H. and K. Onnes, Proceedings of Huygens Institute 14 I. 113-115, 1911.

J. A. Ober, , 2018.

, Helium Statistics & Information. National Minerals Information Center

W. J. Nuttall, Nature, vol.485, pp.573-575, 2012.

P. Mangin and R. Kahn, , 2013.

P. Mangin and R. Kahn, , 2017.

P. Mangin and R. Kahn, , 2018.

P. C. Canfield, Phys. Rev. Lett, vol.86, pp.2423-2426, 2001.

M. John and . Rowell, Supercond. Sci. Technol, vol.16, pp.17-27, 2003.

R. Bruce and B. Baudouy, , 2015.

J. A. Ober, , 2018.

C. Buzea and T. Yamashita, Supercond. Sci. Technol. 14. R115, 2001.

D. G. Hinks, Nature, vol.411, pp.457-460, 2001.

S. L. Bud'ko, Phys. Rev. Lett, vol.86, pp.1877-1880, 2001.

, Epoch wire. Infinite Superconductivity, p.24, 2019.

S. Atamert, IEEE Trans. Appl. Supercond. 26. P. 1-4, 2016.

. Bekaert, Better together, 2019.

A. Imaduddin, Journal of Low Temperature Physics, vol.195, pp.460-473, 2019.

M. Hagner, IEEE Trans. Appl. Supercond. 26. P, pp.1-5, 2016.

J. Zhou and P. Bai, Asia-Pac. J. Chem. Eng. 10. P, pp.325-338, 2015.

W. Häßler, Superconductor Science and Technology 21. P. 062001, 2008.

S. Lee, Physica C : Superconductivity 397. P. 7-13, 2003.

J. Karpinski, Phys. C Supercond. 456. P, pp.3-13, 2007.

R. S. Gonnelli, Journal of Physics and Chemistry of Solids, vol.67, pp.360-364, 2006.

S. X. Dou, Physical Review Letters, vol.98, 2007.

H. Tanaka, IEEE Transactions on Applied Superconductivity. P, pp.1-1, 2016.

M. Eisterer, Supercond. Sci. Technol. 20. P, pp.117-122, 2007.

R. Flükiger, , 2015.

W. Yao, IEEE Trans. Appl. Supercond, vol.19, pp.2261-2264, 2009.

J. Ling, IEEE Trans. Appl. Supercond. 25. P, pp.1-5, 2015.

J. Ling, Supercond. Sci. Technol, vol.30, 2017.

D. Park, IEEE Trans. Appl. Supercond. 28. P. 1-5, 2018.

J. Ling, IEEE Trans. Appl. Supercond. 23. P, pp.6200304-6200304, 2013.

C. Senatore, , pp.654-661, 2006.

J. Bascunan, IEEE Trans. Appl. Supercond. 16. P, 1427.

W. Yao, IEEE Trans. Appl. Supercond. Publ. IEEE Supercond. Comm. 18. P, pp.912-915, 2008.

T. Baig, Supercond. Sci, 2014.

A. Al-amin, Superconductor Science and Technology 29. P. 055008, 2016.

M. Modica, IEEE Trans. Appl. Supercond, vol.17, pp.2196-2199, 2007.

M. Razeti, IEEE Transactions on Applied Superconductivity, vol.18, pp.882-886, 2008.

D. Abin, IEEE Transactions on Applied Superconductivity 28. P. 1-4, 2018.

, un développement de jonctions supraconductrices. Néanmoins, les jonctions n'ont pas

. Bibliographie,

H. and K. Onnes, « The disappearance of the resistance of mercury, Proceedings of Huygens Institute 14 I, p.5, 1911.

J. A. Ober, « Mineral commodity, p.10, 2018.

, Helium Statistics & Information. National Minerals Information Center

W. J. Nuttall, R. H. Clarke, A. Bartek, and . Glowacki, « Stop Squandering Helium : Resources », Nature, vol.485, p.5

P. Mangin and R. Kahn, Supraconductivité : introduction. Grenoble Sciences. OCLC : 835376067. Les Ulis : EDP sciences, p.5, 2013.

P. Mangin and R. Kahn, Matériaux Supraconducteurs Structures et Propriétés Physico-Chimiques. Grenoble Sciences. OCLC : 1019908531. Les Ulis : EDP Sciences, vol.232, p.5, 2017.

P. Mangin and R. Kahn, Applications magnétoélectriques des supraconducteurs, Grenoble Sciences. OCLC : 1018455340. EPP Sciences, p.17, 2018.

W. Meissner and R. Ochsenfeld, Ein neuer Effekt bei Eintritt der Supraleitfähigkeit, vol.21, p.6, 1933.

, Comparisons of superconductor critical current densities, National High Magnetic Field Laboratory ». Website, mar, 2019.

J. Nagamatsu, N. Nakagawa, and T. Muranaka, Yuji Zenitani et Jun Akimitsu. « Superconductivity at 39K in magnesium diboride, vol.410, p.8, 2001.

P. C. Canfield, D. K. Finnemore, S. L. Bud'ko, J. E. Ostenson, G. Lapertot et al., « Superconductivity in Dense MgB 2 Wires, Phys. Rev. Lett, vol.86, p.10, 2001.

M. John and . Rowell, R17-R27, juin, The Widely Variable Resistivity of MgB 2 Samples, vol.16, p.16, 2003.

R. Bruce and B. Baudouy, « Cryogenic Design of a Large Superconducting Magnet for Astro-Particle Shielding on Deep Space Travel Missions, Phys. Procedia, vol.67, p.10, 2015.

C. Buzea and T. Yamashita, « Review of the Superconducting Properties of MgB 2 », Supercond. Sci. Technol, vol.14

D. G. Hinks, H. Claus, and J. D. Jorgensen, « The Complex Nature of Superconductivity in MgB2 as Revealed by the Reduced Total Isotope Effect », Nature, vol.411, p.10

S. L. Bud'ko, G. Lapertot, C. Petrovic, C. E. Cunningham, N. Anderson et al., « Boron Isotope Effect in Superconducting MgB 2, Phys. Rev. Lett, vol.86, p.10, 2001.

H. Inc, MgB 2 wire, mar, p.13, 2019.

. Hitachi-website, « Development of 8-km-long Magnesium Diboride Superconducting Wire ». Hitachi Inspire the next, p.13, 2019.

C. Superconductors-spa, « Columbus MgB 2 unit ». Website, p.13, 2019.

G. Giunchi, S. Ceresara, G. Ripamonti, A. D. Zenobio, S. Rossi et al., High Performance New MgB2 Superconducting Hollow Wires, vol.16, p.13, 2003.

W. Hasler, P. Kovac, and J. Scheiter, Alica Rosova et Wacek Pachla. « MgB2 Multicore Wire Prepared by IMD Technology-Investigation of the MgB2 Layer Formation During Annealing, IEEE Trans. Appl. Supercond, vol.27, p.14

Y. E. Shujun and H. Kumakura, « The Development of MgB 2 Superconducting Wires Fabricated with an Internal Mg Diffusion (IMD) Process », Supercond. Sci. Technol, vol.29, p.14, 2016.

Y. C. Guo, P. A. Bain, H. K. Liu, S. X. Dou, and E. W. Collings, « High-Tc Superconducting Wires and Tapes Prepared by "Continuous Tube Forming/Filling (CTFF), Advances in Cryogenic Engineering Materials. Sous la dir. de Leonard T. Summers. Advances in Cryogenic Engineering Materials, p.14, 1997.

, Infinite Superconductivity, août, p.15, 2019.

S. Atamert, M. N. Kutukcu, J. L. Scandella, A. Baskys, Z. Zhong et al., « Novel Superconducting MgB2 Wires Made By Continuous Process, IEEE Trans. Appl. Supercond, vol.26, p.15, 2016.

. Bekaert, Better together, août, p.15, 2019.

A. Imaduddin, S. D. Yudanto, M. E. Rasyadi, Y. Nakanishi, and M. Yoshizawa, « Possibility of the Higher Critical Temperature on MgB2 Superconductor Synthesized by Powder-In-Sealed-Tube Method », Journal of Low Temperature Physics, vol.195, p.15, 2019.

M. Hagner, J. M. Fritz, P. Alknes, C. Scheuerlein, L. Zielke et al., « Three-Dimensional Analysis of the Porosity in MgB 2 Wires Using FIB Nanotomography, IEEE Trans. Appl. Supercond, vol.26, p.15, 2016.

J. Zhou and P. Bai, « A Review on the Methods of Preparation of Elemental Boron, Asia-Pac. J. Chem. Eng, vol.10, p.15

W. Häßler, C. Herrmann, M. Rodig, K. Schubert, . Nenkov et al., « Further increase of the critical current density of MgB 2 tapes with nanocarbon-doped mechanically alloyed precursor, Superconductor Science and Technology, vol.21, p.15

S. Lee, T. Masui, and A. Yamamoto, Hiroshi Uchiyama et Setsuko Tajima. « Carbon-substituted MgB2 single crystals, vol.397, p.15, 2003.

J. Karpinski, N. D. Zhigadlo, S. Katrych, R. Puzniak, K. Rogacki et al., Single Crystals of MgB2 : Synthesis, Substitutions and Properties, Phys. C Supercond, vol.456, p.16

R. S. Gonnelli, D. Daghero, G. A. Ummarino, A. Calzolari, V. Dellarocca et al., « A point-contact study of the superconducting gaps in Al-substitutedand C-substituted MgB2 single crystals, Journal of Physics and Chemistry of Solids, vol.67, p.15, 2006.

S. X. Dou, O. Shcherbakova, W. K. Yeoh, J. H. Kim, S. Soltanian et al., Publisher's Note : Mechanism of Enhancement in Electromagnetic Properties of MgB 2 by Nano SiC Doping, Physical Review Letters, vol.98, p.15, 2007.

H. Tanaka, M. Kodama, Y. Ichiki, T. Kusunoki, H. Kotaki et al., Kazuya Nishi et Kazutaka Okamoto. « Conduction Cooled MgBsub2/sub Coil in Maximum Self Magnetic Flux Desity 2.3 Tesla Made with 300-Meter-long Multifilamentary MgBsub2 /subWire, IEEE Transactions on Applied Superconductivity, p.15, 2016.

M. Eisterer, . Müller, H. Schöppl, S. Weber, S. Soltanian et al., « Universal Influence of Disorder on MgB 2 Wires, Supercond. Sci. Technol, vol.20, p.15, 2007.

A. Matsumoto, H. Kumakura, H. Kitaguchi, B. J. Senkowicz, M. C. Jewell et al., « Evaluation of Connectivity, Flux Pinning, and Upper Critical Field Contributions to the Critical Current Density of Bulk Pure and SiC-Alloyed MgB2 », Appl. Phys. Lett, vol.89, p.16

M. Hossain, C. Senatore, M. Flükiger, M. Rindfleisch, J. Tomsic et al., « The enhanced Jc and Birr of in-situ MgB2 wires and Tapes Alloyed with C4H6O5(Malic Acid) after Cold High Pressure Densification, Supercond. Sci. Technol, vol.22, p.16, 2009.

C. Senatore, M. Al-hossain, and . Flukiger, « Enhanced Connectivity and Percolation in Binary and Doped In Situ MgB2 Wires After Cold High Pressure Densification, IEEE Trans. Appl. Supercond, vol.21, p.16, 2011.

M. Kulich, C. Flükiger, M. Senatore, . Tropeano, and . Piccardo, Effect of Cold High Pressure Deformation on the Properties of Ex Situ MgB 2 Wires, vol.26, p.16, 2013.

V. S. Vysotsky, I. V. Antyukhov, V. P. Firsov, E. V. Blagov, V. V. Kostyuk et al., « Cryogenic Tests of 30 m Flexible Hybrid Energy Transfer Line with Liquid Hydrogen and Superconducting MgB2 Cable, Phys. Procedia, vol.67, p.17, 2015.

A. Ballarino, C. E. Bruzek, N. Dittmar, S. Giannelli, W. Goldacker et al., « The BEST PATHS Project on MgB2 Superconducting Cables for Very High Power Transmission, IEEE Trans. Appl. Supercond, vol.26, p.17

, Best Path. « Transmission for sustainability, Site web, p.17

A. Ballarino, « Development of Superconducting Links for the Large Hadron Collider Machine », Supercond. Sci. Technol, vol.27, p.17

A. Ballarino and R. Flükiger, « Status of MgB 2 Wire and Cable Applications in Europe, J. Phys. Conf. Ser, vol.871, p.17, 2017.

K. Konstantopoulou, P. Hurte, . Retz, and . Ballarino, « Design optimization and evaluation of the 3 kA MgB2 cable at 4.3 K for the superconducting link project at CERN ». Superconductor Science and Technology 32, p.17

Y. Lvovsky, E. W. Stautner, and T. Zhang, Novel Technologies and Configurations of Superconducting Magnets for MRI, vol.26, p.17

P. Vedrine, . Aubert, J. Beaudet, C. Belorgey, P. Berriaud et al., Iseult/INUMAC Whole Body 11.7 T MRI Magnet Status, vol.20, p.17

R. Flükiger, « MgB2 Superconducting Wires », p.18, 2015.

W. Yao, J. Bascunan, S. Hahn, and Y. Iwasa, « A Superconducting Joint Technique for MgB2 Round Wires, IEEE Trans. Appl. Supercond, vol.19, p.18

J. Ling, J. P. Voccio, S. Hahn, Y. Kim, J. Song et al., « Construction and Persistent-Mode Operation of Coils in the Range 10 #x2013 ;15 K for a 0.5-T/240-Mm Cold Bore MRI Magnet, IEEE Trans. Appl. Supercond, vol.25, p.18

J. Ling, P. John, S. Voccio, T. Hahn, and . Qu, Juan Bascuñán et Yukikazu Iwasa. « A Persistent-Mode 0.5 T Solid-Nitrogen-Cooled MgB 2 Magnet for MRI, Supercond. Sci. Technol, vol.30, p.18, 2017.

D. Park, J. Bascunan, P. C. Michael, and Y. Iwasa, « A Tabletop Persistent-Mode, Liquid-Helium-Free, 1.5-T/90-Mm MgB2 "Finger" MRI Magnet for Osteoporosis Screening : Two Design Options, IEEE Trans. Appl. Supercond, vol.28, p.18, 2018.

J. Ling, J. Voccio, Y. Kim, S. Hahn, J. Bascunan et al., Monofilament MgBWire for a Whole-Body MRI Magnet : Superconducting Joints and Test Coils, vol.23, p.18

C. Senatore, « Critical Current Anisotropy, Pinning Properties and Relaxation Rate of, AIP Conference Proceedings, vol.824, p.18, 2006.

J. Bascunan, H. Lee, E. S. Bobrov, S. Hahn, Y. Iwasa et al., « A 0.6 T/650 Mm RT Bore Solid Nitrogen Cooled$rm MgB 2$Demonstration Coil for MRI-a Status Report, IEEE Trans. Appl. Supercond, vol.16, p.18, 2006.

W. Yao, J. Bascuñán, . Woo-seok, S. Kim, and . Hahn, Haigun Lee et Yukikazu Iwasa. « A Solid Nitrogen Cooled MgB(2), IEEE Trans. Appl. Supercond. Publ. IEEE Supercond. Comm, vol.18, pp.912-915, 2008.

T. Baig, Z. Yao, D. Doll, M. Tomsic, and M. Martens, Conduction cooled magnet design for 1.5 T, 3.0 T and 7.0 T MRI systems, vol.27, p.18, 2014.

T. Abdullah-al-amin, . Baig, J. Robert, Z. Deissler, M. Yao et al., Ozan Akkus et Michael Martens. « A multiscale and multiphysics model of strain development in a 1.5 T MRI magnet designed with 36 filament composite MgB 2 superconducting wire, Superconductor Science and Technology, vol.29, p.18, 2016.

M. Modica, S. Angius, L. Bertora, D. Damiani, M. Marabotto et al., Construction and Tests of MgB2 Coils for the Development of a Cryogen Free Magnet, IEEE Trans. Appl. Supercond, vol.17, p.18, 2007.

M. Razeti, S. Angius, L. Bertora, D. Damiani, R. Marabotto et al., « Construction and Operation of Cryogen Free Magnets for Open MRI Systems, IEEE Transactions on Applied Superconductivity, vol.18, pp.882-886

D. Abin, N. Mineev, and M. Osipov, Sergei Pokrovskii et Igor Rudnev. « Cryo-Free Multisection Superconducting Magnet System With MgB2 Coil, IEEE Transactions on Applied Superconductivity, vol.28, p.18, 2018.

Y. Yoon-hyuck-choi, D. Li, J. Park, P. C. Lee, J. Michael et al., Yuki Iwasa et Hideki Tanaka. « A Tabletop Persistent-Mode, Liquid Helium-Free 1.5-T MgB2 "Finger" MRI Magnet : Construction and Operation of a Prototype Magnet, IEEE Transactions on Applied Superconductivity, vol.29, p.19

T. Matsumoto, K. Fujita, Y. Iwami, Y. Shirai, M. Shiotsu et al., « Excitation Test of Solenoid MgB2 Coil Under External Magnetic Field Immersed in Liquid Hydrogen, IEEE Transactions on Applied Superconductivity, vol.29, p.19

R. Pasquet, « Contribution to the development of dry R & W MgB2 superconducting magnets, vol.25, p.76, 2015.

R. Pasquet, A. Bonelli, C. Berriaud, F. P. Juster, H. Przybilski et al., « A New Test Facility to Characterize React and Wind MgB 2 Conductor, IEEE Trans. Appl. Supercond, vol.24, p.25

C. Berriaud, J. Avronsart, C. Hilaire, F. Juster, M. Kazazi et al., Thierry Schild et Raphael Pasquet. « Analysis of the Experimental Quench Propagation on a 2-km MgB2 Coil Up to 4 T, IEEE Transactions on Applied Superconductivity, vol.28, p.20, 2018.

J. W. Ekin, Experimental techniques for low-temperature measurements : cryostat design, material properties, and superconductor critical-current testing, vol.47, p.21, 2006.

L. Bottura, « A practical fit for the critical surface of NbTi, IEEE Transactions on Appiled Superconductivity, vol.10, p.22, 2000.

P. Ková?, . Kopera, M. Meli?ek, . Rindfleisch, . Haessler et al., « Behaviour of filamentary MgB2wires subjected to tensile stress at 4.2 K ». Superconductor Science and Technology 26, p.23

P. Kovac, L. Kopera, T. Melisek, G. Sarmiento, S. S. Castillo et al., Davide Nardelli et Matteo Tropeano. « Tensile and Bending Strain Tolerance of Ex Situ MgB 2 /Ni/Cu Superconductor Tape, IEEE Transactions on Applied Superconductivity, vol.25, p.23, 2015.

T. Schild, G. Aubert, F. Beaudet, A. Bourquard, A. Chance et al., A Prototype for Assessing the Field Homogeneity of the Iseult MRI Magnet, vol.19, p.25, 2009.

. Lncmi and . Laboratoire, National des Champs Magnétiques Intenses -Grenoble, août, p.27, 2019.

P. Ková?, . Hu?ek, M. Meli?ek, . Kulich, and . V?trbík, « MgB 2 composite wires with Fe, Nb and Ta sheaths, Superconductor Science and Technology, vol.19, p.30, 2006.

H. Kitaguchi and . Kumakura, Superconducting and Mechanical Performance and the Strain Effects of a Multifilamentary MgB 2 /Ni Tape, Superconductor Science and Technology, vol.18, p.31

P. Kovac and L. Kopera, « Electromechanical Properties of Filamentary MgB 2 Wires, IEEE Transactions on Applied Superconductivity, vol.22, p.32

K. Katagiri, R. Takaya, K. Kasaba, K. Tachikawa, Y. Yamada et al., Stress-strain effects on powderin-tube MgB2tapes and wires, vol.18, p.32

P. Ková?, M. Meli?ek, and . Dhallé, A den Ouden et I Hu?ek. « Critical Currents of MgB 2 Wires Prepared in-Situ and Ex-Situ Subjected to Axial Stress, Superconductor Science and Technology, vol.18, p.33, 2005.

Y. Yang, G. Li, M. Susner, M. D. Sumption, M. Rindfleisch et al., Influence of twisting and bending on the Jc and n -value of multifilamentary MgB 2 strands ». Physica C : Superconductivity and its Applications, vol.519, p.33, 2015.

P. Ková?, . Kopera, M. Meli?ek, . Kulich, H. Hu?ek et al., « Electromechanical properties of iron and silver sheathed Sr 0.6 K 0.4 Fe 2 As 2 tapes, Superconductor Science and Technology, vol.28, p.33, 2015.

, Temperature Dependent Elastic & Thermal Properties Database. data retrieved from MPDB software, p.32

P. Ková?, World Scientific Series in Applications of Superconductivity and Related Phenomena, p.33, 2016.

G. Nishijima, . S-j-ye, . Matsumoto, H. Togano, H. Kumakura et al., « Mechanical properties of MgB 2 superconducting wires fabricated by internal Mg diffusion process, Superconductor Science and Technology, vol.25, p.33, 2012.

. Cast3m, Code de calcul pour l'analyse de structures par E.F », p.47, 2019.

. Salome, The Open Source Integration Platform for Numerical Simulation, p.47, 2019.

. Imagej, Image Processing an Analysis in Java, août, p.52, 2019.

. Gimp and . Gnu, Image Manipulation Program, août, p.52, 2019.

. Wilde, Composite materials : design and analysis : proceedings of the second International Conference on Computer Aided Design in Composite Material Technology, p.52, 1990.

. Keff, Procédure Cast3M, août, p.52, 2019.

, Procédure Cast3M, août, p.52, 2019.

M. Bornert, T. Bretheau, and P. Gilormini, Homogénéisation en mécanique des matériaux, Matériaux aléatoiresélastiques et milieux périodiques. Hermes science, vol.1, p.53, 2001.

H. Berger, S. Kurukuri, S. Kari, U. Gabbert, R. Rodriguez-ramos et al., « Numerical and Analytical Approaches for Calculating the Effective Thermo-Mechanical Properties of Three-Phase Composites », Journal of Thermal Stresses, vol.30, p.53, 2007.

F. Rondeaux, . Kircher, . Levesy, J. Reytier, and . Safrany, « Influence of the surface treatment of the CMS conductor on its adhesion properties at 300 K and 4.2 K ». Physica C : Superconductivity 354, p.81

P. Fabbricatore, D. Campi, C. Urzo, S. Farinon, A. Gaddi et al., « The Manufacture of Modules for CMS Coil, IEEE Transactions on Applied Superconductivity, vol.16, p.81, 2006.

T. Salmi and D. Schoerling, « Energy Density Method : An Approach for a Quick Estimation of Quench Temperatures in High-Field Accelerator Magnets, IEEE Transactions on Applied Superconductivity, vol.29, p.92

P. Eckels, R. Stewart, and V. Arp, CryoComp program ». Eckels Engineering Inc. 1993

M. Sugano, A. Ballarino, B. Bartova, and R. Bjoerstad, Alexandre Gerardin et Christian Scheuerlein. « Evaluation of Young's modulus of MgB2filaments in composite wires for the superconducting links for the high-luminosity LHC upgrade, Superconductor Science and Technology, vol.29, p.25009

L. Abdullah-al-amin, C. Sabri, T. Poole, R. J. Baig, and . Deissler, Matthew Rindfleisch

, « Computational homogenization of the elastic and thermal properties of superconducting composite MgB2 wire, Composite Structures, vol.188, pp.313-329, 2018.

A. Nabialek, Y. Kundys, . Bukhantsev, . Vasiliev, J. Wi-niewski et al., « The correlation between the transverse and longitudinal magnetostriction in a polycrystalline MgB2superconductor, Superconductor Science and Technology, vol.16, pp.707-713, 2003.

J. J. Neumeier, T. Tomita, M. Debessai, J. S. Schilling, P. W. Barnes et al., « Negative thermal expansion ofMgB2in the superconducting state and anomalous behavior of the bulk Grüneisen function ». Physical Review B 72, déc, 2005.

T. Flynn, New York : Marcel Dekker, p.824753674, 2005.

G. Lenoir and V. Aubin, « Mechanical Characterization and Modeling of a Powder-In-Tube MgB2 Strand, IEEE Transactions on Applied Superconductivity, vol.27, pp.1-5

B. Bertrand, D. Gérard, D. Patxi, and T. Jean-pierre, Périphériques base documentaire : TIB596DUO, « Propriétés Des Matériauxà Basse Température ». Tech. Ing. Froid Cryogénie Appl. Ind, 2014.

S. Kalia, Polymers at cryogenic temperatures, 2013.

P. J. Rae and E. N. Brown, « The properties of poly(tetrafluoroethylene) (PTFE) in tension, Polymer, vol.46, pp.8128-8140

M. B. Kasen, G. R. Macdonald, D. H. Beekman, and R. E. Schramm, Electrical, and Thermal Characterization of G-10Cr and G-11Cr Glass-Cloth/Epoxy Laminates Between Room Temperature and 4 K, Advances in Cryogenic Engineering Materials, pp.235-244, 1980.

P. Athanasios, J. C. Iliopoulos, J. G. Steuben, and . Michopoulos, « Determination of anisotropic mechanical properties of G-10 composite via Direct Strain Imaging, Polymer Testing, vol.50, pp.64-72

, Liste des acronymes ADI Amenée De Courant. 3, 25-27, 29 AIMI Advanced Internal Magnesium Infiltration, vol.3, p.14

, BEST PATHS BEyond State-of-the-art Technologies for re-Powering AC corridors and multi-Terminal HVDC Systems. ix, vol.3, p.17

, 87 CERN Conseil Européen pour la Recherche Nucléaire. 3, 15, 17, 61 CHPD Cold High Pressure Densification. 3, 16 CTFF Continuous Tube Forming/Filling, vol.2, p.14

, FEM Finite Element Method ou méthode paréléments finis, vol.3, p.91

, HTS High Temperature Superconductor, vol.3, p.12

, IMD Internal Magnesium Diffusion ou Magnésium interne, vol.1, p.99

, LNCMI Laboratoire National des Champs Magnétiques Intenses. 2, 3, 21, vol.27, pp.10-12

×. Miit-mega and . Temps, , vol.92, p.18

, OFHC Oxygen-Free High thermal Conductivity, vol.3, p.72

. Pist-powder, Sealed Tube ou poudre en tube scellé. 3, 15 PIT Powder In Tube ou poudre en tube. ix, vol.1, p.33

R. React and . Wind, 67 RMN Résonance Magnétique Nucléaire. 3 RRR Residual Resistivity Ratio. 3, 11, 60, vol.38, p.61