R. Ventura and K. M. Harris, Three-Dimensional Relationships between Hippocampal Synapses and Astrocytes, The Journal of Neuroscience, vol.19, pp.6897-6906, 1999.

M. R. Witcher, S. A. Kirov, and K. M. Harris, Plasticity of perisynaptic astroglia during synaptogenesis in the mature rat hippocampus, Glia, vol.55, pp.13-23, 2007.

N. Bazargani and D. , Astrocyte calcium signaling: the third wave, Nature Neuroscience, vol.19, pp.182-189, 2016.

J. P. Heller and D. A. Rusakov, The Nanoworld of the Tripartite Synapse: Insights from Super-Resolution Microscopy, Frontiers in Cellular Neuroscience, vol.11, 2017.

S. Berlin, E. C. Carroll, Z. L. Newman, H. O. Okada, C. M. Quinn et al., Photoactivatable genetically encoded calcium indicators for targeted neuronal imaging, Nature Methods, vol.12, pp.852-858, 2015.

R. Srinivasan, B. S. Huang, S. Venugopal, A. D. Johnston, H. Chai et al., Ca(2+) signaling in astrocytes from Ip3r2(-/-) mice in brain slices and during startle responses in vivo, Nature Neuroscience, vol.18, pp.708-717, 2015.

E. Bindocci, I. Savtchouk, N. Liaudet, D. Becker, G. Carriero et al., Three-dimensional Ca 2+ imaging advances understanding of astrocyte biology, Science, vol.356, p.8185, 2017.

G. W. De-young and J. Keizer, A single-pool inositol 1,4,5-trisphosphatereceptor-based model for agonist-stimulated oscillations in Ca2+ concentration, Proceedings of the National Academy of Sciences, vol.89, pp.9895-9899, 1992.

M. Arizono, A. Panatier, V. V. Inavalli, T. Pfeiffer, J. Angibaud et al., Structural Basis of Astrocytic Ca 2 Signals at Tripartite Synapses, SSRN Scholarly Paper, 2018.

R. Virchow, Die Cellularpathologie in ihrer Begr{\"u}ndung auf physiologische und pathologische Gewebelehre, A. Hirschwald, vol.1, p.1862

C. Golgi, Sulla sostanza connettiva del cervello (nevroglia), Rendiconti del R Instituto Lombardo di Scienze e Lettere, vol.3, pp.275-277, 1870.

C. Golgi, Milano: U. Hoepli, Opera Omnia, vol.1, p.40, 1903.

M. Lenhossek, Der feinere Bau des Nervensystems im Lichte neuester Forschung, p.1893

V. García-marín, P. García-lópez, and M. Freire, Cajal's contributions to glia research, Trends in Neurosciences, vol.30, pp.479-487, 2007.

S. R. , Algunas conjeturas sobre el mecanismo anatómico de la ideación

F. D. Castro, The anatomical aspects of the ganglionic synaptic transmission in mammals, Archives internationales de physiologie, vol.59, issue.4, p.479, 1951.

R. Galambos and &. Function, Proceedings of the National Academy of Sciences of the United States of America, vol.47, pp.129-136, 1961.

A. Verkhratsky and M. Nedergaard, Physiology of Astroglia, Physiological Reviews, vol.98, pp.239-389, 2018.

A. Chvátal, M. Anderová, M. Hock, I. Prajerová, H. Neprasová et al., Three-dimensional confocal morphometry reveals structural changes in astrocyte morphology in situ, Journal of Neuroscience Research, vol.85, pp.260-271, 2007.

M. M. Boisvert, G. A. Erikson, M. N. Shokhirev, and N. J. Allen, The Aging Astrocyte Transcriptome from Multiple Regions of the Mouse Brain, Cell Reports, vol.22, pp.269-285, 2018.

Y. Zhang, K. Chen, S. A. Sloan, M. L. Bennett, A. R. Scholze et al., An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex, The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, vol.34, pp.11929-11947, 2014.

Y. Zhang, S. A. Sloan, L. E. Clarke, C. Caneda, C. A. Plaza et al., Purification and Characterization of Progenitor and Mature Human Astrocytes Reveals Transcriptional and Functional Differences with Mouse, Neuron, vol.89, pp.37-53, 2016.

W. Schulze, A. Hayata-takano, T. Kamo, T. Nakazawa, K. Nagayasu et al., Simultaneous neuron-and astrocyte-specific fluorescent marking, Biochemical and Biophysical Research Communications, vol.459, pp.81-86, 2015.

L. Zhuo, B. Sun, C. Zhang, A. Fine, S. Chiu et al., Live Astrocytes Visualized by Green Fluorescent Protein in Transgenic Mice, Developmental Biology, vol.187, pp.36-42, 1997.

Y. Zuo, J. L. Lubischer, H. Kang, L. Tian, M. Mikesh et al., Fluorescent Proteins Expressed in Mouse Transgenic Lines Mark Subsets of Glia, Neurons, Macrophages, and Dendritic Cells for Vital Examination, Journal of Neuroscience, vol.24, pp.10999-11009, 2004.

E. Shigetomi, E. A. Bushong, M. D. Haustein, X. Tong, O. Jackson-weaver et al., Imaging calcium microdomains within entire astrocyte territories and endfeet with GCaMPs expressed using adeno-associated viruses, The Journal of General Physiology, vol.141, pp.633-647, 2013.

E. A. Bushong, M. E. Martone, Y. Z. Jones, and M. H. Ellisman, Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains, The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, vol.22, pp.183-192, 2002.

H. Chai, B. Diaz-castro, E. Shigetomi, E. Monte, J. C. Octeau et al., Neural Circuit-Specialized Astrocytes: Transcriptomic, Proteomic, Morphological, and Functional Evidence, vol.95, pp.531-549, 2017.

A. Reichenbach, A. Derouiche, and F. Kirchhoff, Morphology and dynamics of perisynaptic glia, Brain Research Reviews, vol.63, pp.11-25, 2010.

A. Boulay, B. Saubaméa, N. Adam, S. Chasseigneaux, N. Mazaré et al., Translation in astrocyte distal processes sets molecular heterogeneity at the gliovascular interface, Cell Discovery, vol.3, p.17005, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01545319

N. Medvedev, V. Popov, C. Henneberger, I. Kraev, D. A. Rusakov et al., Glia selectively approach synapses on thin dendritic spines, Phil. Trans. R. Soc. B, vol.369, p.20140047, 2014.

C. Calì, J. Baghabra, D. J. Boges, G. R. Holst, A. Kreshuk et al., Three-dimensional immersive virtual reality for studying cellular compartments in 3d models from EM preparations of neural tissues, Journal of Comparative Neurology, vol.524, pp.23-38, 2016.

I. Patrushev, N. Gavrilov, V. Turlapov, and A. Semyanov, Subcellular location of astrocytic calcium stores favors extrasynaptic neuron-astrocyte communication, Cell Calcium, vol.54, pp.343-349, 2013.

M. Pekny and M. Pekna, Astrocyte Reactivity and Reactive Astrogliosis: Costs and Benefits, Physiological Reviews, vol.94, pp.1077-1098, 2014.

M. M. Halassa, T. Fellin, H. Takano, J. Dong, and P. G. Haydon, Synaptic islands defined by the territory of a single astrocyte, The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, vol.27, pp.6473-6477, 2007.

K. Ogata and T. Kosaka, Structural and quantitative analysis of astrocytes in the mouse hippocampus, Neuroscience, vol.113, pp.221-233, 2002.

N. A. Oberheim, X. Wang, S. Goldman, and M. Nedergaard, Astrocytic complexity distinguishes the human brain, Trends in Neurosciences, vol.29, pp.547-553, 2006.

C. S. Bartheld, J. Bahney, and S. Herculano-houzel, The search for true numbers of neurons and glial cells in the human brain: A review of 150 years of cell counting, The Journal of Comparative Neurology, vol.524, issue.18, pp.3865-3895, 2016.

J. Bahney and C. S. Bartheld, Validation of the isotropic fractionator: Comparison with unbiased stereology and DNA extraction for quantification of glial cells, Journal of Neuroscience Methods, vol.222, pp.165-174, 2014.

R. Lent, F. A. Azevedo, C. H. Andrade-moraes, and A. V. Pinto, How many neurons do you have? Some dogmas of quantitative neuroscience under revision, The European Journal of Neuroscience, vol.35, pp.1-9, 2012.

A. V. Molofsky, R. Krenick, E. Ullian, H. Tsai, B. Deneen et al., Astrocytes and disease: a neurodevelopmental perspective, Genes & Development, vol.26, pp.891-907, 2012.

J. D. Cahoy, B. Emery, A. Kaushal, L. C. Foo, J. L. Zamanian et al., A Transcriptome Database for Astrocytes, Neurons, and Oligodendrocytes: A New Resource for Understanding Brain Development and Function, Journal of Neuroscience, vol.28, pp.264-278, 2008.

J. P. Doyle, J. D. Dougherty, M. Heiman, E. F. Schmidt, T. R. Stevens et al., Application of a Translational Profiling Approach for the Comparative Analysis of CNS Cell Types, Cell, vol.135, pp.749-762, 2008.

W. H. Evans and P. E. Martin, Gap junctions: structure and function (Review), vol.19, pp.121-136, 2002.

A. Nimmerjahn, E. A. Mukamel, and M. J. Schnitzer, Motor Behavior Activates Bergmann Glial Networks, Neuron, vol.62, p.400, 2009.

N. Kuga, T. Sasaki, Y. Takahara, N. Matsuki, and Y. Ikegaya, Large-Scale Calcium Waves Traveling through Astrocytic Networks In Vivo, Journal of Neuroscience, vol.31, pp.2607-2614, 2011.

H. Hirase, L. Qian, P. Bartho, and G. Buzsáki, Calcium Dynamics of Cortical Astrocytic Networks In Vivo, PLoS biology, vol.2, p.96, 2004.

T. Sasaki, N. Kuga, S. Namiki, N. Matsuki, and Y. Ikegaya, Locally Synchronized Astrocytes, Cerebral Cortex, p.256, 2011.

V. Houades, N. Rouach, P. Ezan, F. Kirchhoff, A. Koulakoff et al., Shapes of astrocyte networks in the juvenile brain, Neuron Glia Biology, vol.2, pp.3-14, 2006.

W. Meme, M. Vandecasteele, C. Giaume, and L. Venance, Electrical coupling between hippocampal astrocytes in rat brain slices, Neuroscience Research, vol.63, pp.236-243, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02149164

C. Giaume, A. Koulakoff, L. Roux, D. Holcman, and N. Rouach, Astroglial networks: a step further in neuroglial and gliovascular interactions, Nature Reviews Neuroscience, vol.11, pp.87-99, 2010.

A. Rohlmann and J. R. Wolff, Subcellular Topography and Plasticity of Gap Junction Distribution on Astrocytes, SpringerLink, pp.175-192, 1996.

T. Mishima and H. Hirase, In vivo intracellular recording suggests that gray matter astrocytes in mature cerebral cortex and hippocampus are electrophysiologically homogeneous, The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, vol.30, pp.3093-3100, 2010.

A. Louise and D. M. Lovinger, Electrophysiological properties and gap junction coupling of striatal astrocytes, Neurochemistry international, vol.52, pp.1365-1372, 2008.

, Astrocytes in (Patho)Physiology of the Nervous System, 2009.

J. Emsley and J. Macklis, Astroglial heterogeneity closely reflects the neuronal-defined anatomy of the adult murine CNS, Neuron Glia Biol, vol.2, issue.3, 2006.

N. A. Oberheim, S. A. Goldman, and M. Nedergaard, Heterogeneity of astrocytic form and function, Methods in Molecular Biology, vol.814, pp.23-45, 2012.

A. V. Molofsky, K. W. Kelley, H. Tsai, S. A. Redmond, S. M. Chang et al., Astrocyte-encoded positional cues maintain sensorimotor circuit integrity, Nature, vol.509, pp.189-194, 2014.

S. Shah, E. Lubeck, W. Zhou, and L. Cai, Situ Transcription Profiling of Single Cells Reveals Spatial Organization of Cells in the Mouse Hippocampus, vol.92, pp.342-357, 2016.

N. Takata and H. Hirase, Cortical Layer 1 and Layer 2/3 Astrocytes Exhibit Distinct Calcium Dynamics In Vivo, PLOS ONE, vol.3, p.2525, 2008.

R. Ambrosio, J. Wenzel, P. A. Schwartzkroin, G. M. Mckhann, and D. Janigro, Functional specialization and topographic segregation of hippocampal astrocytes, The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, vol.18, pp.4425-4438, 1998.

E. W. Kostuk, J. Cai, and L. Iacovitti, Subregional differences in astrocytes underlie selective neurodegeneration or protection in Parkinson's disease models in culture, Glia, vol.0, issue.0, 2019.

O. A. Bayraktar, L. C. Fuentealba, A. Alvarez-buylla, and D. H. Rowitch, Cold Spring Harbor Perspectives in Biology, vol.7, p.20362, 2015.

L. B. Haim and D. H. Rowitch, Functional diversity of astrocytes in neural circuit regulation, Nature Reviews Neuroscience, vol.18, pp.31-41, 2017.

B. Zhou, Y. Zuo, and R. Jiang, Astrocyte morphology: Diversity, plasticity, and role in neurological diseases, CNS neuroscience & therapeutics, 2019.

F. W. Pfrieger and B. A. Barres, Synaptic Efficacy Enhanced by Glial Cells in Vitro, Science, vol.277, pp.1684-1687, 1997.

M. R. Freeman, Specification and morphogenesis of astrocytes, Science, vol.330, pp.774-778, 2010.

E. Blanco-suarez, T. Liu, A. Kopelevich, and N. J. Allen, Astrocyte-Secreted Chordin-like 1 Drives Synapse Maturation and Limits Plasticity by Increasing Synaptic GluA2 AMPA Receptors, Neuron, vol.100, pp.1116-1132, 2018.

K. K. Murai, L. N. Nguyen, F. Irie, Y. Yamaguchi, and E. B. Pasquale, Control of hippocampal dendritic spine morphology through ephrin-A3/EphA4 signaling, Nature Neuroscience, vol.6, pp.153-160, 2003.

H. Nishida and S. Okabe, Direct Astrocytic Contacts Regulate Local Maturation of Dendritic Spines, Journal of Neuroscience, vol.27, pp.331-340, 2007.

M. R. Regan, Y. H. Huang, Y. S. Kim, M. I. Dykes-hoberg, L. Jin et al., Variations in Promoter Activity Reveal a Differential Expression and Physiology of Glutamate Transporters by Glia in the Developing and Mature CNS, Journal of Neuroscience, vol.27, pp.6607-6619, 2007.

M. Nedergaard and A. Verkhratsky, Artifact versus reality-how astrocytes contribute to synaptic events, Glia, vol.60, pp.1013-1023, 2012.

A. Verkhratsky and M. Nedergaard, Astroglial cradle in the life of the synapse, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.369, 2014.

G. Dallérac, J. Zapata, and N. Rouach, Versatile control of synaptic circuits by astrocytes: where, when and how?, Nature reviews. Neuroscience, 2018.

T. Ishibashi, K. A. Dakin, B. Stevens, P. R. Lee, S. V. Kozlov et al., Astrocytes promote myelination in response to electrical impulses, Neuron, vol.49, pp.823-832, 2006.

L. E. Clarke and B. A. Barres, Emerging roles of astrocytes in neural circuit development, Nature reviews. Neuroscience, vol.14, pp.311-321, 2013.

J. Schiweck, B. J. Eickholt, and K. Murk, Important Shapeshifter: Mechanisms Allowing Astrocytes to Respond to the Changing Nervous System During Development, Injury and Disease, Frontiers in Cellular Neuroscience, vol.12, 2018.

A. I. Amaral, T. W. Meisingset, M. R. Kotter, and U. Sonnewald, Metabolic Aspects of Neuron-Oligodendrocyte-Astrocyte Interactions, Frontiers in Endocrinology, vol.4, 2013.

E. R. Kandel, T. M. Jessell, J. H. Schwartz, S. A. Siegelbaum, and A. J. , Hudspeth, Principles of Neural Science, Fifth Edition, 2013.

D. Lee-liu, G. E. Faret, V. S. Tapia, and J. Larraín, Spinal cord regeneration: Lessons for mammals from non mammalian vertebrates, genesis, vol.51, issue.8, pp.529-544, 2013.

W. Walz, Role of glial cells in the regulation of the brain ion microenvironment, Progress in Neurobiology, vol.33, pp.309-333, 1989.

N. C. Danbolt, Glutamate uptake, Progress in Neurobiology, vol.65, pp.1-105, 2001.

F. A. Chaudhry, K. P. Lehre, M. V. Campagne, O. P. Ottersen, N. C. Danbolt et al., Glutamate transporters in glial plasma membranes: Highly differentiated localizations revealed by quantitative ultrastructural immunocytochemistry, Neuron, vol.15, pp.711-720, 1995.

M. Bélanger, I. Allaman, and P. Magistretti, Brain Energy Metabolism: Focus on Astrocyte-Neuron Metabolic Cooperation, vol.14, pp.724-738, 2011.

L. Pellerin and P. J. Magistretti, Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization, Proceedings of the National Academy of Sciences, vol.91, pp.10625-10629, 1994.

G. K. Gandhi, N. F. Cruz, K. K. Ball, and G. A. Dienel, Astrocytes are poised for lactate trafficking and release from activated brain and for supply of glucose to neurons, Journal of Neurochemistry, vol.111, issue.2, pp.522-536, 2009.

P. Ballabh, A. Braun, and M. Nedergaard, The blood-brain barrier: an overview: Structure, regulation, and clinical implications, Neurobiology of Disease, vol.16, pp.1-13, 2004.

M. R. Metea and E. A. Newman, Glial Cells Dilate and Constrict Blood Vessels: A Mechanism of Neurovascular Coupling, Journal of Neuroscience, vol.26, pp.2862-2870, 2006.

S. Mulligan and B. Macvicar, Calcium transients in astrocyte endfeet cause cerebrovascular constrictions, Nature, vol.431, pp.195-204, 2004.

T. Takano, G. Tian, W. Peng, N. Lou, W. Libionka et al., Astrocyte-mediated control of cerebral blood flow, Nature Neuroscience, vol.9, pp.260-267, 2006.

E. Dossi, F. Vasile, and N. Rouach, Human astrocytes in the diseased brain, Brain Research Bulletin, vol.136, pp.139-156, 2018.

L. Ben-haim, M. Carrillo-de-sauvage, K. Ceyzã©riat, and C. Escartin, Elusive roles for reactive astrocytes in neurodegenerative diseases, Frontiers in Cellular Neuroscience, vol.9, 2015.
URL : https://hal.archives-ouvertes.fr/cea-02142599

G. O. Mizuno, Y. Wang, G. Shi, Y. Wang, J. Sun et al., Aberrant Calcium Signaling in Astrocytes Inhibits Neuronal Excitability in a Human Down Syndrome Stem Cell Model, Cell Reports, vol.24, pp.355-365, 2018.

G. Dallérac and N. Rouach, Astrocytes as new targets to improve cognitive functions, Progress in Neurobiology, vol.144, pp.48-67, 2016.

H. Wang, G. Song, H. Chuang, C. Chiu, A. Abdelmaksoud et al., Portrait of glial scar in neurological diseases, International Journal of Immunopathology and Pharmacology, vol.31, p.2058738418801406, 2018.

K. L. Adams and V. Gallo, The diversity and disparity of the glial scar, Nature Neuroscience, vol.21, pp.9-15, 2018.

M. V. Sofroniew, Molecular dissection of reactive astrogliosis and glial scar formation, Trends in neurosciences, vol.32, pp.638-647, 2009.

R. Brambilla, Neuroinflammation, the thread connecting neurological disease, Acta Neuropathologica, 2019.

M. A. Anderson, J. E. Burda, Y. Ren, Y. Ao, T. M. Shea et al., Astrocyte scar formation aids central nervous system axon regeneration, Nature, vol.532, pp.195-200, 2016.

A. R. Filous and J. Silver, Targeting astrocytes in CNS injury and disease: A translational research approach, Progress in Neurobiology, vol.144, pp.173-187, 2016.

K. Ceyzériat, L. Ben, A. Haim, D. Denizot, M. Pommier et al., Modulation of astrocyte reactivity improves functional deficits in mouse models of Alzheimer's disease, Acta Neuropathologica Communications, vol.6, p.104, 2018.

J. E. Burda and M. V. Sofroniew, Reactive gliosis and the multicellular response to CNS damage and disease, Neuron, vol.81, pp.229-248, 2014.

J. E. Burda, A. M. Bernstein, and M. V. Sofroniew, Astrocyte roles in traumatic brain injury, Experimental Neurology, vol.275, issue.3, pp.305-315, 2016.

S. A. Liddelow and B. A. Barres, Reactive Astrocytes: Production, Function, and Therapeutic Potential, Immunity, vol.46, pp.957-967, 2017.

W. Chung, C. A. Welsh, B. A. Barres, and B. Stevens, Do glia drive synaptic and cognitive impairment in disease?, Nature Neuroscience, vol.18, pp.1539-1545, 2015.

S. A. Liddelow and M. V. Sofroniew, Astrocytes usurp neurons as a disease focus, Nature Neuroscience, p.1, 2019.

A. Soung and R. S. Klein, Viral Encephalitis and Neurologic Diseases: Focus on Astrocytes, Trends in Molecular Medicine, 2018.

R. K. Orkand, J. G. Nicholls, and S. W. Kuffler, Effect of nerve impulses on the membrane potential of glial cells in the central nervous system of amphibia, Journal of Neurophysiology, vol.29, pp.788-806, 1966.

H. Sontheimer, Voltage-dependent ion channels in glial cells, Glia, vol.11, pp.156-172, 1994.

A. Cornell-bell, S. Finkbeiner, M. Cooper, and S. Smith, Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling, Science, vol.247, pp.470-473, 1990.

M. A. Di-castro, J. Chuquet, N. Liaudet, K. Bhaukaurally, M. Santello et al., Local Ca2+ detection and modulation of synaptic release by astrocytes, Nature Neuroscience, vol.14, pp.1276-1284, 2011.

M. Gómez-gonzalo, M. Navarrete, G. Perea, A. Covelo, M. Martín-fernández et al., Endocannabinoids Induce Lateral Long-Term Potentiation of Transmitter Release by Stimulation of Gliotransmission, Cerebral Cortex, vol.25, pp.3699-3712, 1991.

A. Panatier, D. T. Theodosis, J. Mothet, B. Touquet, L. Pollegioni et al., Glia-Derived d-Serine Controls NMDA Receptor Activity and Synaptic Memory, Cell, vol.125, pp.775-784, 2006.
URL : https://hal.archives-ouvertes.fr/inserm-00078312

N. Takata, T. Mishima, C. Hisatsune, T. Nagai, E. Ebisui et al., Astrocyte calcium signaling transforms cholinergic modulation to cortical plasticity in vivo, The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, vol.31, pp.18155-18165, 2011.

Y. Bernardinelli, D. Muller, and I. Nikonenko, Astrocyte-Synapse Structural Plasticity, Neural Plasticity, vol.2014, 2014.

J. Grosche, V. Matyash, T. Möller, A. Verkhratsky, A. Reichenbach et al., Microdomains for neuron-glia interaction: parallel fiber signaling to Bergmann glial cells, Nature Neuroscience, vol.2, pp.139-143, 1999.

M. A. Xu-friedman, K. M. Harris, and W. G. Regehr, Three-Dimensional Comparison of Ultrastructural Characteristics at Depressing and Facilitating Synapses onto Cerebellar Purkinje Cells, Journal of Neuroscience, vol.21, pp.6666-6672, 2001.

J. Grosche, H. Kettenmann, and A. Reichenbach, Bergmann glial cells form distinct morphological structures to interact with cerebellar neurons, Journal of Neuroscience Research, vol.68, pp.138-149, 2002.

L. Pasti, A. Volterra, T. Pozzan, and G. Carmignoto, Intracellular calcium oscillations in astrocytes: a highly plastic, bidirectional form of communication between neurons and astrocytes in situ, The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, vol.17, pp.7817-7830, 1997.

J. Kang, L. Jiang, S. A. Goldman, and M. Nedergaard, Astrocyte-mediated potentiation of inhibitory synaptic transmission, Nature Neuroscience, vol.1, pp.683-692, 1998.

M. Navarrete, G. Perea, D. Fernandez-de-sevilla, M. Gómez-gonzalo, A. Núñez et al., Astrocytes mediate in vivo cholinergic-induced synaptic plasticity, PLoS biology, vol.10, p.1001259, 2012.

Z. U. Khan, P. Koulen, M. Rubinstein, D. K. Grandy, and P. S. Goldman-rakic, An astroglia-linked dopamine D2-receptor action in prefrontal cortex, Proceedings of the National Academy of Sciences of the United States of America, vol.98, pp.1964-1969, 2001.

P. Jourdain, L. H. Bergersen, K. Bhaukaurally, P. Bezzi, M. Santello et al., Glutamate exocytosis from astrocytes controls synaptic strength, Nature Neuroscience, vol.10, pp.331-339, 2007.

M. Santello, P. Bezzi, and A. Volterra, TNF? Controls Glutamatergic Gliotransmission in the Hippocampal Dentate Gyrus, Neuron, vol.69, pp.988-1001, 2011.

Y. Bernardinelli, C. Salmon, E. V. Jones, W. T. Farmer, D. Stellwagen et al., Astrocytes Display Complex and Localized Calcium Responses to Single-Neuron Stimulation in the Hippocampus, Journal of Neuroscience, vol.31, pp.8905-8919, 2011.

M. Navarrete and A. Araque, Endocannabinoids Mediate Neuron-Astrocyte Communication, Neuron, vol.57, pp.883-893, 2008.

M. Navarrete and A. Araque, Endocannabinoids Potentiate Synaptic Transmission through Stimulation of Astrocytes, Neuron, vol.68, pp.113-126, 2010.

R. Min and T. Nevian, Astrocyte signaling controls spike timing-dependent depression at neocortical synapses, Nature Neuroscience, vol.15, pp.746-753, 2012.

K. Matsui and C. E. Jahr, Differential Control of Synaptic and Ectopic Vesicular Release of Glutamate, Journal of Neuroscience, vol.24, pp.8932-8939, 2004.

V. Parpura and R. Zorec, Gliotransmission: Exocytotic release from astrocytes, Brain Research Reviews, vol.63, pp.83-92, 2010.

M. Zonta, A. Sebelin, S. Gobbo, T. Fellin, T. Pozzan et al., Glutamate-mediated cytosolic calcium oscillations regulate a pulsatile prostaglandin release from cultured rat astrocytes, The Journal of Physiology, vol.553, pp.407-414, 2003.

G. Perea, M. Navarrete, and A. Araque, Tripartite synapses: astrocytes process and control synaptic information, Trends in Neurosciences, vol.32, pp.421-431, 2009.

A. Araque, G. Carmignoto, P. G. Haydon, S. H. Oliet, R. Robitaille et al., Gliotransmitters travel in time and space, Neuron, vol.81, pp.728-739, 2014.

N. B. Hamilton and D. , Do astrocytes really exocytose neurotransmitters?, Nature Reviews. Neuroscience, vol.11, pp.227-238, 2010.

I. Savtchouk and A. Volterra, Gliotransmission: Beyond Black-and-White, Journal of Neuroscience, vol.38, pp.14-25, 2018.

T. A. Fiacco and K. D. Mccarthy, Multiple Lines of Evidence Indicate That Gliotransmission Does Not Occur under Physiological Conditions, Journal of Neuroscience, vol.38, pp.3-13, 2018.

S. Guerra-gomes, N. Sousa, L. Pinto, and J. F. Oliveira, Functional Roles of Astrocyte Calcium Elevations: From Synapses to Behavior, Frontiers in Cellular Neuroscience, vol.11, 2018.

A. Perez-alvarez, M. Navarrete, A. Covelo, E. D. Martin, and A. Araque, Structural and functional plasticity of astrocyte processes and dendritic spine interactions, The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, vol.34, pp.12738-12744, 2014.

D. T. Theodosis, D. A. Poulain, and S. H. Oliet, Activity-dependent structural and functional plasticity of astrocyte-neuron interactions, Physiological Reviews, vol.88, pp.983-1008, 2008.

J. P. Heller and D. A. Rusakov, Morphological plasticity of astroglia: Understanding synaptic microenvironment, Glia, vol.63, pp.2133-2151, 2015.

V. Dave, G. W. Gordon, and K. D. Mccarthy, Cerebral type 2 astroglia are heterogeneous with respect to their ability to respond to neuroligands linked to calcium mobilization, Glia, vol.4, issue.5, pp.440-447, 1991.

M. O. Enkvist, I. Holopainen, and K. E. Åkerman, Glutamate receptorlinked changes in membrane potential and intracellular Ca2+ in primary rat astrocytes, Glia, vol.2, issue.6, pp.397-402, 1989.

C. H. Kastritsis, A. K. Salm, and K. Mccarthy, Stimulation of the P2y purinergic receptor on type 1 astroglia results in inositol phosphate formation and calcium mobilization, Journal of Neurochemistry, vol.58, pp.1277-1284, 1992.

W. T. Kim, M. G. Rioult, and A. H. Cornell-bell, Glutamate-induced calcium signaling in astrocytes, Glia, vol.11, pp.173-184, 1994.

K. D. Mccarthy and A. K. Salm, Pharmacologically-distinct subsets of astroglia can be identified by their calcium response to neuroligands, Neuroscience, vol.41, pp.325-333, 1991.

M. J. Berridge, M. D. Bootman, and H. L. Roderick, Calcium signalling: dynamics, homeostasis and remodelling, Nature Reviews. Molecular Cell Biology, vol.4, pp.517-529, 2003.

M. Glitsch, Mechano-and pH-sensing convergence on Ca2+-mobilising proteins -a recipe for cancer?, Cell Calcium, 2019.

A. Maklad, A. Sharma, and I. Azimi, Calcium Signaling in Brain Cancers: Roles and Therapeutic Targeting, Cancers, vol.11, p.145, 2019.

R. Rizzuto and T. Pozzan, Microdomains of Intracellular Ca2+: Molecular Determinants and Functional Consequences, Physiological Reviews, vol.86, pp.369-408, 2006.

G. Dupont, M. Falcke, V. Kirk, and J. Sneyd, Some Background Physiology, Models of Calcium Signalling, pp.3-27, 2016.

H. Plattner and A. Verkhratsky, The ancient roots of calcium signalling evolutionary tree, Cell Calcium, vol.57, pp.123-132, 2015.

K. K. Baskin, C. A. Makarewich, S. M. Deleon, W. Ye, B. Chen et al., MED12 regulates a transcriptional network of calcium-handling genes in the heart, JCI Insight, vol.2, 2017.

B. N. Armbruster, X. Li, M. H. Pausch, S. Herlitze, and B. L. Roth, Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand, Proceedings of the National Academy of Sciences of the United States of America, vol.104, pp.5163-5168, 2007.

G. Ma, S. Wen, L. He, Y. Huang, Y. Wang et al., Optogenetic toolkit for precise control of calcium signaling, Cell Calcium, vol.64, pp.36-46, 2017.

Z. Ji and H. Wang, Optogenetic control of astrocytes: Is it possible to treat astrocyte-related epilepsy?, Brain Research Bulletin, vol.110, pp.20-25, 2015.

A. X. Xie, J. Petravicz, and K. D. Mccarthy, Molecular approaches for manipulating astrocytic signaling in vivo, Frontiers in Cellular Neuroscience, vol.9, p.144, 2015.

G. Losi, L. Mariotti, M. Sessolo, and G. Carmignoto, New Tools to Study Astrocyte Ca2+ Signal Dynamics in Brain Networks In Vivo, Frontiers in Cellular Neuroscience, vol.11, p.134, 2017.

D. A. Rusakov, Disentangling calcium-driven astrocyte physiology, Nature Reviews Neuroscience, vol.16, pp.226-233, 2015.

A. Volterra, N. Liaudet, and I. Savtchouk, Astrocyte Ca2+ signalling: an unexpected complexity, Nature Reviews Neuroscience, vol.15, pp.327-335, 2014.

A. Panatier, J. Vallée, M. Haber, K. K. Murai, J. Lacaille et al., Astrocytes are endogenous regulators of basal transmission at central synapses, Cell, vol.146, pp.785-798, 2011.

X. Tong, E. Shigetomi, L. L. Looger, and B. S. Khakh, Genetically encoded calcium indicators and astrocyte calcium microdomains, The Neuroscientist: A Review Journal Bringing Neurobiology, vol.19, pp.274-291, 2013.

N. A. Smith, B. T. Kress, Y. Lu, D. Chandler-militello, A. Benraiss et al., Fluorescent Ca2+ indicators directly inhibit the Na,K-ATPase and disrupt cellular functions, Sci. Signal, vol.11, p.2039, 2018.

S. A. Hires, L. Tian, and L. L. Looger, Reporting neural activity with genetically encoded calcium indicators, Brain Cell Biology, vol.36, p.69, 2008.

L. Tian, S. A. Hires, and L. L. Looger, Imaging Neuronal Activity with Genetically Encoded Calcium Indicators, p. pdb.top069609, vol.2012, 2012.

L. Ye, M. A. Haroon, A. Salinas, and M. Paukert, Comparison of GCaMP3 and GCaMP6f for studying astrocyte Ca2+ dynamics in the awake mouse brain, PLOS ONE, vol.12, p.181113, 2017.

R. Srinivasan, T. Y. Lu, H. Chai, J. Xu, B. S. Huang et al., New Transgenic Mouse Lines for Selectively Targeting Astrocytes and Studying Calcium Signals in Astrocyte Processes In Situ and In Vivo, Neuron, vol.92, issue.6, pp.1181-1195, 2016.

F. Niwa, S. Sakuragi, A. Kobayashi, S. Takagi, Y. Oda et al., Dissection of local Ca(2+) signals inside cytosol by ERtargeted Ca(2+) indicator, Biochemical and Biophysical Research Communications, vol.479, issue.1, pp.67-73, 2016.

H. Bannai, M. Hirose, F. Niwa, and K. Mikoshiba, Dissection of Local Ca2+ Signals in Cultured Cells by Membrane-targeted Ca2+ Indicators, JoVE (Journal of Visualized Experiments), p.59246, 2019.

E. Shigetomi, S. Kracun, M. V. Sofroniew, and B. S. Khakh, A genetically targeted optical sensor to monitor calcium signals in astrocyte processes, Nature Neuroscience, vol.13, pp.759-766, 2010.

Y. Zhao, S. Araki, J. Wu, T. Teramoto, Y. Chang et al., An Expanded Palette of Genetically Encoded Ca2+ Indicators, Science, vol.333, pp.1888-1891, 2011.

M. J. Henderson, H. A. Baldwin, C. A. Werley, S. Boccardo, L. R. Whitaker et al., A Low Affinity GCaMP3 Variant (GCaMPer) for Imaging the Endoplasmic Reticulum Calcium Store, PLOS ONE, vol.10, p.139273, 2015.

J. Suzuki, K. Kanemaru, K. Ishii, M. Ohkura, Y. Okubo et al., Imaging intraorganellar Ca 2+ at subcellular resolution using CEPIA, Nature Communications, vol.5, p.4153, 2014.

J. Suzuki, K. Kanemaru, and M. Iino, Genetically Encoded Fluorescent Indicators for Organellar Calcium Imaging, Biophysical Journal, vol.111, pp.1119-1131, 2016.

H. Li, X. Wang, N. Zhang, M. K. Gottipati, V. Parpura et al., Imaging of mitochondrial Ca2+ dynamics in astrocytes using cell-specific mitochondria-targeted GCaMP5g/6s: Mitochondrial Ca2+ uptake and cytosolic Ca2+ availability via the endoplasmic reticulum store, Cell calcium, vol.56, pp.457-466, 2014.

Y. Okubo, K. Kanemaru, J. Suzuki, K. Kobayashi, K. Hirose et al., Inositol 1,4,5-trisphosphate receptor type 2-independent Ca2+ release from the endoplasmic reticulum in astrocytes, Glia, vol.67, issue.1, pp.113-124, 2019.

H. A. Zariwala, B. G. Borghuis, T. M. Hoogland, L. Madisen, L. Tian et al., A Cre-Dependent GCaMP3 Reporter Mouse for Neuronal Imaging In Vivo, Journal of Neuroscience, vol.32, pp.3131-3141, 2012.

E. Shigetomi, S. Patel, and B. S. Khakh, Probing the Complexities of Astrocyte Calcium Signaling, Trends in Cell Biology, vol.26, pp.300-312, 2016.

B. R. Conway and K. T. Demarest, The Use of Biosensors to Study GPCR Function: Applications for High-Content Screening, Receptors and Channels, vol.8, pp.331-341, 2002.

F. Ataei, M. Torkzadeh-mahani, and S. Hosseinkhani, A novel luminescent biosensor for rapid monitoring of IP3 by split-luciferase complementary assay, Biosensors and Bioelectronics, vol.41, pp.642-648, 2013.

A. Tanimura, T. Mochizuki, T. Morita, A. Nezu, Y. Tojyo et al., A fluorescence-based method for evaluating inositol 1,4,5-trisphosphate receptor ligands: Determination of subtype selectivity and partial agonist effects, Journal of Biotechnology, vol.167, pp.248-254, 2013.

A. Miyamoto and K. Mikoshiba, Probes for manipulating and monitoring IP3, Cell Calcium, vol.64, pp.57-64, 2017.

F. Barbagallo, B. Xu, G. R. Reddy, T. West, Q. Wang et al., Genetically Encoded Biosensors Reveal PKA Hyperphosphorylation on the Myofilaments in Rabbit Heart Failure, Circulation research, vol.119, pp.931-943, 2016.

N. C. Surdo, M. Berrera, A. Koschinski, M. Brescia, M. R. Machado et al., FRET biosensor uncovers cAMP nano-domains at ?-adrenergic targets that dictate precise tuning of cardiac contractility, Nature Communications, vol.8, p.15031, 2017.

D. L. Prole and C. W. Taylor, A genetically-encoded toolkit of functionalized nanobodies against fluorescent proteins for visualizing and manipulating intracellular signalling, p.544700, 2019.

H. Dana, Y. Sun, B. Mohar, B. Hulse, J. P. Hasseman et al., High-performance GFP-based calcium indicators for imaging activity in neuronal populations and microcompartments, p.434589, 2018.

T. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger et al., Ultrasensitive fluorescent proteins for imaging neuronal activity, Nature, vol.499, pp.295-300, 2013.

S. Tang, F. Reddish, Y. Zhuo, and J. J. Yang, Fast kinetics of calcium signaling and sensor design, Current Opinion in Chemical Biology, vol.27, pp.90-97, 2015.

L. Lindenburg and M. Merkx, Engineering Genetically Encoded FRET Sensors, Sensors, vol.14, pp.11691-11713, 2014.

T. A. Weissman, P. A. Riquelme, L. Ivic, A. C. Flint, and A. R. Kriegstein, Calcium Waves Propagate through Radial Glial Cells and Modulate Proliferation in the Developing Neocortex, Neuron, vol.43, pp.647-661, 2004.

M. R. Metea and E. A. Newman, Calcium Signaling in Specialized Glial Cells, Glia, vol.54, pp.650-655, 2006.

J. Yang, H. Yang, Y. Liu, X. Li, L. Qin et al., Astrocytes contribute to synapse elimination Via type 2 inositol 1,4,5-trisphosphate receptor-dependent release of ATP, vol.5, 2016.

S. Sultan, L. Li, J. Moss, F. Petrelli, F. Cassé et al., Synaptic Integration of Adult-Born Hippocampal Neurons Is Locally Controlled by Astrocytes, Neuron, vol.88, pp.957-972, 2015.

S. A. Hill, A. Blaeser, A. Coley, Y. Xie, K. A. Shepard et al., Sonic hedgehog signaling in astrocytes mediates cell-type-specific synaptic organization, p.537860, 2019.

M. Nedergaard, Direct signaling from astrocytes to neurons in cultures of mammalian brain cells, Science, vol.263, pp.1768-1771, 1994.

V. Parpura, T. A. Basarsky, F. Liu, K. Jeftinija, S. Jeftinija et al., Glutamate-mediated astrocyte-neuron signalling, Nature, vol.369, p.744, 1994.

I. R. Winship, N. Plaa, and T. H. Murphy, Rapid astrocyte calcium signals correlate with neuronal activity and onset of the hemodynamic response in vivo, The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, vol.27, pp.6268-6272, 2007.

E. Shigetomi, X. Tong, K. Y. Kwan, D. P. Corey, and B. S. Khakh, TRPA1 channels regulate astrocyte resting calcium and inhibitory synapse efficacy through GAT-3, Nature Neuroscience, vol.15, pp.70-80, 2012.

J. A. Filosa, A. D. Bonev, S. V. Straub, A. L. Meredith, M. K. Wilkerson et al., Local potassium signaling couples neuronal activity to vasodilation in the brain, Nature Neuroscience, vol.9, pp.1397-1403, 2006.

D. Attwell, A. M. Buchan, S. Charpak, M. Lauritzen, B. A. Macvicar et al., Glial and neuronal control of brain blood flow, Nature, vol.468, pp.232-243, 2010.

Y. Bernardinelli, J. Randall, E. Janett, I. Nikonenko, S. König et al., Activity-dependent structural plasticity of perisynaptic astrocytic domains promotes excitatory synapse stability, Current biology: CB, vol.24, pp.1679-1688, 2014.

D. Molotkov, S. Zobova, J. M. Arcas, and L. Khiroug, Calcium-induced outgrowth of astrocytic peripheral processes requires actin binding by Profilin-1, Cell Calcium, vol.53, pp.338-348, 2013.

M. Tanaka, P. Shih, H. Gomi, T. Yoshida, J. Nakai et al., Astrocytic Ca2+ signals are required for the functional integrity of tripartite synapses, Molecular Brain, vol.6, p.6, 2013.

T. Sasaki, N. Matsuki, and Y. Ikegaya, Action-Potential Modulation During Axonal Conduction, Science, vol.331, pp.599-601, 2011.

M. C. Angulo, A. S. Kozlov, S. Charpak, and E. Audinat, Glutamate Released from Glial Cells Synchronizes Neuronal Activity in the Hippocampus, Journal of Neuroscience, vol.24, pp.6920-6927, 2004.

T. Fellin, O. Pascual, S. Gobbo, T. Pozzan, P. G. Haydon et al., Neuronal Synchrony Mediated by Astrocytic Glutamate through Activation of Extrasynaptic NMDA Receptors, Neuron, vol.43, pp.729-743, 2004.

P. Morquette, D. Verdier, A. Kadala, J. Féthière, A. G. Philippe et al., An astrocyte-dependent mechanism for neuronal rhythmogenesis, Nature Neuroscience, vol.18, issue.6, pp.844-854, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01837612

K. E. Poskanzer and R. Yuste, Astrocytic regulation of cortical UP states, Proceedings of the National Academy of Sciences, vol.108, pp.18453-18458, 2011.

T. Sasaki, T. Ishikawa, R. Abe, R. Nakayama, A. Asada et al., Astrocyte calcium signalling orchestrates neuronal synchronization in organotypic hippocampal slices, The Journal of Physiology, vol.592, pp.2771-2783, 2014.

K. E. Poskanzer and R. Yuste, Astrocytes regulate cortical state switching in vivo, Proceedings of the National Academy of Sciences of the United States of America, vol.113, pp.2675-2684, 2016.

J. F. Oliveira, V. M. Sardinha, S. Guerra-gomes, A. Araque, and N. Sousa, Do stars govern our actions? Astrocyte involvement in rodent behavior, Trends in Neurosciences, vol.38, pp.535-549, 2015.

M. Tanaka, X. Wang, K. Mikoshiba, H. Hirase, and Y. Shinohara, Rearingenvironment-dependent hippocampal local field potential differences in wildtype and inositol trisphosphate receptor type 2 knockout mice, The Journal of Physiology, vol.595, pp.6557-6568, 2017.

J. Petravicz, K. M. Boyt, and K. D. Mccarthy, Astrocyte IP3r2-dependent Ca2+ signaling is not a major modulator of neuronal pathways governing behavior, Frontiers in Behavioral Neuroscience, vol.8, 2014.

V. M. Sardinha, S. Guerra-gomes, I. Caetano, G. Tavares, M. Martins et al., Astrocytic signaling supports hippocampal-prefrontal theta synchronization and cognitive function, Glia, vol.65, pp.1944-1960, 2017.

A. Adamsky, A. Kol, T. Kreisel, A. Doron, N. Ozeri-engelhard et al., Astrocytic Activation Generates De Novo Neuronal Potentiation and Memory Enhancement, Cell, vol.174, pp.59-71, 2018.

X. Han, M. Chen, F. Wang, M. Windrem, S. Wang et al.,

M. Nedergaard, Forebrain engraftment by human glial progenitor cells enhances synaptic plasticity and learning in adult mice, Cell Stem Cell, vol.12, pp.342-353, 2013.

M. Santello, N. Toni, and A. Volterra, Astrocyte function from information processing to cognition and cognitive impairment, Nature Neuroscience, p.1, 2019.

X. Wang, N. Lou, Q. Xu, G. Tian, W. G. Peng et al., Astrocytic Ca2+ signaling evoked by sensory stimulation in vivo, Nature Neuroscience, vol.9, pp.816-823, 2006.

K. Kanemaru, H. Sekiya, M. Xu, K. Satoh, N. Kitajima et al., In Vivo Visualization of Subtle, Transient, and Local Activity of Astrocytes Using an Ultrasensitive Ca2+ Indicator, Cell Reports, vol.8, pp.311-318, 2014.

Y. Otsu, K. Couchman, D. G. Lyons, M. Collot, A. Agarwal et al., Calcium dynamics in astrocyte processes during neurovascular coupling, Nature Neuroscience, vol.18, pp.210-218, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01362700

J. Schummers, H. Yu, and M. Sur, Tuned responses of astrocytes and their influence on hemodynamic signals in the visual cortex, Science, vol.320, pp.1638-1643, 2008.

N. Chen, H. Sugihara, J. Sharma, G. Perea, J. Petravicz et al., Nucleus basalis-enabled stimulus-specific plasticity in the visual cortex is mediated by astrocytes, Proceedings of the National Academy of Sciences, vol.109, pp.2832-2841, 2012.

H. Monai, M. Ohkura, M. Tanaka, Y. Oe, A. Konno et al., Calcium imaging reveals glial involvement in transcranial direct current stimulation-induced plasticity in mouse brain, Nature Communications, vol.7, p.11100, 2016.

P. Cao, G. Donovan, M. Falcke, and J. Sneyd, A stochastic model of calcium puffs based on single-channel data, Biophysical Journal, vol.105, pp.1133-1142, 2013.

X. Cao, L. Li, Q. Wang, Q. Wu, H. Hu et al., Astrocyte-derived ATP modulates depressive-like behaviors, Nature Medicine, vol.19, pp.773-777, 2013.

M. Martin-fernandez, S. Jamison, L. M. Robin, Z. Zhao, E. D. Martin et al., Synapsespecific astrocyte gating of amygdala-related behavior, Nature Neuroscience, vol.20, pp.1540-1548, 2017.

C. Agulhon, K. M. Boyt, A. X. Xie, F. Friocourt, B. L. Roth et al., Modulation of the autonomic nervous system and behaviour by acute glial cell Gq protein-coupled receptor activation in vivo, The Journal of Physiology, vol.591, pp.5599-5609, 2013.

C. H. Tran, G. Peringod, and G. R. Gordon, Astrocytes Integrate Behavioral State and Vascular Signals during Functional Hyperemia, Neuron, 2018.

X. Yu, A. M. Taylor, J. Nagai, P. Golshani, C. J. Evans et al., Reducing Astrocyte Calcium Signaling In Vivo Alters Striatal Microcircuits and Causes Repetitive Behavior, Neuron, vol.99, pp.1170-1187, 2018.

M. P. Mattson and S. L. Chan, Neuronal and glial calcium signaling in Alzheimer's disease, Cell Calcium, vol.34, pp.385-397, 2003.

K. V. Kuchibhotla, C. R. Lattarulo, B. T. Hyman, and B. J. Bacskai, Synchronous Hyperactivity and Intercellular Calcium Waves in Astrocytes in Alzheimer Mice, Science, vol.323, pp.1211-1215, 2009.

D. Lim, J. J. Rodríguez-arellano, V. Parpura, R. Zorec, F. Zeidán-chuliá et al., Calcium signalling toolkits in astrocytes and spatio-temporal progression of Alzheimer's disease, Current Alzheimer Research, vol.13, issue.4, pp.359-369, 2016.

N. Vardjan, A. Verkhratsky, and R. Zorec, Astrocytic Pathological Calcium Homeostasis and Impaired Vesicle Trafficking in Neurodegeneration, International Journal of Molecular Sciences, vol.18, 2017.

J. J. Rodríguez-arellano, V. Parpura, R. Zorec, and A. Verkhratsky, Astrocytes in physiological aging and Alzheimer's disease, Neuroscience, vol.323, pp.170-182, 2016.

H. D. Booth, W. D. Hirst, and R. Wade-martins, The Role of Astrocyte Dysfunction in Parkinson's Disease Pathogenesis, Trends in Neurosciences, vol.40, pp.358-370, 2017.

P. Bedner, A. Dupper, K. Hüttmann, J. Müller, M. K. Herde et al., Astrocyte uncoupling as a cause of human temporal lobe epilepsy, Brain, vol.138, pp.1208-1222, 2015.

G. Seifert, G. Carmignoto, and C. Steinhäuser, Astrocyte dysfunction in epilepsy, Brain Research Reviews, vol.63, pp.212-221, 2010.

A. Goudriaan, C. De-leeuw, S. Ripke, C. M. Hultman, P. Sklar et al., Specific Glial Functions Contribute to Schizophrenia Susceptibility, Schizophrenia Bulletin, vol.40, pp.925-935, 2014.

J. Nagai, A. K. Rajbhandari, M. R. Gangwani, A. Hachisuka, G. Coppola et al., Hyperactivity with Disrupted Attention by Activation of an Astrocyte Synaptogenic Cue, Cell, 2019.

G. Schmunk, R. L. Nguyen, D. L. Ferguson, K. Kumar, I. Parker et al., High-throughput screen detects calcium signaling dysfunction in typical sporadic autism spectrum disorder, Scientific Reports, vol.7, p.40740, 2017.

R. Moraga-amaro, J. M. Jerez-baraona, F. Simon, and J. Stehberg, Role of astrocytes in memory and psychiatric disorders, Journal of Physiology-Paris, vol.108, pp.240-251, 2014.

E. Shigetomi, K. Saito, F. Sano, and S. Koizumi, Aberrant Calcium Signals in Reactive Astrocytes: A Key Process in Neurological Disorders, International Journal of Molecular Sciences, vol.20, p.996, 2019.

M. Nedergaard, J. J. Rodríguez, and A. Verkhratsky, Glial calcium and diseases of the nervous system, Cell Calcium, vol.47, pp.140-149, 2010.

M. Pekny, M. Pekna, A. Messing, C. Steinhäuser, J. Lee et al., Astrocytes: a central element in neurological diseases, Acta Neuropathologica, vol.131, pp.323-345, 2016.

J. R. Jones, L. Kong, M. G. Hanna, B. Hoffman, R. Krencik et al., Mutations in GFAP Disrupt the Distribution and Function of Organelles in Human Astrocytes, Cell Reports, vol.25, pp.947-958, 2018.

J. W. Dani, A. Chernjavsky, and S. J. Smith, Neuronal activity triggers calcium waves in hippocampal astrocyte networks, Neuron, vol.8, pp.429-440, 1992.

E. A. Newman and K. R. Zahs, Calcium waves in retinal glial cells, Science, vol.275, pp.844-847, 1997.

C. G. Schipke, C. Boucsein, C. Ohlemeyer, F. Kirchhoff, and H. Kettenmann, Astrocyte Ca2+ waves trigger responses in microglial cells in brain slices, FASEB journal: official publication of the Federation of American Societies for Experimental Biology, vol.16, pp.255-257, 2002.

M. Paukert, A. Agarwal, J. Cha, V. A. Doze, J. U. Kang et al., Norepinephrine controls astroglial responsiveness to local circuit activity, Neuron, vol.82, pp.1263-1270, 2014.

F. Ding, J. O'donnell, A. S. Thrane, D. Zeppenfeld, H. Kang et al., ?1-Adrenergic receptors mediate coordinated Ca2+ signaling of cortical astrocytes in awake, behaving mice, Cell Calcium, vol.54, pp.387-394, 2013.

P. B. Guthrie, J. Knappenberger, M. Segal, M. V. Bennett, A. C. Charles et al., ATP released from astrocytes mediates glial calcium waves, The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, vol.19, pp.520-528, 1999.

M. L. Cotrina, J. H. Lin, J. C. López-garcía, C. C. Naus, and M. Nedergaard, ATP-mediated glia signaling, The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, vol.20, pp.2835-2844, 2000.

C. E. Stout, J. L. Costantin, C. C. Naus, and A. C. Charles, Intercellular calcium signaling in astrocytes via ATP release through connexin hemichannels, The Journal of Biological Chemistry, vol.277, pp.10482-10488, 2002.

C. Giaume and L. Venance, Intercellular calcium signaling and gap junctional communication in astrocytes, Glia, vol.24, pp.50-64, 1998.

M. D. Haustein, S. Kracun, X. Lu, T. Shih, O. Jackson-weaver et al., Conditions and constraints for astrocyte calcium signaling in the hippocampal mossy fiber pathway, Neuron, vol.82, pp.413-429, 2014.

E. Shigetomi, S. Kracun, and B. S. Khakh, Monitoring astrocyte calcium microdomains with improved membrane targeted GCaMP reporters, Neuron Glia Biology, vol.6, pp.183-191, 2010.

S. V. Straub, A. D. Bonev, M. K. Wilkerson, and M. T. Nelson, Dynamic inositol trisphosphate-mediated calcium signals within astrocytic endfeet underlie vasodilation of cerebral arterioles, The Journal of General Physiology, vol.128, pp.659-669, 2006.

K. M. Dunn, D. C. Hill-eubanks, W. B. Liedtke, and M. T. Nelson, TRPV4 channels stimulate Ca2+-induced Ca2+ release in astrocytic endfeet and amplify neurovascular coupling responses, Proceedings of the National Academy of Sciences of the United States of America, vol.110, pp.6157-6162, 2013.

R. Zorec, A. Araque, G. Carmignoto, P. G. Haydon, A. Verkhratsky et al., Astroglial excitability and gliotransmission: an appraisal of Ca2+ as a signalling route, ASN NEURO, vol.4, 2012.

D. A. Rusakov, L. Bard, M. G. Stewart, and C. Henneberger, Diversity of astroglial functions alludes to subcellular specialisation, Trends in Neurosciences, vol.37, pp.228-242, 2014.

M. W. Sherwood, M. Arizono, C. Hisatsune, H. Bannai, E. Ebisui et al., Astrocytic IP3rs: Contribution to Ca2+ signalling and hippocampal LTP, Glia, vol.65, pp.502-513, 2017.

I. Bosanac, J. Alattia, T. K. Mal, J. Chan, S. Talarico et al., Structure of the inositol 1,4,5-trisphosphate receptor binding core in complex with its ligand, Nature, vol.420, pp.696-700, 2002.

M. J. Berridge, Inositol trisphosphate and calcium signalling, Nature, vol.361, pp.315-325, 1993.

I. Parker and I. Ivorra, Inhibition by Ca2+ of Inositol Trisphosphate-Mediated Ca2+ Liberation: A Possible Mechanism for Oscillatory Release of Ca2+, Proceedings of the National Academy of Science, vol.87, pp.260-264, 1990.

G. Dickinson, D. Swaminathan, and I. Parker, The Probability of Triggering Calcium Puffs Is Linearly Related to the Number of Inositol Trisphosphate Receptors in a Cluster, Biophysical Journal, vol.102, pp.1826-1836, 2012.

I. F. Smith, S. M. Wiltgen, J. Shuai, and I. Parker, Ca2+ Puffs Originate from Preestablished Stable Clusters of Inositol Trisphosphate Receptors, Sci. Signal, vol.2, pp.77-77, 2009.

L. E. Wagner and D. I. Yule, Differential regulation of the InsP 3 receptor type-1 and -2 single channel properties by InsP 3 , Ca 2+ and ATP, The Journal of Physiology, vol.590, pp.3245-3259, 2012.

G. Dupont, M. Falcke, V. Kirk, and J. Sneyd, The Calcium Toolbox, Interdisciplinary Applied Mathematics, pp.29-96, 2016.

K. Thurley, A. Skupin, R. Thul, and M. Falcke, Fundamental properties of Ca2 + signals, Biochimica et Biophysica Acta (BBA) -General Subjects, vol.1820, pp.1185-1194, 2012.

H. Ivanova, T. Vervliet, L. Missiaen, J. B. Parys, H. D. Smedt et al., Inositol 1,4,5-trisphosphate receptor-isoform diversity in cell death and survival, Biochimica et Biophysica Acta (BBA) -Molecular Cell Research, vol.1843, pp.2164-2183, 2014.

C. W. Taylor and S. C. Tovey, IP3 Receptors: Toward Understanding Their Activation, Cold Spring Harbor Perspectives in Biology, vol.2, p.4010, 2010.

M. Seo, M. Enomoto, N. Ishiyama, P. B. Stathopulos, and M. Ikura, Structural insights into endoplasmic reticulum stored calcium regulation by inositol 1,4,5-trisphosphate and ryanodine receptors, Biochimica Et Biophysica Acta, vol.1853, pp.1980-1991, 2015.

T. Furuichi, S. Yoshikawa, A. Miyawaki, K. Wada, N. Maeda et al., Primary structure and functional expression of the inositol 1,4,5-trisphosphate-binding protein P400, Nature, vol.342, pp.32-38, 1989.

G. Fan, M. L. Baker, Z. Wang, M. R. Baker, P. A. Sinyagovskiy et al., Gating machinery of InsP 3 R channels revealed by electron cryomicroscopy, Nature, vol.527, pp.336-341, 2015.

I. I. Serysheva, M. R. Baker, and G. Fan, Structural Insights into IP<Subscript>3</Subscript>R Function, Membrane Dynamics and Calcium Signaling, pp.121-147, 2017.

K. J. Alzayady, A. Sebé-pedrós, R. Chandrasekhar, L. Wang, I. Ruiz-trillo et al., Tracing the Evolutionary History of Inositol, 1, 4, 5-Trisphosphate Receptor: Insights from Analyses of Capsaspora owczarzaki Ca2+ Release Channel Orthologs, Molecular Biology and Evolution, vol.32, pp.2236-2253, 2015.

L. Ionescu, C. White, K. Cheung, J. Shuai, I. Parker et al., Mode Switching Is the Major Mechanism of Ligand Regulation of InsP3 Receptor Calcium Release Channels, The Journal of General Physiology, vol.130, pp.631-645, 2007.

V. D. Lupu, E. Kaznacheyeva, U. M. Krishna, J. R. Falck, and I. Bezprozvanny, Functional coupling of phosphatidylinositol 4,5-bisphosphate to inositol 1,4,5-trisphosphate receptor, The Journal of Biological Chemistry, vol.273, pp.14067-14070, 1998.

C. W. Taylor, Regulation of IP3 receptors by cyclic AMP, Cell Calcium, vol.63, pp.48-52, 2017.

T. Tang, H. Tu, Z. Wang, and I. Bezprozvanny,

, Trisphosphate Receptor Function by Protein Kinase A and Protein Phosphatase 1?, Journal of Neuroscience, vol.23, pp.403-415, 2003.

H. Sipma, P. De, I. Smet, S. Sienaert, L. Vanlingen et al., Modulation of inositol 1,4,5-trisphosphate binding to the recombinant ligand-binding site of the type-1 inositol 1,4, 5-trisphosphate receptor by Ca2+ and calmodulin, The Journal of Biological Chemistry, vol.274, pp.12157-12162, 1999.

N. Kasri, G. Bultynck, I. Sienaert, G. Callewaert, C. Erneux et al., The role of calmodulin for inositol 1,4,5-trisphosphate receptor function, Biochimica et Biophysica Acta (BBA) -Proteins and Proteomics, vol.1600, pp.19-31, 2002.

B. Xiao, J. C. Tu, and P. F. Worley, Homer: a link between neural activity and glutamate receptor function, Current Opinion in Neurobiology, vol.10, pp.370-374, 2000.

H. Ivanova, L. E. Wagner, A. Tanimura, E. Vandermarliere, T. Luyten et al., Bcl-2 and IP3 compete for the ligand-binding domain of IP3rs modulating Ca2+ signaling output, Cellular and Molecular Life Sciences, 2019.

I. Bosanac, T. Michikawa, K. Mikoshiba, and M. Ikura, Structural insights into the regulatory mechanism of IP3 receptor, Biochimica et Biophysica Acta (BBA) -Molecular Cell Research, vol.1742, pp.89-102, 2004.

C. W. Taylor and V. Konieczny, IP3 receptors: take four IP3 to open, Science signaling, vol.9, p.1, 2016.

I. I. Serysheva and S. J. Ludtke, of Structure and Function of Calcium Release Channels, Current Topics in Membranes (I. I. Serysheva, vol.66, pp.171-189, 2010.

F. Oschmann, H. Berry, K. Obermayer, and K. Lenk, From in silico astrocyte cell models to neuron-astrocyte network models: A review, Brain Research Bulletin, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01461928

T. Manninen, R. Havela, and M. Linne, Computational Models for Calcium-Mediated Astrocyte Functions, Frontiers in Computational Neuroscience, vol.12, 2018.

M. D. Pittà, H. Berry, and . Glioscience, , 2019.

D. Gonze, C. Gérard, B. Wacquier, A. Woller, A. Tosenberger et al., Modeling Based Investigation of the Effect of Noise in Cellular Systems, Frontiers in Molecular Biosciences, vol.5, 2018.

M. B. Elowitz, A. J. Levine, E. D. Siggia, and P. S. Swain, Stochastic gene expression in a single cell, Science, vol.297, pp.1183-1186, 2002.

T. Székely and K. Burrage, Stochastic simulation in systems biology, Computational and Structural Biotechnology Journal, vol.12, pp.14-25, 2014.

. Cornish-bowden, Fundamentals of Enzyme Kinetics, 2004.

J. C. Butcher, Numerical Methods for Ordinary Differential Equations, 2016.

J. E. Marsden and M. Mccracken, The Hopf Bifurcation and Its Applications, Google-Books-ID: FTv0BwAAQBAJ, 2012.

G. Dupont, M. Falcke, V. Kirk, and J. Sneyd, Basic Modelling Principles: Deterministic Models, Interdisciplinary Applied Mathematics, pp.97-161, 2016.

S. Girard, A. Lückhoff, J. Lechleiter, J. Sneyd, and D. Clapham, Twodimensional model of calcium waves reproduces the patterns observed in Xenopus oocytes, Biophysical Journal, vol.61, pp.509-517, 1992.

M. S. Jafri and A. Ullah, Calcium Waves, Encyclopedia of Computational Neuroscience, pp.1-11, 2013.

A. Goldbeter, Biochemical Oscillations and Cellular Rhythms: The Molecular Bases of Periodic and Chaotic Behaviour, Google-Books-ID: 6stfQgAACAAJ, 1996.

A. Goldbeter, G. Dupont, and M. J. Berridge, Minimal Model for Signal-Induced Ca2+ Oscillations and for Their Frequency Encoding Through Protein Phosphorylation, Proceedings of the National Academy of Science, vol.87, pp.1461-1465, 1990.

G. Dupont and A. Goldbeter, One-pool model for Ca2+ oscillations involving Ca2+ and inositol 1,4,5-trisphosphate as co-agonists for Ca2+ release, Cell Calcium, vol.14, pp.311-322, 1993.

Y. Li and J. Rinzel, Equations for InsP3 Receptor-mediated [Ca2+]i Oscillations Derived from a Detailed Kinetic Model: A Hodgkin-Huxley Like Formalism, Journal of Theoretical Biology, vol.166, pp.461-473, 1994.

M. De-pittà, V. Volman, H. Levine, and E. Ben-jacob, Multimodal encoding in a simplified model of intracellular calcium signaling, Cognitive Processing, vol.10, pp.55-70, 2009.

Y. Timofeeva, Intracellular Calcium Dynamics: Biophysical and Simplified Models, Springer Series in Computational Neuroscience, pp.69-90, 2019.

T. Meyer and L. Stryer, Molecular model for receptor-stimulated calcium spiking, Proceedings of the National Academy of Sciences, vol.85, pp.5051-5055, 1988.

G. Dupont and C. Erneux, Simulations of the effects of inositol 1,4,5-trisphosphate 3-kinase and 5-phosphatase activities on Ca2+ oscillations, Cell Calcium, vol.22, pp.321-331, 1997.

G. Dupont, O. Koukoui, C. Clair, C. Erneux, S. Swillens et al., Ca2+ oscillations in hepatocytes do not require the modulation of InsP3 3-kinase activity by Ca2+, FEBS Letters, vol.534, issue.1-3, pp.101-105, 2003.

I. Bezprozvanny, J. Watras, and B. E. Ehrlich, Bell-shaped calcium-response curves of Ins(1,4,5)P3-and calcium-gated channels from endoplasmic reticulum of cerebellum, Nature, vol.351, pp.751-754, 1991.

S. K. Joseph, H. L. Rice, and J. R. Williamson, The effect of external calcium and pH on inositol trisphosphate-mediated calcium release from cerebellum microsomal fractions, Biochemical Journal, vol.258, pp.261-265, 1989.

J. Watras, I. Bezprozvanny, and B. E. Ehrlich, Inositol 1,4,5-trisphosphategated channels in cerebellum: presence of multiple conductance states, Journal of Neuroscience, vol.11, pp.3239-3245, 1991.

H. G. Othmer and Y. Tang, Oscillations and Waves in a Model of InsP3-Controlled Calcium Dynamics, Experimental and Theoretical Advances in Biological Pattern Formation, pp.277-300, 1993.

I. Bezprozvanny, Theoretical analysis of calcium wave propagation based on inositol (1,4,5)-trisphosphate (InsP3) receptor functional properties, Cell Calcium, vol.16, pp.151-166, 1994.

J. Shuai, J. E. Pearson, J. K. Foskett, D. D. Mak, and I. Parker, A kinetic model of single and clustered IP3 receptors in the absence of Ca2+ feedback, Biophysical Journal, vol.93, pp.1151-1162, 2007.

J. Sneyd and J. Dufour, A dynamic model of the type-2 inositol trisphosphate receptor, Proceedings of the National Academy of Sciences, vol.99, pp.2398-2403, 2002.

G. Ullah and P. Jung, Modeling the Statistics of Elementary Calcium Release Events, Biophysical Journal, vol.90, pp.3485-3495, 2006.

J. W. Shuai, D. P. Yang, J. E. Pearson, and S. Rüdiger, An investigation of models of the IP3r channel in Xenopus oocyte, Chaos, vol.19, pp.37105-037105, 2009.

Y. X. Li, S. S. Stojilkovi?, J. Keizer, and J. Rinzel, Sensing and refilling calcium stores in an excitable cell, Biophysical Journal, vol.72, pp.1080-1091, 1997.

J. Wagner, Y. Li, J. Pearson, and J. Keizer, Simulation of the Fertilization Ca2+ Wave in Xenopus laevis Eggs, Biophysical Journal, vol.75, pp.2088-2097, 1998.

Y. Li, Tango waves in a bidomain model of fertilization calcium waves, Physica D: Nonlinear Phenomena, vol.186, pp.27-49, 2003.

S. Schuster, M. Marhl, and T. Höfer, Modelling of simple and complex calcium oscillations, European Journal of Biochemistry, vol.269, issue.5, pp.1333-1355, 2002.

G. Dupont, M. Falcke, V. Kirk, and J. Sneyd, Interdisciplinary Applied Mathematics, vol.43, 2016.

G. Ullah, P. Jung, and A. H. Cornell-bell, Anti-phase calcium oscillations in astrocytes via inositol (1, 4, 5)-trisphosphate regeneration, Cell Calcium, vol.39, pp.197-208, 2006.

M. Lavrentovich and S. Hemkin, A mathematical model of spontaneous calcium(II) oscillations in astrocytes, Journal of Theoretical Biology, vol.251, pp.553-560, 2008.

S. Zeng, B. Li, S. Zeng, and S. Chen, Simulation of Spontaneous Ca2+ Oscillations in Astrocytes Mediated by Voltage-Gated Calcium Channels, Biophysical Journal, vol.97, pp.2429-2437, 2009.

F. Oschmann, K. Mergenthaler, E. Jungnickel, and K. Obermayer, Spatial separation of two different pathways accounting for the generation of calcium signals in astrocytes, PLOS Computational Biology, vol.13, p.1005377, 2017.

I. Goto, S. Kinoshita, and K. Natsume, The model of glutamate-induced intracellular Ca2+ oscillation and intercellular Ca2+ wave in brain astrocytes, Neurocomputing -IJON, vol.58, pp.461-467, 2004.

M. Stamatakis and N. V. Mantzaris, Modeling of ATP-mediated signal transduction and wave propagation in astrocytic cellular networks, Journal of Theoretical Biology, vol.241, pp.649-668, 2006.

F. Wei and J. Shuai, Intercellular calcium waves in glial cells with bistable dynamics, Physical biology, vol.8, p.26009, 2011.

A. D. Garbo, M. Barbi, S. Chillemi, S. Alloisio, and M. Nobile, Calcium signalling in astrocytes and modulation of neural activity, Biosystems, vol.89, pp.74-83, 2007.

M. D. Pittà, V. Volman, H. Berry, and E. Ben-jacob, A Tale of Two Stories: Astrocyte Regulation of Synaptic Depression and Facilitation, PLOS Computational Biology, vol.7, p.1002293, 2011.

M. R. Bennett, L. Farnell, and W. G. Gibson, Origins of blood volume change due to glutamatergic synaptic activity at astrocytes abutting on arteriolar smooth muscle cells, Journal of Theoretical Biology, vol.250, pp.172-185, 2008.

J. Riera, R. Hatanaka, T. Uchida, T. Ozaki, and R. Kawashima, Quantifying the Uncertainty of Spontaneous Ca2+ Oscillations in Astrocytes: Particulars of Alzheimer's Disease, Biophysical Journal, vol.101, pp.554-564, 2011.

M. De-pittà, M. Goldberg, V. Volman, H. Berry, and E. Ben-jacob, Glutamate regulation of calcium and IP3 oscillating and pulsating dynamics in astrocytes, Journal of Biological Physics, vol.35, pp.383-411, 2009.

M. De-pittà, E. Ben-jacob, and H. Berry, G Protein-Coupled Receptor-Mediated Calcium Signaling in Astrocytes, Springer Series in Computational Neuroscience, pp.115-150, 2019.

J. Lallouette, Modélisation des réponses calciques de réseaux d'astrocytes : Relations entre topologie et dynamiques. thesis, 2014.

Y. Tang, J. L. Stephenson, and H. G. Othmer, Simplification and analysis of models of calcium dynamics based on IP3-sensitive calcium channel kinetics, Biophysical Journal, vol.70, pp.246-263, 1996.

T. Höfer, L. Venance, and C. Giaume, Control and Plasticity of Intercellular Calcium Waves in Astrocytes: A Modeling Approach, Journal of Neuroscience, vol.22, pp.4850-4859, 2002.

U. Kummer, L. F. Olsen, C. J. Dixon, A. K. Green, E. Bornberg-bauer et al., Switching from Simple to Complex Oscillations in Calcium Signaling, Biophysical Journal, vol.79, pp.1188-1195, 2000.

R. Thul, T. C. Bellamy, H. L. Roderick, M. D. Bootman, and S. Coombes, Calcium Oscillations, Advances in Experimental Medicine and Biology, pp.1-27, 2009.

G. Dupont and J. Sneyd, Recent developments in models of calcium signalling, Current Opinion in Systems Biology, vol.3, pp.15-22, 2017.

I. Siekmann, P. Cao, J. Sneyd, and E. J. Crampin, Data-driven modelling of the inositol trisphosphate receptor (IPR) and its role in calcium induced calcium release (CICR), ResearchGate, 2015.

K. Hituri and M. Linne, Comparison of Models for IP3 Receptor Kinetics Using Stochastic Simulations, PLOS ONE, vol.8, p.59618, 2013.

Y. Togashi and K. Kaneko, Transitions Induced by the Discreteness of Molecules in a Small Autocatalytic System, Physical Review Letters, vol.86, pp.2459-2462, 2001.

N. M. Shnerb, Y. Louzoun, E. Bettelheim, and S. Solomon, The importance of being discrete: Life always wins on the surface, Proceedings of the National Academy of Sciences, vol.97, pp.10322-10324, 2000.

D. Frigola, L. Casanellas, J. M. Sancho, and M. Ibañes, Asymmetric Stochastic Switching Driven by Intrinsic Molecular Noise, PLOS ONE, vol.7, p.31407, 2012.

D. T. Gillespie, Exact stochastic simulation of coupled chemical reactions, The Journal of Physical Chemistry, vol.81, pp.2340-2361, 1977.

N. G. Kampen, Stochastic Processes in Physics and Chemistry, 2011.

A. B. Bortz, M. H. Kalos, and J. L. Lebowitz, A new algorithm for Monte Carlo simulation of Ising spin systems, Journal of Computational Physics, vol.17, pp.10-18, 1975.

P. Kratzer, Monte Carlo and kinetic Monte Carlo methods, 2009.

J. R. Winkler, Numerical recipes in C: The art of scientific computing, second edition, Endeavour, vol.17, p.201, 1993.

D. J. Wilkinson, Stochastic Modelling for Systems Biology, 2011.

S. Abhyudai, H. João, and P. , Stochastic hybrid systems for studying biochemical processes, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.368, pp.4995-5011, 2010.

D. Higham, An Algorithmic Introduction to Numerical Simulation of Stochastic Differential Equations, SIAM Review, vol.43, pp.525-546, 2001.

P. E. Kloeden and E. Platen, Stochastic Differential Equations, Numerical Solution of Stochastic Differential Equations, pp.103-160, 1992.

D. T. Gillespie, Stochastic simulation of chemical kinetics, Annual Review of Physical Chemistry, vol.58, pp.35-55, 2007.

D. Higham, Modeling and Simulating Chemical Reactions, SIAM Review, vol.50, pp.347-368, 2008.

D. T. Gillespie and E. Seitaridou, Simple Brownian Diffusion: An Introduction to the Standard Theoretical Models, 2013.

M. A. Gibson and J. Bruck, Efficient exact stochastic simulation of chemical systems with many species and many channels, The Journal of Physical Chemistry A, vol.104, issue.9, pp.1876-1889, 2000.

Y. Cao, D. Gillespie, and L. Petzold, Multiscale stochastic simulation algorithm with stochastic partial equilibrium assumption for chemically reacting systems, Journal of Computational Physics, vol.206, pp.395-411, 2005.

W. E. , D. Liu, and E. Vanden-eijnden, Nested stochastic simulation algorithms for chemical kinetic systems with multiple time scales, Journal of Computational Physics, vol.221, pp.158-180, 2007.

E. L. Haseltine and J. B. Rawlings, Approximate simulation of coupled fast and slow reactions for stochastic chemical kinetics, The Journal of Chemical Physics, vol.117, pp.6959-6969, 2002.

D. T. Gillespie and L. R. Petzold, Improved leap-size selection for accelerated stochastic simulation, The Journal of Chemical Physics, vol.119, pp.8229-8234, 2003.

T. Tian and K. Burrage, Binomial leap methods for simulating stochastic chemical kinetics, The Journal of Chemical Physics, vol.121, pp.10356-10364, 2004.

J. Pahle, Biochemical simulations: stochastic, approximate stochastic and hybrid approaches, Briefings in Bioinformatics, vol.10, pp.53-64, 2009.

J. Goutsias and G. Jenkinson, Markovian dynamics on complex reaction networks, Physics Reports, vol.529, pp.199-264, 2013.

A. Skupin, H. Kettenmann, U. Winkler, M. Wartenberg, H. Sauer et al., How Does Intracellular Ca2+ Oscillate: By Chance or by the Clock?, Biophysical Journal, vol.94, pp.2404-2411, 2008.

M. Perc, A. K. Green, C. J. Dixon, and M. Marhl, Establishing the stochastic nature of intracellular calcium oscillations from experimental data, Biophysical Chemistry, vol.132, pp.33-38, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00501685

J. S. Marchant and I. Parker, Role of elementary Ca2+ puffs in generating repetitive Ca2+ oscillations, The EMBO Journal, vol.20, pp.65-76, 2001.

J. W. Shuai and P. Jung, Optimal ion channel clustering for intracellular calcium signaling, Proceedings of the National Academy of Sciences, vol.100, pp.506-510, 2003.

A. Skupin and M. Falcke, From puffs to global Ca2+ signals: how molecular properties shape global signals, Chaos, vol.19, p.37111, 2009.

K. Thurley, S. C. Tovey, G. Moenke, V. L. Prince, A. Meena et al., Reliable encoding of stimulus intensities within random sequences of intracellular Ca2+ spikes, Science Signaling, vol.7, p.59, 2014.

G. Dupont, L. Combettes, G. S. Bird, and J. W. Putney, Calcium Oscillations, Cold Spring Harbor Perspectives in Biology, vol.3, 2011.

J. Shuai and P. Jung, Stochastic Properties of Ca2+ Release of Inositol 1,4,5-Trisphosphate Receptor Clusters, Biophysical Journal, vol.83, pp.87-97, 2002.

G. Dupont, A. Abou-lovergne, and L. Combettes, Stochastic Aspects of Oscillatory Ca2+ Dynamics in Hepatocytes, Biophysical Journal, vol.95, pp.2193-2202, 2008.

D. D. Mak, S. M. Mcbride, and J. K. Foskett, Application of Allosteric Modeling to Calcium and InsP3 Regulation of InsP3r Single-channel Gating, Spontaneous Channel Activity of the Inositol 1,4,5-Trisphosphate (InsP3) Receptor (InsP3r), vol.122, pp.583-603, 2003.

I. Baran, Integrated Luminal and Cytosolic Aspects of the Calcium Release Control, Biophysical Journal, vol.84, pp.1470-1485, 2003.

M. Falcke, L. Tsimring, and H. Levine, Stochastic spreading of intracellular Ca(2+) release, Physical Review. E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, vol.62, pp.2636-2643, 2000.

M. Bär, M. Falcke, H. Levine, and L. S. Tsimring, Discrete stochastic modeling of calcium channel dynamics, Physical Review Letters, vol.84, pp.5664-5667, 2000.

D. D. Mak, J. E. Pearson, K. P. Loong, S. Datta, M. Fernández-mongil et al., Rapid ligand-regulated gating kinetics of single inositol 1,4,5-trisphosphate receptor Ca2+ release channels, EMBO reports, vol.8, pp.1044-1051, 2007.

E. Gin, M. Falcke, L. E. Wagner, D. I. Yule, and J. Sneyd, A Kinetic Model of the Inositol Trisphosphate Receptor Based on Single-Channel Data, Biophysical Journal, vol.96, pp.4053-4062, 2009.

I. Siekmann, L. Wagner, D. Yule, E. Crampin, and J. Sneyd, A Kinetic Model for Type I and II IP3r Accounting for Mode Changes, Biophysical Journal, vol.103, pp.658-668, 2012.

G. Ullah, D. D. Mak, and J. E. Pearson, A data-driven model of a modal gated ion channel: The inositol 1,4,5-trisphosphate receptor in insect Sf9 cells, The Journal of General Physiology, vol.140, pp.159-173, 2012.

I. Bezprozvanny, The inositol 1,4,5-trisphosphate receptors, Cell Calcium, vol.38, pp.261-272, 2005.

S. Rüdiger, Excitability in a stochastic differential equation model for calcium puffs, Physical Review E, vol.89, 2014.

V. Nguyen, R. Mathias, and G. D. Smith, A stochastic automata network descriptor for Markov chain models of instantaneously coupled intracellular Ca2+ channels, Bulletin of Mathematical Biology, vol.67, pp.393-432, 2005.

G. Dupont, M. Falcke, V. Kirk, and J. Sneyd, Hierarchical and Stochastic Modelling, Interdisciplinary Applied Mathematics, pp.163-205, 2016.

H. Li, Z. Hou, and H. Xin, Internal noise stochastic resonance for intracellular calcium oscillations in a cell system, Physical Review E, vol.71, p.61916, 2005.

C. Zhu, Y. Jia, Q. Liu, L. Yang, and X. Zhan, A mesoscopic stochastic mechanism of cytosolic calcium oscillations, Biophysical Chemistry, vol.125, pp.201-212, 2007.

A. Til?nait?, W. Croft, N. Russell, T. C. Bellamy, and R. Thul, A Bayesian approach to modelling heterogeneous calcium responses in cell populations, PLOS Computational Biology, vol.13, p.1005794, 2017.

M. Falcke, M. Moein, A. Tilunaite, R. Thul, and A. Skupin, On the phase space structure of IP3 induced Ca2+ signalling and concepts for predictive modeling, Chaos, vol.28, 2018.

M. Falcke, On the Role of Stochastic Channel Behavior in Intracellular Ca2+ Dynamics, Biophysical Journal, vol.84, pp.42-56, 2003.

S. Rüdiger and J. Shuai, Modeling of Stochastic $$\mathrm{{ca}}^{2+}$$Signals

, Springer Series in Computational Neuroscience, pp.91-114, 2019.

M. De-pittà and N. Brunel, Modulation of Synaptic Plasticity by Glutamatergic Gliotransmission: A Modeling Study, Neural Plasticity, vol.2016, 2016.

A. M. Turing, The chemical basis of morphogenesis, Philosophical Transactions of the Royal Society of London. Series B, vol.237, pp.37-72, 1952.

C. Nicholson, K. C. Chen, S. Hrab?tová, and L. Tao, Diffusion of molecules in brain extracellular space: theory and experiment, Progress in Brain Research, vol.125, pp.129-154, 2000.

N. J. Eungdamrong and R. Iyengar, Computational approaches for modeling regulatory cellular networks, Trends in Cell Biology, vol.14, pp.661-669, 2004.

G. D. Smith, Numerical Solution of Partial Differential Equations: Finite Difference Methods, 1985.

B. M. Slepchenko, J. C. Schaff, I. Macara, and L. M. Loew, Quantitative cell biology with the Virtual Cell, Trends in Cell Biology, vol.13, pp.570-576, 2003.

F. Sayyid and S. Kalvala, On the importance of modelling the internal spatial dynamics of biological cells, Bio Systems, vol.145, pp.53-66, 2016.

J. M. Bower and D. Beeman, The Book of GENESIS: Exploring Realistic Neural Models with the GEneral NEural SImulation System, 2012.

K. T. Blackwell and J. H. Kotaleski, Modeling The Dynamics of Second Messenger Pathways, Neuroscience Databases: A Practical Guide, pp.63-79, 2003.

S. Ray and U. S. Bhalla, PyMOOSE: interoperable scripting in Python for MOOSE, Frontiers in Neuroinformatics, vol.2, 2008.

M. L. Hines and N. T. Carnevale, Neuron: A Tool for Neuroscientists, The Neuroscientist, vol.7, pp.123-135, 2001.

A. J. Newton, R. A. Mcdougal, M. L. Hines, and W. W. Lytton, Using NEURON for Reaction-Diffusion Modeling of Extracellular Dynamics, Frontiers in Neuroinformatics, vol.12, 2018.

L. P. Savtchenko, L. Bard, T. P. Jensen, J. P. Reynolds, I. Kraev et al., Disentangling astroglial physiology with a realistic cell model in silico, Nature Communications, vol.9, issue.1, p.3554, 2018.

R. A. Mcdougal, R. Wang, T. M. Morse, M. Migliore, L. Marenco et al., ModelDB, Encyclopedia of Computational Neuroscience, pp.1-4, 2013.

B. M. Slepchenko, J. C. Schaff, J. H. Carson, and L. M. Loew, Computational Cell Biology: Spatiotemporal Simulation of Cellular Events, Annual Review of Biophysics and Biomolecular Structure, vol.31, issue.1, pp.423-441, 2002.

C. Xi, G. Liang, K. Jianhong, H. Yunlong, W. Shiqiang et al., Calcium waves initiating from the anomalous subdiffusive calcium sparks, Journal of The Royal Society Interface, vol.11, 2014.

G. Weng, U. S. Bhalla, and R. Iyengar, Complexity in Biological Signaling Systems, vol.284, pp.92-96, 1999.

J. T. Koivumäki, T. Korhonen, and P. Tavi, Impact of Sarcoplasmic Reticulum Calcium Release on Calcium Dynamics and Action Potential Morphology in Human Atrial Myocytes: A Computational Study, PLOS Computational Biology, vol.7, p.1001067, 2011.

S. R. Neves and R. Iyengar, Models of Spatially Restricted Biochemical Reaction Systems, Journal of Biological Chemistry, vol.284, pp.5445-5449, 2009.

M. J. Berridge, Elementary and global aspects of calcium signalling, The Journal of Physiology, vol.499, pp.291-306, 1997.

J. Marchant, N. Callamaras, and I. Parker, Initiation of IP3 mediated Ca2+ waves in Xenopus oocytes, The EMBO Journal, vol.18, pp.5285-5299, 1999.

J. Keizer and G. D. Smith, Spark-to-wave transition: saltatory transmission of calcium waves in cardiac myocytes, Biophysical Chemistry, vol.72, pp.87-100, 1998.

S. P. Dawson, J. Keizer, and J. E. Pearson, Fire-diffuse-fire model of dynamics of intracellular calcium waves, Proceedings of the National Academy of Sciences, vol.96, pp.6060-6063, 1999.

S. Coombes, The Effect of Ion Pumps on the Speed of Travelling Waves in the Fire-diffuse-fire Model of Ca2+Release, Bulletin of Mathematical Biology, vol.63, pp.1-20, 2001.

R. Thul, G. D. Smith, and S. Coombes, A bidomain threshold model of propagating calcium waves, Journal of Mathematical Biology, vol.56, pp.435-463, 2008.

R. Thul, S. Coombes, and G. D. Smith, Sensitisation waves in a bidomain fire-diffuse-fire model of intracellular Ca2+ dynamics, Physica D: Nonlinear Phenomena, vol.238, pp.2142-2152, 2009.

B. Pando, J. Pearson, and S. Dawson, Sheet Excitability and Nonlinear Wave Propagation, Physical review letters, vol.91, p.258101, 2004.

C. C. Fink, B. Slepchenko, I. I. Moraru, J. Watras, J. C. Schaff et al., An Image-Based Model of Calcium Waves in Differentiated Neuroblastoma Cells, Biophysical Journal, vol.79, pp.163-183, 2000.

K. Samanta, P. Kar, G. Mirams, and A. Parekh, Ca2+ Channel Relocalization to Plasma-Membrane Microdomains Strengthens Activation of Ca2+-Dependent Nuclear Gene Expression, Cell Reports, vol.12, pp.203-216, 2015.

E. Mcivor, S. Coombes, and R. Thul, Three-dimensional spatio-temporal modelling of store operated Ca2+ entry: Insights into ER refilling and the spatial signature of Ca2+ signals, Cell Calcium, vol.73, 2018.

D. E. Postnov, R. N. Koreshkov, N. A. Brazhe, A. R. Brazhe, and O. V. Sosnovtseva, Dynamical patterns of calcium signaling in a functional model of neuron-astrocyte networks, Journal of Biological Physics, vol.35, pp.425-445, 2009.

M. Kang and H. G. Othmer, Spatiotemporal characteristics of calcium dynamics in astrocytes, Chaos, vol.19, 2009.

M. Goldberg, M. D. Pittà, V. Volman, H. Berry, and E. Ben-jacob, Nonlinear Gap Junctions Enable Long-Distance Propagation of Pulsating Calcium Waves in Astrocyte Networks, PLOS Computational Biology, vol.6, p.1000909, 2010.
URL : https://hal.archives-ouvertes.fr/inria-00575656

J. Lallouette, M. De-pittà, E. Ben-jacob, and H. Berry, Sparse short-distance connections enhance calcium wave propagation in a 3d model of astrocyte networks, Frontiers in Computational Neuroscience, vol.8, p.45, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00967106

A. R. Brazhe, D. E. Postnov, and O. Sosnovtseva, Astrocyte calcium signaling: Interplay between structural and dynamical patterns, Chaos: An Interdisciplinary Journal of Nonlinear Science, vol.28, p.106320, 2018.

S. Y. Gordleeva, S. A. Lebedev, M. A. Rumyantseva, and V. B. Kazantsev, Astrocyte as a Detector of Synchronous Events of a Neural Network, JETP Letters, vol.107, pp.440-445, 2018.

K. Breslin, J. J. Wade, K. Wong-lin, J. Harkin, B. Flanagan et al., Potassium and sodium microdomains in thin astroglial processes: A computational model study, PLOS Computational Biology, vol.14, p.1006151, 2018.

P. Montes-de-oca, H. Balderas, . Montes-de-oca, and . Balderas, Synaptic neuronastrocyte communication is supported by an order of magnitude analysis of inositol tris-phosphate diffusion at the nanoscale in a model of peri-synaptic astrocyte projection, BMC Biophysics, vol.11, p.3, 2018.

T. Mazel, R. Raymond, M. Raymond-stintz, S. Jett, and B. S. Wilson, Stochastic Modeling of Calcium in 3d Geometry, Biophysical Journal, vol.96, pp.1691-1706, 2009.

P. K. Maini, K. J. Painter, and H. N. Chau, Spatial pattern formation in chemical and biological systems, Journal of the Chemical Society, vol.93, pp.3601-3610, 1997.

A. H. Elcock, Models of Macromolecular Crowding Effects & the Need for Quantitative Comparisons with Experiment, Current opinion in structural biology, vol.20, pp.196-206, 2010.

M. Tomita, Whole-cell simulation: a grand challenge of the 21st century, Trends in Biotechnology, vol.19, pp.205-210, 2001.

D. Fange and J. Elf, Noise-Induced Min Phenotypes in E. coli, PLOS Computational Biology, vol.2, p.80, 2006.

K. Lipkow, S. S. Andrews, and D. Bray, Simulated Diffusion of Phosphorylated CheY through the Cytoplasm of Escherichia coli, Journal of Bacteriology, vol.187, pp.45-53, 2005.

K. Takahashi, S. Tanase-nicola, and P. R. Ten-wolde, Spatio-temporal correlations can drastically change the response of a MAPK pathway, Proceedings of the National Academy of Sciences of the United States of America, vol.107, pp.2473-2478, 2010.

T. Erdmann, M. Howard, and P. R. Ten-wolde, Role of Spatial Averaging in the Precision of Gene Expression Patterns, Physical Review Letters, vol.103, p.258101, 2009.

J. S. Van-zon, M. J. Morelli, S. T?nase-nicola, and P. R. Ten-wolde, Diffusion of transcription factors can drastically enhance the noise in gene expression, Biophysical Journal, vol.91, pp.4350-4367, 2006.

K. Burrage, P. M. Burrage, A. Leier, T. Marquez-lago, and D. V. Nicolau, Stochastic Simulation for Spatial Modelling of Dynamic Processes in a Living Cell, Design and Analysis of Biomolecular Circuits: Engineering Approaches to Systems and Synthetic Biology, pp.43-62, 2011.

S. Smith and R. Grima, Spatial Stochastic Intracellular Kinetics: A Review of Modelling Approaches, Bulletin of Mathematical Biology, 2018.

K. Takahashi, S. N. Arjunan, and M. Tomita, Space in systems biology of signaling pathways -towards intracellular molecular crowding in silico, FEBS Letters, vol.579, issue.8, pp.1783-1788, 2005.

C. Lemerle, B. D. Ventura, and L. Serrano, Space as the final frontier in stochastic simulations of biological systems, FEBS Letters, vol.579, issue.8, pp.1789-1794, 2005.

S. A. Isaacson and D. Isaacson, The Reaction-Diffusion Master Equation, Diffusion Limited Reactions, and Singular Potentials, Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, vol.80, p.66106, 2009.

L. Boulianne, S. Assaad, M. Dumontier, and W. J. Gross, GridCell: a stochastic particle-based biological system simulator, BMC Systems Biology, vol.2, p.66, 2008.

S. Wils and E. Schutter, STEPS: Modeling and Simulating Complex Reaction-Diffusion Systems with Python, Frontiers in Neuroinformatics, vol.3, p.15, 2009.

I. Hepburn, R. Cannon, and E. Schutter, Efficient calculation of the quasistatic electrical potential on a tetrahedral mesh and its implementation in STEPS, Frontiers in Computational Neuroscience, vol.7, 2013.

R. Erban, From molecular dynamics to Brownian dynamics, Proc. R. Soc. A, vol.470, p.20140036, 2014.

A. Ghosh, A. Leier, and T. T. Marquez-lago, The Spatial Chemical Langevin Equation and Reaction Diffusion Master Equations: moments and qualitative solutions, Theoretical Biology & Medical Modelling, vol.12, 2015.

R. Erban and S. J. Chapman, Stochastic modelling of reaction-diffusion processes: algorithms for bimolecular reactions, Physical Biology, vol.6, p.46001, 2009.

I. C. Agbanusi and S. A. Isaacson, A Comparison of Bimolecular Reaction Models for Stochastic Reaction-Diffusion Systems, Bulletin of Mathematical Biology, vol.76, pp.922-946, 2014.

R. Grima and S. Schnell, A systematic investigation of the rate laws valid in intracellular environments, Biophysical Chemistry, vol.124, pp.1-10, 2006.

S. S. Andrews, N. J. Addy, R. Brent, and A. P. Arkin, Detailed Simulations of Cell Biology with Smoldyn 2.1, PLOS Computational Biology, vol.6, p.1000705, 2010.

J. S. Van-zon and P. R. Ten-wolde, Green's-function reaction dynamics: A particle-based approach for simulating biochemical networks in time and space, The Journal of Chemical Physics, vol.123, p.234910, 2005.

S. S. Andrews, Particle-Based Stochastic Simulators, Encyclopedia of Computational Neuroscience, pp.1-5, 2018.

S. Engblom, L. Ferm, A. Hellander, and P. Lötstedt, Simulation of Stochastic Reaction-Diffusion Processes on Unstructured Meshes, SIAM Journal on Scientific Computing, vol.31, pp.1774-1797, 2009.

R. Erban, J. Chapman, and P. Maini, A practical guide to stochastic simulations of reaction-diffusion processes, 2007.

S. Isaacson and C. Peskin, Incorporating Diffusion in Complex Geometries into Stochastic Chemical Kinetics Simulations, SIAM Journal on Scientific Computing, vol.28, pp.47-74, 2006.

S. Hellander, A. Hellander, and L. Petzold, Reaction-diffusion master equation in the microscopic limit, Physical Review E, vol.85, p.42901, 2012.

U. S. Bhalla, Multiscale Modeling and Synaptic Plasticity, Progress in Molecular Biology and Translational Science, vol.123, pp.351-386, 2014.

A. Leier and T. T. Marquez-lago, Correction factors for boundary diffusion in reaction-diffusion master equations, The Journal of Chemical Physics, vol.135, p.134109, 2011.

S. Isaacson, The Reaction Diffusion Master Equation as an Asymptotic Approximation of Diffusion to a Small Target, SIAM Journal on Applied Mathematics, vol.70, pp.77-111, 2009.

T. T. Marquez-lago and K. Burrage, Binomial tau-leap spatial stochastic simulation algorithm for applications in chemical kinetics, The Journal of Chemical Physics, vol.127, p.104101, 2007.

M. B. Flegg, S. J. Chapman, and R. Erban, The two-regime method for optimizing stochastic reaction-diffusion simulations., The two-regime method for optimizing stochastic reaction-diffusion simulations, Journal of the Royal Society, Interface, Journal of the Royal Society Interface, vol.9, pp.859-868, 2012.

S. N. Arjunan and M. Tomita, A new multicompartmental reactiondiffusion modeling method links transient membrane attachment of E. coli MinE to E-ring formation, Systems and Synthetic Biology, vol.4, pp.35-53, 2010.

K. T. Blackwell, Approaches and tools for modeling signaling pathways and calcium dynamics in neurons, Journal of Neuroscience Methods, vol.220, pp.131-140, 2013.

C. A. Smith and C. A. Yates, Spatially extended hybrid methods: a review, Journal of the Royal Society, Interface, vol.15, issue.139, 2018.

M. Dobrzy?ski, J. V. Rodríguez, J. A. Kaandorp, and J. G. Blom, Computational methods for diffusion-influenced biochemical reactions, Bioinformatics, vol.23, pp.1969-1977, 2007.

J. Schöneberg, A. Ullrich, and F. Noé, Simulation tools for particle-based reaction-diffusion dynamics in continuous space, BMC Biophysics, vol.7, p.11, 2014.

S. Anders, D. Minge, S. Griemsmann, M. K. Herde, C. Steinhäuser et al., Spatial properties of astrocyte gap junction coupling in the rat hippocampus, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.369, 2014.

J. Hattne, D. Fange, and J. Elf, Stochastic reaction-diffusion simulation with MesoRD, Bioinformatics, vol.21, pp.2923-2924, 2005.

M. Tomita, K. Hashimoto, K. Takahashi, T. S. Shimizu, Y. Matsuzaki et al., E-CELL: software environment for whole-cell simulation, Bioinformatics, vol.15, pp.72-84, 1999.

K. Takahashi, K. Kaizu, B. Hu, and M. Tomita, A multi-algorithm, multitimescale method for cell simulation, Bioinformatics, vol.20, pp.538-546, 2004.

B. Drawert, S. Engblom, and A. Hellander, URDME: a modular framework for stochastic simulation of reaction-transport processes in complex geometries, BMC Systems Biology, vol.6, p.76, 2012.

I. Hepburn, W. Chen, S. Wils, and E. Schutter, STEPS: efficient simulation of stochastic reaction-diffusion models in realistic morphologies, BMC Systems Biology, vol.6, issue.1, p.36, 2012.

S. J. Plimpton and A. Slepoy, ChemCell : a particle-based model of protein chemistry and diffusion in microbial cells, 2003.

R. Kerr, T. Bartol, B. Kaminsky, M. Dittrich, J. Chang et al., Fast Monte Carlo Simulation Methods for Biological Reaction-Diffusion Systems in Solution and on Surfaces, SIAM Journal on Scientific Computing, vol.30, pp.3126-3149, 2008.

C. Sanford, M. L. Yip, C. White, and J. Parkinson, Cell++-simulating biochemical pathways, Bioinformatics, vol.22, pp.2918-2925, 2006.

J. Schöneberg and F. Noé, ReaDDy -A Software for Particle-Based Reaction-Diffusion Dynamics in Crowded Cellular Environments, PLOS ONE, vol.8, p.74261, 2013.

N. B. Thillaiappan, A. Chavda, S. Tovey, D. Prole, and C. Taylor, Ca2+ signals initiate at immobile IP3 receptors adjacent to ER-plasma membrane junctions, Nature Communications, vol.8, 2017.

S. M. Wiltgen, I. F. Smith, and I. Parker, Superresolution localization of single functional IP3r channels utilizing Ca2+ flux as a readout, Biophysical Journal, vol.99, pp.437-446, 2010.

I. F. Smith and I. Parker, Imaging the quantal substructure of single IP3r channel activity during Ca2+ puffs in intact mammalian cells, Proceedings of the National Academy of Sciences, vol.106, pp.6404-6409, 2009.

M. Kraus, B. Wolf, and B. Wolf, Crosstalk between cellular morphology and calcium oscillation patterns Insights from a stochastic computer model, Cell Calcium, vol.19, pp.461-472, 1996.

H. Anwar, I. Hepburn, H. Nedelescu, W. Chen, and E. D. Schutter, Stochastic Calcium Mechanisms Cause Dendritic Calcium Spike Variability, Journal of Neuroscience, vol.33, pp.15848-15867, 2013.

P. Smolen, D. A. Baxter, and J. H. Byrne, Molecular Constraints on Synaptic Tagging and Maintenance of Long-Term Potentiation: A Predictive Model, PLOS Computational Biology, vol.8, p.1002620, 2012.

S. Khan, Y. Zou, A. Amjad, A. Gardezi, C. L. Smith et al., Sequestration of CaMKII in dendritic spines in silico, Journal of Computational Neuroscience, vol.31, pp.581-594, 2011.

B. Kim, S. L. Hawes, F. Gillani, L. J. Wallace, and K. T. Blackwell, Signaling Pathways Involved in Striatal Synaptic Plasticity are Sensitive to Temporal Pattern and Exhibit Spatial Specificity, PLOS Computational Biology, vol.9, p.1002953, 2013.

C. M. Simon, I. Hepburn, W. Chen, and E. D. Schutter, The role of dendritic spine morphology in the compartmentalization and delivery of surface receptors, Journal of Computational Neuroscience, vol.36, pp.483-497, 2014.

R. L. Winslow, A. Tanskanen, M. Chen, and J. L. Greenstein, Multiscale Modeling of Calcium Signaling in the Cardiac Dyad, Annals of the New York Academy of Sciences, vol.1080, issue.1, pp.362-375, 2006.

N. Wieder, R. Fink, and F. Von-wegner, Exact Stochastic Simulation of a Calcium Microdomain Reveals the Impact of Ca2+ Fluctuations on IP3r Gating, Biophysical Journal, vol.108, pp.557-567, 2015.

U. Dobramysl, S. Rüdiger, and R. Erban, Particle-Based Multiscale Modeling of Calcium Puff Dynamics, Multiscale Modeling & Simulation, pp.997-1016, 2016.

S. Coombes and Y. Timofeeva, Sparks and waves in a stochastic fire-diffusefire model of ${\mathrm{Ca}}^{2+}$ release, Physical Review E, vol.68, p.21915, 2003.

A. Calabrese, D. Fraiman, D. Zysman, and S. Dawson, Stochastic fire-diffuse-fire model with realistic cluster dynamics, Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, vol.82, p.31910, 2010.

M. Arizono, H. Bannai, K. Nakamura, F. Niwa, M. Enomoto et al., Receptor-Selective Diffusion Barrier Enhances Sensitivity of Astrocytic Processes to Metabotropic Glutamate Receptor Stimulation, Sci. Signal, vol.5, pp.27-27, 2012.

L. Lencesova, A. O&apos;neill, W. G. Resneck, R. J. Bloch, and M. P. Blaustein, Plasma membrane-cytoskeleton-endoplasmic reticulum complexes in neurons and astrocytes, The Journal of Biological Chemistry, vol.279, pp.2885-2893, 2004.

S. H. Weerth, L. A. Holtzclaw, and J. T. Russell, Signaling proteins in raftlike microdomains are essential for Ca2+ wave propagation in glial cells, Cell Calcium, vol.41, pp.155-167, 2007.

L. Buscemi, V. Ginet, J. Lopatar, V. Montana, L. Pucci et al., Homer1 Scaffold Proteins Govern Ca2+ Dynamics in Normal and Reactive Astrocytes, Cerebral Cortex, 1991.

E. Cresswel-clay, N. Crock, J. Tabak, and G. Erlebacher, A Compartmental Model to Investigate Local and Global Ca2+ Dynamics in Astrocytes, Frontiers in Computational Neuroscience, vol.12, 2018.

S. Winkelmann and C. Schütte, Hybrid models for chemical reaction networks: Multiscale theory and application to gene regulatory systems, The Journal of Chemical Physics, vol.147, p.114115, 2017.

A. Hellander and P. Lötstedt, Hybrid method for the chemical master equation, Journal of Computational Physics, vol.227, pp.100-122, 2007.

A. Duncan, R. Erban, and K. Zygalakis, Hybrid framework for the simulation of stochastic chemical kinetics, Journal of Computational Physics, vol.326, pp.398-419, 2016.

M. H. Davis, Piecewise-Deterministic Markov Processes: A General Class of Non-Diffusion Stochastic Models, Journal of the Royal Statistical Society. Series B (Methodological), vol.46, issue.3, pp.353-388, 1984.

F. Wegner, N. Wieder, and R. H. Fink, Simulation strategies for calcium microdomains and calcium-regulated calcium channels, Advances in Experimental Medicine and Biology, vol.740, pp.553-567, 2012.

Y. Cao, D. T. Gillespie, and L. R. Petzold, The slow-scale stochastic simulation algorithm, The Journal of Chemical Physics, vol.122, p.14116, 2004.

A. Crudu, A. Debussche, and O. Radulescu, Hybrid stochastic simplifications for multiscale gene networks, BMC Systems Biology, vol.3, p.89, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00784449

H. Salis and Y. Kaznessis, Accurate hybrid stochastic simulation of a system of coupled chemical or biochemical reactions, The Journal of Chemical Physics, vol.122, p.54103, 2005.

A. Alfonsi, E. Cancès, G. Turinici, B. D. Ventura, and W. Huisinga, Adaptive simulation of hybrid stochastic and deterministic models for biochemical systems, ESAIM: Proceedings, vol.14, pp.1-13, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00536559

A. Ganguly, D. Altintan, and H. Koeppl, Jump-Diffusion Approximation of Stochastic Reaction Dynamics: Error Bounds and Algorithms, Multiscale Modeling & Simulation, vol.13, pp.1390-1419, 2015.

K. Vasudeva and U. S. Bhalla, Adaptive stochastic-deterministic chemical kinetic simulations, Bioinformatics, vol.20, pp.78-84, 2004.

S. Zeiser, U. Franz, and V. Liebscher, Autocatalytic genetic networks modeled by piecewise-deterministic Markov processes, Journal of Mathematical Biology, vol.60, p.207, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00470252

S. Zeiser, U. Franz, O. Wittich, and V. Liebscher, Simulation of genetic networks modelled by piecewise deterministic Markov processes, IET Systems Biology, vol.2, pp.113-135, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00470254

Y. Christian, A. , F. Mark, and B. , The pseudo-compartment method for coupling partial differential equation and compartment-based models of diffusion, Journal of The Royal Society Interface, vol.12, p.20150141, 2015.

L. Ferm, A. Hellander, and P. Lötstedt, An adaptive algorithm for simulation of stochastic reaction-diffusion processes, Journal of Computational Physics, vol.229, pp.343-360, 2010.

C. Nagaiah, S. Rüdiger, G. Warnecke, and M. Falcke, Adaptive space and time numerical simulation of reaction-diffusion models for intracellular calcium dynamics, Applied Mathematics and Computation, vol.218, pp.10194-10210, 2012.

S. Engblom, A. Hellander, and P. Lötstedt, Multiscale Simulation of Stochastic Reaction-Diffusion Networks, Stochastic Processes, Multiscale Modeling, and Numerical Methods for Computational Cellular Biology, pp.55-79, 2017.

J. C. Schaff, F. Gao, Y. Li, I. L. Novak, and B. M. Slepchenko, Numerical Approach to Spatial Deterministic-Stochastic Models Arising in Cell Biology, PLOS Computational Biology, vol.12, p.1005236, 2016.

N. Dudani, U. S. Bhalla, and S. Ray, MOOSE, the Multiscale Object-Oriented Simulation Environment, Encyclopedia of Computational Neuroscience, pp.1-4, 2013.

M. Robinson, S. S. Andrews, and R. Erban, Multiscale reaction-diffusion simulations with Smoldyn, Bioinformatics, vol.31, pp.2406-2408, 2015.

B. Franz, M. Flegg, S. Chapman, and R. Erban, Multiscale Reaction-Diffusion Algorithms: PDE-Assisted Brownian Dynamics, SIAM Journal on Applied Mathematics, vol.73, pp.1224-1247, 2013.

M. Djurfeldt, J. Hjorth, J. M. Eppler, N. Dudani, M. Helias et al., Run-Time Interoperability Between Neuronal Network Simulators Based on the MUSIC Framework, Neuroinformatics, vol.8, pp.43-60, 2010.

M. Brandi, E. Brocke, H. Talukdar, M. Hanke, U. S. Bhalla et al., Connecting MOOSE and NeuroRD through MUSIC: towards a communication framework for multi-scale modeling, BMC Neuroscience, vol.12, p.77

R. Hinch, J. L. Greenstein, A. J. Tanskanen, L. Xu, and R. L. Winslow, A simplified local control model of calcium-induced calcium release in cardiac ventricular myocytes, Biophysical Journal, vol.87, pp.3723-3736, 2004.

M. D. Stern, L. S. Song, H. Cheng, J. S. Sham, H. T. Yang et al., Local control models of cardiac excitation-contraction coupling. A possible role for allosteric interactions between ryanodine receptors, The Journal of General Physiology, vol.113, pp.469-489, 1999.

M. Rückl, I. Parker, J. S. Marchant, C. Nagaiah, F. W. Johenning et al., Modulation of Elementary Calcium Release Mediates a Transition from Puffs to Waves in an IP3r Cluster Model, PLOS Computational Biology, vol.11, p.1003965, 2015.

M. Rückl and S. Rüdiger, Calcium waves in a grid of clustered channels with synchronous IP3 binding and unbinding, The European Physical Journal E, vol.39, p.108, 2016.

J. W. Shuai and P. Jung, Optimal Intracellular Calcium Signaling, Physical Review Letters, vol.88, p.68102, 2002.

S. Rüdiger, J. W. Shuai, and I. M. Sokolov, Law of mass action, detailed balance, and the modeling of calcium puffs, Physical Review Letters, vol.105, p.48103, 2010.

L. Diambra and J. S. Marchant, Inositol (1,4,5)-Trisphosphate Receptor Microarchitecture Shapes Ca2+ Puff Kinetics, Biophysical Journal, vol.100, pp.822-831, 2011.

G. S. Williams, E. J. Molinelli, and G. D. Smith, Modeling local and global intracellular calcium responses mediated by diffusely distributed inositol 1,4,5-trisphosphate receptors, Journal of Theoretical Biology, vol.253, pp.170-188, 2008.

A. Skupin, H. Kettenmann, and M. Falcke, Calcium Signals Driven by Single Channel Noise, PLoS computational biology, vol.6, 2010.

S. Rüdiger, J. W. Shuai, W. Huisinga, C. Nagaiah, G. Warnecke et al., Hybrid stochastic and deterministic simulations of calcium blips, Biophysical Journal, vol.93, pp.1847-1857, 2007.

S. Swillens, G. Dupont, L. Combettes, and P. Champeil, From calcium blips to calcium puffs: theoretical analysis of the requirements for interchannel communication, Proceedings of the National Academy of Sciences of the United States of America, vol.96, pp.13750-13755, 1999.

A. Skupin and M. Falcke, The role of IP3r clustering in Ca2+ signaling, Genome Informatics. International Conference on Genome Informatics, vol.20, pp.15-24, 2008.

S. Braichenko, A. Bhaskar, and S. Dasmahapatra, Phenomenological clusterbased model of ${\text{Ca}}^{2+}$ waves and oscillations for inositol 1,4,5-trisphosphate receptor (${\mathrm{IP}}_{3}\mathrm{R}$) channels, Physical Review E, vol.98, p.32413, 2018.

J. W. Shuai, Y. D. Huang, and S. Rüdiger, Puff-wave transition in an inhomogeneous model for calcium signals, Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, vol.81, p.41904, 2010.

S. Means, A. J. Smith, J. Shepherd, J. Shadid, J. Fowler et al., Reaction Diffusion Modeling of Calcium Dynamics with Realistic ER Geometry, Biophysical Journal, vol.91, pp.537-557, 2006.

G. E. Box, Sampling and Bayes' Inference in Scientific Modelling and Robustness, Journal of the Royal Statistical Society: Series A (General), vol.143, issue.4, pp.383-404, 1980.

G. Dupont and H. Croisier, Spatiotemporal organization of Ca2+ dynamics: A modeling based approach, HFSP Journal, vol.4, pp.43-51, 2010.

S. Rüdiger, Stochastic models of intracellular calcium signals, Physics Reports, vol.534, pp.39-87, 2014.

T. Manninen, R. Havela, and M. Linne, Reproducibility and Comparability of Computational Models for Astrocyte Calcium Excitability, Frontiers in Neuroinformatics, vol.11, 2017.

A. Panatier, M. Arizono, and U. V. Nägerl, Dissecting tripartite synapses with STED microscopy, Phil. Trans. R. Soc. B, vol.369, p.20130597, 2014.

I. F. Smith, S. M. Wiltgen, and I. Parker, Localization of puff sites adjacent to the plasma membrane: Functional and spatial characterization of Ca2+ signaling in SH-SY5y cells utilizing membrane-permeant caged IP3, Cell Calcium, vol.45, pp.65-76, 2009.

M. B. Flegg, S. Rüdiger, and R. Erban, Diffusive spatio-temporal noise in a first-passage time model for intracellular calcium release, The Journal of Chemical Physics, vol.138, p.154103, 2013.

B. Pando, S. P. Dawson, D. D. Mak, and J. E. Pearson, Messages diffuse faster than messengers, Proceedings of the National Academy of Sciences, vol.103, pp.5338-5342, 2006.

S. Rüdiger, C. Nagaiah, G. Warnecke, and J. Shuai, Calcium Domains around Single and Clustered IP3 Receptors and Their Modulation by Buffers, Biophysical Journal, vol.99, pp.3-12, 2010.

D. Fraiman and S. P. Dawson, Buffer regulation of calcium puff sequences, Physical Biology, vol.11, p.16007, 2014.

M. Falcke, Buffers and oscillations in intracellular Ca2+ dynamics, Biophysical Journal, vol.84, pp.28-41, 2003.

J. Shuai, J. E. Pearson, and I. Parker, Modeling Ca2+ Feedback on a Single Inositol 1,4,5-Trisphosphate Receptor and Its Modulation by Ca2+ Buffers, Biophysical Journal, vol.95, pp.3738-3752, 2008.

B. A. Bicknell and G. J. Goodhill, Emergence of ion channel modal gating from independent subunit kinetics, Proceedings of the National Academy of Sciences, vol.113, pp.5288-5297, 2016.

T. Oura, K. Murata, T. Morita, A. Nezu, M. Arisawa et al., Highly Sensitive Measurement of Inositol 1,4,5-Trisphosphate by Using a New Fluorescent Ligand and Ligand Binding Domain Combination, European Journal of Chemical Biology, vol.17, issue.16, pp.1509-1512, 2016.

K. Zheng, L. Bard, J. P. Reynolds, C. King, T. Jensen et al., Time-Resolved Imaging Reveals Heterogeneous Landscapes of Nanomolar Ca2+ in Neurons and Astroglia, Neuron, vol.88, pp.277-288, 2015.

H. Tu, Z. Wang, and I. Bezprozvanny, Modulation of Mammalian Inositol 1,4,5-Trisphosphate Receptor Isoforms by Calcium: A Role of Calcium Sensor Region, Biophysical Journal, vol.88, pp.1056-1069, 2005.

E. C. Thrower, R. E. Hagar, and B. E. Ehrlich, Regulation of Ins(1,4,5)P3 receptor isoforms by endogenous modulators, Trends in Pharmacological Sciences, vol.22, pp.580-586, 2001.

N. L. Allbritton, T. Meyer, and L. Stryer, Range of messenger action of calcium ion and inositol 1,4,5-trisphosphate, Science, vol.258, pp.1812-1815, 1992.

B. Schwaller, Cytosolic Ca2+ buffers, Cold Spring Harbor Perspectives in Biology, vol.2, p.4051, 2010.

B. S. Wilson, J. R. Pfeiffer, A. J. Smith, J. M. Oliver, J. A. Oberdorf et al., Calcium-dependent Clustering of Inositol 1,4,5-Trisphosphate Receptors, Molecular Biology of the Cell, vol.9, pp.1465-1478, 1998.

T. Rahman, Dynamic clustering of IP 3 receptors by IP 3, Biochemical Society Transactions, vol.40, pp.325-330, 2012.

I. Smith, D. Swaminathan, G. Dickinson, and I. Parker, Single-Molecule Tracking of Inositol Trisphosphate Receptors Reveals Different Motilities and Distributions, Biophysical Journal, vol.107, pp.834-845, 2014.

H. Tu, Z. Wang, E. Nosyreva, H. D. Smedt, and I. Bezprozvanny, Functional Characterization of Mammalian Inositol 1,4,5-Trisphosphate Receptor Isoforms, Biophysical Journal, vol.88, pp.1046-1055, 2005.

W. Chen and E. Schutter, Parallel STEPS: Large Scale Stochastic Spatial Reaction-Diffusion Simulation with High Performance Computers, Frontiers in Neuroinformatics, vol.11, 2017.

D. Swaminathan and P. Jung, The Role of agonist-independent conformational transformation (AICT) in IP3 cluster behavior, Cell Calcium, vol.49, pp.145-152, 2011.

R. A. Mcdougal, T. M. Morse, T. Carnevale, L. Marenco, R. Wang et al., Twenty years of ModelDB and beyond: building essential modeling tools for the future of neuroscience, Journal of Computational Neuroscience, vol.42, pp.1-10, 2017.

J. L. Stobart, K. D. Ferrari, M. J. Barrett, M. J. Stobart, Z. J. Looser et al., Long-term In Vivo Calcium Imaging of Astrocytes Reveals Distinct Cellular Compartment Responses to Sensory Stimulation, Cerebral Cortex, vol.28, pp.184-198, 1991.

L. Pilaz, A. L. Lennox, J. P. Rouanet, and D. L. Silver, Dynamic mRNA Transport and Local Translation in Radial Glial Progenitors of the Developing Brain, Current Biology, vol.26, pp.3383-3392, 2016.

R. Thomsen, J. Pallesen, T. F. Daugaard, A. D. Børglum, and A. L. Nielsen, Genome wide assessment of mRNA in astrocyte protrusions by direct RNA sequencing reveals mRNA localization for the intermediate filament protein nestin, Glia, vol.61, pp.1922-1937, 2013.

Z. Wang, M. Tymianski, O. T. Jones, and M. Nedergaard, Impact of Cytoplasmic Calcium Buffering on the Spatial and Temporal Characteristics of Intercellular Calcium Signals in Astrocytes, Journal of Neuroscience, vol.17, pp.7359-7371, 1997.

S. Zeller, S. Rüdiger, H. Engel, J. Sneyd, G. Warnecke et al., Modeling of the modulation by buffers of Ca2+ release through clusters of IP3 receptors, Biophysical Journal, vol.97, pp.992-1002, 2009.

V. C. Jones, L. Mckeown, A. Verkhratsky, and O. T. Jones, LV-pIN-KDEL: a novel lentiviral vector demonstrates the morphology, dynamics and continuity of the endoplasmic reticulum in live neurones, BMC Neuroscience, vol.9, p.10, 2008.

J. Nixon-abell, C. J. Obara, A. V. Weigel, D. Li, W. R. Legant et al., Increased spatiotemporal resolution reveals highly dynamic dense tubular matrices in the peripheral ER, Science, vol.354, p.3928, 2016.

M. Brunstein, K. Wicker, K. Hérault, R. Heintzmann, and M. Oheim, Fullfield dual-color 100-nm super-resolution imaging reveals organization and dynamics of mitochondrial and ER networks, Optics Express, vol.21, pp.26162-26173, 2013.

B. G. Kopek, M. G. Paez-segala, G. Shtengel, K. A. Sochacki, M. G. Sun et al., Diverse protocols for correlative super-resolution fluorescence imaging and electron microscopy of chemically fixed samples, Nature protocols, vol.12, pp.916-946, 2017.

M. Sun, P. Devaraju, A. X. Xie, I. Holman, E. Samones et al., Astrocyte calcium microdomains are inhibited by Bafilomycin A1 and cannot be replicated by low-level Schaffer collateral stimulation in situ, Cell Calcium, vol.55, pp.1-16, 2014.

A. Agarwal, P. Wu, E. G. Hughes, M. Fukaya, M. A. Tischfield et al., Transient Opening of the Mitochondrial Permeability Transition Pore Induces Microdomain Calcium Transients in Astrocyte Processes, Neuron, vol.93, pp.587-605, 2017.

C. Mauvezin and T. P. Neufeld, Bafilomycin A1 disrupts autophagic flux by inhibiting both V-ATPase-dependent acidification and Ca-P60a/SERCAdependent autophagosome-lysosome fusion, Autophagy, vol.11, issue.8, pp.1437-1438, 2015.

G. Roest, R. M. La-rovere, G. Bultynck, and J. B. Parys, IP3 Receptor Properties and Function at Membrane Contact Sites, Advances in Experimental Medicine and Biology, vol.981, pp.149-178, 2017.

J. Marchaland, C. Calì, S. M. Voglmaier, H. Li, R. Regazzi et al., Fast Subplasma Membrane Ca2+ Transients Control Exo-Endocytosis of Synaptic-Like Microvesicles in Astrocytes, Journal of Neuroscience, vol.28, pp.9122-9132, 2008.

M. Wu, E. Covington, and R. Lewis, Single-molecule analysis of diffusion and trapping of STIM1 and Orai1 at ER-plasma membrane junctions, Molecular biology of the cell, vol.25, 2014.

Y. Elbaz and M. Schuldiner, Staying in touch: the molecular era of organelle contact sites, Trends in Biochemical Sciences, vol.36, pp.616-623, 2011.

H. Wu, P. Carvalho, and G. K. Voeltz, Here, there, and everywhere: The importance of ER membrane contact sites, Science, vol.361, p.5835, 2018.

J. T. Smyth, W. I. Dehaven, G. S. Bird, and J. W. Putney, Ca2+-storedependent and -independent reversal of Stim1 localization and function, J Cell Sci, vol.121, pp.762-772, 2008.

T. A. Fiacco and K. D. Mccarthy, Intracellular Astrocyte Calcium Waves In Situ Increase the Frequency of Spontaneous AMPA Receptor Currents in CA1 Pyramidal Neurons, Journal of Neuroscience, vol.24, pp.722-732, 2004.

R. Yuste, A. Majewska, and K. Holthoff, From form to function: calcium compartmentalization in dendritic spines, Nature Neuroscience, vol.3, pp.653-659, 2000.

N. Korogod, C. C. Petersen, and G. W. Knott, Ultrastructural analysis of adult mouse neocortex comparing aldehyde perfusion with cryo fixation, vol.4, p.5793, 2015.

X. Li, Y. Tao, R. Bradley, Z. Du, Y. Tao et al., Fast Generation of Functional Subtype Astrocytes from Human Pluripotent Stem Cells, Stem Cell Reports, vol.11, pp.998-1008, 2018.

H. Cang, Z. Tong, P. Beuzer, Q. Ye, J. Axelrod et al., Ex-STORM: Expansion Single Molecule Nanoscopy, p.49403, 2016.

M. Gao, R. Maraspini, O. Beutel, A. Zehtabian, B. Eickholt et al., Expansion Stimulated Emission Depletion Microscopy (ExSTED), ACS Nano, vol.12, pp.4178-4185, 2018.

A. R. Halpern, G. C. Alas, T. J. Chozinski, A. R. Paredez, and J. C. Vaughan, Hybrid Structured Illumination Expansion Microscopy Reveals Microbial Cytoskeleton Organization, ACS Nano, vol.11, pp.12677-12686, 2017.

Y. Wang, Z. Yu, C. K. Cahoon, T. Parmely, N. Thomas et al., Combined expansion microscopy with structured illumination microscopy for analyzing protein complexes, Nature Protocols, vol.13, p.1869, 2018.

M. U. Khalid, A. Tervonen, I. Korkka, J. Hyttinen, and K. Lenk, Geometrybased Computational Modeling of Calcium Signaling in an Astrocyte, EM-BEC & NBC 2017, IFMBE Proceedings, pp.157-160, 2017.

E. Nordlie, M. Gewaltig, and H. E. Plesser, Towards Reproducible Descriptions of Neuronal Network Models, PLOS Computational Biology, vol.5, p.1000456, 2009.

S. M. Crook, A. P. Davison, and H. E. Plesser, Learning from the Past: Approaches for Reproducibility in Computational Neuroscience, Springer Series in Computational Neuroscience, pp.73-102, 2013.

S. Crook, Model Reproducibility: Overview, Encyclopedia of Computational Neuroscience, pp.1-3, 2013.

M. Migliore, T. M. Morse, A. P. Davison, L. Marenco, G. M. Shepherd et al., Neuroinformatics, vol.1, pp.135-139, 2003.

N. L. Novère, A. Finney, M. Hucka, U. S. Bhalla, F. Campagne et al., Minimum information requested in the annotation of biochemical models (MIRIAM), Nature Biotechnology, vol.23, pp.1509-1515, 2005.

M. Hucka, A. Finney, H. M. Sauro, H. Bolouri, J. C. Doyle et al.,

B. E. Bibliographie-schaff, T. S. Shapiro, H. D. Shimizu, J. Spence, K. Stelling et al., The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models, Bioinformatics, vol.19, pp.524-531, 2003.

A. P. Davison, D. Brüderle, J. M. Eppler, J. Kremkow, E. Muller et al., PyNN: a common interface for neuronal network simulators, Frontiers in Neuroinformatics, vol.2, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00586786

S. Crook, P. Gleeson, F. Howell, J. Svitak, and R. A. Silver, MorphML: Level 1 of the NeuroML Standards for Neuronal Morphology Data and Model Specification, Neuroinformatics, vol.5, pp.96-104, 2007.

S. M. Hernández-sotomayor, C. D. Santos-briones, J. A. Muñoz-sánchez, and V. M. Loyola-vargas, Kinetic Analysis of Phospholipase C from Catharanthus roseus Transformed Roots Using Different Assays, Plant Physiology, vol.120, pp.1075-1082, 1999.

J. Akerboom, T. Chen, T. J. Wardill, L. Tian, J. S. Marvin et al., Optimization of a GCaMP calcium indicator for neural activity imaging, The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, vol.32, pp.13819-13840, 2012.

A. Michailova, F. Principe, M. Egger, and E. Niggli, Spatiotemporal Features of Ca2+ Buffering and Diffusion in Atrial Cardiac Myocytes with Inhibited Sarcoplasmic Reticulum, Biophysical journal, vol.83, pp.3134-51, 2003.

. Mots-clés, Astrocytes, signalisation calcique, neurosciences computationnelles, réaction-diffusion, géométrie, Laboratoire (s) de recherche : Laboratoire d'Informatique en Image et Systèmes d'information LIRIS CNRS UMR5205

, Directeur de thèse: Hugues Berry, INRIA Président de jury : Laurent Venance, INSERM Composition du jury : Geneviève Dupont (Directeur de Recherche ULB, rapportrice) Leonid Savtchenko (Senior Research Scientist , rapporteur) Laurent Venance (Directeur de Recherche INSERM, examinateur) Aude Panatier

G. Beslon, Professeur INSA, examinateur) Hédi Soula (Professeur UPMC, co-directeur de thèse, invité) Hugues Berry (Directeur de recherche INRIA