
HAL Id: tel-02406834
https://theses.hal.science/tel-02406834

Submitted on 12 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Geometric modeling of man-made objects at different
level of details

Hao Fang

To cite this version:
Hao Fang. Geometric modeling of man-made objects at different level of details. Computer Vision
and Pattern Recognition [cs.CV]. Université Côte d’Azur, 2019. English. �NNT : 2019AZUR4002�.
�tel-02406834�

https://theses.hal.science/tel-02406834
https://hal.archives-ouvertes.fr

Modélisation géométrique à
différent niveau de détails d'objets

fabriqués par l'homme

Geometric modeling of man-made objects at
different level of details

Hao FANG
INRIA Sophia-Antipolis

Présentée en vue de l’obtention
du grade de docteur en
Informatique d’Université Côte
d’Azur et de INRIA Sophia-Antipolis
Dirigée par : Florent LAFARGE

Soutenue le : 16/01/2019

Devant le jury, composé de :
George Vosselman, University of Twente
Renaud Marlet, École des Ponts ParisTech
Pierre Alliez, Inria & Université Côte d’Azur
Julien Soula, CSTB
Sven Oesau, CSTB
Florent Lafarge, Inria & Université Côte d’Azur

THÈSE DE DOCTORAT

EMPLACEMENT
LOGO CO-TUTELLE
ÉVENTUELLE

ii

Abstract

Geometric modeling of man-made objects from 3D data is one of the biggest

challenges in Computer Vision and Computer Graphics. The long term

goal is to generate a CAD-style model in an as-automatic-as-possible way.

To achieve this goal, di�cult issues have to be addressed including (i) the

scalability of the modeling process with respect to massive input data, (ii) the

robustness of the methodology to various defect-laden input measurements,

and (iii) the geometric quality of output models. Existing methods work

well to recover the surface of free-form objects. However, in case of man-

made objects, it is di�cult to produce results that approach the quality of

high-structured representations as CAD models.

In this thesis, we present a series of contributions to the �eld. First, we

propose a classi�cation method based on deep learning to distinguish objects

from raw 3D point cloud. Second, we propose an algorithm to detect planar

primitives in 3D data at di�erent level of abstraction. Finally, we propose

a mechanism to assemble planar primitives into compact polygonal meshes.

These contributions are complementary and can be used sequentially to re-

construct city models at various level-of-details from airborne 3D data. We

illustrate the robustness, scalability and e�ciency of our methods on both

laser and multi-view stereo data composed of man-made objects.

Keywords: Point cloud, polygonal mesh, semantic segmentation, deep

learning, shape detection, geometric primitives, surface reconstruction

iii

Résumé

La modélisation géométrique d'objets fabriqués par l'homme à partir de don-

nées 3D est l'un des plus grands dé�s de la vision par ordinateur et de

l'infographie. L'objectif à long terme est de générer des modèles de type

CAO de la manière la plus automatique possible. Pour atteindre cet objec-

tif, des problèmes di�ciles doivent être résolus, notamment (i) le passage

a l'échelle du processus de modélisation sur des données d'entrée massives,

(ii) la robustesse de la méthodologie contre des mesures d'entrées erronés, et

(iii) la qualité géométrique des modèles de sortie. Les méthodes existantes

fonctionnent e�cacement pour reconstruire la surface des objets de forme

libre. Cependant, dans le cas d'objets fabriqués par l'homme, il est di�-

cile d'obtenir des résultats dont la qualité approche celle des représentations

hautement structurées, comme les modèles CAO.

Dans cette thèse, nous présentons une série de contributions dans ce do-

maine. Tout d'abord, nous proposons une méthode de classi�cation basée

sur l'apprentissage en profondeur pour distinguer des objets dans des en-

vironnements complexes a partir de nuages de points 3D. Deuxièmement,

nous proposons un algorithme pour détecter des primitives planaires dans

des données 3D à di�érents niveaux d'abstraction. En�n, nous proposons un

mécanisme pour assembler des primitives planaires en maillages polygonaux

compacts. Ces contributions sont complémentaires et peuvent être utilisées

de manière séquentielle pour reconstruire des modèles de ville à di�érents

niveaux de détail à partir de données 3D aéroportées. Nous illustrons la

robustesse, le passage a l'échelle et l'e�cacité de nos méthodes sur des don-

nées laser et multi-vues stéréo sur des scènes composées d'objets fabriqués

par l'homme.

Mots cléfs: Nuage de points, maillage polygonal, segmentation séman-

tique, apprentissage approfondi, détection de forme, primitives géométriques,

reconstruction de surface

Contents

Page

Contents vi

1 Introduction 1

1.1 Context . 1

1.2 Challenges . 4

1.3 Contributions . 8

2 Related work 13

2.1 Semantic segmentation of 3D data 13

2.1.1 Methods exploiting hand-crafted descriptors 13

2.1.2 Deep learning methods 15

2.2 Shape detection from 3D data 19

2.2.1 RANSAC . 19

2.2.2 Accumulation space 20

2.2.3 Region growing . 20

2.2.4 Shape regularization 21

2.3 Surface reconstruction from 3D data 21

2.3.1 Smooth surface reconstruction 21

2.3.2 Primitive-based surface reconstruction 22

3 Semantic segmentation of 3D data 27

3.1 Introduction . 27

3.2 Methodology . 28

3.3 Feature analysis . 30

3.4 Experiments . 33

3.4.1 Implementation details. 33

3.4.2 Semantic Segmentation on the S3DIS Dataset 34

3.4.3 Semantic Segmentation on the ScanNet Dataset 37

3.4.4 Semantic Segmentation on the vKITTI Dataset 40

3.4.5 Network Architecture Design Analysis. 42

3.5 Conclusion . 46

4 Planar shape detection 47

4.1 Introduction . 47

4.2 Shape collapsing . 50

4.3 Detection of structural scales 53

4.4 Experiments . 56

vi Contents

4.5 Conclusion . 63

5 Piecewise-planar reconstruction 65

5.1 Introduction . 65

5.2 Connectivity analysis . 67

5.3 Space partitioning . 71

5.4 Surface extraction . 74

5.5 Experiments . 76

5.6 Conclusion . 88

6 Conclusion and perspectives 91

6.1 Conclusion . 91

6.2 Perspectives . 93

References 95

Chapter 1

Introduction

1.1 Context

Computer-aided design (CAD) is the computer graphic technique to aid in

the industrial design, creation and analysis of productions using geometric

modeling techniques [SSBB15]. The core outputs of CAD systems are CAD

models, which are typically de�ned as an assemblage of parametric geometric

shapes such as curves, surface primitives and volumes.

There are two main types of CAD models. The �rst one is made by

connecting regular shapes as planes, cylinders, cones, spheres, tori and other

simple geometric shapes. This type of CAD models is typically well adapted

to represent man-made objects as buildings and mechanical pieces. The

second type of CAD models uses more complex geometric shapes, mainly

non-uniform rational basis spline models (NURBS) that can better describe

objects composed of free-form surfaces such as organic entities. Commer-

cial software such as autoCAD and Solidworks allow us to generate complex

CAD models. The graphical-user interfaces of these software not only pro-

duce CAD models with complete geometric attributes, but also manage the

associative relationships and geometric constraints between them.

CAD models are everywhere in our everyday life, going from reverse en-

gineering to telecomunnications through urbanism and entertainment. They

are developed to produce mechanical devices in industrial areas such as

aerospace and automobile. Practitioners take use of interactive softwares

to convert their designing idea to digital CAD models on computers, which

makes it possible to perform di�erent kinds of simulation to analyze their

creation with physical considerations. With the development of CAD tech-

niques, CAD models are extensively employed in the entertainment. De-

signers produce imaginary objects and scenes for movies or computer games

and apply advanced rendering capabilities for fancy visualization. They are

also used in urbanism to digitally recreate cities for visualization-based and

simulation-based applications.

2 Chapter 1. Introduction

Figure 1.1: CAD models. The �rst two models on top are represented as

a collection of connected surface elements, while the model on bottom is a

surface extracted from parametric functions determined by control points.

Images from c3dlabs.com, cgi.tutsplus.com and carbodydesign.com

https://c3dlabs.com/en/
https://cgi.tutsplus.com/tutorials/create-a-3d-floor-plan-model-from-an-architectural-schematic-in-blender--cg-13350
http://www.carbodydesign.com/gallery/2013/02/audi-stromlinie-75-concept/15/

1.1. Context 3

(a) Satellite image (b) Dense mesh (c) CAD-style model

Figure 1.2: Dense meshes vs CAD-style models. Given (a) satellite images,

existing Multi-View Stereo approach [HKLP09] produces dense triangular

mesh (b). Compared with a CAD-style model (c), the memory storage is

1941Kb and 23Kb for dense triangular mesh and CAD model respectively.

Dense mesh of the building consists 12447 roof triangle facets, while CAD

representation only contains 18 roof polygonal facets. Lower number of

polygonal facets highly decreases computational complexity for downstream

numerical simulation, i.e. heat transfer modeling on roof of buildings.

(a) CAD model (b) editing 1

(c) editing 2 (d) editing 3

1m

2m

Figure 1.3: Editing capacity of (a) a CAD model assembled by 51 planar

shape. All primitives share several common vertices and edges with their

neighbors. The structure information and topological restriction enable users

to easily (b) painting each part for rendering, (c) modify the height of chim-

ney on the roof and (d) eliminate the chimney from the house.

4 Chapter 1. Introduction

CAD models exhibit interesting properties for these applications. They

are compact, structure-aware and easy to edit.

Compactness. In case of man-made objects, CAD models are usually

compact in term of the number of geometric shapes as shown in Figure 1.2.

High compactness brings bene�t to memory storage and computational e�-

ciency of operations for rendering and simulation.

Structure awareness. CAD models are assembled in a way that each

shape typically represents a semantic part of the object, i.e. a planar shape

will typically represent a roof section for a building. This property facilitates

the use of CAD models and enables users to operate directly on the desired

parts, such as thermodynamics modeling on the roof.

Editing capacity. CAD models usually contain connectivity relation-

ships between surface elements. Those constraints restrict the spatial posi-

tion of geometric shapes while moving the others. This topological property

makes it easy for the users to edit CAD models according their requirements

as illustrated in Figure 1.3.

CAD models can be used both for designing imaginary objects and dig-

italized existing ones. In the later case, users can rely on data measure-

ments, typically Laser scans and multiview-stereo images in 3D, to make

the CAD models as close as possible of the physical objects. Such inter-

active operations are extremely fastidious for the user. For a single CAD

model, it is a time-consuming work based on trial and error to reconstruct

an geometrically-accurate CAD model, even for an experienced user. Turn-

ing this chain of interactions into an automatic process is one of the major

challenges in computer graphics and computer vision.

1.2 Challenges

Reconstructing objects from physical measurements in an automatic way has

been deeply studied in the literature with mainly methods producing dense

meshes. E�cient commercial solutions have been proposed to generate such

meshes from Laser and multiview images like ContextCapture from Bent-

ley. Although these meshes have usually a good geometric accuracy, they

ignore the semantic and structural dimensions of the objects, contrary to

CAD models. Such meshes are typically exploited for immersive experiences

into virtual scenes and also 3D printing, but can not be directly used for

advanced simulation.

1.2. Challenges 5

(a) Laser point cloud[LA13] (b) RGB-D point cloud [HFBM13]

(c) MVS point cloud [LNSW16] (d) MVS dense mesh [HKLP09]

Figure 1.4: Multi-resources of input 3D data.

PPPPPPPPPInput

Defect
Noise Outliers Missing data Nonuniform

Laser point cloud Fair Good Fair Good

RGB-D point cloud Poor Poor Fair Poor

MVS point cloud Poor Fair Poor Fair

MVS dense mesh Good Good Fair Fair

Table 1.1: Subjective evaluation of defects contained in the di�erent types

of data measurements.

The main objective of this PhD is to develop methods to automati-

cally produce CAD-style models from 3D data measurements. We

restrict the study to CAD models composed of planar shapes. In spite of

the simplicity, these shapes allow us to represent a large range of man-made

objects fairly, such as buildings.

Current solutions mainly focus on automatically processing a part of

the scanned data and then let a human-expert interactively complete the

reconstruction [ASF+13, CC08]. This interactive framework provides accu-

rate results for individual objects within a limited time. However, human-

interaction partly limits the use of such methods while handling more com-

6 Chapter 1. Introduction

Figure 1.5: Five LODs de�ned by CityGML 2.0. Each LOD representation

can be applied for di�erent use. (Figure adapted from [BLS16])

plex models and scenes. The costs of human resources and manipulation time

increase dramatically while dealing with large scale scenes including dozens

of objects. The goal of this work is to provide tools to generate CAD-style

models from scanned 3D data in an as-automatic-as possible way. This is a

scienti�c challenge with many technical di�culties that we expose below.

Robustness. One obstacle to generating CAD-style model is the ro-

bustness of proposed algorithm to input data obtained from multi-resources.

Typical 3D data is usually represented as either point cloud obtained from

RGB-D sensors and LiDAR scanners, or dense triangular mesh reconstructed

from MVS system (Figure 1.4). Each type of data contains di�erent types

of defects. Table 1.1 discusses the property of each defect. These artifacts

impact severely the 3D reconstruction pipeline in terms of geometric accu-

racy and computational time. For instance, recovering the objects with only

partial input data is a major scienti�c challenge that typically requires the

design of algorithms exploiting geometric and structure information. Also,

the existence of large amount of noise points can strongly decrease the ro-

bustness of surface reconstruction algorithms.

Scalability. Scalability of algorithms is another concern. Existing meth-

ods typically perform well on small scenes or simple objects. However, com-

plex scenes usually contain many complex objects. To process such complex

scenes, existing methods typically exploit strong geometric assumptions on

the output models, such as Manhattan World assumptions. This reduces

the computational complexity of methods, but also leads to produce models

with low geometric accuracy.

Structure and semantic-awareness. Structure recovery is another

crucial requirement of output model. In shape analysis, structure is a generic

1.2. Challenges 7

term ranging from the canonical shape of each part of the object to their

adjacency geometric relationship, i.e. coplanar, symmetric, parallelism etc

[MWZ+13]. Such knowledge is extremely relevant and useful for further ap-

plication while dealing with man-made objects and large scale scenes. For

instance, generating a speci�c CityGML formalism LOD2 model requires the

main sections of buildings to be represented by �at planar shapes. The main

challenge in this part is how to extract accurate structure information from

raw input and adapt it into the �nal reconstruction phase.

On the other hand, obtaining the �nal CAD-style model is a trade-o�

between geometric accuracy and structure recovery, while the latter criteria

measures the capacity of generating meaningful LODs [BTS+17]. In this

case, a better choice is to produce a sequence of reconstruction models, each

preserving a target LOD representation [VLA15, BLS16] as shown in Figure

1.5. However, how to exploit the coherence of LODs across the scene without

speci�c de�ned rules is still not well studied in the literature. Constructing

and exploring scale space for various LODs modeling is a di�cult open issue.

Semantic-awareness is a complementary property of the output model,

which brings great bene�t for further use if each structure part contains a

semantic attribute. This traditional classi�cation problem has been widely

studied ranging from individual object to complex scenes. However, it is still

a challenging problem to understand the mutual interaction between di�er-

ent parts in a complex scene.

Geometric and topological correctness. The reconstructed CAD-

style models also have to meet several speci�cities to be used in real-world

applications. The most important evaluation criteria is geometric accuracy,

which compares the ground truth of the scan and output model via geometric

error, i.e the Hausdor� distance. Unfortunately, we have no access to ground

truth representation for most of the cases in real application. An alternative

is to use input 3D data instead. A high quality output model is required to

as close as possible to input 3D data from geometric measurement.

The topological quality of output model is concerned as well, including

2d-manifold and self-intersection free properties. Such 3D model is highly

required for various downstream applications, i.e. 3D printing, numerical

simulation etc. The main challenging here is to embed those topological

properties into the reconstruction framework as soft or hard constraints in

the frameworks.

8 Chapter 1. Introduction

1.3 Contributions

To address those challenges, this thesis proposes three contributions. That

forms a reconstruction pipeline from 3D data measurements. First, we de-

compose a scene into di�erent individual objects. This task can be formalized

as a classi�cation problem by predicting the potential semantic label of each

3D data in the scene and group the neighboring datum with same seman-

tic label together as an object. Next, we approximate the surface of each

object by a set of simple geometric primitives, i.e. planes at di�erent level

of details. This abstraction mechanism highly decreases the complexity of

original data under the assumption that the surface of man made objects

can be represented by piecewise planar shapes. Finally, the isolated planes

are assembled together to form a compact CAD-style model.

3D semantic segmentation. With the development of 3D point cloud

acquisition techniques, e�cient and robust algorithms to process large scale

point cloud is crucial for further applications. Among them, semantic seg-

mentation of 3D data has been one of the most essential steps for several 3D

vision tasks, such as autonomous driving, robotics and augmented reality

[TCA+17]. Over the last decade, state-of-the-art algorithms would extract

low level features from point cloud via geometric prior knowledge for vari-

ous tasks [NBW12, LM12, WJM13]. Recently, deep learning based feature

extraction methods have shown remarkable performance on 2d image se-

mantic segmentation [LSD15, BKC15, CPK+18]. Afterwards, applying deep

learning techniques on 3D data has drawn considerable attention in com-

puter vision and photogrammetry community. Because point cloud is un-

ordered and unstructured, it is impossible to apply convolutional neural net-

work (CNN) directly on point cloud for end-to-end training. An alternative

approach is to �rst convert point clouds into other intermediate 3D represen-

tations and then apply CNN for various task, i.e. multi-view RGB images

[SMKLM15, KAMC17, BGLSA18] and voxels [MS15, WSK+15, QSN+16,

TCA+17, HSL+17]. However, all these intermediate representations lead to

a loss of 3D information among the points or su�er from memory-consuming

issue. A milestone work PointNet proposed by [QSMG17] utilizes a compo-

sition of basic operators, i.e. multilayer perceptron (MLP) and max pooling

as deep network to extract features directly from point cloud. Surprisingly,

this simple architecture learns order-invariant pointwise features and exhibits

good performance on multiple tasks. Later on, several approaches were de-

signed to enrich pointwise features by aggregating information in local re-

gions [QYSG17, HWN18, WSL+18], producing more accurate segmentation

results on large scale datasets. However, the receptive �eld is still not clear

for points of complex scenes, where objects of di�erent scales are close to each

1.3. Contributions 9

other. In this case, a prior knowledge of global regional context is crucial for

more accurate prediction [ZSQ+17]. None of the mentioned methods incor-

porate reasonable global contextual information to provide a richer pointwise

feature.

In Chapter 3, we address the problem of increasing the receptive �eld of

points by inferring regional global contextual information. More speci�cally,

inspired from [ZSQ+17], we design a 3D pyramid scene parsing network (3d-

PSPNet) to enrich local pointwise feature with multi-scale global contextual

information. We validate our 3d-PSPNet on three large scale dataset with

two baselines. Experimental results prove that the enriched features provide

more decent prediction than using the baseline model only. The goal of our

approach is not to achieve state-of-the-art performance on all the datasets,

but to propose a generic module that can be concatenated with any state-

of-the-art 3D neural network to infer richer pointwise features.

Shape detection. Shape detection from raw 3D data is a long-standing

problem whose goal consists in turning a large amount of geometric data

into a higher level representation based on simple geometric shapes. Instead

of reasoning at the scale of 3D atomic elements such as points, triangular

facets or voxels, it is often more appealing to directly handle larger geomet-

ric shapes in order to both reduce the algorithmic complexity and analyze

objects with a higher representation level. Most common geometric shapes

include lines, planes and quadrics. In this work, we focus on planar shapes

due to their relevance to man-made environments [MZL+09].

Shape detection is typically used as a prior step in a large variety of

vision-related tasks ranging from surface reconstruction [BdLGM14, CLP10,

SSS09, ZN12, NW17] to object recognition [CSM12, OLA16a] and data reg-

istration [FMMCAJ13, ZJM12]. Existing algorithms typically require two

user-speci�ed parameters: (i) a �tting tolerance ε that speci�es the maximal

distance of a datum to its associated geometric shape, and (ii) a minimal

shape size σ that speci�es how large a group of samples must be to be con-

sidered as a geometric primitive�typically, a number of inliers when dealing

with point clouds, or a minimum area for meshes. Finding parameter values

that produce desirable results often involves fastidious manual labor: sur-

prisingly, the incidence of these two parameters on shape detection has not

been formally studied in the literature.

In Chapter 4, we propose an e�cient exploration of this (ε, σ) space of

geometric abstractions to �nd the structural scales of an input geometry, i.e.,

10 Chapter 1. Introduction

the few simpli�ed representations that are truly meaningful to capture the

structure of man-made objects. From a progressive planarity-driven coarsen-

ing of the input data, we demonstrate that we can reliably detect structural

scales whose characteristics are learned from training sets of di�erent types

of objects such as buildings, house furniture, or cars.

Polyhedral surface reconstruction. Primitives are disconnected from

each others and constitute an intermediate representation between input 3D

data and the output mesh. The third step consists in assembling primitives

into a surface mesh. One strategy consists in connecting the primitives using

proximity and structural considerations [ASF+13, CC08, LA13, SFF11]. De-

spite being fast, this solution is not robust to defect-laden data, in particular

when primitives are over- or under-detected or when erroneous connections

between primitives exist. A more robust strategy consists in slicing a 3D

domain by extending the primitives. This leads to the creation of a partition

of polyhedral cells or polygonal facets [BdLGM14, CLP10, NW17, VLA15].

The surface is then extracted by labeling the cells as inside or outside the

surface, or equivalently, by selecting facets to be part of the surface. Because

each primitive exhaustively slices all the others, this solution is more robust

to defect-laden data than the �rst strategy. However, its main shortcom-

ing is the computational burden for slicing the primitives into a partition of

atomic surface and volume elements, with typically unreasonable timing and

memory issues when more than one hundred primitives are handled.

In Chapter 5, we propose a solution to speci�cally address the scala-

bility issue of the slicing-based methods. While these methods reason on

dense polyhedral cell partitions, we instead build a more �exible and lighter

data-structure. The latter is spatially-adaptive in the sense that a primitive

slices a restricted number of relevant primitives based on spatial proxim-

ity considerations. Moreover, its atomic elements have di�erent structural

meanings that will guide the extraction of the output surface. We also pro-

pose a surface extraction mechanism that operates from such an irregular

data-structure in which cells are not necessarily convex and can have a non-

null volume intersection with other cells.

Besides the data-structure, our solution brings several original technical

ingredients to the �eld. Our algorithm has a preliminary step that analyzes

the connectivity of primitives in order to search for structurally-valid surface

components. This allows us to quickly process a part of the input prim-

itives and solve obvious primitive assembling situations. We also measure

data �delity to primitives directly without relying on input 3D data. Indeed,

1.3. Contributions 11

measuring data �delity to 3D data makes sense only if primitives could be

modi�ed during the assembling step, which would require a dynamic parti-

tioning data-structure. As a result, our outputs do not su�er from artifacts

frequently found with existing methods. It also allows our algorithm to run

on multiple types of 3D data as dense meshes, and not only point clouds.

Our algorithm also o�ers to the user the possibility to relax some standard

geometric properties on the delivered surface as its watertightness or the

intersection-free guarantee.

We demonstrate the potential of our algorithm in terms of �exibility, ro-

bustness and scalability on di�erent types of objects, going from buildings

to mechanical pieces through even free-form shapes. In particular, we show

our algorithm is faster and more scalable than state-of-the-art methods by

a signi�cant margin.

The structure of this thesis is organized as follows:

• Chapter 2 covers the related works of these problems.

• Chapter 3 designs a deep learning module to aggregate multi-scale

contextual clue in a pyramid manner.

• Chapter 4 introduces a scale space exploration mechanism to abstract

3D object at structural scales.

• Chapter 5 proposes an e�cient algorithm to reconstruct a polyhedral

mesh from large number of planes.

• Chapter 6 gives the conclusion and perspectives of this thesis.

Chapter 2

Related work

In this chapter, we review the literature on three aspects of our work: (i)

semantic segmentation of 3D data (ii) shape detection from 3D data (iii)

surface reconstruction from 3D data.

2.1 Semantic segmentation of 3D data

Given 3D data, one of the most typical problems is understanding its intrinsic

properties, which relies on designing robust shape descriptors to characterize

various 3D shapes. Such shape descriptors can be directly employed for a

set of applications, which includes point correspondence or matching, shape

retrieval, object recognition and semantic segmentation etc. We review this

traditional and crucial problem from two kinds of methods involved in liter-

ature: hand-crafted feature extraction and deep feature learning methods.

2.1.1 Methods exploiting hand-crafted descriptors

Direct descriptors. Typical hand-crafted feature extraction methods rely

on designing scale-invariant and rigid-transformation-invariant descriptors

directly from input point cloud or mesh. The basic idea is to exploit local

clues by analyzing the interaction between each point or triangular facet and

their neighbors in a local region.

[JH99] introduced a 3D shape descriptor known as spin image, which is

a 2D-histogram containing the projection of 3D point along the direction of

its normal vectors. This descriptor is pose-invariant and robust to recognize

objects even in cluttered scenes. Shape context presented by [BMP01] is

de�ned as a point descriptor measuring distribution of neighbors over the

local neighborhood according to the relative spatial position to the centering

point. Such robust and compact descriptor is then applied to measure simi-

larity between points from two objects for shape matching. Another widely

used pointwise feature extractor is Fast Point Feature Histograms (FPFH)

which is proposed by [RBB09], extracting multi-dimensional local geometry

descriptors around each point. These 3D descriptors are usually embedded

14 Chapter 2. Related work

into a learning procedure to recognize objects from complex scenes. For in-

stance, [GKF09] designed an object recognition system for point cloud of ur-

ban environment. They �rst extracted shape descriptors for each segmented

object in the scene using spin image method proposed in [JH99], and then

trained a support vector machines (SVM) classi�er for recognition. More

recently, [HWS16] proposed a fast multi-scale neighborhood feature extrac-

tion framework to cope with urban scene point clouds with strong density

variation. Di�erent to previous methods, [LM12] took use of prior geomet-

ric attributes of various objects in urban scenes as pointwise features, i.e.

elevation, scatter, planarity etc. Then the whole urban scene is segmented

into four groups: facade, roof, vegetable and ground through an unsupervised

Markov Random Field (MRF) model.

Compared to a point cloud, a dense triangular mesh preserves the topol-

ogy information that can be directly used for feature extraction. Typical

mesh descriptors include Gaussian curvature ([GCO06]), shape diameter

function and average geodesic distance ([HSKK01]). Besides, ([NN07]) pro-

posed an edge and coder detector as scale-dependent geometric features from

triangular mesh. More recently, [TM14] involved the scatter matrix as point

descriptor in a mesh and then used it for interest point detection through

a binary classi�cation formulation. Those descriptors could also be applied

to supervised learning approach for di�erent tasks. [KHS10] took triangular

mesh as input and designed descriptors for both individual facet and pair

of adjacent facets. The unary feature is a 374-dimensional vector contain-

ing shape context, spin images, curvatures etc, while pairwise features is a

191-dimensional histogram referring dihedral angles, shape diameter di�er-

ences, contextual label features etc. The �nal mesh segmentation result is

computed through a Conditional Random Field (CRF) with a pre-learned

jointBoost classi�er.

Indirect descriptors. Large scale scenes usually consist of more than a

few millions of points or meshes composed by multiple objects. Each object

can be seen as an abstraction of several geometric primitive, i.e. planes, cylin-

ders and spheres. Intuitively, instead of designing point-level or facet-level

descriptors, an alternative is to propose descriptors on these intermediate

representations. These kinds of indirect descriptors not only increase the ro-

bustness to point cloud with noise and outliers, but also avoid the scalability

issue.

[OLA16a] introduced an object recognition approach by �rst extracting

planar shapes from raw point cloud and then analyzing relative geometric

2.1. Semantic segmentation of 3D data 15

relationship between extracted planar parts as global features. The classi�-

cation result is returned by a pre-trained Random Forest classi�er. [RLA17]

employed a supervised learning MRF approach for textured urban mesh se-

mantic segmentation. The whole mesh is �rstly over-segmented into a set of

planar shapes. Each primitive is then represented by a descriptor combining

both geometric and photometric clues. Finally, a Random Forest classi�er

is trained on the combined features for semantic labeling. The patch-based

feature extraction methods are also widely used for 3D object detection.

[ASZ+16] proposed a large-scale semantic parsing approach. The input raw

point cloud of an entire building is �rstly parsed into di�erent meaning-

ful spaces. Then a 3D sliding window method is exploited for 3D object

detection. Each sliding window is described as several geometric features

combining both local and global attributes. A pre-trained multi-class SVM

detector is further used to evaluate each candidate sliding window.

Besides supervised learning approaches, 3D patch descriptors can also be

used for unsupervised frameworks. [MPM+14] proposed a patch-based rep-

resentation method to characterize geometric descriptors on each �tting rect-

angle instead of on the original point cloud. Certain characteristic features,

i.e. area, ratio of width to length, non-coplanarity are computed for each

corresponding �tting rectangle. Such representations are then exploited to

measure the similarity between each parts. Final object detection and classi-

�cation are performed through clustering approach on the embedded feature

space. Similarly, [HFL12] co-segmented di�erent parts of objects within

same categorization via clustering the over-segmented patches in multiple

feature spaces. More recently, some part-level descriptors are designed by

considering interaction between di�erent shapes for more advanced tasks, i.e.

Interaction Context (ICON) [HZvK+15] for 3D shape functionality analysis.

For large scale urban mesh semantic segmentation, [VLA15] introduced geo-

metric attributes of each superfacets according to prior knowledge of urban

scenes. Recently, [ZLHW17] proposed a similar approach for point cloud

urban scene understanding. Besides unary geometric features of each su-

pervoxesl, they also formulated higher-order semantic relationships between

patches into the MRF model.

2.1.2 Deep learning methods

With the success of deep learning techniques, especially Convolutional Neu-

ral Network (CNN) applied on 2D images analysis, the major concern in the

3D Vision community is to �nd an alternative way to apply deep learning

methods on 3D data analysis. Traditional hand-crafted feature extraction

methods aims at designing robust features that are explainable. However,

16 Chapter 2. Related work

deep learning techniques prefer to construct a complex model composed of

large amount of basic operations to represent features. We review recent

deep learning approaches for di�erent 3D data representations, including

voxels, multi-view images, mesh and point clouds.

Multi-view images. With the success of deep learning techniques be-

ing applied on 2d image classi�cation [KSH12] and segmentation [LSD15,

BKC15, CPK+18], a direct question is how to employ this powerful feature

learning tool, i.e. CNN directly to 3D data. A straightforward idea is to

represent 3D data via multi-view rendering images and design a multi-view

CNN network for further application. Based on this idea, [SMKLM15] �rst

proposed such an architecture for 3D data recognition. Because the output

is just a label of the rendered image, this method is not designed to incor-

porate the correlation among all images. More recently, [KAMC17] employs

image-based Fully Convolutional Network (FCN) for part-based mesh seg-

mentation. Similarly, [BGLSA18] performs a FCN based network for 2d

image semantic segmentation and back project the labels to original large

scale urban scene point cloud. These multi-view based methods indeed ben-

e�t from CNN for feature learning. However, there is a potential loss of 3D

information during the rendering procedure from 3D space to 2D images,

which brings obstacles for CNN to recover the lost geometric information.

Voxels. In the early stage of applying deep learning techniques to 3D

data, forerunners usually converted 3D data into voxelized occupancy grids

as intermediate representation [MS15]. In this case, it is simple to employ

3D-CNN for voxel feature learning and train the netwok in an end-to-end

mode. [WSK+15] promoted a 3D-CNN based framework for object category

recognition and shape completion. In [QSN+16], the authors exploited two

distinct network architectures of volumetric CNNs to improve the perfor-

mance of both voxel based and multi-view based approaches. More recently,

[HSL+17] designed a multi-scale 3D-CNN network for large scale urban scene

segmentation. Similarly, [TCA+17] involved a 3D-FCN model for voxel-

level prediction and post-process the predictions with methods proposed in

[ZJRP+15]. Very recently, [DN18] designed a joint 2D-3D network to �rst

analyze multi-view RGB images and then map the features back to volumet-

ric grid of input 3D scene. This joint 2D-3D method incorporate both RGB

features and geometric features and yield more accurate prediction result

for each voxel. All of these frameworks produced promising segmentation

results on large scale dataset. In addition, [ZSN+17, DBI18] extracted local

3D volumetric patches and learned local geometric descriptor for characteriz-

ing correspondences between 3D point cloud. However, all these voxel-based

2.1. Semantic segmentation of 3D data 17

Figure 2.1: PointNet diagram. [QSMG17] designed the �rst deep neural

network for raw point cloud feature learning. The intuition behind is to stack

a sequence of basic operations to construct an order-invariant model. The

proposed architecture processes each point independently using MLP with

shared parameters and aggregates them into global features through max

pooling. The learned features are then fed into two branches for di�erent

task: classi�cation and segmentation. Image courtesy of [QSMG17].

methods su�er from the computational memory issues. The resolution of

grids at each dimension is limited to less one hundred while losing tremen-

dous 3D information. In this case, many works focused on reducing the

computational burden caused by sparsity of grid occupancy by employing

more intelligent data structure [RUG17, KL17].

Non-Euclidean data. Another attempt of applying deep learning tech-

niques to 3D data is called geometric deep learning. Unlike traditional deep

learning methods that are employed on grid-structured data, i.e. image,

voxel, this kind of methods aim at exploiting geometric information directly

from non-Euclidean domains, such as graphs and manifold meshes [SK17].

[BZSL13] introduced a generalized convolutions methods applied to Graph

Laplacian known as spectral networks. Then, [HBL15] extends this method

by incorporating a Graph Estimation process that decreases the learning

complexity. Another idea proposed by [MBBV15] attempted to project man-

ifold data to local geodesic system that are analogous to "patches" in im-

age. Feature descriptors are then learned by feeding each patch to a series

of �ltering operators, which achieves good performance in shape descrip-

tion, retrieval and correspondence. More recently, [MGA+17] used a global

parametrization approach to map sphere-type shapes to �at-trous, which de-

�nes a translation-invariant convolution in local part.

Point clouds. Di�erent with structured and ordered image or voxel

18 Chapter 2. Related work

Figure 2.2: PointNet++ diagram. [QYSG17] extended their previous work

using a hierarchical architecture by aggregating pointwise features within

each local region. The grouped features are propagated to original points

through a upsampling operation. Image courtesy of [QYSG17].

representation, 3D point cloud is in general unordered and unstructured.

This obstacle blocks the path to employ CNN directly on raw point cloud

analysis. The main concern behind is how to design an order-invariant and

di�erentiable feature extraction operator that can be trained end-to-end.

Recently, [QSMG17] proposed a simple but powerful neural network com-

posed of a stack of basic operators that can handle unordered raw point

cloud directly. The main idea is to process each point independently with

a sequence of multi layer perceptrons (MLP) that shared weights for all

points. The learned pointwise features are either aggregated into a global

feature for classi�cation task or used for point-level semantic segmentation

task (see Figure 2.1). The baseline PointNet model ignores the intersection

relationship between points. Thus, many works focused on learning richer

pointwise features by incorporating local dependencies of each point in its

local neighborhood [QYSG17, HWN18, WSL+18, SJS+18, LS18] (Figure 2.2

presents the architecture of an extended work called PointNet++). All of

these methods achieves better performance on various 3D classi�cation and

semantic segmentation datasets than PointNet. Meanwhile, PointNet also

serves as a general pointwise feature extraction tool for other tasks, including

3D object detection [QLW+17], point cloud upsampling [YLF+18], instance

segmentation [WYHN18] and 3D reconstruction [GFK+18]. However, the

receptive �eld of each point in the 3D scene has not been widely studied in

the literatures. None of these methods really deal with extracting suitable

global contextual information to enrich pointwise feature.

Multi-sensors fusion. With the development of data acquisition tech-

2.2. Shape detection from 3D data 19

niques, certain complex applications like self-driving have ability to collecting

various data from multi sensors, i.e. RGB cameras, radar and LiDAR. This

system requires a framework to fuse the information gathered from 2D and

3D data and has been widely studied for 3D object detection. Some ap-

proaches [CMW+17, KML+17] �rst projects 3D LiDAR point clouds into

Front View (FV) or Bird's-Eye View (BEV) images. Then they apply 2D

convolutional operations on those 2D representations as well as camera im-

ages. The network then merge the region-wise features at an intermediate

layer through element-wise concatenation and jointly predicts object class

and 3D oriented box regression. Those methods produces promising results

on real world data while still su�ering from 3D information loss. More re-

cently, [LWYU18] exploit a continuous fusion layer to learn how to project

2D image features onto BEV feature maps and fuse them more accurately.

2.2 Shape detection from 3D data

The automated detection of geometric shapes from 3D measurement data is

an instance of the general problem of �tting mathematical models to data.

Typical geometric primitives include planes, cylinders, spheres etc. The

survey proposed in [KAZB18] presented a detailed review of existing 3D

shape detection algorithms and we follow their taxonomy pattern in this

section to provide an overview of related works.

2.2.1 RANSAC

Random sample consensus, known as RANSAC, �rstly proposed by [FB81],

has been widely used in various tasks of computer vision and computer

graphics. The basic idea is randomly selecting samples to �t mathemati-

cal models, i.e. lines in 2D image or planes in 3D point cloud. Then we

choose the one with best �tting ability to the data. In presence of outliers,

RANSAC-based algorithms typically perform the best among all kinds of

methods. For shape detection, the goal is not to �nd the best shape, but to

output a set of shapes each satisfying certain checking criteria. The typical

�tting ability of each shape is measured by counting the number of allo-

cated inliers meeting some geometric hypothesis, i.e. normal deviation and

Euclidean distance. [SWK07] introduced an e�ective iterative RANSAC-

based approach to detect several kinds of 3D primitives from unorganized

point cloud. They also make the software available for the whole community.

Detected shapes construct a compact abstraction of original data and pro-

vide an access to extracting higher-level features. [SWWK08] extended their

previous work by constructing a topology graph capturing the proximity

relationship between each pair of shapes. Such information plays an impor-

20 Chapter 2. Related work

tant role for downstream applications, i.e. surface reconstruction [LA13] and

object recognition [OLA16a].

2.2.2 Accumulation space

The basic idea of accumulation space methods is that inliers of expected geo-

metric primitives in Euclidean space are supposed to be close to each other in

parameter space. Thus, the basic pipeline �rstly embeds original data onto

parameter space, and then clusters the embedded points into various groups

considered as detected shapes. The Hough Transform [Hou62] is the most

popular accumulation space method and has been applied to detect simple

shapes in 2D images as lines and curves [DH72]. After that, [HSSM14] and

[RVDH05] proposed e�cient approaches to detect planes and cylinders re-

spectively from point clouds. However, the main obstacle of those methods is

a lack of boundary in parameter space, which brings burden to computational

resources. Two extended Hough Transforms are designed by [WPM+14] to

solve the computational memory issue by exploiting the sparsity of the pa-

rameter space and detecting 3D shapes in a more accurate way. Another

accumulation space method is known as Gaussian sphere mapping. [CC08]

detected planes by grouping projections of oriented points on the gaussian

sphere. Similarly, [QZN14] proposed a framework to detect cylinders from

complex industrial areas. Normal vectors of each point are projected onto

a unit sphere and thus points of cylinder in Euclidean space preserve a ring

shape on the surface of gaussian sphere. This observation helps segmenting

cylinder points into di�erent groups according to the corresponding princi-

pal axis direction. Then points within each cluster are projected onto the

orthogonal plane where each circular pattern can be detected through dis-

placement to plane center.

2.2.3 Region growing

Region growing is considered as another popular kind of methods to detect

shapes from 2D or 3D data. Di�erent with RANSAC and accumulation space

methods, region growing is better at extracting geometric components that

are connected. This method iteratively �ts a primitive to a seed point and

emit certain geometric hypothesis to points inside its local neighborhoods.

Parameters of �tting primitive are updated while propagating the inliers and

the �nal primitive is detected until �tting conditions are no longer valid. Af-

terwards, a validity checking criterion is performed to decide whether to keep

this detected primitive or not. At the beginning, region growing was applied

for image segmentation by grouping the pixel with similar color intensity

2.3. Surface reconstruction from 3D data 21

together [TB97]. Afterwards, [RvDHV06] introduced an approach for 3D

shape detection from point cloud, which is very e�cient when input data is

relatively clean. Such method can also be used to detect complex primitives

for large scale urban modeling [LM12]. Another advantage of region growing

is that some higher-level topology information like adjacency graph can be

automatically constructed while propagating the hypothesis to local neigh-

bors.

2.2.4 Shape regularization

Intuitively, primitives detected from man-made objects exhibit some mean-

ingful geometric relationships between each other, such as parallelism, copla-

narity, symmetry and orthogonality. Recent research makes an e�ort to

regularizing detected primitives according to such relationships. [LWC+11]

proposed a method known as Glob�t that iteratively �t data to primitives

and regularize them through a constrained optimization approach. Di�er-

ently, [OLA16b] detected those regularities through a hierarchical approach.

The whole primitive con�guration is then reinforced by performing those

regularizations. Shape regularization can also be formalized as a labeling

problem by selecting shapes from a �nite set of candidates. [MMBM15]

�rst detected initial primitives and generated multiple candidate primitives

centered at each initial one. Then they encoded di�erent geometric relation-

ships between candidate primitives into a constrained integer programming

problem, where the optimum corresponded to a primitive con�guration with

best shape regularity.

2.3 Surface reconstruction from 3D data

Surface reconstruction from defect-laden data is still one of the most chal-

lenging problems and has been widely discussed in past decades. Our review

of corresponding literature covers two major kinds of methods: smooth and

piecewise-planar surface reconstruction.

2.3.1 Smooth surface reconstruction

Smooth surface reconstruction aims at recovering a quasi-continuous surface

via either implicit or explicit methods.

22 Chapter 2. Related work

Implicit methods. Poisson Surface Reconstruction method [KBH06]

and its extension version [KH13] are considered as the most popular implicit

tools to create watertight mesh from unordered points. These approaches

de�ne an implicit function at each point, i.e. signed distance function, and

then the �nal surface is extracted as its zero iso-surface. KinectFusion de-

signed by [IKH+11] is a real-time 3D reconstruction framework with RGB-D

frames as input. This method �rst integrates the data into a volumetric rep-

resentation based on [CL96] and then extracts the surface as zero-crossing

where the values of truncated signed distance functions change sign. An-

other traditional but still powerful method is to extract a polygonal mesh

from voxel grids called Marching cube [LC87], which was �rst applied to

surface reconstruction from medical images. Implicit methods are e�ective

but some of them require more input attributes such as normal vectors. Yet,

most of these methods are widely used in real world applications.

Explicit methods. Instead of constructing an implicit function, explicit

methods formulate the surface reconstruction as a binary labeling problem.

More precise, the 3D space is �rst divided into a set of volumetric cells and

we assign each cell as inside or outside of the object. The �nal surface is

extracted as the incident facets of two adjacent cells with di�erent labels.

[LPK09b, LPK07] split the 3D space by generating the Delaunay Triangu-

lation of points and compute the surface visibility via lines of sight as data

term of each tetrahedra. The �nal surface solution favors high quality mesh

by imposing certain "soft" constraints as a regularization term. Another

popular volumetric cell is a voxelized grid, which is widely used in MVS

surface reconstruction systems [VTC05, FCSS09]. Such methods generate

promising results while sampling points are dense and in presence of noise.

2.3.2 Primitive-based surface reconstruction

Unlike objects that can be approximated by curve surface, many urban envi-

ronments or man-made objects preserve higher-level geometric regularities.

A better way is to represent such scenes by polyhedral meshes such that each

facet corresponds to a large polygon. Two steps are involved in this solu-

tion: (i) detect planar primitives from original 3D data (ii) assemble them

as the �nal mesh. We mainly discuss the literature incorporating primitive

assembling problem.

Connectivity-based methods. These methods assemble detected prim-

itives by reasoning on proximity and structural considerations. Analyzing

a connectivity graph to detect and link points intersecting plane triples

2.3. Surface reconstruction from 3D data 23

Figure 2.3: Pipeline of connectivity-based method [CC08]. This framework

relies on clustering points into planes (b) and then computing their intersec-

tion relationships (c,d). Those information permits users to recover certain

planes' boundary polygon (e). User intersection is �nally involved to com-

plete the boundary detection of the left primitives. This method is very

e�cient for clean data but less robust in presence of noise. Moreover, user

intersection increases the complexity to use. Image courtesy of [CC08].

[CSAD04, CC08, SFF11, vKvLV11] usually works well when the correct

connectivity between primitives can be recovered (see Figure 2.3). To be

robust to challenging data, one interactive solution is to automatically snap

primitives when the connectivity is obvious, and let the user complete the

output surface for the con�icting situations [ASF+13]. Another solution con-

sists in mixing polyhedral surface components with �exible free-form patches

[LA13, LPK09a]. Such a representation however does not o�er the level of

compactness and simplicity of pure polyhedral surfaces. Despite being fast,

connectivity-based methods su�er from a lack of robustness to defect-laden

data, in particular to over- and under-detection of primitives and erroneous

connections between primitives. Our approach exploits some principles of

these methods as a preliminary step to quickly solves obvious plane assem-

bling situations: it allows us to lighten the time-consuming slicing operations.

Slicing-based methods. The core of these methods consists in par-

titioning a 3D domain by extending primitives. The partitioning data-

structure is typically a 3D tesselation made of polyhedral cells, which are

themselves composed of polygonal facets. The output surface is then ex-

24 Chapter 2. Related work

Figure 2.4: Pipeline of slicing-based method [CLP10]. Planes and ghost

primitives (b,c) are �rst detected from point clouds (a). Then 3D domain

is split into several volumetric cells by slicing those planes (d). The �nal

surface mesh (f) is extracted by labeling each cell as inside or outside of the

object. Such method is more robust in presence of artifacts but less e�cient

while slicing large number of planes. Image courtesy of [CLP10].

tracted by selecting a subset of facets from the tesselation. Because each

primitive naively slices all the others, such a data-structure is particularly

dense and time-consuming to compute. Some methods decompose the slic-

ing operations into spatial blocks [CLP10, BdLGM14] (see Figure 2.4). Such

piecewise partitions increase scalability by a reasonable margin, but blocks

do necessarily align well with data. These methods also add arti�cial primi-

tives along vertical and horizontal axes in the partition to be more robust to

missing primitives, assuming the observed object aligns with these arbitrary

directions. A discrete partitioning [SDK09, VLA15] that avoids computing

the exact geometry of the whole partition is a less costly option, but typically

engenders geometric artifacts when the discretization is not �ne enough. An-

2.3. Surface reconstruction from 3D data 25

Figure 2.5: Pipeline of slicing-based method [NW17]. Planes (b) are �rst de-

tected from point clouds (a) by RANSAC and then re�ned (d) by supporting

planes (c). Next, they compute the intersections between re�ned planes and

generate a set of candidate faces (e). Finally, surface extracted as a subset of

candidate facets formulated as an integer programming (f). This framework

provides convincing and high quality polygonal mesh but still su�ering the

computational constraint while detecting intersections. Image courtesy of

[NW17].

other possible solution consists in �ltering and simplifying the input set of

primitives to remove redundant planes and reduce the computational bur-

den of the slicing operations [NW17] (see Figure 2.5). Primitives can also

be parsed with domain-speci�c knowledge [TMT10]. All these methods of-

fer a good robustness to imperfect con�gurations of primitives, but exhibit

a limited scalability due to the lack of �exibility of their partitioning data-

structures. Our approach proposes two key ingredients to solve the scalability

issue: a new light and spatially-adaptive partitioning data-structure and a

preliminary connectivity analysis that reduces the number of primitives to

be processed during slicing operations.

Methods with geometric assumptions. Some works also exploit

strong geometric assumptions. The Manhattan-World assumption [CY00]

enforces planes to follow only three orthogonal directions. This assump-

tion reduces both the geometry of output 3D models and the solution space

to explore. Such an assumption is interesting for modeling some buildings

[LWN16] and approximating shapes very coarsely [HJS+14]. Geometric reg-

ularities as parallelism and symmetry are also popular for reconstructing

man-made objects. Such considerations bring robustness to the connectivity

analysis of primitives [HK12, ZN12]. Another frequent geometric assump-

tion is to restrict the output surface to have a disk-topology with a 2.5D

view-dependent representation. This is well adapted to reconstruct buildings

from airborne data [VKH06, ZBKB08, PY09, LM11], facades from street-

side data [BSVG15], indoor scenes from images [CF14] and piecewise planar

depth maps from multi-view stereo images [SSS09, GFP10]. Note also that

26 Chapter 2. Related work

some works assume observed objects are likely to be found in large CAD

databases and indirectly reconstruct them by solving a recognition problem

[ISS17]. Although these assumptions e�ciently reduce the solution space

in general, methods exploiting them are restricted to speci�c applications.

To the contrary, our approach does not require such application-speci�c as-

sumptions.

Chapter 3

Semantic segmentation of 3D

data

3.1 Introduction

(a) Input point (b) Ground truth

(c) PointNet (d) PointNet + our 3d-PSPNet

Terrain

Tree

Vegetation

Building

Road

Guard rail

Tra�c sign

Tra�c light

Pole

Misc

Truck

Car

Van

Figure 3.1: Semantic segmentation results on vKITTI dataset with and with-

out our 3d-PSPNet. Given input point cloud of a complex scene (a), Point-

Net [QSMG17] baseline provides accurate prediction label for most of the

points (c). However, compared with ground truth (c), it fails to predict cor-

rect labels for points of large size objects (see points in black rectangles).

PointNet baseline equipped with our 3d-PSPNet improves prediction results

by enriching global contextual information (d).

Analyzing and extracting geometric features from 3D data is a funda-

mental step for complex 3D scene understanding. Recent methods show the

e�ciency and possibility of deep learning techniques employed directly on

raw point cloud, without transferring it into intermediate 3D representa-

tions. However, the use of contextual information in complex 3D scene has

28 Chapter 3. Semantic segmentation of 3D data

not been widely studied in the literature. In this chapter, we propose a 3D

pyramid module to enrich pointwise features with multi-scale contextual in-

formation, which is inspired by global feature aggregation methods exploited

for 2D-image scene understanding [ZSQ+17]. We evaluate our method on

three large scale datasets with two baseline models. Experimental results

show that the enriched features bring signi�cant improvements for both in-

door and outdoor scene semantic segmentation tasks (see Figure 5.1 as an

example).

The goal of our chapter is to enlarge the receptive �eld of points by in-

corporating multi-scale contextual information in sub-regions. To do so, we

build a generic 3d-PSPNet module that can be concatenated after any state-

of-the-art pointwise feature learning approach. Our chapter is organized as

follows: Section 3.2 presents the architecture of 3d-PSPNet. We analyze

the pointwise features obtained with and without our 3d-PSPNet in Section

3.3. To demonstrate the performance of our method, we apply 3d-PSPNet

to three large scale datasets with two baseline models, and the experimental

results are shown in Section 3.4.

We start from a point cloud P = {p1, p2, . . . , pn}, where each point

pi ∈ Rc, c is the number of input features for each point, i.e. position,

color, normal etc. By utilizing recent deep neural point cloud feature learn-

ing networks [QSMG17, QYSG17], we can obtain pointwise features F =

{f(p1), f(p2), . . . , f(pn)}, where f(pi) ∈ Rf1 is an f1-dimensional feature vec-

tor. Our objective is to capture reasonable global contextual clues for each

point and return enriched pointwise features F̂ = {f̂(p1), f̂(p2), . . . , f̂(pn)}.
Inspired by [ZSQ+17], an alternative is to exploit global contextual features

in several scale sub-regions. Figure 3.2 illustrates the diagram of the network.

3.2 Methodology

Our 3d-PSPNet exhibits a pyramid structure. At each pyramid scale l, we

capture contextual clue by 3 basic operations.

• Grid pooling. Given input points P = {p1, p2, . . . , pn} and pointwise

features F = {f(p1), f(p2), . . . , f(pn)} returned by PointNet or Point-

Net++, this step projects each point to a local sub-region. More specif-

ically, we �rst split the whole scene into 2l−1×2l−1×2l−1 voxelized cells,
each preserves the same size. After that, all points are grouped into

the corresponding grid according to their spatial position in the scene.

3.2. Methodology 29

Input points: n×c

P
o
in
tN

e
t/

P
o
in
tN

e
t2

pointwise
features

n×f1

grid
pool

Scale 1

Scale 2

Scale L

1×1×1×f1

2×2×2×f1

2L−1×2L−1×2L−1×f1

MLP(fk)

MLP(fk)

MLP(fk)

n×fk

n×fk

n×fk

upsample

upsample

upsample

concatenate

n×(Lfk+f1)

MLP

PointNet2 prediction Our prediction

Figure 3.2: Diagram of our 3d-PSPNet. Given the point cloud of a complex

scene, our framework uses PointNet [QSMG17] or PointNet2 [QYSG17] (for

clarity issue, we replace PointNet++ by PointNet2 in the following sections)

as baseline model to �rst capture pointwise local features. After that, a

pyramid structure model is employed to exploit multi-scale global contex-

tual features at each sub-regions. Finally, the input local pointwise features

and learned multi-scale contextual features are concatenated together. The

enriched features are capable to produce better semantic segmentation re-

sults than using baseline model only (see the segmentation results on urban

scene. PointNet2 predicted accurate labels for most of the points, but fails

at the top part of tra�c-sign. Using our 3d-PSPNet, the misslabeled points

are corrected).

This basic operation enables each point to exploit contextual informa-

tion in its sub-region independently. Note that we keep record of cell

index where each point is projected to as G = {g(p1), g(p2), . . . , g(pn)}
for further processing. Finally, to capture the contextual clue in every

grid, a basic max pooling layer is employed on all the points in grid

(i, j, k) and we obtain a f1-dimensional global feature vector f lijk. Our

grid pooling layer outputs a 2l−1×2l−1×2l−1×f1 tensor at scale l.

Another choice of grouping the points into di�erent 3D grids relies on

the use of sampling layer proposed by [QYSG17]. This �ne-to-coarse

approach selects a �xed number of most distant points using iterative

farthest point sampling (FPS). Then, the other points are clustered into

the group of selected points according to query ball or kNN method.

Compared to the voxelized grid grouping method, this choice requires

more computational time to select distant points and preserves un-

30 Chapter 3. Semantic segmentation of 3D data

structured grid shape. However, it solves the sparsity of point cloud,

ensuring that each sub-regional grid have some projected points in-

side. We refer this architecture as adaptive grid method. We discuss

the comparison between these two architectures in Section 3.4.5.

• Sub-regional feature aggregation. Note that our grid pooling op-

erator projects all points and corresponding features onto di�erent sub-

regions. Then, we enhance each sub-regional global feature f lijk via a

sequence of MLP with output channels (f2, . . . , fd). Enriched global

feature at grid (i, j, k) is now a fk-dimensional feature vector f̂ lijk. Note

that all the cells at each pyramid scale l share the same MLP weights,

which preserves the order-invariant property of our network. To sum

up, this step outputs a 2l−1×2l−1×2l−1×fd tensor at scale l.

• Grid upsampling. The previous step provides an enhanced global

contextual vector f̂ lijk in each grid, which serves as a representable

clue for all the points inside each sub-region. Our goal is to output an

enriched feature for all the points. To do so, we use the point-to-cell

assignments, which is noted as G, to upsample all the points in each

grid and assign them a global contextual feature of its corresponding

grid s.t. f̂ l(pi) = f̂ lg(pi). Finally, this step outputs the enhanced sub-

regional contextual pointwise feature F̂ l = {f̂ l(p1), . . . , f̂ l(pn)}.

Next, we group enriched pointwise features of all pyramid scales together

as multi-scale contextual features F̂C = F̂ 1 ⊕ F̂ 2 ⊕ · · · ⊕ F̂L, where ⊕ is the

concatenation operator. We argue that the enriched pointwise features F̂

capture multi-scale contextual information by aggregating features learned

at di�erent sub-regions with varied sizes. Finally, to not lose the pre-learned

local information, we assemble contextual and local features together and get

the �nal enriched pointwise features F̂ = F̂C ⊕ F . Note that all the basic

operators exploited in our 3d-PSPNet preserve the order-invariant property

of the input point cloud. Since the main application of our 3d-PSPNet is

large scale indoor and urban scene semantic segmentation, we exploit a typ-

ical cross-entropy loss function in the framework.

3.3 Feature analysis

Being equipped with our 3d-PSPNet, the state-of-the-art baseline models,

i.e. PointNet and PointNet++, are capable of learning enriched pointwise

3.3. Feature analysis 31

feature by incorporating both local and multi-scale global information. Fig-

ure 3.3 analyzes the quality of learned features while employing our mod-

ule. Given the point cloud of indoor scene shown in Figure 3.3a, we fed it

into four networks: PointNet baseline, PointNet baseline+Ours 3d-PSPNet,

PointNet2 (for clarity issue, we replace PointNet++ by PointNet2 in the

following sections) baseline and PointNet2 baseline+Ours 3d-PSPNet. We

output the features learned at the last layer of each model, and visualize ex-

tracted features as Euclidean distance from every point to a standard point

with ground truth label chair (green spot shown in Figure 3.3c, 3.3e, 3.3g

and 3.3i) in feature space. The color of each point varies from yellow to blue,

representing a near-to-far feature distance from current point to the selected

standard point. Besides, we compute the distribution of feature distance

from points with label table to standard point with label chair (see blue

histogram in Figure 3.3c, 3.3e, 3.3g and 3.3i).

As a result, Figure 3.3c shows that most of table points have a relatively

close distance to chair point with a mean distance 0.35. This observation

means that features learned by PointNet baseline fail to clearly discrimi-

nate points with ground truth label table and chair. By plugging-in our

3d-PSPNet after PointNet baseline, this mean distance increases to 0.61. In

addition, the feature distance distribution shifts from lower bins to higher

bins in Figure 3.3e compared with Figure 3.3c. Most points with label chair

are near to standard point (green spot in Figure 3.3) while points with label

table are far away from standard point in feature space. Consequently, the

Intersection Over Union (IOU) criteria improves from 0.606 to 0.874 after

employing our 3d-PSPNet (see comparison of prediction results in Figure

3.3d and 3.3f).

In another control experiment, since PointNet2 baseline produces richer

local features than PointNet by exploiting a hierarchical approach, the mean

feature distance from table points to standard point reaches a high value

0.69 (see Figure 3.3g). It indeed achieves more accurate segmentation re-

sults with 0.881 IOU. Yet, there are still a small part of points with label

chair which are relatively far away from standard point in feature space (see

points in black rectangle in Figure 3.3g). In addition, the network mislabeled

them to table (see Figure 3.3h). While concatenating our 3d-PSPNet after

PointNet2 baseline, these mislabeled points reach a closer feature distance

to standard point with a mean feature distance 0.72 (see Figure 3.3i). Figure

3.3j illustrates a correction of prediction result for these mislabeled points,

achieving 0.910 IOU.

32 Chapter 3. Semantic segmentation of 3D data

near far

(a) Input point cloud (b) Ground truth

(c) PointNet feature distance (d) PointNet prediction

(e) PointNet+Ours feature distance (f) PointNet+Ours prediction

(g) PointNet2 feature distance (h) PointNet2 prediction

(i) PointNet2+Ours feature distance (j) PointNet2+Ours prediction

d = 0.35

d = 0.61

d = 0.69

d = 0.72

IOU: 0.606

IOU: 0.874

IOU: 0.881

IOU: 0.910

Figure 3.3: Feature analysis on an indoor scene composed of two types of

objects: chair (red) and table (purple). Given input scene (a), we extract

features of output layer learned by each model and visualize the feature dis-

tance from each point to a standard point (green spot) with ground truth

label chair. Models equipped with our 3d-PSPNet not only reduce the fea-

ture distance from points with label table to standard point (see shift of blue

histograms from lower bins to higher bins in (e) and (i) compared with (c)

and (g)), but also produces better prediction results than using the baseline

only (see chair IOU in (d, f) and (h, j)).

3.4. Experiments 33

According to previous observations, our 3d-PSPNet enriches pointwise

features and improves the �nal segmentation results. We argue this gain of

prediction accuracy comes from capturing appropriate multi-scale contextual

information in sub-regions with di�erent size.

3.4 Experiments

We evaluate our approach on three large scale datasets, Stanford Large-Scale

3D Indoor Spaces Dataset (S3DIS) [ASZ+16], ScanNet dataset [DCS+17] and

vKITTI dataset [FTAB17], ranging from real world indoor scenes to large

scale urban scenes. For each dataset, we compare the qualitative and quan-

titative results returned by two standard baselines, PointNet and PointNet2,

with and without plugging-in our 3d-PSPNet. For a fair comparison, we �x

all the parameters and hyperparameters throughout the evaluation proce-

dure, where the only di�erence being injecting our 3d-PSPNet or not. All

the experiments are performed on a NVIDIA GeForce GTX 1080 Ti GPU.

3.4.1 Implementation details.

Uni�ed diagram. There are several hyperparameters involved in our net-

work, i.e. number of pyramid scales L, dimension of feature aggregation

fully connected layers MLP (f2, . . . , fk), number of grids at each scale etc.

Remind that our goal is not to achieve state-of-the-art performance on all

the datasets, but to validate that our 3d-PSPNet is a generic module that

increases the segmentation accuracy of state-of-the-art 3D neural network.

Therefore, we keep all the parameters and hyperparameters constant and

only compare the results with and without our module. As a result, we

utilize one uni�ed diagram throughout all experiments. First, we observe

that the number of pyramid scales L is a trade-o� between prediction accu-

racy of network and computational e�ciency. Large L indeed provides more

accurate segmentation results, but also increases the whole training time

drastically. To balance this trade-o�, we use a 4-level pyramid structure in

all our experiments. We discuss the choice of L in Section 3.4.5. Second,

empirical results illustrate that simply increasing the number of MLP in

the sub-regional feature aggregating layer will not provide more promising

results. We choose a 256-channel MLP to aggregate the global contextual

information in each sub-region. This choice not only avoids bringing numer-

ous parameters to be learned but also prevents the network from over�tting.

Batch normalization and Relu activations are involved after each MLP. Fi-

nally, we set the number of grids in each dimension (x, y, z) at each scale l

34 Chapter 3. Semantic segmentation of 3D data

as 2l−1 to preserve a multi-scale pyramid structure.

Training strategy. We follow the data-preparing process proposed by

[QSMG17] for all datasets. All the individual scenes are �rst divided into

a set of blocks with same size. Then, a �xed number of points are sampled

from each block to make the training more e�cient. Each block serves as

a mini-batch for the end-to-end training. Finally, each trained model is ap-

plied to testing blocks for �nal semantic segmentation evaluation. Again, to

illustrate a fair comparison, we adopt all the training details of [QSMG17]

and [QYSG17]. More speci�cally, we use Adam optimizer with initial learn-

ing rate 0.001. The learning rate is divided by 2 every 300000 mini batches

for S3DIS and ScanNet, 200000 mini batches for vKITTI. More details can

be found in each following subsection.

Evaluation metrics. We evaluate the prediction results by both quali-

tative and quantitative comparisons. For quantitative measurement, we use

three standard semantic segmentation evaluation metrics to validate: Overall

Accuracy (OA), mean Interscetion Over Union (mIOU) and mean Accuracy

Over Classes (mAcc). Readers can �nd exact formulation for these metrics

from [TCA+17].

3.4.2 Semantic Segmentation on the S3DIS Dataset

We �rst evaluate our 3d-PSPNet on S3DIS dataset. The whole dataset

contains 6 Areas including 271 rooms with 13 classes. Each point has an

annotation label from 13 classes. As proposed in [QSMG17], in the training

procedure, each room is split into blocks with size 1m×1m in direction x

and y with stride 0.5m. To make batch training available and accelerate the

training process, we sample 4096 points in each block. Every sampled point

contains 9 dimensional channels: [x, y, z, r, g, b, x, y, z], representing position,

color and normalized position of each point in the current room. In the test-

ing process, all rooms are split into non-overlapping blocks with size 1m×1m.

Following the 1-fold experimental protocol described in [ASZ+16], we test

on Area 5 and train on the other Areas.

We manipulate two control experiments to validate of our 3d-PSPNet

with PointNet and PointNet2 baseline. For PointNet baseline, we set batch

size as 24 and assign each point a 9-dimensional input feature [x, y, z, r, g, b, x, y, z].

For PointNet2 baseline, the batch size is also 24 but we assign a 3-dimensional

channel [x, y, z] as input feature for each point. This setting is designed to

exhibit the generalization of our 3d-PSPNet in case of insu�cient input fea-

3.4. Experiments 35

tures. No data augmentation technique has been employed in both experi-

ments. Note again that all the hyperparameters are �xed in the two control

experiments.

10 20 30 40 50
0.00

0.05

0.10

0.15

0.20

0.25

training epoch

er
ro
r

PN train

Ours train

PN test

Ours test

10 20 30 40 50
0.00

0.05

0.10

0.15

0.20

0.25

0.30

training epoch

PN2 train

Ours train

PN2 test

Ours test

Figure 3.4: Training error and testing error on S3DIS dataset Area 5 of

PointNet (abbreviated as PN, left image) and PointNet2 (abbreviated as

PN2, right image) baseline with and without our 3d-PSPNet learned from

scratch. Note that our 3d-PSPNet improves 2.27% and 3.78% OA for Point-

Net and PointNet2 respectively.

Method mIOU mAcc ceiling �oor wall beam column window door table chair sofa bookcase board clutter

PointNet 41.02 48.51 89.41 98.35 69.14 0.04 5.54 45.20 11.56 58.69 53.21 2.90 42.63 23.09 33.47

PointNet+Ours 45.54 54.08 92.05 97.59 70.60 0.43 5.04 49.83 7.73 64.82 68.71 11.36 47.28 38.35 38.27

PointNet2 43.11 53.39 71.80 74.75 69.35 0.00 11.70 22.15 42.92 59.93 75.71 22.63 51.74 17.51 40.23

PointNet2+Ours 48.07 58.21 79.99 84.15 73.32 0.00 20.21 32.69 50.25 62.02 78.25 31.02 51.24 21.04 40.68

Table 3.1: Quantitative results on S3DIS dataset Area 5, including mIOU,

mAcc and IOU for 13 classes.

Two baseline models with and without our 3d-PSPNet are trained from

scratch for 50 epochs. We plot training and testing errors on Area 5 along

all epoch for these 4 models to validate 3d-PSPNet. As shown in Figure 3.4,

the gap between the baseline curve and our curve means that our 3d-PSPNet

improves both training and testing accuracy along the whole training proce-

dure. Although there is an oscillation along the curves of testing accuracy,

our model �nally converges to a optimal with lower testing error, which

increases the generalization of two baseline models. Figure 3.5 shows vi-

sualization results on two indoor scenes. PointNet and PointNet2 baseline

provides accurate prediction for most of the points. Our 3d-PSPNet succeeds

in correcting prediction results for part of the mislabeled points, i.e. window

and table. In addition, the quantitative segmentation measurement on S3DIS

dataset Area 5 is given in Table 3.1. Our 3d-PSPNet improves 4.52% mIOU

and 5.57% mAcc for PointNet baseline, 4.96% mIOU and 4.82% mAcc for

36 Chapter 3. Semantic segmentation of 3D data

Input point cloud

Ground truth

PointNet

PointNet+Ours

PointNet2

PointNet2+Ours

Input point cloud

Ground truth

PointNet

PointNet+Ours

PointNet2

PointNet2+Ours

Input point cloud

Ground truth

PointNet

PointNet+Ours

PointNet2

PointNet2+Ours

Figure 3.5: Qualitative results on S3DIS dataset. Our 3d-PSPNet pro-

duces better prediction results than using baseline model only (see the parts

marked by black boxes).

3.4. Experiments 37

PointNet2 baseline. Besides, IOU of 10 and 11 out of 13 classes are improved

for PointNet and PointNet2 baseline respectively. According to qualitative

and quantitative comparisons, our 3d-PSPNet indeed reinforces the gener-

alization of baseline models, which thanks to the enrichment of multi-scale

contextual feature captured in di�erent sub-regions.

3.4.3 Semantic Segmentation on the ScanNet Dataset

We next evaluate our 3d-PSPNet on the ScanNet dataset. This large scale

indoor dataset contains 1201 training rooms and 312 testing rooms with 21

classes including unannotated class. In the training procedure, unlike S3DIS

dataset, this time we split each room into blocks of size 1m×1m in direction

x and y with stride 1m instead of 0.5m, where each block contains 4096

sampling points. This choice avoids consuming too much training time on

large dataset. Again, every sample point contains 9-dimensional channel:

[x, y, z, r, g, b, x, y, z] as de�ned in last Section. For testing, we apply the

trained model on testing blocks with size 1m×1m.

We follow the same experiment settings employed in Section 3.4.2 by con-

catenating our 3d-PSPNet after PointNet and PointNet2 baselines. However,

considering the enormous size of training data of ScanNet dataset, we ex-

ploit a �ne tuning strategy on the training phase to improve the e�ciency of

training. In practice, we �rst train the PointNet and PointNet2 baselines for

20 epochs and stop. To perform a fair comparison, we use the pre-trained

models to initialize the weights of parameters in the network and continue

the experiments along two di�erent paths. First, we concatenate our 3d-

PSPNet after the pre-trained models and �ne tune the whole network for

20 epochs. Second, we continue training the pre-trained models without our

3d-PSPNet for 20 epochs.

Figure 3.7 exhibits the comparison of training and testing errors along

the last 20 training epochs between these two control experiments. Utilizing

PointNet and PointNet2 models only, the training curves gradually converge

to the �nal optimal while testing curves increase along training process.

This phenomenon is caused by over�tting of baseline models to the training

set. However, plugging-in our 3d-PSPNet after baseline models improves the

testing accuracy from �rst epoch of �ne-tuning and converges in only a few

epochs. This observation proves that our 3d-PSPNet raises the generaliza-

tion of baseline model. For PointNet and PointNet2, our module improves

OA by 1.26% and 2.19% respectively, including unannotated class. Figure

3.6 shows some qualitative results. Note that to perform a fair visualization

38 Chapter 3. Semantic segmentation of 3D data

Input point cloud

Ground truth

PointNet

PointNet+Ours

PointNet2

PointNet2+Ours

Input point cloud

Ground truth

PointNet

PointNet+Ours

PointNet2

PointNet2+Ours

Input point cloud

Ground truth

PointNet

PointNet+Ours

PointNet2

PointNet2+Ours

Figure 3.6: Qualitative results on ScanNet dataset. Our 3d-PSPNet im-

proves the prediction results returned by baseline models via a �ne tuning

strategy (see changes in black boxes).

3.4. Experiments 39

5 10 15 20
0.17

0.21

0.24

0.27

0.30

training epoch

er
ro
r

PN train

Ours train

PN test

Ours test

5 10 15 20
0.14

0.17

0.20

0.23

0.26

training epoch

PN2 train

Ours train

PN2 test

Ours test

Figure 3.7: Training and testing error of PointNet (abbreviated as PN, left

image) and PointNet2 (abbreviated as PN2, right image) baseline with and

without our 3d-PSPNet on ScanNet dataset. Equipped with our 3d-PSPNet,

the network improves OA by 1.26% and 2.19% for PointNet and PointNet2

respectively.

Method mIOU mAcc wall �oor chair table desk bed
book-

shelf
sofa sink

PointNet 23.64 33.25 67.48 87.70 41.31 40.48 14.83 32.85 19.73 28.12 14.86

PointNet + ours 26.81 38.27 69.33 89.38 44.24 44.25 16.34 35.85 27.47 29.88 19.64

PointNet2 30.98 42.40 71.55 87.59 57.17 45.94 14.66 40.83 31.92 42.52 17.61

PointNet2 + ours 33.02 48.20 71.42 88.75 57.67 48.09 18.87 41.91 36.77 46.53 21.68

Method bathtub toilet curtain counter door window
shower

curtain

refrid-

gerator
picture cabinet

other

furniture

PointNet 24.19 22.27 8.49 11.64 12.05 9.02 4.31 7.98 0.87 17.02 7.53

PointNet + ours 36.63 28.54 10.55 13.45 13.01 12.39 9.53 7.90 3.58 17.89 6.44

PointNet2 49.15 33.06 25.72 14.54 13.37 8.07 18.05 15.85 0.76 18.35 12.85

PointNet2 + ours 48.27 32.51 26.87 17.81 14.53 9.75 18.54 26.01 0.47 20.81 13.09

Table 3.2: Quantitative results on the ScanNet Dataset, including mIOU,

mAcc and IOU for 20 classes. Noted that unannotated class is not considered

in this evaluation.

comparison, we show the results given by baseline models trained after �rst

20 epochs (the continued trained model is over�tting). Our 3d-PSPNet cor-

rects some mislabeled labels returned by the baseline model and makes more

consistent prediction results (see points in block rectangles). This modi�-

cation bene�ts from �ne-tuning training strategy where mislabeled points

incorporate pyramid contextual information from its local regions. Table

3.2 presents the quantitative results on testing rooms. Network equipped

with our 3d-PSPNet increases 3.17% mIOU and 5.02% mAcc for PointNet

baseline, 2.04% mIOU and 5.80% mAcc for PointNet2 baseline. Besides,

IOU of 18 and 16 out of 20 classes have been improved for PointNet and

PointNet2 baseline respectively. Again, we argue these improvements come

from the aggregation of multi-scale contextual feature enriched in di�erent

40 Chapter 3. Semantic segmentation of 3D data

sub-regions.

3.4.4 Semantic Segmentation on the vKITTI Dataset

We �nally evaluate our framework on the vKITTI dataset, a real world point

cloud dataset obtained by Velodyne LiDAR scanners. The whole dataset

contains 6 non-overlapping urban scenes with 13 classes. Unlike rooms con-

tained in indoor scene dataset, outdoor urban scenes usually preserve objects

with larger scalability, i.e. cars, buildings etc. Thus, we split each scene into

non-overlapping blocks with size 5m×5m in direction x and y to make sure

that the large scale objects are split into fewer number of blocks. Again, we

sample 2048 points in each block as the mini training batch. Every sample

point contains 9-dimensional channel: [x, y, z, r, g, b, x, y, z] as before. In the

testing process, we apply the trained model on all the testing blocks. We

follow the 6-fold cross validation protocol described in [FTAB17].

As previous experiments, we perform two pairs of comparisons with

PointNet and PointNet2 baseline model. This time, we feed the same in-

put points with 9-dimensional channels to both models for the reason that

rgb-color information in urban scene plays an important role to characterize

objects. In the training phase, we employed the same �ne tuning strategy as

proposed in Section 3.4.3. PointNet and PointNet2 baseline models are �rst

trained on vKITTI dataset for 50 epochs. After that, we concatenate our

3d-PSPNEt at the end of the baseline models and �ne tune the whole net-

work for another 50 epochs. In the control experiment, we continue training

baseline models for 50 epochs for comparison.

Training and testing errors of four experiments for the last 50 epochs

are shown in Figure 3.9. The training curves of baseline models already

converge to a minimum after the �rst 50 training epochs. Testing curves

of our 3d-PSPNet oscillate in the �rst �ne tuning 35 epochs but preserve

a tendency of convergence in the last 15 epochs. Our 3d-PSPNet increases

the generalization of baseline models by improving OA by 2.49% and 3.58%

for PointNet and PointNet2 respectively. Qualitative comparisons are illus-

trated in Figure 3.8. PointNet and PointNet2 produced accurate prediction

results for most of the points in the urban scene. Our 3d-PSPNet corrected

some mislabeling for points of large scale objects, i.e. building (red) and car

(blue). Table 3.3 shows the 6-fold quantitative results on vKITTI dataset.

Our 3d-PSPNet improves 2.88%mIOU and 3.27%mAcc with PointNet base-

line, 3.95% mIOU and 5.19% mAcc with PointNet2 baseline. Besides, the

IOU of 13 and 11 out of 13 classes improves for PointNet and PointNet2

3.4. Experiments 41

Input point cloud

Ground truth

PointNet

PointNet+Ours

PointNet2

PointNet2+Ours

Input point cloud

Ground truth

PointNet

PointNet+Ours

PointNet2

PointNet2+Ours

Input point cloud

Ground truth

PointNet

PointNet+Ours

PointNet2

PointNet2+Ours

Figure 3.8: Qualitative results on vKITTI dataset. With respect to results

produced by baseline models, our 3d-PSPNet succeed in correcting some

mislabeled points.

42 Chapter 3. Semantic segmentation of 3D data

10 20 30 40 50
0.00

0.05

0.10

0.15

0.20

0.25

training epoch

er
ro
r

PN train

Ours train

PN test

Ours test

10 20 30 40 50
0.00

0.03

0.06

0.09

0.12

0.15

training epoch

PN2 train

Ours train

PN2 test

Ours test

Figure 3.9: Training and testing errors of PointNet (abbreviated as PN, left

image) and PointNet2 (abbreviated as PN2, right image) baseline with and

without our 3d-PSPNet on Scene 6 of vKITTI dataset. Equipped with our

3d-PSPNet, the network improves OA by 2.49% and 3.58% for PointNet and

PointNet2 respectively.

baseline respectively. Both qualitative and quantitative results demonstrate

the improvement of our 3d-PSPNet by aggregating global contextual infor-

mation from urban scene point clouds.

Method mIOU mAcc terrain tree vegetation building road guard rail tra�c sign tra�c light pole misc truck car van

PointNet 28.43 38.65 54.19 84.43 19.43 29.16 59.77 12.27 20.31 2.81 10.74 1.98 8.82 44.39 21.29

PointNet + ours 31.31 41.92 58.23 87.74 20.01 32.61 63.05 14.75 28.97 3.84 11.26 2.48 9.77 47.64 22.64

PointNet2 30.94 40.09 56.41 81.32 24.94 27.07 58.34 19.99 25.10 11.56 12.54 1.40 5.71 54.62 23.25

PointNet2 + ours 34.89 45.28 60.47 90.38 26.98 38.65 59.41 22.31 29.21 8.89 14.97 4.07 5.68 55.20 37.42

Table 3.3: 6-fold quantitative results on the vKITTI Dataset, including

mIOU, mAcc and IOU for 13 classes.

3.4.5 Network Architecture Design Analysis.

This section �rst analyzes the e�ect of some hyperparameters involved in our

3d-PSPNet and introduces our design choices. Then, we discuss the impact

of input point features and transfer learning strategy on the performance of

the whole network.

Number of pyramid scales L. We �rst analyze the impact of num-

ber of pyramid scales L on the whole network. To do so, we select L ∈
{1, 2, 3, 4, 5} and perform 5 experiments under the same settings on S3DIS

dataset using PointNet baseline equipped with our 3d-PSPNet. According

to Figure 3.10, L plays a trade-o� role between prediction accuracy and ef-

�ciency in the whole network. Increasing L promotes better mIOU results

3.4. Experiments 43

1 2 3 4 5
42

43

44

45

46

of pyramid scale L

m
IO

U

mIOU

0

3,000

6,000

9,000

ti
m
e(
s)

mIOU

time(s)

Figure 3.10: Analysis of number of pyramid scales L on prediction accuracy

and e�ciency of the framework. Noted that time means the average training

time per epoch.

but also requires more training time. When L is smaller than 5, the curves of

training time and mIOU grow in a quasi-quadratic pattern. However, when L

reaches 5, the computational time explodes but mIOU only improves slightly.

The explosion of computational time comes from imposing all operators on

the large number of grids (16×16×16). Therefore, to balance this trade-o�,

we use a 4-level pyramid structure for all experiments. However, we can also

choose L = 3 to reduce training time at the expense of accuracy.

Number of channels and size of MLP. We then study the impact

of MLP on the accuracy and computational cost of the network. Note that

the only extra parameters to be trained in our 3d-PSPNet are sequences of

MLPs (fully connected layers) involved at each pyramid scale. These MLPs

learn to aggregate information along the feature channel. To analysis the

impact of MLPs on our framework, we performed 4 control experiments

on S3DIS dataset with our 3d-PSPNet involving various MLPs. The seg-

mentation results and model size are reported in Table 3.4. On one hand,

increasing the output channels of fully connected layer slightly raises OA

but also increases the complexity of models to be learned. On the other

hand, according to the fourth control experiment, simply increasing the di-

mensions of MLPs will not bring any bene�t to the prediction accuracy and

increase the model complexity. We believe that a more carefully designed

44 Chapter 3. Semantic segmentation of 3D data

composition of fully connected layers could achieve better prediction results.

However, it is a time-consuming task to manually tune the best MLP archi-

tecture while bringing more parameters to be trained. Therefore, we impose

a generic architecture by simply assigning a 256-dimensional fully connected

layer in MLP at each pyramid scale.

MLP OA(%) mIOU(%) Model size

(MB)

128 81.16 44.34 31.21

256 81.28 45.54 40.23

512 81.45 45.46 58.27

[512,256,128] 80.87 44.34 56.84

Table 3.4: Study on dimensions of MLP on S3DIS dataset with PointNet

baseline model equipped with our 3d-PSPNet. Note that model size refers

to the number of parameters to be learned in the whole framework.

Grid shape. As described in Section 3.2, there are two choices to divide

the 3D scene space into sub-regional space. The �rst choice is the regular cu-

bic grid which is used throughout our experiments. This structure is e�cient

to pool each point into its corresponding sub-regional grid by considering its

spatial position in the 3D space. An alternative way is to employ the sam-

pling layer of PointNet2 by selecting a subset of distant points and pool each

original point into its corresponding distant point. This solution divides 3D

scene into irregular grids according to the density of point clouds. We eval-

uate these two architectures on all three datasets with PointNet2 baseline

under same training settings. The evaluation results are illustrated in Table

3.5. Our regular cubic grid version performs better on all three experiments.

The main di�erence comes from density-invariance of regular cubic grids,

where the pooling grid of each point is only dependent on its spatial coordi-

nates.

Method S3DIS Area 5 ScanNet vKITTI Scene 6

Ours V1 80.15 76.21 93.28

Ours V2 78.79 75.81 93.09

Table 3.5: Grid shape analysis with PointNet2 baseline model equipped with

our 3d-PSPNet. V1 is the regular-grid method, V2 is the adaptive-grid

method mentioned in Section 3.2. OA(%) is reported for both version.

Input features. We also analyze how the input feature channels impact

3.4. Experiments 45

our approach. We separately feed input points with 3-dimensional channels

[x, y, z] and 9-dimensional channels [x, y, z, r, g, b, x, y, z] into both PointNet

and PointNet models with and without 3d-PSPNet. We followed the control

experiment setting proposed in Section 3.4.2. Table 3.6 presents a quan-

titative evaluation for four control experiments. Our 3d-PSPNet increases

prediction accuracy in all pairs of control experiments. However, when the

input features are insu�cient, i.e. when containing only spatial position

[x, y, z], our 3d-PSPNet performs better than by feeding 9-dimensional fea-

tures. The main reason is that pointwise features learned from rich input

point features by baseline models are discriminative enough to reach accu-

rate prediction results. In that case, the room for improvement is smaller

than training on 3-dimensional input features. In summary, our 3d-PSPNet

preserves better generalization with insu�cient input features.

Method
[x, y, z] [x, y, z, r, g, b, x, y, z]

OA(%) Improvement OA(%) Improvement

PointNet 77.12
2.20

79.49
1.79

PointNet+Ours 79.32 81.28

PointNet2 76.37
3.78

83.11
1.54

PointNet2+Ours 80.15 84.65

Table 3.6: Input features analysis on the S3DIS dataset.

Fine tuning. Finally, we study how �ne tuning strategy helps acceler-

ating the training procedure on ScanNet and vKITTI dataset. In Section

3.4.3, we train the baseline model for 20 epochs and �ne-tune the network

equipped with our 3d-PSPNet for another 20 epochs. In Section 3.4.4, we

follow this strategy and use the pre-trained model as the staring point and

�ne tune the whole network for another 50 epochs. To analyze the gain

of the transfer learning strategy, in the control experiments, we train the

PointNet2 baseline model equipped with our 3d-PSPNet from scratch with

random initialization. We follow all the same experimental settings and train

the whole network for exactly the same number of epochs, i.e. 40 and 100

respectively. Evaluation results are reported in Table 3.7. After the same

number of epochs, transfer learning enables the whole network to converge

to a better optimal than training from scratch. In other words, transfer

learning accelerates the training phase.

46 Chapter 3. Semantic segmentation of 3D data

Method
ScanNet vKITTI Scene 6

OA(%) mIOU(%) OA(%) mIOU(%)

Learning from scratch 74.73 30.32 87.69 40.45

Fine-tuning 76.21 33.02 93.28 45.48

Table 3.7: Learning from scratch vs transfer learning.

3.5 Conclusion

This chapter proposes a pyramid structured network to aggregate multi-

scale contextual information in point clouds. This generic module can be

concatenated after any state-of-the-art pointwise feature learning network.

It enriches local features with multi-scale sub-regional global clues. Exper-

imental results on di�erent common datasets illustrated that the enriched

pointwise features are more discriminative for each objects in the complex

3D scene and produce more accurate semantic segmentation predictions.

Chapter 4

Planar shape detection

shape detection with
user-speci�ed parameters

parameter-free multi-scale shape detection

ε

Figure 4.1: Multi-scale shape detection. Data measurements (top left) give

di�erent geometric representations of an object depending on the scale we

observe it. Existing shape detection algorithms represents an object by geo-

metric shapes given user-speci�ed parameters as the �tting tolerance ε (top

right). Instead, our algorithm extracts multiple representations of shapes at

archetypical structural scales without tedious parameter tuning (bottom).

4.1 Introduction

Interpreting 3D data such as point clouds or surface meshes depends heavily

on the scale of observation. Yet, existing algorithms for shape detection rely

on trial-and-error parameter tunings to output con�gurations representative

of a structural scale. We present a framework to automatically extract a

set of representations that capture the shape and structure of man-made

48 Chapter 4. Planar shape detection

ε

σ
10 100 1000

(minimum number of inliers)

0.05%

0.5%

5%
(%

o
f
th
e
b
o
u
n
d
in
g
b
o
x
d
ia
g
o
n
a
l)

Figure 4.2: In�uence of shape detection parameters. A point sampled object

partially piecewise-planar (bottom left) is turned into a set of planar elements

by region growing [RvDHV06] given a �tting tolerance ε and a minimal shape

size σ. Increasing σ for a �xed ε progressively removes the smallest planar

elements. Simpli�cations that are most representative of a key structural

scale are located along the bottom-left to top-right diagonal: above (resp.,

below), planar regions (resp., free form parts) disappear too fast.

objects at di�erent key abstraction levels as illustrated in Figure 4.1. A

shape-collapsing process �rst generates a �ne-to-coarse sequence of shape

representations by exploiting local planarity. This sequence is then analyzed

to identify signi�cant geometric variations between successive representa-

tions through a supervised energy minimization. Our framework is �exible

enough to learn how to detect both existing structural formalisms such as

the CityGML Levels Of Details, and expert-speci�ed levels of abstraction.

Experiments on di�erent input data and classes of man-made objects, as

well as comparisons with existing shape detection methods, illustrate the

strengths of our approach in terms of e�ciency and �exibility.

The motivation behind our work is to explore the (ε, σ) space of shape

approximation for a given input 3D scene, where ε quanti�es the geometric

tolerance to data and σ de�nes the minimum number of inliers: its geometric

relevance to the issue of shape and scale detection has been repeatedly con-

4.1. Introduction 49

Input mesh
(24K facets)

ε

σ

1

1

2

2

3

3

4

4

0

0

10%

1%

0.1%
0.01 0.1 1 10 100

11,060 shapes
ε = 0.12%
σ = 0.002

535 shapes
ε = 0.33%
σ = 0.023

12 shapes
ε = 2.28%
σ = 28.6

9 shapes
ε = 4.28%
σ = 31.8

5 shapes
ε = 4.6%
σ = 108.3

Figure 4.3: Overview. Starting from 3D data (here a dense mesh generated

by MultiView Stereo, top left), our algorithm produces a set of high-level rep-

resentations with planar primitives (representations 1�4) describing the ob-

ject at di�erent representative structural scales (bottom). By progressively

merging planar regions of an initial state (representation 0), one creates a se-

quence of representations whose further analysis allows for the extraction of

a few structurally relevant representations (top right). Such shape represen-

tations can be used, for instance, as input for piecewise-planar reconstruction

[CLP10] (see grey compact meshes). Note that each shape is displayed as

a colored polygon computed as the α-shape of its inliers projected onto the

shape; we use this visualization of inliers in all following �gures.

�rmed (see, e.g., [RvDHV06]). Yet, it may appear at �rst sight that �nding

meaningful abstractions of input shapes by exploring this (ε, σ) space is sim-

ply intractable: even a greedy search through discrete sampling is unlikely

to �nd the few key structural scales that we seek. We observe, however,

that for a vast range of 3D objects (including man-made shapes), the mean-

ingful structural scales are likely to be well captured along the (bottom-left

to top-right) diagonal of the parameter space (ε, σ) as illustrated in Figure

4.2. This property has an important practical consequence: we can turn

this two-parameter exploration task into a simple 1D exploration along this

diagonal�a far more tractable task.

We are left with two issues to address: (i) how to sample e�ciently the

shape con�gurations along the parameter space diagonal which are likely to

cross the di�erent structural scales, and (ii) how to detect structural scales

robustly.

To address (i), we propose a shape-collapsing procedure described in

Section 4.2 that merges progressively pairs of planar shapes from an initial

50 Chapter 4. Planar shape detection

con�guration with both low ε and σ, i.e., a con�guration at the bottom left

of the parameter space of Figure 4.2. Since merging two planar shapes can-

not decrease the maximal distance to an inlier or the minimum shape size,

repeated shape merging will generate a sequence of shape representations

near the diagonal of the parameter space, as illustrated in Figure 4.3. Such

a procedure is very e�cient, and returns a �ne discretization of abstrac-

tions roughly along the diagonal of our two-parameter space: starting from

n planar shapes, we produce a sequence of n shape con�gurations called a

trajectory in the parameter space.

As structural scales correspond to arbitrary levels of abstraction, solving

(ii) by tracking and quantifying the geometric changes along this diagonal

is not a reliable approach to detect them. Instead, we adopt an e�cient

strategy detailed in Section 4.3 that consists in learning the geometric char-

acteristics of structural scales from a training set. The latter is typically

created by a manual assignment of structural scales to the con�gurations

of trajectories obtained by our shape collapsing procedure on a few test

datasets. This training strategy o�ers the advantage to be fast compared

to a greedy exploration of the 2D parameter space, and consistent with the

way planar shapes are sampled during the testing.

4.2 Shape collapsing

Our shape-collapsing process iteratively merges two planar shapes from a

current shape abstraction. This approach relies on two key ingredients: a

merging operator specifying how to create a new planar shape from two

existing ones, and a priority policy that orders the shape pairs to merge.

Pseudocode is shown in Algorithm 1.

Initialization. We start by extracting an initial con�guration of planar

shapes from input data, be it a 3D point cloud or a surface mesh. A region

growing algorithm [RvDHV06] is used with low parameter values, typically

ε = 0.05% of the bounding box diagonal, and σ = 10 inliers. As preprocess-

ing, we compute an adjacency graph between the detected shapes based on

spatial proximity: for surface meshes, two planar shapes are considered as

adjacent if at least a pair of their respective inlier facets shares a common

edge in the input mesh; for a point cloud instead, two shapes are adjacent

if at least a pair of their respective inlier points are mutual neighbors in

the k-nearest neighbor graph of the input points (we use k = 20 in all our

experiments).

4.2. Shape collapsing 51

di

dj

dk

Figure 4.4: Merging operator. Two adjacent shapes i and j are merged

into the shape k that minimizes the Euclidean distance to their joint sets

of inliers. If di denotes the distance between shape i and its furthest inlier,

note that dk ≥ max(di, dj).

iter #1 #2 #3 #4 #5 #6 #7 #8 #9

Figure 4.5: Shape collapsing. Iteratively merging adjacent planar elements

creates a sequence of shape representations, some of which being structurally

representative, e.g., representations obtained after iterations #4 and #7

(top). At each iteration, the black edge in the adjacency graph (bottom)

indicates the edge with the lowest weight, i.e. the next edge to be collapsed.

Merging operator. This operator is applied on the edges of the adjacency

graph. It merges two adjacent planar elements into the planar shape that

minimizes the Euclidean distance to their joint sets of inliers, as illustrated

in Figure 4.4. The optimal planar shape is trivially found via Principal Com-

ponent Analysis.

Priority policy. In order to choose the next pair of planar shapes to

merge, a weight is assigned to each edge of the adjacency graph. Merg-

ing is then performed on the edge with the lowest weight. Di�erent metrics

can be considered for specifying the weights, e.g., deviation of the normal

vectors of the two planes, or area of the smallest of the two shapes. After

an experimental evaluation of several metrics, we chose the Euclidean dis-

tance between input points to planar shapes as it o�ers the best compromise

between accuracy and performance. In particular, this choice limits drifts

during shape collapsing because it relies on a direct measurement to input

52 Chapter 4. Planar shape detection

Algorithm 1 Shape collapse

Input: initial extracted planes and iteration T

Output: planes after collapses

Initialization: adjacency graph with weight wij on each edge; t← 1

while t ≤ T do

- �nd edge with minimum weight wij ;

- merge plane j into plane i (assume plane i is larger than plane j);

- update adjacency graph and local edge weight;

- t← t+ 1;

data. Formally, we de�ne the weight wij between planar shapes i and j as

wij =

√√√√ 1

σi + σj

∑
pk∈Iij

d(pk, P)2 (4.1)

where σi is the size of shape i, Iij is the joint set of inliers from shapes i and

j, and P is the optimal planar shape computed by the merging operator. At

each iteration, we choose the pair of shapes with the lowest weight as the

candidates to be merged. After merging two shapes, the adjacency graph as

well as the weights are updated. Note that this update is local as only edges

with the planar shapes adjacent to the two merged shapes are impacted.

Figure 4.5 illustrates this procedure.

Semantic constraint. More special manipulation could be involved in our

proposed priority policy while processing objects with well-de�ned structure

scales, i.e. LOD of buildings proposed by cityGML formalism [GP12]. Ac-

cording to this conception, LOD1 of building is represented as block model

such that roof is approximated by a �at plane. In this case, semantic infor-

mation of each plane serves as a crucial prior knowledge to exploit the scale

space such that the shape collapse trajectory passes through the well-de�ned

LOD1 plane con�guration. To achieve that, we propose a new coe�cient cij
considering semantic clue of two adjacent planes i and j in form of

cij =

{
+∞ if si 6= sj and {k ∈ N(j) | sk = sj} 6= ∅
1 otherwise

(4.2)

where si is semantic label of each plane computed with method of [VLA15],

N(j) refers to the adjacent planes set of plane j and here we assume plane j

will be merged into plane i. The �nal priority policy is updated by wij × cij .
The intuition behind this coe�cient is that planes with di�erent semantic la-

bels are not supposed to be merged together unless the smaller one (which is

4.3. Detection of structural scales 53

(a) input mesh

(b) 405 planes (c) without semantic constraint (d) with semantic constraint

Figure 4.6: Semantic constraint. Starting from input mesh (a) we �rst ex-

tract 405 planes (b) and assign each of them a semantic label as roof (blue)

or facade (yellow) using method of [VLA15]. (c) illustrates the shape collapse

from 6 planes to 5 using our priority policy without semantic constraint. Two

planes with semantic labeling roof and facade are merged together, which

leads to skipping over the LOD1 representation of current building. However,

taking the semantic constraint into consideration permits us reaching LOD1

con�guration by avoiding merging planes with di�erent semantic labels (d).

plane j in our assumption) has di�erent semantic labels than all of its neigh-

bors. Figure 4.6 illustrates how this semantic constraint impacts the shape

collapse procedure. Note that we only employ this constraint to buildings

throughout our experiments.

4.3 Detection of structural scales

Given a roughly-diagonal trajectory in parameter space, our goal is now to

detect structural scales by analyzing the geometric evolution of the shape

representations along the trajectory. For an object with simple structure,

the problem can be solved in a unsupervised manner by detecting strong ge-

ometric variations between two successive piecewise-planar representations.

However, in mosts cases, structural scales are levels of abstraction that can-

not be reliably detected without learning from training samples. We thus

formulate the detection of structural scales as a supervised labeling problem

by assigning a structural scale to each shape con�guration of the trajectory.

54 Chapter 4. Planar shape detection

Figure 4.7: Feature vector. Feature vectors (see histograms) can discrimi-

nate between shape representations that capture di�erent structural levels

of man-made object, here cars. Four bins are used for both normal align-

ment (orange) and z-axis deviation (navy), and �ve bins for centroid distance

(blue) and area variation (green).

Feature vector. We de�ne a feature vector in order to characterize a con-

�guration of planar shapes from a geometric point of view. Four di�erent

geometric descriptors are used:

• Centroid distance that computes the Euclidean distance between the

barycenters of two adjacent shapes;

• Normal alignment measuring |ni ·nj | between the normals ni and nj
of two adjacent shapes;

• Area variation that computes 1− |σi − σj |/|σi + σj | from the sizes σi
and σj of two adjacent shapes;

• z-axis deviation that compares the relative orientation of two adjacent

shapes with the z-axis nz through the expression | |ni ·nz| − |nj ·nz| |.

For each descriptor, we create an histogram describing the distribution

over all the pairs of adjacent shapes. We then normalize each histogram and

concatenate them into a 18-bin feature vector, as illustrated in Figure 4.7.

We denote by fi the feature vector of shape representation i. Such a sim-

ple feature vector summarizes the main geometric characteristics of a shape

representation as mutual position, orientation, size and alignment of pairs of

adjacent shapes.

4.3. Detection of structural scales 55

Energy minimization. Recall that from an initial con�guration com-

posed of n planar shapes, repeated collapsing generates a trajectory with n−1
shape representations. Given a �nite set of structural scales L = {1, 2, ...,K},
we consider a random variable li ∈ L that associates a structural scale to the

ith shape con�guration of the trajectory. The quality of a label assignment

l = (li)i∈[1,n] over a trajectory is measured through an energy U of the form

U(l) =

n∑
i=1

ψi(li) + γ

n−1∑
i=1

ϕi,i+1(li, li+1) (4.3)

where ψi(li) is a unary data term, ϕi,i+1(li, li+1) is a pairwise potential that

accounts for temporal consistency between two successive shape representa-

tions, and γ>0 is a weight balancing the two terms. In all our experiments,

γ has been �xed to 0.5. Note that this formulation is basically a Hidden

Markov model, so the con�guration that minimizes energy U is found by

dynamic programming using the Viterbi algorithm [Vit67].

Choice of ψi. The unary data term of shape representation i is formulated

using a classi�er trained by Random Forests [Bre01]. It is expressed by:

ψi(li) = −
1

|T |
∑
t∈T

log(Pt(li|fi)), (4.4)

where T denotes a set of decision trees, |T | the number of trees, and Pt the
prediction probability of the label li for the decision tree t.

Choice of ϕi,i+1. The pairwise potential promotes temporal consistency

along the trajectory: it penalizes scale changes between successive represen-

tations when geometrically too similar. This potential is de�ned through

ϕi,i+1(li, li+1) = wi,i+1 · T (li, li+1) (4.5)

where wi,i+1 = exp(−dEM(fi, fi+1)/2) is a weight measuring the similarity

between feature vectors fi and fi+1. The distance dEM is de�ned as the L2

norm of the Earth Mover distances for each descriptor histogram using a L1

ground distance. This weight favors high geometric variation between two

successive representations with di�erent labels. The term T (li, li+1) mea-

sures jump coherence from scale li to scale li+1, and is de�ned as

56 Chapter 4. Planar shape detection

T (li, li+1) =


0 if li+1 = li

1 if li+1 = li + 1

+∞ otherwise

(4.6)

The role of T (li, li+1) is to weakly penalize a jump between two successive

scales while preventing other jumps in scale.

The resulting labeled sequence assigns a same label to a whole range of

representations. The �rst shape representation with a given label is selected

as representative of the object structure at this scale. With this choice, every

planar shape is a relevant component of the object structure.

4.4 Experiments

We tested our method on three datasets with (i) di�erent man-made objects

(buildings, cars, sofa and indoor scenes), and (ii) di�erent input data in-

cluding synthetic/real-world surface meshes and point clouds. We only con-

sidered three scales in all our experiments: one scale with �ne details, one

with general structure and no �ne details, and one with an overly-simpli�ed

general shape; but any (typically small) number of scales can be used.

• CAD dataset. The Princeton Shape database [SMKF04] is used to gen-

erate noise-free input point clouds that uniformly sample CAD models.

Models are mainly composed of free-form shapes, including cars and

sofas. The three structural scales are levels of abstraction that were

speci�ed by an expert.

• MultiView Stereo dataset. We created a dataset of buildings rep-

resented by dense surface meshes generated from MultiView Stereo

(MVS [VKLP12]). These dense meshes contain �ne details such as

chimneys, but have a high amount of defects in the form of noise, holes

and erroneous topology. We trained the algorithm to recognize the

Levels Of Details 1, 2 and 3 de�ned by the cityGML formalism [GP12]

as structural scales.

• RGB-D dataset. We also evaluated our algorithm on point clouds gen-

erated by RGB-D cameras from the Sun3D database [XOT13] and

datasets from [LBF14]. These 3D point sets correspond to indoor

scenes, each representing a room with walls, �oor and furniture. Inputs

are defect laden with variable noise, heterogeneous spatial density and

4.4. Experiments 57

Input 3D data structural scale 1 structural scale 2 structural scale 3

tr
a
in
in
g

te
st
in
g

C
A
D
C
a
rs

[S
M
K
F
0
4
]

tr
a
in
in
g

te
st
in
g

C
A
D
S
o
fa

[S
M
K
F
0
4
]

tr
a
in
in
g

te
st
in
g

M
V
S
B
u
il
d
in
g
s
[V
K
L
P
1
2
]

tr
a
in
in
g

te
st
in
g

K
in
ec
t
In
d
o
o
rs
[X
O
T
1
3
]

Figure 4.8: Results on di�erent man-made objects. The shape representa-

tions archetypical of each structural scale generated by our algorithm on

testing examples have similar structures to the training samples. In partic-

ular, our algorithm is able to learn the CityGML formalism and produce

meaningful shape representations of buildings at di�erent LODs. For indoor

scenes, both furniture and permanent elements such as �oor and walls ex-

hibit the same level of detail at a given scale. Even for less structured objects

such as cars or sofas, the level of abstraction conveyed by planar elements

remains consistent between training and testing. Note in particular how cars

at scale 1 have their bonnet described by many elements, which turn into a

single element at scale 2, before merging with the windshield at scale 3.

58 Chapter 4. Planar shape detection

Object #training #testing training testing

class samples samples accuracy accuracy

CAD car 5K 12K 98.53% 82.88%

CAD sofa 3K 4K 97.60% 85.88%

MVS building 9K 12K 99.61% 99.30%

RGB-D indoor 20K 26K 96.90% 80.60%

Table 4.1: Accuracy of scale labeling on training and testing sets for di�erent

object classes.

severe occlusions. The three structural scales are levels of abstraction

that were speci�ed by an expert.

For each class of man-made objects, we randomly selected one third of

the models for training, and the two remaining third for testing. To cre-

ate planar con�gurations at representative structural scales for the training

set, we created sequences of con�gurations by our automatic shape collapsing

process and then assigned a scale label to each con�guration by visual inspec-

tion. To speed-up the annotation, we visually detect the pairs of successive

con�gurations where the scale changes, and then automatically annotate the

con�gurations in between. Such a training procedure is (i) fast, i.e., from

30 minutes (Multiview dataset) to 2 hours (RGB-D dataset) to create the

full training set, and (ii) consistent with our two-step strategy since training

samples are also generated from shape collapsing.

Qualitative and quantitative evaluation. Figure 4.8 presents some

qualitative results on small portions of the three datasets. We observe that

the computed representative shapes for each structural scale on testing exam-

ples are structurally similar to those in the training samples. Our framework

is �exible enough to learn shape detection from both existing formalisms such

as the CityGML LODs for representing buildings, and expert-speci�ed lev-

els of abstraction of man-made objects. Table 4.1 demonstrates that our

resulting scale labeling is fairly accurate. One may note that accuracy on

the MultiView Stereo dataset is much higher than for the other datasets;

two main reasons explain this di�erence: buildings are less free-form than

cars or furnitures, and levels of abstraction for building are less subjective.

Once trained on a speci�c class of object, the classi�ers do not generalize

particularly well when tested on other object categories: accuracy typically

decrease proportionally to the similarity between objects, e.g. applying the

"Car" classi�er on the "Sofa" dataset decreases accuracy from 86% to 63%.

Robustness to data defects, object size and initialization. As scale

detection is performed using normalized features, our algorithm is only weakly

4.4. Experiments 59

(a) input mesh (b) scale 2 without regularization (c) scale 2 with regularization

Figure 4.9: Regularization term. Given input mesh (a), we employ our al-

gorithm on the shape collapse results and get structure scale 2 detection

con�guration (b) without regularization term and (c) with regularization

term. Note that some small structures exist on the facade in (b). Involving

the pairwise term considering shape similarity between consecutive con�gu-

rations, we obtain (c) which preserves a more meaningful structure as de�ned

in the training set, i.e. �at facade.

a�ected by noise: adding 1% random noise in the car dataset only decreases

the general accuracy by 1.8%. Initialization can be an issue if we start with

too large ε and σ values that are located after the �rst scale. In practice,

there is no accuracy di�erence on the MVS meshes if we start with ε=0.05%

and ε=0%, i.e., with each triangular facet as a shape. Since histograms of

descriptors are normalized, our classi�er is robust to object size variability as

well: while the buildings in Figure 4.8 have quite di�erent sizes (from small

cottages to entire blocks), their shape representations are consistent at each

scale.

Regularization term. Figure 4.9 illustrates how regularization term de-

�ned in Equation 4.5 improves the �nal classi�cation result. Using the pre-

trained random forest classi�ers produces accurate labeling for most of the

plane con�gurations along the trajectory, but still mislabel con�gurations

near the jump points of structure scales. Inserting our pairwise term solves

this issue by measuring the shape similarity between two con�gurations.

Timings. Learning the classi�er on the di�erent datasets requires from

5 seconds for the MultiView Stereo dataset (9K training samples) to 2.5

minutes for the RGB-D dataset (20K training samples) for a random forests

training with 100 trees and 25 levels. Table 4.2 details timings for testing on

one representative sample of each object class. Shape collapsing is the most

time-consuming step, whereas the timing for scale detection is negligible and

independent of the input complexity.

60 Chapter 4. Planar shape detection

Object Input Initialization Shape Scale

class complexity collapse detection

CAD car 143K pts 4.05s 10.7s 0.24s

CAD sofa 142K pts 4.79s 21.6s 0.16s

MVS mesh 3.3K facets 0.31s 0.54s 0.22s

RGB-D indoor 1.15M pts 114s 12min 0.72s

Table 4.2: Running times for testing on one representative sample of each

object class (see the �rst testing model for each class in Figure 4.8). Ex-

periments have been done on a single-core Intel Core i7 processor clocked at

2GHz.

Comparisons with shape detection methods. We compared our al-

gorithm to an advanced Ransac-based method [SWK07], and the Rapter la-

beling mechanism [MMBM15]. A fair comparison must consider three main

evaluation criteria: geometric �delity, coverage and output complexity. We

chose as measures the root mean square distance of detected shapes to inliers,

the ratio of points assigned to shapes, and the number of shapes respectively.

Contrary to our algorithm, these other methods required tuning some param-

eters as the �tting tolerance. Table 4.3 presents the evaluation scores from

two input point clouds representing complex buildings, whereas Figure 4.10

shows visual results with error distributions. Our output shape representa-

tions at three di�erent scales better capture the structure of the buildings

while remaining competitive with existing methods in terms of geometric

�delity, coverage and output complexity.

RMS coverage #planes

Ransac [SWK07] 0.034 0.808 128

Rapter [MMBM15] 0.042 0.817 163

Ours (scale 1) 0.017 0.816 239

Ours (scale 2) 0.29 0.816 40

Ours (scale 3) 1.03 0.816 9

Table 4.3: Comparisons on Empire in terms of Root Mean Square distance

(RMS) of detected shapes to inliers (unit expressed as % of the bounding

box diagonal), coverage (ratio of inliers) and number of shapes. Note that

the shape collapsing process guarantees an identical coverage for outputs at

di�erent scales.

Application to surface reconstruction. By connecting our algorithm

to a polyhedral surface reconstruction method [CLP10], we can generate

compact piecewise-planar 3D models of bulidings at di�erent LODs from

4.4. Experiments 61

error

0 ≥ 1

Ransac Rapter Ours
(scale 1)

Ours
(scale 2)

Ours
(scale 3)

Figure 4.10: Comparisons on Empire. The result from Rapter [MMBM15]

(courtesy of the authors) �nds a visually-signi�cant con�guration of planar

shapes to describe the building, whereas the one from Ransac [SWK07] was

obtained by manual parameter tuning to obtain a result as close as possible

as our scale 1. While Ransac and Rapter exhibit similar error distributions

with respect to input points (see color histograms from yellow to black), our

algorithm produces three output representations that strongly di�er in terms

of geometric accuracy and number of planar elements, while guaranteeing a

similar coverage. Our representation at scale 1 is more meaningful than those

obtained by these two methods. In particular, Ransac and Rapter omit �ne

planar components on the top of the tower.

dense defect-laden meshes. As shown on Figure 4.11, we outperform the

state-of-the-art method of [VLA15] in terms of geometric accuracy and out-

put complexity while conforming to the LOD CityGML formalism. Although

[VLA15] is specialized in producing LOD models of buildings, our learning

strategy allows us to generate meaningful con�gurations of planes without

explicitly specifying the rules of this LOD formalism.

Design choice for priority policy. We chose the Euclidean distance as

priority metrics after extensive experimental evaluation on various objects

as illustrates in Figure 4.12. In particular, we tested how many times the

structural scales were missed in the trajectories on a set of 30 buildings:

Euclidean distance exhibited a much better score (2/90) than normal devi-

ation (55/90) and shape area (47/90). Although these two last metrics are

fast to compute, they are not direct metrics to input data, leading often

to drifts during shape collapsing. We also tested a weighted sum of these

three metrics. In this case, weights in front of each metrics were learned

from the feature vectors of the trained samples to better adapt the track-

ing of scale i once scale i-1 was detected. However, such a mechanism was

extremely costly as shape collapsing and scale detection were no longer per-

formed serially, and the accuracy gain compared to the Euclidean distance

was negligible (0.06% gain on buildings dataset). Euclidean distance is, at

the end, a good compromise between accuracy and performance. Note also

62 Chapter 4. Planar shape detection

Input mesh LOD1 [VLA15] LOD2 [VLA15]LOD1 (Ours) LOD2 (Ours)

e: 0.69
f : 138

e: 0.65
f : 54

e: 0.5
f : 232

e: 0.41
f : 143

Figure 4.11: Application to reconstruction of LOD models of buildings.

Our algorithm combined with a piecewise planar reconstruction algorithm

[CLP10] produces compact LOD1 and LOD2 models from dense defect-laden

meshes that outperform those delivered by a building-speci�c LOD genera-

tion method [VLA15] in terms of both geometric accuracy �as shown using

color histograms from yellow (0 meter error) to black (≥ 2 meter error)�

and output complexity, where e refers to geometric error and f is number of

output facets.

that, as the scales are learned by annotated samples obtained by the same

collapsing mechanism than during testing, trajectories in the testing stage

are less likely to miss the structural scales in practice.

Limitations. Although our framework is designed to be �exible, the choice

of the metric (Equation 4.1) that speci�es the priority weights during shape

collapsing is independent of the object's category. As suggested by Table

4.1, our choice is relevant in the case of buildings for exploring LODs, but

not always optimal for more free-form objects such as furniture. Ideally, this

metric should be learned from a training set of trajectories. This variant

would however be very costly in practice as shape collapsing and scale de-

tection are no longer performed serially. Additionally, our algorithm does

not discover and preserve geometric regularities such as parallelism, orthog-

onality or symmetry of shapes contrary to recent shape detection methods

as [MMBM15]. This does not a�ect geometry �delity and coverage, but may

lead to suboptimal shape abstractions that fail to respect these speci�c fea-

tures.

4.5. Conclusion 63

Figure 4.12: Shape collapse results on di�erent objects with Euclidean dis-

tance priority metrics. This robust metric choice hierarchically merges planes

in a structure-aware way (from left to right: shape collapse direction), which

is the essential criteria to generate trajectory along the parameter space.

4.5 Conclusion

Our work provides a parameter-free algorithm for detecting piecewise-planar

shapes from 3D data. Contrary to existing methods that require tedious pa-

rameter tuning, our algorithm extracts multiple representations of an input

shape at key structural scales whose characteristics are learned from a train-

ing set. Our framework is �exible enough to learn both existing structural

formalism such as the CityGML Levels Of Details for representing buildings,

and expert-speci�ed levels of abstraction on man-made objects. Experiments

demonstrate the added value of our approach with respect to existing shape

detection methods, as well as its potential to help with surface reconstruc-

tion and approximation.

64 Chapter 4. Planar shape detection

Chapter 5

Piecewise-planar

reconstruction

5.1 Introduction

Figure 5.1: Objective of our algorithm. Given raw 3D data as a point cloud

generated from Multi-View Stereo (left), our algorithm assembles a set of

planar shapes into a compact polygonal mesh (right). The algorithm is

particularly adapted for describing piecewise planar man-made objects and

scenes, but can also be used to approximate free-form shapes as, here, a

statue composed of curved and thin volumes.

Robust polygonal surface reconstruction algorithms typically operate by

slicing a 3D domain with planes detected from input points. This operation

generates a set of polyhedra and facets from which output surface is then

extracted. Because this slicing operation is computationally costly, the best

existing algorithms can laboriously handle more than one hundred planes

under reasonable times. In this chapter, we speci�cally tackle this scalabil-

ity issue. The core idea consists in slicing a 3D domain in a more �exible

and scalable manner than existing mechanisms. We propose a data-structure

which is i) spatially-adaptive in the sense that a plane slices a restricted num-

ber of relevant planes only, and ii) composed of components with di�erent

structural meaning. We also propose a surface extraction mechanism that

delivers intersection-free and 2d-manifold surface meshes from such parti-

tioning data-structures. Our experiments on a variety of objects and sensors

66 Chapter 5. Piecewise-planar reconstruction

(a) point cloud (b) detected planes (c) connectivity analysis

(d) space partitioning(e) surface extraction(f) output mesh

Figure 5.2: Overview of our approach. Our algorithm starts from a point

cloud (a) and a set of primitives whose α-shapes are represented by col-

ored polygons (b). By analyzing the connectivity graph of primitives (see

red edges), we extract some structurally-valid facets represented by colored

polygons with black edges (c). This quick connectivity analysis allows us to

treat 35 of the 60 primitives on the shown example. We then build the parti-

tioning data-structure (see the pink wireframe) by slicing the spatially-close

unprocessed primitives while embedding the structurally-valid facets found

in the previous step (d). The last step selects a subset of polygonal facets

from the partition data-structure (e). The output is a 2d-manifold polygonal

mesh in which each facet is a polygon supported by one of the primitives (f).

5.2. Connectivity analysis 67

show the versatility of our approach as well as its competitiveness with re-

spect to existing methods.

More speci�cally, our algorithm takes as input a point cloud or a dense

mesh and returns as output a polygonal mesh which is 2d-manifold, wa-

tertight and intersection-free. Figure 5.1 shows the goal of our approach.

Optionally, the user can relax these geometric guarantees. We �rst extract

from the input 3D data a set of primitives by standard methods [RvDHV06,

SWK07]. For each detected primitive, we compute (i) a rough approximation

of its boundaries using α-shape [EKS83], and (ii) an oriented 2D bounding

box, i.e. the smallest rectangle lying on the detected plane that contains all

its projected inliers. We call a ε−bounding box, the oriented 2D bounding

box scaled up by an o�set ε.

The algorithm operates in three steps illustrated in Figure 5.2. First, the

connectivity relations between primitives are analyzed in order to search for

structurally-valid surface components. This step, presented in Section 5.2,

allows us to quickly process a part of the input primitives and solve obvious

assembling situations before slicing operations. We then build the partition-

ing data-structure in Section 5.3 by slicing the spatially-close unprocessed

primitives while embedding the structurally-valid components found in the

previous step. Finally, the output surface is recovered by selecting a subset

of polygonal facets from the partition data-structure using an energy mini-

mization formulation presented in Section 5.4.

5.2 Connectivity analysis

The objective of the �rst step is to quickly solve obvious local assemblings

of some primitives by analyzing the connectivity relations between them.

We de�ne the notion of strong connectivity for characterizing primitives

that are spatially very close. When detected from point clouds, two primi-

tives are said strongly-connected if at least two inlier points �tted each to one

of the two primitives are mutual neighbors in the k-nearest neighbor graph

of the input points. In case of input meshes, two primitives are strongly-

connected if at least one inlier facet from the �rst primitive share an edge

with an inlier facet of the second primitive. We operate our analysis on the

connectivity graph where each node is associated with a primitive, and each

edge with a pair of strongly-connected primitives. From real-world data,

such a graph usually contains errors with missing and invalid connections.

68 Chapter 5. Piecewise-planar reconstruction

Our strategy is to search for structurally-valid facets in this graph.

Extracting corners, creases and border polygons. We �rst detect

all the 3-cycles in the connectivity graph, i.e. triples of primitives that are

mutually connected. The point located at the intersection of the three cor-

responding planes is called a corner if it is close from the α-shapes of the

three primitives. In practice, we impose a maximal distance of 5% of the

3D bounding box diagonal. This condition allows us to ignore a corner posi-

tioned far away from its primitives, which typically occurs when primitives

are nearly parallel. We then detect creases, i.e. the line-segments linking

pairs of corners which have exactly two primitives in common. Finally, we

extract border polygons of each primitive, i.e. the simple cycles of creases

lying on the primitive.

(a) Connectivity graph (b) Corners and creases on plane i

i

j1 j2

j3

j4

j5

Figure 5.3: Data consistency condition. Primitive i is strongly connected

to 5 primitives j1, .., j5. In the connectivity graph (a), we detect 3-cycles

(black curved arrows) that correspond to (corner) points at the intersection

of 3 planes in the 3D space (see colored dots in (b)). We then detect creases

(red edges) by searching the pairs of corners which have exactly 2 primitives

in common. A close sequence of creases (see red curved arrow) is a border

polygon. The latter is not a structural facet on the shown example because

the data consistency condition is not valid: the facet does not overlap well

with the α-shape of plane i (see grey polygon Âi).

Extracting structural facets. A primitive with border polygons hosts

a facet which is potentially a good candidate to be part of the output surface.

In presence of one border polygon, this facet is simply de�ned as its inside

surface. When two border polygons are nested, ie one of these polygons is

contained in the second one, we de�ne the facet as the surface in between

the two polygons. When border polygons intersect, we do not create facet

5.2. Connectivity analysis 69

to avoid non-manifold degeneracies. Such a facet is called a structural facet

if two conditions are respected:

• Data consistency : The facet must strongly overlap with the α-shape

of the primitive,

• Structural validity : all the creases lying on a primitive must belong to

the border polygons of that primitive.

The �rst condition checks whether the facet is well recovered by the α-

shape of the primitive as illustrated in Figure 5.3. In practice, we impose

an overlapping ratio higher than 0.9 between the facet and the α-shape of

the primitive. The second condition guarantees that the facet is unique and

connect in a 2d-manifold way with facets induced by the other primitives. It

thus prevents from structural degeneracies, in particular the crossing of the

facet by another primitive. An example of con�guration that does not ful�ll

this condition is illustrated in Figure 5.4.

(a) Connectivity graph (b) Corners and creases on plane i

i

j1 j2

j3

j4

j5

j6

j7

j8

Figure 5.4: Structural validity. Continuing on the example of Figure 5.3,

3 more primitives j6, j7 and j8 are strongly connected to primitive i. The

structural validity condition is not respected here because the left isolated

crease does not belong to the border polygon.

Structural facets connect between each others to form 2d-manifold poly-

hedral surface components that partially describe the observed object. The

border edges of these components necessarily lie on the remaining primitives:

we call them anchor edges. We impose the structural facets to be part of the

�nal output mesh and discard their corresponding primitives for the subse-

quent steps. We denote by P, the set of remaining primitives.

70 Chapter 5. Piecewise-planar reconstruction

d
ef
ec
t-
fr
ee

+
1
%

n
o
is
e

(a) (b) (c)

Figure 5.5: Connectivity analysis on Fandisk. Primitives and associated

connectivity graph (b) are typically accurate when input data (a) is clean

(top). Our quick connectivity analysis allows us to process 36 of the 45 initial

primitives on the top example, leading to the reconstruction of 36 structural

facets (c). When data is defect-laden, for instance highly noisy (bottom),

the connectivity analysis is less e�cient: connectivity graph contains many

ambiguities that restricts the number of structural facets. Nevertheless the

7 structural facets recovered on the bottom example are all relevant. Anchor

edges are colored in red in (c).

5.3. Space partitioning 71

This mechanism solves obvious plane assembling situations to lighten

the time-consuming slicing operations that come next. It is less e�cient in

presence of defect-laden data where few structural facets are extracted in

practice, as illustrated in Figure 5.5. That said, the recovered structural

facets are relevant as the data consistency and structural validity conditions

are strict and highly selective. Choosing to detect more structural facets,

potentially wrong ones, and to let following steps selecting them is a more

robust alternative, but it would lead to a much more complex partitioning

data structure where all primitives should be inserted. This would signif-

icantly reduce scalability and increase running times with respect to our

strategy.

5.3 Space partitioning

Primitive slicing is usually performed in a greedy manner in the literature.

Typically, one �rst computes the slicing domain of each primitive, i.e. the

polygon lying on the primitive plane and bounded by the 3D bounding box

of the observed object. Then, the 3D bounding box is divided into polyhedra

by inserting one per one each slicing domain in an arbitrary order: the �rst

slicing domain splits the 3D bounding box into 2 polyhedra, the second slic-

ing domain typically splits the these two polyhedra into four polyhedra, etc.

Because such a slicing strategy considers the intersection of all pairs of slicing

domains, the number of polyhedra increases exponentially with respect to

the number of primitives. In practice, only a small portion of these intersec-

tions is relevant. To reduce the computational burden of this operation, we





restrict the pairs of primitives to be sliced. We

de�ne the notion of soft-connectivity to avoid in-

tersecting slicing domains whose primitives are

not close enough. Two primitives are said softly-

connected if their ε-bounding boxes intersect in-

side the 3D bounding box of the observed ob-

ject. This connectivity relationship is fast to compute and less restrictive

than strong-connectivity.

As illustrated in Figure 5.6, this strategy allow us to strongly reduce

the complexity of the partitioning data-structure when combined with the

structural facets extracted in Section 5.2. Note that more advanced connec-

tivity relationships inspired from collision detection problems could be used

to better match primitives, but this would be more time-consuming than a

direct distance between 3D rectangles.

72 Chapter 5. Piecewise-planar reconstruction

(a) (b)

Figure 5.6: Primitive slicing with and without structural facets. Intersecting

the 45 primitives of the defect-free version of the Fandisk model (see Figure

5.5) produces a complex partition composed of nearly 2K facets (a). By em-

bedding the 36 structural facets (grey mesh), the complexity of the partition

with the 9 remaining primitives drops to less than a hundred facets (b).

ε = 1 ε = 0.1 ε = 0.01

Input mesh

& primitives

Figure 5.7: Soft-connectivity. When all the remaining primitives intersect

with each others (ε = 1), the 2D partition of the front facade of the building

is over-fragmented (see colored polygons on the top right frame with the

anchor edges in red and the intersection lines in blue; polygons with a black

dot indicate they belong to the output surface on the left). Decreasing ε

reduces the complexity of 2D partitions. In presence of holes in the input

mesh, primitive intersections can be missed when ε is too low (see the missing

intersection between the front and left facade in the case where ε = 0.01). ε

is expressed as a ratio of the bounding box diagonal of the scene.

5.3. Space partitioning 73

Figure 5.8: Slicing operations. (a): we �rst compute the slicing domain

(back lines) of primitive i and insert the anchor edges associated with this

primitive (red segments). (b): we then insert line-segments de�ned as the

intersection with the slicing domains of softly connected primitives (blue

lines) and extend anchor edges whose extremities are not connect to other

anchor edges (dashed red lines). (c): the intersections of these di�erent

lines and edges give us the 2D partition of polygonal facets associated with

primitive i.

In practice, we �rst intersect the slicing domains of softly-connected prim-

itives to form a 2D partitions of polygonal facets. Potential anchor edges

lying on primitives are then inserted into the corresponding 2D partitions.

The anchor edges whose extremities are not connected to other anchor edges

are extended until meeting an intersection line or the border of the slicing

domain. We �nally split edges that cross anchor edges. Figure 5.8 illustrates

these di�erent slicing operations. Note that such a strategy generates a set

of polygonal facets which can possibly intersect between each others without

necessarily sharing an edge.

The value of ε controls the complexity of the partitioning data-structure,

as illustrated in Figure 5.7. Choosing a low ε value gives a set of light 2D

partitions, low running time and low memory consumption, but is less likely

to be robust to missing data.

We denote by F , the set of polygonal facets contained in all the 2D par-

titions, and E , the set of edges. Note that edges are typically adjacent to

four facets, except in case of anchor edges and rare situations where at least

three primitives intersect along the same line.

74 Chapter 5. Piecewise-planar reconstruction

5.4 Surface extraction

Contrary to existing methods [CLP10, NW17, VLA15], our set of polygonal

facets F and edges E does not necessarily constitute a regular partition of

polyhedral cells in the sense that cells can overlap and polygonal facets can

intersect between each others. Traditional polyhedron labeling methods by

Graph-Cut [CLP10, VLA15] not being applicable to our partition, we adopt

a more �exible facet selection approach inspired by the integer programming

formulation of [NW17]. In particular, such a formulation allows us to impose

some geometric constraints on the expected solution, e.g. the intersection-

free guarantee. Contrary to [NW17], our energy model (i) operates on an

irregular partition that requires additional linear constraints and (ii) relies

on a new data term that does not directly depend on time-consuming mea-

surements to input data.

We denote by xi = {0, 1} the activation state of facet i ∈ F , and by

x = (xi)i∈F a con�guration of activation states for all facets in F . The set
of active facets, i.e. so that xi = 1, constitutes the polygonal facets of the

output surface.

Energy. We measure the quality of a con�guration x with a two-term

energy of the form

U(x) = (1− λ)D(x) + λV (x) (5.1)

where D(x) and V (x) are terms living in [0, 1] measuring data consistency

and surface complexity. λ ∈ [0, 1] is a parameter balancing these two terms.

The linear term D(x) encourages facets recovered by inliers to be acti-

vated as:

D(x) = β

(
1−

∑
i∈F

Ai
A
xi

)
+ (1− β)

(∑
i∈F

Ai − Âi
A− Â

xi

)
(5.2)

where Ai is the area of facet i, Âi the area of α-shape of the inliers falling in

facet i, A the sum of areas of all facets, Â the sum of areas of all primitive α-

shapes. The �rst part of the expression encourages the activation of facets ho-

mogeneously recovered by

Ai

i

Ai

data. Because the cost of non-activation

is null, the second part of the expression

is required to penalize the non-activation of

facets. β is a parameter living in [0, 1] that

allows these the two opposite forces to be

5.4. Surface extraction 75

counter-balanced. It acts as a trade-o� be-

tween local correctness of facets and global coverage. In our experiments, we

set β to 0.5, except for inputs with missing data where the value is increased

to 0.7.

Input mesh λ = 0.2 λ = 0.5 λ = 0.7

Figure 5.9: Impact of parameter λ. Increasing λ reduces the complexity

of the output model. At λ = 0.7, only a small portion of the 21 detected

primitives plays a role in the output model. Note how the inner courtyard

disappears.

The quadratic term V (x) favors low complexity output surface in a sim-

ilar way than the one proposed by [NW17]

V (x) =
1

|E∼|
∑

(i,j)∈E∼

1{i./j}xixj (5.3)

where E∼ is the set of pairs of facets in F that share an edge, |E∼| its cardi-
nality, 1. the Heaviside function, and i ./ j the geometric relationship which

is true when facets i and j are not coplanar. This term favors output sur-

faces with large facets by penalizing the presence of creases, as illustrated in

Figure 5.9.

Constraints. We introduce three linear constraints in order to impose

some geometric guarantees on the output surface.

• Structural constraint imposes the structural facets to be active, i.e.

part of the output surface (Eq. 5.4):

xi = 1, ∀i ∈ Fs (5.4)

where Fs corresponds to the set of structural facets.

• 2d-manifold and watertight constraint traditionally imposes each edge

to be shared by zero or two facets. As input points have often missing

76 Chapter 5. Piecewise-planar reconstruction

parts on their 3D bounding box (see for instance Church and Face in

Figure 5.11), we relax the watertight constraint on edges lying on the

3D bounding box. This allow us to avoid either shrinking the output

surface or increasing computational complexity by adding facets of the

six sides of the 3D bounding box in F . Note that, for a strict water-

tightness, such border edges can be easily �lled in as post-processing.

We formulate this constraint as∑
k∈Fe

xk = 0 or 1, ∀e ∈ Eborder (5.5)

∑
k∈Fe

xk = 0 or 2, ∀e ∈ Eborder (5.6)

where Fe is the set of facets adjacent to edge e, Eborder is the set of

edges lying on one of the six sides of the 3D bounding box, and Eborder
its complementary set in E .

• Intersection-free constraint. As F can contain facets that intersect, we

impose such pairs not to be active at the same time

xi + xj = 0 or 1 ∀(i, j) ∈ I (5.7)

where I is the set of pairs of facets in F that intersect. Note that

when ε is set to 1, this constraint is not necessary as the partition is

guaranteed to be free of intersecting facets by construction.

Figure 5.10 shows the impact of these constraints on the output solution.

The activation of the 2d-manifold and watertight constraint is required in

most cases, unless the end-user is satis�ed with a rough polygon soup. The

activation of the intersection-free constraint is required only when input data

contained defects as noise and outliers.

Optimization. We search for the con�guration x that minimizes the

energy U while imposing Eq. 5.4, 5.5, 5.6 and 5.7 to be true. We solve this

quadratic optimization problem under linear constraints using a standard

integer programming library [GO16]. In practice, we turn it into a linear

optimization problem by inserting the extra-variables yk = xixj .

5.5 Experiments

The algorithm has been implemented in C++, using the Computational Ge-

ometry Algorithms Library [The17] which provides the basic geometric tools

for mesh-data structures.

5.5. Experiments 77

intersection-free ON

2d-manifold ON

intersection-free OFF

2d-manifold ON

intersection-free ON

2d-manifold OFF

d
ef
ec
t-
fr
ee

+
1
%

n
o
is
e

Figure 5.10: Impact of constraints. Without activating the 2d-manifold and

watertight constraint, the output surface exhibits poorly connected facets as

well as holes and edges adjacent to more than two facets (right). Deactivating

the intersection-free constraint has no impact on the quality of the output

mesh when input data is defect-free (top-middle) but tends to make the

output surface too complex with groups of facets that self-intersect (bottom-

middle).

Flexibility. The algorithm has been tested on a variety of data from

urban and indoor structures to mechanical pieces through free-form objects

(see Figure 5.11 and Figure 5.12 for visual results). Although it performs

best on piecewise-planar objects and scenes, our algorithm can handle a large

number of primitives necessary to approximate free-form shapes at di�erent

levels of detail, as illustrated in Figure 5.14. Di�erent types of acquisi-

tion systems have also been used to generate the datasets, including Laser,

e.g. Euler, Hand and Lans, multi-view stereo, e.g. Cottage, Building block,

Capron, Block 1 and Block 2, sampling points from CAD model, e.g. Chair

and Kinect, e.g. Rubbish bin and Couch. Because the data term of our

energy measures surface consistency with respect to primitives directly, our

algorithm is weakly a�ected by the type of acquisition systems as long as

primitives �t well to input data. Moreover, we also perform our approach

on LOD generation of urban scene as shown in Figure 5.13. The output

polygonal mesh of each building at LOD1 and LOD2 are highly consistent

with CityGML formalism [GP12].

78 Chapter 5. Piecewise-planar reconstruction

input data detected primitives output mesh

E
u
le
r

In
d
o
o
r

H
o
u
se

F
a
ce

C
o
u
ch

C
h
u
rc
h

Figure 5.11: Results on di�erent man-made objects and urban scenes. Our

algorithm o�ers a good versatility by operating on di�erent types of objects

and scenes without any speci�c geometric assumption. Note, in particular,

that our con�gurations of primitives are neither regularized nor �ltered.

5.5. Experiments 79

input data detected primitives output mesh

B
lo
ck

2
L
a
n
s

B
lo
ck

1
C
a
p
ro
n

C
h
a
ir

Figure 5.12: More visualization results on di�erent man-made objects. Our

algorithm successfully assembling the detected planes into a polygonal mesh,

where each polygon preserves a meaningful part of the object.

80 Chapter 5. Piecewise-planar reconstruction

(a) input mesh (b) segmentation result by [VLA15]

(c) LOD1 plane detection (d) LOD1 mesh generation

(e) LOD2 plane detection (f) LOD2 mesh generation

Figure 5.13: LOD generation of urban scene. Starting from original mesh

(a), we �rst get segmentation results (b) and extract the individual buildings

composed of adjacent facets with label roof or facade. We then detect planes

of each building at LOD1 and LOD2 and assemble them as the corresponding

polygonal meshes.

5.5. Experiments 81

Input points #P = 20 #P = 50 #P = 100 #P = 300 #P = 600 #P = 1200

Input points #P = 50 #P = 100 #P = 300 #P = 600

Figure 5.14: Reconstruction of a free-form object at di�erent levels of details

(top: hand, bottom: Armadillo). Our algorithm can be used to approximate

free-form objects by piecewise planar representations. By detecting primi-

tives with an increasing precision, we produce a set of polygonal meshes at

di�erent levels of detail. The evolution of the geometric error of to input of

hand in function of the output complexity is given in Figure 5.15.

Error (% of the bounding box diagonal)

1

0.8

0.6

0.4

0.2

0

0 200 400 600 800 1000 1200

Number of planes

Figure 5.15: Error vs complexity on the Hand model (Figure 5.14). We

obtain a good trade-o� between geometric error and output complexity when

approximatively one hundred primitives are detected. The error is measured

as the Hausdor� distance from input points to output surface.

82 Chapter 5. Piecewise-planar reconstruction

330md
e
fe
c
t-
fr
e
e

+
0
.5
%

n
o
is
e

+
1
%

n
o
is
e

+
2
%

n
o
is
e

+
5
0
%

o
u
tl
ie
rs

Figure 5.16: Robustness to noise and outliers on dataset Museum. Our

output surface meshes (middle) are weakly a�ected by noise as long as prim-

itive detection can capture the main planar components of the object. When

adding 2% of noise (expressed w.r.t. the 3D bounding box diagonal), prim-

itives are no longer correctly detected. Yellow-to-black colored points (bot-

tom) represent the Hausdor� distance from the defect-free point cloud to

output surface (yellow = 0m, black ≥ 8m).

Robustness. As illustrated in Figure 5.16, our algorithm is relatively

robust to noise as long as primitives can be decently detected. When data

contain holes and missing areas as in Euler in Figure 5.11, the connectivity

analysis typically returns few structural facets, but the subsequent slicing

mechanism achieves to �ll in the missing areas. In practice, our algorithm

cannot handle large holes for which an extension of detected primitives is not

su�cient to describe the missing part. Globally speaking, the exploitation of

defect-laden data requires to increase the value of ε from 0.1 (default value)

to typically 0.3.

Performance. Our algorithm is designed to be scalable and fast through

two keys ingredients: a connectivity analysis to quickly process obvious as-

sembling situations, and a slicing mechanism operated on softly-connected

primitives only. Figure 5.17 shows the impact of these two ingredients on

output complexity and running time. Used simultaneously, they allows us

to strongly reduce running time from 43 minutes to 7 seconds on the shown

5.5. Experiments 83

M
e
c
h
a
n
ic
a
l

F
a
n
d
is
k

C
h
u
rc
h

E
u
le
r

I
n
d
o
o
r

C
o
u
c
h

F
a
c
e

input size 382K 27K 18K 4M 186K 460K 144K

#primitives 60 45 80 45 50 50 70

#structural facets 35 36 5 1 10 3 3

#facets in F 2.2K 213 1.9K 11.2K 3.1K 2.6K 6.6K

output complexity 298 89 291 1.1K 401 381 876

connectivity analysis (sec) 1.8 1.2 0.9 9 1 1.2 1.4

space partitioning (sec) 2.5 1 1.8 3 2 1.7 3

surface extraction (sec) 2.4 2 15 684 108 18 23

memory peak (Mb) 63 36 186 738 201 194 269

H
o
u
s
e

M
u
s
e
u
m

H
a
n
d
-2
0

H
a
n
d
-1
0
0

H
a
n
d
-3
0
0

H
a
n
d
-1
2
0
0

A
r
m
a
d
il
lo

6
0
0

input size 16K 129K 369K 369K 369K 369K 173K

#primitives 51 75 20 100 300 1200 600

#structural facets 5 10 0 8 23 84 31

#facets in F 3.1K 5.5K 429 7.3K 39K 71K 51.3K

output complexity 376 637 79 875 3747 7759 7281

connectivity analysis (sec) 0.3 1.6 1.5 2.7 11.1 21.9 13.2

space partitioning (sec) 2.2 0.9 0.6 4.2 21 81.8 50.4

surface extraction (sec) 62 5 10 45 286 529 282

memory peak (Mb) 201 167 45 141 546 741 1376

Table 5.1: Performance on some reconstructed models in terms of running

time and memory consumption. The output complexity is expressed in num-

ber of active facets returned by the surface extraction solver.

84 Chapter 5. Piecewise-planar reconstruction

soft-connectivity OFF soft-connectivity ON

st
ru
ct
u
ra
l
fa
ce
ts

O
N

st
ru
ct
u
ra
l
fa
ce
ts

O
F
F

|F| : 0.9K
#f : 249

T : 7sec

|F| : 2.8K
#f : 412

T : 27sec

|F| : 5.4K
#f : 924

T : 29sec

|F| : 34.5K
#f : 2.3K

T : 43min

Figure 5.17: Ablation study. Without soft-connectivity (ε = 1) and con-

nectivity analysis step, the number of facets |F| in the partition is huge,

leading to high running times T and a complex output surface likely to con-

tain artifacts (top left). Activating soft-connectivity (ε = 0.1) reduces the

complexity of the partition while improving the quality of the output surface

(top right). When a fair number of structural facets are detected during the

connectivity analysis step (here 35 structural facets over 60 primitives), the

partition is even more compact as only a part of primitives are sliced (bot-

tom right). The facets in the output sufaces are represented through yellow

(border) and black (internal) edges, and their number is given by #f .

5.5. Experiments 85

example. As illustrated in Table 5.1, running time does not depend only on

the size of input data and the number of primitives, but also on the amount

of structural facets. The latter is high typically on data weakly corrupted

by defects and with few free-form components. In such cases, the algorithm

is faster.

Cottage Stanford bunny

#P |F| #f T(s) #P |F| #f T(s)

Structuring [LA13] 19 272K 34K 21 100 63K 12K 6

PCC [CLP10] 21 3.7K 288 8 100 165K 10.5K 58

Poly�t [NW17] 23 1.8K 112 19 100 147K 5.6K 2449

Ours 21 0.9K 83 8 100 5.7K 0.6K 22

Rubbish bin Building block

#P |F| #f T(s) #P |F| #f T(s)

Structuring [LA13] 100 115K 20K 11 150 360K 43K 7

PCC [CLP10] 100 211K 7.9K 91 150 651K 22K 387

Poly�t [NW17] 30 3.9K 0.5K 57 54 6.4K 0.9K 1267

Ours 100 8.7K 1.2K 14 150 12.4K 1.2K 126

Table 5.2: Quantitative evaluation for models presented on Figures 5.18 and

5.19. #P, |F| #f and T refer to the number of primitives, the number of

candidate facets in F , the number of facets in the output model, and the

running time respectively.

Comparisons. We compared our algorithm with the connectivity-based

method Structuring [LA13] and the slicing-based methods Poly�t [NW17]

and Polyhedral Cell Complex (PCC) [CLP10]. For the latter, no primitive

has been arti�cially added along vertical and horizontal axes in order to fairly

compare the assembling mechanisms. As illustrated in Figure 5.18 and Ta-

ble 5.2, we deliver similar results than Poly�t and PCC on simple examples

requiring few primitives as Cottage, while being slightly faster. On more

challenging datasets where hundred primitives are necessary to decently ap-

proximate the objects as Rubbish bin, our algorithm performs better in terms

of visual quality, output complexity and running time. Structuring is fast

and scalable but the mixture of large polygonal facets with �ne triangular

meshes leads to complex output models which is not a simple assembling

of planes. Poly�t and PCC which rely on greedy slicing mechanisms are

relatively slow and have memory consumption problems. In particular, we

reduced the number of primitives for Poly�t on Rubbish bin so that the al-

gorithm could run in reasonable time. PCC and Poly�t produce models

86 Chapter 5. Piecewise-planar reconstruction

Cottage Stanford bunny Rubbish bin

In
p
u
t

S
tr
u
ct
u
ri
n
g
[L
A
1
3
]

P
C
C

[C
L
P
1
0
]

P
o
ly
�
t
[N
W
1
7
]

O
u
rs

Figure 5.18: Visual comparison with state-of-the-art methods. Given similar

con�gurations of primitives, our algorithm produces artifact-free models with

a lower complexity in shorter running times than Structuring, PCC and

Poly�t as illustrated in Table 5.2.

5.5. Experiments 87

Input Structuring PCC

Poly�t Ours

error (in meter)

0 ≥ 1

e : 0.24 e : 0.35

e : 0.49 e : 0.33

Figure 5.19: Geometric accuracy on dataset Building block. The yellow-to-

black colored points represents the Hausdor� distance from the input points

to output surface. Structuring obtains the best RMS error e, but the model

is not compact as underlined in Table 5.2. Our error is the second best,

outclassing PCC and Poly�t which are penalized by dense space partitions

and data consistency terms a�ected by noisy input points.

with visual artifacts when approximating the free-form shapes of Standford

bunny. On such an object, many planes share almost straight angles, lead-

ing to a mislabeling of facets or cells when the set of candidates is huge (the

number of candidate facets for PCC and Poly�t is approximatively 30 times

higher than with our method) and the data consistency term of the labeling

energy does not rely on primitives only. Yet, these methods do not o�er a

special treatment to scalability, but rather focus on improving the quality of

primitives. Figure 5.19 shows the geometric accuracy of these methods on a

complex block of buildings. Our algorithm outclasses Poly�t and PCC while

being faster and delivering a more compact output model. More precise, we

argue that our algorithm improves the performance and the quality of output

from three aspects: (i) connectivity analysis recovers the border of certain

planes in a short time (ii) soft-connectivity highly decreases the number of

candidate facets in the solution space (iii) the designed constraints in Eq.

5.6 and 5.7 help exploring the solution space by avoiding the solver returning

unpromising solutions.

88 Chapter 5. Piecewise-planar reconstruction

input mesh detected planes output mesh

Figure 5.20: Failure case. Given the planes detected from an input mesh with

huge missing parts (i.e. facades in front view), our algorithm fails recovering

the missing parts.

Limitations. Our work focuses on primitive assembling, not on prim-

itive detection or primitive completion. As a result, if primitives are badly

detected from input points, we do not o�er a special treatment to repair

them, contrary to PCC or Poly�t. This typically happens when inputs con-

tain large missing parts. When no detected primitive can decently �ll in the

missing parts, our algorithm typically shrinks the surface as shown in Figure

5.20. PCC which arti�cially adds primitives on these parts along vertical

and horizontal directions is then a more suitable choice. Similarly, Poly�t

delivers more regularized surfaces for simple objects thanks to its �ltering

of primitives. Yet, the primitive treatments of these two methods could be

also employed with our work in order to rectify our input primitives. Also,

the connectivity analysis step typically retrieves less structural facets from

defect-laden data, as shown in Table 5.1. The performances of our method

are then reduced in this case. Globally speaking, one could choose to detect

more structural facets, potentially wrong ones, and to let the surface extrac-

tion solver selecting them is a more robust alternative. This would lead to

a much more complex partitioning data structure where all planes should

be inserted. This would thus signi�cantly reduce scalability and increase

running times with respect to our strategy.

5.6 Conclusion

We proposed a polygonal surface reconstruction algorithm from 3D data that

speci�cally addresses the scalability issue existing in the �eld. The algorithm

is built on several key technical ingredients that allows us to operate on an

e�cient and compact partitioning data-structure. We proposed (i) the prin-

ciple of soft-connectivity that avoids slicing improbable pairs of primitives,

(ii) an analysis of the connectivity of primitives in order to quickly solve

obvious primitive assembling situations, and (iii) a surface extraction energy

5.6. Conclusion 89

which estimates the quality of a solution without operating time-consuming

measurements to input 3D data. Our algorithm outperforms state-of-the-

art methods on challenging input data in terms of performance and output

complexity.

Chapter 6

Conclusion and perspectives

6.1 Conclusion

In this thesis, we investigated the problem of generating CAD-style models

from raw 3D data by proposing 3 contributions.

Semantic segmentation of 3D data. In Chapter 3, we developed a

pyramid structure network for deep feature learning from raw point cloud.

Being concatenated after state-of-the-art baseline models, our 3d-PSPNet

aggregated multi-scale sub-regional contextual features with local features

and produce better semantic segmentation results than only using the base-

line models on three public datasets. Experimental results proved our idea

that enlarging the receptive �eld of each point is a crucial step to enrich the

pointwise feature. We also investigated several ablation studies and chose

the best hyperparameters for our architecture to balance segmentation ac-

curacy and computational cost. In summary, this step enables us to extract

individual objects from complex scenes and work on each of them afterwards.

The deep learning techniques applied on raw point cloud is a new �eld

in 3D Computer Vision. We believe more sophisticated architectures link-

ing the points at di�erent neighborhoods will capture richer contextual clues

and produce better prediction results. So far, we did not test our methodol-

ogy on dense urban mesh, where current main obstacle is the lack of public

datasets with accurate ground truth label of each triangle facet. We believe

that with the availability of more public datasets, the study of deep learning

techniques on dense mesh will be more commonly used in the future.

Shape detection on multiple structural scales. In Chapter 4, we

explored a mechanism to automatically extract a set of plane con�gurations

that capture the shape and structure of man-made objects at di�erent key

abstraction levels. The intuition of the whole framework is that the struc-

tural plane con�gurations are more likely to be located along the diagonal

of a two-dimensional parameter space. Following this observation, we �rst

proposed a simple but robust priority metrics to generate a trajectory along

the diagonal direction of this parameter space by shape collapse. Second,

92 Chapter 6. Conclusion and perspectives

we designed a learning-based technique to characterize each con�guration

and detect existing structural formalisms such as the CityGML Levels Of

Details. The extracted higher-level geometric shapes not only decrease data

complexity but also provides a set of clean intermediate representation for

further use.

Our current framework is designed based on a collapse-then-detection

strategy. In the shape collapse procedure, we chose the Euclidean distance

as priority metrics after extensive experimental evaluation as a good com-

promise between accuracy and performance. This priority metrics works well

on highly-structured objects such as buildings. However, it might miss some

structural scales for objects that are not so-well structured such as free-form

objects. This leads to a wrong scale detection result if the collapsing trajec-

tory is not correct. Hence, we would like to utilize scale detection results to

instruct the shape collapse process in an on-the-�y way. More precisely, a

possible solution is to learn a metrics from a training set of trajectories that

can enable us to explore and track the structural scales in the parameter

space in a more re�ned way.

Polyhedral surface reconstruction. In Chapter 5, we designed a

hybrid algorithm to assemble the isolated planar shapes into a CAD-style

model which is compact and structure-aware. We mainly addressed the

scalability issue of the proposed method with respect to input planes. We

�rstly processes partial input planes by analyzing the corresponding adja-

cency graph. This e�cient step enabled us to quickly recover the border

shapes of several planes and embed them as geometric constraints to recon-

struct the �nal surface model. After that, we sliced the remaining planes by

a soft-connectivity mechanism and formulated the surface reconstruction ap-

proach as a constrained integer programming problem. Experimental results

illustrated that the whole pipeline generates high quality CAD-style mod-

els ranging from free-form shapes to man-made objects in an e�cient way.

We argued that the improvement of performance comes from two aspects:

(i) e�cient graph analysis processed partial primitives (ii) soft-connectivity

mechanism highly reduced the number of variables for optimization problem.

In this part, the parameter ε specifying the soft-connectivity relationship

plays an important role in controlling how far the connected primitives can

be located from each other to guarantee a correct reconstruction. This mech-

anism recovers the missing intersection information e�ciently and produces

light partitioning results for the downstream processing. In future work, we

would like to investigate on the automatic selection of ε for each planes. We

6.2. Perspectives 93

also wish to understand the hierarchical relationships between primitives in

order to detect and utilize high order structural information as symmetry to

avoid some meaningless intersection calculation.

6.2 Perspectives

The contributions of this PhD work constitute only a tiny step towards the

automatic reconstruction of objects in the form of a CAD-style model. The

quality of output models delivered in this work is still far from outperforming

the one of real CAD models. Several research directions can be explored to

reduce this gap.

Mixing data modalities. Our current framework is designed to han-

dle 3D raw data collected by di�erent kinds of sensors. This general pipeline

mainly focus on geometric attributes in each step. However, some data acqui-

sition techniques also record other attributes such as color information from

RGB-D sensors and intensity from LiDAR scanners. Adapting those features

into our current framework will improve both shape detection and surface

reconstruction step. For instance, an appropriate balance between both ge-

ometric and photometric contributions to the priority metrics in Chapter 4

will decrease the uncertainty while exploring the scale space. We can also

improve the data consistency term of each candidate facet de�ned in 5.2

while considering the photometric distance between each point to the corre-

sponding facet.

Mixing shape modalities. Our system is proposed according to the

assumption that the surface of man-made objects can be approximated by

linear geometric shapes. This restrictive use of geometric primitives facili-

tates the design of geometric modeling algorithm and makes it e�cient to

process large number of planes. However, there are large number of objects

preserving free-form shapes, which can be approximated by other geometric

primitives like cylinders, spheres or even more complex parametric functions

such as NURBS. Detecting and modeling the geometric relationships between

di�erent kinds of primitives is the key problem to be addressed. In addition,

current 3D arrangement solutions can not handle non-convex shapes.

3D object detection. Another way to extract objects-of-interest from

complex scenes can be done by 3D object detection. This hot topic has

attracted more attention recently with the development of advanced deep

learning techniques. The main di�culty is to extract relevant features from

sparse point clouds and missing parts in case of object occlusions. Those is-

94 Chapter 6. Conclusion and perspectives

sues impact gravely the feature learning across di�erent neighborhoods. One

potential future work is to design more intelligent network structures that

can recover the missing knowledge by discovering the relationships between

points in each sub-region. We believe this direction will promote rapidly

with the availability of more public datasets.

More e�cient space partitioning methods. We proposed a soft-

connectivity mechanism in Chapter 5 to detect the collision between planar

primitives. This choice decreases the computational cost compared with typ-

ical hard-connectivity strategy and leads to a lighter data-structure. How-

ever, current space partitioning mechanism loses magic facing large scale

objects which can be approximated by millions of planes. Designing more

intelligent collision detection approach is a future path to handle this large

number of planes.

Joint semantic and geometric reconstruction. In this thesis, we re-

construct the surface of scanned data mainly in a geometric level, resulting in

a lack of semantic information. However, semantic-aware reconstruction re-

sults bring lots of bene�ts to downstream applications. For instance, robots

will interact with its environments better if it can recognize the semantic

meaning of objects around it. To achieve this goal, existing approaches

[HZC+13, SHP+16] are designed to integrate semantic information with ge-

ometric modeling and reconstruct the world in a joint way. However, these

methods can not handle large scale urban scenes and output dense meshes

that are not structure-aware. We believe extended work can be done by

incorporating both scalability and structure-aware issues.

6.2. Perspectives 95

List of publications:

Planar shape detection at structural scales [FLD18]

Hao Fang, Florent Lafarge, Mathieu Desbrun

IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

2018

Fast and scalable assembling of planar primitives into polygonal

meshes.

Hao Fang, Florent Lafarge

Submitted to IEEE Transaction on Pattern Analysis and Machine Intelli-

gence

Pyramid scene parsing network in 3D: improving semantic seg-

mentation of point clouds with multi-scale contextual information

Hao Fang, Florent Lafarge

Submitted to ISPRS Journal of Photogrammetry and Remote Sensing.

Bibliography

[ASF+13] M. Arikan, M. Schwarzler, S. Flory, M. Wimmer, and

S. Maierhofer. O-snap: Optimization-based snapping for

modeling architecture. Trans. on Graphics, 32(1), 2013.

(Cited on pages 5, 10 and 23.)

[ASZ+16] Iro Armeni, Ozan Sener, Amir R Zamir, Helen Jiang, Ioannis

Brilakis, Martin Fischer, and Silvio Savarese. 3d semantic

parsing of large-scale indoor spaces. In Proc. of Computer

Vision and Pattern Recognition (CVPR), 2016. (Cited on

pages 15, 33 and 34.)

[BdLGM14] Alexandre Boulch, Martin de La Gorce, and Renaud Marlet.

Piecewise-planar 3d reconstruction with edge and corner reg-

ularization. Computer Graphics Forum, 33(5), 2014. (Cited

on pages 9, 10 and 24.)

[BGLSA18] Alexandre Boulch, Joris Guerry, Bertrand Le Saux, and Nico-

las Audebert. Snapnet: 3d point cloud semantic labeling

with 2d deep segmentation networks. Computers & Graphics,

71:189�198, 2018. (Cited on pages 8 and 16.)

[BKC15] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla.

Segnet: A deep convolutional encoder-decoder architecture

for image segmentation. arXiv preprint arXiv:1511.00561,

2015. (Cited on pages 8 and 16.)

[BLS16] Filip Biljecki, Hugo Ledoux, and Jantien Stoter. An improved

LOD speci�cation for 3D building models. Computers, En-

vironment and Urban Systems, 59:25�37, 2016. (Cited on

pages 6 and 7.)

[BMP01] Serge Belongie, Jitendra Malik, and Jan Puzicha. Shape con-

text: A new descriptor for shape matching and object recog-

nition. In Advances in neural information processing systems,

pages 831�837, 2001. (Cited on page 13.)

[Bre01] Leo Breiman. Random forests. Machine learning, 45(1):5�32,

2001. (Cited on page 55.)

[BSVG15] H. Bodis-Szomoru, Riemenschneider and L. Van Gool. Su-

perpixel meshes for fast edge-preserving surface reconstruc-

98 Bibliography

tion. In Proc. of Computer Vision and Pattern Recognition

(CVPR), 2015. (Cited on page 25.)

[BTS+17] Matthew Berger, Andrea Tagliasacchi, Lee M. Seversky,

Pierre Alliez, Gael Guennebaud, Joshua A. Levine, Andrei

Sharf, and Claudio T. Silva. A survey of surface reconstruc-

tion from point clouds. Computer Graphics Forum, 36(1),

2017. (Cited on page 7.)

[BZSL13] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann Le-

Cun. Spectral networks and locally connected networks on

graphs. arXiv preprint arXiv:1312.6203, 2013. (Cited on

page 17.)

[CC08] J. Chen and B. Chen. Architectural modeling from sparsely

scanned range data. IJCV, 78(2-3), 2008. (Cited on pages 5,

10, 20 and 23.)

[CF14] R. Cabral and Y. Furukawa. Piecewise planar and compact

�oorplan reconstruction from images. In Proc. of Computer

Vision and Pattern Recognition (CVPR), 2014. (Cited on

page 25.)

[CL96] Brian Curless and Marc Levoy. A volumetric method for

building complex models from range images. In Proceedings

of the 23rd annual conference on Computer graphics and in-

teractive techniques, pages 303�312. ACM, 1996. (Cited on

page 22.)

[CLP10] A.-L. Chauve, P. Labatut, and J.-P. Pons. Robust piecewise-

planar 3D reconstruction and completion from large-scale un-

structured point data. In CVPR, 2010. (Cited on pages 9,

10, 24, 49, 60, 62, 74, 85 and 86.)

[CMW+17] Xiaozhi Chen, Huimin Ma, Ji Wan, Bo Li, and Tian Xia.

Multi-view 3d object detection network for autonomous driv-

ing. In IEEE CVPR, volume 1, page 3, 2017. (Cited on

page 19.)

[CPK+18] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos,

Kevin Murphy, and Alan L Yuille. Deeplab: Semantic image

segmentation with deep convolutional nets, atrous convolu-

tion, and fully connected crfs. IEEE transactions on pat-

tern analysis and machine intelligence, 40(4):834�848, 2018.

(Cited on pages 8 and 16.)

Bibliography 99

[CSAD04] D. Cohen-Steiner, P. Alliez, and M. Desbrun. Variational

shape approximation. In Siggraph, 2004. (Cited on page 23.)

[CSM12] Peter Carr, Yaser Sheikh, and Iain Matthews. Monocular

object detection using 3d geometric primitives. In ECCV,

2012. (Cited on page 9.)

[CY00] J. Coughlan and A. Yuille. The manhattan world assump-

tion: Regularities in scene statistics which enable bayesian

inference. In NIPS, 2000. (Cited on page 25.)

[DBI18] Haowen Deng, Tolga Birdal, and Slobodan Ilic. Ppfnet:

Global context aware local features for robust 3d point match-

ing. In Proc. of Computer Vision and Pattern Recognition

(CVPR), 2018. (Cited on page 16.)

[DCS+17] Angela Dai, Angel X Chang, Manolis Savva, Maciej Halber,

Thomas Funkhouser, and Matthias Nieÿner. Scannet: Richly-

annotated 3d reconstructions of indoor scenes. In Proc. of

Computer Vision and Pattern Recognition (CVPR), 2017.

(Cited on page 33.)

[DH72] Richard O Duda and Peter E Hart. Use of the hough trans-

formation to detect lines and curves in pictures. Communi-

cations of the ACM, 15(1):11�15, 1972. (Cited on page 20.)

[DN18] Angela Dai and Matthias Nieÿner. 3dmv: Joint 3d-multi-view

prediction for 3d semantic scene segmentation. arXiv preprint

arXiv:1803.10409, 2018. (Cited on page 16.)

[EKS83] H. Edelsbrunner, D. Kirkpatrick, and R. Seidel. On the shape

of a set of points in the plane. Trans. on Information Theory,

29(4), 1983. (Cited on page 67.)

[FB81] Martin A Fischler and Robert C Bolles. Random sample

consensus: a paradigm for model �tting with applications to

image analysis and automated cartography. Communications

of the ACM, 24(6):381�395, 1981. (Cited on page 19.)

[FCSS09] Yasutaka Furukawa, Brian Curless, Steven M Seitz, and

Richard Szeliski. Reconstructing building interiors from im-

ages. In Computer Vision, 2009 IEEE 12th International

Conference on, pages 80�87. IEEE, 2009. (Cited on page 22.)

[FLD18] Hao Fang, Florent Lafarge, and Mathieu Desbrun. Planar

shape detection at structural scales. In Proc. of Computer

100 Bibliography

Vision and Pattern Recognition (CVPR), 2018. (Cited on

page 95.)

[FMMCAJ13] Eduardo Fernandez-Moral, Walterio Mayol-Cuevas, Vicente

Arevalo, and Javier Gonzalez Jimenez. Fast place recognition

with plane-based maps. In ICRA, 2013. (Cited on page 9.)

[FTAB17] Engelmann Francis, Kontogianni Theodora, Hermans Alexan-

der, and Leibe Bastian. Exploring spatial context for 3d se-

mantic segmentation of point clouds. In Proc. of Interna-

tional Conference on Computer Vision (ICCV), Workshop,

2017. (Cited on pages 33 and 40.)

[GCO06] Ran Gal and Daniel Cohen-Or. Salient geometric features for

partial shape matching and similarity. ACM Transactions on

Graphics (TOG), 25(1):130�150, 2006. (Cited on page 14.)

[GFK+18] Thibault Groueix, Matthew Fisher, Vladimir G Kim, Bryan C

Russell, and Mathieu Aubry. Atlasnet: A papier-mâché ap-

proach to learning 3d surface generation. arXiv preprint

arXiv:1802.05384, 2018. (Cited on page 18.)

[GFP10] D. Gallup, J.-M. Frahm, and M. Pollefeys. Piecewise planar

and non-planar stereo for urban scene reconstruction. In Proc.

of Computer Vision and Pattern Recognition (CVPR), 2010.

(Cited on page 25.)

[GKF09] Aleksey Golovinskiy, Vladimir G. Kim, and Thomas

Funkhouser. Shape-based recognition of 3D point clouds in

urban environments. In ICCV, 2009. (Cited on page 14.)

[GO16] Inc. Gurobi Optimization. Gurobi optimizer reference man-

ual, 2016. (Cited on page 76.)

[GP12] G. Groger and L. Plumer. Citygml � interoperable seman-

tic 3d city models. Journal of Photogrammetry and Remote

Sensing, 71, 2012. (Cited on pages 52, 56 and 77.)

[HBL15] Mikael Hena�, Joan Bruna, and Yann LeCun. Deep convo-

lutional networks on graph-structured data. arXiv preprint

arXiv:1506.05163, 2015. (Cited on page 17.)

[HFBM13] Peter Henry, Dieter Fox, Achintya Bhowmik, and Rajiv Mon-

gia. Patch volumes: Segmentation-based consistent mapping

Bibliography 101

with rgb-d cameras. In 3D Vision-3DV 2013, 2013 Interna-

tional Conference on, pages 398�405. IEEE, 2013. (Cited on

page 5.)

[HFL12] Ruizhen Hu, Lubin Fan, and Ligang Liu. Co-segmentation

of 3d shapes via subspace clustering. In Computer graphics

forum, volume 31, pages 1703�1713. Wiley Online Library,

2012. (Cited on page 15.)

[HJS+14] J. Huang, T. Jiang, Z. Shi, Y. Tong, H. Bao, and M. Desbrun.

l1-based construction of polycube maps from complex shapes.

Trans. on Graphics, 33(3), 2014. (Cited on page 25.)

[HK12] Martin Habbecke and Leif Kobbelt. Linear analysis of nonlin-

ear constraints for interactive geometric modeling. In Com-

puter Graphics Forum, volume 31, 2012. (Cited on page 25.)

[HKLP09] Vu Hoang Hiep, Renaud Keriven, Patrick Labatut, and Jean-

Philippe Pons. Towards high-resolution large-scale multi-view

stereo. In Computer Vision and Pattern Recognition, 2009.

CVPR 2009. IEEE Conference on, pages 1430�1437. IEEE,

2009. (Cited on pages 3 and 5.)

[Hou62] Paul VC Hough. Method and means for recognizing complex

patterns, December 18 1962. US Patent 3,069,654. (Cited on

page 20.)

[HSKK01] Masaki Hilaga, Yoshihisa Shinagawa, Taku Kohmura, and

Tosiyasu L Kunii. Topology matching for fully automatic

similarity estimation of 3d shapes. In Proceedings of the 28th

annual conference on Computer graphics and interactive tech-

niques, pages 203�212. ACM, 2001. (Cited on page 14.)

[HSL+17] Timo Hackel, Nikolay Savinov, Lubor Ladicky, Jan DWegner,

Konrad Schindler, and Marc Pollefeys. Semantic3d. net: A

new large-scale point cloud classi�cation benchmark. arXiv

preprint arXiv:1704.03847, 2017. (Cited on pages 8 and 16.)

[HSSM14] Rostislav Hulik, Michal Spanel, Pavel Smrz, and Zdenek Ma-

terna. Continuous plane detection in point-cloud data based

on 3d hough transform. Journal of Visual Communication

and Image Representation, 25(1):86�97, 2014. (Cited on

page 20.)

102 Bibliography

[HWN18] Qiangui Huang, Weiyue Wang, and Ulrich Neumann. Recur-

rent slice networks for 3d segmentation of point clouds. In

Proc. of Computer Vision and Pattern Recognition (CVPR),

2018. (Cited on pages 8 and 18.)

[HWS16] Timo Hackel, Jan D Wegner, and Konrad Schindler. Fast se-

mantic segmentation of 3d point clouds with strongly varying

density. ISPRS Annals of Photogrammetry, Remote Sens-

ing & Spatial Information Sciences, 3(3), 2016. (Cited on

page 14.)

[HZC+13] Christian Hane, Christopher Zach, Andrea Cohen, Roland

Angst, and Marc Pollefeys. Joint 3d scene reconstruction and

class segmentation. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 97�104,

2013. (Cited on page 94.)

[HZvK+15] Ruizhen Hu, Chenyang Zhu, Oliver van Kaick, Ligang Liu,

Ariel Shamir, and Hao Zhang. Interaction context (icon):

towards a geometric functionality descriptor. ACM Transac-

tions on Graphics (TOG), 34(4):83, 2015. (Cited on page 15.)

[IKH+11] Shahram Izadi, David Kim, Otmar Hilliges, David

Molyneaux, Richard Newcombe, Pushmeet Kohli, Jamie

Shotton, Steve Hodges, Dustin Freeman, Andrew Davison,

et al. Kinectfusion: real-time 3d reconstruction and inter-

action using a moving depth camera. In Proceedings of the

24th annual ACM symposium on User interface software and

technology, pages 559�568. ACM, 2011. (Cited on page 22.)

[ISS17] Hamid Izadinia, Qi Shan, and Steven M Seitz. Im2cad. In

CVPR, 2017. (Cited on page 26.)

[JH99] Andrew E Johnson and Martial Hebert. Using spin images

for e�cient object recognition in cluttered 3d scenes. IEEE

Transactions on Pattern Analysis & Machine Intelligence,

(5):433�449, 1999. (Cited on pages 13 and 14.)

[KAMC17] Evangelos Kalogerakis, Melinos Averkiou, Subhransu Maji,

and Siddhartha Chaudhuri. 3d shape segmentation with pro-

jective convolutional networks. In Proc. of Computer Vision

and Pattern Recognition (CVPR), 2017. (Cited on pages 8

and 16.)

Bibliography 103

[KAZB18] A. Kaiser, J. Alonso, Y. Zepeda, and T. Boubekeur. A survey

of simple geometric primitives detection methods for captured

3d data. Computer Graphics Forum, 37, 2018. (Cited on

page 19.)

[KBH06] M. Kazhdan, M. Bolitho, and H. Hoppe. Poisson surface

reconstruction. In Symposium on Geometry Processing, 2006.

(Cited on page 22.)

[KH13] Michael Kazhdan and Hugues Hoppe. Screened poisson sur-

face reconstruction. ACM Transactions on Graphics (ToG),

32(3):29, 2013. (Cited on page 22.)

[KHS10] Evangelos Kalogerakis, Aaron Hertzmann, and Karan Singh.

Learning 3d mesh segmentation and labeling. ACM Trans-

actions on Graphics (TOG), 29(4):102, 2010. (Cited on

page 14.)

[KL17] Roman Klokov and Victor Lempitsky. Escape from cells:

Deep kd-networks for the recognition of 3d point cloud mod-

els. In Proc. of International Conference on Computer Vision

(ICCV), 2017. (Cited on page 17.)

[KML+17] Jason Ku, Melissa Mozi�an, Jungwook Lee, Ali Harakeh,

and Steven Waslander. Joint 3d proposal generation and

object detection from view aggregation. arXiv preprint

arXiv:1712.02294, 2017. (Cited on page 19.)

[KSH12] Alex Krizhevsky, Ilya Sutskever, and Geo�rey E Hinton. Im-

agenet classi�cation with deep convolutional neural networks.

In Proc. of Advances in Neural Information Processing Sys-

tems (NIPS), 2012. (Cited on page 16.)

[LA13] Florent Lafarge and Pierre Alliez. Surface reconstruction

through point set structuring. In Computer Graphics Forum,

volume 32, 2013. (Cited on pages 5, 10, 20, 23, 85 and 86.)

[LBF14] Kevin Lai, Liefeng Bo, and Dieter Fox. Unsupervised feature

learning for 3d scene labeling. In ICRA, 2014. (Cited on

page 56.)

[LC87] William E Lorensen and Harvey E Cline. Marching cubes: A

high resolution 3d surface construction algorithm. In ACM

siggraph computer graphics, volume 21, pages 163�169. ACM,

1987. (Cited on page 22.)

104 Bibliography

[LM11] Florent. Lafarge and Clément. Mallet. Building large urban

environments from unstructured point data. In Proc. of In-

ternational Conference on Computer Vision (ICCV), 2011.

(Cited on page 25.)

[LM12] Florent Lafarge and Clément Mallet. Creating large-scale city

models from 3d-point clouds: a robust approach with hy-

brid representation. International journal of computer vision,

99(1):69�85, 2012. (Cited on pages 8, 14 and 21.)

[LNSW16] Minglei Li, Liangliang Nan, Neil Smith, and Peter Wonka.

Reconstructing building mass models from uav images. Com-

puters & Graphics, 54:84�93, 2016. (Cited on page 5.)

[LPK07] Patrick Labatut, Jean-Philippe Pons, and Renaud Keriven.

E�cient multi-view reconstruction of large-scale scenes using

interest points, delaunay triangulation and graph cuts. In

Computer Vision, 2007. ICCV 2007. IEEE 11th International

Conference on, pages 1�8. IEEE, 2007. (Cited on page 22.)

[LPK09a] Patrick. Labatut, J.-P. Pons, and R. Keriven. Hierarchi-

cal shape-based surface reconstruction for dense multi-view

stereo. In ICCV workshops, 2009. (Cited on page 23.)

[LPK09b] Patrick Labatut, J-P Pons, and Renaud Keriven. Robust and

e�cient surface reconstruction from range data. In Computer

graphics forum, volume 28, pages 2275�2290. Wiley Online

Library, 2009. (Cited on page 22.)

[LS18] Loic Landrieu and Martin Simonovsky. Large-scale point

cloud semantic segmentation with superpoint graphs. In

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 4558�4567, 2018. (Cited on

page 18.)

[LSD15] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully

convolutional networks for semantic segmentation. In Proc.

of Computer Vision and Pattern Recognition (CVPR), 2015.

(Cited on pages 8 and 16.)

[LWC+11] Y. Li, X. Wu, Y. Chrysanthou, A. Sharf, D. Cohen-Or, and

N. Mitra. Glob�t: Consistently �tting primitives by discover-

ing global relations. Trans. on Graphics, 30(4), 2011. (Cited

on page 21.)

Bibliography 105

[LWN16] Minglei Li, Peter Wonka, and Liangliang Nan. Manhattan-

world urban reconstruction from point clouds. In Proc. of

European Conference on Computer Vision (ECCV), 2016.

(Cited on page 25.)

[LWYU18] Ming Liang, Shenlong Wang, Bin Yang, and Raquel Urtasun.

Deep continuous fusion for multi-sensor 3d object detection.

In Proceedings of the European Conference on Computer Vi-

sion (ECCV), pages 641�656, 2018. (Cited on page 19.)

[MBBV15] Jonathan Masci, Davide Boscaini, Michael Bronstein, and

Pierre Vandergheynst. Geodesic convolutional neural net-

works on riemannian manifolds. In Proceedings of the IEEE

international conference on computer vision workshops, pages

37�45, 2015. (Cited on page 17.)

[MGA+17] Haggai Maron, Meirav Galun, Noam Aigerman, Miri Trope,

Nadav Dym, Ersin Yumer, Vladimir G Kim, and Yaron Lip-

man. Convolutional neural networks on surfaces via seamless

toric covers. ACM Trans. Graph, 36(4):71, 2017. (Cited on

page 17.)

[MMBM15] Aron Monszpart, Nicolas Mellado, Gabriel J Brostow, and

Niloy J Mitra. Rapter: Rebuilding man-made scenes with

regular arrangements of planes. Trans. on Graphics, 34(4),

2015. (Cited on pages 21, 60, 61 and 62.)

[MPM+14] Oliver Mattausch, Daniele Panozzo, Claudio Mura, Olga

Sorkine-Hornung, and Renato Pajarola. Object detection and

classi�cation from large-scale cluttered indoor scans. In Com-

puter Graphics Forum, volume 33, pages 11�21. Wiley Online

Library, 2014. (Cited on page 15.)

[MS15] Daniel Maturana and Sebastian Scherer. Voxnet: A 3d con-

volutional neural network for real-time object recognition. In

Proc. of International Conference on Intelligent Robots and

Systems (IROS), 2015. (Cited on pages 8 and 16.)

[MWZ+13] Niloy Mitra, Michael Wand, Hao Richard Zhang, Daniel

Cohen-Or, Vladimir Kim, and Qi-Xing Huang. Structure-

aware shape processing. In SIGGRAPH Asia 2013 Courses,

page 1. ACM, 2013. (Cited on page 7.)

[MZL+09] Ravish Mehra, Qingnan Zhou, Jeremy Long, Alla She�er,

Amy Gooch, and Niloy J Mitra. Abstraction of man-made

shapes. ACM trans. Graph., 28(5), 2009. (Cited on page 9.)

106 Bibliography

[NBW12] Abdul Nurunnabi, David Belton, and Geo�West. Robust seg-

mentation in laser scanning 3d point cloud data. In Proc. of

International Conference on Digital Image Computing Tech-

niques and Applications (DICTA), 2012. (Cited on page 8.)

[NN07] J. Novatnack and K. Nishino. Scale-dependent 3D geometric

features. In ICCV, 2007. (Cited on page 14.)

[NW17] L. Nan and P. Wonka. Poly�t: Polygonal surface reconstruc-

tion from point clouds. In ICCV, 2017. (Cited on pages 9,

10, 25, 74, 75, 85 and 86.)

[OLA16a] Sven Oesau, Florent Lafarge, and Pierre Alliez. Object clas-

si�cation via planar abstraction. In Proc. of the ISPRS

congress, 2016. (Cited on pages 9, 14 and 20.)

[OLA16b] Sven Oesau, Florent Lafarge, and Pierre Alliez. Planar Shape

Detection and Regularization in Tandem. Computer Graphics

Forum, 35(1), 2016. (Cited on page 21.)

[PY09] C. Poullis and S. You. Automatic reconstruction of cities from

remote sensor data. In Proc. of Computer Vision and Pattern

Recognition (CVPR), 2009. (Cited on page 25.)

[QLW+17] Charles R Qi, Wei Liu, Chenxia Wu, Hao Su, and Leonidas J

Guibas. Frustum pointnets for 3d object detection from rgb-

d data. arXiv preprint arXiv:1711.08488, 2017. (Cited on

page 18.)

[QSMG17] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.

Pointnet: Deep learning on point sets for 3d classi�cation

and segmentation. In Proc. of Computer Vision and Pattern

Recognition (CVPR), 2017. (Cited on pages 8, 17, 18, 27, 28,

29 and 34.)

[QSN+16] Charles R Qi, Hao Su, Matthias Nieÿner, Angela Dai,

Mengyuan Yan, and Leonidas J Guibas. Volumetric and

multi-view cnns for object classi�cation on 3d data. In Proc.

of Computer Vision and Pattern Recognition (CVPR), 2016.

(Cited on pages 8 and 16.)

[QYSG17] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J

Guibas. Pointnet++: Deep hierarchical feature learning on

point sets in a metric space. In Proc. of Advances in Neu-

ral Information Processing Systems (NIPS), 2017. (Cited on

pages 8, 18, 28, 29 and 34.)

Bibliography 107

[QZN14] Rongqi Qiu, Qian-Yi Zhou, and Ulrich Neumann. Pipe-run

extraction and reconstruction from point clouds. In European

Conference on Computer Vision, pages 17�30. Springer, 2014.

(Cited on page 20.)

[RBB09] Radu Bogdan Rusu, Nico Blodow, and Michael Beetz. Fast

point feature histograms (fpfh) for 3d registration. In Robotics

and Automation, 2009. ICRA'09. IEEE International Con-

ference on, pages 3212�3217. Citeseer, 2009. (Cited on

page 13.)

[RLA17] Mohammad Rouhani, Florent Lafarge, and Pierre Alliez. Se-

mantic segmentation of 3D textured meshes for urban scene

analysis. ISPRS Journal of Photogrammetry and Remote

Sensing, 123, 2017. (Cited on page 15.)

[RUG17] Gernot Riegler, Ali Osman Ulusoy, and Andreas Geiger. Oct-

net: Learning deep 3d representations at high resolutions. In

Proc. of Computer Vision and Pattern Recognition (CVPR),

2017. (Cited on page 17.)

[RVDH05] Tahir Rabbani and Frank Van Den Heuvel. E�cient hough

transform for automatic detection of cylinders in point clouds.

Isprs Wg Iii/3, Iii/4, 3:60�65, 2005. (Cited on page 20.)

[RvDHV06] T Rabbani, F van Den Heuvel, and G Vosselman. Segmen-

tation of point clouds using smoothness constraint. ISPRS,

36(5), 2006. (Cited on pages 21, 48, 49, 50 and 67.)

[SDK09] Ruwen Schnabel, Patrick Degener, and Reinhard Klein. Com-

pletion and reconstruction with primitive shapes. In Com-

puter Graphics Forum, volume 28, 2009. (Cited on page 24.)

[SFF11] F. Schindler, W. Forstner, and J.-M. Frahm. Classi�cation

and reconstruction of surfaces from point clouds of man-made

objects. In ICCV Workshops, 2011. (Cited on pages 10

and 23.)

[SHP+16] Nikolay Savinov, Christian Häne, Marc Pollefeys, et al. Se-

mantic 3d reconstruction with continuous regularization and

ray potentials using a visibility consistency constraint. In

2016 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 5460�5469. IEEE, 2016. (Cited

on page 94.)

108 Bibliography

[SJS+18] Hang Su, Varun Jampani, Deqing Sun, Subhransu Maji,

Evangelos Kalogerakis, Ming-Hsuan Yang, and Jan Kautz.

Splatnet: Sparse lattice networks for point cloud process-

ing. In Proc. of Computer Vision and Pattern Recognition

(CVPR), 2018. (Cited on page 18.)

[SK17] Martin Simonovsky and Nikos Komodakis. Dynamic edge-

conditioned �lters in convolutional neural networks on graphs.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 3693�3702, 2017. (Cited on

page 17.)

[SMKF04] Philip Shilane, Patrick Min, Michael Kazhdan, and Thomas

Funkhouser. The princeton shape benchmark. In Shape Mod-

eling International, 2004. (Cited on pages 56 and 57.)

[SMKLM15] Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik

Learned-Miller. Multi-view convolutional neural networks for

3d shape recognition. In Proc. of Computer Vision and Pat-

tern Recognition (CVPR), 2015. (Cited on pages 8 and 16.)

[SSBB15] Mojtaba Valinejad Shoubi, Masoud Valinejad Shoubi,

Ashutosh Bagchi, and Azin Shakiba Barough. Reducing the

operational energy demand in buildings using building infor-

mation modeling tools and sustainability approaches. Ain

Shams Engineering Journal, 6(1):41�55, 2015. (Cited on

page 1.)

[SSS09] Sudipta N Sinha, Drew Steedly, and Richard Szeliski. Piece-

wise planar stereo for image-based rendering. In ICCV, 2009.

(Cited on pages 9 and 25.)

[SWK07] Ruwen Schnabel, Roland Wahl, and Reinhard Klein. E�cient

ransac for point-cloud shape detection. In Computer graphics

forum, volume 26, 2007. (Cited on pages 19, 60, 61 and 67.)

[SWWK08] Ruwen Schnabel, Raoul Wessel, Roland Wahl, and Reinhard

Klein. Shape recognition in 3d point-clouds. 2008. (Cited on

page 19.)

[TB97] Alain Tremeau and Nathalie Borel. A region growing and

merging algorithm to color segmentation. Pattern recognition,

30(7):1191�1203, 1997. (Cited on page 21.)

Bibliography 109

[TCA+17] Lyne Tchapmi, Christopher Choy, Iro Armeni, JunYoung

Gwak, and Silvio Savarese. Segcloud: Semantic segmenta-

tion of 3d point clouds. In Proc. of International Conference

on 3D Vision (3DV), 2017. (Cited on pages 8, 16 and 34.)

[The17] The CGAL Project. CGAL User and Reference Man-

ual. CGAL Editorial Board, 4.11 edition, 2017. (Cited on

page 76.)

[TM14] L. Teran and P. Mordohai. 3D interest point detection via

discriminative learning. In ECCV, 2014. (Cited on page 14.)

[TMT10] A. Toshev, P. Mordohai, and B. Taskar. Detecting and pars-

ing architecture at city scale from range data. In IEEE Con-

ference on Computer Vision and Pattern Recognition, 2010.

(Cited on page 25.)

[Vit67] A.J. Viterbi. Error bounds for convolutional codes and an

asymptotically optimum decoding algorithm. IEEE Trans.

on Information Theory., 13(2), 1967. (Cited on page 55.)

[VKH06] V. Verma, R. Kumar, and S. Hsu. 3D building detection

and modeling from aerial LIDAR data. In Proc. of Computer

Vision and Pattern Recognition (CVPR), 2006. (Cited on

page 25.)

[VKLP12] H. Vu, R. Keriven, P. Labatut, and J.P. Pons. High accuracy

and visibility-consistent dense multi-view stereo. In PAMI,

volume 34, 2012. (Cited on pages 56 and 57.)

[vKvLV11] M. van Kreveld, T. van Lankveld, and R. Veltkamp. On the

shape of a set of points and lines in the plane. Computer

Graphics Forum, 30, 2011. (Cited on page 23.)

[VLA15] Yannick Verdie, Florent Lafarge, and Pierre Alliez. LOD Gen-

eration for Urban Scenes. Trans. on Graphics, 34(3), 2015.

(Cited on pages 7, 10, 15, 24, 52, 53, 61, 62, 74 and 80.)

[VTC05] George Vogiatzis, Philip HS Torr, and Roberto Cipolla.

Multi-view stereo via volumetric graph-cuts. In Computer

Vision and Pattern Recognition, 2005. CVPR 2005. IEEE

Computer Society Conference on, volume 2, pages 391�398.

IEEE, 2005. (Cited on page 22.)

[WJM13] Martin Weinmann, Boris Jutzi, and Clément Mallet. Fea-

ture relevance assessment for the semantic interpretation of

110 Bibliography

3d point cloud data. ISPRS Annals of the Photogramme-

try, Remote Sensing and Spatial Information Sciences, 5:W2,

2013. (Cited on page 8.)

[WPM+14] Oliver J Woodford, Minh-Tri Pham, Atsuto Maki, Frank Per-

bet, and Björn Stenger. Demisting the hough transform for 3d

shape recognition and registration. International Journal of

Computer Vision, 106(3):332�341, 2014. (Cited on page 20.)

[WSK+15] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Lin-

guang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3d

shapenets: A deep representation for volumetric shapes. In

Proc. of Computer Vision and Pattern Recognition (CVPR),

2015. (Cited on pages 8 and 16.)

[WSL+18] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma,

Michael M Bronstein, and Justin M Solomon. Dynamic

graph cnn for learning on point clouds. arXiv preprint

arXiv:1801.07829, 2018. (Cited on pages 8 and 18.)

[WYHN18] Weiyue Wang, Ronald Yu, Qiangui Huang, and Ulrich Neu-

mann. Sgpn: Similarity group proposal network for 3d point

cloud instance segmentation. In Proc. of Computer Vision

and Pattern Recognition (CVPR), 2018. (Cited on page 18.)

[XOT13] Jianxiong Xiao, Andrew Owens, and Antonio Torralba.

Sun3D: A database of big spaces reconstructed using sfm and

object labels. In ICCV, 2013. (Cited on pages 56 and 57.)

[YLF+18] Lequan Yu, Xianzhi Li, Chi-Wing Fu, Daniel Cohen-Or, and

Pheng-Ann Heng. Pu-net: Point cloud upsampling net-

work. In Proc. of Computer Vision and Pattern Recognition

(CVPR), 2018. (Cited on page 18.)

[ZBKB08] L. Zebedin, J. Bauer, K.F. Karner, and H. Bischof. Fusion of

feature- and area-based information for urban buildings mod-

eling from aerial imagery. In Proc. of European Conference

on Computer Vision (ECCV), 2008. (Cited on page 25.)

[ZJM12] Zihan Zhou, Hailin Jin, and Yi Ma. Robust plane-based struc-

ture from motion. In CVPR, 2012. (Cited on page 9.)

[ZJRP+15] Shuai Zheng, Sadeep Jayasumana, Bernardino Romera-

Paredes, Vibhav Vineet, Zhizhong Su, Dalong Du, Chang

Huang, and Philip HS Torr. Conditional random �elds as

Bibliography 111

recurrent neural networks. In Proc. of International Confer-

ence on Computer Vision (ICCV), 2015. (Cited on page 16.)

[ZLHW17] Qing Zhu, Yuan Li, Han Hu, and Bo Wu. Robust point cloud

classi�cation based on multi-level semantic relationships for

urban scenes. ISPRS Journal of Photogrammetry and Remote

Sensing, 129:86�102, 2017. (Cited on page 15.)

[ZN12] Qian-Yi Zhou and Ulrich Neumann. 2.5d building modeling

by discovering global regularities. In CVPR, 2012. (Cited on

pages 9 and 25.)

[ZSN+17] Andy Zeng, Shuran Song, Matthias Nieÿner, Matthew Fisher,

Jianxiong Xiao, and Thomas Funkhouser. 3dmatch: Learning

local geometric descriptors from rgb-d reconstructions. In

Proc. of Computer Vision and Pattern Recognition (CVPR),

2017. (Cited on page 16.)

[ZSQ+17] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang

Wang, and Jiaya Jia. Pyramid scene parsing network. In

Proc. of Computer Vision and Pattern Recognition (CVPR),

2017. (Cited on pages 9 and 28.)

	Contents
	Introduction
	Context
	Challenges
	Contributions

	Related work
	Semantic segmentation of 3D data
	Shape detection from 3D data
	Surface reconstruction from 3D data

	Semantic segmentation of 3D data
	Introduction
	Methodology
	Feature analysis
	Experiments
	Conclusion

	Planar shape detection
	Introduction
	Shape collapsing
	Detection of structural scales
	Experiments
	Conclusion

	Piecewise-planar reconstruction
	Introduction
	Connectivity analysis
	Space partitioning
	Surface extraction
	Experiments
	Conclusion

	Conclusion and perspectives
	Conclusion
	Perspectives

	References

