870 0;25651 0;25830| 0;58621 0;21568
ClipTest803 0,67961 0;24997 0;,82489 0;14023 0;55019 0;18646| 0;87474 0,06946
ClipTest849 0;39952 0;31980 0,67103 0;20623 0;30190 0;27491| 0;81148 0;10363

Table 4.9: The comparison metric of gaze xations 'GFM' vs Dgesaliency '3k’ '4k’, '8k’
, 'RGB8k' and 'HSV8K' model) for the video from HOLLYWOOD

VideoName | GFM vs 3k_-model | GFM vs 4k_model GFM vs 8k_model | GFM vs RGB8k_model | GFM vs HSV8k_model
clipTestl 0;55641 0;20651| 0;77445 0;14233 | 0;58518 0;17991 | 0;725073 0;168168 0;76923 0;09848
clipTest56 0;65480 0;19994| 0;82034 0;12727 | 0;78106 0;090992 0;82244 0;07295 0;81651 0;06100

ClipTest105 | 0;66285 0;20553| 0;74740 0;14689 | 0;71597 0;11538 0;63652 0;22207 0;81365 0;08808

ClipTest200 | 0;53926 0;21976| 0;69309 0;16428 | 0;74225 0;19740 0;77948 0;17523 0;68396 0;17425

ClipTest250 | 0;41965 0;28409| 0;72621 0;15028 | 0;51697 0;21393 0;84299 0;10787 0;69886 0;13633

ClipTest300 | 0;33808 0;19672| 0;79186 0;09732| 0;79265 0;10030 0;74878 0;12161 0;83009 0;08418

ClipTest350 | 0;47971 0;40607| 0;80467 0;15750| 0;78924 0;16506 0;72284 0;16996 0;80009 0;232312

ClipTest500 | 0;36761 0;36777| 0;82230 0;15196 | 0;68157 0;15676 0;85621 0;16137 0;88067 0;09641

ClipTest704 0;46192 0;21286| 0;76831 0;11186 | 0;80725 0;11455 0; 78256 0;09523 0; 79551 0;071867

ClipTest752 0;25651 0;25830| 0;58621 0;21568 | 0;78029 0;08851 0;59356 0;17804 0; 76665 0;07837

ClipTest803 0;55019 0;18646| 0;87474 0;06946 | 0;84338 0;06868 0;88170 0;10827 0;85641 0;06181

ClipTest849 0;30190 0;27491| 0;81148 0;10363 | 0;70777 0;08441 0;91089 0;05217 0;71224 0;07434
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Table 4.10: The comparison of AUC metric gaze xations 'GFM' vredicted saliency
'GBVS', 'SignatureSal' and 'Seo’) and our RGB8kmodel for the videos from
HOLLYWOOD dataset

VideoName GFM vs GBVS GFM vs SignatureSal GFM vs Seo GFM vs RGB8k _model
clipTestl 0;81627 0;10087 0;69327 0;13647 0;50090 0;06489 | 0,725073 0;168168
clipTest56 0;76594 0;11569 | 0;75797 0;08650 | 0;64172 0;11630 0;82244 0;07295
clipTestl05 | 0;63138 0;16925 0;57462 0;13967 | 0;54629 0;12330 0;63652 0;22207
clipTest200 0; 75904 0;17022 0;87614 0;10807 | 0;65675 0;13202 0; 77948 0;17523
clipTest250 0; 74555 0;09992 0;69339 0;11066 | 0;47032 0;10193 0;84299 0;10787
clipTest300 | 0;82822 0;11143 0;81271 0;12922 | 0;75965 0;13658 0;74878 0;12161
clipTest350 | 0;65136 0;16637 | 0;68849 0;249027 | 0;57134 0;12408 0; 72284 0;16996
clipTest500 0; 82347 0;13901 0;84531 0;15070 | 0;75748 0;15382 0;85621 0;16137
ClipTest704 | 0;80168 0;08349 0; 85520 0;06826 | 0;57703 0;07959 0; 78256 0;09523
ClipTest752 | 0;73288 0;17742 0;54861 0;15555 | 0;71413 0;13138 0;59356 0;17804
ClipTest803 | 0;86825 0;106833| 0;87556 0;06896 | 0;73847 0;14879 0;88170 0;10827
ClipTest849 | 0;75279 0;15518 0;91888 0;07070 | 0;55145 0;12245 0;91089 0;05217

Proposed RGB8kmodel saliency model turns to be winner more systematical($/12
clips) than each reference model.

4.2.6 Discussion

Visual saliency prediction with deep CNN is still a recent whd intensive research. The
mayjor bottle-neck in it is the computation power-and memoryrequirements. We have
shown, that a very large amount of iterations - hundreds of thesands are not needed for
prediction of interesting patches in video frames. Indeeth get better maximal accuracy
with smaller amount of iterations we added motion feature, rad the maximal number
of iterations can be limited (up to 18000 in our case comparad 450000 in AlexNet or
180000 in our rst experience) accompanied by another dat&lection strategy: all data
from training set are passed before each validation iteratm of the learning, see tables
4.4,[45%. Next, we have shown that in case of a su cient trainig set, adding primary
motion features improves prediction accuracy up to 2% in axege on a very large data
set (HOLLYWOOD test) containing 257733 video frames. Hence thdeep CNN captures
the sensitivity of Human Visual System to motion.

When applying a supervised learning approach to visual saliey prediction in video,
one has to keep in mind that gaze- xation maps, which serve rfeelection of training
\salient" regions in video frames, not only express the \babm-up" attention. Humans
are attracted by stimuli, but in case of video when understating a visual scene with time,
they focus on the objects of interest, thus reinforcing thetdp-down" mechanisms of visual
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attention[40]. Hence, the prediction of patches of interedty a supervised learning, we
mix all mechanisms: bottom-up and top-down.

In order to re-inforce the bottom-up sensitivity of HVS to contasts, we completed the
input data layers by speci c contrast features well studiedn classical saliency prediction
models. As we could not state the improvement of performance prediction of saliency
of patches in video frames in average (see taljle |4.5) a moreatled experience clip -
by- clip was performed on a sample of clips from HOLLYWOOD data$ when comparing
resulting predicted saliency maps. This series of experime resumed in tablg 4.1]1, shows
that indeed adding features, expressing local color constsslightly improves performances
with regard to the reference bottom-up spatial (GBVS, SignatreSal) and spatio-temporal
models (Seo)). Hence, the mean improvement of AUC of the comjglenodel with motion,
contrast features and primary HSV colour pixel values with igard to Itti, Harell and Seo
models are 0677, A001560, 015862 respectively. These results are not large (except for
Seo model). Hence, we retained the 4k-model de nitively fourfther experiments.

Table 4.11: The mean improvement of the complete model for 1146 frames.

“(RGB8k_model - GBVS) | (RGB8k_model - SignatureSal)| (RGB8k_model - Seo)
AUC 0;00677 0;16922 0;01560 0;19025 0; 15862 0;21036

4.3 Conclusion

Hence in this chapter, we completed the RGB pixel values by lelevel features of contrast
and colour which are easy to compute and have proven e cienhiformer spatio-temporal

predictors of visual attention. Furthermore, we comparedidrent proposed input layers

in both frameworks of training data selection: random an dursg the 3/3 rule of visual

content production. Despite the accuracy of prediction ofaiency of patches is not
imporved with added contrast input layer, the quality of pralicted saliency maps is sligtly
better in terms of AUC metric. What is clearly seen from the exp@mental results is that

adding residual motion maps in the input layer of the networks necessary for prediction
of visual saliency in the dynamic video content.

An important point in Deep learning is the availablility of a large amount of training
data. Unfortunately in rela-world applications, speci caly in health care and medical ap-
plications the databases are quite small, and merely encdsiihudreds of training samples
in various medical studies. Therefore, the next part of the anuscript will be dedicated
to studying the transfer learning and its application whenasmall amount of data are
available.
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Part 11

Transfer Learning

In real life problems such as medical applications, the liteid number and size of
available data sets could be an obstacle for using powerfué€p learning algorithms. The
deep CNNs cannot be trained on a small data. The transfer leang, and speci cally a
part of it which is \ ne tunning" [6]/presents a solution to overcome this limits. This
part of the manuscript is composed of two chapters. In the ttsone, the transfer learning
scheme for saliency prediction is explained and benchmadkdn the second chapter, the
di culty of the very small amount of data for testing patient s with dementia is adressed
and a solution is proposed.
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Chapter 5

Transfer learning with deep CNN for
saliency prediction

5.1 Introduction

The main purpose of transfer learning is to resolve the prabgh of di erent data distribu-
tion, generally, when the training samples of source domaame di erent from the training
samples of the target domain. Visual saliency models cannat founded only on bottom-
up features, as suggested by feature integration theory. €hcentral bias hypothesis, is
not respected neither. In this case, the top-down componenf human visual attention
becomes prevalent. Visual saliency can be predicted on thesizaof seen data.

To predict saliency in video using Deep CNN, the biggest prolsteis the low number
of available video benchmarks with the recorded gaze xatmdata. Di erent databases
which have been recorded and made publicly available for e.gideo quality prediction
[16] dozens up to one or two hundred of videos. The only publirge database is HOL-
LYWOOD [88] with 1707 videos available with gaze recordingslf saliency prediction
in video is realized with a supervised learning approach weeain the framwork of any
supervised classi cation problem requiring su cient amount of data for training.

In this chapter, the main contribution is to transfer the feaures learned with the deep
network on a large data set in order to train a new network on angall data set with the
purpose to predict salient areas.

5.2 Transfer learning with deep networks

The generalization power of Deep CNN classi ers strongly depds on the quantity of
data and on the coverage of data space in the training data sdn real-life applications,
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e.g. saliency prediction for visual quality assessmenqt Jltbe database volumes are small.
In order to predict saliency in these small collections of deos, transfer learning approach
was nedeed. It presents a technique used in the eld of machkittearning that increases
the accuracy of learning either by using it in di erent tasks or in the same task/[[134].
Transfer learning in Deep CNN presents a powerful tool to enbbtraining on a smaller
data set than the base data sef [134]. Several studies foalisa transferring from higher
layers [136], on transferring a pretrained layer to set an sapervised learning[]90].

Transfer learning scheme which we developed in this chaptes de ned as a ne-tuning
techniques [[6]. Here the authors[6], de ned two variants wtl have been explored in
the literature for supervised learning with ne-tuning. The rst which was introduced in
2006 in [44][145]11091 7], combines two steps: beis the raw input, h;(x) is the ouput
of the representation functionh at the level |l of the input data.

1. Initialize the supervised predictor (parametrized re@sentation functionh, (x) and
the linear or non-linear predictor),

2. Fine-tune the supervised predicor with respect to a supesed training criterion,
based on a labled training set ofx; label) pairs, and optimizing the parametres of
the supervised predictor.

The second variant of ne-tuning involves using all the levs of representation as input
to the predictor. Here, the representation function is xed ad only the linear or non-
linear predictor parametres were optimized [72], ]73].\ &in a supervised learner taking
as input (hc(x); hg+1 (X); 215 h(x)) for some choice of 0 k L, using a labeled training
set of (x; label) pairs.”

Our problem is typically a ne-tunning. We use the same arclecture of ChaboNet,
the same number and size of Iters. Indeed, we propose to adsethe same (binary)
classi cation problem on both datasets for prediction of d&ent or Non-salient class of
patches. Its solution consists of two steps: i) learning thehole binary classi cation
model on a large data set, ii) transfer on small data set : indlization of parameters'
values in learning process by the optimal parameter valuebtained on a large data set. As
the classi cation task is the same in i) and ii) the initializd parameters were supposed to
yield a \better" local minimum of loss function, than in the case of a random initialization
when training on a small dataset.

In terms of optimization method which is SGD, transfer learing means that the
network parameters are not initialized randomly, but theirinitialization corresponds to a
local mimimum of loss function for a large data set. A small dabase can be considered as
di erent data, thus there won't be the risk of over tting accordingly to [134]. Starting from
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pre-trained parameter values can bring improvement in optiization. Two initialization

schemes were tested: that one proposed by Bengio et al. [18ddl ours explained in the
following (see next gure[5.1).

(@) (b)

Figure 5.1: Comparaison between our proposed scheme of tf@nsearning and the Ben-
gio's one : a) transfer scheme proposed by Bengio et al. [134pp) Our
proposed scheme of transfer learning for saliency predasti

Bengio et al train the models on two datastes: A and B, which hiakes as a half of
ImageNet database. The coloured rectangles in the gufe 5.Epict network parameters
trained independently (see rst two rows of the gure a)). Then the two lower rows de-
pict di erent ways of initialization of parameters in the training proposed by him. In the
selffer control, the parameters at the rst three layers of the netwdk that is trained
on the database B, are used for initialization of training. Brameters of remaining layers
are initialized randomly ( see B3B and B3B+ notation in the thrd line of gure a).
Finally, the network is re-trained. Here, these parameters areither \freezed" , as in B3B
scheme or retarined together with the randomly initializedayers (B3B+). Such a scheme
makes sense when the two databases are su ciently large. lase when the database (B)
is small the second scheme seems to be more e cient. Here thagraeters of three rst
layers are initialized by the parameters trained on the datzase A. The argumentation of
the authors of using parameters of only rst layers for suchrainitialization [L34] consists
in saying that the rst network layers act merely as wavelet Iters, producing features
such as blobs and lines on all kinds of databases, and only ieeger layers the network
parameters will be adapted to highlight speci ¢ structuresn images to be classi ed.

Our classi cation problem consists in saliency predictioor a given patch in a video
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frame. And if we put aside the \top-down" aspects of visual sancy related to the
scene interpretation, then the structures related to our eksi cation problems should be
the same everywhere accordingly to feature integration tbey [125] : contrasts, bright
colours, changes in orientations and local singularitie$ motion. This is why we propose
a scheme of A6B+ (see the last line of gur¢ 5|1 b)). This meanshat the network
parameters for training on a small database are initializefbr all layers by the parameter
values optimized on a large database. In the following semti we will formalize this model
with regard to the parameter optimization method which has ben choosen as stochastic
gradient descent accordingly to the litterature([62]/117]7...

5.2.1 Stochastic gradient descent 'SGD'

The learning of Deep CNN parameters is frequently done with éhtechnique of Stochastic
Gradient Descent (SGD) [[12]. The basic iterative equatiorof nding optimal parame-
ters W optimizing (minimizing in our case) an objective functiorf (W) is expressed in a
classical gradient method [11] [58], by the following equah: repeat until convergence

8
SWig = W, aaf (W), i=1;mT

. (5.1)
* Wo= N(; 2

HereW; are network parameters of each convolutional layer at thedtationi, T is the
total number of iterations, Wy is the initial value of parameters. The common approach in
optimization with Deep NNs consists in a random initializatio by a Gaussian distirbution
with a zero mean and a small variance of the order of 1 We denote it by N (0; ?),

is the learning rate, andf is the loss function to minimise. The stochastisity in SGD
consists in a random selection of packets of data from tramg set which are used at
each iteration. The main SGD problem is that, as a usual graglt descent method, it
converges to a local optimum in case when the loss functionnist convex. However, it is
still the best learning algorithm when the training set is lage accordingly to the results
reported for visual classi cation tasks[[13].

5.2.2 Transfer learning method

Taking as the basic formulation of the SGD method (see eq. }.&nd to transfer the
classi cation features obtained from the larger databasato the new smaller database as
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we have proposed if 2|5, the following principl¢ (§.2) is ubéor each deep CNN layer.
8
SWia =W g% (W) (5.2)
" Wo= WY

with W2 presents the best learned model parameters pretrained orettarge data set.

In optimization for Deep CNNs and namely in Ca e framework [63]Jmore sophisticated
method of gradient descent is used, namely the \momentum".ntleed, as stated in[[28]
in Deep learning, the objective would have the form of a longhallow ravine leading
to the optimum and steep walls on the sides. In this case staadi SGD will tend to
oscillate across the narrow ravine since the negative gradt will point down one of the
steep sides rather than along the ravine towards the optimumThe objectives of deep
architectures have this form near local optima and thus statard SGD can lead to very
slow convergence particularly after the initial steep gagm Momentum is one method for
pushing the objective more quickly |54] along the shallowvee. The momentum update
is given by,[5.3. In this equation, we omit any indexes excejiteration number i for
simplicity:

8
<y . = _ : @LiVN: i
| Vi = m Wi hawWii (5.3)
" Wi = Wi+ Vg ] Wo= W?°
With = 0:001- a xed learning rate,m = 0:9 - momentum coe cient, = 0:00004 -

wieght decay andwW ° presents the best learned model parameters pre-trained dretlarge
dataset. The initial value of the velocityV, was set to zero. These parameter values are
inspired by the values used in‘[54] with the same xed learngnrate and show the best
performances on a large training dataset.

5.3 Experiments and results

5.3.1 Real-life problem : small data sets

To e ciently train a deep network, a very large amount of training data is needed. Hence,
in [34] they used hundreds of thousands of windows for trang a network in an object
recognition task. In the problem of saliency prediction, aery large video data set with
available gaze xations was needed. After reviewing di erdrdata sets, we found the only
large publicly available data set, the so-called HOLLYWOODI8], [89]. In this data set
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gaze xations were recorded in a task-driven experiment otaon recognition. This data
set was used for saliency prediction in video. We have desei this dataset in[3.6. Here
we just remind the total number of video frames with availald gaze xations: 229825
frames for training and 257733 frames for validation. Applation-oriented data sets are
usually small.

One of the oldest and well-studied datasets for saliency meld benchmarking is CR-
CNS proposed by Itti [51]. It contains just 46000 frames. Aonther well-known dataset
recorded for video quality assessment tasks is IRCCyN [16]td set. Its number of frames
Is 61 times smaller than of HOLLYWOOD data set.

We also wish to evaluate the predictive power of proposed OQeENN classi er in the
problem of \top-down" visual attention prediction. From previous research at LaBRI, we
have at our disposal an egocentric video dataset with gazeations of 31 subjects recorded
in a task-driven visual experiment. The subjects were insicted to look at manipulated
objects. This dataset, GTEA [27], consists of 17 videos tdting 17632 frames. Therefore,
it is also too small for training attention prediction with deep CNNSs.

Table [5.1, summarizes the total number of salient and Non-saht patches selected from
video frames of the three small data sets.

Table 5.1: Distribution of learning data: total number of sdent and Non-salient patches
selected from each database.

] Datasets training step | validation step |
[ SalientPatch | 33370 8373
CRCNS Non-salientPatch 30491 7730
total 63861 16103
SalientPatch 2013 | 511
IRCCyN-MVT | Non-salientPatch 1985 506
total 3998 1017
SalientPatch | 9961 7604
GTEA Non-salientPatch 9949 7600
total 19910 15204

In the follow-up of this section we describe these datasetsichpresent statistics of
selected training data.
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CRCNS data set

In the CRCNSH data set [51], 50 videos of 640 480 resolution are available with gaze
recordings of up to eight di erent subjects. To create the @ining, validation and testing
set, each video of CRCNS was split according to the followingleme: one frame for
testing, one frame for validation and four frames for traimg set. From the training
set, 30370 salient- and 30491 Non-salient patches were gelkcFrom the validation set,
a total of 16103 patches were extracted. Table 5.1 resumesthumber of salient and
Non-salient patches selected for each step : \train" and \vadation".

Table 5.2: Preview of CRCNS Data set.

IRCCYN data set

IRCCYN [16] database is composed of 31 SD videos and gaze xais of 37 subjects.
These videos contain certain categories of attention attcéors such as high contrast, faces
(see table[ 5.B). However, videos with objects in motion are nfrequent. Our purpose
of saliency prediction modeling the \smooth pursuit" cannbbe evaluated by using all
available videos of IRCCyN data set. Videos that do not contaia real object motion
were eliminated. Therefore, only SRC02, SRC03, SRC04, SRCBRC06, SRCO7, SRC10,
SRC13, SRC17, SRC19, SRC23, SRC24 and SRC27 were used inrgrpets, this data
set is referenced as IRCCyN-MVT in the following. For each ches video of this database,
one frame is taken for the testing step, one frame for the vdétion step and four frames
for the training step. The distribution of the data between ‘salient” and \Non-salient"

lavailable at https://crcns.org/data-sets/eye/eye-1
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classes is presented in the tabje %.1.

Table 5.3: Preview of IRCCyN Data set.

GTEA data set

Egocentric video is becoming popular in various important@plications such as monitoring
and re-education of patients and disabled persoris [56]. Hialy available GTEA corpus
[274] contains 17 egocentric videos with a total duration of9lmin. GTEA data set
consists of videos with 1fps rate and a 640 480 pixel resolution. The subjects who
recorded the video were preparing meal and manipulating dirent every day life objects
(table presents a preview of some video from GTEA corpus)n this data set, we have
conducted a psycho-visual experiment with the task of obs@&tion of manipulated objects.
The gaze xations have been recorded with a HS-VET 250Hz eye-tieer from Cambridge
Research Systems Ltd at a rate of 250 Hz per second. The expannnconditions and
the experiment room were compliant with the recommendatiofiTU-R BT.500-11 [53].
Videos were displayed on a 23 inches LCD monitor with a nativesolution of 1920 1080
pixels. To avoid image distortions, videos were not re-saeo screen resolution. A mid-
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gray frame was inserted around the displayed video. 31 paripants have been gathered
for this experiment, 9 women and 22 men. For 3 participants se problems occurred
in the eye-tracking recording process. These 3 records wéhes excluded. From the
17 available videos of GTEA data set, 10 were selected for ttraining step with a total
number of frames of 10149. And 7 videos with 7840 frames werkestd for the validation
step. The split of salient and Non-salient patches for the tat of 19910 at the training
step and 15204 at the validation step is presented in talfles.

Table 5.4: Preview of GTEA Data set.

5.3.2 Learning on small data sets

To apply the proposed transfer learning scheme, the leargirof a whole binary classi ca-
tion model on a large data set is required. In chapter 3, the pgriment of training and
validation of a model for saliency prediction in natural vieéos was done under the large
\HOLLYWOOD" data set. As described in section3.6 of chapter 3,le best ChaboNet4k
model trained on \HOLLYWOOD" data set was obtained at the iteraion 8690 with an ac-
curacy value of 8€005%. While the best ChaboNet3k model trained on \HOLLYWOOD"
data set was obtained at the iteration 5214 with an accuracyalue of 7798%. These
two models were used to initialize features values in leang process of ChaboNet3k and
ChaboNet4k on \CRCNS", \IRCCyN-MVT" and \GTEA".

Proposed Transfer learning method on CRCNS data set

Figure[5.2 illustrates the variations of the accuracy and lgsalong iterations and time in
seconds for trainingChaboNeBk and ChaboNetk models on \CRCNS" data set. The
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gain of using 4k against 3k as input to the deep CNNSs is about22% in terms of mean
accuracy. The best model is obtained at the iteration #3250@ith an accuracy of 9166%.

Figure 5.2: Accuracy and loss vs iterations of ChaboNet3k and &boNet4k for \CR-
CNS" database : a) Accuracy vs iterations, (b) Loss on validain data set vs
iterations, (c) Train loss vs seconds, (d) Loss on validatiodata set vs seconds

Table 5.5: The accuracy results on CRCNS data set

ChaboNet 3k

ChaboNet 4k

training time

1h3min 42s

1h7min 58s

interval stabilization

[7500 ::: 30000]

[12500 ::: 33500]

min Accuracy ( ter )

87:65% (411500)

88:48% (#15750)

max Accuracy (x ter )

91:45% (#28500)

91:66% (432500

avg  Accuracy std

90:26%  0:892

90:48%  0:631
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Proposed Transfer learning method on IRCCyN-MVT data set

Figure[5.3 illustrates the variations of the accuracy alongdrations of all models tested
for IRCCyN-MVT". Almost four thousand patches were used for the training of the deep
CNN. To overcome the lack of data, the learning was transferrédom the best obtained
models on \HOLLYWOOD" data set to train the IRCCyN-MVT.

Figure 5.3: Accuracy and loss vs iterations of ChaboNet3k and &hoNet4k for videos
with motion from \IRCCyN-MVT" database : (a) Accuracy vs iterat ions, (b)
Loss on validation data set vs iterations, (c) Train loss vsesonds, (d) Loss
on validation data set vs seconds.

With the same number ofepoch= 100, the ChaboN eék model reached the interval of
stabilization, expressed by smaller standard deviation afccuracy values at all iterations
before the ChaboNeBk model did. With an interesting accuracy of 977% (see table
5.6) and a small loss of almost:B5, the best trainedChaboN etk model was obtained.
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Table 5.6: The accuracy results on IRCCyN-MVT data set.

ChaboNet 3k ChaboNet 4k
training time Oh4m 6s Oh4m 25s
interval stabilization [5584 ::: 6800] [8976 ::: 10288]
min Accuracy (% ter ) 89:94% (45632) 90:72% (19264)
max Accuracy  (# jter ) 92:67% (16544) 92:77% (19664
avg Accuracy std 91:84 0:592 92:24% 0:417

Proposed Transfer learning method on GTEA data set

The results of accuracy on GTEA data set are rather good : awge accuracy is about
90% (see tablg 5]7 ). HereChaboNeBk and ChaboNet#k models were tested. From
the plots in gure B.4, we can see that theChaboN etk model is little less e cient than
ChaboNeBk model. It is not surprising, the salient patches are predietl by our method
according to each visual task : on the Hollywood data set the Bjects are instructed to
observe actions. They are attracted by the dynamic contentfdhe visual scene. Hence,
residual motion is important in the global model. In GTEA dag set, the subjects are
interested in speci c objects be they moving or not. Hence, ¢éhspatial appearance is
important.

Table 5.7: The accuracy results on GETA data set

ChaboNet 3k ChaboNet 4k
training time 0h22m 20s Oh24min 03s
interval stabilization [6630 ::: 12948] [12090 ::: 16458]
min Accuracy (4 iter ) 86; 46% (47566) 89; 80% (49750)
max  Accuracy  jter ) 91:61% (46786) 90; 30% (415678)
avg  Accuracy std 90:78% (40 :647) 90; 13% (40 ;106)
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(a) (b)

(©) (d)

Figure 5.4: Accuracy and loss vs iterations of ChaboNet3k and @boNet4k for \GTEA"
database : a) Accuracy vs iterations, (b) Loss on validationada set vs iter-
ations, (c) Train loss vs seconds, (d) Loss on validation datset vs seconds

5.3.3 \Validation of the proposed transfer learning vs learning
from scratch

On three \small" data sets, two experiments were conductedn the rst experiment, the
parameters of CNN were initialized randomly from scratch foeach layer. In the second
experiment the best parameters of the network trained on thiarge HOLLYWOOD data
set were used as the initialization of parameter learning og@ach \small* data set. The
architecture of the CNN remained unchanged in both experimen

I) First experiment: start training of all ChaboNet layers rardomly from scratch.
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i) Second experiment: initialize features parameters ofl&ChaboNet layers from the
best model \features" already trained on the large HOLLYWOODdata set (see section
of chapter 3) and then ne-tuned on the target data set.

The results presented in gurg 5.5 5]6 anfl 5.7 show that ugjrthe transfer learning
of CNN parameters improves not only the value of mean accurabtyt also the gain in
terms of stabilty of training on the three \small" data sets.

(a) Proposed transfer learning method (b) Learning from scratch

ChaboNet3k ‘ ChaboN et4k

Miny iter 51:72%y0 52:00%y0

Learning from scratch maxe iter 90:18%,8250 90:25%431000
avg std | 87:11% 4:655 | 87:85% 4:169

min# iter 75:71(J/Q¢5250 77:950/‘#8750

Proposed transfer scheme maxy jter 91:45%,8500 91:66%32500
avg std | 8977% 2:085 | 89:81% 2:035
(c) Deep Network performance

Figure 5.5: Evaluation and comparison of our proposed metha transfer learning VS
learning from scratch on CRCNS data set.

Figure[5.5 illustrates obtained results of the both experinmés conducted on CRCNS
data set. Here, using transfer learning of the best model tre@d on HOLLYWOOD
data set, we found a higher mean accuracy with almost 2% inase on the both models
(gure 5.5). The maximum value of accuracy obtained on the CERNS data set with the
\ChaboNet4k" model is 9025% at the iteration 31000 using random initialization and
91:66% at the iteration 32500 using pretrained HOLLYWOOD model € table (c) of
gure . The mean performance of the \ChaboNet4k" model gt remains better than
performance of the \ChaboNet3k" model.

On the second \small" IRCCyN-MVT database, the following gure[5.6 illustrates
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the variations of the accuracy the both models \ChaboNet3k" rad \ChaboNet4k" for
each experiment. The results show that starting the trainig with the best parameters of
HOLLYWOOD2 model ensures the gain of 6% in the mean accuracy dmet\ChaboNet4k"
model and the gain of 3% in the mean accuracy on the \ChaboNet3k The second
important point is that with the rst experiment of \learnin g from scratch”, the training
need more than 1500 iterations to achieve the stabilizatiom terms of accuracy. Just
about twenty iterations is enough to stabilize the accuracysing the proposed transfer

learning method.

(a) Proposed transfer learning method (b) Learning from scratch

ChaboNet3k ‘ ChaboN etdk

Ming iter 50:19%;9 50%16
Learning from scratch maX ter 92:48%;0864 89:74%;42450
avg std | 86:46% 8592 | 8540% 6:818
MiN iter 70:80%s5216 77:83%xgg48
Proposed transfer scheme maxs jter 92:67%:g544 92:77%u9664
avg std | 89.96% 4:159 | 91.08% 3:107

(c) Deep Network performance

Figure 5.6: Evaluation and comparison of our proposed methad transfer learning VS
learning from scratch on IRCCyN-MVT data set.

The results of accuracy on \GTEA" data set are rather good : avage accuracy
is about 90% (see table (c) in gurg 5]7). Here, we have testedChaboNet3k" and
\ChaboNet4k" models. From the plots and the table in gure[5.} we can see that results
are improved in the second experiment with the proposed trafer scheme. Mean accuracy
of the both models was executed an increase of almost 2%.
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(a) Proposed transfer learning method

(b) Learning from scratch

ChaboNet3k ‘ ChaboN etdk

MiNy ier 50:03%0 44:63%:0
Learning from scratch maX iter 91:45%42106 91:50%42418
avg std | 8862% 4:827 | 8844% 4:990
MiN iter 83:32%y6396 85:48%y9282
Proposed transfer scheme maxy jter 91:61%yg786 91:03%49433
avg std | 90:27% 1:528 | 89:85% 0:801

(c) Deep Network performance

Figure 5.7: Evaluation and comparison of our proposed methad transfer learning VS
learning from scratch on GTEA data set.

5.3.4 Validation of the proposed transfer learning vs state-of-
the-art transfer learning method

To validate our proposed scheme of transfer learning, theitialization schemes proposed
by Bengio et al.[134] was tested. In the research of Bengioat [134] addressing object
recognition problem, the authors show that the rst layers 6a Deep CNN learn char-
acteristics similar to the responses of Gabor's lters regdless of the data set or task.
Hence in their transfer learning scheme just the three rst aovolutional layers already
trained on a database are used as the initialization of parasters for other database with
the same size. The coe cients on deeper layers are left frea foptimization, that is ini-
tialized from scratch. Here, the context is not the same. In@el, saliency prediction task
is di erent from object recognition task. Thus the proposals to initialize all parameters
in all layers of the network to train on a small data set by the bst model trained on a
large data set.

Two experiments were conducted with the same small data seRCNS and IRCCyN-
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MVT , and the same de nition of network \ChaboNet4k":

i) Our method: start training of all ChaboNet4k layers from the best model already
trained on the large HOLLYWOOD data set (see sectioh 5.2.2).

i) Bengio's method: the three rst convolutional layers ae trained on the HOLLY-
WOOD data set and then ne-tuned on the target data set, othedayers are trained on
target data set with random initialization.

The following gure 5.8 illustrates the variations of the acuracy along iterations of the
two methods performed with the data sets \CRCNS" , \IRCCyN-MVT" and \GTEA".
One can see less stable behaviour when the transfer methodehgio et al. is applied.

(a) Comparison on IRCCyN-MVT data set (b) Comparison on CRCNS data set

(c) Comparison on GTEA data set

Figure 5.8: Evaluation and comparison of our proposed methad transfer learning.
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Table 5.8: The accuracy results on IRCCyN-MVT, CRCNS and GTEA daiset.

Our transfer method BENGIO transfer method
IRCCyN-MVT CRCNS GTEA IRCCyN-MVT CRCNS GTEA
MaX @ iter ) 9277%¢nos64) | 9L:66%sa2500) | 91%poa3s) | 9208%uoes0) | 91:55%uws1050) | 91%uo0750)
avg std 91:08% 3:107 | 89:81% 2:035 | 89%yj :g) 87:48% 7:243 | 89:37% 3:099 | 90%y; .9

5.3.5 Evaluation of predicted visual saliency maps

After training and validation of the model on CRCNS data set, wechoose the model
obtained at the iteration #32500 having the maximum value ofaccuracy 9166%. This
model will be used to predict the probability of a local regio to be salient. Hence, the
nal saliency map will be built. For the IRCCyN-MVT data set, th e model obtained at
the iteration #9664 with the accuracy of 9277% is used to predict saliency. In the same
manner, the model with the accuracy of 903% obtained at the iteration #9438 is used
for the GTEA data set.

To evaluate our method of saliency prediction, performansevere compared with the
most popular saliency models from the literature. Two spadi saliency models were chosen
. Itti and Koch spatial model [52], Signature Sal [47] (the gbrithm introduces a simple
image descriptor referred to as the image signature, penioing better than Itti model),
GBVS (regularized spatial saliency model of Harel [41]). andhé spatio-temporal model
of Seol|[113] built upon optical ow. The mean value of the AUC mnigc together with
standard deviation were computed.

In tables[5.10 and 5.1]1 below, we show the comparison of DeeNNCprediction of
pixel-wise saliency maps with the gaze xations \GFM" and corpare performances with
the most popular saliency prediction models (Signature SaEBVS, Seo). Hence, in table
5.9, we compare ouChaboN etk model with the model of Itti, GBVS and Seo.

Table 5.9: The comparison of AUC metric of gaze xations 'GFM' g predicted saliency
'GBVS', 'lttiKoch' and 'Seo’) and our ChaboNet4k for 890 frame of CRCNS

videos
VideoName TotFrame =890 GFM vs GBVS GFM vs IttiKoch GFM vs Seo GFM vs ChaboNet4k
beverly03 80 0:78 0:151 0:77 0:124 0:66 0:172 0:79 0:118
gamecube02 303 0:73 0:165 0:74 0:180 0:61 0:179 0:82 0:126
monica05 102 0:75 0:183 0:73 0:158 0:54 0:156 0:79 0:133
standard02 86 0:78  0:132 0:72  0:141 0:61  0:169 0:71  0:181
tv-announce01 73 0:60 0:217 0:64  0:203 0:52  0:206 0:63 0:215
tv-news04 82 0:78  0:169 0:79 0:154 0:61 0:162 0:72  0:145
tv-sports04 164 0:68 0:182 0:69 0:162 0:56  0:193 0:78 0:172
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Table 5.10: The comparison of AUC metric of gaze xations 'GFMVs predicted saliency
'GBVS', 'SignatureSal' and 'Seo’) and our ChaboNet4k for the ideos from
IRCCyN-MVT data set

TotFrame =1227 GFM vs GBVS GFM vs SignatureSal ‘ GFM vs Seo GFM vs ChaboNet3k GFM vs ChaboNet4k

VideoName
src02 37 0,68 0;076 0;49 0;083 0;44 0;017 0;012 0;077 0;48 0;073
src03 28 0;82 0,088 0;87 0;057 0;76 0;091 0:00 0:000 0;70 0; 149
src04 35 0;79 0,058 0;81 0,029 0;59 0,057 0;12 0;214 0;57 0;135
src05 35 0;73 0;101 0;67 0;122 0;48 0;071 0;39 0,186 0;53 0;128
src06 36 0;85 0;080 0;71 0;151 0;73 0;148 0:00 0:000 0;60 0;180
src07 36 0;72 0;070 0;73 0; 060 0;57 0;060 0;34 0;284 0;55 0;135
src10 33 0;87 0;048 0;92 0;043 0;82 0;101 0:00 0:000 0;60 0;173
srcl3 35 0;79 0;103 0;75 0;111 0;64 0;144 0;36 0;201 0;52 0;138
srcl7 42 0;55 0;092 0;33 0;099 0;45 0;033 0:00 0:000 0;51 0;098
srcl9 33 0;76 0; 094 0;68 0; 086 0;59 0;117 0;46 0;075 0;75 0;123
src23 40 0;76 0,050 0;69 0;070 0;58 0,067 0;03 0;169 0;66 0;105
src24 33 0,63 0;071 0,58 0;054 0;55 0;059 0,23 0;252 0,50 0;052
src27 33 0;59 0;117 0;64 0;091 0;52 0;057 0:00 0:000 0;54 0,106

Table 5.11: The comparison of AUC metric gaze xations 'GFM' voredicted saliency
'GBVS', 'SignatureSal' and 'Seo’) and our & _model for the videos from
GTEA data set

VideoName TotFrame = 7693 GFM vs GBVS GFM vs SignatureSal GFM vs Seo GFM vs ChaboNet4k
S1_CofHoney _C1_undist 1099 0;811 0;109 0;800 0;091 0;578 0;120 0; 732 0; 157
S1_Pealate _C1_undist 1199 0;824  0;099 0;846  0; 080 0;594 0;139 0;568 0;185
S1_Teac 1_undist 1799 0;770 0;127 0;816 0;074 0;567 0;135 0;745 0;211
S2_Cheese _C1_undist 499 0;813 0;116 0; 766 0; 0138 0; 552 0; 127 0; 643 0; 218
S2_Coffee _C 1_undist 1599 0; 802 0; 098 0;720 0; 094 0;594 0;116 0; 636 0; 193
S3_Hotdog _C 1_undist 699 0;768 0;103 0;851 0;088 0;585 0;114 0;415 0;145
S3_Peanut _C1_undist 799 0; 757 0; 115 0;758 0;135 0; 519 0; 100 0; 570 0; 162

In general, it can be stated from the results on CRCNS data setaple[5.9) that spatial
models (Signature Sal, GBVS or ltti) performed better in thre tested videos. This is
due to the fact that these videos contain very contrasted aas in the video frames, which
attract human gaze. They do not contain areas having an intesting residual motion.
Nevertheless, theChaboNetK model outperforms the Seo model which uses motion
features such as optical ow.
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However, for IRCCyN-MVT data set, see tablé 5.10, despite videevithout any motion
were set aside, the gain in the proposed model is not very alele to the complexity of
these visual scenes, such as presence of strong contrastkfanes.

The comparison for some videos of GTEA data set with di erenimanipulated objects
was conducted. In general we can state that spatial modelsrform better (Signature
Sal, GBVS). Nevertheless, our \ChaboNet4k" model outperformthat one of Seo in 4
cases on this 7 examples. This shows that de nitly the use ofl2eep CNN is a way for
prediction of top-down visual saliency in video scenes.

5.4 Conclusion

The transfer learning in the task of saliency prediction isnteresting and allows to solve
the problem of the insu ciency training data. The transfer learning scheme introduced
and applied to the prediction of saliency on small data setsybne-tuning parameters
pre-trained on a large data set (Hollywood) successfully queerforms the state-of-the-art,
i.e. Bengio's method.

Hence in this chapter we tackled the problem of prediction ofisual attention on
video content in a realistic context, when the volume of traimg data is small. We have
developed a transfer learning/ ne-tunning approach wheréhe parameters at all layers of
the network were initialized by pre-trained on a large data &se values. It gives a relatively
small, but still a gain compared to the state-of-the art metbd. Furthermore, the stability
of training caracterized by the standard deviation of accarcy along iterations is improved
by almost 50%.

The next chapter deals with the second use case of this work it is the application
for testing of patients with neuro-degenerative diseases.
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Chapter 6

Application of saliency prediction for
testing of patients with neuro -
degenerative diseases

6.1 Introduction

Studies of visual attention of patients with Dementia such @Parkinson's Disease Demen-
tia and Alzheimer Disease is a promising way for non-invasigkagnostics. Past research
showed, that people su ering from dementia are not reactiveith regard to degradations
on still images [22]. Attempts are being made to study theirigsual attention relatively to
the natural video content [126]. If a degraded visual contérs displayed for patients with
dementia, the delays in their reactions on novelty and \unusal" novelty of the visual
scene are expected. Nevertheless, large-scale screeningoptilation is possible only if
su ciently robust automatic prediction models can be built In the medical protocols
the detection of Dementia behavior in visual content obseation is always performed in
comparison with healthy, \normal control" subjects. Henceit is a research question per
see as to develop an automatic prediction models for specimisual content to use in
psycho-visual experience involving Patients with Demerai(PwD). The di culty of such
a prediction resides in a very small amount of training data dth in terms of quantity
subjects as in terms of quantity of speci cally post-produed content. In litterature, the
di erence in saccadic eye movements of PwD compared to cooitrsubjects of the same
age have been stated [22]. We hypothesize that a di erence wisual xation maps of
healthy subjects and PwD will also exist.

In this chapter we aim to build an automatic prediction modebf attention of healthy
subjects with regard to intentionally degraded content. Hece, the rst study conducted
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in this framework aimed to identify the di erence of reactim of healthy subjects to \nor-
mal" dynamic video content and \unusual distractors", whid are intentionnaly introduced
degaradation. Then, taking into account a small amount of gxi cally produced video
content, optimal transfer learning strategy for training e model in case of very small
amount of training data was deployed. The comparison with ga xation maps and clas-
sical visual attention prediction models was performed. Ralts are interesting regarding
the reaction of normal control subjects against degradedeas in videos.

6.2 Material and methods

To analyze the anomalies of eye saccades at the prodromalg&eof neurodegenerative
diseases, and respecting the bio-medical research protodtd'LO" [123] cf, Appendix,
two types of full HD video (1920x1080 with the frame-rate of 2frames per second)
were created : normal videos and a set of arti cially degradevideos. The purpose is to
conduct a psycho-visual experiment to compare xations orhe degraded regions and the
induced visual attention maps for normal control subjectsrad patients with dementia.
In this experiment, medical researchers choose the naturadalocus of degradations as
texture modi cation. The duration of video clips was choserio avoid the phenomena
of visual fatigue and is of 28 seconds. Hence, this databasesp®ci ed by a very small
size: only 700 frames in each of the two video clips. The ongi \normal" video content
and degraded one were displayed to the normal control subige@nd are supposed to be
displayed to PwD in a free viewing conditions. We will now desibe the nature and the
methods for creating degradations on natural video for thipurpose.

6.2.1 De nition of degradations

As the original material for creation of \degraded videos" wéave selected full HD video
(1920 x 1080 pixels) at 25 fps produced in the framework of tipeoject ICOS-HD at Labri
and available on OpenVideo.org platform [93],[8]. Each natal video was processed frame
by frame in order to create naturally degraded areas.

Hence, degradations were added, such as Gaussian blur or |gitien, on objects in
speci c areas at di erent locations in the video frames mataining spatial coherency
along the time (the objects in the center, right or left, top o bottom). Two kinds of
placement were performed: i) on an environmental object,)ion the background. We
avoided placing the degradations on moving objects in thedeo sequences, as they are
natural attractors of attention and the goal of the experimat is to measure the curiosity
of the subjects with regard to an unusual content. A Gaussiablur was used with the
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size of [30x30]. The spread parameter value was chosen as50 accordingly to the size

of degraded areas with regard to the resolution of frames és&aussian equatiof 6]1).

(x2+y?)
2

GOxy) = 5 ge s 6.1)

After applying the degradation on videos, two video sequersédave been created, one
for \normal" video and one for degraded videos (see guife §.1Hence, each sequence is
composed of two videos separated by a black screen of 200is@tonds duration ensuring
resetting the status of the visual attention of observers. HAe overall duration of thus

Figure 6.1: (A) Normal video, (B) degraded video.

produced video clips were S6corresponding to the amount of 1411 frames.

6.2.2 Validation of degraded maps: Creation of visual attention
maps

To validate the degraded sequences, visual attention mapsrmmrmal control subjects were
compared on the two kinds of videos : normal sequences rstathen the degraded ones.
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In the following the psycho-visual experiment for recordmthe xations and the reference
method for creation of visual attention maps are described.

Setting up of the psycho-visual experiment

The human visual attention is measured by recording the moreent of the eye. Eye
movements are portrayed with a sequence of saccades, xasoand smooth pursuits.
The jerks are movements with large amplitude that allow expkation of the visual eld.
Instead, the bindings are micro-saccades with a low amplde that place the object of
interest on the fovea. Consequently, ne details are extréed over the fasteners. Smooth
pursuits are triggered when tracking a moving object [39]. Reir role is to keep the object
on the fovea.

Eye-trackers are used to record and measure eye movement$ie3e devices emit an
infrared light and contain an infrared camera. Infrared ligt illuminates the eye and
the camera records its movement. The recording of eye movertserepresents a digital
processing that is required to follow the white spot and blé&cpupil (see gure[6.2).

Figure 6.2: Digital recording of the eye movement (A) Eye tragk provides an infrared
mirror re ecting infrared light. (B) The benchmark for measuring eye move-
ments (the white spot on the pupil presents a re ection of thenfrared light
on the eye).

During the psycho-visual experiment and respecting the LYL@rotocol [123], recorded
eye movements were obtained with the Cambridge Technologyyé&Tracker device (see
gure B.3). It contains a monocular infra-red camera and emses recording frequency of
250 Hz.
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Figure 6.3: Recording of eye movement (saccade, xation) dfi¢ left eye with the Cam-
bridge Technology EyeTracker device during observation afvideo sequence.

The number of subjects which have participated in the expamnce was 21 with age
from 20 to 44 years old.

{ All subjects have signed a consent form for the use of their anymous data for
research. These forms are safety stored in LaBRI.

{ The gaze tracking data are anonymous.

{ Subjective test (see gure[6.4) : pure Snelleri [119] and Itara [50]. We have not
identi ed defective subjects in our volunteers.

(a) Ishihara test (b) Snellen test

Figure 6.4: Snellen[]119] and Ishihara [60] tests.
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The experimental protocol was the following:

1. The eye tracker was positioned at a distance of 80cm frometiscreen which size was
of 21 inches in diagonal. The eye-tracker was \chin-rest".

2. The instructions to the subjects corresponded to the fragewing conditions without
any prede ned visual task. Before viewing the videos, the bject was instructed
like \Please, watch the video".

3. The examination was carried out in two stages. Initiallywo series of \normal" or
non-degraded videos were presented, then, in a second time series of \degraded

videos were shown to the subjects.

The visual protocol content for each sequence is illustraten gure p.5 and all pa-
rameters are summerized in table 6.1.

Figure 6.5: Visual protocol content : Sequence of \degradedideos

Table 6.1: Experiment protocol.

Features Values
Video resolution 1280 720
Video Video format 2D
Number of videos 2
Observer distance 80
Subjective test Environ.ment ITU-R BT.500-11
Duration 56 second
Pre screening Snellen, Ishihara
Number of observers 21
Observers Age : Mean [Range] 26 [20 44]years
Male / Female repartition 14/8
Eyetracker HS-VET
Eyetracker Eyetracker model mono ocular
Eyetracker acquisition frequency 250Hz
. Display model HP LP2475w
Display - -
Display resolution 1920 1200
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Comparaison of saliency maps between normal and degraded sequences

Before conducting experiments with patients, it is importat to analyze if the induced
degradations attract attention of normal control subjectswith regard to non-degraded
natural visual content. Hence we will compare subjective sahcy maps on a both normal
video sequence and corresponding degraded one, frame bynffa Amongst a variety of
metrics for comparison of saliency maps those ensuring a plminterpretation of results
were chosen. These metrics are: the Pearson correlation ceat (PCC) and \Normal-
ized scanpath saliency” (NSS) [67] (s¢e 1.8.3).

NSS _metric

normVSdeg 0; 36522
0; 18139

normVSdeg- 0; 27335
withoutPeak 0; 15923

(a) NSS variations (b) mean NSS metric

PCC _metric

normVSdeg 0; 38843
0; 08566

normVSdeg- 0; 32412
withoutPeak 0; 14740

(c) PCC variations (d) mean PCC metric

Figure 6.6: Variations of NSS and PCC metrics during the compaison of GFDM created
for both sequences in the psycho-visual experiment.

Analysing the values of the NSS and PCC metrics when comparinpet salient areas
of the normal sequence with the degraded sequence, two peintere stated (see gure
6.6). First, the values of NSS and PCC are low, that means a largeerence between the
xations on areas of the normal sequence and the degraded doyenormal control subjects.
Therefore, the arti cially induced degradations are valuble for further experiments on the
patients. Second, we observe four peaks in the sequencet(pgak from frame #118 to
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#147, second peak from frame #865 to #902, third peak from frene #1081 to #1134, and
the fourth one from frame #1327 to #1391). These peaks mean agd correspondence

between what attracts attention in the normal sequence andithe degraded one. The
frames at these pics correspond to new signi cant objectstening in the scene. Therefore,
normal subjects are attracted by signi cant objects. They prsue to the new objects
dropping the degradation. The mean value of NSS metric withouhe consideration of
the peaks is 027335 (see table (b) of guré 6]6). We can conclude that northpeople
are attracted by both areas: the signi cant items and degraation.

6.3 Deep model for study of neuro-degenerative dis-
eases : Mixed model and Merged model

A Deep CNN requires a large amount of data for training. It is irpossible to produce
such amount of data in the scenario of experiments with patiés. Elderly subjects are not
able to watch a large amount of visual data in the conditionsfeeye-tracking experiment.
Hence, we try to predict visual attention on degraded sequees with a model trained on
a large amount of publicly available data.

When the training samples of source domain are di erent fromhie training samples
of the target domain, we are in front of the problem of di ereh data distributions. In
saliency prediction, a supervised learning approach triés simulate the sensitivity of HVS
to primary features such as contrasts, color saturation anothers [125],[10],[[104] . One
should have expected that if trained on one database ( in ouase Hollywood) the same
model can be successfully applied to another database. lede HVS neurons are sensitive
to the same \relative" features. This was our hypothesis inhtis chapter. Nevertheless,
the experiments show that this assumption is not hold. Our ¢xanation is that when
observing a content humans interpret it. Here, we try to \ netune" a pretrained model
on a very specic and small database. We therefore resort toansfer learning. The
only public large videos with gaze xations is HOLLYWOOD2[[8B]8¢9], it is described in
chapter[3.6.

As de ned in our previous study [27], we modify the StochastiGradient Descent
(SGD) [12] algorithm used in the learning of Deep CNN parame® We transfer the
model learned on large dataset to the small one. Hence, we sttre learning on the
small dataset with the best deep CNN parameters already lead on the large database,
instead of the random initialization from a gaussian disthution.

With its classical initialization, our transfer method preents the starting of learning
from the best weight matrix for each layer of the Deep CNN. In theontrary of the work
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of Bengio [3] which uses the transfer of just the three rst gwvolutional layer. The very

few available data for training presents the reason to trafer learning of each Deep CNN
layers.

Once the binary classi cation problem : \salient" \Non-salient" has been solved for
regions, we need to build predicted saliency maps upon thegecisions. (see chapter 3 for
more details)

In order to resolve the limitation of the number of frames of pduced videos, the data
augmentation technique was used to increase the number ofisat patches. Since object
or area that attracts human gaze is never precisely centeretie point in the frame, the
translation of the center is required. With the purpose of exgnding the variability of the
salient class in training dataset, we choose to move the centof salient patch of 5 pixels
twice in each direction. The results of this training are prgented in the next section
together with the benchmarking of proposal saliency predion model.

6.3.1 Mixed model

As mentioned in LYLO project [123] and proved in our experimentlescribed in section
[6.2.2, normal control subjects are attracted by salient ass. The latter can contain an
area that contains scene details important for its understaling (a contrast, a moving
object ...) or an area that contains a designed degradatiorience, our rst approach
consists on mixing the two kinds of salient areas to train onmodel, we call it \Mixed

model".

According to the same approach used to select patches and thtercreate the dataset
for training and validation (see sectior] 3.3]1) , the dataseon degraded sequence for
\Mixed model" was created. Here, salient patches can contain) degraded area. ii)
object of interest. Hence, the two kinds of salient patches vemixed together and the
Deep CNN network was trained : \Mixed model". Following tableg6.2 presents some
examples of patches selected from the degraded sequencadmtthe \Mixed model".
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Table 6.2: Data from degraded sequence to train \Mixed model

Mixed model is then the combination of all kind of saliency dgadations or natural
attractors in the training data. It uses exacty the same arakecture ChaboNet as de-
scribed in sectior] 3.4]2 with K con guration, that is training RGB values and residual

motion energy (see section 3.4.1).

6.3.2 Merged model

According to LYLO project [123] a degraded area is salient foronmal subject. This is
clear in the rst experiment in section[6.2.2. Hence, a salie@area can be either an area
that attract human gaze either a degraded area. The idea hei®to create two separated
data sets for each kind of salient areas. The rst one \ Normatkerest" data set is built
with reference to GFDM map on normal video sequence without grdegradation. The
second data set is designed \ Degradedinterest”. Here, thegtaded patches were built
upon the mask of degradation. These degraded patches werkléa as \saillent". Table
[6.3 and[6.4 present an overview of \ Normalinterest" and \ DegrdedInterest" data sets.

Table 6.3: Extract of \ Normallnterest" data set.

Salient patches Non-salient patches
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Table 6.4: Extract of \ Degradedinterest” data set.

Salient patches Non-salient patches

\MergeDinTraning" : Fusion of Normal and Degraded saliency model in tra in-
ing step

Since we have two kinds of interest areas (degradations andrmal human gaze attrac-
tors), a \ChaboNet" architecture of each kind of interest aras was proposed . The input
dataset was 4k con gured (RGB values with residual motion eargy). The networks are
completely identical \seamese" and joint in fully conneci@ layers. The only condition is
that two input data images have to be in the same category (saeht or Non-salient) . The

fusion lies in the last fully connected \FC" layer; a concateation layer combines these
\FC" layers from each single network (see Fify 6]7).

\MergeDinPrediction" : Fusion of Normal and Degraded saliency model at
prediction step

The idea in this proposed model, is to make a logical operatimn the decision results
(Softmax) of the two independent networks, as shown in Fig 6.8 Note that in this
approach, rstlly each network was trained separately, the the fusion operation (logical
OR) was applied for each forward input data in test step.

6.4  Saliency Generation for Mixed model

Training Deep CNN on degraded sequences from scratch is notrtkable because of the
need of a very large database. Therefore, our rst idea was kearn the prediction model
on a large base (Hollywood?2), and use the best model to predgalient areas on the
degraded sequence. Sensitivity of HVS to contrasts, color sedtion and other low-level

features is maintained. Therefore, the predictive power dfius obtained model would be
su ciently good. It was not the case. Despite of the use of a ler performing model

\Deep saliency RGB8K", with seven kinds of contrasts, resichl motion and RGB values,
the results of comparison with the ground truth GFDM map were &ry poor. Indeed,
the PCC metric was 0155 0:069 and NSS was:Q73 0:081. Analyzing predicted
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Concatenation

“Normalinterest" data set

Salient patches Non-salient patches

““Degradedinterest” data set

Salient patches Non-salient patches

Figure 6.7: Architecture of \MergeDinTraning" model
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“"Normalinterest" data set

terest" data set

“"DegradedIn

Figure 6.8: Architecture of \MergeDinPrediction" model

maps frame by frame, we discovered that the contrasted degeations were predicted
rather satisfactory. Indeed, they are similar to the naturhcontrasts in video frames.
Nevertheless, the intentionally blurred areas were poorlyr@dicted. Such kind of areas
was not \seen" by the network in the training data. Thus the a@ptation of the models
IS the must.

6.4.1 Results of transfer learning on Mixed model

Frames available for the learning of the \Mixed model" are wg few, just 1404 frames are
in our disposal. We have divided them into three sub groups Min", \validation" and
\test". From the 939 frames of train, 16028 salient and Non-$iant patches were selected.
After the creation of the dataset as described in Sectidn 61Bfor \Mixed model", the
ChaboNeBk and ChaboN etk models were learned. Transfer learning approach presented
in section[% has been applied. The beshaboNe8k model trained on the Hollywood
dataset is found at the iteration 5214. The learning of th&€ haboNe8k for the \Mixed
model" was started from the iteration 5214 by transferringhe best learned model param-
eters pretrained on the large dataset. The best mod€haboNetk learned on HOLLY-
WOOD2 dataset was found at the iteration 8690, hence, the leang of the ChaboN etk
for the Mixed model on our degraded sequences was startedhirthis iteration (see gure
69.

Results summarized in gure[ 6.9 show the importance of acasy which attained
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(a) Accuracy vs iterations

ChaboNet 3k ChaboNet 4k
min- 4 jter ) 94; 84% (45270) 96; 22% (45742
max  iter ) 99; 14% (46634) 99; 27% (49672)
avg std 98;18%  0; 745 98;46%  0; 542

(c)The accuracy results
Figure 6.9: Learning of features - Accuracy vs iterations @haboN eBk and ChaboN etk

for the \Mixed model".

99:27% at the iteration 9672 for theChaboN etk model. We can state thatChaboN etk
outperforms other model in terms of mean accuracy. Nevertlesls the gain is not strong.

6.4.2 Results of transfer learning on Merged model
Training of MergeDinTraining

To evaluate the proposed MergeDinTraining architecture, e network was trained to
predict the probability of a local region to be salient. The madel uses RGB values and
the normalized energy of residual motion as input. The Mer@enTraining model was
learned from scratch. In the following, obtained results we summarized in gure[6.1D.
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(a) accuracy curve (b) Loss curve

Figure 6.10: Learning of features - Accuracy and loss vs iteras of the MergeDinTrain-
ing model.

The results of learning experiments on Normalinterest §.3 dnDegradedinteres{ 6.4
data sets yield the following observations:

I) The results of accuracy are rather good : average accuraisyabout 9774% (see
table[5.7 ).

i) The accuracy curve (gure[6.10 (a) ) and the correspondiy loss curve ( gure
6.10(b)) show that the best trained model reached 983% of accuracy with the smallest
loss ( at the iteration #3100 see tabld 6]5 ). Thus, it does nopresent an over- tting
situation.

Table 6.5: The accuracy results on learned MergeDinTraining model.

min _Accuracy (4 jter ) 55:80% (40)
max _Accuracy @ jter ) 98:33% (#3100)
avg _Accuracy std %97 :74  3:115

Training of MergeDinPrediction

Figure[6.1] illustrates the variations of the accuracy alonggerations of ChaboNet3k and
ChaboNet4k networks for Degradedinterest §.4 data set. To escome the lack of data,
the learning was transferred from the best obtained modelsrdHOLLYWOOD" data

set. The gain of using 4k against 3k as input to the deep CNNs is@lt 0:2% in terms
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of mean accuracy. The best model is obtained at the iteratio#l1718 with an accuracy
of 9960%.

(a) Accuracy vs iterations

ChaboNet 3k ChaboNet 4k
min & iter ) 97:65% (15270) 97:83% (48742)
max (4 iter ) 99:32% (#6820) 99:60% (#11718)
avg std 98:9%  0:355 99:18%  0:3048

(c)The accuracy results on degraded model

Figure 6.11: Learning of features - Accuracy vs iterations o€ChaboNeBk and
ChaboNetk for the \Degradedinterest" data set.

Figure[6.12 illustrates the variations of the accuracy alongerations of ChaboNet3k
and ChaboNet4k networks for Normalinterest 6|3 data set. To evcome the lack of data,
the learning was transferred from the best obtained modelsrdHOLLYWOOD" data
set. From the plots (a) in gure[6.12, we can see that th€haboN etk model is little less
e cient than ChaboNeBk model. It is not surprising, the salient patches are predied
by our method according to each visual task: on the Hollywoodath set the subjects are
instructed to observe actions. They are attracted by the dyamic content of the visual
scene. Hence residual motion is important in the global modeln Normalinterest data

150



CHAPTER 6. APPLICATION OF SALIENCY PREDICTION FOR TESTING OF
PATIENTS WITH NEURO - DEGENERATIVE DISEASES Souad CHAABOUNI

set, the subjects are interested in specic objects be theyawing or not. Hence, the
spatial appearance is important.

(a) Accuracy vs iterations

ChaboNet 3k ChaboNet 4k
min- 4 jter ) 96:71% (45270) 96:84% (48742)
max (4 iter ) 98:88% (48060) 98:25% (410354)
avg std 98:46% 0:333 97:95% 0:222

(c)The accuracy results

Figure 6.12: Learning of features - Accuracy vs iterations oChaboNeBk and
ChaboNetk for the \Normalinterest" data set.

6.5 Comparaison of predicted saliency maps on de-
graded sequence

In literature, di erent evaluation metric were used to detemine the rate of similarity
between the saliency maps and the gaze xations of subjectShree criteria allowing an
easy interpretation of results were chosen. These critergae: the correlation coe cients
'CC' used in various areas to assess the similarity of two digutions, the receiver e -
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ciency (AUC) for evaluating the quality of a prediction, and NS \Normalized scanpath

saliency” which is de ned to compare the salient areas deteined by a model with areas
observed by the subjectd [85].

The average and the standard deviation of the NSS, AUC and CC nmi&t were com-
puted for all test frames (see table 6]6). The proposed modeis compared with the static
model of Itti [52] and the dynamic model of Seo [113] which atke common benchmarks
in literature. For the AUC metric, the proposed \Mixed model" outperforms the Seo
model. Nevertheless, the latter have a quite better mean vawf NSS and CC but the
standard deviation is strong that re ects that our proposednodel presents more stable re-
sults. The proposed \Mixed model" outperforms in mean valuef NSS and CC metric the
Itti model. Nevertheless, the latter outperforms our \Mixedmodel" in mean AUC metric.
The proposed \Mixed model” outperforms other proposed moteMergeDinTraining and
MergeDinTraining.

Table 6.6: comparison with AUC, NSS and CC metric of gaze xatits GFM' vs pre-
dicted saliency of Mixed model, Itti model and Seo model fohe 235 test
frame of degraded sequence

Metric | GFM vs Mixed model | GFM vs MergeDinTraining | GFM vs MergeDinPrediction | GFM vs Itti model | GFM vs Seo model

AUC 0:756 0:227 0;58 0;218 0:494 0:163 0:769 0:163 0:630 0:216
NSS 1:029 0:990 0;43 1;292 0:0529 0:8086 0:952 0:780 1:185 2:65
cC 0:042 0:041 0;02 0;058 0:0022 0:0344 0:040 0:032 0:046 0:096

Next table [6.7 presents some examples of predicted saliencgpmwith the proposed
\Mixed model". For these frames, a very interesting value oAUC compared to gaze
xation was obtained. We can see that our model predict the gbcts of interest speci ed
by contrast or residual motion likewise the intentionally @égraded area.
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Table 6.7: Examples of predicted saliency map witichaboNet#k of proposed \Mixed
model"

FRAME #38 #68 #146
AUC 0:957 0:935 0:99
FRAME #230 #260 #326
AUC 0:974 0:988 0:828
FRAME #416 #506 #584
AUC 0:870 0:912 0:991
FRAME #608 #734 #830
AUC 0:971 0:999 0:961
FRAME #878 #920 #1016
AUC 0:887 0:871 0:907
FRAME #1094 #1142 #1388

| AUC | 0:924 153 0:978 0:902
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6.6 Conclusion

Hence, in this research we produced and we validated a videotsmt for psycho-visual

experiments with dementia patients. Furthermore, we haveuilt a reference model for
normal subjects observing intentionally degraded contentThe model was built on the

basis of Deep CNNs. In a medical study, we face a typical situati of a very small

database. Even very good models applied on the new unseentennin the same saliency
prediction task not performing well, we proposed a transfdearning scheme. Here we
ne-tuned the initial model. Several models were proposed this chapter.

Mixed model, which is trained on a very low amount of data (oudegraded sequences)
was developed. It gives very good results, such as a predietaccuracy of 927% due to
the e ciency of transfer learning method. From what we can sein the obtained results,
many frames achieved :9 of AUC value. This means that our model predicts well both
gaze attraction by semantic objects and unusual degradatis.

Two merged models were learned: MergeDinTraining siamesetwork model and
MergeDinPrediction which implement the fusion of two sepately learned models by
logical OR operation (max).
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General conclusion and perspectives

In this work, we were interested in prediction of visual sancy in video content with
the new classi cation tools such as Deep Convolutional Nedr&letworks. The target
application of this research was building of a model for predion of saliency of regions
in video for studies of attention of patients with neuro-degnerative diseases. To build an
e cient model, we explored di erent aspects of these supersed classi ers in the problem
of saliency prediction such as

- design of an adequate architecture of a Deep CNN;

- studies of possible input layers of the architecture on theasis of domain knowledge,
such as sensitivity of human visual system to contrasts, @aar and residual motion in
dynamic content;

- sensitivity of these classi ers to the noise in training da;

- e cient initialization of parameters by transfer learning;

- fusion of classi cation results in the problem of recognibn of various kinds of intentional
degradations designed for studies of attention of patients

To explore a video, we focus our attention on certain saliemégions whose the move-
ment and the semantic aspect of the object-of interest rement visual attractors. For
this purpose in collaboration with medical researchers weate designed speci ¢ degra-
dations in video succeptible to attract attention, designg and conducted psycho-visual
experiment and studied the reaction of normal control subggs on these degaradations
for groundtrouthing of prediction model. This small databae was used in the present
work together with larger video databases with available ga& xation recordings such
as Hollywood large-scale data base or well-known in video djbaassessment commu-
nity IRCCyN database. We did mastering of these databases hyontent selection for
training and validation of our models. Benchmarking of ourantributions with regard to
the available ground trouth, but also with regard to classial visual saliency prediction
models form the litterature was performed. In the followingparagraphs we will focus on
our contributions and propose perspectives of the presergsearch.
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Contributions of this PhD and their Assessment

Firstly, a model with four channels based on the colors R, G, Bhd motion was proposed.
Then this model was enriched with seven other channels summnzing the di erent kinds of
contrast already studied for the saliency prediction. Thraghout this thesis, we have used
databases that collect information on the human gaze recad through a psychovisual
experiments. The use of this information allowed us to de néhe target class of salient
regions.

{ ChaboNet: a Deep CNN architecture built on the basis of AlexNefd@3]. The chal-
lenge here was to design an architecture which would not beod deep” in order to
have reasonable times of training and also to limit numberd ¢éearning parameters
in order to get a stability. Our contribution was in adding sypplementary architec-
tural patterns of convolution and non-linearity layers bedre pooling layers with the
goal to increase the \expressivity" of features. The latters important in saliency
prediction as HVS is sensitive to contrasts and singularitiesoth spatial and tem-
poral. We have also reduced the number of lters to learn. Theenchmarking of
the proposed architecture with regard to base-line AlexNet ahitecture has shown
a slight increase of accuracy in prediction of saliency ofgiens in video.

{ A specic input data layer of Deep CNN for visual saliency prdiction. First, the
use of eye xation dense map in training deep CNNs models enssithe combina-
tion of both bottum-up and top-down saliency cues. Secondprf video processing,
the temporal cues are mainly prevalent to detect salient regn. The experiments
have shown promising results. Furthermore, to explore theothain knwoled on the
sensitivity of HVS to speci ¢ contrasts we have conducted expenents using seven
kinds of contrasts as input of the deep CNN. This allowed us to b&ure of certain
choices of the model and to limit the input model on temporalamponent with the
RGB values.

{ Sensitivity of deep CNNs to noise in training data. We have stad the noise in
the automatic production of training data in video with refeence Gaze Fixation
Density Maps only. And we have proposed training data seleoth process on the
basis of visual content production rules reducing the noiseDespite a systematic
study of the in uence of noise in the input data was out-of-sgpe of our research,
we have shown that Itering noise in training data allows forincreasing of accuracy
of prediction.

{ Transfer learning with deep CNNs. A typical situation in reallife applications of
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Deep learning, specically in medical research domain, ié limited number of
training data. Hence, we have proposed and tested a method oansfer learning,

as a ne-tunning of parameters initialized with training ona large dataset in the
same saliency prediction problem. This method was fully stied and experimented
on three small datasets. Finally, we have applied it to a task ithh very small

amount of training data in the problem of prediction of refeence normal control
visual attention for studies of neuro-degenerative disezs

{ Generation of saliency map: we proposed a speci ¢ method wenerate the nal
saliency map. Inspired from GFDM with Wooding's method, we el the probabil-
ity responses of deep CNNs model to create a saliency map witreteame size of
input frames. The codes were optimized with a parallel alggihm that reduces the
time of generation of saliency maps.

{ eye-tracking experiences : an eye-tracking experiment waesigned for testing pa-
tients with neurodegenerative diseases. First of all specivideo content with in-
tended degradation was produced in collaboration with reaechers in medicine.
Then the experiment was conducted on healthy volunteers imee viewing condi-
tions.

We have been able to draw several conclusions such as nornodljscts are attracted
by signi cant objects. They pursue to the new objects droppig the degradation.
Experimenting with our prediction model, we have designedusion strategy for
learning and prediction of di erent kinds of degradations.

Last but not least for a PhD in Computer Science, a total of tesoftwares and scripts
were developed for this research project using di erent opsource frameworks or
matlab.

In this work we have not systematically quantized the perfenances of our approach
in terms of execution time, for the reason of heterogeneougugements we have
used along this research. Nevertheless, a systematic tramkiof accuracies along the
iteration of training of our models has allowed us to drastadly (order of 10) reduce
the number of iterations compared to the state-of-the-artasearch.

Perspectives

This work opens many perspectives which can be envisagedeitas its improvement or
its direct extension or as requiring extensive and longeeftm studies. Deeper exploitation
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of the model possibilities can be made by boosting theéhaboN etk with a step of ne-
tuning from other trained models in particular by net surge}l operation.

Using Fully convolutional networks for saliency predictioron natural videos, presents
a new research perspective which we would like to explore.

Furthermore, temporal consistency of saliency maps can albe improved using other
kinds of architectures, than CNNSs.

In conclusion, we believe that the proposed saliency modaing deep CNNs has a very
good application perspective, especially in neurodegeative diseases diagnostics and
several other saliency prediction applications such as &d compression, watermarking
and selective indexing of visual content.
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