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Résumé

L’étude des vides avec flux est une étape primordiale afin de mieux comprendre la
compactification en théorie des cordes ainsi que ses conséquences phénoménologiques. En
présence de flux, l’espace interne ne peut plus être Calabi-Yau, mais admet tout de même
une structure SU(3) qui devient un outil privilégié. Après une introduction aux notions
géométriques nécessaires, cette thèse examine le rôle des flux dans la compactification super-
symétrique sous différents angles. Nous considérons tout d’abord des troncations cohérentes
de la supergravité IIA. Nous montrons alors que des condensats fermioniques peuvent aider
à supporter des flux et générer une contribution positive à la constante cosmologique. Ces
troncations admettent donc des vides de Sitter qu’il serait autrement très difficile d’obtenir,
si ce n’est impossible. L’argument est tout d’abord employé avec des condensats de dila-
tini puis amélioré en suggérant un mécanisme pour générer des condensats de gravitini à
partir d’instantons gravitationnels. Ensuite l’attention se tourne sur les branes et leur com-
portement sous T-dualité non abélienne. Nous calculons les configurations duales à certaines
solutions avec D branes de la supergravité de type II, et examinons les flux ainsi que leurs
charges afin d’identifier les branes après dualité. La solution supersymétrique avec brane D2
est étudiée plus en détails en vérifiant explicitement les équations sur les spineurs généralisés,
puis en discutant de la possibilité d’une déformation massive. Le dernier chapitre fournit
une construction systématique de structures SU(3) sur une large classe de variétés toriques
compactes. Cette construction définit un fibré en sphère au-dessus d’une variété torique 2d
quelconque, mais fonctionne tout aussi bien sur une base Kähler-Einstein.

Abstract

The study of flux vacua is a primordial step in the understanding of string compactifica-
tions and their phenomenological properties. In presence of flux the internal manifold ceases
to be Calabi-Yau, but still admits an SU(3) structure which becomes thus the preferred
framework. After introducing the relevant geometrical notions this thesis explores the role
that fluxes play in supersymmetric compactification through several approaches. At first
consistent truncations of type IIA supergravity are considered. It is shown that fermionic
condensates can help support fluxes and generate a positive contribution to the cosmologi-
cal constant. These truncations thus admit de Sitter vacua which are otherwise extremely
difficult to get, if not impossible. The argument is initially performed with dilatini conden-
sates and then improved by suggesting a mechanism to generate gravitini condensates from
gravitational instantons. Then the focus shifts towards branes and their behavior under non
abelian T-duality. The duals of several D-brane solutions of type II supergravity are com-
puted and the branes are tracked down by investigating the fluxes and the charges they carry.
The supersymmetric D2 brane is further studied by checking explicitly the generalized spinor
equations and discussing the possibility of a massive deformation. The last chapter gives a
systematic construction of SU(3) structures on a wide class of compact toric varieties. The
construction defines a sphere bundle on an arbitrary two-dimensional toric variety but also
works when the base is Kähler-Einstein.
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Introduction

Modern physics models are extremely successful in describing the universe. Virtually all
physical phenomena observable on earth can be explained at a fundamental level by two
theoretical frameworks.

The first one is the standard model (SM) of particle physics. It describes the basic con-
stituents of matter as well as their interactions. The SM is a quantum field theory, its starting
point is an action functional describing the dynamics of classical fields. The theory is then
quantized to get the spectrum, ie the different states that are available in the theory. As a
quantum theory the SM model predicts the probability of transition between states. When
the interactions (parametrized by couplings in the Lagrangian) are weak, a state can be in-
terpreted as a combination of particles propagating in space-time. If the particles come close
to each other they can interact and the result of their interaction can be computed with a
series expansion in the couplings. Such predictions are then tested in particle accelerators
and actually lead to the most precise predictions ever achieved in physics.

The second one is general relativity (GR), which describes the gravitational interaction,
not present in the standard model. In fact GR is much more than a mere theory of gravita-
tion. In GR space-time is modeled by a manifold equipped with a Lorentzian metric which
determines its "shape". Any physical object is then bound to follow geodesics in this geo-
metric space. Reciprocally any energy density sources the curvature of the metric through
Einstein’s equations, and thus modifies locally the geometry of space-time. GR can be de-
scribed by a classical field theory defined on the space-time manifold, in which the metric
itself is a dynamical field.

Of course both frameworks are not used in all physical applications, as they are supposed
to describe reality at its fundamental level. Newtonian approximation of GR is more than
sufficient to get accurate models in most situations. On the other hand the SM describes
accurately the interactions of elementary particles while most relevant situations involve
an enormous number of those particles. Then a complete treatment would be impossible
and actually useless. One uses instead effective models that are all, at least in principle,
compatible with the standard model. Most scientific research seeks to resolve the tremendous
complexity of the universe rather than its fundamental rules.

Still the SM and GR are two apparently unrelated frameworks, and thus do not qualify for
a fundamental theory describing the real world. One then expects that a complete description
of reality should involve a quantum version of GR that is compatible with the SM. However
this is conceptually difficult to achieve. Indeed one of the most important properties of GR is
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that it does not depend on a choice a coordinate system. Space-time is a set of points, and the
metric defines the distances between them. But this intrinsic description is not manageable
in practice and one needs to introduce coordinates so that physical objects can be attributed
numerical values. Eventually the result should not depend on this arbitrary choice. This is
translated in the theory as an invariance under diffeomorphism of space-time. On the other
hand quantum field theory is defined on a Minkowski space-time with a flat metric, which is
of course a coordinate dependent statement. This is actually crucial as quantum fields need
a background on which they propagate. If the metric is quantized, hence space-time itself,
it becomes unclear on what background the theory lives.

One could of course ignore this conceptual barrier and consider the metric as a regular
field by expanding it around the flat metric. The procedure fails drastically as the compu-
tation leads to inevitable divergences. The SM and GR seem by nature incompatible. Then
how come they both lead to such accurate predictions ? The main reason is that, compara-
tively to the fundamental interactions of the SM, gravity is extremely weak. For example at
the classical level, for two electrons the gravitational interaction is 1042 times weaker than
electromagnetism. Thus gravitation is completely negligible in the interaction of elementary
particles. When the number of particles increases gravitation becomes stronger and stronger
as it is universally attractive. On the contrary quantum effects will be smoothed out by de-
coherence and as bound states are formed, the fundamental interactions are screened. When
gravitational effects become relevant, quantum effects are negligible and the system can be
described in classical GR.

The situation then looks surprisingly satisfying. When one framework is needed, the other
one is negligible: one could argue that this is an acceptable answer. This is not the end of the
story though: despite the formidable predictive power of GR and the SM some phenomena
are still not understood at the fundamental level1

• The exact nature of dark matter is still not known. Moreover current cosmological mod-
els need a strictly positive cosmological constant (though extremely small) to explain
the acceleration of the expansion of the universe, usually referred to as dark energy. In
Planck units its value is of the order of 10−122.

• A few marginal experimental results do not fit in the SM. One important example is
the non vanishing mass of the neutrinos.

• The mathematical foundations of the SM model are not completely clear. The compu-
tations need to be regularized through a process called renormalization to give finite
results. Moreover the expansion in the couplings is now known to be divergent. Also
in a regime of strong interactions perturbative techniques cannot be used anymore and
very few tools are available to make sensible predictions. For all these reasons, the SM
should probably be considered as an effective theory.

• In regions with extremely high energy density, gravitational effects can become signifi-
cant while quantum effects are still relevant. Even though such extreme conditions are
unreachable on Earth they actually exist in our universe: during the Big Bang, at the

1If we look back at the historical development of modern theoretical physics, those "small" imperfections
could most likely lead to major upheaval in our understanding of the universe.
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core of neutron stars, or at the horizon of black holes. A fundamental description of
reality should account for these effects.

Thus a quantum theory of gravitation seems necessary and may hopefully resolve some of
the issues raised here. Such theory should also be unified with the standard model at some
point. String theory stands as the most serious candidate.

In string theory the fundamental elements are not particles but extended one dimensional
objects. A quantum particle can be described by a quantum field theory on a one dimensional
space, its wordline, whose fields are its coordinates in space-time. In the same way a quantum
string would corresponds to a two dimensional field theory on its worldsheet. However the
one dimensional theory is rather trivial. Its only degree of freedom is its momentum and
it describes merely a free propagating particle. In order to get something interesting one
needs to combine different types of particles and add interactions. This is exactly what the
standard model does.

On the other hand the spectrum of the string is much richer, as it also contains the
excitation modes of the string. From the space-time point of view this gives a tower of
states with increasing masses. This would then give a quantum field theory with an infinite
number of fields but the full theory is not known. From the worldsheet point of view the
quantum string is a conformal two dimensional theory and amplitudes can be computed
exactly. Moreover the massless spectrum contains a traceless symmetric tensor, which can
be shown to behave like a graviton. Indeed at low energy, ie ignoring the tower of massive
sates and higher derivative corrections, the effective action contains the Einstein-Hilbert term
of GR. At this stage this is very promising: string theory naturally includes quantum gravity
without suffering from the usual divergences. Moreover there still remains many degrees of
freedom that could, hopefully, include the SM. However:

• String theory predicts a 26 dimensional space-time.

• The spectrum contains only bosonic states. It cannot then reproduce the fermions of
the SM.

• The spectrum contains a tachyon, rendering the theory unstable.

Let us see how these problems can be avoided.

Compactification If extra dimensions seem to be inconsistent with our reality, they can
be accommodated though a process called compactification. In fact extra dimensions should
be considered as extra degrees of freedom (and can actually be beneficial). Consider a d-
dimensional space-time Md with d > 4. Now decompose Md = M4 × Md−4 where M4
represents our four dimensional world and Md−4 is called the internal space and embodies
the extra dimensions. From the four dimensional point of view the components of tensors
along the internal space can be interpreted as extra fields. All field components are then
functions of x ∈ M4 and y ∈ Md−4. If the internal manifold is compact of characteristic
length li the y dependence can be decomposed into eigenmodes of the Laplacian2. In the
four dimensional theory this leads to a tower a states whose first mass are of the order of
1
li

. This extra mass correspond to momentum in the internal directions. At low energies

2These are Fourier modes when Md−4 is a torus.
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compared to 1
li

these states cannot be generated and can thus be discarded from the effective
theory.

Superstrings A natural way to have fermions in a theory is to include supersymmetry.
The supersymmetry transformations have fermionic parameters and thus mix bosons and
fermions. As a consequence a supersymmetric theory necessarily has the same number of
bosonic and fermionic degrees of freedom. Moreover the successive action of two super-
symmetry transformations generates translations, so supersymmetry naturally extends the
Poincaré algebra. Superstring theory is then the supersymmetric version of string theory. Of
course the spectrum now contains fermions, but another consequence is that supersymmetry
removes the tachyon. The graviton is still present but now the critical dimension is ten.
The low energy effective theory is now ten dimensional supergravity. Thus string theory is
exactly what we were looking for: a consistent quantum theory of gravitation that potentially
includes the SM.

If superstring theory were to actually describe our world, our energy scales would most
likely be low compared to the string scale. Thus supergravity is expected to play an impor-
tant role in phenomenological considerations. An effective description of these low energy
processes should be determined by fluctuations around a supergravity solution, thus called
in this context string vacua. Note that by itself, ten dimensional supergravity is not a theory
of quantum gravity as it is not renormalizable. It should be considered only as a low energy
approximation: at higher energies the approximation fails and stringy effects should be taken
into account. Now in order to get to four dimensions, we will need at some point to proceed
to a compactification. Eventually the four dimensional theory will highly depend on the
choice of vacua, and thus on the reduction ansatz.

The search for string vacua then becomes an intensive research subject. At first reductions
to a Minkowski space-time were considered. In that case the internal space should be a Calabi-
Yau manifold, and some bosonic fields of supergravity called fluxes need to be switched off.
Such compactifications lead to great progress in our understanding of string vacua. However
along the reduction a high number of scalar field are generated in the four dimensional theory,
coming for example from the components of the graviton. The modes with lowest mass are
merely the constant modes in the internal directions and thus no mass is generated from the
reduction. In fact these fields end up being massless. Such fields are called moduli and would
not lead to a realistic phenomenological model. In the case of Calabi-Yau compactification,
very few options are left to stabilize these moduli and all rely on quantum corrections.

Flux vacua This suggests that the initial ansatz may be too restrictive. Actually the
masses of the moduli depend on the value of the background flux. Keeping the fluxes in
the ansatz should then help stabilize the moduli. Moreover fluxes are genuine ingredients
of supergravity and string theory, so keeping them is rather natural. Solutions with non
vanishing fluxes are called flux vacua and are the main subject of this thesis. Still, turning
on fluxes is not a trivial step. The internal manifold is not Calabi-Yau so that the associated
mathematical machinery is no longer available. The geometrical conditions can be rephrased
in the language of G-structures. More precisely the internal manifold must have SU(3)-
structure (note that Calabi-Yau manifolds can be defined as manifolds with a very specific
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SU(3)-structure). In the most general case, flux vacua should be studied in the framework
of generalized complex geometry. Then the relevant structure group is SU(3) × SU(3).

This thesis is the compilation of four papers that were written during my Ph.D [1, 2, 3,
4]. They have been slightly adapted to better fit the structure of the thesis and to avoid
unnecessary repetitions. Two chapters have been added to introduce the frameworks that
are used throughout the papers.

The first chapter is devoted to mathematical preliminaries, namely the definition of G-
structures. The emphasis is put on SU(3)-structures and their relations with spinors, which
are essential in flux compactification. A minimal introduction to generalized complex geom-
etry is given in order to properly define SU(3) × SU(3)-structures. Chapter 2 then explains
why those structures are relevant in flux compactification. This is also a good opportu-
nity to discuss supergravity further, its relation with string theory and branes. Original
content starts in chapter 3 which studies consistent truncations of type IIA supergravity in
the presence of fermionic condensates. At first dilatini condensates are considered with a
Nearly-Kähler internal space[2]. A second truncation is presented, with a Calabi-Yau inter-
nal manifold and gravitini condensates [3]. It is suggested that the latter can be generated
from gravitational instantons. Chapter 4 is focused on the interplay between branes and non
abelian T-duality [4]. Several brane configurations are considered together with their dual
where the branes are studied by computing the flux charges. The D2 supersymmetric solu-
tion is further studied through its SU(3)×SU(3) structure. Chapter 5 presents a systematic
construction of SU(3)-structures on a class of toric varieties after a brief introduction to the
toric formalism [1]. The purpose is to investigate if such spaces could be suitable for flux
compactification.
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1 Geometrical tools

Throughout the thesis I will assume that the reader is familiar with standard tools from
differential geometry, among which are the very definition of a smooth manifold, vector
and tensor fields, differential forms (and their cohomology), Riemannian geometry. Unless
otherwise stated all objects will be taken in the smooth category, since this is the most
relevant case for our physical applications.

This chapter’s purpose is to introduce further tools that will be necessary (or at least
interesting) in the context of compactification. Being myself fond of mathematical nitpicking,
I will try to focus on the point and avoid (too many) unnecessary digressions. The ultimate
goals are the notions of SU(3)-structure and SU(3)×SU(3)-structure which are the relevant
structures for the internal six dimensional space in type II compactification. This will require
a general discussion on G-structures on vector and principal bundles.

1.1 Fiber bundles in differential geometry

1.1.1 Fiber bundles

The easiest way to build higher dimensional manifolds is to merely "add" dimensions. Given
two manifolds B and F of dimensions n and k, the Cartesian product E = B × F is a
manifold of dimension n + k. Since each point of y ∈ E can be written uniquely in the form
y = (x, ξ) where x ∈ B and ξ ∈ F we can define projections:

πB : B × F → B
(x, ξ) �→ x

and πF : B × F → F
(x, ξ) �→ ξ

(1.1)

Fiber bundles are a generalization of this.

Fiber bundle A fiber bundle is given by three manifolds E, B and F together with a
projection π : E → B such that: for each x ∈ B there is an open neighborhood U ⊂ B of x
and a diffeomorphism ϕ : π−1U → U × F satisfying πU ◦ ϕ = π.

The data (U, ϕ) are called local trivializations of the bundle E which is a manifold of
dimension n + k. Note that the trivialization condition implies that Ex := π−1{x} � F . Ex

is called the fiber over x and the total space E can be seen as the disjoint union, over the
base B, of all the fibers. The trivializations ensure that the union is locally well behaved,
and looks like a Cartesian product. If the trivialization can be defined globally, ie U = E,
then the bundle is trivial and the total space is merely a Cartesian product. In general, this
will not be the case.

12
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Similarly to the Cartesian product, an element y ∈ E can be written y = (x, ξ) with
x ∈ B and ξ ∈ Ex. However the role of B and F are not symmetric anymore since we have
to choose a base point x before knowing in which fiber ξ lives. π naturally projects onto the
base so that x = π(y) but there is a priori no canonical projection onto the fiber.

Sections A section of a bundle is a function σ : B → E such that π(σ(x)) = x for x ∈ B.
Such a function do not necessarily exist for a general fiber bundle. We thus need to also
consider local sections, namely sections of the bundle E|U = π−1U over U . Local sections
always exist on a local trivialization, since they can be identified as functions σU : U → F .

Transition functions and structure group Consider now an atlas of E, ie a set of local
trivializations (Ui, ϕi) covering the whole space: B =

⋃
i Ui. On an intersection Ui ∩ Uj , both

ϕi and ϕj can be used and ϕi ◦ ϕ−1
j is a function Ui ∩ Uj × F → Ui ∩ Uj × F . Since both

leave the base point unchanged we can write for x ∈ B, ξ ∈ F :

ϕi ◦ ϕ−1
j (x, ξ) = (x, tij(x)(ξ)) (1.2)

which defines the transition functions tij : Ui ∩Uj → G where G is a group of transforma-
tions acting on F , called the structure group of the bundle. They satisfy several compatibility
conditions:

tii = id
tji = t−1

ij

tijtjktki = id
(1.3)

The last equation in (1.3) is the cocycle condition and is defined on triple intersection
Ui ∩ Uj ∩ Uk. In fact the transition functions tell us how the different patches Ui are glued
together and how the fibers are twisted when we move along the base. They give enough
information to build the bundle, provided they satisfy (1.3).

In practice the structure group is usually defined as part as the data required for the
bundle together with its action on the fiber and is chosen to be a nice group ( eg a Lie
group). Which structure group can be chosen for a specific bundle is a question that will
keep us busy for the remaining of the chapter.

1.1.2 Vector bundles and principal bundles

I have up to now only discussed general fiber bundles where the fiber F is an arbitrary
manifold. When some structure is further imposed on F the bundle will also inherit from it
in a certain way. This is the case for vector bundles (the fiber is a vector space) and principal
bundles (the fiber is a Lie group).

Vector Bundle A rank k vector bundle is a fiber bundle π : E → M with F = R
k. For

each x ∈ M , the fiber Ex is a vector space and the trivialization (U, ϕ) induce an isomorphism

R
k → Ex

v �→ ϕ−1(x, v) (1.4)

A few remarks can readily be made from this definition:

• the same definition and all the following remarks would hold also for a complex vector
bundle with obvious substitutions.
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• on a double intersection Ui ∩ Uj the transition function tij are automorphisms of Rn,
ie matrices of GLk(R). So the structure group is naturally GLk(R)

• Ex is a vector space and has its own zero vector. Thus E has a canonical global zero
section given by σ(x) := (x, 0Ex) for x ∈ M . The space of sections Γ(E) is thus a vector
space, more specifically this is a C∞(M) module since we can define f ·u (x) := f(x)u(x)
for u ∈ Γ(M).

Moreover operations on vector spaces can be extended to operations on vector bundles.
Consider two vector bundles E and F over the same base M , we can define the following
bundles

• Direct sum: E ⊕ F whose fiber over x is Ex ⊕ Fx

• Tensor product: E ⊗ F whose fiber is Ex ⊗ Fx

• Dual: E∗ whose fiber is E∗
x

Principal bundles A G-principal bundle is a fiber bundle π : P → M with F = G a Lie
Group. There is a right action of G on P such that: for any x ∈ M , G preserves Px and its
action on Px is free and transitive.

Note that the fiber Px over each point is diffeomorphic to the group G but is not a group
(in a relevant way). The obstruction is in fact the lack of an identity element. Suppose now
that there is a global section σ : M → P . Then for p ∈ P and x = π(p), p and σ(x) belong
in Px. Since the action of G on Px is free and transitive there is a unique g ∈ G such that
p = σ(x) · g. This gives a diffeomorphism

Φ : M × G → P
(x, g) �→ σ(x)g (1.5)

Thus a principal bundle is trivial if and only if it admits a global section. This is drastically
different from the previous case of vector bundle which always admits global sections. Despite
their different properties, vector and principal bundles are related in a natural way.

Frame bundle Consider a rank k vector bundle π : E → M . For x ∈ M the fiber Ex is a
finite dimensional vector space and thus admits bases. Take Fx the set of ordered bases for Ex:
GLk acts on Fx by a change of basis. Any two basis are related by a unique transformation
of GLk so the action is free and transitive. Then F (E) :=

⋃
x∈M Fx is a GLk-principal bundle

called the frame bundle, whose fiber at x ∈ M is exactly Fx. Note that a global section on
F (E) would define a canonical basis for any Fx and thus would trivialize F (E): a vector
bundle is trivial if and only if its frame bundle is trivial.

This shows that any vector bundle can be associated a principal bundle. It is also possible
to go the other way around.

Associated bundle Consider a G-principal bundle π : P → M . Let ρ : G → GL(V )
a k-dimensional representation of the Lie group G. Define now an action of G on P × V :
g · (p, v) := (p g, ρ(g)−1v). Then E = P × V/G is a rank k vector bundle on M , called the
associated bundle to P with fiber V .

On way to see this is that P × V is trivially a vector bundle over P . The group action
relation will remove the degrees of freedom of the fibers Px, but at the same time twist the
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fiber V . The twist of the bundle P will be shifted to E via ρ. If P is a trivial bundle, then
E will also be trivial (but the converse is not true). Unsurprisingly any vector bundle is the
associated bundle of its frame bundle. However a frame bundle is always a GLk-principal
bundle so that principal bundles are not necessarily frame bundles.

On a manifold M of dimension n the tangent bundle TM is a rank n vector bundle and
its frame bundle FM is a GLn-principal bundle. Both will play an especially important role
in the study of properties of M . TM and its dual T ∗M are used to build vector bundles
through tensor products and direct sums whose sections are usual objects in physics:

• Vector fields are sections of TM

• 1-forms are sections of T ∗M

• Higher order differential forms are sections of the antisymmetric products of T ∗M :
ΩM = Λ(T ∗M)

• Metrics are non-degenerate (to be understood fiberwise) sections of the symmetric part
of T ∗M ⊗ T ∗M .

1.2 G-structures

As we have seen, the structure group of a bundle restricts the transition functions, which in
turn define how the bundle is twisted. This means that the more restricted the group, the
less twisted the bundle. However looking back at the definitions, the structure group seems
a bit arbitrary. For example for another group H such that G is a subgroup of H, it would
be as valid as G for a structure group. This can also be seen for the trivialization functions
which are nothing but a choice of coordinates. It is possible to add new charts with arbitrary
complicated coordinates without actually changing the bundle, but enlarging the structure
group. There can be in fact a lot a redundancy in the local trivializations and one would
like to have some control on the twisting of the bundle. The question at stake here is given
a fiber bundle, which groups could be chosen as its group structure, providing we made the
right choice in defining the local trivializations ?

1.2.1 Reduction of the structure group

Consider first π : P → M a G-principal bundle and another group H with a homomorphism
φ : G → H. It is then possible to build bundle associated to P with fiber H in a similar
fashion as for vector bundles. Define an action of G on P × H: g · (p, h) := (pg, φ(g)−1h).
Then Q := (P ×H)/G is a H-principal bundle over M where h′ ∈ H acts on Q by h′ ·(p, h) :=
(p, h h′). This action commutes with the action of G and thus descends to the quotient. The
bundle structure of Q comes from P and thus do not carry more information.

Considering the other direction, one can wonder whether the G-principal bundle P comes
from a H-principal bundle Q:

Reduction of the structure group Let H be a group with a homomorphism φ : H → G.
A reduction of the structure group of P from G to H is a H-principal bundle Q such that
the bundle associated to Q is isomorphic to P .

For a rank k vector bundle E its frame bundle F (E) is a GLk-principal bundle, this leads
to G-structure.
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G-structure Consider a homomorphism φ : G → GLk. A G-structure on E is a reduction
of the structure group of F (E) to G.

The relation with the structure group is what we could expect: a vector bundle E admits
a G structure if and only if its structure group can be chosen to be G. Once again this does
not mean that this condition is indeed fulfilled, but only that it is possible to find an atlas
for which the transition functions all belong in G.

Before we get to examples a few remarks are in order:

• In the following we will mainly look at reductions of the frame bundle of a n-dimensional
manifold M , so a G-structure on M will refer to its tangent bundle.

• In most relevant cases φ is an inclusion map, hence the name reduction, but this is
not mandatory. When this is the case φ induces an inclusion φ̃ : Q → P so that the
reduction Q is in fact a subbundle of P . For us G will most likely be a subgroup of
GLm, and the reduction will correspond to a subset of local bases for TM .

• The existence of a G-structure for a given group G is a topological property. However
a G-structure itself is neither unique nor canonical.

• As we have seen the frame bundle FE of an associated bundle E to P is not in general
the same thing as P . However P will give a reduction of the structure group of FE,
for the morphism given by the representation.

1.2.2 Examples

This definition of G-structures is rather straightforward and elegant, however it is basically
useless for computations. A G-structure can rather usually be defined by a specific G-
invariant non degenerate tensor T . Provided that the defining properties of T are well
chosen, it can be identified with the G-structure. It is then much easier (at least for our
purposes) to work with this tensor than with the more abstract notion of principal bundle.
It is also important to notice that this alternate definition enables to translate many common
geometrical properties in the framework of G-structures. Rather than giving a general proof
for this heuristic (and hazy) statement I will show how this works out on a case by case basis.

O(n) Consider a reduction P of the structure group of M to O(n). Thus P is a subbundle
of FM and gives for x ∈ M a set of bases of TxM related to each other by an O(n)-
transformation. A basis defines canonically a metric g on TxM , which does not depend on
the choice of basis in Px. This metric is well defined everywhere and furnishes M with a
Riemannian structure. Note that a local section of P , which is also a local trivialization of
TM , is a vielbein for g.

Conversely consider a Riemannian manifold M with metric g. The bundle of orthonormal
bases for g is a O(n)-bundle and thus gives a reduction of FM .

An O(n)-structure on M is a Riemannian metric. Since it is possible to define a metric
on any manifold, note that there is no obstruction to the reduction to O(n). The same
construction can be done with metrics of signature (p, q) and O(p, q), but then there can be
topological obstructions.

16



CHAPTER 1. GEOMETRICAL TOOLS

SO(n) This case is similar as the previous one but now the basis can be attributed an
orientation since the SO(n)-transformations will preserve it. This will define an orientation
on the whole space. Conversely an oriented Riemannian manifold enables to define oriented
orthonormal bases and thus a SO(n) subbundle of FM .

A manifold admits a SO(n)-structure if and only if it is orientable. Strictly speaking the
orientation is defined by a Gl+n structure but the reduction to O(n) is automatic.

SO(n − 1) Consider an oriented Riemannian manifold with an SO(n − 1)-structure. For
our purposes we will use the following inclusion:

φ : SO(n − 1) → SO(n)

g �→
(

1 0
0 g

)

On a trivialization (U, ϕ) define the vector field V (x) := ϕ−1(x, e1) for x ∈ U and en =
(1, 0, . . . , 0). Since e1 is invariant under SO(n − 1), this definition is compatible with the
transition functions and V can be extended to M . Note that the norm of V is 1 every where,
and thus V does not vanish.

Conversely consider an oriented Riemannian manifold M with a non vanishing vector
field V . For x ∈ TxM , take a basis B of the orthogonal complement of V (x). Then the
bundle of bases of the form (V (x), B) is a (SO(n − 1))-subbundle of FM .

An oriented manifold admits a SO(n − 1)-structure if and only if it has a non-vanishing
vector field.

Spin(n) Consider an oriented Riemmanian manifold M with a Spin(n)-structure. Here
φ : Spin(n) → SO(n) is a double cover. This is a typical case where the structure is not
reduced to a subgroup (and the only relevant one that I am aware of). Call P the reduction
of the frame bundle. Take S0 a spinorial representation of Spin(n) (it does not matter yet
whether we take a Dirac, Weyl or Majorana representation). The associated bundle S of P
with fiber S0 is a spinor bundle and thus M admits spinors.

A spin manifold if an oriented Riemannian manifold with a Spin(n)-structure. Note that
the spin structure of M is defined relatively to a specific metric and orientation, and that
it is in general not unique. M admits a spin structure if it is possible to lift the transition
functions to the spin group, the topological obstruction is given by the second Stiefel-Whitney
class.

1.2.3 Torsion

Some geometrical properties are stronger than the mere existence of a G-structure, and
require its so-called integrability. These conditions are expressed in terms of the torsion
classes of the G-structure. I will not delve into too much details and will rather define the
torsion classes for a specific structure when needed. Here is a quick insight about this.

As we have seen a G-structure on a manifold M is a reduction P of its frame bundle.
Since P is a principal bundle we can define a connection on it. This gives rise to a connection
on TM with values in the Lie algebra of G. The torsion of the G-structure is related to the
torsion of this connection and can be defined independently of the choice of connection.

For an O(n)-structure, a connection on P is a connection that is compatible with the met-
ric. It is always possible to choose a connection without torsion: the Levi-Civita connection.
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This means that the torsion of an O(n)-structure is trivially zero. If the structure group is
further reduced to a group G, look at the class of O(n)-connections that are still compatible
with the G-structure. The Levi-Civita connection needs not be in this class, in which case
the torsion of the G-connection cannot be torsion free: the torsion of a G-structure gives
obstruction to the compatibility of the Levi-Civita connection.

1.3 Complex structures and integrability

1.3.1 Complex manifolds

A complex manifold is defined in a similar way as a real one by replacing real smooth
function by complex holomorphic ones. This leads to a more restrictive structure: a complex
n dimensional manifold M is also a real 2n dimensional manifold but the converse is not
true.

Tangent bundles As a manifold, M naturally comes equipped with a tangent bundle
TM . However its structure as a complex manifold also provides M with a holomorphic
tangent bundle T (1,0)M . Both bundles are different but can be unified in a larger bundle,
the complexified tangent bundle:

TC,zM := TR,zM ⊗ C (1.6)

In fact T (1,0)M can be embedded in TCM . The embedding is given in local coordinates
zk = xk + iyk , k = 1, . . . , n by ∂

∂zk = 1
2

(
∂

∂xk − i ∂
∂yk

)
. The tangent space to M is then

the real vector space generated by the vector fields ∂
∂xk , ∂

∂yk , while the holomorphic tangent
space is the complex vector space generated by the holomorphic vector fields ∂

∂zk . This gives
a decomposition of the complexified tangent bundle:

TCM = T (1,0)M ⊕ T (0,1)M (1.7)

where T (0,1)M = ¯T (1,0)M is the anti-holomorphic tangent bundle. Let us resume here
the rank of the different bundles:

dimR TM = 2n

dimC TCM = 2n

dimC T (1,0)M = n

Differential forms The decomposition 1.7 can also be extended to any complex tensor,
hence for differential forms. This leads to the following decomposition for complex k-forms
into (p, q)-forms:

ΩkM =
⊕

p+q=k

Ωp,qM (1.8)

where Ωp,qM = Λp (T (1,0)M)∗ ⊗ Λq (T (0,1)M)∗. In local coordinates this corresponds to
a decomposition in wedge products of dzk, dz̄k whose pairing with vectors fields gives:
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dzi · ∂

∂zj
= dz̄i · ∂

∂z̄j
= δi

j

dzi · ∂

∂z̄j
= dz̄i · ∂

∂zj
= 0

(1.9)

Since the holomorphic and anti-holomorphic tangent spaces both have dimension n, p
and q are limited to n: Ωp,qM = {0} if p > n or q > n. The exterior derivative can also be
decomposed along these subspaces. For a complex function f on M :

df =
∂f

∂zk
dzk +

∂f

∂z̄k
dz̄k (1.10)

This can be extended to higher forms so that d = ∂ + ∂̄ : Ωp,qM → Ωp+1,qM ⊕ Ωp,q+1M .

1.3.2 Almost complex structures

Let us first recall a few algebraic properties. An n-dimensional complex vector space is
trivially also a 2n-dimensional vector space. The converse is not trivial. A real vector space
V does not come equipped with a complex multiplication, we thus need to define it by hand.
Consider I ∈ L(V ) such that I2 = −1, then define for λ = λ1 + iλ2 ∈ C and v ∈ V :

λ v := (λ1 + λ2I) v

With this multiplication V is a complex vector space, hence I is called a complex structure
on V . Such I always exists but the choice of I is in general not canonical. Now complex
endomorphisms are endomorphisms that commute with complex multiplication, ie with I:

L(V,C) = {A ∈ L(V ) | AI = IA}

For V = R
2n we define a canonical complex structure:

I2n =
(

0 In

In 0

)
(1.11)

This gives a natural inclusion φ : Mn(C) → M2n.

φ(A) =
(

Re A Im A
− Im A Re A

)
(1.12)

Let us come back now to the case of a complex manifold and its tangent bundle. The
decomposition 1.7 will define a complex structure on each fiber. Define an operator I on
TCM by its action on each subspace. For u, v ∈ T (1,0)M :

I(u + v̄) = iu − iv̄ (1.13)

This leads to I2 = −1. Moreover each real vector field of TM can be written uniquely as
u + ū for u ∈∈ T (1,0)M so that I(u + ū) = (iu) + ¯(iu) is still a real vector field. Thus I can
be seen as an endomorphism on TM .

Conversely suppose that there exists an endomorphism I on TM such that I2 = −1.
Then I can be diagonalized on TCM with eigenvalues ±i. Define T (1,0)M (resp. T (0,1)M)
the eigenspaces of I for the eigenvalue i (resp. −i). For I to be real both should be conjugate

19



CHAPTER 1. GEOMETRICAL TOOLS

to each other and thus have same dimension. This leads to a decomposition similar to 1.7.
As a side note this imposes the dimension of M to be even.

An almost complex structure on an even dimensional manifold is an endomorphism I of
TM such that I2 = −1. As we have just seen, a complex manifold has a canonical almost
complex structure. The question that naturally arises now is whether an almost complex
structure comes from a complex manifold. The answer is already given in the word almost:
there are additional conditions. Indeed the almost complex structure gives a decomposition of
the tangent bundle. Locally this is just an algebraic condition on the tangent spaces but says
nothing about the manifold itself. A complex manifold would require complex coordinates
that are compatible with this decomposition. The Newlander-Nirenberg theorem states that
this is possible if and only if the Nijenhuis tensor vanishes. It is a 2-form with values in
vector fields given by:

N(u, v) = [u, v] + I[Iu, v] + I[u, Iv] − [Iu, Iv] (1.14)

for u, v ∈ Γ(TM). In local coordinates this becomes:

Nk
ij = −I l

i ∂lI
k
j + I l

j ∂lI
k
j + Ik

l (∂iI
l
j − ∂jI l

i) (1.15)

When this is the case the almost complex structure is said integrable and can be promoted
to a complex structure, which enables to define complex coordinates on the manifold. When
they exist complex structures are very numerous compared to smooth structures and generally
span continuous degree(s) of freedom.

Gln(C-structures The previous results concerning almost complex structure can all be
translated in the formalism of G-structures, in a similar fashion as was done in the examples
of 1.2.2. Consider a manifold M of dimension 2n with almost complex structure I. The
complex frame bundle of T (1,0)M is a Gln(C)-principal bundle and gives a reduction of FM .
Indeed if f1, . . . , fn is a basis for T (1,0)M , then we can define a basis (e1, . . . , e2n) of TM by
ei = Re fi, ei+n = Im fi for i = 1 . . . n.

Conversely suppose the structure group of TM is reduced to Gln(C), for the inclusion
φ. I2n acts naturally on each local trivialization of TM and commutes with the transition
functions, and thus can be globally extended to an almost complex structure I.

An almost complex structure is a Gln(C)-structure.
Here the G-structure only corresponds to the almost case. In fact the integrability con-

dition can be expressed as a condition on the torsion G-structure: the Nijenhuis tensor is
exactly the torsion of the Gln(C)-structure.

I will end this section with a remark about orientation. Consider a matrix A ∈ Gln(C).
Then it is easy to show that

det φ(A) = | det A|2 (1.16)

This means that when considered as a real matrix, the determinant of A is positive.
So that the inclusion is in fact Gln(C) ⊂ Gl+2n. Ultimately any Gln(C)-structure is also a
Gl+2n-structure and an (almost) complex manifold is canonically oriented.

1.3.3 Hermitian metrics

In the same way that real vector bundles can be equipped with a metric, complex vector
bundles can be equipped with an hermitian metric: ie an hermitian form on each fiber. For
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a bundle E, an hermitian metric h is a section of E∗ ⊗ Ē∗. Focusing on an (almost) complex
manifold M we take E = T (1,0)M so that h is a section of T (1,0)M∗ ⊗ T (0,1)M∗. It is crucial
to notice that h defines an hermitian form on the holomorphic tangent bundle only, and not
on the full complexified tangent space. h can be understood equivalently as a bilinear form
on T (1,0)M × T (0,1)M or as a sesquilinear form on T (1,0)M × T (1,0)M .

U(n)-structure On a complex vector space the group of transformation that preserve an
hermitian form is precisely the unitary group U(n). Thus by an argument nearly identical
to the O(n)-case:

An U(n)-structure on M is an hermitian metric. In this case the reduction of the frame
bundle provides local bases (fi), i = 1, . . . , n for T 1,0M∗ that are complex vielbeins for h:

h = fi ⊗ f̄i (1.17)

Decompose h into real and imaginary parts:

h = g − iJ , where
{

g = 1
2(fi ⊗ f̄i + f̄i ⊗ fi) = fi f̄i

J = 1
2(fi ⊗ f̄i − f̄i ⊗ fi) = i

2fi ∧ f̄i
(1.18)

Thus h is written in terms of two sections of T ∗M ⊗ T ∗M : g is symmetric, and J is
antisymmetric and thus lves in Ω1,1M . This means that an hermitian metric comes together
with a riemannian metric and a symplectic form. They are related by the almost complex
structure:

J(u, v) = g(Iu, v) or in local coordinates: Jmn = I p
m gpn (1.19)

Conversely consider a Riemannian manifold M with metric g and an almost complex
structure I. Then define a symplectic form J and an hermitian metric h using 1.19 then
1.17. For this construction to work, g and I need to be compatible, namely J should be
antisymmetric. This leads to the condition:

I p
m I q

n gpq = gmn (1.20)

which merely means that I is orthogonal towards g. This is not really restrictive since it
is always possible to define a corrected metric such that 1.20 holds:

g′
mn :=

1
2

(gmn + I p
m I q

n gpq) (1.21)

Any almost complex manifold admits an U(n)-structure.
The relation between g, J and I can be understood by looking at G-structures on a

2n-dimensional manifold M . As we have seen g and I are respectively equivalent to O(2n)-
and Gln(C)-structures. In fact J can also be identified with a Sp(2n,R)-structure: the
symplectic group is indeed the group of transformation that preserve a symplectic form.
Here is a reminder of what these matrix groups look like (here g is the identity matrix so
that the matrix representation of I and J are both I2n even though they are still different
tensors):

O(2n) =
{
A ∈ Gl2n | tA = A−1}

Gln(C) =
{
A ∈ Gl2n | A−1 I2n A = I2n

}
Sp(2n,R) =

{
A ∈ Gl2n | tA I2n A = I2n

}
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Notice also that the inclusion φ : Mn(C) → M2n verifies:

φ(A†) = tφ(A) (1.22)

so that:

U(n) = O(2n) ∩ Gln(C) = O(2n) ∩ Sp(2n,R) = Gln(C) ∩ Sp(2n,R)

This translates the fact that two among g, I, J are sufficient to define the third one
(provided they are compatible). Note also that 1.16 implies that U(n) ⊂ SO(2n). Thus the
hermitian metric defines an orientation. Since J is non-degenerate, 1

n!J
n defines a volume

form on M .

1.4 SU(3)-structures

We now have all the necessary tools to define SU(3)-structures. We first consider the general
SU(n)-case before specializing to n = 3 for specific properties.

1.4.1 SU(n)-structures

Consider a 2n dimensional manifold M with U(n)-structure defined by a hermitian metric h.
In order to reduce to SU(n) we need to ensure the determinant of the transition functions
to be 1. The determinant here refers to the determinant as a complex matrix, since the
real determinant is already 1 (recall that M is already oriented). The ideal solution would
be to find a tensor which is affected only by the determinant of U(n)-transformations, ie a
complex equivalent to a top form. Such an element is given by the decomposition 1.8: we
are interested in Ωn,0M :

Suppose the structure group if further reduced to SU(n) and take a (local) vielbein fi,
i = 1, . . . n in the reduced frame bundle. Since we are reducing from U(n), 1.17 is still
satisfied. Define locally a (n, 0) form:

Ω =
n∧

i=1
fi (1.23)

This definition is trivially compatible with the transition functions and thus leads to a
global non vanishing form Ω ∈ Ωn,0M . Using the local expressions 1.18 and 1.23 it is easy
to find the following relations with J :

J ∧ Ω = 0
Ω ∧ Ω̄ = (−1)

1
2 n(n+1) (2i)n

n! Jn (1.24)

These are fundamental for the SU(n)-structure. The first equation comes from the fact
that J ∈ Ω1,1M and Ω ∈ Ωn,0M . The second on translates the non-degeneracy of Ω.

Conversely suppose now that there exists on M a global non vanishing (n, 0)-form Ω.
Without further restriction Ω can be normalized so that 1.24 is satisfied. In a local vielbein
fi for U(n), Ω is thus:

Ω = eiϕ
n∧

i=1
fi (1.25)
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Let us keep only the bases for which eiϕ = 1: this defines a reduction of the frame bundle
to SU(n). Thus Ω defines a SU(n)-structure on M .

In fact the hermitian structure is not necessary as it can be retrieved from J, Ω only.
For this to work, Ω needs to be complex decomposable and non vanishing. This means that
there exits local one-forms ηi, i = 1 . . . n such that Ω =

∧n
i=1 ηi. The complex subspace

generated by ηi then defines an almost complex structure. This can also be seen by defining
the endomorphism I explicitly. For example, when n = 3:

Ĩk
j = εkpqrst Im Ωj[pq Im Ωrst] (1.26)

Then normalize:

I =
1√

−1
6 tr Ĩ2

Ĩ (1.27)

Then I is an almost complex structure towards which Ω is a (3, 0)-form. Now using J ,
relation 1.19 gives a metric. However this construction does not give any control on the
signature of the metric, so in order to really get an SU(3)-structure (and not an SU(p, q)),
the positivity of the metric should be imposed by hand. In practice this will not be a problem
here since a Riemannian metric will always be defined upstream. The goal will then be to
find compatible J and Ω.

1.4.2 Relations with pure spinors

A primordial aspect of SU(n)-structures is that they can be equivalently defined by non
vanishing pure spinors. We will specify here to n = 3 but the argument can be extended for
general n.

Consider a 6-dimensional spin manifold M . This means that M has a Spin(6)-structure
(call P the reduction) and thus an SO(6): M is oriented and Riemannian with metric g. In
6d the irreducible spinorial representations are Weyl spinors. Denote S+ and S− the bundle
of spinor of positive and negative chirality, of complex rank 4. The fibers correspond in fact,
through the accidental isomorphism Spin(6) ∼ SU(4), to the vector representations of SU(4)
and are conjugate to each other. Now suppose that there exists on M a non vanishing spinor
η ∈ Γ(S+) of positive chirality. By an argument similar to what was done for SO(n−1), this
gives a reduction of P to SU(3). Since TM is also associated to P , we can conclude that η
defines an SU(3)-structure on M .

The structure can be explicitly constructed using spinor bilinears in η:

Jij = i η†γijη = −i η̃γijηc

Ωijk = η†γijkηc

Ω∗
ijk = −η̃γijkη

(1.28)

The choices here are made to be compatible with (1.24) and (1.19), and this can be
checked by Fierzing, using:

ηη† = 1
4(1 + i

2Jijγij) P +

ηη̃ = 1
48 Ω̄ijk P +γijk

ηcη† = − 1
48Ωijk P −γijk

(1.29)

This result can be extended to other dimensions. But without the accidental isomorphism,
the conclusion is not as straightforward and an additional constraint has to be imposed: the
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spinor needs to be pure. 1 Note that the holomorphic tangent space can also be defined
directly from the pure spinor. First let us recall that a vector V acts on spinors η as a
gamma matrix:

V · η := V iγiη (1.30)

Now a pure spinor is defined as a non vanishing spinor that is annihilated by a subspace
L ⊂ TCM of maximal dimension, namely n. This gives a splitting of the tangent space
similar to (1.7):

TCM = L + L̄ (1.31)

and thus defines an almost complex structure, whose holomorphic tangent space is L (or
L̄ depending on the choice of convention).

The formulation in terms of spinors is what makes SU(3)-structures so important in the
context of supersymmetric compactification, as we will see in the next chapter.

1.4.3 Torsion classes

As we have seen in 1.2.3 any G-structure can be attributed a torsion, which provides addi-
tional information about the structure. For SU(3)-structure the torsion can be retrieved by
decomposing dJ and dΩ along irreducible representations of SU(3) (this is not a proof). The
almost complex structure splits the tangent space into holomorphic and anti-holomorphic
parts and enables to decompose differential form along 1.8. However the almost complex
structure need not be integrable in general, and there is no reason for the exterior derivative
to be compatible with the decomposition (this is in fact a sufficient condition for integrabil-
ity).

Thus a holomorphic 1-form η ∈ Ω1M can "loose its holomorphicity" after the action of d:
dη ∈ Ω2,0M ⊕ Ω1,1M ⊕ Ω0,2. Now according to Leibniz rule d acts separately on each factor
of a wedge product, so that in the worst case a higher degree form will lose 1 holomorphic
degree and gains 2 anti-holomorphic degrees:

dΩp,q ⊂ Ωp+2,q−1 ⊕ Ωp+1,q ⊕ Ωp,q+1 ⊕ Ωp−1,q+2 (1.32)

Applying this to J and Ω implies that dJ ∈ Ω3,0 ⊕ Ω2,1 ⊕ Ω1,2 ⊕ Ω0,3 and Ω ∈ Ω3,1 ⊕ Ω2,2.
Since J is real the (3, 0) and (2, 1) parts are respectively conjugate to the (0, 3) and (1, 2). As
SU(3) acts trivially on J , the symplectic structure enables to further decompose by extracting
terms proportional to J . This leads to a decomposition of dJ, dΩ into representations of
SU(3):

dJ = 2
3 Im W ∗

1 Ω + W3 + W4 ∧ J
dΩ = W1 J2 + W2 ∧ J + W ∗

5 ∧ Ω (1.33)

where the Wi are called the torsion classes of the SU(3)-structure.

• W1 is a complex scalar

• W2 ∈ Ω1,1M is a primitive 2-form

• W3 ∈ Ω2,1 ⊕ Ω1,2 is a real primitive 3-form
1In 6-dimension any Weyl spinor is pure and this is why this is not an issue here.
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• W4 ∈ Ω1,0 ⊕ Ω0,1 is a real 1-form

• W5 ∈ Ω1,0 is a holomorphic 1-form

Primitive refers to the fact that the component along J has been projected out: the scalar
J · W2 and the 1-form J · W3 vanish, where the dot represents contraction with the metric
(this constraint is similar to a traceless condition). Also, the double occurrence of W1 results
from the constraint J ∧ Ω = 0.

If the SU(3) structure is defined using a pure spinor η the torsion classes can also be
found in the covariant derivative of η:

∇mη =
1
2

(
W

(1,0)
4m + W5m − c.c

)
η

+
1
16

(4W1gmn − 2W p
4 Ωpmn + 4iW2mn − iW3mpqΩpq

n) γnηc .
(1.34)

This relation can be translated to (1.33) by using (1.28,1.29).

The structure can then be classified by the vanishing of certain classes. This in fact
corresponds to integrability condition of "almost structures" that live along the SU(3).

Complex: If the manifold is complex then the exterior derivative is given by 1.10 so that
W1 = W2 = 0. It can be shown that the converse is in fact true.

Symplectic: For a symplectic manifold the symplectic form J should be closed. Here this is
equivalent to W1 = W3 = W4 = 0

Kähler: A Kähler manifold is a complex manifold with a hermitian metric such that the
associated symplectic form is closed ie a symplectic complex manifold: W1 = W2 =
W3 = W4 = 0. More details are given in appendix B.

Calabi-Yau: A Calabi-Yau manifold is a Kähler manifold with a holomorphic 3-form. Even if
Ω ∈ Ω3,0M lives in the correct subspace, it is a priori only a smooth section and is not a
holomorphic form (where holomorphic refers also to the smoothness). Holomorphicity
of Ω amounts to taking W5 = 0, and thus all torsion classes vanish. Then a Calabi-Yau
manifold can be equivalently defined as a manifold with a torsion-free SU(3)-structure,
or also an integrable SU(3)-structure.

Nearly-Kähler: A nearly-Kähler manifold is a manifold with SU(3) structure for which W2 =
W3 = W4 = W5 = 0. W1 is taken imaginary W1 = 4iω, and relations (1.33,1.34) then
simplify to:

∇mη = iωγmηc

dJ = −6ωReΩ
dImΩ = 4ωJ ∧ J .

(1.35)
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1.5 Generalized complex geometry

For most of our purposes, SU(3) structures will be sufficient. However understanding super-
symmetric flux compactification in its full generality requires Generalized complex geometry
(GCG). GCG was introduced first in [5, 6] and quickly became the natural framework to
study flux compactification [7, 8, 9, 10]. This section will settle for the few details that will
be needed in the following, and thus will head straight to the definition of SU(3) × SU(3)
structures. For more details on the interplay between GCG and compactification, see [11]
for a review or [12] for a shorter course.

1.5.1 Generalized tangent bundle

The starting point of GCG is the generalized tangent bundle. For a manifold M of dimension
n, define:

T M = TM ⊕ T ∗M (1.36)

At first glance, T M and TM will basically carry the same information. However the
range of structures for the generalized tangent bundle is much richer than for the usual
tangent bundle. In fact many apparently unrelated geometric notions will be unified in the
language of GCG.

Thus let us now focus on the structure group of T M . As a consequence of the decom-
position 1.36, T M admits a metric G that represents the natural pairing of vectors and
1-forms:

G(X + ξ, Y + η) = ξ(Y ) + η(X) (1.37)

for X, Y ∈ TM and ξ, η ∈ T ∗M . This metric is split, ie has signature (n, n) and thus
reduces the structure group to O(n, n). It is also possible to define a volume form

vT =
∂

∂x1 ∧ · · · ∂

∂xn
∧ dx1 ∧ · · · ∧ dxn , (1.38)

which does not depend on the choice of coordinates, and defines a canonical orientation
on T M . This further reduces to SO(d, d). This is in fact not surprising, as we already now
that the structure group of TM is Gln in general, which is a subgroup of SO(d, d) for the
inclusion:

ι : Gln → SO(d, d)

A �→
(

A 0
0 tA−1

)
(1.39)

All of the structures discussed in the following will need to be compatible with SO(n, n)-
structure as we will look for further reduction of this structure group. As was the case for
ordinary G-structures, the generalized structure can also be subject to integrability condi-
tions, which will not be considered here.

Generalized spinors

As we have seen earlier, it may then be possible to lift the structure group to Spin(n, n). For
a general orthogonal group this is not trivial but there is in fact no obstruction in the case
of a split signature. This can be shown by explicitly constructing a spinor bundle.
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Define Ω(M) =
⊕n

k=0 Ωk(M) the set of polyforms on M . An element ω ∈ Ω(M) is merely
a sum of forms of different ranks. Vectors and 1-forms naturally act on ω respectively by
interior and exterior product. This defines an action of the generalized tangent space on
Ω(M):

(X + ξ) · ω = (ιX + ξ∧) ω (1.40)

Then a simple computation gives:

{X + ξ, Y + η} · ω = (ξ(Y ) + η(X)) ω = G(X + ξ, Y + η) ω (1.41)

This means that the action of T M on Ω(M) respects the Clifford relation, hence Ω(M)
is a representation of the Clifford bundle of G. We will thus identify generalized spinors
and polyforms in the following. Note that this identification is slightly abusive: the correct
action of Spin(n, n) on Ω(M) depends on a choice of volume form. Since in practice M will
always be equipped with a metric and associated volume form, I will not discuss this issue
any further.

The action (1.40) is actually real so that polyform are in fact Majorana spinors. Moreover
(1.40) either lowers or raises the rank by 1. Thus even elements of the Clifford algebra will
not change the rank parity of forms. It is then possible to decompose polyforms into even
and odds polyforms:

Ω(M) = Ω+(M) ⊕ Ω−(M) (1.42)

Ω±(M) will then be Majoran-Weyl spinors of positive/negative chirality, as expected for
a split signature (n, n). Let us now define the charge conjugation operator C. This can be
seen as a bilinear form on spinors by identifying the notations:

C(ω1, ω2) ↔ ω̃1ω2 . (1.43)

For polyforms, this is given by the Mukai pairing:

〈ω1, ω2〉 = ω1 ∧ λ(ω2)|top (1.44)

where we keep only the top part of the polyform, and λ reverses the order of the wedge
products: for a p form ωp, λ(ωp) = (−1)p p−1

2 . The symmetry properties then depend on the
dimension of M :

〈ω2, ω1〉 = (−1)n n−1
2 〈ω1, ω2〉 (1.45)

At last note that the Mukai pairing takes values in top forms, if we really want a bilinear
form, we need to divide by the volume form of M .

Generalized Metric

The metric G is split and thus has nothing to do with an actual metric on M . Let us thus
introduce generalized metrics.

A metric on T M can be written in a matrix form, as a morphism from TM ⊕ T ∗M to
T ∗M ⊕ TM . In this basis, the canonical metric becomes:

G =
(

0 I

I 0

)
. (1.46)
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A generalized metric G is then a positive definite metric on T M satisfying the compati-
bility condition:

(G−1G)2 = I (1.47)

As expected, a Riemannian metric g on M leads to a generalized metric:

G =
(

g 0
0 g−1

)
(1.48)

The generic case contains a little more information. A bit of algebra shows that a gen-
eralized metric G defines a metric on M as well as a 2-form B, called the B-field, which is
here written as a morphism TM → T ∗M (and need not be invertible). In terms of these, G
is written:

G =
(

g − Bg−1B Bg−1

−Bg−1 g−1

)
(1.49)

Such a metric enables to split the structure group SO(n, n) and thus reduce to SO(n) ×
SO(n).

1.5.2 Generalized almost complex structures

A generalized almost complex structure I on M is an almost complex structure on T M
compatible with the metric G. Thus I is an endomorphism of T M such that:

I2 = −I

G(IX , IY) = G(X , Y) ,
(1.50)

for X , Y ∈ T M . By similar arguments as for ordinary almost complex structures, I
reduces the structure group from SO(n, n) to U(n/2, n/2), which can be achieved only in
even dimension.

We can see directly that we are actually generalizing almost complex structures. Indeed,
if I is an almost complex structure on M , define:

II =
(

I 0
0 −tI

)
, (1.51)

which is indeed a generalized almost complex structure. But this is not the only possi-
bility. Consider a symplectic form ω, and define:

Iω =
(

0 −ω−1

ω 0

)
, (1.52)

which is also a generalized almost complex structure. In fact an arbitrary I will cor-
respond to an intermediate situation between an almost complex structure and an almost
symplectic one.
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U(n/2) × U(n/2)-structures

As was pointed out in 1.5.1, an SO(n)-structure on M enabled to split the structure group
of T M . We could then expect a similar behavior for U(n/2)-structures. In fact an U(n/2)
can be defined by an almost complex structure I and a symplectic 2-form ω. These in turn
lead to two generalized almost complex structures II and Iω.

This is exactly what we were looking for: an U(n/2) × U(n/2)-structure is given by two
compatible generalized almost complex structures I1, I2. The compatibility conditions are:

[I1, I2] =0
−G I1I2 is a generalized metric

(1.53)

1.5.3 SU(n/2) × SU(n/2)-structures

The next step is to define an SU(n/2, n/2)-structure. Instead of looking for the generalization
of the holomorphic top form Ω let us switch to the point of view of pure spinors: remarkably
the results of section 1.4.2 can be readily generalized. An SU(n/2, n/2)-structure is indeed
defined by a generalized pure spinor Ψ. Since Ψ is pure its annihilator space is an n di-
mensional subspace of T M and is actually the i eigenspace of the corresponding generalized
almost complex structure. In order to further reduce to SU(n/2) × SU(n/2) we now need a
second pure spinor:

An SU(n/2) × SU(n/2) is defined by two non vanishing pure spinors Ψ1, Ψ2, such that
their generalized almost structures are compatible. They can be normalized to:

〈Ψ1, Ψ̄1〉 = 〈Ψ2, Ψ̄2〉 = 8v6 . (1.54)

In terms of the pure spinors the compatibility conditions say that they should share half
of their annihilator space.

From pure spinors to SU(3) × SU(3)-structures

Let us now specialize to our case of interest n = 6. SU(3) × SU(3)-structures can be quite
cumbersome to characterize but in the following we will only need the case where it actually
comes from two SU(3)-structures. Suppose that we have not only one but two spinors
η1, η2 of positive chirality on M , normalized so that η†

1η1 = η†
2η2 = 1. Each defines its own

SU(3)- and almost complex structure, according to (1.28). They both combine to form an
SU(3) × SU(3)-structure on M , given by two generalized pure spinors:

Ψ1 = 8η1η†
2 , Ψ2 = 8η1η̃2 . (1.55)

Note that, thanks to Fierz isomorphism, generalized spinors can be seen equivalently as
bispinors or polyforms (in even dimension). We thus want to express Ψ1, Ψ2 as polyforms. It
is also important to notice that η1, η2 are not necessarily independent. Since η1 is pure, the
space of spinors can be constructed from η1 or ηc

1 and (anti-)holomorphic gamma matrices.
Note that we call a holomorphic gamma matrix the image of a holomorphic one-form in the
Clifford algebra, with respect to the complex structure defined by η1.

It follows that any normalized spinor of positive chirality, such as η2 in particular, can be
written as:

η2 = eiν cos ϕ η1 + sin ϕ χ . (1.56)
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Here eiν cos ϕ = η†
1η2 and χ is a normalized spinor, orthogonal to η1, and defined from an

anti-holomorphic one-form K̄ such that K̄ · K = 2:

χ =
1
2

K̄i γi ηc
1 . (1.57)

In this definition K (and thus χ) does not need to be globally well-defined, provided sin ϕ
vanishes whenever the definition of K fails. Moreover, χ (and K) defines locally another
SU(3)-structure, “orthogonal” to η1’s:

J⊥ = χ†γ(2)χ = iK ∧ K̄ − J

Ω⊥ = χ†γ(3)χ
c = 1

2K · Ω̄ ∧ K .
(1.58)

We can also define a local SU(2)-structure (j, ω):

j = i
2(η†

1γ(2)η1 − χ†γ(2)χ) = 1
2(J − J⊥) = J − i

2K ∧ K̄

ω = −χ̃γ(2)η
c
1 = 1

2K̄ · Ω .
(1.59)

The two orthogonal SU(3)-structures can be reconstructed from the local SU(2) and K:

J = j + i
2K ∧ K̄

J⊥ = −j + i
2K ∧ K̄

Ω = ω ∧ K
Ω⊥ = ω̄ ∧ K .

(1.60)

Now we can compute the generalized spinors using Fierz identities:

Ψ1 = e− 1
2 K∧K̄

(
e−iν cos ϕ ei j + sin ϕ ω̄

)
Ψ2 = K̄ ∧

(
eiν cos ϕ ω̄ − sin ϕ ei j

) (1.61)

This leads to the following normalization of the generalized spinors:

〈Ψ1, Ψ̄1〉 = 〈Ψ2, Ψ̄2〉 = 8i v6 (1.62)

From there, several possibilities can arise. When sin ϕ = 0, both spinors are collinear
so that they define the same SU(3)-structure (up to the phase ν) on the tangent space. If
this condition is true on all of M we get a strict SU(3)-structure and the generalized spinors
simplify to:

Ψ1 = e−iν ei J

Ψ2 = eiν Ω̄ (1.63)

On the contrary when sin ϕ �= 0, K is well defined and so is the SU(2)-structure (1.59). If
this condition is valid everywhere, then this SU(2)-structure is globally defined and further
reduces the structure group of M . The extreme case where cos ϕ = 0 is called static SU(2).
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2 Supergravity and string theory

As the previous chapter was entirely devoted to mathematics, let us come back to some
physics. The main subject of this thesis is the study of certain solutions of N = 2 super-
gravity in 10 dimensions. Even though supergravity is interesting in its own right, we should
remember that our motivation comes here from the study of vacua of string theory. Thus I
will first give a very quick and incomplete introduction to string theory, as several very good
books have been written on the subject: see [13, 14, 15] or more recently [16]. Most results
presented here are extracted from there, if not references will be added. The discussion will
go straight to the construction of the string spectrum. This will enable to better understand
how supergravity arises in string theory, and why supergravity solutions will play such an
important role.

I will then give a few details about supergravity in 10 dimensions. An emphasis is put on
the structure of fluxes, and their interplay with branes. Eventually I will talk about how to get
a 4 dimensional effective theory, and supersymmetric compactification in general. This will
make the connection with the mathematical tools introduced in chapter 1 as supersymmetric
compactification if better understood in the context of G-structures.

2.1 A few words about superstrings

2.1.1 The closed oriented string

There are different types of strings, each leading to a different string theory. I will speak
exclusively of type II superstrings, which are closed supersymmetric strings. The starting
point is a (super) conformal field theory on the two dimensional worldsheet of the string. For
the type II string the worldsheet is a cylinder W = R × S1. The field content will describe
an embedding of the worldsheet in a D dimensional space-time R

1,D−1. Indices α, β, . . . will
refer to indices on the worldsheet while M, N, . . . are indices on the target space.

XM will be the coordinates of the string in space-time. From the worldsheet point of
view they are just D independent scalars. Their fermionic counterparts are ψM , a set of D
independent Majorana spinors. On top of these fields, the worldsheet is also equipped with
a metric h and a Majorana-Weyl gravitino χα. The full classical action presents a lot of
symmetries:

• Diffeomorphism invariance on the worldsheet

• Weyl and super Weyl transformations (or superconformal symmetry)

• Worldsheet supersymmetry
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• Poincaré transformations on space-time

Conformal invariance in particular is especially rich in two dimensions and plays a fun-
damental role in string theory. At the quantum level, anomalies are governed by the number
(and type) of fields, which is here directly linked to the dimension of space-time. An im-
portant consequence of conformal invariance, is that the cancellation of conformal anomalies
imposes D = 10, which we now take for granted. All these symmetries give (more than)
enough freedom to gauge away the worldsheet metric and gravitino. In this so-called confor-
mal gauge, the action can be written:

S =
1

4πα′

∫
W

d2σ
(
∂αXM ∂αXM + α′ψ̄M DψM

)
(2.1)

where D = γα∂α is the Dirac operator in 1 + 1 dimensions.

2.1.2 NS and R sectors

Before going further we need to make a comment on the spinor fields ψ. In order to define
spinors on a manifold (here W), the manifold shall have a spin structure (see the quick
discussion in section 1.2. For the cylinder W there are actually two distinct spin structures.
These structures come from the non trivial topology of the S1 part, and are related to
periodicity conditions when turning around the circle. One structure gives rise to a trivial
spinor bundle, whose sections are periodic, while the other gives anti-periodic spinors. The
trivial, periodic structure will be called the Ramond (R) sector, while the anti-periodic one
the Neveu-Schwarz (NS) sector.

A priori there seems to be an ambiguity in the choice of spin structure. However it
happens that String theory will need both sectors to be represented in order to get a coherent
picture.

2.1.3 Type II string spectrum

To get to the string spectrum the action 2.1 is quantized: the solution to the equations
of motion for X and ψ are decomposed in modes that become creation and annihilation
operators in the quantum theory. For X the equations imply that it can be decomposed in
the form X(σ) = XR(σ0 −σ1)+XL(σ0 +σ1). XL/R are respectively called Left/Right movers.
Define an, ān their Fourier modes 1 for n ∈ Z. Note that a0 corresponds to the momentum
of the string. Similarly ψ can be decomposed in positive and negative chirality Weyl spinors:
ψ = ψ− + ψ+. The equations of motion then imply that ψ− is actually a left mover while
ψ+ is a right mover; call bn, b̄n their modes. In the R sector n is an integer, while n ∈ 1

2 + Z

in the NS sector. The n < 0 operators will be taken to be the creation operators, acting on
a ground state. The indexing by n has been defined so that the action of a−n, b−n adds 2n
units of (mass)2.

R-sector The action of b0 does not change the mass so the vacuum is degenerate. In fact
it can be seen that the bM

0 act as space-time gamma matrices so that the ground state is a
space-time spinor |η〉. Note also that the R ground state is massless.

1In this section the bar will refer to the right movers, not to be confused with the complex conjugation
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NS-sector There is no b0 here so that the ground state is unique and will thus be denoted
|0〉. However the NS-ground state has negative mass squared, such that the first excitations
b1/2|0〉 are massless.

Note that the sectors for the left and right movers are independent, which leads to four
different sectors for the closed type II string. In each sector the states are computed by
acting with both left and right creation operators on the corresponding ground state. In
fact, the NS sector leads to bosonic states while the R states are fermionic. Thus the bosonic
spectrum comes for the (NS,NS) and (R,R) sectors while the fermionic one from the (NS,R)
and (R,NS) sectors. Besides, left movers and right movers are not entirely independent so
that the states should obey the level matching condition, namely the same amount of mass
should be created in both sides. Nevertheless it can be shown that the full spectrum cannot
be consistent and must be truncated. This is done using the Gliozzi-Scherk-Olive (GSO)
projection. There are two nonequivalent projections, leading to two different type II string
theories. This projection enables to remove the tachionic state (namely the (NS,NS) ground
state) and to get a supersymmetric spectrum from the space-time point of view. We will only
need the massless spectrum in the following, but the massive states can be easily computed,
though the number of states rises quickly with the mass level. In the massless case, the GSO
projection amounts to choosing a specific chirality for the R sector and the spectrum is listed
below. To better understand their properties from the space-time point of view, they are
further decomposed in representations of so(1, 9).

Type IIA strings: positive chirality for the left movers and negative chirality for the right
movers

(NS,NS) States are space-time bivectors bM
−1/2|0〉⊗ b̄M

−1/2|0〉. They can be decomposed into
its symmetric traceless part, antisymmetric part and trace.

(R,R) States are bispinors |η+〉 ⊗ |λ−〉. Using a Fierz decomposition the matrix η+λ̃−
is an even self-dual polyform, which can thus be decomposed into a 0-form, a 2-form
and a 4-form.

(R,NS) Here states are a product of a vector and a spinor: |η+〉 ⊗ b̄M
−1/2|0〉. This can

be decomposed into a positive chirality traceless vector spinor, and a negative chirality
spinor.

(NS,R) This is the same case with opposite chirality: bM
−1/2|0〉 ⊗ |λ−〉 is decomposed into

a negative chirality traceless vector spinor and a positive chirality spinor.

Type IIB strings positive chirality for both left and right movers

(NS,NS) This sector is the same as for the IIA case.

(R,R) States are bispinors |η+〉 ⊗ |λ+〉. Using a Fierz decomposition the matrix η+λ̃+
is an odd self-dual polyform, which can thus be decomposed into a 1-form, a 3-form
and a self-dual 5-form.

(R,NS) This sector is the same as for the IIA case.

(NS,R) Unlike the IIA case, the chirality is identical to the previous sector: bM
−1/2|0〉⊗|λ+〉

is decomposed into a positive chirality traceless vector spinor and a negative chirality
spinor.
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This spectrum still contains some unphysical states, since the Minkowski metric of the
target space leads to negative norm states. To get the correct degrees of freedom, one
needs to eliminate these states. Once this is done, the spectrum can be decomposed into
representations of so(8), as it should be for massless states in R

1,9. For the (R,R) sector, this
implies that the p-forms should rather be interpreted as the field strength of (p − 1)-form
potentials (in particular that the 0-form of the IIA string is not dynamical).

It can be seen that the symmetric traceless tensor of the (NS,NS) sector should be iden-
tified with the graviton. Doing so would imply that the string length is of the order of the
Planck mass 1

α′ ∼ M2
P . This means that the tower of massive states would be inaccessible

in a phenomenological model of string theory. This is the main reason we will consider the
massless spectrum only.2

2.2 Type II Supergravity

In 10 dimensions, maximal supersymmetry corresponds to N = 2. There are actually two
ways to achieve this supersymmetry, namely type IIA or IIB supergravity, which are related
to the corresponding string theories (hence the names). In this section I will describe briefly
both theories (with more emphasis on the IIA side as this thesis is mainly about type IIA
supergravity). It is highly remarkable that the field content of type II supergravity matches
exactly the massless spectrum. This is of course not a coincidence, as supergravity arises as
a low energy limit of string theory (in a sense that will be shortly explained).

2.2.1 Type IIA supergravity

As a theory a gravitation, type IIA supergravity is defined on a 10 dimensional lorentzian
manifold M . In physical words, the lorentzian metric g is dynamical and is called the
graviton. The N = 2 supersymmetry then imposes the existence of two gravitini. They are
Majorana-Weyl vector-spinors and in IIA they are of opposite chirality, hence it is possible
to regroup them into a single Majorana vector-spinor ψM . These are the basic ingredients of
supergravity, but in order to get a supersymmetric theory several supplementary fields need
to be introduced.

The bosons are a dilaton φ and a 2-form, the B-field; together with fluxes, namely a
1-form A and a 3-form C. All the differential forms here should be considered as potential
forms, the physical observables are therefore their field strengths. The spectrum is completed
by a pair of Majorana-Weyl spinors, the dilatini whose chirality should be opposite to the
gravitini. Hence we also regroup them into a single Majorana spinor λ. Since both chiralities
are represented for the gravitini, type IIA supergravity is non chiral and is also denoted
N = (1, 1) supergravity. Let us now write the action, parametrized by a constant parameter
m called the Romans mass:

SIIA =
1

2κ2
10

∫
M

[
e−2φ

(
Rv10 + 4dφ ∧ �dφ − 1

2
H ∧ �H

)
− 1

2
m2v10 − 1

2
F ∧ �F − 1

2
G ∧ �G

− 1
2

B ∧ dC2 − m

3
B2 ∧ dC − m2

10
B5
]

+ S2 + S4

(2.2)
2This argument is a bit quick here, since the Planck mass is usually defined in 4d. A better argument

should take into account the compactification
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where only the bosonic part of the action is explicit here. � is the Hodge star operator with
respect to g, v10 is the volume form of M and could be written v10 = �(1) =

√−gdx0∧· · · dx9,
and R is the scalar curvature. H, F, G are respectively the field strength of B, A, C, however
the B-field will have a particular role. Indeed the presence of the B twists the structure of
the fluxes, so that the field strength are written:

H = dB , F = dA + mB , G = dC + A ∧ H +
1
2

mB2 (2.3)

This leads to the following Bianchi identities for the field strengths:

dH = 0 , dF = mH , dG = H ∧ F (2.4)

Note also that the Romans mass could considered as a 0-form field strength, with Bianchi
identity dm = 0. In fact the bosonic action contains the standard kinetic terms for a graviton,
the scalar dilaton and the field strengths, apart from the non trivial coupling of the dilaton.
The first three terms in the second line of (2.2) are called the Chern Simons terms SCS ,
they are combinations of the fluxes that form a top form and thus do not need the metric
to be integrated. Since they do not depend on the metric, they will not appear in Einstein’s
equations and are said to be topological.

I will not describe in detail the fermionic part as it is not particularly illuminating. The
necessary terms will be precisely defined when necessary (namely in chapter 3). S2 contains
the quadratic fermion terms: they are basically kinetic terms of the generic form Ψ̄DΨ, where
D is a Dirac operator in a wide sense. D actually depends on the fluxes and thus gives the
interaction terms between the fermions and the fluxes. S4 is a quite involved contribution
of quartic fermion terms, but we will need only a few of them (cf chapter 3). Note that
these are self interaction terms that do not see the fluxes. A comprehensive expression can
be found in [17, 18, 19, 20] however these papers seem to be in disagreement [21]. Recently
the dilatino quartic terms were computed in [22] using the superspace formalism and found
agreement with [17]. We will thus trust the latter in the following.

Supersymmetry transformations The only information missing are the supersymmetry
transformations. Since we are considering N = 2 supergravity the supersymmetry parameters
should be two Majorana-Weyl spinors. In type IIA they should be of opposite chirality and
are thus grouped in a single Majorana spinor ε. The supersymmetric variations of the bosons
involve spinor bilinears between ε and the fermions. The variation of the fermion, which will
be the one relevant for us, are given schematically by:

δεψM = ∇̂M ε

δελ = /Fε
(2.5)

where ∇̂ is the spin connection, modified by the fluxes, and /F is a section of the Clifford
bundle, constructed by contracting all the fluxes to gamma matrices (including the dilaton).

Einstein frame It can be quite confusing to see that the Einstein-Hilbert term of the
action is coupled to the dilaton with a factor e−2φ. However it could be reabsorbed in the
metric, at the price of a field redefinition. This is just a rescaling of the metric by a dilaton-
dependent factor. Such a redefinition of the metric is called a change of frame. The action
(2.2) is currently in the string frame, and the frame in which the scalar curvature is not

35



CHAPTER 2. SUPERGRAVITY AND STRING THEORY

coupled to the dilaton is called Einstein’s frame. The transition between both frames can be
done through a rescaling:

gst = eφ/2gE (2.6)

Since we will also need the Einstein’s frame action, let us spell out the changes:

SE
IIA =

1
2κ2

10

∫
M

(
Rv10 − 1

2
dφ ∧ �dφ − 1

2
e−φH ∧ �H − 1

2
e5φ/2m2v10 − 1

2
e3φ/2F ∧ �F−

1
2

eφ/2G ∧ �G
)

+ SCS + S2 + S4

(2.7)

2.2.2 Type IIB supergravity

The other possibility is type IIB supergravity. This thesis is not so much about type IIB,
but since several solutions will be considered throughout the thesis, it would be welcome to
at least have an action written somewhere. This case is very similar to the IIA case (at least
for our purposes) and I will show here some of the main differences.

First of all this theory is chiral, as the gravitini have same chirality (say positive). Then
both dilatini, whose chirality should be opposite to the gravitini, have negative chirality. This
is also seen at the level of the supersymmetry parameters, which should both be of positive
chirality.

Regarding the bosons, the graviton, B-field and dilaton are identical to the IIA case.
However the fluxes are now a 0-form (a scalar) C0, a 2-form C2 and a 4-form C4. Hence their
field strengths F1, F3, F5 are odd forms. Without much surprise, the IIB bosonic action is
then (in the string frame):

SIIB =
1

2κ2
10

∫
M

[
e−2φ

(
Rv10 + 4dφ ∧ �dφ − 1

2
H ∧ �H

)
− 1

2
F1 ∧ �F1 − 1

2
F3 ∧ �F3

− 1
4

F5 ∧ �F5 − 1
2

C4 ∧ H ∧ F3
] (2.8)

The only subtlety at first sight is coming from the Chern-Simons term, but there is also
an issue concerning F5. Indeed in type IIB supergravity, F5 should be self-dual:

� F5 = F5 (2.9)

and this condition does not follow from this action. For this reason, (2.8) is called a
pseudo-action: not all the equations of motion follow from the action which needs to be
supplemented with the self duality condition.

Moreover, as was the case for type IIA supergravity, the field strength are twisted in
presence of B-field:

H = dB , F1 = dC0 , F3 = dC2 − C0H , H5 = dC4 − H ∧ C2 , (2.10)

which lead to the Bianchi identities:

dH = 0 , dF1 = 0 , dF3 = H ∧ F1 , dF5 = H ∧ F3 (2.11)
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Note also that plugging (2.9) in the Bianchi identity for F5 leads exactly to the equation
of motion for C4 coming from the action3. This means that the selfdual condition is more
than just an algebraic constraint on the field strength: it is actually the equation of motion
for C4.

2.2.3 Low energy effective action of string theory

Compare now both type II supergravities to the spectrum derived in 2.1.3. As previously
advertised, the field content is in exact correspondence with the massless spectrum of the
corresponding string theory. The (NS,NS) sector, common to types IIA and IIB, gives the
graviton, the B-field and the dilaton. The (R,R) sector will give the fluxes, with even field
strength in IIA and odd in IIB, including the self-dual F5. For this reason H will be called
the (NS,NS) flux while the other forms are (R,R) fluxes. Now looking at fermions, the (NS,R)
and (R,NS) sectors give each a gravitino and a dilatino with the right chiralities.

This matching between the massless spectrum of string theory and supergravity hints
toward a resemblance between both theories, at least at low energies compared the string
mass E2 � 1

α′ so that the massive states can be ignored. One way to check this is to compute
scattering amplitudes for string states and derive an effective action. The latter should recover
at tree level the string amplitudes. Note that in general an interacting quantum theory should
generates n-points functions for arbitrary n, so that an effective theory will have a priori an
infinite number of terms. Thus we expect an expansion in powers of α′.

The computation of string amplitudes is done using tools from conformal field theory.
Indeed the superconformal invariance of string theory gives a one to one correspondence
between states and certain operators, called vertex operators. A scattering amplitude is
then given by the correlators of the corresponding vertex operators. These correlators are
computed in the worldsheet two dimensional theory by a path integral over the possible
embeddings into a given background. This path integral, called the Polyakov integral, also
sums over the topology of the worldsheet. For the closed string, this is a sum over all compact
two dimensional oriented manifolds without boundaries. They are classified by an integer g
called the genus: g = 0 is the sphere, g = 1 is a torus, and so on.

This path integral should be compared to the perturbative expansion in Feynman dia-
grams of quantum field theory. Higher genus surfaces correspond then to higher order loop
corrections. A fundamental aspect of this is that these higher genus terms are governed by
powers of the dilaton. Thus the expectation value of the dilaton is often called the string
coupling constant:

gs = e〈φ〉 (2.12)

The effective action can thus be expanded in powers of α′ and gs, to which should be
added non perturbative effects that cannot be captured by the Polyakov path integral (for
example fermionic condensates that I will discuss in chapter 3). The computation of higher
order terms is of course extremely involved. The most important result is that, at leading
order in α′, the effective Lagrangian boils down to the type II (A or B) Lagrangian:

Leff =
1
g2

s

LIIA/B + O(α′3) (2.13)

3The fermions are set to zero here. (2.9) is modified in presence of fermions and the equation of motion
for C4 is sourced, so that the remark still holds in presence of fermions
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Where the gravitational constant κ10 can be related to the string length:

2κ2
10 = (2π)7α′4 (2.14)

This means that type IIA and IIB supergravity are the low energy limits of the correspond
string theory. Note also that the next order correction in gs appears only at the order α′3 at
least, so that this approximation is perturbatively exact in the string coupling.

2.2.4 Democratic formulation

There exists another formulation of type II supergravity, developed in [23] and called the
democratic formulation. It does not change the (NS,NS) part but unifies the (R,R) fluxes in
a single polyform F . The bosonic part of the democratic action be written:

S =
1

2κ2
10

∫
M

[
e−2φ

(
Rv10 + 4dφ ∧ �dφ − 1

2
H ∧ �H

)
− 1

4
F ∧ �F

]
(2.15)

where F is an even polyform in IIA and odd in IIB. In order to get the same number of
degrees of freedom, a self-duality constraint must be imposed on F :

� λ F = F (2.16)

where λ has been defined in 1.5.1. To make contact with the previous description of
(R,R) fluxes, write:

F = (1 + �λ)(F0 + F2 + F4) (IIA) , F = (1 + �λ)(F1 + F3) + F5 (IIB) (2.17)

F can also be written in term of a polyform potential A:

F = dHA + F0e−B (2.18)

where dH = d + H∧ is the twisted derivative4 and F0 = m is the Romans mass, present
only in IIA. The Bianchi identities can now be written in a compact form:

dHF = 0 (2.19)

For the component Fp of degree p ≤ 5, this gives the usual Bianchi identities. But for
p ≥ 5, Fp are the Hodge duals of the (R,R) fluxes, so that these equations contain also the
equations of motion for all (R,R) fluxes. In fact the democratic formulation also generalizes
the issue we had with F5 in type IIB: the equations of motion result from the Bianchi identities
and the self duality condition, which cannot be derived from the Lagrangian. Thus (2.15) is
only a pseudo-Lagrangian.

Still the democratic formulation remains extremely useful, as it is necessary to make
contact with generalized complex geometry, since polyforms and the twisted derivative will
play an important role. This will be used extensively in section 4 to derive the transforma-
tion rules for the (R,R) fluxes under non abelian T-duality, and also in 4.3.1 to solve the
supersymmetry equations.

4Here we take a slightly different convention for B, that amounts to changing its sign, in order to make
contact with section 4.3.1
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2.3 Fluxes and branes

Fluxes will be at the heart of several discussions in this thesis, and are intimately linked with
the concept of branes. They can be understood as a generalization of Maxwell theory, to
higher order forms (Maxwell potential is a 1-form). Then in all generality a flux is a field
defined by p-form F = dA, the field strength of a (p − 1)-form potential A. The kinetic term
of F in an action will take the form

Skin =
∫ 1

2
F ∧ �F (2.20)

so that the Bianchi identity and equation of motion read respectively:

dF = 0 , d � F = 0 (2.21)

A source could then be inserted into these equations: a source for the equation of motion
is called electric, while a source for the Bianchi identity is called magnetic. Note that by
accepting the existence of a magnetic source one must give up the notion of potential5. These
sources are extended and their dimensions depend on the degree of the flux form. Such
extended objects are called branes in supergravity and string theory. Implicitly branes will
always be extended in the time direction and will thus be denoted by their spacial dimension.
Hence a 0-brane is the worldline of a particle, and a 1-brane is the worldsheet of a string for
example.

In the equations branes will be modeled by currents Je/m, generalization of distributions
for differential forms, which contain the volume form of the brane (the directions in which it
is extended) and the charge distribution (usually a delta function stating the position of the
brane). The equations become:

dF = �Jm , d � F = �Je (2.22)

Which shows directly that a p-form is sourced electrically by a (p − 2)-brane and mag-
netically by a (n − p − 2)-brane. Another consequence of this is the charge conservation
equation:

d � J = 0 (2.23)

The most straightforward example is when branes are inserted in a flat space-time, say
R

1,9. Then decompose space-time into the world volume of the p-brane and the space trans-
verse to the brane (in this picture the brane is flat too and can be identified with R

1,p). In
the transverse space the brane is point like, it is then possible to compute the total charge
by integrating the current on a ball containing the brane:

Qe =
∫

B
�Je =

∫
S

�F

Qm =
∫

B
�Jm =

∫
S

F
(2.24)

5The existence of a potential, even locally, implies by definition that the flux is closed. However most of
the time the source will be localized, it is then possible to remove the locus of the source from space-time. By
an abuse of definition, a potential can then be defined on this excised space, but never on the neighborhood
of the source.
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Where S = ∂B. Thus the charge can also be computed by integrating the flux on a cycle
surrounding the charge. This is actually the definition given to charges in the following:
charges are integrals of the fluxes along specific cycles. Note that in a non topologically
trivial space-time, a flux can carry charge even without the actual presence of brane. Indeed
the integral over a non exact cycle is not necessarily 0 even if the flux is closed.

Until now the discussion has remained general, let us now see how the concept of branes
fits in supergravity and string theory.

2.3.1 Branes in supergravity

Strictly speaking, branes are not ingredients of supergravity. They should be considered as ad
hoc objects introduced as a source to the fluxes in order to understand how they modify the
equations and their solutions. NS1 and NS5 branes are respectively the electric and magnetic
sources for the (NS,NS) 3-form H while Dp branes are sources for the corresponding (R,R)
fluxes. Two important subtleties will arise when manipulating branes in the context of
supergravity.

Backreaction on the metric

The first issue is that we are now looking at a theory of gravity, where the geometry of space-
time itself is dynamical. Thus branes will also source Einstein’s equations, as any object in
supergravity. Inserting a brane in a background will backreact on the metric and possibly
change the topology or introduce singularities. In this new background, all the equations of
motion can be solved without the need for a source term. The interpretation of this brane
can then be confusing: is the brane an actual physical object, or was it just a mathematical
tool to get a new genuine supergravity solution ? A practical answer would be to look at
the charges which are more robust: the brane itself is not that important, what matters is
the charge carried by the fluxes. However there are cases where the brane can actually be
tracked down. For example the backreaction of branes on a flat background can be computed
and leave quite a peculiar signature:

NS5 branes

ds2 = ds2
// + h(r)ds2

⊥

eφ(r) = h(r)1/2

H = �⊥dh

h(r) = a +
b

r2

(2.25)

Dp branes

ds2 = h(r)−1/2ds2
// + h(r)1/2ds2

⊥

eφ(r) = h(r)
3−p

4

Fp+2 = d(h−1) ∧ v//

h(r) = a +
b

r7−p

(2.26)
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where the metrics are given here in the string frame. ds2
// and ds2

⊥ are respectively the
flat metrics of the worldvolume of the brane and of the transverse space. �⊥ is the Hodge
star operator in the transverse space only and v// is the volume form on the brane. Each
time h(r) is a harmonic function on the transverse space6, whose radius coordinate is r.
The pattern here is that the brane backreacts on the metric through a warp factor that is
singular at r = 0. Such a singularity in the metric does not necessarily mean that space-time
is singular, but at least it is a hint that the global topology has changed.

The B-field and Page charges

The other issue concerns the presence of the B-field that twists the Bianchi identities and
equations of motion. In the democratic formulation both can be regrouped into (2.19).
Adding a source term to this equation would not be consistent: since dHF is not closed this
would violate the charge conservation equation (2.23). The way out is by defining the Page
flux F̃ = eBF . Then the Bianchi identity becomes:

dF̃ = eBdHF = 0 (2.27)

and this can be consistently sourced. Thus the correct charges are rather the integrals of
the Page fluxes, called Page charges. This construction comes at a price though, since now
the charges depend explicitly on B and can change under a gauge transformation δBdΛ.

2.3.2 Stringy origin

Contrary to supergravity, string theory is expected to naturally contain branes. For example
Dp branes can be understood as the locus on which open strings can end. The NS1 branes
are actually the fundamental strings themselves. The interpretation of the NS5 is on the
the other hand less clear but they are also expected to appear, for example as dual to D5
branes in type IIB. Now when looking at the low energy effective action, branes can arise as
non perturbative corrections to the supergravity action. It is important to keep that in mind
when solving the supergravity equations to get string vacua. One restriction of string theory
on the supergravity solutions is the quantization of the fluxes which we will state here as a
fact.

Flux quantization The charges, or Page charges when appropriate, should be integers
when normalized in the following way:

Qp =
1

2κ2
10Tp

∫
F (2.28)

where Tp is the tension of a p-brane, given by:

1
Tp

= (2π)p
√

α′p+1
(2.29)

Note that this result is valid for Dp-branes as well as for NS5 branes when specializing
to p = 5.

6For p = 7, h(r) is logarithmic
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2.4 Supersymmetric flux vacua

In order to connect string theory to the real world, much more work has to be done. For
string theory to describe quantum gravity the string scale 1

α′ should be of the order of M2
P .

This means that the standard model, as well as any physical process that can be probed
with particle accelerators, lie far below the string scale. Thus a realistic phenomenological
model of string theory will most likely rely on a low energy approximation: for us it is type
II supergravity. If string theory were indeed a good description of reality, physics at our
energy scales should be described by small perturbations around a vacuum, that is a classical
bosonic solution of supergravity7. The properties of the theory will then depend on the choice
of vacuum. The study of string vacua is thus of paramount importance to understand the
potential physical applications of string theory.

In this thesis we will be mainly concerned by vacua with the following properties:

• We expect the effective theory to describe our 4 dimensional world. So the 10 dimen-
sional space-time is written as a direct product M4 × M6, where M4 is a 4 dimensional
homogeneous space and M6 is the compact internal manifold of characteristic length
l6. Supergravity will then be compactified on M6 : this gives a refinement of the re-
lation between α′ and the Planck mass. Indeed the Planck mass is the coefficient of
the Einstein-Hilbert term. Integrating will over M6 gives a coefficient v6

2κ2
10

so that

M2
P ∼ l66

α′4 . Moreover for stringy effects to be neglected in the supergravity approxima-
tion, l6 should be larger than the string length l26 � α′. On the other side no sign of
extra dimensions has been detected to this day so that l6 should be small compared to
the characteristic length probed by actual experiments.

• The vacua are supersymmetric. This means that there exists spinors ε such that the
supersymmetric variation of fields with parameter ε, evaluated at the configuration,
vanish. This will imply supersymmetry of the effective theory and the number of inde-
pendent spinors satisfying this condition is the number of preserved supersymmetries.
Once again no sign supersymmetry has been detected, so that supersymmetry should
then be broken at some point between the compactification and standard model scales.
At first glance this seems like an additional constraint to an already involved problem
but integrability theorems [24] show that, together with mild assumptions, supersym-
metry of a configuration implies the equations of motion.

• Fluxes will a priori not vanish. Vacua without fluxes where originally considered, com-
pactification then leads to many massless scalar fields in the effective theory. Turning
on the fluxes can give a mass to these so-called moduli and thus helps deriving better
phenomenological predictions. Anyway fluxes are genuine fields of the theory and it
is thus necessary to consider them at some point in order to fully understand string
vacua.

Let us now explore the constraints supersymmetry will impose on the vacua. For more
details on supersymmetric flux vacua see the review [25]. Consider an arbitrary configuration
for which all fermionic fields are put to zero. Since the supersymmetric variation of the bosons

7For such vacua to be trusted, it is important to keep the approximations under control.
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is constructed from spinor bilinears between the fermions and the parameter ε, they vanish
trivially. The constraints thus come from the fermionic variations, in the form of an equation
on the spinor ε.

Define the following ansatz for type IIA supergravity in the democratic formalism, in
accordance with our previous description. The metric is given by a warped product:

g = e2Ag4 + g6 (2.30)

where g4 is the maximally symmetric metric on M4 and g6 defines the geometry of the
internal space M6. To respect the symmetries of the 4 dimensional space the dilaton φ and
the warp factor A depend only on the internal coordinates. Moreover the fluxes either have
no leg on M4 or are proportional to the volume-form v4 of g4. Thus H is a 3-form on M6
and the flux polyform can be decomposed into:

F = Fi + e4Av4 ∧ ∧Fe (2.31)

where Fi is an even polyform on M6. In order to respect the self-duality condition (2.16),
Fe is related to Fi by Fe = �6λ(Fi). Finally the supersymmetry parameter will be factorized
into spinors of M4 and M6. In 10 dimensions ε is a Majorana spinor, whose two chiralities
are independent. Then take the ansatz:

ε+ = ζ1 ⊗ η1 + ζc
1 ⊗ ηc

1

ε− = ζ2 ⊗ ηc
2 + ζc

2 ⊗ η2
(2.32)

where ζi, ηi are positive chirality spinors in respectively 4 and 6 dimensions. Then plug
the ansatz in the supersymmetry variations with parameter (2.32). The external part tells us
that ζi are killing spinors for M4. The internal part will involve covariant derivatives of the
ηi and will be the core of the discussion. The first consequence is that they cannot vanish.
As we have seen in section 1.5.3 two non vanishing spinors on M6 define an SU(3) × SU(3)
structure. It can then be shown that the supersymmetry equation can be expressed in terms
of the SU(3) × SU(3) structure data for which the (R,R) fluxes act as a source. This seems
to lead to conditions on a supplementary structure, but an SU(3)×SU(3) structure actually
determines the metric. In practice, the supersymmetry constraints are first order differential
conditions on the bosonic fields. These equations will be much easier to solve than the second
order supergravity equations, and thanks to the integrability theorems their solutions will be
genuine vacua.

If both spinors η1, η2 are collinear the SU(3) × SU(3) structure boils down to a single
SU(3) structure. The supersymmetry conditions then determine the torsion classes, which
are sourced by the fluxes. If the fluxes are set to zero, the SU(3) structure becomes integrable
and M6 is Calabi-Yau. This also implies that the warp factor and dilaton vanish and the
four dimensional space-time is Minkowski. Also ζ1, ζ2 can be chosen independently and this
gives N = 2 supersymmetry. On the contrary non vanishing fluxes break the Calabi-Yau
condition and supersymmetry is possible only if ζ1 = ζ2, ie N = 1 supersymmetry. Moreover
it can be shown that fluxes give in general negative contributions to the curvature of the
four dimensional space-time. This leads for example to the no-go theorem from [26] that
excludes a Minkowski or de Sitter external space for vacua with non vanishing flux and no
other ingredients. We are thus left with AdS: the conditions on the SU(3) structure for
N = 1 supersymmetric AdS4 have been computed in [24].
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In the general case however η1 and η2 need not be related. Then the SU(3)×SU(3) struc-
ture is not a strict SU(3). Of course each spinor defines an SU(3) structure but rewriting the
supersymmetry conditions in a unified way requires the framework of generalized complex
geometry. Once again fluxes break supersymmetry to N = 1. The translation of the super-
symmetry equations for N = 1 supersymmetric flux vacua in the language of SU(3) × SU(3)
structure was done in [7, 9].

Note that all the results cited here fit in the present ansatz. Of course is is possible to
look for flux vacua with a different ansatz. Then the supersymmetry equations need to be
modified accordingly. This is done for example in section 4.3.1 in the case of a domain wall
ansatz.
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This chapter will present consistent truncations of type IIA supergravity to 4 dimensions
in presence of fermionic condensates and fluxes. The motivation stems from [22] that shows
that quartic dilatino condensates could lead to de Sitter vacua, which are otherwise extremely
difficult to get in string theory [27, 28]. In fact no-go theorems [29, 26] show that supergravity
do not admit de Sitter vacua, at least when considering only its classical ingredients. The only
way out is thus to include quantum corrections, here in the form of fermionic condensates.

Before diving straight into the discussion, let us say a few words about the two framework
that will be used in this chapter:

Consistent truncation A truncation of a theory reduces its degrees of freedom by remov-
ing parts of its spectrum. If the truncated modes are not sourced by the remaining modes
the truncation is called consistent. Then all solutions of the truncated theory can be lifted
to solutions of the original theory. In practice a truncation is an ansatz on the fields that
will be plugged in the equations of motion. If the resulting equations can be regrouped into
a Lagrangian on the remaining fields, this Lagrangian gives a consistent truncation.

In string compactification consistent truncations can be used to build lower dimensional
theories (here 4D) by truncating the modes living in the internal space. Finding solutions for
the truncated theory will be much easier than for the full 10 dimensional supergravity, and
consistency of the truncation ensures that these solutions are genuine vacua. The downside
is that the stability of the solution can be checked only along the directions of the remaining
fields, while truncated modes could still source instability.

Fermionic condensates In a maximally-invariant vacuum of the theory, all fermion vac-
uum expectation values (VEV) are assumed to vanish, but quadratic and quartic fermion
terms may still develop nonvanishing VEV’s. Schematically,

〈λ〉 = 0 ; 〈λ̄λ〉 :=
∫

[DΦ](λ̄λ)e−S[Φ] �= 0 , (3.1)

where λ collectively denotes the fermions and Φ stands for all fields in the action S[Φ]. The
vacuum 〈Φ〉 is obtained by minimizing the effective action Seff with respect to the fields,

δSeff

δΦ

∣∣∣∣
〈Φ〉

= 0 , (3.2)
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where, at tree level in the coupling, the effective action coincides with S.
Moreover, in the case of the critical IIA superstring, the two-derivative effective action

Seff coincides with the action of ten-dimensional IIA supergravity to all orders in string
perturbation.1 However, nonperturbatively, Seff may develop non-vanishing VEV’s for the
quadratic and quartic fermion terms.

The idea of fermionic condensate is not new. The phenomenon has already been observed
in supersymmetric Yang-Mils theories, for example in [30]. In the context of string theory
studies have mainly focused on gaugino condensation in the heterotic case [31, 32, 33, 34,
35, 36, 37, 38]. Note that gaugino condensation did not seem to help getting a positive
cosmological constant [39]. The situation seems to be different in the IIA case as [22] and
this chapter point out.

At first this chapter builds on the work of [22] by constructing a consistent truncation in
the presence of dilatini condensates. The truncation admits a limit in which the internal
space is Calabi-Yau. The ansatz is extended in a second time to get a consistent truncation
to the universal sector of Calabi-Yau compactification. Eventually gravitini condensates are
added to the truncation which then admits de Sitter solutions. It is suggested that such
condensates can be generated by gravitational instantons.

3.1 Dilatini condensation

We will not examine the mechanism for the generation of fermionic condensates here: we will
simply assume their presence and examine the implications. In the following we will look in
particular for dilatonic solutions, i.e. for solutions of the dilatino-condensate action of [22].
This is obtained from the IIA supergravity action by setting the Einstein-frame gravitino to
zero. Moreover, the quadratic and quartic dilatino terms in the action should be thought of
as replaced by their condensate VEV’s, and thus become (constant) parameters of the action.
The dilatino-condensate action should therefore be regarded as a book-keeping device whose
variation with respect to the bosonic fields gives the correct bosonic equations of motion in
the presence of dilatino condensates; the fermion equations of motion are trivially satisfied
in the maximally-invariant vacuum, and need not be considered.

In [22] the fermionic terms of IIA supergravity were determined in the ten-dimensional
superspace formalism previously developed in [40], resolving an ambiguity in the original
literature [17, 18, 19] concerning the quartic fermions, and finding agreement with [17]. In
the conventions of [22], the dilatino-condensate action of (massive) IIA reads,2

S = −Sb +
∫

d10x
√

g
{

(Λ̄ΓM ∇M Λ) − 21
16

e5φ/4m(Λ̄Λ) +
3

512
(Λ̄Λ)2

− 5
32

e3φ/4FMN (Λ̄ΓMN Γ11Λ) +
1

128
eφ/4GMNP Q(Λ̄ΓMNP QΛ)

}
,

(3.3)
1Indeed loop corrections in the string coupling are expected to modify the terms in Seff with eight or more

derivatives. In general, this will no longer be the case in the compactified theory.
2We have rescaled the Romans mass: m → 5m/4 with respect to [22]. Moreover ĝmn of that reference is

denoted gmn here. We have also changed conventions for the Riemann tensor so that R̂ of [22] is −R here.
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where Λ is the dilatino; Sb is the bosonic sector of Romans supergravity [41],

Sb =
∫

d10x
√

g
(

− R +
1
2

(∂φ)2 +
1

2 · 2!
e3φ/2F 2

+
1

2 · 3!
e−φH2 +

1
2 · 4!

eφ/2G2 +
1
2

m2e5φ/2
)

+ CS ,

(3.4)

where CS denotes the Chern-Simons term. We emphasize that, as mentioned previously,
the dilatino terms in (3.3) are not dynamical but should be thought of as parameters of the
action. In particular (Λ̄Λ)2 should be thought of as the VEV 〈(Λ̄Λ)2〉 and is therefore a priori
independent of (Λ̄Λ), which should be thought of as the VEV 〈Λ̄Λ〉.

The dilaton and Einstein equations following from action (3.3) read,

0 = −∇2φ +
3
8

e3φ/2F 2 − 1
12

e−φH2 +
1
96

eφ/2G2 +
5
4

m2e5φ/2

− 105
64

e5φ/4m(Λ̄Λ) − 15
128

e3φ/4FMN (Λ̄ΓMN Γ11Λ) +
1

512
eφ/4GMNP Q(Λ̄ΓMNP QΛ) ,

(3.5)

and,

RMN =
1
2

∂M φ∂N φ +
1
16

m2e5φ/2gMN +
1
4

e3φ/2
(
2F 2

MN − 1
8

gMN F 2
)

+
1
12

e−φ
(
3H2

MN − 1
4

gMN H2
)

+
1
48

eφ/2
(
4G2

MN − 3
8

gMN G2
)

+
1
2

(Λ̄Γ(M ∇N)Λ) +
1
16

gMN (Λ̄ΓP ∇P Λ) − 1
8

gMN

[21
16

e5φ/4m(Λ̄Λ) − 3
512

(Λ̄Λ)2
]

− 5
32

e3φ/4F(M
P (Λ̄ΓN)P Γ11Λ) +

1
128

eφ/4
[
2G(M

P QR(Λ̄ΓN)P QRΛ) − 1
8

gMN G(4)(Λ̄Γ(4)Λ)
]

.

(3.6)

The form equations read,

0 = d�
[
e3φ/2F − 5

16
e3φ/4(Λ̄Γ(2)Γ11Λ)

]
+ eφ/2H ∧ �

[
eφ/2G +

3
16

eφ/4(Λ̄Γ(4)Λ)
]

0 = d�e−φH + eφ/2F ∧ �
[
eφ/2G +

3
16

eφ/4(Λ̄Γ(4)Λ)
]

− 1
2

G ∧ G

+ m �
[
e3φ/2F − 5

16
e3φ/4(Λ̄Γ(2)Γ11Λ)

]
0 = d �

[
eφ/2G +

3
16

eφ/4(Λ̄Γ(4)Λ)
]

− H ∧ G ,

(3.7)

where: (Λ̄Γ(p)Λ) := 1
p!(Λ̄ΓM1...MpΛ)dxMp ∧ · · · ∧ dxM1 .

3.1.1 Dilatonic solutions

Bosonic AdS4 solutions

The equations of motion (3.5)-(3.7) together with (2.4) admit bosonic solutions of the form
AdS4 × M6, where M6 is nearly Kähler, cf. section 11.4 of [42]. Let us now review these
solutions, before switching on the dilatino condensates in section 3.1.1.

We take the ten-dimensional spacetime to be of direct product form AdS4 × M6,

ds2 = ds2(AdS4) + ds2(M6) . (3.8)
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Let us parametrize,
Rμν = 3λ gμν ; Rmn = 20ω2gmn , (3.9)

where gμν , gmn are the components of the metric in the external, internal space respectively;
λ is negative for anti-de Sitter space; ω is related to the first torsion class of M6 through
(1.35).

Moreover we set the dilaton to zero, φ = 0, and we parameterize the three-form and RR
fluxes as follows,

H = fReΩ ; F = bJ ; G = a vol4 +
1
2

cJ2 ; f, a, b, c ∈ R , (3.10)

where J is the Kähler form of M6, and vol4 is the volume element of AdS4. It is then
straightforward to see, using (1.35), that the Bianchi identities (2.4) are satisfied provided,

mf + 6bω = 0 . (3.11)

The F -form equation in (3.7) is automatically satisfied, while the H-form equation reduces
to,

2bc − ac + mb − 8fω = 0 . (3.12)

The G-form equation in (3.7) reduces to,

af + 6cω = 0 . (3.13)

Moreover the dilaton equation reduces to,

0 = 9b2 + 3c2 + 5m2 − a2 − 8f2 . (3.14)

The mixed (μ, m) components of the Einstein equations are automatically satisfied, while
the internal (m, n) components of the Einstein equations reduce to,

20ω2 = 2b2 + c2 + m2 − f2 , (3.15)

where we have taken (3.14) into account. Finally the (μ, ν) components of the Einstein
equations reduce to,

λ =
1
6

f2 − 10ω2 , (3.16)

where we have used (3.14) and (3.15).
As noted in [42], these equations admit three general classes of solutions only one of which

is supersymmetric and corresponds to the nearly-Kähler solutions first discovered in [43]; it
reads,

a2 =
27
5

m2 ; b =
1
9

a ; c =
3
5

m ; f = ±2
5

m ; ω = −1
9

a ; λ = −16
25

m2 . (3.17)

In particular we see that the solution is parameterized by a single parameter (the Romans
mass) and reduces to flat space without flux in the massless limit m → 0.
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Solutions with dilatino condensates

We will now allow for nonvanishing dilatino bilinear and quadratic condensates. Let Λ± be
the positive-, negative-chirality components of the ten-dimensional dilatino. We decompose,

Λ+ = θ+ ⊗ η − θ− ⊗ ηc ; Λ− = θ′
+ ⊗ ηc − θ′

− ⊗ η , (3.18)

where θ+, θ′
+ are arbitrary anticommuting four-dimensional Weyl spinors of positive chirality,

see appendix A for our spinor conventions. Furthermore the reality of Λ± imposes the
conditions,

θ̄+ = θ̃− ; θ̄− = −θ̃+ , (3.19)

which implies in particular,
(θ̃+θ′

+)∗ = −(θ̃−θ̃′
−) . (3.20)

We define the following three complex numbers parameterizing the four-dimensional dilatonic
condensate,

A := (θ̃+θ′
+) ; B := (θ̃+θ+) ; C := (θ̃′

+θ′
+) . (3.21)

In terms of these, the ten-dimensional dilaton bilinears decompose as follows,

(Λ̄+Λ−) = 2Re(A)
(Λ̄+ΓmnΛ−) = 2Im(A)Jmn

(Λ̄+ΓmnrsΛ−) = −6Re(A)J[mnJrs]

(Λ̄+ΓmnpΛ+) = 2Re(BΩmnp)
(Λ̄−ΓmnpΛ−) = −2Re(CΩ∗

mnp)

(Λ̄+ΓμνρσΛ−) = 2Im(A)εμνρσ ,

(3.22)

where we have used (1.28). For the “kinetic” bilinear terms we will assume that (Λ̄±Γμ∇νΛ±) =
0. For a NK internal manifold such that (1.35) holds, we have,

(Λ̄+Γ(m∇n)Λ+) = −2Im(Bω)gmn

(Λ̄−Γ(m∇n)Λ−) = −2Im(Cω∗)gmn .
(3.23)

Let us now substitute the above in the 10d equations of motion, while retaining the same
form ansatz (3.10) as in section 3.1.1. The only difference is that we postulate a 10d metric
of the form

ds2 = ds2(S1,3) + ds2(M6) , (3.24)

where now S1,3 can be any maximally symmetric four-dimensional space. I.e. (3.9) is still
valid here, but we allow λ to also be positive or zero (corresponding to de Sitter or Minsowski,
in addition to anti-de Sitter).

With this ansatz the 10d equations of motion are modified as follows: the Bianchi iden-
tities (2.4) are satisfied provided,

mf + 6bω = 0 , (3.25)

as was the case for vanishing condensate. The F -form equation in (3.7) is automatically
satisfied, while the H-form equation reduces to,

2bc − ac + mb − 8fω +
5
4

mImA − 3
2

bReA = 0 , (3.26)
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exactly as in the case of vanishing condensate. The G-form equation in (3.7) reduces to,

(a +
3
4

ImA)f + 6(c − 3
4

ReA)ω = 0 , (3.27)

thus receiving a contribution from the condensate. The dilaton equation reduces to,

0 = 9b(b +
5
4

ImA) + 3c(c − 3
4

ReA) + 5m(m − 21
4

ReA) − a(a +
3
4

ImA) − 8f2 . (3.28)

The mixed (μ, m) components of the Einstein equations are automatically satisfied as before,
while the internal (m, n) components of the Einstein equations reduce to,

20ω2 =
1
16

m2 +
5
16

b2 +
1
2

f2 +
7
16

c2 +
3
16

a2

+
5
8

bImA +
3
32

aImA − 15
32

cReA − 7
4

Im(Bω + Cω∗) − 21
32

mReA +
3

212 (Λ̄Λ)2 ,
(3.29)

where, as already mentioned, the last term above should be thought of as the VEV of a
quartic fermion term, thus a priori different from the square of the bilinear VEV. Finally the
(μ, ν) components of the Einstein equations reduce to,

λ =
1
48

m2 − 1
16

b2 − 1
6

f2 − 3
16

c2 − 5
48

a2

− 3
32

aImA +
3
32

cReA − 1
4

Im(Bω + Cω∗) − 7
32

mReA +
1

212 (Λ̄Λ)2 .
(3.30)

In the limit of vanishing condensates one recovers the bosonic AdS4 × M6 solutions reviewed
in section 3.1.1. Moreover one can obtain λ > 0, and thus four-dimensional de Sitter space,
provided (Λ̄Λ)2 is sufficiently large.

3.1.2 Consistent truncation

The solutions of section 3.1 can be recovered from the equations of motion of a four-
dimensional consistent truncation of the ten-dimensional IIA dilatino-condensate action. In
the following we will construct the consistent truncation in the case of vanishing condensates.
The case of nonvanishing condensates will be considered in section 3.1.4.

Our ansatz for the ten-dimensional metric includes two scalars A, B with four-dimensional
spacetime dependence,

ds2
(10) = e2A(x)

(
e2B(x)gμνdxμdxν + gmndymdyn

)
. (3.31)

From the above we obtain the following formula for the ten-dimensional Laplacian of a scalar
S(x) with only four-dimensional spacetime dependence,

∇2
(10)S(x) = e−2A−2B

(
∇2

(4)S(x) + 8∂ρA∂ρS + 2∂ρB∂ρS
)

, (3.32)

where the contractions on the right-hand side are taken with respect to the unwarped four-
dimensional metric. The Einstein tensor of (3.31) reads,

R(10)
mn = R(6)

mn − e−2Bgmn (∇ρ∂ρA + 8∂ρA∂ρA + 2∂ρA∂ρB)

R(10)
μν = R(4)

μν − gμν (∇ρ∂ρA + ∇ρ∂ρB + 8∂ρA∂ρA + 2∂ρB∂ρB + 10∂ρA∂ρB)
+ 8∂μA∂νA + 2∂μB∂νB + 16∂(μA∂ν)B − 8∇μ∂νA − 2∇μ∂νB ,

(3.33)
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while the mixed components R
(10)
mμ vanish identically.

Our ansatz for the forms is such that the Bianchi identities (2.4) are automatically satis-
fied. It is given in terms of three scalars ϕ, χ, γ which are taken to only carry four-dimensional
spacetime dependence. Explicitly,

F = mχJ ; H = dχ∧J −6ωχReΩ ; G = ϕvol4 +
1
2

(mχ2 +γ)J ∧J − 1
8ω

dγ ∧ ImΩ . (3.34)

In particular we obtain,

F 2
mn = m2χ2e−2Agmn ; F 2 = 6m2χ2e−4A

H2
mn = 2e−4A−2B(∂χ)2gmn + 144e−4Aω2χ2gmn ; H2

μν = 6e−4A∂μχ∂νχ

H2 = 18e−6A−2B(∂χ)2 + 864e−6Aω2χ2

G2
mn = 12e−6A

(
mχ2 + γ

)2
gmn +

3
16ω2 e−6A−2B(∂γ)2gmn

G2
μν = −6e−6A−6Bϕ2gμν +

3
8ω2 e−6A∂μγ∂νγ

G2 = −24e−8A−8Bϕ2 + 72e−8A
(
mχ2 + γ

)2
+

3
2ω2 e−8A−2B(∂γ)2 ,

(3.35)

where the contractions on the left-hand sides are taken with respect to the ten-dimensional
metric while the contractions on the right-hand sides are taken with respect to the unwarped
four- and six-dimensional metrics. The following expressions are also useful,

�10F =
1
2

mχe6A+4Bvol4 ∧ J2

�10H =
1
2

e4A+2B �4dχ ∧ J2 + 6ωχe4A+4Bvol4 ∧ ImΩ

�10G = −1
6

ϕe2A−4BJ3 + (mχ2 + γ)e2A+4Bvol4 ∧ J +
1

8ω
e2A+2B �4dγ ∧ ReΩ ,

(3.36)

where the Hodge star is defined as in [24, 22]. Plugging the above ansatz into the equations
of motion we obtain the following. The internal (m, n)-components of the Einstein equations
(3.6) read,

0 = e−8A−2B∇μ
(
e8A+2B∂μA

)
+

1
16

m2e5φ/2+2A+2B +
5
16

e3φ/2−2A+2Bm2χ2

+
1
8

e−φ−4A(∂χ)2 + 18e−φ−4A+2Bω2χ2 +
1
16

eφ/2
(
3e−6A−6Bϕ2 + 7e−6A+2B(mχ2 + γ)2

)
+

1
256ω2 eφ/2−6A(∂γ)2 − 20e2Bω2 ,

(3.37)

where we have taken (3.9) into account. The external (μ, ν)-components read,

R(4)
μν = gμν

(
∇2A + ∇2B + 8(∂A)2 + 2(∂B)2 + 10∂A · ∂B

)
− 8∂μA∂νA − 2∂μB∂νB − 16∂(μA∂ν)B + 8∇μ∂νA + 2∇μ∂νB

+
3
2

e−φ−4A∂μχ∂νχ +
1
2

∂μφ∂νφ +
1

32ω2 eφ/2−6A∂μγ∂νγ

+
1
16

gμν

(
− 3

16ω2 eφ/2−6A(∂γ)2 − 6e−φ−4A(∂χ)2

+ m2e5φ/2+2A+2B − 3m2χ2e3φ/2−2A+2B − 288e−φ−4A+2Bω2χ2

− 5eφ/2−6A−6Bϕ2 − 9eφ/2−6A+2B(mχ2 + γ)2
)

,

(3.38)
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while the mixed (μ, m)-components are automatically satisfied. The dilaton equation reads,

0 = e−10A−4B∇μ
(
e8A+2B∂μφ

)
− 5

4
m2e5φ/2 − 9

4
e3φ/2−4Am2χ2 − 1

64ω2 eφ/2−8A−2B(∂γ)2

+
3
2

e−φ−6A−2B(∂χ)2 + 72e−φ−6Aω2χ2 +
1
4

eφ/2
(
e−8A−8Bϕ2 − 3e−8A(mχ2 + γ)2

)
.

(3.39)

The F -form equation of motion is automatically satisfied. The H-form equation reduces to,

0 = −∇μ
(
e−φ+4A+2B∂μχ

)
+ 48ω2e−φ+4A+4Bχ + e3φ/2+6A+4Bm2χ

+ 2meφ/2+2A+4B(mχ2 + γ)χ − ϕ(mχ2 + γ) .
(3.40)

The G-form equation of motion reduces to,

0 = ∇μ
(
eφ/2+2A+2B∂μγ

)
− 48ω2eφ/2+2A+4B(mχ2 + γ) + 48ω2χϕ , (3.41)

together with the following constraint,

0 =
1
3

d
(
eφ/2+2A−4Bϕ

)
+ (mχ2 + γ)dχ + χdγ . (3.42)

The latter can be immediately integrated to solve ϕ in terms of the remaining fields,

ϕ =
(
C − mχ3 − 3γχ

)
e−2A+4B−φ/2 , (3.43)

where C is an arbitrary constant.
The Lagrangian
As we can see from (3.31) the scalar B(x) can be reabsorbed in the definition of the 4d

metric. We have kept it arbitrary so far with the idea to use the associated freedom in order
to obtain a 4d effective theory directly in the Einstein frame. This can be accomplished by
choosing

B = −4A . (3.44)

With this choice, and taking into account that ϕ is given in eq. (3.43), it is straightforward to
check that the ten-dimensional equations given in (3.37)-(3.41) all follow from the 4d effective
action,

S4 =
∫

d4x
√

g

(
R − 24(∂A)2 − 1

2
(∂φ)2 − 3

2
e−4A−φ(∂χ)2 − 1

32ω2 e−6A+φ/2(∂γ)2 − V

)
,

(3.45)
where the potential V is given by:

V = −120ω2e−8A +
1
2

m2e−6A+5φ/2 +
3
2

m2χ2e−10A+3φ/2 + 72ω2χ2e−12A−φ

+
3
2

(mχ2 + γ)2e−14A+φ/2 +
1
2

(
C − mχ3 − 3γχ

)2
e−18A−φ/2 .

(3.46)

3.1.3 AdS4 solutions revisited

The consistent truncation (3.45) captures all of the AdS4 solutions of [42] reviewed in section
3.1.1. Indeed upon setting the warp factor and the dilaton to zero, A = φ = 0, and the
remaining fields γ, χ to constant values, imposing the equations of motion amounts to finding
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a minimum of the potential V of (3.46). We thus obtain the following three classes of
solutions:

First class

H = ±mReΩ ; F = ± 1√
3

mJ ; G = ∓
√

3m vol4 − 1
2

mJ2 ; Ω = −2
3

m2 , (3.47)

where it is understood that the sign of F is correlated with that of the external part of G,
while the sign of H is arbitrary. This can be written equivalently:

ω = ± 1
2
√

3
m ; χ = ± 1√

3
; γ = −4

3
m ; C = ∓ 20

3
√

3
m . (3.48)

Second class

H = 0 ; F = 0 ; G = ±
√

5m vol4 ; Ω = −1
2

m2 . (3.49)

Or, equivalently,
ω = ± 1

2
√

5
m ; χ = 0 ; γ = 0 ; C = ±

√
5m . (3.50)

Third class

H = ±2
5

mReΩ ; F = ± 1√
15

mJ ; G = ±
√

27
5

m vol4 +
3
10

mJ2 ; Ω = −16
25

m2 , (3.51)

where it is understood that the sign of F is correlated with that of the external part of G,
while the sign of H is arbitrary. Equivalently:

ω = ± 1√
15

m ; χ = ± 1√
15

; γ =
8
15

m ; C = ± 32
3
√

15
m . (3.52)

In the above we have noted that Ω is given by the value of V/6 at the minimum, as follows
from (3.45), (3.9). These coincide with the three classes of solutions presented in section 11.4
of [42], with the third class being the supersymmetric one, cf. (3.17).

3.1.4 Consistent truncation with condensates

In the presence of condensates, the internal (m, n)-components of the Einstein equations
(3.37) get modified as follows,

0 = e−8A−2B∇μ
(
e8A+2B∂μA

)
+

1
16

m2e5φ/2+2A+2B +
5
16

e3φ/2−2A+2Bm2χ2

+
1
8

e−φ−4A(∂χ)2 + 18e−φ−4A+2Bω2χ2 +
1
16

eφ/2
(
3e−6A−6Bϕ2 + 7e−6A+2B(mχ2 + γ)2

)
+

1
256ω2 eφ/2−6A(∂γ)2 − 20e2Bω2 − 7

4
eA+2BIm(Bω + Cω∗)

− 1
32

e2A+2B
(

21e5φ/4mReA − 3
128

(Λ̄Λ)2
)

+
5
8

e3φ/4+2BmχImA

+
3
32

eφ/4−2A−2BϕImA − 15
32

eφ/4−2A+2B(mχ2 + γ)ReA ,

(3.53)
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where we have taken (3.9) into account. The external (μ, ν)-components read,

R(4)
μν = gμν

(
∇2A + ∇2B + 8(∂A)2 + 2(∂B)2 + 10∂A · ∂B

)
− 8∂μA∂νA − 2∂μB∂νB − 16∂(μA∂ν)B + 8∇μ∂νA + 2∇μ∂νB

+
3
2

e−φ−4A∂μχ∂νχ +
1
2

∂μφ∂νφ +
1

32ω2 eφ/2−6A∂μγ∂νγ

+
1
16

gμν

[
− 6e−φ−4A(∂χ)2 − 3

16ω2 eφ/2−6A(∂γ)2

+ m2e5φ/2+2A+2B − 3m2χ2e3φ/2−2A+2B

− 288e−φ−4A+2Bω2χ2 − 5eφ/2−6A−6Bϕ2 − 9eφ/2−6A+2B(mχ2 + γ)2

− 1
2

e2A+2B
(

21e5φ/4mReA − 3
128

(Λ̄Λ)2
)

− 12eA+2BIm(Bω + Cω∗)

− 9
2

eφ/4−2A−2BϕImA +
9
2

eφ/4−2A+2B(mχ2 + γ)ReA
]

,

(3.54)

while the mixed (μ, m)-components are automatically satisfied. The dilaton equation reads,

0 = e−10A−4B∇μ
(
e8A+2B∂μφ

)
+

3
2

e−φ−6A−2B(∂χ)2 − 1
64ω2 eφ/2−8A−2B(∂γ)2

− 5
4

m2e5φ/2 − 9
4

e3φ/2−4Am2χ2 + 72e−φ−6Aω2χ2

+
1
4

eφ/2
(
e−8A−8Bϕ2 − 3e−8A(mχ2 + γ)2

)
+

105
16

e5φ/4ReA

− 45
16

e3φ/4−2AmχImA +
3
16

eφ/4−4A−4BϕImA +
9
16

eφ/4−4A(mχ2 + γ)ReA .

(3.55)

The F -form equation of motion is automatically satisfied. The H-form equation (3.40) reads,

0 = −∇μ
(
e−φ+4A+2B∂μχ

)
+ 48ω2e−φ+4A+4Bχ + e3φ/2+6A+4Bm2χ + 2meφ/2+2A+4B(mχ2 + γ)χ

− ϕ(mχ2 + γ) +
5
4

e3φ/4−2BmImA − 3
2

eφ/4−2A+2BmχReA .

(3.56)

The G-form equation of motion reads,

0 = ∇μ
(
eφ/2+2A+2B∂μγ

)
− 48ω2eφ/2+2A+4B(mχ2 + γ) + 48ω2χϕ + 36ω2eφ/4+6A+4BReA ,

(3.57)
together with the following constraint,

0 = d
(1

3
ϕeφ/2+2A−4B +

1
4

eφ/4+6AImA
)

+ (mχ2 + γ)dχ + χdγ . (3.58)

The latter can be immediately integrated to solve ϕ in terms of the remaining fields,

ϕ =
(
C − mχ3 − 3γχ

)
e−φ/2−2A+4B − 3

4
e−φ/4+4A+4BImA , (3.59)

where C is an arbitrary constant.
Upon imposing (3.44) as before, a tedious but straightforward calculation then shows

that all the above equations of motion can be obtained from the following four-dimensional
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action,

S4 =
∫

d4x
√

g

(
R − 24(∂A)2 − 1

2
(∂φ)2 − 3

2
e−4A−φ(∂χ)2 − 1

32ω2 e−6A+φ/2(∂γ)2 − V

)
.

(3.60)
The action has exactly the same kinetic terms as before, cf. (3.45), but the potential now
reads,

V = −120ω2e−8A +
1
2

m2e−6A+5φ/2 +
3
2

m2χ2e−10A+3φ/2 + 72ω2χ2e−12A−φ

+
3
2

(mχ2 + γ)2e−14A+φ/2 +
1
2

ϕ2e18A+φ/2 − 12e−7AIm(Bω + Cω∗)

+
15
4

mχe3φ/4−8AImA − 21
4

e5φ/4−6AmReA − 9
4

eφ/4−10A(mχ2 + γ)ReA

+
3

512
e−6A(Λ̄Λ)2 ,

(3.61)

where ϕ is non-dynamical and is given by,

ϕ =
(
C − mχ3 − 3γχ

)
e−φ/2−18A − 3

4
e−φ/4−12AImA . (3.62)

It can also be seen that this consistent truncation contains the S1,3 × M6 solutions of section
3.1.1 as special cases.

3.1.5 The Calabi-Yau limit

It can be seen from the equations of motion that the limit ω → 0 can be taken consistently,
provided that we first rewrite,

γ = γ0 + 4ωξ , (3.63)

where γ0 is constant while ξ is dynamical. This corresponds to the Calabi-Yau (CY) limit,
in the sense of the vanishing of all SU(3) torsion classes.3

More explicitly, in this case our ansatz for the forms becomes,

F = mχJ ; H = dχ ∧ J ; G = ϕvol4 +
1
2

(mχ2 + γ0)J ∧ J − 1
2

dξ ∧ ImΩ , (3.64)

and can be seen to automatically satisfy the BI’s (2.4), taking into account that dJ = dΩ = 0.
All remaining equations of motion can be obtained from (3.37)-(3.43) by first replacing γ
using (3.63) and then taking the ω → 0 limit. Note that this rewriting allows to keep the
dynamical field ξ in the limit.

Moreover it can be seen that all equations of motion can be integrated into the following
Lagrangian,

SCY =
∫

d4x
√

g

(
R − 24(∂A)2 − 1

2
(∂φ)2 − 3

2
e−4A−φ(∂χ)2 − 1

2
e−6A+φ/2(∂ξ)2 − V CY

)
.

(3.65)
3This is more general than the usual definition of a CY, as it allows for manifolds with nonvanishing

fundamental group such as T 6.
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The potential V CY above is given by,

V CY = +
1
2

m2e−6A+5φ/2 +
3
2

m2χ2e−10A+3φ/2 +
3
2

(mχ2 + γ0)2e−14A+φ/2

+
1
2

ϕ2e18A+φ/2 +
15
4

mχe3φ/4−8AImA − 21
4

e5φ/4−6AmReA

− 9
4

eφ/4−10A(mχ2 + γ0)ReA +
3

512
e−6A(Λ̄Λ)2 ,

(3.66)

where,
ϕ =

(
C − mχ3 − 3γ0χ

)
e−φ/2−18A − 3

4
e−φ/4−12AImA . (3.67)

As can be easily seen, in the absence of condensates, unless all flux is zero, the potential is
non-negative and only has runaway minima. However this need no longer be the case in the
presence of nonvanishing condensates.

To our knowledge, this is the first truncation on a CY manifold with massive four-
dimensional fields, whose consistency has been rigorously proven.

Massless limit
A further truncation to two scalars, the warp factor A and the dilaton φ, can be obtained

by taking the massless limit, m = 0, while at the same time setting χ, γ = 0. This amounts
to the following flux ansatz:

F = 0 ; H = 0 ; G = ϕvol4 , (3.68)

which is of Freund-Rubin type, and automatically satisfies the BI’s (2.4). Moreover the
remaining form equations reduce to a single constraint,

ϕ = C e−φ/2−18A − 3
4

e−φ/4−12AImA , (3.69)

where C is an arbitrary constant. It can then be seen that all equations of motion can be
integrated to the following Lagrangian,

SCY
0 =

∫
d4x

√
g

(
R − 24(∂A)2 − 1

2
(∂φ)2 − V CY

)
, (3.70)

where the potential V CY is given by,

V CY =
1
2

ϕ2e18A+φ/2 +
3

512
e−6A(Λ̄Λ)2 . (3.71)

3.2 Calabi-Yau truncation

3.2.1 Review of IIA reduction on CY

To establish notation and conventions, let us briefly review the reduction of IIA on CY at
the two-derivative level, in the absence of flux and condensates. As is well known, the KK
reduction of (massless) IIA supergravity around the fluxless R

1,3 × Y vacuum results in a 4d
N = 2 supergravity, whose bosonic sector consists of one gravity multiplet (containing the
metric and one vector), h1,1 vector multiplets (each of which consists of one vector and two

56



CHAPTER 3. CONSISTENT TRUNCATION

real scalars) and h2,1 + 1 hypermultiplets (each of which contains four real scalars), where
hp,q are the Hodge numbers of the CY threefold Y . The 2h1,1 real scalars (vA, χA) in the
vector multiplets come from the NS-NS B field and deformations of the metric of the form,

B = β(x) +
h1,1∑
A=1

χA(x)eA(y) ; iδgab̄ =
h1,1∑
A=1

vA(x)eA
ab̄

(y) , (3.72)

where β is a two-form in R
1,3; {eA

ab̄
(y), A = 1, . . . , h1,1} is a basis of harmonic (1,1)-forms on

the CY, and x, y are coordinates of R1,3, Y respectively; we have introduced holomorphic,
antiholomorphic internal indices from the beginning of the latin alphabet: a = 1, . . . , 3,
b̄, = 1, . . . , 3, respectively. Since every CY has a Kähler form (which can be expressed as a
linear combination of the basis (1,1)-forms), there is a always at least one vector multiplet
(which may be called “universal”, in that that it exists for any CY compactification) whose
scalars consist of the volume modulus v and one scalar χ.

The 2(h2,1 + 1) complex scalars of the hypermultiplets, and the h1,1 + 1 vectors of the
gravity and the vectormultiplets arise as follows: from the one- and three-form RR potentials
C1, C3 and the complex-structure deformations of the metric,4

δgāb̄ =
h2,1∑
α=1

ζα(x)Ω∗cd
āΦα

cdb̄
(y) ; C1 = α(x) ;

C3 = −1
2

(
ξ(x)ImΩ + ξ′(x)ReΩ

)
+

h1,1∑
A=1

γA(x) ∧ eA(y) +
( h2,1∑

α=1
ξα(x)Φα(y) + c.c.

)
,

(3.73)

where Ω(y) is the holomorphic threeform of the CY and {Φα
abc̄(y), α = 1, . . . , h2,1} is basis

of harmonic (2,1) forms on the CY, we obtain the complex scalars (ζα, ξα) and the vectors
(α, γA). Moreover the real scalars (ξ, ξ′) together with the dilaton φ and the axion b combine
into one universal hypermultiplet. Recall that if h is the 4d component of the NSNS three-
form,

h = dβ , (3.74)

the axion b is given schematically by db ∼ �4h (the precise relation is eq. (3.93) below).
In summary, the universal bosonic sector of the 4d N = 2 supergravity arising from IIA

compactification on Y contains the metric and the vector of the gravity multiplet (gμν , α),
the vector and the the scalars of one vectormultiplet (γ, v, χ), and the scalars of the universal
hypermultiplet (ξ, ξ′, φ, b).

In the last section we presented a universal consistent truncation on Nearly-Kähler and
CY manifolds in the presence of dilatino condensates. As it turns out, this consistent trun-
cation captures only part of the universal scalar sector of the N = 2 low-energy effective
supergravity obtained from IIA theory compactified on CY threefolds. Therefore we must
extend the ansatz to include the “missing” fields and also to take into account the gravitino
condensates.

3.2.2 Action and equations of motion

In [22] the quartic dilatino terms of all (massive) IIA supergravities [17, 18, 19, 41, 44] were
determined in the ten-dimensional superspace formalism of [40], and were found to agree

4The right-hand side of the first equation of (3.73) can be seen to be automatically symmetric in its two
free indices.
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with [17]. As follows from the result of [40], the quartic fermion terms are common to all IIA
supergravities (massive or otherwise). In the following we will complete Romans supergravity
(whose quartic fermion terms were not computed in [41]) by adding the quartic gravitino
terms given in [17]. Furthermore we will set the dilatino to zero. Of course this would be
inconsistent in general, since the dilatino couples linearly to gravitino terms. Here this does
not lead to an inconsistency in the equations of motion, since we are ultimately interested in
a maximally-symmettric vacuum, in which linear and cubic fermion VEV’s vanish.

In the conventions of [22, 2], upon setting the dilatino to zero, the action of Romans
supergravity reads,

S = Sb +
1

2κ2
10

∫
d10x

√
g
{

2(Ψ̃M ΓMNP ∇N ΨP ) +
1
2

e5φ/4m(Ψ̃M ΓMN ΨN )

− 1
2 · 2!

e3φ/4FM1M2(Ψ̃M Γ[M ΓM1M2ΓN ]Γ11ΨN )

− 1
2 · 3!

e−φ/2HM1...M3(Ψ̃M Γ[M ΓM1...M3ΓN ]Γ11ΨN )

+
1

2 · 4!
eφ/4GM1...M4(Ψ̃M Γ[M ΓM1...M4ΓN ]ΨN ) + LΨ4

}
,

(3.75)

where ΨM is the gravitino; Sb = −SE
IIA denotes the bosonic sector defined in (2.7). There

are 24 quartic gravitino terms as given in [17], denoted LΨ4 in (3.75). Of these only four
can have a nonvanishing VEV in an ALE space: they are discussed in more detail in section
3.3.4.

We emphasize that the action (3.75) should be regarded as a book-keeping device whose
variation with respect to the bosonic fields gives the correct bosonic equations of motion in
the presence of gravitino condensates. Furthermore, the fermionic equations of motion are
trivially satisfied in the maximally-symmetric vacuum. The (bosonic) equations of motion
(EOM) following from (3.75) are as follows:

Dilaton EOM,

0 = −∇2φ +
3
8

e3φ/2F 2 − 1
12

e−φH2 +
1
96

eφ/2G2 +
5
4

m2e5φ/2

+
5
8

e5φ/4m(Ψ̃M ΓMN ΨN )

− 3
16

e3φ/4FM1M2(Ψ̃M Γ[M ΓM1M2ΓN ]Γ11ΨN )

+
1
24

e−φ/2HM1...M3(Ψ̃M Γ[M ΓM1...M3ΓN ]Γ11ΨN )

+
1

192
eφ/4GM1...M4(Ψ̃M Γ[M ΓM1...M4ΓN ]ΨN ) .

(3.76)
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Einstein EOM,

RMN =
1
2

∂M φ∂N φ +
1
16

m2e5φ/2gMN +
1
4

e3φ/2
(
2F 2

MN − 1
8

gMN F 2
)

+
1
12

e−φ
(
3H2

MN − 1
4

gMN H2
)

+
1
48

eφ/2
(
4G2

MN − 3
8

gMN G2
)

+
1
24

eφ/4G(M |
M1M2M3(Ψ̃P Γ[P Γ|N)M1M2M3ΓQ]ΨQ)

− 1
96

eφ/4GM1...M4

{
(Ψ̃P Γ(M ΓM1...M4ΓP ΨN)) − (Ψ̃P ΓP ΓM1...M4Γ(M ΨN)) +

1
2

gMN (Ψ̃P Γ[P ΓM1...M4ΓQ]ΨQ)

− 1
8

gMN LΨ4 +
δLΨ4

δgMN
,

(3.77)

where we have set: Φ2
MN := ΦMM2...MpΦN

M2...Mp , for any p-form Φ. We have refrained from
spelling out explicitly the quartic gravitino terms in the Einstein equation above, as they are
numerous and not particularly enlightening. We will calculate them explicitly later on in the
case of the ALE space in section 3.3.4.

Form EOM’s,5

0 = d�
[
e3φ/2F − 1

2
e3φ/4(Ψ̃M Γ[M Γ(2)ΓN ]Γ11ΨN )

]
+ H ∧ �

[
eφ/2G+

1
2

eφ/4(Ψ̃M Γ[M Γ(4)ΓN ]ΨN )
]

0 = d�
[
e−φH − 1

2
e−φ/2(Ψ̃M Γ[M Γ(3)ΓN ]Γ11ΨN )

]
+ eφ/2F ∧ �

[
eφ/2G+

1
2

eφ/4(Ψ̃M Γ[M Γ(4)ΓN ]ΨN )
]

− 1
2

G ∧ G + m�
[
e3φ/2F−1

2
e3φ/4(Ψ̃M Γ[M Γ(2)ΓN ]Γ11ΨN )

]
0 = d�

[
eφ/2G +

1
2

eφ/4(Ψ̃M Γ[M Γ(4)ΓN ]ΨN )
]

− H ∧ G ,

(3.78)

where Γ(p) := 1
p!ΓM1...MpdxMp ∧ · · · ∧ dxM1 .

Note that we will use only the bosonic part during this section. Gravitini will be post-
poned to the next section.

3.2.3 Consistent truncation

The truncation of section 3.1.2 contains the four real scalars (A, χ, φ, ξ), with A related to the
volume modulus v of section 3.2.1: it does not capture all the scalars of the universal sector
of N = 2 supergravity, since it does not include the vectors and it truncates the two scalars
ξ′, b of section 3.2.1. We must therefore expand the ansatz of 3.34 to include the “missing”
fields, at the same time taking the limit to the massless IIA theory, m → 0. Explicitly we
set,

5We are using “superspace conventions” as in [24] so that,

Φ(p) = 1
p!

Φm1...mp dxmp ∧ · · · ∧ dxm1 ; d
(

Φ(p) ∧ Ψ(q)

)
= Φ(p) ∧ dΨ(q) + (−1)qdΦ(p) ∧ Ψ(q) .

In D dimensions the Hodge star is defined as follows,

�(dxa1 ∧ · · · ∧ dxap ) = 1
(D − p)!

εa1...ap
b1...b10−p dxb1 ∧ · · · ∧ dxb10−p .
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F = dα ; H = dχ∧J+dβ ; G = ϕvol4+
1
2

c0J∧J+J∧(dγ−α∧dχ)−1
2

dξ∧ImΩ−1
2

dξ′∧ReΩ ,

(3.79)
where c0 is a real constant and ϕ(x) is a 4d scalar. We have chosen to express H in

terms of the 4d potential β instead of the axion. Taking into account that for a CY we have
dJ = dΩ = 0, this ansatz can be seen to automatically satisfy the Bianchi identities (2.4) in
the massless limit. Our ansatz for the ten-dimensional metric is still (3.31). This gives,

F 2
μν = e−2A−2Bdα2

μν ; F 2 = e−4A−4Bdα2

H2
mn = 2e−4A−2B(∂χ)2gmn ; H2

μν = 6e−4A∂μχ∂νχ + e−4A−4Bh2
μν

H2 = 18e−6A−2B(∂χ)2 + e−6A−6Bh2

G2
mn = 3e−6A−2B

[
(∂ξ)2 + (∂ξ′)2

]
gmn + 12e−6Ac2

0gmn + 3e−6A−4B(dγ − α ∧ dχ)2gmn

G2
μν = −6e−6A−6Bϕ2gμν + 6e−6A(∂μξ∂νξ + ∂μξ′∂νξ′) + 18e−6A−2B(dγ − α ∧ dχ)2

μν

G2 = −24e−8A−8Bϕ2 + 24e−8A−2B
[
(∂ξ)2 + (∂ξ′)2

]
+ 72c2

0e−8A + 36e−8A−4B(dγ − α ∧ dχ)2 ,

(3.80)

where the contractions on the left-hand sides above are computed with respect to the
ten-dimensional metric; the contractions on the right-hand sides are taken with respect to
the unwarped metric. It is also useful to note the following expressions,

�10F =
1
6

e6A �4 dα ∧ J3

�10H = 1
2e4A+2B �4dχ ∧ J2 + 1

6e4A−2B �4h ∧ J3

�10G = −1
6ϕe2A−4BJ3 + c0e2A+4Bvol4 ∧ J + 1

2e2A �4 (dγ − α ∧ dχ) ∧ J2

+ 1
2e2A+2B �4dξ ∧ ReΩ − 1

2e2A+2B �4dξ′ ∧ ImΩ ,

(3.81)

where the four-dimensional Hodge-star is taken with respect to the unwarped metric.
Plugging the above ansatz into the ten-dimensional EOM (3.76)-(3.78) we obtain the

following: the internal (m, n)-components of the Einstein equations read,

0 = e−8A−2B∇μ
(
e8A+2B∂μA

)
− 1

32
e3φ/2−2A−2Bdα2 +

1
8

e−φ−4A(∂χ)2 − 1
48

e−φ−4A−4Bh2

− 1
32

eφ/2−6A−2B(dγ − α ∧ dχ)2 +
1
16

eφ/2−6A
[
(∂ξ)2 + (∂ξ′)2

]
+

3
16

eφ/2−6A−6Bϕ2 +
7
16

eφ/2−6A+2Bc2
0 .

(3.82)
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The external (μ, ν)-components read,

R(4)
μν = gμν

(
∇2A + ∇2B + 8(∂A)2 + 2(∂B)2 + 10∂A · ∂B

)
− 8∂μA∂νA − 2∂μB∂νB − 16∂(μA∂ν)B + 8∇μ∂νA + 2∇μ∂νB

+
3
2

e−φ−4A∂μχ∂νχ +
1
2

e3φ/2−2A−2Bdα2
μν +

1
4

eφ−4A−4Bh2
μν +

1
2

∂μφ∂νφ

+
1
2

eφ/2−6A(∂μξ∂νξ + ∂μξ′∂νξ′) +
3
2

eφ/2−6A−2B(dγ − α ∧ dχ)2
μν

+
1
16

gμν

(
− 1

2
e3φ/2−2A−2Bdα2 − 1

3
eφ−4A−4Bh2 − 3eφ/2−6A

[
(∂ξ)2 + (∂ξ′)2

]
− 6e−φ−4A(∂χ)2 − 5eφ/2−6A−6Bϕ2 − 9c2

0eφ/2−6A+2B − 9
2

eφ/2−6A−2B(dγ − α ∧ dχ)2
)

,

(3.83)

while the mixed (μ, m)-components are automatically satisfied. The dilaton equation reads,

0 = e−10A−4B∇μ
(
e8A+2B∂μφ

)
− 1

4
eφ/2−8A−2B

[
(∂ξ)2 + (∂ξ′)2

]
− 3

8
e3φ/2−4A−4Bdα2

+
3
2

e−φ−6A−2B(∂χ)2 +
1
12

e−φ−6A−6Bh2

+
1
4

eφ/2−8A−8Bϕ2 − 3
4

c2
0eφ/2−8A − 3

8
eφ/2−8A−4B(dγ − α ∧ dχ)2 .

(3.84)

The F -form equation of motion reduces to the condition,

d(e3φ/2+6A �4 dα) = ϕeφ/2+2A−4Bdβ − 3eφ/2+2Adχ ∧ �4(dγ − α ∧ dχ) . (3.85)

The H-form equation reduces to the following two equations,

d
(
e−φ+4A+2B �4 dχ

)
= c0ϕvol4 + (dγ − α ∧ dχ) ∧ (dγ − α ∧ dχ) − eφ/2+2Adα ∧ �4(dγ − α ∧ dχ) ,

(3.86)

and,

d
(
e−φ+4A−2B �4 dβ

)
= 3c0(dγ − α ∧ dχ) − dξ ∧ dξ′ + eφ/2+2A−4Bϕdα . (3.87)

The G-form equation of motion reduces to,

d
(
eφ/2+2A+2B �4 dξ

)
= h ∧ dξ′

d
(
eφ/2+2A+2B �4 dξ′

)
= −h ∧ dξ

d
(
eφ/2+2A �4 (dγ − α ∧ dχ)

)
= 2dχ ∧ dγ + c0dβ ,

(3.88)

together with the constraint,

0 = d
(
ϕeφ/2+2A−4B + 3c0χ

)
. (3.89)

This can be readily integrated to give,

ϕ = e−φ/2−18A(c1 − 3c0χ) . (3.90)
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Since χ only appears in the equations of motion through its derivatives or through ϕ, we may
absorb c1 by redefining χ. This corresponds to a gauge transformation of the ten-dimensional
B-field. We will thus set c1 to zero in the following.

The Lagrangian
As we can see from (3.31) the scalar B(x) can be redefined away by absorbing it in the 4d

metric. This freedom can be exploited in order to obtain a 4d consistent truncation directly
in the Einstein frame. The appropriate choice is,

B = −4A . (3.91)

With this choice one can check that the ten-dimensional equations given in (3.82)-(3.89) all
follow from the 4d action,

S4 =
∫

d4x
√

g
(
R − 24(∂A)2 − 1

2(∂φ)2 − 3
2e−4A−φ(∂χ)2 − 1

2e−6A+φ/2
[
(∂ξ)2 + (∂ξ′)2

]
− 1

4e3φ/2+6Adα2 − 3
4eφ/2+2A(dγ − α ∧ dχ)2 − 1

12e−φ+12Adβ2 − 9
2e−φ/2−18Ac2

0χ2 − 3
2eφ/2−14Ac2

0

)
+
∫

3c0dγ ∧ β + 3c0χ α ∧ dβ + 3χ dγ ∧ dγ − β ∧ dξ ∧ dξ′ .

(3.92)

Furthermore equation (3.87) can be solved in order to express dβ in terms of a scalar b (the
“axion”),

dβ = eφ−12A �4
[
db + 1

2(ξdξ′ − ξ′dξ) + 3c0(γ − χα)
]

, (3.93)

where we chose the gauge most symmetric in ξ, ξ′. The Lagrangian becomes, in terms of the
axion,

S4 =
∫

d4x
√

g
(
R − 24(∂A)2 − 1

2(∂φ)2 − 3
2e−4A−φ(∂χ)2 − 1

2e−6A+φ/2
[
(∂ξ)2 + (∂ξ′)2

]
− 1

4e3φ/2+6Adα2 − 3
4eφ/2+2A(dγ − α ∧ dχ)2 − 1

2eφ−12A (db + ω)2

− 9
2e−φ/2−18Ac2

0χ2 − 3
2eφ/2−14Ac2

0

)
+
∫

3χ dγ ∧ dγ ,

(3.94)

where we have set,
ω := 1

2(ξdξ′ − ξ′dξ) + 3c0(γ − χα) . (3.95)

Including background three-form flux
We can include background three-form flux by modifying the form ansatz (3.79) as follows,

F = dα ; H = dχ ∧ J + dβ +
1
2

Re
(
b0Ω∗)

G = ϕvol4 +
1
2

c0J ∧ J + J ∧ (dγ − α ∧ dχ) − 1
2

Dξ ∧ ImΩ − 1
2

Dξ′ ∧ ReΩ ,
(3.96)

where we have introduced a background charge b0 ∈ C. The covariant derivatives are given
by,

Dξ := dξ + b1α ; Dξ′ := dξ′ + b2α , (3.97)

where we set b0 = ib1+b2. We see that the inclusion of a background charge for the three-form
has the effect of gauging the isometries of the RR axions.
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The modified form ansatz (3.96) is such that it automatically satisfies the Bianchi iden-
tities. At the level of the Lagrangian, the modification amounts to replacing: dξ → Dξ,
dξ′ → Dξ′, and adding a potential term,

S4 → S4 −
∫

d4x
√

g 1
2 |b0|2e−φ−12A . (3.98)

3.3 Gravitini condensation

3.3.1 Derivative corrections

Four-derivative corrections to the 4d effective action resulting from compactification of the
IIA superstring on CY threefolds have been known since [45]. Most recently they have
been computed in [46] from compactification of certain known terms of the ten-dimensional
IIA tree-level and one-loop superstring effective action at order α′3. The authors of that
reference take into account the graviton and B-field eight-derivative terms given in [47, 48],
but neglect e.g. the dilaton derivative couplings and RR couplings of the form R2(∂F )2 and
∂4F 4 calculated in [49]. Furthermore [46] neglects loop corrections from massive KK fields.6

In a low-energy expansion, the 4d effective action takes the schematic form [51],

2κ2S =
∫

dx4√
g
(
R + β1α′R2 + β2α′2R3 + β3α′3R4

)
, (3.99)

where κ is the four-dimensional gravitational constant, and a Weyl transformation must
be performed to bring the action to the 4d Einstein frame.7 Moreover each coefficient in
the series can be further expanded in the string coupling to separate the tree-level from
the one-loop contributions. Although all the higher-derivative terms in (3.99) descend from
the eight-derivative ten-dimensional α′3-corrections, they correspond to different orders of
the 4d low-energy expansion. Indeed if ls = 2π

√
α′, l4d and lY are the string length, the

four-dimensional low-energy wavelength and the characteristic length of Y respectively, we
have,

ls � lY � l4d . (3.100)

Moreover the term with coefficient βn in (3.99) is of order,(
ls
l4d

)2n ( ls
lY

)6−2n

; n = 1, 2, 3 , (3.101)

relative to the Einstein term, so that the n = 1 term dominates the n = 2, 3 terms in (3.99).
The ten-dimensional IIA supergravity (two-derivative) action admits solutions without

flux of the form R
1,3×Y , where Y is of SU(3) holonomy (which for our purposes we take to be

a compact CY). A sigma model argument [52] shows that this background can be promoted
to a solution to all orders in α′, provided the metric of Y is appropriately corrected at each

6Presumably the KK loop corrections are subleading and vanish in the large-volume limit (see however [50]
for an exception to this statement). At any rate these corrections are dependent on the specific CY and at the
moment can only be computed on a case-by-case basis, e.g. around the orbifold limit where the CY reduces to
T 6/Γ with Γ a discrete group. Winding modes are heavier than KK modes in a regime where (3.100) holds.

7As emphasized in [46], in computing the 4d effective action the compactification must be performed around
the solution to the α′-corrected equations of motion. This procedure can thus generate α′-corrections also
from the compactification of the ten-dimensional Einstein term.
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order in such a way that it remains Kähler.8 Indeed [46] confirms this to order α′3 and derives
the explicit corrections to the dilaton and the metric, which is deformed away from Ricci-
flatness at this order. Their derivation remains valid for backgrounds of the form M4 × Y ,
where M4 is any Ricci-flat four-dimensional space.

Within the framework of the effective 4d theory, nonperturbative gravitational instanton
corrections arise from vacua of the form M4 ×Y , where M4 is an ALE space. These instanton
contributions are weighted by a factor exp(−S0), where S0 is the 4d effective action evaluated
on the solution M4 × Y . Subject to the limitations discussed above, and taking into account
the Ricci-flatness of the metric of M4, the IIA 4d effective action of [46] reduces to,

2κ2S0 = β1α′
∫

M4
dx4√

gRκλμνRκλμν , (3.102)

where in the conventions of [46],9

κ2 = πα′ ; MP = 2
√

π l−1
s , (3.103)

with MP = κ−1 the (reduced) 4d Planck mass and β1 given by,

l6sβ1 = 29π4α′2
∫

Y
c2 ∧ J , (3.104)

where c2 is the second Chern class of Y . For a generic Kähler manifold we have,

c2 ∧ J =
1

32π2

(
R2

mnkl − R2
mn +

1
4
R2
)

vol6 , (3.105)

where we have adopted real notation and defined Rmn := RmnklJ
kl, R := RmnJmn. The

contractions are taken with respect to the metric compatible with the Kähler form J and the
connection of the Riemann tensor.

The information about Y enters the 4d effective action through the calculation of β1.
Since β1 multiplies a term which is already a higher-order correction, it suffices to evaluate
it in the CY limit (for which Rmn vanishes). We thus obtain,

β1 =
1

π2l2s

∫
Y

d6x
√

g R2
mnkl > 0 . (3.106)

Therefore the leading instanton contribution comes from the ALE space which minimizes the
integral in (3.102). This is the EH space [54], cf. (3.113), so that,

S0 =
24
πl2s

∫
Y

d6x
√

g R2
mnkl > 0 . (3.107)

8It should be possible to generalize the sigma-model argument of [52] to the case of backgrounds of the
form M4 × Y , where M4 is an ALE space, along the lines of [53].

9 The ten-dimensional gravitational constant of [46] 2κ2
10 = (2π)7α′4, cf. (2.4) therein, is related to the

four-dimensional one via κ2 = κ2
10/l6

s . Note in particular that eqs. (4.9) and (4.19) of that reference are given
in units where ls = 2π

√
α′ = 1: to reinstate engineering dimensions one must multiply with the appropriate

powers of ls. The 4d Einstein term in (3.99) has been canonically normalized via a Weyl transformation of
the 4d metric. This affects the relative coefficient between two- and four-derivative terms in the action: note
in particular that the right-hand side of (3.102) is invariant under Weyl transformations. We thank Kilian
Mayer for clarifying to us the conventions of [46].
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Note that S0 does not depend on the dilaton: this is related to the fact that, starting from
an action of the form

∫
d4x

√
g(e−2φR + β1α′R2

μνρσ), the dilaton exponential can be absorbed
by a Weyl transformation of the form gμν → e2φgμν , cf. footnote 9. Therefore we have,

S0 = c

(
lY
ls

)2
, (3.108)

with c a positive number of order one.

3.3.2 ALE instantons

Asymptotically locally Euclidean (ALE) spaces, see e.g. [55] for a review, are noncompact
self-dual gravitational instantons, i.e. their Riemann tensor obeys,

1
2

εμνρσRκλ
ρσ = Rκλμν . (3.109)

From the above and the identity R[κλμ]ν = 0, it follows that the ALE spaces are Ricci-flat,

Rμν = 0 . (3.110)

These spaces asymptote S3/Zk+1 at spatial infinity, with k ∈ N (the case k = 0 corresponds
to R

4). The simplest nontrivial example in this class is the EH space [56], which corresponds
to k = 1. Explicitly the metric reads,

ds2 = dr2(1 − a4

r4
)−1 + 1

4r2
(
σ2

1 + σ2
2 +
(
1 − a4

r4
)
σ2

3

)
, (3.111)

where a > 0 is an arbitrary constant, and,

σ1 = sin ψdθ−sin θ cos ψdφ ; σ2 = − cos ψdθ−sin θ sin ψdφ ; σ3 = dψ +cos θdφ . (3.112)

For the coordinate ranges a ≤ r, 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π, 0 ≤ ψ ≤ 2π, the manifold can be
seen to be smooth with boundary given by RP

3 = S3/Z2 at asymptotic infinity. (We would
have an asymptotic S3 if 0 ≤ ψ ≤ 4π). The Hirzebruch signature τ of a self-dual space is
given by,

τ =
1

48π2

∫
dx4√

gRκλμνRκλμν ∈ N . (3.113)

As can be verified using (3.111), the EH gravitational instanton is the ALE space with the
smallest Hirzebruch signature, τ = 1. More generally it can be shown that τ = k, with k as
given below eq. (3.110).

It is convenient to use a gauge in which not only the curvature but also the connection is
self-dual [55],

ωab =
1
2

εabcdωcd . (3.114)

In this gauge the covariant derivative reduces to a simple derivative on negative chirality
spinors,

∇μθα = ∂μθα +
1
4

ωab
μ (γab)α

βθβ = ∂μθα , (3.115)

where in the last equality we took (A.26), (3.114) into account. It follows in particular that
covariantly-constant negative-chirality spinors are just constant. We may therefore choose
their basis θα

(1), θα
(2) as follows, in the chiral gamma-matrix basis of appendix A,

θα
(1) =

(
1
0

)
; θα

(2) =
(

0
1

)
. (3.116)
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The Atiyah-Patodi-Singer theorem for ALE spaces predicts an equal number of positive- and
negative-chirality spinor zeromodes for the Dirac operator /∇ [57]. On the other hand we
have, (

/∇2
θ
)α =

(
∇2θ + γμν∇μ∇νθ

)α
=
(
∇2θ +

1
8

Rμνρσγμνγρσθ
)α

=
(
∇2θ
)α

,

(3.117)

where in the last equality we took (3.110) into account. It follows that negative-chirality
zeromodes are (covariantly) constant, hence non-normalizable since the ALE space is non-
compact. It thus follows from the index theorem that there are no (normalizable) spinor
zeromodes of the Dirac operator.

For a spin-1 field10 the index theorem predicts that the number of positive-chirality ze-
romodes of the Dirac operator minus the number of negative-chirality zeromodes is equal to
the Hirzebruch signature of the ALE space. We now have,(

/∇2
φ
)

αβ
=
(
∇2φ

)
αβ

+
1
8

Rμνρσ (γμν)α
α′

(γρσ)β
β′

φα′β′ ;
(

/∇2
φ
)αβ =

(
∇2φ

)αβ
, (3.118)

where in the second equation we took (A.26) into account. By the same argument as before,
it follows that φαβ is covariantly constant, hence non-renormalizable. Therefore there are no
spin-1 fields of negative chirality. By the index theorem it follows that there are τ spin-1
zeromodes of positive chirality (i.e. one zeromode for the EH space).

A massless gravitino ψμ is also a zeromode of the Dirac operator /∇, in the gauge γμψμ = 0.
By a similar argument as before, there are 2τ spin-3/2 zeromodes of positive chirality. These
can be constructed as follows,

ψ(i)μα = φαβθγ
(i)

(
C−1γμ

)
γ

β ; i = 1, 2 , (3.119)

where θ(i) are the covariantly-constant spinors of (3.116), and φαβ are the positive-chirality
spin-1 zeromodes of (3.118). Indeed we verify that the ψ(i)μα are traceless,

(γμ)αβ ψ(i)μα = 0 ; i = 1, 2 , (3.120)

as follows from (3.119) and the identity
(
C−1γμ

)
(γ

β
(
C−1γμ

)
δ)

α = 0. Moreover they obey
the zeromode equation, (

/∇2
ψμ
)

α
=
(
∇2ψμ +

1
2

γρσRμρσ
νψν
)

α
= 0 , (3.121)

where we used (3.119) and the Hodge duality relations (A.24).

3.3.3 Gravitino condensates in 4d N = 1 supergravity

Within the context of 4d N = 1 supergravity, the condensate 〈ψμψ′
μ〉 was shown in [57] to

be proportional to the zeromode bilinear. From (3.119) we get,

ψ̃(1)μψμ
(2) = f ; f := 2CαβφβγCγδφδα , (3.122)

10By a “spin-1 field” we understand a field transforming in the three-dimensional irreducible representation
of the su(2) algebra. It can be thought of as a field with two symmetric spinor indices of the same chirality,
φαβ = φβα (positive chirality) or φαβ = φβα (negative chirality).
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where f is a positive function on the ALE space, and we have normalized θ̃(1)θ(2) = 1. In
deriving the above we have noted that φαγCγδφδβ is antisymmetric in its free indices, therefore
it is necessarily proportional to Cαβ , since there is a unique scalar in the decomposition of
the antisymmetric product of two spinors of positive chirality. For the EH space, cf. (3.111),
f can be given explicitly as in [58],

f = 16
(a

r

)8
. (3.123)

The zeromode normalization can thus be inferred from,∫
d4x

√
g ψ̃(1)μψμ

(2) =
1
2

Vol(S3)
∫ ∞

a
dr r3f = 4π2a4 , (3.124)

where the “spherical” coordinates in (3.111) are related to the cartesian coordinates xμ in
the usual way, except that antipodal points on S3 are identified, see below (3.112).

To calculate the gravitino bilinear we follow [58] who adopt the prescription of [59] for
the functional integration over metrics. As shown explicitly in [58] in the case of 4d N = 1
supergravity, expanding the action around the EH instanton saddle point and performing the
Gaussian integrations, the one-loop determinants from all massive modes cancel out thanks
to supersymmetry. One is then left with the integration over zeromodes. The latter reduces
to an integration over the instanton size,

〈ψ̃μψμ〉 = const. MP e−S0
∫

da a5 ψ̃(1)μψμ
(2)

= const. MP e−S0
∫

da a5
(a

r

)8
a−4 ,

(3.125)

where we have used (3.122), (3.123) and normalized ψμ → ψμ/(2πa2), cf. (3.124); the re-
maining power of a comes from the Jacobian of the transformation from the integration over
metric zeromodes to the integration over the instanton moduli.

The integration in (3.125) would seem to depend on the spacetime position, since a is
bounded above by the radial distance r. In order to overcome this problem, [58] performs a
coordinate transformation,

x̃μ =
u

r
xμ ; u := r

√
1 −
(

a
r

)4
, (3.126)

which has the effect of changing the radial coordinate from r ≥ a to u ≥ 0. We can then
rewrite (3.125) as follows,

〈ψ̃μψμ〉 = const. MP e−S0
∫ ∞

0
da a9(u2 +

√
4a4 + u4)−4

. (3.127)

This integral diverges for a → ∞ at fixed u. In contrast, the same calculation for the gravitino
fieldstrength bilinear 〈(∇[μψν])2〉 yields a finite result [58]. This is due to the fact that the two
derivatives bring about an extra (u/r2)2 factor compared to the integrand in (3.127), which
contributes an extra a−4 factor in the a → ∞ limit. However even this finite result seems to
rely on the coordinate system (3.126). This does not seem satisfactory: for diffeomorphism
invariance to be respected, the result should be independent of the coordinate system used
for its calculation.

One may argue that the divergence/ambiguity encountered is not surprising since the 4d
theory is nonrenormalizable and should anyway be thought of as an effective low-energy limit
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of string theory. On general grounds, at one loop in the gravitational coupling, one expects
a gravitational instanton contribution to the condensate of the form,

〈ψ̃μψμ〉 ∝ MP e−S0 ∝ l−1
s e−c (lY /ls)2

, (3.128)

up to proportionality constants of order one, where in the second proportionality we have
taken (3.103), (3.108) into account. Similarly, the quartic gravitino condensate receives
contributions from the ALE with τ = 2 and scales as the square of the bilinear condensate
above.

3.3.4 Consistent truncation with condensates

In Euclidean signature the supersymmetric IIA action is constructed via the procedure of
holomorphic complexification, see e.g. [60]. This amounts to first expressing the Lorentzian
action in terms of Ψ̃M instead of Ψ̄M (which makes no difference in Lorentzian signature)
and then Wick-rotating, see appendix A for our spinor and gamma-matrix conventions. In
this way one obtains a (complexified) Euclidean action which is formally identical to the
Lorentzian one, with the difference that now the two chiralities Ψ±

M , should be thought
of as independent complex spinors (there are no Majorana Weyl spinors in ten Euclidean
dimensions). Although the gravitino ΨM is complex in Euclidean signature, its complex
conjugate does not appear in the action, hence the term “holomorphic complexification”.

Since we are interested in the case where only the 4d gravitino condenses, we expand the
10d gravitino as follows,

Ψm = 0 ; Ψμ+ = ψμ+ ⊗ η − ψμ− ⊗ ηc ; Ψμ− = ψ′
μ+ ⊗ ηc − ψ′

μ− ⊗ η , (3.129)

so that,
Ψ̃μ+ = ψ̃μ+ ⊗ η̃ + ψ̃μ− ⊗ η̃c ; Ψ̃μ− = ψ̃′

μ+ ⊗ η̃c + ψ̃′
μ− ⊗ η̃ . (3.130)

In Lorentzian signature the positive- and negative-chirality 4d vector-spinors above are re-
lated though complex conjugation: θ̄μ

+ = θ̃μ
−, θ̄μ

− = −θ̃μ
+, so that ΨM is Majorana in 10d:

Ψ̄M = Ψ̃M . Upon Wick-rotating to Euclidean signature this is no longer true, and the two
chiralities transform in independent representations. As already mentioned, in the present
paper we focus on the contribution of ALE gravitational instantons to the fermion conden-
sate. In this case there are no negative-chirality zeromodes and we can set,

ψμ
− = ψ′μ

− = 0 . (3.131)

For any two 4d positive-chirality vector-spinors, θμ
+, χμ

+, the only nonvanishing bilinears read,

(
θ

[μ1
+ γμ2μ3χ

μ4]
+
)

=
is

12
εμ1μ2μ3μ4

(
θλ

+γλρχρ
+
)

;
(
θλ

+χλ+
)

, (3.132)

where we used the Fierz identity (A.23) and the Hodge duality relations (A.24); s = 1, 2
for Lorentzian, Euclidean signature respectively. Ultimately we will be interested in gamma-
traceless vector-spinors,

γμθμ
+ = γμχμ

+ = 0 , (3.133)

since all ALE zeromodes can be put in this gauge [57]. In this case we obtain the additional
relation, (

θλ
+γλρχρ

+
)

= −
(
θλ

+χλ+
)

. (3.134)
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Assuming, as is the case for ALE spaces, that only positive-chirality zeromodes exist in
four dimensions, cf. (3.131), the only nonvanishing bilinear condensates that appear in the
equations of motion are proportional to,

A :=
(
ψ̃μ+γμνψ′

ν+

)
= −

(
ψ̃μ

+ψ′
μ+

)
, (3.135)

where in the second equality we have assumed that ψμ
+, ψ′μ

+ are gamma-traceless, cf. (3.133).
Furthermore we note the following useful results,(

Ψ̃ρΓ(μΓM1...M4ΓρΨν)

)
GM1...M4 = 24(3c0e−4A + ϕe−4A−4B)Agμν(

Ψ̃ρΓσΓ(μ
M2M3M4ΓρΨσ

)
Gν)M2M3M4 = 24ϕe−4A−4BAgμν(

Ψ̃ρΓσΓ(m
M2M3M4ΓρΨσ

)
Gn)M2M3M4 = 48c0Ae−4A−2Bgmn ,

(3.136)

where on the left-hand sides above we used the warped metric for the contractions, while on
the right-hand sides we used the unwarped metric. In the 4d theory, these bilinears receive
contributions from the EH instanton at one loop in the gravitational coupling.

In the presence of gravitino condensates the equations of motion (3.82)-(3.89) are modified
as follows: the internal (m, n)-components of the Einstein equations read,

0 = e−8A−2B∇μ
(
e8A+2B∂μA

)
+ · · · +

1
4

(
ϕeφ/4−4A−4B − c0eφ/4−4A

)
A − 1

8
e2A+2BLΨ4 ,

(3.137)

where the ellipses stand for terms that are identical to the case without fermion condensates.
The external (μ, ν)-components read,

R(4)
μν = · · · − 1

2
gμνeφ/4−4A−4BϕA , (3.138)

while the mixed (μ, m)-components are automatically satisfied. The dilaton equation reads,

0 = e−10A−4B∇μ
(
e8A+2B∂μφ

)
+ · · · + 1

4(3c0eφ/4+2A + ϕeφ/4+2A−4B)A . (3.139)

The F -form and H-form equations are modified as follows,

d(e3φ/2+6A �4 dα) = . . . +eφ/4+4A−2BA dβ , (3.140)

and,
d
(
e−φ+4A−2B �4 dβ

)
= . . . +eφ/4+4A−2BA dα , (3.141)

respecively. The G-form equation of motion remains unchanged except for the constraint,

0 = d
(
ϕeφ/2+2A−4B + 3c0χ + eφ/4+4A−2BA

)
. (3.142)

In deriving the above we have taken into account that,

(Ψ̃M Γ[M Γ(4)ΓN ]ΨN ) = 2Ae2A+2B
(

vol4 − 1
2

e−4BJ ∧ J

)
. (3.143)

At this stage it is important to notice that the new A terms in the flux equations (3.140)
and (3.141) exactly compensate the modification of ϕ in (3.142), so that the form equations
are ultimately unchanged in the presence of fermion condensates.
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Of the 24 quartic gravitino terms that appear in the action of [17] only the following are
nonvanishing,(

Ψ̃μΓ11Ψν

) (
Ψ̃μΓ11Ψν

)
= 4
(
ψ̃

[μ
+ ψ

′ν]
+

)2
e−4A−4B(

Ψ̃μ1Γ11Γμ1...μ4Ψμ2
) (

Ψ̃μ3Γ11Ψμ4
)

= −1
6

(
Ψ̃μ1Γμ1...μ4mnΨμ2

) (
Ψ̃μ3ΓmnΨμ4

)
= −

(
8ψ̃[ν+ψ′

ρ]+ + 4ψ̃μ
+γρνψ′

μ+

) (
ψ̃ρ

+ψ′ν
+

)
e−4A−4B(

Ψ̃[M1ΓM2M3ΨM4]
)2

= 4
(
ψ̃

[μ1
+ γμ2μ3ψ

′μ4]
+

)2
e−4A−4B − 2

3

(
ψ̃

[μ
+ ψ

′ν]
+

)2
e−4A−4B ,

(3.144)

where for the contractions on the left-, right-hand sides above we have used the warped,
unwarped metric respectively. We thus obtain, cf. (3.75),

LΨ4 =
1
4

(Ψ̃M Γ11ΨN )2 +
1
8

Ψ̃M1Γ11ΓM1···M4ΨM2 Ψ̃M3Γ11ΨM4

+
1
16

Ψ̃M1ΓM1···M6ΨM2 Ψ̃M3ΓM4M5ΨM6 +
3
4

(Ψ̃[M1ΓM2M3ΨM4])2

= e−4A−4BB ,

(3.145)

where we have defined,

B := −3
2

(ψ̃[μψ′
ν])

2 + (ψ̃μγρνψ′
μ)(ψ̃ρψ′ν) + 3(ψ̃[μ1γμ2μ3ψ′

μ4])
2 , (3.146)

which does not depend on the warp factor. In the 4d theory, at one-loop order in the gravi-
tational coupling, the quartic gravitino term receives contributions from the ALE instanton
with τ = 2 (four spin-3/2 zeromodes).

The Lagrangian
Imposing (3.91) as before, and solving once again for ϕ,

ϕ = e−φ/2−18A
(
−3c0χ − eφ/4+12AA

)
, (3.147)

it can now be seen that the ten-dimensional equations in the presence of gravitino condensates
all follow from the 4d action,

S4 =
∫

d4x
√

g
(
R − 24(∂A)2 − 1

2(∂φ)2 − 3
2e−4A−φ(∂χ)2 − 1

2e−6A+φ/2
[
(Dξ)2 + (Dξ′)2

]
− 1

4e3φ/2+6Adα2 − 3
4eφ/2+2A(dγ − α ∧ dχ)2 − 1

12e−φ+12Adβ2 − V
)

+
∫

3c0dγ ∧ β + 3c0χ α ∧ dβ + 3χ dγ ∧ dγ − β ∧ Dξ ∧ Dξ′ ,

(3.148)

where the potential of the theory is given by,

V (χ, φ, A) = 9
2c2

0χ2e−φ/2−18A + 3
2c2

0eφ/2−14A + 1
2 |b0|2e−φ−12A

+ 3c0χAe−φ/4−6A − 3c0Aeφ/4−4A + e6A(B + 1
2A2) .

(3.149)

Note that in integrating the 4d Einstein equation (3.138), care must be taken to first substi-
tute in the right-hand side the value of ϕ from (3.147), and take into account the variation
of the condensates A, B with respect to the metric.
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The relation (3.93) between β and the axion is unchanged. In terms of the axion, the
action reads,

S4 =
∫

d4x
√

g
(
R − 24(∂A)2 − 1

2(∂φ)2 − 3
2e−4A−φ(∂χ)2 − 1

2e−6A+φ/2
[
(Dξ)2 + (Dξ′)2

]
− 1

4e3φ/2+6Adα2 − 3
4eφ/2+2A(dγ − α ∧ dχ)2 − 1

2eφ−12A(db + ω̃)2 − V
)

+
∫

3χ dγ ∧ dγ ,

(3.150)
where we have set,

ω̃ := 1
2(ξDξ′ − ξ′Dξ) + 3c0(γ − χα) . (3.151)

Note that the three axionic scalars ξ, ξ′, b, remain flat directions even in the presence of the
flux and the condensate.

3.3.5 Vacua

Maximally-symmetric solutions of the effective 4d theory (3.150) can be obtained by setting
the vectors to zero,

α = γ = 0 , (3.152)

and minimizing the potential of the theory,

∂χV (χ0, φ0, A0) = ∂φV (χ0, φ0, A0) = ∂AV (χ0, φ0, A0) = 0 , (3.153)

where (χ, φ, A) = (χ0, φ0, A0) is the location of the minimum in field space. Then the Einstein
equations determine the scalar curvature of the 4d spacetime to be,11

R = 9c2
0χ2

0e−φ0/2−18A0 +3c2
0eφ0/2−14A0 + |b0|2e−φ0−12A0 +3c0χ0Ae−φ0/4−6A0 −3c0Aeφ0/4−4A0 ,

(3.154)
and we assume that a Wick rotation has been performed back to Minkowski signature.

Condition (3.153) admits two classes of solutions.
Case 1: c0 = 0
In this case, imposing the vanishing of ∂φV sets b0 = 0, and the potential only depends

on the warp factor A. A minimum is obtained at finite value of A provided,

B = −1
2A2 , (3.155)

and requires the quartic condensate to be negative. From (3.154) it then follows that R = 0,
and we obtain a Minkowski 4d vacuum. In fact the potential vanishes identically.

Case 2: c0 �= 0
In this case (3.153) can be solved for finite values of φ and A. The value of χ at the

minimum is given by,
χ0 = − A

3c0
g1/4

s e12A0 , (3.156)

where we have set gs := eφ0 . The values of φ0 and A0 at the minimum can be adjusted
arbitrarily, and determine |b0| and c0 in terms of the condensates,

|b0|2 =
3

400
gse18A0

(
40B − 21A2 ∓ 3A

√
49A2 + 80B

)
c0 =

1
20

g−1/4
s e10A0

(
7A ±

√
49A2 + 80B

)
,

(3.157)

11Note that (3.154) is different from the standard relation R = 2V0. This is because the condensates A, B
have non-trivial variations with respect to the metric.
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where the signs in b0 and c0 are correlated. Henceforth we will set eA0 = 1, since the warp
factor at the minimum can be absorbed in lY .

Consistency of (3.157) requires the quartic condensate to obey the constraint,

B > 0 , (3.158)

and correlates the sign of A with the two branches of the solution: the upper/lower sign in
(3.157) corresponds to A negative/positive, respectively.12

From (3.154) it then follows that,

RdS = 3g−1
s |b0|2 ∝ l−2

s e−2c (lY /ls)2
, (3.159)

up to a proportionality constant of order one. We thus obtain a de Sitter 4d vacuum,
provided (3.158) holds. In the equation above we have taken into account that the quadratic
and quartic condensates are expected to be of the general form, cf. the discussion around
(3.128),

A ∝ l−1
s e−c (lY /ls)2

; B ∝ l−2
s e−2c (lY /ls)2

, (3.160)

up to proportionality constants of order one.
We have verified numerically, as a function of A2/B, that all three eigenvalues of the

Hessian of the potential are positive at the solution. I.e. the solution is a local minimum of
the potential (3.149).

Flux quantization
The four-form flux is constrained to obey,13

1
l3s

∫
CA

G ∈ Z , (3.161)

where {CA ; A = 1, . . . , h2,2} is a basis of integral four-cycles of the CY, CA ∈ H4(Y,Z).
From (3.96), (3.157), (3.160) we then obtain,

nA ∝ g−1/4
s

( lY
ls

)4
e−c (lY /ls)2

vol(CA) , (3.162)

up to a proportionality constant of order one; vol(CA) is the volume of the four cycle CA in
units of lY , and nA ∈ Z. Since the string coupling can be tuned to obey gs � 1 independently
of the lY /ls ratio, (3.162) can be solved for vol(CA) of order one, provided we take nA

sufficiently close to each other. Given a set of flux quanta nA, this equation fixes the Kähler
moduli in units of lY ; the overall CY volume is set by lY , which remains unconstrained.

Note that even if we allow for large flux quanta in order to solve the flux quantization
constraint, it can be seen that higher-order flux corrections are subdominant in the gs � 1
limit. Indeed the parameter that controls the size of these corrections is |gsG|, which scales
as g

3/4
s .
Similarly, the three-form flux is constrained to obey,

1
l2s

∫
CA

H ∈ Z , (3.163)

12If B > 3A2/2, we may also take the upper/lower sign in (3.157) for A positive/negative, respectively.
Equation (3.158) is the weakest condition on the quartic condensate that is sufficient for consistency of the
solution.

13The Page form corresponding to G is given by Ĝ := G − H ∧ α, which is closed. The difference between
G and Ĝ vanishes when integrated over four-cycles of Y .
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where {CA ; A = 1, . . . , h2,1} is a basis of integral three-cycles of the CY, CA ∈ H3(Y,Z).
From (3.96) we can see that this equation constrains the periods of Ω, and hence the complex-
structure moduli of Y .

3.3.6 Discussion

The validity of the de Sitter solutions presented here requires the higher-order string-loop
corrections in the 4d action to be subdominant with respect to the ALE instanton contribu-
tions to the gravitino condensates. Since the latter do not depend on the string coupling,
cf. (3.160), there is no obstruction to tuning gs to be sufficiently small, gs � 1, in order for
the string-loop corrections to be negligible with respect to the instanton contributions.

The lY /ls ratio can be tuned so that the condensates are of the order of the Einstein term
in the 4d action, thus dominating 4d higher-order derivative corrections. This requires,

l−2
4d ∼ RdS ∝ l−2

s e−2c (lY /ls)2
, (3.164)

where we have taken (3.159) into account. Current cosmological data give,

RdS

M2
P

∼
( ls

l4d

)2
∼ 10−122 . (3.165)

From (3.164) we then obtain lY /ls ∼ 10 for c of order one, cf. (3.108).
In addition to the higher-order derivative corrections, the 4d effective action receives

corrections at the two-derivative level, of the form (ls/lY )2n with n ≥ 1. These come from a
certain subset of the 10d tree-level α′ corrections (string loops are subleading), which include
the R2(∂F )2 corrections of [49]. Given the lY /ls ratio derived above, these corrections will
be of the order of one percent or less.

As is well known, the vacua computed within the framework of consistent truncations,
such as the one constructed in the present section, are susceptible to destabilization by
modes that are truncated out of the spectrum. This is an issue that needs to be addressed
before one can be confident of the validity of the vacua presented here. The stability issue
is particularly important given the fact that, in the presence of a non-vanishing gravitino
condensate, supersymmetry will generally be broken.

Ultimately, the scope of the path integral over metrics approach to quantum gravity is
limited, since the 4d gravity theory is non-renormalizable. Rather it should be thought of as
an effective low-energy limit of string theory. A natural approach to gravitino condensation
from the string/M-theory standpoint, would be to try to construct brane-instanton analogues
of the four-dimensional gravitational instantons. The fermion condensates might then be
computed along the lines of [61, 62, 63].

Another interesting direction would be to try to embed the consistent truncation of the
present paper within the framework of N = 2 4d (gauged) supergravity. On general grounds
[64], we expect the existence of a consistent truncation of a higher-dimensional supersymmet-
ric theory to the bosonic sector of a supersymmetric lower-dimensional theory, to guarantee
the existence of a consistent truncation to the full lower-dimensional theory. The condensate
would then presumably be associated with certain gaugings of the 4d theory. It would be
very interesting to investigate if such gaugings can be accomodated within the framework of
[65].
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4 D-branes and Non Abelian T Duality

Submitted: [4] R. Terrisse, D. Tsimpis and C. A. Whiting, “D-branes and non-Abelian
T-duality,” arXiv:1811.05800 [hep-th]

Non Abelian T-Duality (NATD) is a transformation relating different solutions of type II
supergravity. The duality relies on the existence of an isometry group on the initial solution.
When the rank of the isometry group is odd, NATD sends a IIA solution to a IIB solution
and conversely, while a group of even rank preserves the type. Thus NATD can be used
as a powerful solution generating tool in supergravity. In general solutions constructed with
NATD are highly non trivial, and it is unlikely that such solutions could have been determined
through other techniques. When the group is abelian (typically U(1)) one rather speak of
T-duality which, unlike NATD, can be lifted to a duality between type IIA and type IIB
string theory.

Non abelian dualities where introduced in [66]. The most direct way to compute the dual
solution is to use the Büscher rules, which are given explicitly in appendix C. These are a
direct generalization of the Büsher rules of [67] for T-duality. Originally these rules only
determine the transformation for the (NS,NS) sector. The transformation rules of the (R,R)
fluxes were derived more recently in [68], after which the interest for NATD got renewed, see
for example [69, 70, 71, 72, 73, 74, 75, 76, 77].

The point of this chapter is to study the effect of NATD on brane configurations. The
isometry group for the duality will be SU(2): see [70] for an explicit expression of the Büscher
rules for this case. The idea is that looking at full brane solutions will enable to follow the
interpolation between the near horizon and spatial infinity limits and give more freedom to
handle the dual configurations. The branes will then be tracked down by computing the flux
charges.

Throughout the chapter NATD will be applied to several brane configurations that are
known to be solutions of type II supergravity. For all these configurations the dual of the
near horizon limit has already been studied in the literature. Following those endeavors we
compute and study here the dual of the full interpolating solutions. The basic D3 brane
solution of type IIB supergravity will be considered first as a warm-up. The insights thus
acquired will be used to study several more involved configurations, namely type IIA D2
brane solutions coming from the reduction of M2 branes in 11 dimensions. Special attention
will be devoted to the supersymmetric D2. Its supersymmetry will be explicitly checked
using the generalized spinor formalism. The same framework will also be used to investigate
on the existence of a massive deformation.
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4.1 D3 brane

The metric describing a stack of parallel D3 branes is given by,

ds2 = H(r)−1/2ds2(R1,3) + H(r)1/2[dr2 + r2ds2(S5)] , (4.1)

where H(r) = (1 + L4

r4 ). The S5 is parameterized as follows,

ds2(S5) = dα2 + sin2α dθ2 + 1
4 cos2α (σ2

1 + σ2
2 + σ2

3) , (4.2)

where α ∈ [0, π
2 ], θ ∈ [0, 2π], and σi are left-invariant SU(2) Maurer Cartan one-forms given

by,

σ1 = − sin ψ1dθ1 + cos ψ1 sin θ1dφ1

σ2 = cos ψ1dθ1 + sin ψ1 sin θ1dφ1

σ3 = cos θ1dφ1 + dψ1 ,

(4.3)

with ranges ψ1 ∈ [0, 4π], θ1 ∈ [0, π], φ1 ∈ [0, 2π]. This background is supported by a constant
dilaton and an F5 flux given by,

F5 = (1+�)dx0∧dx1∧dx2∧dx3∧dH(r)−1 = dx0∧dx1∧dx2∧dx3∧dH(r)−1−4L4dΩ5 . (4.4)

Upon quantization of the five-form flux, one obtains the well-known relation between the
constant L in the harmonic function and the number ND3 of D3 branes: L4 = 4πα′2ND3.

The D3 branes lie along the R
1,3 directions. This can be seen in a probe approach.

Consider the same expression as (4.4) for a flux living now in R
1,9. The coordinates now

refer to the metric (4.1), but with H = 1. Since in spherical coordinates the S5 collapses
at r = 0, its volume form dΩ5 is ill-defined. However F5 is a well-defined current (i.e. a
distribution-valued form) and we can compute:

dF5 = d � F5 = 4L4δ(r)dr ∧ dΩ5 (4.5)

This means that a brane is inserted in r = 0. In this coordinate system this is a codi-
mension 6 space, and thus a D3 lying along R

1,3. In the transverse space R
6 the brane looks

like a point.
The D3 now acts as a source for the flux F5, which backreacts on the metric through

Einstein’s equations to give (4.1). The global geometry has changed, and the S5 no longer
collapses. The supergravity equations are solved without sources and the brane cannot be
seen anymore. Nevertheless the information about the brane is still present in the charge
carried by the flux.

4.1.1 Near-Horizon and spatial infinity

Taking (4.1) as an ansatz for the metric, the supergravity equations reduce to an equation on
H. In the probe interpretation this amounts to saying that H is harmonic in the transverse
space. If we further constrain H to depend on r only, the general solution is of the form,

H(r) = a +
b

r4 , (4.6)

where a and b are two integration constants. b can readily be interpreted as the brane charge.
Then two limiting cases arise:
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Spatial infinity: If b = 0, H is a constant and the space is flat without flux: no brane is
inserted. Since H → a when r → ∞, this case is called the spatial infinity limit.

Near Horizon: If a = 0, the solution becomes,

ds2 = ds2(AdS5) + L2ds2(S5) =
r2

L2 ds2(R1,3) +
L2

r2 dr2 + L2ds2(S5)

F5 = (1 + �)
4r3

L4 dx0 ∧ dx1 ∧ dx2 ∧ dx3 ∧ dr ,

(4.7)

which is the well-known AdS5 ×S5 background. For r → 0, H ∼ b
r4 so that this case is called

the near horizon limit.
It is remarkable at first sight that both limits correspond to genuine backgrounds. The

reason behind this is that they ultimately correspond to different choices of integration con-
stants. These considerations might seem trivial for now, but they will be relevant in the
following, when the brane configurations become more involved.

4.1.2 The NATD

After performing NATD along the SU(2) isometry in the σi, cf. (4.3), the background (4.1),
(4.4) becomes,

ds2 = H(r)−1/2ds2(R1,3) + H(r)1/2[dr2 + r2(dα2 + sin2 αdθ2)]

+
1
4

[α′2

Ξ
dρ2 +

Ξ2

64α′Δ
ρ2(dχ2 + sin2 χdξ2)

]
B2 = − ρ3Ξ

256Δ
sin χdχ ∧ dξ

e−2φ = Δ, Δ =
Ξ

64α′3 (α′2ρ2 + Ξ2), Ξ = r2 cos2 α
√

H(r) ,

(4.8)

and nonzero RR fluxes given by,

F2 = − Ξ
8α′3/2

H ′(r)√
H(r)

r3 cos α sin αdα ∧ dθ

F4 =
Ξ2

2048α′3/2Δ
H ′(r)√

H(r)
r3ρ3 cos α sin α sin χdα ∧ dθ ∧ dχ ∧ dξ .

(4.9)

In particular we see that the NATD has resulted in a metric which is singular at α = π
2 .

Moreover the duality has generated a nonvanishing Kalb-Ramond field B2 and a varying
dilaton φ.

Note that the background (4.8) contains a family of solutions, inheriting its degrees of
freedom from the D3 solutions before duality: for each choice of harmonic function H, NATD
generates a different solution. We will keep the same denomination for the different limits,
namely the near-horizon for H = L4

r4 and spatial infinity for H = 1 (i.e. L = 0). However
their interpretation as different limits of the interpolating dual background is less meaningful.
We will study them separately to get a better view on the brane configurations.

For later use let us rewrite the metric in (4.8) in terms of the coordinates defined by,

x = r sin α cos θ ; y = r sin α sin θ ; u = r cos α . (4.10)
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Recalling the ranges of the α, θ coordinates, cf. (4.2), we see that u ≥ 0, while x, y ∈ R.
Simplifying with r2 = x2 + y2 + u2 then gives,

ds2 = H−1/2
[
ds2(R1,3)+

α′2

4u2 dρ2
]
+H1/2

[
dx2+dy2+du2+

α′2ρ2u2

4(α′2ρ2 + Hu4)
(dχ2+sin2 χdξ2)

]
.

(4.11)
In these coordinates, the metric is singular at u = 0.

Brane configuration and charges

The non-vanishing fluxes might indicate the presence of branes. Here we could expect NS5,
D4 and D6 branes as magnetic sources for H, F4 and F2. The first clue is given by the
corresponding charges.

Let us start with the NS flux. An appropriate cycle would be the following: start at
constant α = α0 and integrate along ρ, χ, ξ where ρ goes from 0 to ρ0. At ρ = 0 the cycle
closes but we need to close it at ρ0. To do so, keep ρ constant and vary α from α0 to π/2.
The resulting charge will be independent of α0 so we can take the limit α0 → π/2.

Along the cycle
(
Σ3 = [ρ, χ, ξ], α = π

2
)
, H3 simplifies to

H3 =
1
4

α′ sin χdξ ∧ dχ ∧ dρ . (4.12)

Integrating H3 yields,

QNS5 =
1

2κ2
10TNS5

α′

4

∫ ρ0

0
dρ

∫ π

0
sin χdχ

∫ 2π

0
dξ =

ρ0

4π
= NNS5 , (4.13)

In fact the charge will depend only on the value of ρ when the cycle reaches α = π/2. As
we will see more explicitly in the simpler case of the spatial infinity limit in section 4.1.2,
this suggests a continuous distribution of NS5 branes at α = π/2 along the ρ direction, with
constant charge density. For the flux to be quantized we need to close the cycle at quantized
values of ρ, namely ρ0 = 4nπ. The NS5 branes are thus located at the singularity: this can
be seen from the form of the metric and NS-NS fields in the limit α → π

2 , which is consistent
with the general form expected from the harmonic superposition rule [78]. After defining
ν = (π/2 − α)2 we find, in the α → π

2 limit,

ds2 = H−1/2ds2(R1,3) + H1/2
(
dr2 + r2dθ2 +

r2

4ν

[
dν2 +

α′2

Hr4 dρ2 + ν2(dχ2 + sin2 χdξ2)
])

e2φ =
64α′

r2
√

Hρ2ν
; H3 =

α′

4
sin χdρ ∧ dχ ∧ dξ .

(4.14)

The harmonic function in the space transverse to the NS5 is proportional to ν−1, indicating
the presence of NS5 branes at ν = 0. However this is not a point in the transverse space.
Since ρ is still unconstrained, this is consistent with a distribution of charge along ρ.

In order to determine the configuration of the remaining branes we follow the same
strategy. Recall that in solutions with nonzero B2, the quantized charges are the Page
charges, defined as integrals of the Page forms,

F̃p = Fpe−B2 . (4.15)

77



CHAPTER 4. D-BRANES AND NON ABELIAN T DUALITY

As can be seen from this definition, the Page charges depend on the cohomology class of B2,
i.e. they are not invariant under large gauge transformations of B2.

Integrating the Page forms in the D3 brane solution gives,

QD6 =
1

2κ2
10TD6

L4

2α′3/2

∫ π
2

0
cos3 α sin αdα

∫ 2π

0
dθ = ND6

QD4 = 0 ,

(4.16)

which leads to L4 = 8α′2ND6. If we denote by ΔQD4 the change of D4 brane charge under
a large gauge transformation of B2,

ΔB2 = −nπα′ sin χdξ ∧ dχ , (4.17)

we find,

ΔQD4 =
1

2κ2
10TD4

∫
−ΔB2 ∧ F2

=
1

2κ2
10TD4

nπL4

8
√

α′

∫ π
2

0
cos3 α sin αdα

∫ π

0
dθ

∫ π

0
sin χdχ

∫ 2π

0
dξ

= ΔND4 ,

(4.18)

which leads to L4 = 1
n8α′2ΔND4. From this we readily see that

ΔQD4 = nND6. (4.19)

This is nothing other than the creation of D4 branes via a Hanany-Witten effect [79], as
will be reviewed in the following in section 4.1.2. In order to get a probe interpretation of
these brane charges we would need to know in which background the branes are inserted,
but the situation is not entirely clear here. The expression for the fluxes suggests that the
D6 is transverse to r, α, θ and that the D4 is transverse to r, α, θ, χ, ξ. This would lead to
the following brane configuration:

0 1 2 3 r α θ ρ χ ξ

NS5 × × × × × ×
D6 × × × × × × ×
D4 × × × × ×

Spatial infinity limit

The spatial infinity limit gives the following background:

ds2 = ds2(R1,3) + dr2 + r2(dα2 + sin2 αdθ2) +
1
4

[α′2

Ξ
dρ2 +

Ξ2

64α′Δ
ρ2(dχ2 + sin2 χdξ2)

]
B2 = − ρ3Ξ

256Δ
sin χdχ ∧ dξ

e−2φ = Δ, Δ =
Ξ

64α′3 (α′2ρ2 + Ξ2), Ξ = r2 cos2 α .

(4.20)

Here there are no RR fluxes anymore so all the D-brane charges vanish. The configuration is
thus much simpler. In fact it will now be possible to understand the exact brane configuration,
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as is done for the D3. Moreover this background is the NATD of the spatial infinity limit of
the D3 brane solution: the NATD (4.20) is simply the NATD of flat space along an S3 ⊂ R

4

factor. This decomposition is thus better suited for the spatial infinity limit than the S5 ⊂ R
6

decomposition of the D3 brane solution. Accordingly the seed metric before NATD reads,

ds2 = ds2(R1,5) + du2 + u2ds2(S3) , (4.21)

which is simply the spatial infinity limit of the metric (4.1) written in the coordinates of
(4.10). In these coordinates the NATD metric (4.20) is given by,

ds2 = ds2(R1,5) + du2 +
α′2

4u2 dρ2 +
α′2ρ2u2

4(α′2ρ2 + u4)
(dχ2 + sin2 χdξ2) . (4.22)

Let us now make a further change of variable,

u = R1/4

√
sin

θ

2

α′ρ = R1/2 cos
θ

2
,

(4.23)

upon which the metric becomes,

ds2 = ds2(R1,5) +
1

16R3/2 sin θ
2

[
dR2 + R2dθ2 + R2 sin2 θ(dχ2 + sin2 χdξ2)

]
= ds2(R1,5) + f(R, θ)ds2(R4) ,

(4.24)

where in order to obtain a complete metric on R
4 we must have θ ∈ [0, π]. In the second line

above we have introduced the function,

f(R, θ) =
1

16R3/2 sin θ
2

, (4.25)

which is harmonic in R
4 except for θ = 0. The NS-NS two-form and dilaton are given by,

B2 = −R1/2

4
cos3 θ

2
sin χdχ ∧ dξ

H3 = −cos3 θ
2

8R1/2 dR ∧ sin χdχ ∧ dξ +
3
8

R1/2 cos2 θ

2
sin

θ

2
dθ ∧ sin χdχ ∧ dξ

e2φ = 1024α′3f .

(4.26)

This clearly shows the presence of NS5 branes along the R
1,5 directions, located at θ = 0 (or

alternatively at u = 0), in accordance with the harmonic superposition rule [78]. However
this is not enough to determine the exact position of the branes since they could be anywhere
on this half line. Integrating H3 on a spherical shell of radius R gives,∫

H3 =
∫ π

θ=0

∫ π

χ=0

∫ 2π

ξ=0
dB2 = π

√
R . (4.27)

The branes are thus smeared along the θ = 0 direction, leading to a linear distribution of
charge in the transverse space, whose charge density is proportional to 1√

R
or constant in ρ

(recall that at θ = 0,
√

R = ρ).
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More explicitly the NS5 distribution can be read off of the harmonic function f in (4.25)
as follows. First it will be convenient to parameterize the R

4 transverse to the NS5 by
introducing the cylindrical coordinates �r ∈ R

3, w := R cos θ, so that R2 = �r 2 + w2 and,

ds2(R4) = d�r · d�r + dw2 . (4.28)

The new coordinates (R, w) are related to (u, ρ) by,

u4 =
1
2

(R − w) ; α′2ρ2 =
1
2

(R + w) . (4.29)

Moreover it can easily be verified that the function f can be represented as an integral over
the Green’s function for the Laplacian on R

4,

f =
√

2
16R

√
R − w

=
1

8π

∫ ∞

0
dw′ σ(w′)

�r 2 + (w − w′)2 , (4.30)

with linear charge density σ(w) = w− 1
2 along the half line w ≥ 0.

An alternative way to find the charge distribution is to compute the source for the H3
Bianchi identity,

dH3 = j . (4.31)

However H3 = dB2 is closed as a form, and we thus need to consider this equation on currents.
Indeed H3 is not defined for θ = 0, which is precisely the locus where we expect to find the
brane. As a current, dH3 acts as a linear form (distribution) on six-forms. Consider a test
six-form Ω,

Ω = ωv6 , (4.32)

where v6 is the volume form of R(1,5). After integration against H3, the only components of
dΩ we need consider are,

dΩ = ∂RωdR ∧ v6 + ∂θωdθ ∧ v6 + · · · , (4.33)

so that,

dH3(Ω) = H3(dΩ)

=
∫

H3 ∧ dΩ

= −1
8

∫ cos3 θ
2

R1/2 ∂θωdR ∧ sin χdχ ∧ dξ ∧ dθ ∧ v6

+
3
8

∫
R1/2 cos2 θ

2
sin

θ

2
∂Rωdθ ∧ sin χdχ ∧ dξ ∧ dR ∧ v6 .

(4.34)

Integrating each term by parts (respectively in θ and R), the derivatives cancel out since H3
is closed as a form. The charge can then be seen in the boundary terms. R1/2 vanishes at
R = 0, ω vanishes at R → ∞ because it is a test function, and cos3 θ

2 vanishes at θ = π.
Note also that at θ = 0, ω cannot depend on χ, ξ. We thus obtain,

dH3(Ω) =
1
8

∫
ω(θ = 0)

R1/2 dR ∧ sin χdχ ∧ dξ ∧ v6

=
π

2

∫ dR

R1/2 ∧ Ω(θ = 0) .

(4.35)
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From this we can read off the current,

j =
1
16

δ(θ)
R1/2 dR ∧ dθ ∧ sin χdχ ∧ dξ , (4.36)

which gives the exact distribution of NS5 charge. This distribution is remarkable since it is
entirely created by NATD from an empty flat space. It will be characteristic of the behavior
of NATD near a fixed point of the SU(2) isometry. For instance we found the same kind of
distribution when looking close to the α = π/2 singularity in the full dual solution (4.14).

The near-horizon limit

The NATD of the near horizon solution is [68],

ds2 = ds2(AdS5) + L2(dα2 + sin2 αdθ2)

+
1
4

(α′2

Ξ
dρ2 +

Ξ2

64α′Δ
ρ2(dχ2 + sin2 χdξ2)

)
B2 = − ρ3Ξ

256Δ
sin χdχ ∧ dξ

e−2Φ̃ = Δ, Δ =
Ξ

64α′3 (α′2ρ2 + Ξ2), Ξ = L2 cos2 α ,

(4.37)

and the nonzero RR fluxes are given by,

F2 =
Ξ

2α′3/2 L2 cos α sin αdα ∧ dθ

F4 = − Ξ2

512α′3/2Δ
L2ρ3 cos α sin α sin χdα ∧ dθ ∧ dχ ∧ dξ .

(4.38)

Field Theory interpretation of near horizon NATD
In [80] a holographic interpretation of the background (4.37)-(4.38) was proposed. It was

pointed out that the background belongs to a class of Gaiotto-Maldacena geometries [81]
dual to N = 2 superconformal linear quivers with gauge groups of increasing rank. Their
argument crucially involved constraining the range of the dual coordinate ρ in quantizing
the NS5 brane charge. Let us briefly summarize the main points of the arguments originally
presented in [80] and extended to further examples in [82, 83]. Related examples with flavor
branes include [71, 84] and [72, 85].

In the NATD a new set of dual coordinates arise, which we have labeled (ρ, χ, ξ). The
coordinates (χ, ξ) are naturally interpreted as compact angles on an S2, i.e. χ ∈ [0, π], ξ ∈
[0, 2π]. The question remains how to interpret the ρ coordinate, as NATD currently lacks
the global information needed to constrain the dual coordinates. Using insight from string
theory the authors of [80] were led to impose the boundedness of the following quantity,

b0 =
1

4π2α′

∮
Σ2

B2 ∈ [0, 1] , (4.39)

where in the case of (4.37) b0 is maximal along Σ2 = [χ, ξ], α = π
2 . This leads to the

coordinate ρ varying in nπ intervals, i.e. ρ ∈ [nπ, (n + 1)π]. To keep the relation (4.39)
satisfied, a large gauge transformation must be performed on B2 at each nπ interval, i.e.

B2 → B2 − nπα′ sin χdχ ∧ dξ . (4.40)
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As reviewed in section 4.1.2, this has the effect of changing the Page charges: quantizing QD6
and QD4 by integrating the RR fluxes in (4.38) above leads to QD6 = ND6 and QD4 = 0.
However under a large gauge transformation of B2, we find ΔQD6 = 0 and ΔQD4 = nND6,
where QNS5 = NNS5 = n. Putting all this together suggests that there are parallel NS5
branes, each located at a π interval in ρ. Between each π interval n horizontal D4 branes are
suspended between them. That is, as we move towards larger ρ, an increasing number of D4
branes appear. In the field theory interpretation this corresponds to an infinite linear quiver
with increasing gauge group ranks. Interestingly, the field theory analysis of [80] suggested
that there should be a cutoff to the ρ coordinate in order to terminate the quiver with a
flavor brane. The intuitive way to see this is to start with parallel NS5 branes and a D6
flavor brane on one of the ends of the array. When one moves this flavor brane across the NS
branes, D4 branes are created across the NS branes via the Hanany-Witten effect [79]. This
completion of the quiver corresponds to giving ρ a finite range and it was shown that this is
necessary to make sense of the dual field theory as a 4d CFT.1

Thus the “stringy” picture is consistent with the spatial infinity limit of section 4.1.2,
provided we replace the supergravity approximation of a continuous linear distribution of
NS5 branes along a half line, by a grid of localized NS5’s so that there is one unit of NS5
charge per ρ ∈ [nπ, (n + 1)π] interval.

4.2 M2 branes

The M2 brane solutions of eleven-dimensional supergravity can be reduced in various ways
in order to obtain ten-dimensional IIA D2 brane solutions. Let us start from the M2-brane
solution in flat space,

ds2 = H−2/3ds2(R1,2) + H1/3(dr2 + r2dΩ2
7)

G = −dH−1 ∧ vol3

H = 1 +
Q̂

r6 ,

(4.41)

where Q̂ is a constant related to the number of parallel M2-branes, dΩ2
7 is the metric of the

round seven-sphere, and vol3 is the volume element of R1,2. We will adopt the parameteri-
zation of the metric on S7 given by,

dΩ2
7 =

1
4

(
dμ2 +

1
4
(

sin2 μω2
i + λ2(νi + cos μωi)2)),

νi = σi + Σi, ωi = σi − Σi ,
(4.42)

where μ ∈ [0, π], σi are the left-invariant SU(2) Maurer Cartan one-forms given in (4.3),
while the Σi have exactly the same form but with coordinates (θ2, φ2, ψ2). We will only treat
the round S7 case, i.e. λ = 1. In the near-horizon limit, we have H = Q̂

r6 and the space
becomes AdS4 × S7.

This solution preserves 16 real supercharges (enhanced to 32 in the near-horizon limit),
i.e. N = 4 in four dimensions. In (4.41) we have written the flat metric on the space R

8

transverse to the M2 as an eight-dimensional cone over the seven-sphere. We may replace
1It was suggested in [80] and further considered in [86] that the dual field theory could actually be higher

dimensional through deconstruction.
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the base of the cone by any Sasaki-Einstein seven-manifold2, and still obtain a solution of
eleven-dimensional supergravity. The amount of preserved supersymmetry depends on the
number of Killing spinors of the Sasaki-Einstein.

Replacing the round sphere metric dΩ2
7 by the Y p,q(B4) metric of [87, 88], reduces super-

symmetry to N = 1 in four dimensions, enhanced to N = 2 in the near-horizon limit. After
a change of coordinates to bring us to the conventions of [77], the metric reads,

ds2(Y7) =
1
4

ds2(M6) + w(θ) [dα + f(θ)(dψ + A)]2 , (4.43)

for some functions w, f of θ that will be specified below, where ds2(M6) is the metric of the
S2(B4) bundle,

ds2(M6) = ds2(B4) +
1

(1 + cos2 θ)2 dθ2 + sin2 θ(dψ + A)2 , (4.44)

with θ ∈ [0, π], ψ ∈ [0, π] the coordinates of the S2 fiber; the connection A is a one-form on
the base B4 obeying,

dA = J , (4.45)

with J the Kähler form of B4 and α parametrizes a circle fibered over the basis M6. Later
we will consider the special case B4 = CP

2 for concreteness and in order to perform an SU(2)
NATD.

The corresponding eleven-dimensional solution reads,

ds2 = H−2/3ds2(R1,2) + H1/3
(

dr2 +
1
4

r2ds2(M6)
)

+ r2H1/3w(θ)(dα + A′)2

G = −dH−1 ∧ vol3

H = 1 +
Q̂

r6 ,

(4.46)

where we have set A′ := f(θ)(dψ + A).

4.2.1 Brane configuration and charges

We expect the M2 branes to lie along the R
1,2 directions. The transverse space would then

be R
8 or the cone over Y p,q depending on the choice of 7-dimensionnal space. In both cases

we find:
� G = −6Q̂v7 (4.47)

However since the 7-dimensional cycle collapses in the transverse space when r = 0, �G is
not closed and:

d � G = −6Q̂δ(r)dr ∧ v7 (4.48)

We can also compute the M2 brane charge, which is defined by:

QM2 =
1

2κ2
11TM2

∫
� G = NM2 , (4.49)

2The metric of the Sasaki-Einstein manifold must be normalized so that the cone over it is Ricci-flat.
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with the M2 brane tension given by TM2 = 2π
(2πlp)3 and 2κ2

11 = (2π)8l9p, where the Planck

length is given by lp = g
1/3
s

√
α′. For example, in the Y p,q case, we compute:

QM2 = − 1
2κ2

11TM2

27Q̂

256

∫ 2π

0
dα

∫ π

0
dθ

sin θ

a(θ)3/2

∫
S3

dΩ3

∫ π

0
dψ

∫ π
2

0
dμ sin3 μ,

= − 27Q̂

4096π2l6p
= NM2 .

(4.50)

This relates the constant in the harmonic function to the number of M2 branes,

Q̂ =
4096
27

π2l6pNM2 . (4.51)

We will now proceed to track the M2, first through dimensional reduction, then through
NATD.

4.3 Supersymmetric D2 from reduction on Y p,q

Here and in the following section we will need to make the choice B4 = CP
2 so that a

non-abelian SU(2) isometry is manifest in the metric acting on the σi,

ds2(CP2) = 3
[
dμ2 +

1
4

sin2 μ(σ2
1 + σ2

2 + cos2 μσ2
3)
]

, (4.52)

where μ ∈ [0, π
2 ], and the σi are given in (4.3).

Reducing the M2 brane solution (4.46) to IIA on the circle parameterized by α preserves
supersymmetry, as will be explicitly verified in section 4.3.2. Let us set,

e−2φ/3ds2
A = H−2/3ds2(R1,2) + H1/3

(
dr2 +

1
4

r2ds2(M6)
)

e4φ/3 =
r2

l2p
H1/3w(θ) ,

(4.53)

so that upon reduction to ten dimensions ds2
A and the function φ(r, θ) are identified with the

IIA string-frame metric and dilaton respectively. Moreover the nonvanishing fluxes of the
solution are given by,

F2 = lpdA′ ; F4 = −dH−1 ∧ vol3 , (4.54)

where A′ was given below (4.46). F2 carries a magnetic charge, but we will not interpret it
as coming from a brane. Since this charge is not related to the M2 charge, but rather to
the dimensional reduction, we will say that the flux is only geometric, and it will not be of
interest here. The flux F4 on the other hand carries an electric charge and is sourced by a
stack of parallel D2 branes filling R

1,2 and placed at r = 0 in the transverse space. Note that
the H function is inherited from the M2 solution, so that it does not need to be harmonic in
the new transverse space. We also inherit the usual parameters for a brane solution, which
allow us to define the near-horizon and spatial infinity limit.

We can then obtain the explicit form of the functions w(θ), f(θ) by taking the near-
horizon limit (H = Q̂

r6 ) of (4.53), (4.54) and comparing with [77]:

ds2
A =

1
4

Q̂1/2
√

w(θ)
(
ds2(AdS4) + ds2(M6)

)
e4φ/3 = Q̂1/3w(θ) ; F2 = lpd [f(θ)(dψ + A)] ,

(4.55)
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where ds2(AdS4) is the metric of an AdS4 space of unit radius, so that its scalar curvature
is normalized to R = −12. Comparing with (2.22), (2.23), (2.24) of [77] we read off,

w(θ) =
g2

s e4A0

8(1 + cos2 θ)
; f(θ) =

cos θ

2
√

w(θ)
; Q̂ =

64
g2

s

. (4.56)

To summarize, the ten-dimensional D2-brane solution is given by (4.53), (4.54), where
ds2(M6) is given in (4.44), H is given in (4.46) and f , w are given in (4.56). In the near-
horizon limit the metric becomes a warped AdS4 × M6 product, cf. (4.55).

At spatial infinity (H = 1) the metric becomes a warped product R
1,2 × C(M6),

ds2
A =

r

lp

√
w(θ)

(
ds2(R1,2) + dr2 +

1
4

r2ds2(M6)
)

, (4.57)

where C(M6) is the metric cone over M6, while the remaining fields are given by,

e4φ/3 =
r2

l2p
w(θ)

F2 = lpd [f(θ)(dψ + A)]
F4 = 0 .

(4.58)

It can be verified that this is an exact supergravity solution in its own right. Contrary to the
case of the D3 brane, here spacetime is neither flat nor empty at spatial infinity.

The solution (4.53), (4.54) describes D2 branes with worldvolume along the R
1,2, as

inherited from the M2 solution. Looking at F4, we find:

� F4 = − 3Q̂

32lp

√
w(θ)v6 (4.59)

However, contrary to the standard brane configurations (such as the D3 and M2 presented
previously), the probe interpretation is not straightforward. In order to understand this
configuration we take the transverse space to be the cone over M6. There the 6-cycle collapses
at r = 0, so that:

d � F4 = − 3Q̂

32lp

√
w(θ)δ(r)dr ∧ v6 (4.60)

Here again this equation must be considered on the transverse space. The D2 background is
a genuine solution of IIA supergravity, in which the 6-cycle does not collapse anymore. Then
�F4 is closed, as required by the equations of motion, and the brane is not visible. We can
however compute the brane charge, which requires the D-brane tension T −1

Dp = ((2π)pα′ (p+1)
2 )

and 2κ2
10 = (2π)7α′4. We obtain,

QD2 =
27Q̃

8192π5lpα′5/2

∫ π

0
dψ

∫ π

0
dθ

sin θ

a(θ)3/2

∫
S3

dΩ3

∫ π
2

0
dμ sin3 μ cos μ, (4.61)

The flux quantization condition QD2 = ND2 then leads to

Q̂ =
4096
27

π2lpα′5/2ND2 . (4.62)

Note that there are no D6 branes associated with the F2 flux. Indeed in the present case
spacetime is smooth3 and the metric singularity expected in the vicinity of a D6 is absent.

3The geometry and topology of the M-theory reduction along the α-cycle is discussed in detail in [89].
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As we will see in section 4.5, this is in contrast to the case of the D2 brane coming from the
reduction of M-theory on S7. Similarly one sees that there are no D4 branes sourced by the
F4 flux.

4.3.1 Domain wall supersymmetry equations

As already mentioned, (4.57) is a supersymmetric domain wall (DW) solution in four-
dimensional space, where the latter is viewed as a foliation, parameterized by r, with R

1,2

leaves. The supersymmetry conditions for N = 1 domain walls were written in [90] in gener-
alized G2 × G2 form in eqs. (2.5), (2.6) therein. For our purposes it would be more useful to
recast these equations in terms of generalized pure spinors on M6. Such a rewriting is indeed
given in [90], cf. (2.7) therein. We will now review their results adapting them to our case.

The ansatz for the splitting of the metric and the flux is given by:

ds2 = e2Ads2(R1,2) + ds2(M7)
Ft = F + v3 ∧ �λF ,

(4.63)

where the warp factor A and the dilaton φ are not constrained at this point; λ is an involution
reversing the order of wedge products. The NS-NS form H is assumed to be internal, i.e.
to only have legs along M7, and likewise for the internal RR flux F . The total flux Ft is
then chosen to be self-dual: for F internal we get �λF = v3 ∧ �7λF and in ten Lorentzian
dimensions (�λ)2 = 1. Unbroken supersymmetry of the solution implies on M7 the existence
of two Majorana spinors χ1, χ2 normalized so that χ†

aχa = 1. This leads us to define a
bispinor Ψ, which can also be viewed as a polyform via the Clifford map:

Ψ = 8χ1 ⊗ χ†
2 = Ψ+ + i Ψ− , (4.64)

where Ψ+ and Ψ− are respectively the real-even and imaginary-odd parts of Ψ. We should be
careful however about how the identification is imposed: odd dimensional Fierzing does not
provide an isomorphism between bispinors and polyforms because the Clifford representation
is not faithful, as can be confirmed by a simple count of dimensions. We thus need to choose
the range of our identification. Here we take Ψ to be self-dual as a polyform: −i �7 λΨ = Ψ.
This also means that the decomposition (4.64) is only valid in the polyform space and that
Ψ+, Ψ− are not independent:

Ψ+ = �7λΨ− . (4.65)

These choices lead to the normalization:

〈Ψ+, Ψ−〉 =
i

2
〈Ψ, Ψ̄〉 = 8v7 . (4.66)

We now have all the necessary ingredients to write the supersymmetry for IIA in terms of
generalized spinors:

dH(e3A−φΨ+) = −e3A �7 λF
dH(e2A−φΨ−) = 0

〈Ψ−, F 〉 = 0 .
(4.67)

In order to match (4.53), (4.54) we need to further split M7 to M6 plus a transverse direction
parameterized by the coordinate r. The metric and fluxes thus decompose as follows:

ds2 = e2Z(e2ads2(R1,2) + dr2) + ds2(M6)
F = Fi + dr ∧ Fr

H = Hi + dr ∧ Hr ,
(4.68)
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where a depends only on r, and Fi, Fr, Hi, Hr only have legs on M6. Note also that the
expression ds2(M6) can depend on r, since it can include a warp factor for instance. The
same split must then be performed for the spinors, by expressing 7D spinors in terms of 6D
chiral spinors. Since we are splitting along r, γr (in flat basis) becomes the chirality matrix
for spinors of M6. Thus we take:

η1 :=
√

2 P+χ1 , η2 :=
√

2 P−χ2

χ1 =
1√
2

(η1 + ηc
1) , χ2 =

1√
2

(η2 + ηc
2) ,

(4.69)

where P± := 1
2(1 ± γr). Introducing the following bispinors on M6 (which can be viewed

equivalently, via 6D Fierzing and the Clifford map, as polyforms or generalized spinors):

Φ1 := 8e3Z−φη1 ⊗ η†
2 , Φ2 := 8e3Z−φη1 ⊗ η̃2 , (4.70)

we get:

Ψ+ = e−3Z+φ(�Φ2 + eZdr ∧ �Φ1) , Ψ− = e−3Z+φ(�Φ1 + eZdr ∧ �Φ2) . (4.71)

The factor e3Z−φ is introduced here for future convenience; it is simply another choice of
normalization:

i〈Φ1, Φ̄1〉 = i〈Φ2, Φ̄2〉 = 8e6Z−2φv6 . (4.72)

We then substitute (4.68) and (4.71) into (4.67), and decompose along dr. We look for an
expression solely in terms of polyforms on the internal space M6, where r is now considered
as an external parameter:

dH eZ�Φ1 = e4Z � λFi + e−3a∂H
r e3a�Φ2

dH�Φ2 = −e2Z � λFr

dHe−Z�Φ1 = 0
dH�Φ2 = e−2a∂H

r e2a−Z�Φ1
〈�Φ1, Fr〉 + eZ〈�Φ2, Fi〉 = 0 ,

(4.73)

where now dH = d + Hi∧, ∂H
r = ∂r + Hr∧, and d acts only on the coordinates of M6. Note

also that 〈, 〉 now refers to the 6D Mukai pairing (1.44).

4.3.2 Supersymmetric D2

We now want to check explicitly that the solution in (4.53), (4.54) is compatible with the
equations (4.73). This amounts to defining two polyforms Φ1, Φ2, whose SU(3) × SU(3)-
structure carries the 6D part of the metric (4.53), and which is solution of (4.73). First we
need to identify the various fields. Comparing (4.53) and (4.68) we find,

ea =
1√
H

and eZ = eφ/3H1/6 . (4.74)

Since the fluxes are not given in the same formalism, we need to retrieve F6 and F8 from
F2 and F4 by Hodge duality, in order to build the total flux polyform Ft in the democratic
formalism. If we write Fnd = F2 + F4, the total flux of the solution (4.54) we find,

Ft = Fnd + �10λFnd .
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This leads to,
Fi = F2 + �10λF4 = df(dψ + A) + H′√

H
e−4Zv6

Fr = 0
Hi = 0
Hr = 0 ,

(4.75)

where v6 is the volume form of M6 taking into account the warp factor. We can now use the
results from section 1.5 to define our polyforms Φ1 and Φ2. Our ansatz will introduce several
functions of θ as supplementary degrees of freedom that should enable us to find a solution
of the DW equations.

We begin with the local SU(2)-structure, given by the Kähler structure of B4. We denote
by ĵ the Kähler form and ω̂ a holomorphic 2-form normalized so that,

ĵ ∧ ω̂ = ω̂ ∧ ω̂ = 0
ω̂ ∧ ω̂∗ = 2ĵ ∧ ĵ .

(4.76)

Note that ĵ is global but ω̂ can only be defined locally. Furthermore we define,

ω̃ = e2i(ψ+ζ)ω̂

j =
1
4

r2e2Z
(
cos θĵ + sin θ�ω̃

)
ω =

1
4

r2e2Z+2iα
(
cos θ�ω̃ − sin θĵ + i�ω̃

)
K =

1
2

reZ+iβ
( 1

1 + cos2 θ
dθ + i sin θ(dψ + A)

)
.

(4.77)

Finally the polyforms (or, equivalently, the generalized spinors) defining the SU(3) × SU(3)-
structure are given by,

Φ1 =
√

H K̄ ∧
(
eiν cos ϕ ω̄ − sin ϕ ei j

)
Φ2 =

√
H e− 1

2 K∧K̄
(
e−iν cos ϕ ei j + sin ϕ ω̄

)
,

(4.78)

where the factor
√

H has been added to match the normalization (4.72),

i〈Φ1, Φ̄1〉 = i〈Φ2, Φ̄2〉 = 8e6Z−2φv6 = 8H v6 . (4.79)

We are thus left with five undetermined functions of θ (α, β, ζ, ν and ϕ) that should provide
enough freedom for a solution of the DW supersymmetry equations: α and ζ act as rotation of
the local SU(2) and, since the SU(2)-structures span a two-sphere, they can be respectively
seen as the intrinsic rotation and precession; β is merely a modification of the phase of the
vielbein one-form K; the meaning of ν and ϕ is explained in section 1.5, recall in particular
that ϕ must vanish at θ = 0, π. Note also that a global phase of Φ2 can be absorbed in ν
and α whereas a global phase of Φ1 can be absorbed in β.

Solution
Note first that in the near horizon limit, the SU(3) × SU(3) is in fact pure SU(3),

i.e. ϕ = 0. Thus if our ansatz is correct (ϕ is function of θ only), ϕ should remain constant
to match the near horizon limit. Looking at the first equation of (4.73), the scalar term gives
straightforwardly,

cos ϕ cos ν = 1 .
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This is consistent with the ansatz, and also gives information about ν. We get

ϕ = 0 , ν = 0 .

The structure is then pure SU(3) all along the r coordinate. Moreover α and β now play
the same role: a global phase shift of the holomorphic 3-form. β can thus be absorbed by a
redefinition of α, and be set to 0. At this point, the second and fifth equation of (4.73) are
satisfied. Moreover the three-form part of the fourth equation of (4.73) leads to 2α = −π

2 .
All the remaining terms are then proportional to ζ ′ so that ζ has to be constant. Taking
ζ = 0 then solves (4.73).

4.3.3 Mass Deformation

The background (4.54) is a solution to the type IIA supergravity equation with vanishing
Romans mass m = F0 = 0. Its near-horizon limit (4.55) has already been studied as an
example of AdS compactification and it was shown in [91, 92] that it admits a massive
deformation. That is there exists a family of type IIA backgrounds, parametrized by the
Romans mass, whose limit m → 0 is precisely the background (4.55). Let us now investigate
if this massive deformation can be extended to the full interpolating brane solution. To do
so we deform the SU(3) × SU(3)-structure ansatz presented in the previous section and try
to solve (4.73) with the deformed ansatz, in presence of non vanishing F0.

The only difference between the full interpolating brane solution and its AdS4 near horizon
limit is a modification of the function H(r). The background (4.53), (4.54) is a genuine
solution under the sole condition that H(r) is harmonic in the transverse space R

7. The
interpolating solution corresponds to the most general choice of H(r), whereas the near
horizon limit and the spatial infinity limit correspond respectively to the choices H(r) = Q/r6

and H(r) = 1. We would then expect that finding a massive deformation of the interpolating
solution would amount to adding the correct r-dependence in the different functions of the
massive deformation.

Consequences of the massive deformation: For the massive deformation of the near
horizon limit, the SU(3) × SU(3) structure is no longer pure SU(3) [91, 92], and this will
obviously be the case for the interpolating solution. It will now be necessary to switch on
the function ν, ϕ and ζ, leading to our first source of complication. It is also important to
notice that the base and fiber of M6 get a different warp factor, and our ansatz should take
that into account. We also expect the massive deformation to switch on all fluxes. Switching
on the three-form H also impacts equation (4.73) by twisting the derivative.

Taking all the above into account, let us define the following ansatz for the SU(3)×SU(3)
structure and the fluxes. We first define the local SU(2) and one-form similarly to (4.77),

ω̃ = e2i(ψ+ζ)ω̂

j = e2B
(
cos γĵ + sin γ�ω̃

)
ω = e2B+2iα

(
cos γ�ω̃ − sin γĵ + i�ω̃

)
K = eC+iβ (f(θ)dθ + i sin θ(dψ + A)) .

(4.80)

The SU(3) × SU(3) structure is now given by,

Φ1 = e3Z−φ K̄ ∧
(
eiν cos ϕ ω̄ − sin ϕ ei j

)
Φ2 = e3Z−φ e− 1

2 K∧K̄
(
e−iν cos ϕ ei j + sin ϕ ω̄

)
.

(4.81)
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This corresponds to the ansatz of (4.68). The internal metric of M6 follows from the SU(3)×
SU(3)-structure,

ds2(M6) = e2Bds2(B4) + e2C
(
f(θ)2dθ2 + sin2 θ(dψ + A)2

)
. (4.82)

For The Bianchi Identities to be automatically satisfied we will rather define the fluxes from
their potentials: the two-form B and the odd polyform C,

B = hĵ
C1 = f2A

C3 = f4A ∧ ĵ

C5 = f6A ∧ ĵ2 .

(4.83)

The fluxes are then, in the formulation of (4.68),

Hi = dB
Hr = ∂rB
Fi = dHC + me−B

Fr = ∂H
r B .

(4.84)

All the warp factors Z, B, C, the dilaton φ, the phases α, β, γ, ζ, ϕ, ν and the fluxes h, f2, f4, f6
are allowed to depend on r, θ.

Despite its generality, we have checked that this ansatz does not solve the supersymmetry
equations (except for the solutions we already know, which are special cases thereof) and thus
does not qualify for a massive deformation. Unfortunately, without further input, relaxing
the ansatz to allow for a dependence on more variables quickly becomes intractable.

4.3.4 The NATD

The NATD of the supersymmetric D2 brane (4.53) is obtained by an SU(2) action on the σi,
cf. (4.52). The NS-NS sector reads,

d̂s
2

=
r

lp

√
w(θ)H−1/2ds2(R1,2) + Λ2( 4

r2 dr2 + 3dμ2 +
1

(1 + cos2 θ)2 dθ2

+
4
Q

sin2 θ cos2 μdψ2)+
3α′2Ξ
4M

[d(ρ sin χ)]2

+
81

4096α′Δ

[Ξ2ρ2 sin2 χ

Q
(dξψ)2 +

1
M

(
α′2ρ2 cos χdρ + 4Ξ2d(ρ cos χ)

)2]
B̂2 =

81ρ2Ξ sin χ

8192QΔ
dξψ ∧ dρχ +

3α′ sin2 θ

2Q
d(ρ cos χ) ∧ dψ

e−2φ̂ = e−2φΔ, Δ =
27Ξ

1024α′3
(
4Ξ2Q + α′2ρ2K

)
, Ξ = sin2 μΛ2, Λ =

1
2

eφ/3rH1/6 ,

(4.85)

where we have defined the following one-forms,

dξψ =
(
Qdξ − 4 sin2 θdψ

)
dρχ =

(
ρKdχ + cos χ sin χ(Q − 4)dρ

)
dθμ =

(
f ′(θ) sin μdθ + 2 cos μf(θ)dμ

)
,

(4.86)
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and included the following definitions,

Q = 4 cos2 μ + 3 sin2 μ sin2 θ

K = Q cos2 χ + 4 sin2 χ

M = α′2ρ2 cos2 χ + 4Ξ2 .

(4.87)

The RR sector is given by

F̂1 =
9lp

32
√

α′ sin μ

[
f(θ) sin μd(ρ cos χ) − ρ cos χdθμ

]

F̂3 = −
(9lp

√
α′ρ cos2 μf ′(θ)

16Q
dρ +

9l2pΛ6H ′ cos μ sin3 μ sin θ

4r2α′3/2H3/2w(θ)a(θ)
dμ

)
∧ dθ ∧ dψ

+
729lpρ3 sin3 μΛ2

262144
√

α′QΔ

[
− cos χ sin χ sin μQdρ ∧ dχ ∧ dξψ

+ 2 cos μf(θ)Q(sin2 χdξ − cos2 χ sin2 μdψ) ∧ dμ

− sin μ sin2 χf ′(θ)dθ ∧ dξψ

]
∧ dρ

+
729lpρ sin7 μΛ6

65536α′5/2Δ
[
sin χdθμ ∧ d(ρ sin χ) ∧ dξψ

− 8 cos μ sin2 θf(θ)dμ ∧ dρ ∧ dψ
]

F̂5 =
9l2p

√
α′H ′ρ

64r2H3/2w(θ)
v4 ∧ dρ

+
9lpΛ2 sin3 μ

16α′3/2 sin θa(θ)
v4 ∧

(
2f(θ) sin2 θ sin μdθ + a(θ)2 cos μf ′(θ)dμ

)
+

729lpΛ6ρ2 cos μ sin5 μ sin χ

65536α′3/2r2H3/2w(θ)a(θ)Δ

[
2lpΛ2H ′ sin θdθ ∧ dμ ∧ dρχ

− r2H3/2w(θ)a(θ) sin μ
(
3f(θ) sin2 θ sin μdμ

− 2 cos μf ′(θ)dθ
)

∧ dρ ∧ dχ

]
∧ dξ ∧ dψ ,

(4.88)

where a(θ) = 2(1 + cos2 θ) and v4 = − r2w(θ)
l2p

√
H

dr ∧ dx0 ∧ dx1 ∧ dx2.

Brane configuration and charges

The D-brane background before the NATD was a D2 brane solution, therefore we expect
to see the presence of D3, D5, and NS5 branes from the general lore Dp→D(p+1)-D(p+3)-
NS5. We will follow the same strategy as in section 4.1.2 to better understand the brane
configuration.

We first compute the NS5 charge. In the same spirit as in the D3 brane example, cf. (4.12),
we integrate H3 along the cycle (Σ3[ρ, χ, ξ], μ = 0), on which H3 simplifies as,

H3 =
3
8

α′ sin χdξ ∧ dχ ∧ dρ . (4.89)

We get,
QNS5 =

1
2κ2

10TNS5

∫
H3 =

3
8π

ρ0 , (4.90)
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where we cut off the integration at ρ = ρ0. For the charge to be correctly quantized, we
need ρ0 = 8nπ

3 . This is compatible with the condition of boundedness of b0 given in (4.39).
Modulo a large gauge transformation on B2, this condition is satisfied if the range of ρ is
taken to be [8(n−1)π

3 , 8nπ
3 ]. Once again we can see that there is, at least from the supergravity

point of view, a continuous distribution of charge at the singularity created by NATD (here
μ = 0). This distribution is smeared along the ρ direction and is constant in ρ. As was the
case in section 4.1.2, this can be seen directly in the metric by zooming in at the singularity.
Close to μ = 0 and after making the substitution ν = μ2, the metric becomes,

ds2
μ→0 =

r

2lp
√

H(r)
√

a(θ)

[
ds2(R1,2) + H(r)

(
dr2 + r2( 1

a(θ)2 dθ2 +
1
4

sin2 θdψ2))]
+

1
ν

[ 3
32lpr3

√
H(r)

√
a(θ)

(
16l2pα′2a(θ)2dρ2 + r6H(r)

[
dν2 + ν2(dχ2

+ sin2 χdξ(dξ − 2 sin2 θdψ)
)])]

,

(4.91)

where ν−1 is the harmonic function in the transverse space for NS5 branes along the (R1,2, r, θ, ψ)
directions.

For the D-branes we need to consider the Page forms, given by,

F̃3 =
9lp

√
α′ρ

256
[
4f ′(θ)dθ ∧ dρ ∧ dψ − 3 sin χ sin μdθμ ∧ d(ρ sin χ) ∧ dξ

]
− 27Q̂

√
w(θ)

128lpα′3/2a(θ)
cos μ sin3 μ sin θdθ ∧ dμ ∧ dψ

F̃5 = −
27Q̂l2p

√
α′

32r9H3/2w(θ)
ρdρ ∧ v4 +

9r3
√

H
√

w(θ)
64α′3/2a(θ) sin θ

sin3 μ(2f(θ) sin2 θ sin μdθ

+ a(θ)2 cos μf ′(θ)dμ) ∧ v4

+
27lpα′3/2

512
ρ2 sin χf ′(θ)dθ ∧ dρ ∧ dχ ∧ dξ ∧ dψ ,

(4.92)

where F̃1 = F̂1 given in (4.88) is unchanged.
We can readily see that the Page forms have two contributions: one coming from the

geometric flux F2 and the other one from F4.4 Since we want to trace the fate of the M2
branes we will consider the first part as geometric fluxes and focus on the second. The
relevant components are thus those proportional to Q̂ (i.e. those that vanish when there is
no M2).

Ignoring the geometric fluxes, the only non-vanishing Page charge is QD5, which can be
found by integrating F̃3. Namely, we keep only the (θ, μ, ψ) term,

QD5 =
1

2κ2
10TD5

27Q̂

128lpα′3/2

∫ 4π

0
dψ

∫ π

0

sin θ
√

w(θ)
a(θ)

dθ

∫ π
2

0
cos μ sin3 μdμ = ND5 . (4.93)

The quantization condition of QD5 then leads to a relation between the constant in the
harmonic function and the number of D5 branes,

Q̂ =
2048
27

πlpα′5/2ND5 . (4.94)

4Recall that NATD acts linearly on the RR fluxes so we can isolate each contribution.
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However as it was pointed out in the D3 example, the page charges depend on the choice
of B2, and may change under a large gauge transformation. Here under a large gauge
transformation given by,

ΔB2 = −nπα′ sin χdχ ∧ dξ , (4.95)
QD3 receives a new contribution,

ΔQD3 =
∫

−ΔB2 ∧ F3

=
1

2TD3κ2
27nπQ̂

128lp
√

α′

∫ π
2

0
cos μ sin3 μ

∫ π

0

sin θ
√

w(θ)
a(θ)

∫ 4π

0
dψdθ

∫ π

0
sin χdχ

∫ 2π

0
dξ .

(4.96)

Evaluating this and comparing to (4.94), we then find,

ΔQD3 = nND5. (4.97)

This is analogous to the relation found in (4.19) above.
Assuming that the r coordinate still describes the radius of the cycles wrapped by the

RR-fluxes in the transverse space of the D-branes, the brane configuration is given by the
table below.

0 1 2 r μ θ ψ ρ χ ξ

NS5 × × × × × ×
D5 × × × × × ×
D3 × × × ×

As we will find in additional examples throughout this paper, this relationship seems to be
universal for D-brane backgrounds generated by SU(2) non-Abelian T-duality. When a Dp-
brane background is transformed, the D(p+3) brane charges are easily found from integrating
the appropriate term in the Page form. The D(p+1) brane charges then are found from
restricting B2 to a cycle containing (χ, ξ) cycle, performing a large gauge transformation,
computing the change in the Page form under this transformation, and finally integrating
to obtain ΔQD(p+1). This results in the general relation ΔQD(p+1) = nQD(p+3). The new
D2 brane examples presented in this paper are not only distinct from the original D3 brane
example where this relation was proposed, but also highly nontrivial.

The spatial infinity limit

The spatial infinity limit of the supersymmetric D2 brane NATD solution (4.85)-(4.88) is
given by,

d̃s
2 =

r

lp

√
w(θ)

[
(R1,2) + dr2 +

r2

4
(
3dμ2 +

1
(1 + cos2 θ)2 dθ2 +

4
Q

sin2 θ cos2 μdψ2)
+

3lpα′2√w(θ)Ξ
4M

[d(ρ sin χ)]2
]

+
81

16384l2pα′Δ

[
w(θ)Ξ2ρ2 sin2 χ

4Q
(dξψ)2

+
1

M

(
4l2pα′2ρ2 cos χdρ + w(θ)Ξ2d(ρ cos χ)

)2]
,

B̂2 =
81
√

w(θ)Ξρ2 sin χ

32768lpQΔ
dξψ ∧ dρχ +

3α′ sin2 θ

2Q
d(ρ cos χ) ∧ dψ,

e−2φ̂ = e−2φΔ, Δ =
27
√

w(θ)Ξ
16384l3pα′3

(
4l2pα′2ρ2K + w(θ)QΞ2), Ξ = r3 sin2 μ,

(4.98)
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where we have defined the following one-forms,

dξψ =
(
Qdξ − 4 sin2 θdψ

)
,

dρχ =
(
ρKdχ + cos χ sin χ(Q − 4)dρ

)
,

dθμ =
(
f ′(θ) sin μdθ − 2 cos μf(θ)dμ

)
,

(4.99)

with Q, K defined in (4.87) and M = 4l2pα′2ρ2 cos2 χ + w(θ)Ξ2. The RR sector is given by

F̂1 =
9lp

32r3
√

α′

[
f(θ)Ξd(ρ cos χ) − ρ cos χdθμ

]
,

F̂3 =
9lp

√
α′

16Q
ρ cos2 μf ′(θ)dθ ∧ dρ ∧ dψ

+
729r3√w(θ)ρ3 sin3 μ

1048576
√

α′QΔ

[
− cos χ sin χ sin μQdρ ∧ dχ ∧ dξψ

+ 2 cos μf(θ)Q(sin2 χdξ − cos2 χ sin2 μdψ) ∧ dμ

− sin μ sin2 χf ′(θ)dθ ∧ dξψ

]
∧ dρ

+
729r9w(θ)3/2ρ sin7 μ

4194304l2pα′5/2Δ
[
sin χdθμ ∧ d(ρ sin χ) ∧ dξψ

− 8 cos μ sin2 θf(θ)dμ ∧ dρ ∧ dψ
]

F̂5 =
9r3√w(θ) sin3 μ

64α′3/2 sin θa(θ)
v4 ∧

(
2f(θ) sin2 θ sin μdθ + a(θ)2 cos μf ′(θ)dμ

)
729r9w(θ)3/2ρ2 cos μ sin6 μ sin χ

4194304l2pα′3/2Δ
(
3f(θ) sin2 θ sin μdμ

+ 2 cos μf ′(θ)dθ
)

∧ dρ ∧ dχ ∧ dξ ∧ dψ .

(4.100)

As was already the case for the D2 solution, the spatial infinity is neither flat nor empty.
In a probe interpretation, this configuration could be interpreted as the space in which the
branes are inserted. As can be seen from (4.98), it is a foliation over the “radial” coordinate
r with leaves of the form of a warped product R

1,2 × M̃6. At fixed r, the space M̃6 can be
thought of as a fibration of the space Ñ3 parameterized by (ρ, χ, ξ) fibered over the base M̃3
parameterized by (μ, θ, ψ). The topology of M̃3 can be deduced from the line element,

ds2(M̃3) := 3dμ2 +
1

(1 + cos2 θ)2 dθ2 +
4 cos2 μ

Q
sin2 θdψ2 , (4.101)

and it is that of an S2 parameterized by (θ, ψ), fibered over the interval parameterized by
μ. Indeed at fixed μ, ds2(M̃3) is of the form g(θ)dθ2 + h(θ)dψ2, for some positive functions
g, h of θ. This has the topology of a circle parameterized by ψ, fibered over the interval
parameterized by θ. Moreover at the endpoints of the θ-interval, Q is equal to 4 cos2 μ and
the metric becomes 1

4dθ2 +sin2 θdψ2 in the vicinity of θ = 0, π. This is smooth given that the
period of ψ is equal to π. In other words the ψ-circle degenerates to a point at the endpoints
of the θ-interval so that the total space remains smooth. We thus obtain the topology of an
S2, as advertised.

The range of the coordinate ρ was constrained by flux quantization to be the interval
specified in section 4.3.4. Moreover over a fixed base point (μ, θ, ψ) ∈ M̃3, the coordinates
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(χ, ξ) parameterize a smooth S2 provided we take ξ ∈ [0, 2π], χ ∈ [0, π]. This can already
be seen from the geometry near the location of the NS5 branes, cf. (4.91). More generally
the geometry of the Ñ3 fiber over a fixed point in M̃3 is rather complicated, as can be
seen from (4.98). Topologically it is an S2 parameterized by (χ, ξ) fibered over the interval
parameterized by ρ. Indeed at constant ρ the line element of Ñ3 is proportional to,

3lpα′2√w(θ)Ξ
4M

(
cos2 χ +

27
√

w(θ)Ξ
212l3pα′3Δ

sin2 χ
)
dχ2 +

81w(θ)Ξ2 sin2 χ

216l2pα′ΔQ
dξ2 , (4.102)

which is a circle parameterized by ξ fibered over the interval parameterized by χ. Moreover
it can be seen that near the endpoints of the interval χ = 0, π the line element above reduces
to,

3lpα′2√w(θ)Ξ
4(α′2ρ2 cos2 χ + 4Ξ2)

(
dχ2 + sin2 χdξ2) , (4.103)

so that the S2 parameterized by (ξ, χ) is smooth for the ranges given above.
We have thus been able to specify the ranges of all coordinates parameterizing the NATD

space. Once this result has been established for the leaf of the r-foliation at spatial infinity,
it remains valid for finite r and applies also to the full interpolating solution (4.85). In
particular the smoothness of the S2 parameterized by (θ, ψ) is shown by the same argument
following (4.101). The smoothness of the S2 parameterized by (ξ, χ) also follows as above,
upon modifying (4.102), (4.103) to account for the interpolating metric (4.85).

The near-horizon limit is obtained by substituting H → Q̂
r6 in (4.85). As is clear from

the previous analysis, the general structure of the leaves of the r-foliation described above
remains unchanged. Moreover the R

1,2 space combines with the radial coordinate to form an
AdS4 factor exactly as before the NATD.

4.4 Non-supersymmetric D2 from reduction on Y p,q

We will now reduce along the “obvious” Sasaki-Einstein S1 cycle, thereby completely breaking
supersymmetry. Let us rewrite the Y p,q(B4) metric (4.43) as follows,

ds2(Y7) =
1
4

(
ds2(M̃6) + (dψ + Ã)2

)
, (4.104)

where the base M̃6 is topologically an CP
2 × S2 with metric given by,

ds2(M̃6) = ds2(B4) +
1

(1 + cos2 θ)2 dθ2 + 4w(θ) sin2θ dα2 , (4.105)

and we have defined,
Ã := A + 2

√
w(θ) cos θdα . (4.106)

Note that, as follows from (4.56), for the S2 parameterized by (θ, α) to be smooth α must
have period 2π/(gs e2A0). Alternatively we may redefine α → gs e2A0α, so that α ∈ [0, 2π].
In terms of the redefined coordinate,

ds2(M̃6) = ds2(B4) +
1

(1 + cos2 θ)2 dθ2 +
sin2 θ

2(1 + cos2 θ)
dα2 . (4.107)
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The corresponding eleven-dimensional solution reads,

ds2 = H−2/3ds2(R1,2) + H1/3
(

dr2 +
1
4

r2ds2(M̃6)
)

+
1
4

r2H1/3(dψ + Ã)2

G = −dH−1 ∧ vol3

H = 1 +
Q̂

r6 .

(4.108)

Reducing along the S1 cycle parameterized by ψ results in a non-supersymmetric ten-
dimensional D2-brane solution given by,

ds2
A = e2φ/3

(
H−2/3ds2(R1,2) + H1/3dr2 +

1
4

H1/3r2ds2(M̃6)
)

e4φ/3 =
r2

4l2p
H1/3

F2 = lpdÃ

F4 = −dH−1 ∧ vol3 .

(4.109)

In the spatial infinity limit, H = 1, the metric reduces to,

ds2
A =

r

2lp

(
ds2(R1,2) + dr2 +

1
4

r2ds2(M̃6)
)

, (4.110)

while the remaining fields reduce to,

e4φ/3 =
r2

4l2p

F2 = lpdÃ

F4 = 0 .

(4.111)

Once again we see that, contrary to the D3 case, the spacetime is neither flat nor empty in
the spatial infinity limit: rather it is conformal to R

1,2 × C(M̃6), where the latter factor is
the metric cone over M̃6.

Upon dimensional reduction on ψ the M2 branes become D2 along R
1,2, whose transverse

space would be the cone over M̃6. As in section 4.3 we find,

� F4 = − 3Q̂

32lp

√
w(θ)v6 . (4.112)

Since the cycle M̃6 collapses in the transverse space at r = 0,

d � F4 = − 3Q̂

32lp

√
w(θ)δ(r)dr ∧ v6 . (4.113)

We compute the quantized D2 charge and obtain a similar result to the supersymmetric case,
up to a factor of 2 difference arising from the different ranges of α and ψ,

QD2 =
27Q̂

8192π5lpα′5/2

∫ 2π

0
dα

∫ π

0
dθ

sin θ

a(θ)3/2

∫
S3

dΩ3

∫ π
2

0
dμ sin3 μ cos μ, (4.114)
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leading to a relation between the constant in the harmonic function and the number of D2
branes,

Q̂ =
2048
27

π2lpα′5/2ND2 . (4.115)

Since F2 is not related to the D2 brane charge, we will only consider it as a geometric flux.
For the same reasons as in the supersymmetric case, cf. section 4.3, there are no D4/D6
branes.

4.4.1 The NATD

We can now take the NAT dual of the background (4.109). The NS-NS sector of the resulting
background is given by,

d̂s
2

=
r

2lp
H−1/2ds2(R1,2) + Λ2( 4

r2 dr2 + 3dμ2 +
1

(1 + cos2 θ)2 dθ2

+ 4w(θ) sin2 θdα2)+
3α′2Ξ
4M

[d(ρ sin χ)]2

+
81

256α′Δ

[
ρ2Ξ2 cos2 μ sin2 χ(dξ)2 +

1
M

(
α′2ρ2 cos χdρ + Ξ2d(ρ cos χ)

)2]
B̂2 =

81ρ2 sin χΞ
256Δ

dξ ∧ dρχ

e−2φ̂ = e−2φΔ, Δ =
27Ξ

64α′3
[
cos2 μΞ2 + α′2ρ2K

]
, Ξ = sin2 μΛ2 , Λ =

1
2

eφ/3rH1/6 ,

(4.116)
where we have defined the following one-form,

dρχ =
(
ρKdχ − cos χ sin χ sin2 μdρ

)
, (4.117)

and included the following definitions,
K = cos2 μ cos2 χ + sin2 χ,

M = α′2ρ2 cos2 χ + Ξ2 .
(4.118)

The RR sector is given by

F̂1 = − 9lp
√

Ξ
16

√
α′Λ2

[√
Ξd(ρ cos χ) + 2ρ cos μ cos χΛdμ

]
,

F̂3 =
( 9lp

√
α′ρ sin θ

16a(θ)2
√

w(θ)
dρ +

18l2p
√

w(θ)Λ3Ξ3/2H ′

α′3/2r2a(θ)H3/2 cos μ sin θdμ

)
∧ dθ ∧ dα

+
729lpρΞ3/2 cos μ sin χ

4096α′5/2Λ2Δ

(
− 2 cos2 μΛΞ2dμ ∧ d(ρ sin χ)

+ α′2ρ2
[
2Λ sin χdμ + cos μ cos χ

√
Ξdχ
]

∧ dρ

)
∧ dξ,

F̂5 =
9

32α′3/2 v4 ∧
(

8
l2pα′2ρH ′

r2H3/2 dρ +
lp cos μ sin θΞ3/2

a(θ)w(θ)Λ sin θ
dμ

)

− 729lpρ2 cos μ sin χΞ5/2

4096r2α′3/2a(θ)2
√

w(θ)H3/2Δ
dα ∧ dθ ∧ dξ∧(

r2 cos μ sin θ
√

ΞH3/2dρ ∧ dχ + 32lpa(θ)w(θ) sin θH ′Λ3dμ ∧ dρχ

)
,

(4.119)
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where a(θ) = 2(1 + cos2 θ) and v4 = − r2

4l2p
√

H
dr ∧ dx0 ∧ dx1 ∧ dx2.

Brane configuration and charges

As in the supersymmetric reduction, spacetime is singular at μ = 0, which corresponds to
the fixed locus of the SU(2) isometry before duality. We thus first compute the NS5 charge
by integrating H3 on the cycle (Σ3[ρ, χ, ξ], μ = 0), on which H3 simplifies to,

H3 =
3
4

α′ sin χdξ ∧ dχ ∧ dρ , (4.120)

so that,

QNS5 =
1

2κ2
10TNS5

3α′

4

∫ ρ0

0
dρ

∫ π

0
sin χdχ

∫ 2π

0
dξ =

3ρ0

4π
= NNS5 . (4.121)

For the charge to be quantized we need ρ0 = 4nπ
3 . This is compatible with the condition

(4.39) which leads to ρ ∈ [4(n−1)π
3 , 4nπ

3 ] and a large gauge transformation on B2. We can now
examine the metric close to μ = 0, with ν = μ2,

ds2
μ→0 =

r

2lp
√

H(r)

[
ds2(R1,2) + H(r)

(
dr2 + r2( 1

a(θ)2 dθ2 +
1

4a(θ)
sin2 θdα2))]

+
1
ν

[ 3
32lpr3

√
H(r)

(
16l2pα′2dρ2 + r6H(r)

[
dν2 + ν2(dχ2 + sin2 χdξ2)])] ,

(4.122)

where ν−1 is the harmonic function for NS5 branes along the (R1,2, r, θ, α) directions. As in
the previous example, the NS5 branes are located at the singularity μ = 0 and are smeared
along the ρ direction.

The Page forms are given by

F̃3 =
9lp

√
α′ρ

64a(θ)2
√

w(θ)
[

− 4 sin θdα ∧ dθ ∧ dρ

+ 6a(θ)2
√

w(θ) cos μ sin μ sin χdμ ∧ d(ρ sin χ)
]

− 27Q̂

256lpα′3/2a(θ)
cos μ sin2 μ sin θdα ∧ dθ ∧ dμ

F̃5 = −
27l2p

√
α′Q̂

2r9H3/2 ρdρ ∧ v4 +
9r3

√
H

64α′3/2 cos μ sin3 μdμ ∧ v4

− 27lpα′3/2

64a(θ)2
√

w(θ)
ρ2 sin θ sin χdα ∧ dθ ∧ dξ ∧ dρ ∧ dχ ,

(4.123)

with F̃1 = F̂1 given in (4.119). We will focus on the components that are proportional to
Q̂, whereas the remaining term will only be considered as geometric flux. Integrating the
(α, θ, μ) term in F̃3 we obtain,

QD5 =
1

2κ2
10TD5

27Q̂

256lpα′3/2

∫ 2π

0
dα

∫ π

0

sin θ

a(θ)2 dθ

∫ π
2

0
cos μ sin3 μdμ = ND5 , (4.124)

leading to a relation between the constant in the harmonic function and the number of D5
branes,

Q̂ =
4096
27

πlpα′5/2ND5 . (4.125)
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If we further consider the change in the Page forms under a large gauge transformation in
B2

5, it is the D3 charge which is created and we find ΔQD3 = nND5.
In the same spirit as before, we would then have the following brane configuration:

0 1 2 r μ θ α ρ χ ξ

NS5 × × × × × ×
D5 × × × × × ×
D3 × × × ×

The spatial infinity limit

The NS-NS sector of the spatial infinity limit of the non-supersymmetric D2-brane NATD
solution is obtained by setting H(r) = 1 in (4.116)-(4.119),

d̂s
2

=
r

2lp

(
ds2(R1,2) + dr2 + r2(3dμ2 +

1
(1 + cos2 θ)2 dθ2 + 4w(θ) sin2 θdα2))

+
6lpα′2Ξ

M
[d(ρ sin χ)]2 +

81
16384l2pα′Δ

[
ρ2Ξ2 cos2 μ sin2 χ(dξ)2

+
1

M

(
64l2pα′2ρ2 cos χdρ + Ξ2d(ρ cos χ)

)2]
B̂2 =

81ρ2 sin χΞ
2048lpΔ

dξ ∧ dρχ

e−2φ̂ = e−2φΔ, Δ =
27Ξ

32768l3pα′3
[
cos2 μΞ2 + 64l2pα′2ρ2K

]
, Ξ = r3 sin2 μ ,

(4.126)

where we have defined the following one-form,

dρχ =
(
ρKdχ − cos χ sin χ sin2 μdρ

)
, (4.127)

and included the following definitions,

K = cos2 μ cos2 χ + sin2 χ,

M = 64l2pα′2ρ2 cos2 χ + Ξ2 .
(4.128)

The RR sector is given by,

F̂1 = − 9lp
√

Ξ
16r3

√
α′

[√
Ξd(ρ cos χ) + 2r3/2ρ cos μ cos χdμ

]
,

F̂3 =
9lp

√
α′ρ sin θ

16a(θ)2
√

w(θ)
dθ ∧ dα ∧ dρ

+
729ρΞ3/2 cos μ sin χ

1048576r3l2pα′5/2Δ

(
r3/2 cos2 μΞ2dμ ∧ dξ ∧ d(ρ sin χ)

+ 32l2pα′2ρ2
[
2r3/2 sin χdμ + cos μ cos χ

√
Ξdχ
]

∧ dμ ∧ dξ

)
,

F̂5 =
9 cos μ sin θΞ3/2

256r3/2α′3/2a(θ)w(θ) sin θ
v4 ∧ dμ

+
729ρ2 cos2 μ sin χ sin θΞ3

2097152l2pα′3/2a(θ)2
√

w(θ)Δ
dθ ∧ dα ∧ dξ ∧ dρ ∧ dχ,

(4.129)

5The large gauge transformation has the same expression each time: see (4.17) or (4.95)
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with v4 = − r2

4l2p
dr ∧ dx0 ∧ dx1 ∧ dx2.

The ten-dimensional spacetime is a foliation over the r-coordinate with leaves of the form
of a warped product R

1,2 × M̃6. The general structure of the leaves is very similar to that
of section 4.3.4, and can be analyzed in the same way: at fixed r, the space M̃6 can be
thought of as a fibration of the space Ñ3 parameterized by (ρ, χ, ξ) fibered over the base M̃3
parameterized by (μ, θ, α). The topology of M̃3 is that of an S2 parameterized by (θ, α) times
the interval parameterized by μ.

The range of the coordinate ρ was constrained by flux quantization to be the interval
specified in section 4.4.1. Moreover, over a fixed base point (μ, θ, α) ∈ M̃3, the coordinates
(χ, ξ) parameterize a smooth S2 provided we take ξ ∈ [0, 2π], χ ∈ [0, π]. This can already
be seen from the geometry near the location of the NS5 branes, cf. (4.122). More generally
the geometry of the Ñ3 fiber over a fixed point in M̃3 is a smooth S2 parameterized by (χ, ξ)
fibered over the interval parameterized by ρ.

As in the supersymmetric D2 case, we have thus been able to specify the ranges of all
coordinates parameterizing the NATD space. Once this result has been established for the
leaf of the r-foliation at spatial infinity, it remains valid for finite r and applies also to the full
interpolating solution (4.116). The near-horizon limit is obtained by substituting H → Q̂

r6 in
(4.116), and results in an AdS4 factor exactly as is the supersymmetric case.

4.5 D2 from reduction on S7

Here we consider the reduction of the M2 brane background with S7 internal space (4.41),
to IIA along ψ1,

ds2
10 =

r

2lp
cos

μ

2

[
H(r)−1/2ds2(R1,2) + H(r)1/2(dr2 +

1
4

r2(sin2 μ

2
Σ2

i + cos2 μ

2
ds2(Ω2) + dμ2))

]
B2 = 0, e2Φ =

r3

8l3p

√
H(r) cos3 μ

2
F2 = −lpdΩ2, F4 = −dH−1 ∧ dvol3 ,

(4.130)

with Ω2 representing an S2 with coordinates (θ1, φ1) leftover from the σi in (4.42). The near
horizon limit of this solution and its NATD were given explicitly in [76]. It is not known
however whether the reduction preserves supersymmetry.

We can see the presence of D2 branes from �F4,

� F4 = − 3Q̂

64lp
cos

μ

2
v6 , (4.131)

where v6 is the volume form of the 6-dimensional space M6 (along μ, dΩ2 and dΩ3). If we
take the transverse space to be the cone over M6, this cycle collapses at r = 0, where we can
see the D2 brane,

d � F4 = − 3Q̂

64lp
cos

μ

2
δ(r)dr ∧ v6 . (4.132)

Upon quantizing the flux, we obtain

QD2 =
1

2κ2
10TD2

∫
M6

�F4 = − 3Q̂

2048π5lpα′5/2

∫
S2

dΩ2

∫
S3

dΩ3

∫ π
2

0
dμ sin3 μ

2
cos3 μ

2
, (4.133)
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leading to,

Q̂ = 128π2lpα′5/2ND2 . (4.134)

On the other hand, as is the case for the near-horizon limit, F2 is sourced by a D6 brane
along R

(1,2), r, Ω3 and located at μ = π, where the 2-sphere Ω2 collapses. As shown in [76],
the metric in the vicinity of μ = π is singular and takes the precise form of the metric near
a D6 brane source. The charge is given by:

QD6 =
1

2κ2
10TD6

∫
F2 = − 2lp√

α′ . (4.135)

The brane configuration is thus the following:

0 1 2 r μ θ1 φ1 θ2 φ2 ψ2
D2 × × ×
D6 × × × × × × ×

Note that the 3-sphere Ω3, on which we will now dualize, is transverse to the D2 but
parallel to the D6. We will now see how both will behave under NATD.

4.5.1 The NATD

The background resulting from the application of NATD on the Σi reads,

d̂s
2

=
r cos μ

2
2lp

[
H(r)−1/2ds2(R1,2) + H(r)1/2

(
dr2 + r2[dμ2 + cos2 μ

2
ds2(Ω2)

+
9r3√H(r)ρ2 cos μ

2 sin4 μ
2

4096l2pα′Δ
ds2(dχ2 + sin2 χdξ2)

])]
+

9lpα′2

8r3
√

H(r) cos μ
2 sin2 μ

2
dρ2,

B̂2 =
27r3ρ3 cos μ

2 sin2 μ
2

4096lpΔ
sin χdξ ∧ dχ, e−2Φ̂ =

8l3pΔ
r3
√

H(r) cos3 μ
2

,

Δ =
r3√H(r) cos μ

2 sin2 μ
2

512l3pα′3 (9l2pα′2ρ2 + r6H(r) cos2 μ

2
sin2 μ

2
) ,

(4.136)

and,

F̂3 = − 9
64

lp
√

α′ρdΩ2 ∧ dρ +
3Q̂

64lpα′3/2 cos3 μ

2
sin3 μ

2
dΩ2 ∧ dμ

F̂5 = −
27Q̂l2p

√
α′

8r9H(r)3/2 cos2 μ
2

ρdρ ∧ v4 +
r3

√
H sin3 μ

2
8α′3/2 cos μ

2
dμ ∧ v4

+
27r3

√
Hρ2 cos3 μ

2 sin5 μ
2

524288l2pα′3/2Δ

(
2r6H sin

μ

2
dρ − 6Q̂ρ cos

μ

2
dμ
)

∧ dΩ2 ∧ sin χdχ ∧ dξ ,

(4.137)

with v4 = − r2 cos2 μ
2

4l2p
√

H
dr ∧ dx0 ∧ dx1 ∧ dx2.
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The Page five-form is given by,

F̃5 = −
27Q̂l2p

√
α′

8r9 cos2 μ
2 H3/2 ρv4 ∧ dρ +

r3
√

H sin3 μ
2

8α′3/2 v4 ∧ dμ

− 27
512

lpα′3/2ρ2 sin χdΩ2 ∧ dρ ∧ dχ ∧ dξ .

(4.138)

Brane configuration and charges

We first compute the NS5 charge by integrating H3 on the cycle ([ρ, χ, ξ], μ = 0),

H3 = −3
8

α′ sin χdρ ∧ dχ ∧ dξ

QNS5 =
1

2κ2
10TNS5

∫
H3 =

3ρ0

8π
.

(4.139)

QNS5 is quantized if ρ0 = Ln, where we set Ln := 8
3πn. With ρ ∈ [Ln, Ln+1] and a suitable

large gauge transformation on B2, the relation (4.39) is satisfied.
The NS5 branes are also seen by zooming in on the singularity generated by the NATD

at μ = 0,

ds2
μ→0 =

r

2lp
√

H(r)

[
ds2(R1,2) + H(r)

(
dr2 +

r2

4
dΩ2

2
)]

+
1
ν

[ 9lpα′2

2r3
√

H(r)
dρ2 +

r3√H(r)
32lp

(
dν2 + ν2dΩ̃

)]
.

(4.140)

This is indeed consistent with the harmonic superposition rule, with harmonic function pro-
portional to ν−1. This gives the characteristic NS5 brane configuration: along the (R1,2, r, Ω2)
directions, located at μ = 0 and smeared along ρ.

Next we compute the quantized Page charges. We start with the dual of F4 to track the
D2. This corresponds to the terms proportional to Q̂. Here only the F̃3 = F̂3 gives a non
zero charge and we integrate the (Ω2, μ) term to find,

QD5 =
Q̂

256lpπα′5/2 =
1
2

πND2 , (4.141)

where we took (4.134) into account. We see that, as already noted in the near-horizon limit
[76], ND5 and ND2 differ by a factor of π

2 and thus cannot both be integers. Indeed it is
known that NATD generically maps integer charges to non-integer ones [72]. In the dual
theory we are thus led to impose a different quantization condition: 1

2πND2 ∈ Z, so that
(4.141) is satisfied with QD5 ∈ Z. Moreover, we may perform a large gauge transformation
on B2 and find the resulting change in the Page charge for F5, ΔQD3,

ΔQD3 =
nQ̂

256πlpα′5/2 = nQD5 . (4.142)

We can also track the D6 by looking at the dual of F2, i.e. the remaining components of the
Page forms. These are found by integrating the terms not proportional to Q̂ in (4.137) and
(4.138), which we label F̃3′ and F̃5′ . We find,

QD5′ =
1

2κ2
10TD5

∫
F̃3′ = −9lp(L2

n+1 − L2
n)

128π
√

α′ =
1
4

π(2n + 1)QD6 (4.143)

QD3′ =
1

2κ2
10TD3

∫
F̃5′ = −9lp(L3

n+1 − L3
n)

512π2
√

α′ =
1
6

π(3n2 + 3n + 1)QD6 , (4.144)
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where in the last equalities on the right hand sides above we have taken (4.135) into account
and the quantization of ρ0 given below (4.139). Similar to the case of QD5 above, we see
that QD5′ , QD3′ cannot be integers if QD6 is integer. In the dual theory we are thus led
to impose a different quantization condition: 1

12πQD6 ∈ Z. Moreover, under a large gauge
transformation of B2, QD3′ is modified in the same fashion as QD3, cf. (4.142),

ΔQD3′ = nQD5′ . (4.145)

The brane configuration is summarized in the following table.

0 1 2 r μ θ1 φ1 ρ χ ξ

NS5 × × × × × ×
D3 × × × ×
D5 × × × × × ×
D3′ × × × ×
D5′ × × × × × ×

The spatial infinity limit

The supergravity background corresponding to the NATD of the spatial infinity limit of
(4.130) is presented here,

d̂s
2

=
r cos μ

2
2lp

[
ds2(R1,2) +

(
dr2 + r2[dμ2 + cos2 μ

2
ds2(Ω2)

+
9r3ρ2 cos μ

2 sin4 μ
2

4096l2pα′Δ
ds2(dχ2 + sin2 χdξ2)

])]
+

9lpα′2

8r3 cos μ
2 sin2 μ

2
dρ2,

B̂2 =
27r3ρ3 cos μ

2 sin2 μ
2

4096lpΔ
sin χdξ ∧ dχ, e−2Φ̂ =

8l3pΔ
r3 cos3 μ

2
,

Δ =
r3 cos μ

2 sin2 μ
2

512l3pα′3 (9l2pα′2ρ2 + r6 cos2 μ

2
sin2 μ

2
) ,

(4.146)

and,

F3 = − 9
64

lp
√

α′ρdΩ2 ∧ dρ

F5 =
r3 sin3 μ

2
8α′3/2 cos μ

2
dμ ∧ v4 +

27r9ρ2 cos3 μ
2 sin6 μ

2
262144l2pα′3/2Δ

dρ ∧ dΩ2 ∧ sin χdχ ∧ dξ ,
(4.147)

with v4 = − r2 cos2 μ
2

4l2p
dr ∧dx0 ∧dx1 ∧dx2. The surviving RR flux terms in the asymptotic limit

ultimately arise from the charge created in the reduction of the parent M-theory background
to Type IIA, and thus from the D6. The NS5 also survives since it comes from the singularity
in the NATD.

4.6 Discussion

Having full-fledged brane solutions, interpolating between the near-horizon and spatial in-
finity limit, may give a better handle on the brane configurations and the global properties
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of the NATD. In particular certain general features emerge. The NATD of the spatial in-
finity limit of standard intersecting brane solutions is universal: it is given by a continuous
linear distribution of NS5 branes along a half line with specific charge density. We have also
provided additional examples where a general relation, observed previously in the NATD
literature, between the Page charges generated by the NATD and their behavior under a
large gauge transformation of the NS flux is obeyed. Since this behavior results from the
non-trivial dependence of the Page charge on the B2 field, NATD naturally furnishes several
examples where the choice of B2 plays an important role.

More generally in cases where the brane configuration before NATD is not flat at spatial
infinity, the NATD contains highly nontrivial RR fluxes even at spatial infinity. If the charges
before NATD are related to the presence of branes, the latter can be tracked throughout the
NATD. On the other hand, the precise NS5-D(p+1)-D(p+3) brane intersections underlying
these solutions cannot be systematically identified with this approach. Indeed, we have not
been able to describe these brane fluxes as resulting from backreaction (as dictated by the
harmonic superposition rule) on some initial spacetime without branes. The exception to
this statement is the case of the geometry near the locus of the NS5 branes. Let us also note
that the spatial infinity limits of the NATD backgrounds presented here are highly nontrivial
exact supergravity solutions in their own right, and they can be considered independently
from the full interpolating intersecting brane solution.

In the case of the NATD of the D2 branes, proceeding by analogy to the NATD of the D3
brane, cutting off the range of the ρ coordinate at a finite value, in order to impose NS5 charge
quantization, provides a prescription for assigning well-defined ranges to all dual coordinates.
On the other hand, from a purely geometrical point of view this procedure renders the space
geometrically incomplete. Ultimately such a procedure should be justified through a physical
interpretation. In the case of the NATD of the D3 brane, such an interpretation was provided
by the field theory dual proposed in [80], as reviewed in section 4.1.2. It would be interesting
to provide a similar interpretation for the NATD of the D2 branes of the present paper.

We have cast the supersymmetric D2 brane solution, arising from the reduction of M2
branes on seven-dimensional Sasaki-Einstein, in the language of generalized geometry pure
spinor equations for domain walls. This framework allowed to look for massive supersymmet-
ric deformations of the D2 brane solutions, and we have been able to rule out a certain class
of ansätze. It would be interesting to try to construct these massive deformations explicitly,
at least in a perturbative expansion in Romans mass as in [93]. If they exist, these would
be full interpolating intersecting brane solutions whose near-horizon limit coincides with the
class of massive IIA AdS4 × M6 solutions of [92]. Note also that it is not clear whether the
D2 brane solution obtained through reduction on S7 is supersymmetric: the formalism of
generalized complex geometry could also help resolve this issue.

It would also be interesting to cast the NATD of the supersymmetric solutions in the
generalized geometry formalism for domain walls, thus refining the general results of [94, 95].
Besides providing a check of supersymmetry, this might give insight into the global structure
of the solutions. In certain cases the duals might fall within the class recently examined in
[96].
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Published in: [1] R. Terrisse and D. Tsimpis, “SU(3) structures on S2 bundles over
four-manifolds,” JHEP 1709, 133 (2017)

As we have seen in 2.4, supersymmetric compactification require the existence of an
SU(3)-structure on the internal manifold. Then in some cases the supersymmetry equations
can be translated into conditions on the torsion classes of the SU(3)-structure. Depending
on the flux content, the admissible torsion classes may vary. A classification of flux vacua
would then go through a classification of manifolds with SU(3) structure and the torsion
classes they can carry.

Calabi-Yau manifolds correspond to the special case where all torsion classes vanish. In
the context of compactification this is equivalent to vanishing fluxes. And this is only one
of many reasons why Calabi-Yau manifolds are interesting. Thus Calabi-Yau manifolds have
been the subject of intensive research, both in mathematics and theoretical physics. Other
types of torsion classes have been less studied and relatively few things are known about
their classification. This would require a significant pool of manifolds with SU(3) structure.

For this reason it was proposed in [97] to use smooth compact toric varieties (SCTV) as
a class of manifolds upon which a classification procedure could be started. Toric varieties
stem from algebraic geometry, thus in the smooth case they lie at the intersection between
differential and algebraic geometry and tools from both fields are available. SCTV come
with a lot a structure and this should help constructing SU(3)-structures on general grounds.
Indeed [97] gives a procedure to build SU(3)-structures that rely only on the existence of a
specific one form K. This procedure was applied in many examples, first in [97] and then in
[98], but the choice of K prevents the method to be fully systematic.

This chapter presents another procedure that can be systematically applied to a wide
class of SCTV. The procedure defines a 3D SCTV as a CP

1 bundle over any 2D SCTV, and
uses the bundle structure to build an SU(3) structure. The discussion starts with a review
of the formalism that will be used throughout the chapter. Then the general construction is
described, before being illustrated on the case where the base is CP

2. Also the computation
of the torsion classes is initiated.

5.1 Review of the formalism

In order to fix the notation and make the chapter self-contained, in this section we give a
review of the SCTV formalism developed in [97]. Along the way we introduce the tools that
will be useful in the rest of the chapter. The description of the toric CP

1 bundles is given at
the end of the section.
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5.1.1 The symplectic quotient and coordinates

There are various equivalent ways to define a toric variety see e.g. [99], or [100] for an
introduction for physicists. In the following we will use the symplectic quotient description,
which turns out to be the best suited for the explicit construction of G-structures and the
associated differential calculus. The starting point of the symplectic quotient description is
a parent space C

k, with coordinates {zi, i = 1, . . . , k}, and a set of s linearly-independent
integer k-vectors Qa

i , {a = 1, · · · , s} called the charges. Let M̃ be the real submanifold
defined by the following set of moment map equations,

Qa
i |zi|2 = ξa . (5.1)

The real parameters ξa are the so-called, Fayet-Iliopoulos parameters: they correspond to
Kähler moduli, parametrizing the sizes of cycles of the toric variety. On the other hand the
topology of the variety is independent of the ξa as long as we stay inside the Kähler cone,
defined by the conditions ξa > 01. In the following we will always assume this to be the case.
The associated toric variety M is given by the quotient M = M̃/U(1)s where the phase vector
φa ∈ U(1)s acts on the coordinates zi ∈ M̃ through the following gauge transformations,

zi → φ · zi := eiQa
i φazi . (5.2)

Hence M is a manifold of complex dimension d = k − s: the equations (5.1) can be thought
of as removing s real “radial” directions, whereas the action of (5.2) removes s real ‘angular’
directions. In total the equations (5.1), (5.2) remove s pairs consisting of one radial and one
angular variable, which may be thought of as s complex variables.

Since the Qa are independent as k-vectors, one may choose a set S of s indices such
that Qa

b , b ∈ S, is invertible. The open set {zb �= 0, b ∈ S} ⊂ C
k then descends to a well-

defined open set in M , denoted by US . On this patch one can then use the zb coordinates
to compensate the U(1)s action on the zα coordinates, where the index α takes values in the
complement of S, α ∈ �S. One may then define the following gauge-invariant quantities,

ti := zi

∏
a∈S

z
−Qa

b Qb
i

a , (5.3)

where we have set,
Qa

b := (Qa
b )−1 . (5.4)

Thus, provided |QS | := | det Qa
b∈S | = 1, the map

ϕS : US → C
d

[zi] �→ (tα)α∈�S

, (5.5)

is well defined and homeomorphic, while the transition functions ϕS ◦ ϕ−1
S′ are biholomor-

phic and rational. Now if M =
⋃

|QS |=1 US , the charts (US , ϕS) form a holomorphic atlas
on M : the tα, α ∈ �S, define d gauge-invariant local holomorphic coordinates on US . Note
that for i = c ∈ S, we thus find tc = 1. This condition of covering of M is thought to be
related to the condition of smoothness for general toric varieties and is satisfied for the cases
we consider here.

To take a simple example, consider the case s = 1 and Q = (1, · · · , 1). The corresponding
toric variety is the complex projective space CP

k−1. Indeed (5.1) gives ‖z‖2 = ξ, i.e. M̃ =
1This needs not always be the case
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S2k−1. Taking the U(1) quotient, M can be written as M = (Ck\{0})/C∗, the set of complex
lines in C

k. On the patch Uj = {zj �= 0}, the local coordinates take the form,

ti =
zi

zj
, (5.6)

which we recognize as the set of canonical coordinates of CPk−1. The zi on the other hand
correspond to homogeneous coordinates of CPk−1.

5.1.2 Differential forms

We have seen that toric varieties are equipped with systems of complex coordinates which can
easily be made explicit. Moreover it is often advantageous to work directly in the parent space
C

k using the homogeneous coordinates zi. We will be interested in particular in globally-
defined differential forms on the manifold M . One way to construct a differential form on
M is to start from its local expression on a patch, and make sure a regular global extension
exists by checking its compatibility with the transition functions of the cotangent bundle.
Working directly in C

k drastically simplifies this problem: since the topology of the parent
space is trivial, a single expression suffices to define differential forms globally. From this
point of view the key question is to identify the differential forms of C

k which descend to
well-defined forms on M .

In the following we review how the formalism of [97] can be used to treat this question.
Let Φ be a differential form on C

k. In order for Φ to descend to a well defined form on M , it
should be well-defined on M̃ . Hence it should be compatible with the moment map equations
(5.1) which imply,

Qa
i z̄idzi + Qa

i zidz̄i = 0 . (5.7)

Consequently Φ should not have any components along the �ηa, where we have defined,

ηa := Qa
i z̄idzi . (5.8)

In other words, we require,
ι�(V a)Φ = 0, (5.9)

where V a is the dual of ηa (with respect to the canonical metric of Ck),

V a := Qa
i zi∂zi . (5.10)

Moreover, Φ should be compatible with the quotient (5.2). On the other hand the U(1)s

action in (5.2) is generated by the vector fields �(V a). Hence the U(1)s invariance can be
stated in terms of the following two conditions:

1. Φ must be constant along U(1)s orbits, i.e. L
(V a)Φ = 0 .

2. Φ should not have any components along the orbits, i.e. ι
(V a)Φ = 0 .

These conditions have a natural interpretation: first note that a form Φ has charge qa if it is
an eigenvector of the Lie derivative L
(V a),

L
(V a)Φ = qaΦ . (5.11)
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We then see that the first of the two conditions above is simply the gauge invariance of Φ, i.e.
the condition that the total charge of Φ vanishes. Moreover the second condition combined
with (5.9) gives,

ιV aΦ = ιV̄ aΦ = 0 , (5.12)

which is equivalent to Φ being vertical with respect to V a.
Thus in order to construct a well-defined form on M descending from a form Φ on C

k, the
gauge invariance of Φ must be imposed from the outset. On the other hand, the verticality
condition is purely algebraic and can be imposed by projecting out the components along ηa.

Let us now come to the explicit construction of the vertical projector. We introduce the
real symmetric matrix,

gab := ηa(V b) = Qa
i Qb

i |zi|2 . (5.13)

The projection P on a (1, 0)-form Φ is then given by,

P (Φ) = Φ − g̃abιV a(Φ)ηb , (5.14)

where g̃ = g−1. This definition of P can be readily extended to all (k, l)-forms [97]. In the
following it will be useful to define the vertical projections, Dzi, of the one-forms dzi,

Dzi := P (dzi) = dzi − g̃abQ
a
j Qb

i z̄jzidzj = dzi − hijziz̄jdzj , (5.15)

(no sum over i) where we have set,

hij := Qa
i Qb

j g̃ab . (5.16)

The Dzi are the building blocks that we will use to construct global forms on M . Note however
that since they are not gauge invariant, one must compensate their charge by appropriate
(charged) coefficients.

On the other hand the (singular) form Dzi/zi is both gauge invariant and vertical and
therefore admits an expression in terms of the local coordinates ti. On the patch US we have,

dti

ti
=

dzi

zi
−
∑
a∈S

Qa
b Qb

i

dza

za
, (5.17)

where we took (5.3) into account. Setting i = c ∈ S then gives dtc = 0, cf. (5.4). This leaves
us with d linearly-independent one-forms dtα, α ∈ �S. We can then compute,

Dzi

zi
=

dti

ti
− hij |zj |2 dtj

tj
. (5.18)

where we took into account that: hij |zj |2Qb
j = g̃cd Qc

iQ
d
j |zj |2 Qb

j = g̃cd Qc
i gdb = Qb

i . As
expected, given that the form on the left-hand side is vertical and gauge invariant, the result
can be expressed in terms of the local coordinates alone. Note also that the gauge-invariant
|zj |2 can be expressed as a function of ti using (5.1).

Conversely, (5.17) can be used to express dti as a function of Dzi, since dti is vertical by
definition. We now have all the necessary tools to translate back and forth between the local
coordinate system {ti} on M and the global coordinate system {zi} on C

k.
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5.1.3 Kähler structure

It is now possible to show that the toric variety will inherit a Kähler structure from the
parent space. Indeed C

k is equipped with a canonical hermitian form:

h = dzi ⊗ dz̄i = gC − i JC (5.19)

Where gC is the euclidean metric and JC the canonical Kähler form. The nice thing about
this is that the product of z and z̄ automatically compensates for the charges and makes hC

gauge invariant. We just need to project on the vertical component to get a tensor on M .
Thus a toric variety naturally comes with a hermitian structure:

h(ξa) = P (hC) = P (dzi ⊗ dz̄i) = Dzi ⊗ Dz̄i . (5.20)

As we have already noted, the Dzi above are not linearly independent and do not form a
basis of the cotangent bundle of M . Using (5.18) it is not difficult to see that the hermitian
metric takes the following form in local coordinates,

h(ξa) =
|zi|2
|ti|2

dti ⊗ dt̄i − hjk
|zj |2
|tj |2

|zk|2
|tk|2 t̄jdtj ⊗ tkdt̄k , (5.21)

where we have made use of the identity hijhik|zi|2 = hjk which can be shown by taking into
account the various definitions. As we have seen in section 1.3.3 the hermitian metrics is
given by a metric and a symplectic form. Using the decomposition 1.18 define:

h = g − i Ĵ (5.22)

In this case Ĵ is in fact a Kähler form,

Ĵ =
i

2
Dzi ∧ Dz̄i . (5.23)

Although Dzi are not closed, it can readily be verified that dĴ vanishes as it should. Thus
any toric variety is Kähler.

Let us illustrate the above with the example of CPk−1: on the patch Uk we have g = ξ

and hij = 1
ξ . Moreover (5.1) gives |zk|2 = |zα|2

|tα|2 = ξ
1+t2 , where t2 :=

∑
α |tα|2; α = 1, . . . , k −1.

Hence,

h(ξ) = ξ

(
dti ⊗ dt̄i

1 + t2 − η ⊗ η̄

)
, (5.24)

where η := 1
1+t2 t̄idti. We thus recover the Fubini-Study metric and its associated Kähler

form.
An hermitian metric also gives rise to a scalar product "·" on differential forms on M .

Since P 2 = P , the calculation of the scalar product on vertical forms can be done in the
parent space C

k using the flat metric. Indeed the action of the metric on vertical forms η1, η2
can be written:

g(η1, η2) = gC(Pη1, Pη2) = gC(η1, η2) (5.25)

Then, using (5.15) we can compute the useful relation:

Dz̄i · Dzj = 2(δij − hij z̄izj) , (5.26)

which shows that the Dzi are not orthogonal.
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5.1.4 SU(d) structures

To further reduce to SU(d) we need an holomorphic d-form. Once again look at the parent
space: C

k has a canonical SU(k) structure given by,

JC =
i

2
dzi ∧ dz̄i (5.27)

ΩC =
∧
i

dzi, (5.28)

As we have just seen, projecting JC does lead to a Kähler form on M . The question that
remains is about ΩC. However P (Ω̃) vanishes trivially since there can be no (k, 0) forms on
M . In order to obtain a (d = k − s, 0)-form on M we must contract Ω̃ with each of the V a

vectors, so that,
Ω̂ :=

1√
det g

∏
a

ιV aΩ̃ . (5.29)

This expression is naturally vertical, since the vertical components have been contracted.
The V a are not charged so that Ω̂ has the same charge as Ω̃, i.e. qa =

∑
i Qa

i . Now if∑
i Qa

i = 0, Ω̂ is gauge invariant thus defining a holomorphic d-form on M , and then an
SU(d)-structure. However M is also Kähler so that M is in fact Calabi-Yau and cannot be
compact. This case will then be excluded for us.

Let us now suppose that
∑

i Qa
i �= 0. The pair (Ĵ , Ω̂) does satisfy the compatibility equa-

tions (1.24), thus defining at least a local SU(d) structure on M . Moreover Ω̂ admits a simple
expression in terms of local coordinates2 on US . After some straightforward manipulations
we obtain,

Ω̂ = (−1)SQS

∏
i zi√

det g

∧
α

dtα

tα
, (5.30)

where a ∈ S, α ∈ �S and we have defined,

(−1)S := (−1)
∑

a∈S
a+ (s+1)(s+2)

2 . (5.31)

Remark Any manifold admits local SU(d) structures since the issue is precisely the global
definition. For example, for a manifold with U(d)-structure choose a holomorphic vielbein
define the holomorphic d-form as the product of the holomorphic vielbein form. Thus the
existence of Ω̂ is of course not surprising but it will still be very useful as I will show in the
following. In order to define an SU(d)-structure it will be necessary to modify Ω̂ to make it
gauge invariant. At the same time Ĵ should also change to keep the compatibility conditions
intact. In [97] a prescription was given for the construction of global SU(d) structures on
M .3 It relies on the existence of a one-form K on C

k with the following properties:

1. It is vertical and (1,0) with respect to the complex structure of Ck.

2. It has half the charge of Ω̃.

3. It is nowhere-vanishing.
2Thus defined, Ω̂ is compatible with the transition functions. But the zi are not strictly functions on US

since they are not gauge-invariant. Then, a rigorous local form could be achieved by substituting zi with |zi|,
losing in the process the compatibility with transition functions.

3Originally presented for d = 3, the prescription of [97] is in fact directly generalizable to any dimension.
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Given a one-form K on C
k satisfying the conditions above, [97] showed that a global SU(3)

structure on M can be constructed, and provided explicit examples of such a K for certain
toric CP

1 bundles. Many more examples of K were provided for other toric varieties in
[98], which also provided explicit computations of the torsion classes of the associated SU(3)
structures. However there is no known construction for K that would be applicable in
general, even for a subclass of SCTV, and the search for SU(3) structures on SCTV had so
far proceeded in a case by case fashion.

In the following we will present a construction of SU(3) structures valid for toric CP
1

bundles over any 2d SCTV. As we will see, our method is not equivalent to the prescription
of [97], although it also makes use of a certain (1,0)-form on C

k.

5.2 CP
1 over general SCTV

5.2.1 Toric CP
1 bundles over SCTV

In [101], the classification of SCTV in three (complex) dimensions was shown to reduce to
the classification of certain weighted triangulations of the two-dimensional sphere. In [97] it
was shown how to systematically translate the results of [101] into the symplectic quotient
language reviewed previously. In the following we will be interested in the subclass of the
classification of [101] corresponding to CP

1 bundles over a two-dimensional SCTV base.
However the formalism applies generally to the case of CP1 bundles over SCTV, so in this
subsection we will keep the dimension of the base arbitrary.

The U(1) charges of these bundles are given by the following set of (s + 1) × (k + 2)
matrices,

QA
I =

(
qa

i −na 0
0 1 1

)
, (5.32)

where A = 1, . . . , s + 1, I = 1, . . . , k + 2; na ∈ N, a = 1, . . . , s, are integers specifying the
twisting of the CP

1 bundle over a SCTV M ; qa
i , a = 1, . . . , s, i = 1, · · · , k, are the U(1)

charges of the symplectic quotient description of M , which is therefore of complex dimension
d = k − s. (In subsequent subsections we will specialize to the case d = 2.)

The total space of the bundle is constructed by appending two coordinates and one new
charge to those of M (given by the qa

i ), as in (5.32), thus obtaining a space of complex
dimension d + 1. We will hence use specific notations for the data related to the fiber,
namely:

u := zk+1 ; v := zk+2 ; ξ := ξs+1 . (5.33)

The last charge Qs+1
i defines a CP

1 fiber over M , while the integers na determine the
twisting of the bundle. Indeed the moment map equations for the total space read,

k∑
i=1

qa
i |zi|2 = ξa + na|u|2 ; |u|2 + |v|2 = ξ . (5.34)

Thus the last two coordinates define a sphere of radius
√

ξ, while the first n coordinates
define locally an Mρ whose “radii” (ρa)2 := ξa + na|u|2 depend on the fiber. The twisting
can be thought of as a consequence of the modified U(1)s+1 action.
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5.2.2 Decomposition of the metric

We would now like to construct a metric that exhibits the bundle structure, i.e. a metric of
the form : hd+1 = hd + h

CP
1 , where hd is a metric on M and h

CP
1 is a metric on the fiber

CP
1, possibly modified by a connexion on the base.
We start by defining the vertical one-forms using the formalism introduced in section

5.1.2, for the total bundle. The relations are thus given by the charges QA
I . The same can

be done by taking only the charges of the base qa
i :

ĝab := qa
i qb

i |zi|2
ĥij := ĝabq

a
i qb

j

D̂zi := P̂ (dzi) = dzi − ĥijziz̄jdzj ,

hatted symbols are used to denote objects relatively to the base, in order to distinguish
from the objects constructed in (5.1.2). Note that ĝ, ĥ, D̂zi live on the same space as their
non-hatted counterparts, which are the relevant objects for the definition of forms in the
symplectic quotient description. This means that they do not have, before further analysis,
any trivial interpretation. For example, the |zi|2 do not verify the moment maps equations
of the base but those of the total bundle, and thus ĝ, ĥ and D̂zi depend on the radii. A quick
calculation confirms now that the D̂zi do obey the expected algebraic relations :

k∑
i=1

qa
i z̄iD̂zi = 0 .

Recall the form of the canonical metric on a SCTV (the generalization of the Fubiny-Study
metric of CP1),

hd+1 =
k+2∑
I=1

DzI ⊗ Dz̄I .

We will now decompose this metric into base and fiber components. Since the Dz depends
on the matrix gAB, the key here will be to decompose it and its inverse along the different
bundle directions.

The definition of QA
I leads to :

gAB =
(

ĝab + nanb|u|2 −na|u|2
−nb|u|2 ξ

)
.

Moreover we need to express the inverse gAB while keeping track of the inverse, ĝab, of ĝab.
For this purpose we first need to compute the determinant g = det gAB,

g =
∣∣∣∣∣ ĝ + n nT |u|2 n|u|2

nT |u|2 ξ

∣∣∣∣∣ =
∣∣∣∣∣ ĝ + n nT |u|2(1 − |u|2

ξ ) 0
nT |u|2 ξ

∣∣∣∣∣ = ξ det
(

ĝ +
1
ξ

|u|2|v|2n nT
)

.

We now use the property of multilinearity of the determinant to expand this expression. We
then get all different terms of order s − m in g and m in n nT . But since rank n nT = 1, only
the terms of order zero or one remain. The terms of order one are merely the determinant
of ĝ where the column a has been replaced by the vector na

ξ |u|2|v|2 n. By expanding along
this same column, we exhibit the cofactors of ĝ which are independent of this exact column,
and are related to the inverse matrix,

det(ĝ, ga ↔ n) =
∑

a

cof(ĝ)abn
b = ĝ ĝabn

b .
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Thus we have :

g = ξ

(
ĝ +

na

ξ
|u|2|v|2ĝ ĝabn

b
)

= ĝ(ξ + ĝabn
anb|u|2|v|2) .

The same trick can be used to compute the inverse matrix :

gs+1 s+1 =
1
g

det(ĝ + n nT |u|2) =
ĝ

g
(1 + ĝabn

anb|u|2) .

Moreover,
ga s+1 =

1
g

det(ĝ, ga ↔ −|u|2 n) =
ĝ

g
|u|2 ĝabn

b .

The last cofactors are somewhat more complicated, since they involve double cofactors. Even-
tually we get :

gab = ĝab − ĝ

g
|u|2|v|2 ĝacn

c ĝbdnd .

It is now possible to compute the hμν . Let us introduce the objects

V := ĝabn
anb , Vi := ĝacq

a
i nc , (5.35)

in terms of which we obtain,

hij = gabq
a
i qb

j = ĥij − ĝ

g
|u|2|v|2 Vi Vj

hik+1 = ga s+1qa
i − gabq

a
i nb = − ĝ

g
Vi|v|2

hik+2 = ga s+1qa
i =

ĝ

g
Vi|u|2

hk+1 k+1 = gs+1 s+1 − 2gas+1na + gabn
anb =

ĝ

g
(1 + V |v|2)

hk+1 k+2 = gs+1 s+1 − gas+1na =
ĝ

g

hk+2 k+2 = gs+1 s+1 =
ĝ

g
(1 + V |u|2) .

(5.36)

We can now compute the DzI ,

Dzi

zi
=

D̂zi

zi
+

ĝ

g
Vi|u|2|v|2 ε , (5.37)

where,
ε =

du

u
− dv

v
+ Vj z̄jdzj . (5.38)

The last two coordinates correspond to colinear one-forms,

Du

u
=

ĝ

g
|v|2 ε;

Dv

v
= − ĝ

g
|u|2 ε .
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Finally the canonical metric reads,

hd+1 = Dzi ⊗ Dz̄i + Du ⊗ Dū + Dv ⊗ Dv̄

= D̂zi ⊗ D̂z̄i +
ĝ

g
Vi|u|2|v|2 D̂zi ⊗ z̄iK

∗ + c.c

+ ViVi|zi|2
ĝ2

g2 |u|4|v|4 ε ⊗ ε∗ +
ĝ2

g2 |u|2|v|2ξ ε ⊗ ε∗ .

(5.39)

On the other hand we have,

Viz̄iD̂zi = ĝabn
a qb

i z̄iD̂zi = 0 ; V 2
i |zi|2 = V ,

so that the metric simplifies to,

hd+1(ξA) = hd((ρa)2) +
ĝ2

g2 |u|2|v|2(ξ + V |u|2|v|2) ε ⊗ ε∗ (5.40)

= hd((ρa)2) +
ĝ

g
|u|2|v|2 ε ⊗ ε∗ . (5.41)

Note that this decomposition remains valid in the complex local coordinates ti, tk+1, on the
chart US defined by S = Ŝ ∪ {k + 2}, in which ε can be written as,

ε =
dtk+1

tk+1
+

k∑
i=1

Vi|zi|2
dti

ti
.

The D̂zi happen to be the projections on the space generated by the dti, in fact they are
related to the dti by the relations (5.18) where we take ĥij instead of hIJ . This justifies that
in the decomposition (5.40), the metric on the base is exactly the canonical metric whose
radii vary along the fiber.

5.2.3 SU(3)-structure

We will now show how to construct a globally-defined SU(3) structure on a canonical (defined
in eq. (5.42) below) CP

1 bundle over a SCTV of complex dimension d = 2.
As we saw explicitly in section 5.2.2, the canonical metric of the SCTV, eq. (5.20), is

smooth for any twisting of the bundle parameterized by na ∈ N. On the other hand the
existence of a globally-defined SU(3) structure imposes a topological constraint and hence a
constraint on the na, as we explain in the following. This constraint is automatically satisfied
for the canonical CP1 bundle.4

We start with a (d+1)-dimensional toric CP
1 bundle over a d-dimensional base M , whose

charges were given in (5.32). The CP
1 bundle will be called canonical if the charge of zk+1,

defining the twisting of the bundle, is taken to compensate exactly for the charges of the
base, i.e.,

na =
k∑

i=1
qa

i . (5.42)

4We use the term canonical metric for the metric (5.20) of the SCTV, which is defined for all na, i.e. for
all topologies. On the other hand we use the term canonical CP1bundle for the topology defined in eq. (5.42).
Hopefully this will not lead to confusion.

114



CHAPTER 5. SU(3)-STRUCTURES ON TORIC CP
1 BUNDLES

As emphasized in [98], the topological condition for the existence of an SU(3) structure on
the total space of the SCTV is that its first Chern class should be even. Condition (5.42)
guarantees that there is no topological obstruction for the existence of an SU(3) structure.
This can be seen as follows: the first Chern class of the SCTV is given by,

c1 =
k+2∑
I=1

DI , (5.43)

where we have denoted by DI the divisors corresponding to {zI = 0}. On the other hand
on a toric variety there are as many linearly-independent divisors as there are U(1) charges
[100]. In our case the fact that the local coordinates defined by S in (5.3) are gauge-invariant
is equivalent to the linear relations,

DI −
∑
A∈S

s+1∑
B=1

QA
BQB

I DA = 0 . (5.44)

Taking the charges (5.32) into account, and inserting into (5.43) then leads to,

c1 =
∑
A∈S

(
s∑

b=1
QA

b (
k∑

i=1
qb

i − nb) + 2QA
s+1

)
DA , (5.45)

which, as advertised, is even if the bundle is canonical. More generally, we see that a globally-
defined SU(3) structure exists provided (

∑k
i=1 qa

i − na) are even for all a [98].
We define the usual toric coordinates and a local SU(d + 1) structure (Ĵ , Ω̂) as explained

in section 5.1.4. We recall that Ω̂ is not gauge-invariant: for the canonical CP1 bundle it has
charge,

Q(Ω̂) =
(

0
2

)
, (5.46)

where we took (5.42) into account.
We first note that the CP

1 fiber distinguishes a one-form K, which we normalize such
that K∗ · K = 2,

K :=
1√

1 − hk+2 k+2|v|2
Dv =

√
g

ĝ

Dv

|u| . (5.47)

Note that K is not globally defined since it is not gauge-invariant. This can be seen explicitly
by taking the u → 0 limit, in which Dv vanishes. Indeed in this limit we have,

K ∼
√

g

ĝ
v

ū

|u|du ∼ ei(ϕv−ϕu)du ,

where ϕu, ϕv denote the phases of u, v. However K ∧ K∗ does not suffer from any phase
ambiguity, so that,

ĵ := Ĵ − i

2
K ∧ K∗ , (5.48)

is globally well-defined.
The next step is writing Ω̂ in terms of Dz. However this exercise is rather involved, since

the Dz are not independent and because of the ambiguity in the decomposition of wedge
products. Our starting point is eq. (5.29),

Ω̂ =
1

√
g

∧
A

QA
J zJ∂zJ ·

∧
I

dzI .
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In this expression, we notice that the expansion of the contraction with the horizontal vectors
amounts to choosing a set S of s+1 integers between 1 and k+2, corresponding to the indices
of the contracted coordinates. We compute,

Ω̂ =
1

√
g

∑
S

(−1)SQS

∏
A∈S

zA

∧
α∈�S

dzα ,

cf. (5.31), where QS is the determinant of the submatrix of QA
I whose columns are indexed

by S. Notice that if S contains duplicates, or if it does not select independent columns,
the determinant vanishes. Thus the sum selects only the sets S for which the matrix QB

A

is invertible. The sign (−1)S is the signature of the permutation required to put the s + 1
indices of S in the first position, namely :

(−1)S = σ(S, �S) = (−1)
∑

a∈S
+ 1

2 (s+1)(s+2) . (5.49)

We would now like to decompose Ω̂ with respect to the bundle structure. We therefore
distinguish four cases:

1. S ⊂ [|1, k|]

2. S = Ŝ ∪ {k + 1} where Ŝ ⊂ [|1, k|], �Ŝ = s − 1

3. S = Ŝ ∪ {k + 2}

4. S = Š ∪ {k + 1, k + 2} where Š ⊂ [|1, k|], �Š = s − 2

In the first case we get QS = 0, since rank qa
i = d < d + 1. In cases 2 and 3 we can

easily see that QS = qŜ := det(qb
a)a∈Ŝ , while (−1)S = (−1)Ŝ(−1)d for case 2, and (−1)S =

(−1)Ŝ(−1)d+1 for case 3. We can now write,

Ω̂ =
(−1)d+1

√
g

∑
Ŝ

(−1)ŜqŜ

∏
a∈Ŝ

za

∧
α∈�Ŝ

dzα ∧ (vdu − udv) +
1

√
g

Σ4 ,

with Σ4 to be determined. In case 4 we get,

QS = det(qb
a, −nb)a∈Š

= det(qb
a, −

k∑
i=1

qb
i )

= −
k∑

i=1
det(qb

a, qb
i ) .

In the sum, if i ∈ Š, the determinant cancels out, leaving only a sum over �Š, so that,

Σ4 = −
∑
Š

∑
β∈�Š

(−1)S det(qa, qβ)a∈Š

∏
a∈Š

zau v
∧

α∈�Š

dzα .

We are now ready include this sum in the one over the Ŝ, which appears in cases 2 and 3: we
just need to make the change of variable Ŝ = Š ∪ {β}. However dzβ appears in the product,
thus we need to shift it to the last position. At the same time we need to move it to its right
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place inside det(qa, qβ) so as to maintain the increasing order of Ŝ. The number of shifts
needed to do so is the number of shifts required to bring β from its place to the end in �Š
plus the number of shifts to bring it from the end to its place in Š; since �Š ∪ Š = [|1, k|],
this is exactly the number of shifts required to bring β from its place to the end in [|1, k|],
i.e. k − β. The last sign we need to compute is,

(−1)S = (−1)
∑

a∈Š
a+(k+1)+(k+2)− 1

2 (s+1)(s+2)

= (−1)
∑

a∈Ŝ
a−β+(k+1)+(k+2)− 1

2 s(s+1)−(s+1)

= −(−1)Ŝ(−1)k−β+(d+1) .

Having expressed everything in terms of Ŝ and β, it is now possible to transform the sum∑
Š

∑
β∈�Š in

∑
Ŝ

∑
b∈Ŝ ,

Σ4 = (−1)d+1∑
Ŝ

(−1)ŜqŜ

∏
a∈Ŝ

za

∧
α∈�Ŝ

dzα ∧

⎛⎝u v
∑
b∈Ŝ

dzb

zb

⎞⎠ .

To get a more symmetrical expression we can simply complete the sum
∑

dzb/zb, since the
missing terms can be trivially added thanks to the wedge product. The final expression is
thus,

Ω̂ =
(−1)d+1

√
g

⎛⎝∑
Ŝ

(−1)ŜqŜ

∏
a∈Ŝ

za

∧
α∈�Ŝ

Dzα

⎞⎠ ∧
(

vDu − uDv + u v
k∑

i=1

Dzi

zi

)
.

The dz were ultimately replaced by Dz because Ω̂ is vertical. Now recall that the expression
(5.37) decomposes Dzi into base and fiber parts. Since the metric decomposes correctly into
(5.40), the D̂zi are orthogonal to K. Besides, the fiber part can be shown to cancel out in the
first factor, so that the first factor is overall orthogonal to K. Thus we can take the second
factor to be proportional to K, and the proportionality factor can be found by computing,

K∗·
(
vDu − uDv + u v

k∑
i=1

Dzi

zi

)
=

2√
1 − hk+2 k+2|v|2

(
v(0 − hk+1,k+2v̄ u)

− u(1 − hk+2,k+2|v|2) + u v
k∑

i=1
(0 − hk+2 i)

)

=
2u√

1 − hk+2 k+2|v|2
(

− 1 + |v|2(−hk+1,k+2 + hk+2,k+2 −
k∑

i=1
hk+2 i)

)
.

(5.50)

On the other hand,

k∑
i=1

hk+2 i = gABQA
k+2

k∑
i=1

QB
i

= gABQA
k+2(QB

k+2 − QB
k+1)

= hk+2,k+2 − hk+2,k+1 ,
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so that,

K∗ ·
(
vDu − uDv + u v

k∑
i=1

Dzi

zi

)
= −2

√
g

ĝ

u

|u| .

Hence Ω̂ simplifies to

Ω̂ =
(−1)d

√
ĝ

⎛⎝∑
Ŝ

(−1)ŜqŜ

∏
a∈Ŝ

za

∧
α∈�Ŝ

Dzα

⎞⎠ ∧ eiϕuK . (5.51)

Its contraction with K is given by,

1
2

K∗ · Ω̂ =
eiϕu

√
ĝ

⎛⎝∑
Ŝ

(−1)ŜqŜ

∏
a∈Ŝ

za

∧
α∈�Ŝ

Dzα

⎞⎠ , (5.52)

which is not gauge-invariant. A gauge-invariant local holomorphic form ω̂ on the base can
be constructed as follows,

ω̂ :=
1
2

e−iϕv K∗ · Ω̂ . (5.53)

Let us now specialize to d = 2. We will now modify the local SU(2) structure (ĵ, ω̂) in
order to construct a global SU(3) structure. Since we have |u|2 + |v|2 = ξ, we can define a
parameter θ ∈ [0, π] such that : |u| =

√
ξs sin θ

2 and |v| =
√

ξs cos θ
2 . The SU(3) structure

(J, Ω) given by,

J := j +
i

2
K ∧ K∗

Ω := ω ∧ e−iϕv K ,
(5.54)

where,

j := sin θ �ω̂ + cos θ ĵ

ω := cos θ �ω̂ − sin θ ĵ + i�ω̂ ,

can be seen to be globally-defined. The argument will be detailed in section 5.3.3, where the
procedure will be thoroughly applied on an illuminating example. Its associated metric is
the canonical metric of the SCTV, given in (5.20), (5.40). The associated torsion classes will
all be nonvanishing in general, cf. section 5.2.4 for more details.

This structure could be easily modified by multiplying (j, ω) and K by functions of the
coordinates of the S2 fiber. The associated metric will be modified accordingly to,

h3 = |h|2 h2 + |f |2 ĝ

g
|u|2|v|2K ⊗ K∗ , (5.55)

for some functions of the fiber coordinates, f , h. Indeed modifying the local SU(2) structure
via ω → h2ω, j → |h|2ω, K → fK results in the metric (5.55). More generally, an orthogonal
transformation can be applied on the triplet (j, �ω, �ω), without changing the metric h2 of
the base.

Provided f , h are smooth, the topology of the total space is that of the SCTV CP
1 over M .

The metric (5.55) is smooth, since it is a smooth deformation of the canonical metric (5.40)
of the SCTV. In some cases allowing f , h to have singularities or zeros can lead to a smooth
metric on a total space of different topology. We will see an example of this phenomenon in
section 5.4 where an apparently singular metric on S2 over CP

2 is in fact the local form of
the round metric on S6.
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5.2.4 Torsion classes

For a generic SCTV base all torsion classes are nonvanishing. We will not write them down
explicitly in this case, as they are rather cumbersome and not particularly illuminating. The
computation boils down to determining the exterior differentials of ω̂ and K. In the following
we give some details of the calculation.

In the notation of (5.33), K and (ĵ, ω̂) can be written as follows,

K =
√

g

ĝ

Dv

|u| ; ĵ = Ĵ − i

2
K ∧ K∗ ; ω̂ =

1
2

e−iϕv K∗ · Ω̂ . (5.56)

In terms of the D̂zi, we have,

ĵ := i
2D̂zi ∧ D̂z̄i

ω̂ :=
ei(ϕu−ϕv)

√
ĝ

∑
Ŝ(−1)ŜqŜ

∏
a∈Ŝ za

∧
α∈�Ŝ D̂zα .

Up to a phase (required for gauge invariance) this coincides with the canonical local SU(2)-
structure of the base. In particular this implies that ĵ is Kähler at fixed fiber coordinates.
The dependence of ĵ on the fiber coordinates is such that Ĵ is Kähler.

We can also rewrite everything in local complex coordinates on the patch S = Ŝ ∪{k +2}
:

K = −
√

ĝ

g
|u|v

(dtk+1

tk+1
+ Vi|zi|2

dti

ti

)

ω̂ =
ei(ψ+

∑
α

ψα)
√

ĝ
(−1)ŜqŜ

∏
i

|zi|
∧
α

dtα

tα
= f
∧
α

dtα

tα
,

(5.57)

where ψ, ψα are the phases of tk+1, tα. We can now introduce real coordinates θ, ψ on the
fiber with |u|2 = ξ sin2 θ

2 :

K =
1
2

(
γdθ +

ξ

γ
sin θ i(dψ + A)

)
,

where γ =
√

g
ĝ =

√
ξ + 1

2ξ2 V sin2 θ and A = Vi |zi|2 �dti

ti = Vi |zi|2 dψi. We also get,

dA =
i

2
Vi D̂zi ∧ D̂z̄i +

i

4
sin θdθ ∧ V 2

i (z̄iD̂zi − ziD̂z̄i) .

Differentiating ω̂ leads to another one-form,

dω̂ =
df

f
∧ω̂ =

⎛⎝−ξ

2
Vi(1 − ĥii|zi|2) sin θdθ + idψ +

∑
j

idψj +
1
2

(1 − ĥjj |zj |2)
(

D̂z̄j

z̄j
− D̂zj

zj

)⎞⎠∧ω̂ .

Alternatively, in terms of ti,

dω̂ =
(

−ξ

2
Vi(1 − ĥii|zi|2) sin θdθ + i

(
dψ + A + dψi|zi|2(hii − hijhjj |zj |2)

))
∧ ω̂ .

We can write,
A′ := A + dψi|zi|2(hii − hijhjj |zj |2) = A + B ,

where B comes from the derivatives of ĝ and is nonvanishing in general. For simple bases
such as CP

2 or CP
1 × CP

1, ĝ is constant and thus B vanishes. The dθ term comes from the
deformation of the base metric along the direction θ. Note also that at fixed θ, dA′ ∝ R
where R is the Ricci form of the base, cf. (B.4).
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5.3 A thorough application: CP
1 over CP

2

Let us now examine in detail the construction of an SU(3) structure on the CP
1 bundle over

CP
2. This is the simplest example in the class of 3d SCTV of the form CP

1 bundle over M ,
where M is a 2d SCTV, but it already captures the main idea of the construction.

5.3.1 Illustration of the symplectic quotient

The toric data in this case are: k = 5 (the complex dimension of the parent space), s = 2
(the number of charges), d = 3 (the complex dimension of the toric variety). Explicitly the
charges are given by,

Q =
(

1 1 1 −n 0
0 0 0 1 1

)
, (5.58)

where n ∈ N. The corresponding moment map equations read, using previous notations,

|z1|2 + |z2|2 + |z3|2 = ξ1 + n|u|2

|u|2 + |v|2 = ξ .
(5.59)

This is a CP
1 bundle over CP

2, with twisting parameterized by n. We can make this more
explicit in local coordinates: on the patch U1,5 := {z1, v �= 0} we define,

t2 :=
z2

z1
; t3 :=

z3

z1
; t4 :=

zn
1 u

v
.

Hence t2, t3 are local coordinates parameterizing a CP
2 whereas, for z1 fixed, t4 is a local

coordinate on a CP
1. For n = 0, the bundle becomes trivial and we obtain the direct product

CP
2 × CP

1. We can also see explicitly that the toric variety can be covered with patches of
the form US , as in (5.3): in the present case S is given by the pair (i, j) where i = 1, 2, 3
and j = 4, 5, and the moment map equations (5.59) exclude the simultaneous vanishing of
z1, z2, z3 or that of u, v. To make contact with our previous discussion about local coordinates
we can check here that |QS | = 1 for all these S. However for the patch U4,5, we do not get
in general compatible local coordinates since QS={4,5} = −n, but this patch is not needed in
the covering of the toric variety.

Let us now calculate explicitly the various objects introduced in section 5.1. Since the
base is defined by only one charge qi = (1, 1, 1), the calculations are rather simple. We get
at first :

ĝ = ρ2

Vi =
n

ρ2

V =
n2

ρ2

g = ξρ2 + n2|u|2|v|2 .

(5.60)

We find thus that :
ε =

dt4

t4
+ n η ,

where we have set,

η :=
1

1 + t2
(
t̄2dt2 + t̄3dt3

)
; t2 := |t2|2 + |t3|2 . (5.61)
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If we now introduce

Γ :=
|u|2|v|2

g
,

the decomposition of the metric (5.40) can be written :

h = ρ2h
CP

2 + Γρ2
∣∣∣∣dt4

t4
+ n η

∣∣∣∣2 ; (5.62)

h
CP

2 is the hermitian Fubini-Study metric of CP2, cf. eq. (5.24) with radius 1.
We see the fibration structure appearing naturally in (5.62): the displacement along t4

is modified by a connection, proportional to η, depending on the variables of the CP
2 base,

t2, t3. Moreover,
dη = 2iĵ , (5.63)

where ĵ is the Kähler form of CP
2, cf. eq. (5.24). For vanishing n the connection piece

drops out from the vertical displacement and the metric becomes that of a direct product as
excpected.

5.3.2 Comparison with the literature

Endowed with the hermitian metric (5.24), the base CP
2 of the CP

1 fibration is a Kähler-
Einstein manifold obeying,

dĵ = 0 ; Rmn = λ gmn . (5.64)

i.e. ĵ is closed and the Ricci tensor is proportional to the metric. With our conventions,
setting ξ = 1 gives λ = 6. Identifying the CP

1 fiber with S2 (by forgetting the complex
structure), M can be thought of as an S2 fibration over a Kähler-Einstein base B4, denoted
by S2(B4). These spaces appear naturally in the context of supersymmetric AdS4 compacti-
fications of M-theory on the so-called Y p,q(B4) spaces [87, 89], which can be thought of as S1

fibrations over S2(B4). Compactifying M-theory on an appropriately chosen S1 then leads
to N = 2 type IIA solutions of the form AdS4 × S2(B4) [91]. The latter can be deformed to
solutions of massive IIA for any Kähler-Einstein base B4 [92], although regularity requires
B4 to have positive curvature.

In the conventions of [89] the S2(B4) metric reads,

g = U−1dρ̃2 + ρ̃2g
CP

2 + q (dψ + A)2 , (5.65)

where ρ̃ ∈ [ρ̃1, ρ̃2] and ψ ∈ [0, 2π/3] are the coordinates of the S2 fiber (for general λ the
period of ψ is 4π/λ); U and q are positive functions of ρ̃, vanishing at ρ̃1 et ρ̃2. The circle
parametrized by ψ is fibered over the [ρ̃1, ρ̃2] interval. The connection A is a one-form on
the base B4 obeying,

dA = 2ĵ . (5.66)

At the endpoints of the ρ̃ interval the ψ circle contracts to a point, thus resulting in a total
space with the topology of S2. The period of ψ is fixed by requiring the metric to be smooth
at the endpoints, i.e. that,

U−1dρ̃2 + q dψ2 → du2 + u2dψ̃2 , for ρ̃ → ρ̃1, ρ̃2 , (5.67)

where u is a function of ρ̃ that vanishes at the endpoints ρ̃1, ρ̃2, and we have defined an
angular variable ψ̃ := λψ/2 with period 2π.
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Moreover the ψ coordinate parametrizes an S1 fibration in the canonical bundle of B4.
To see this, note that the connection of the canonical bundle of a Kähler-Einstein space with
curvature normalized as in (5.64) obeys,

dP = λĵ , (5.68)

cf. appendix B. Comparing with (5.66) we see that P = λA/2, and so the vertical dis-
placement along the S1 fiber, cf. the last term in (5.65), is proportional to (dψ̃ + P), as
required for the canonical bundle. The fact that λ is positive for CP

2 guarantees that the
total space of the S1 fibration, written in local coordinates in (5.65), extends globally to a
smooth five-dimensional (squashed) Sasaki-Einstein space.

Real coordinates

To make contact with the coordinates of (5.62), we must rewrite the CP
1 fiber coordinate t4

in terms of a pair of real coordinates. It is not necessary to do the same for t2, t3, since the
coordinates of the CP

2 base do not appear explicitly in (5.65). Using eq. (5.34), |t4| can be
written in terms of ρ and the base coordinates,

|t4|2 =
|z1|2n|z4|2

|z5|2 =
ρ2n

(1 + t2)n

ρ2 − ρ2
1

ρ2
2 − ρ2 . (5.69)

Let ϕ ∈ [0, 2π] be the phase of t4, so that t4 becomes a function of t2, t3, ρ, ϕ,

dt4

t4
=

ρdρ

ρ2 − ρ2
1

+
ρdρ

ρ2 − ρ2
1

+ n
dρ

ρ
− n

d(t2)
2(1 + t2)

+ idϕ

=
dρ

n ρΓ
− n�η + idϕ .

Moreover we set,
ε :=

dt4

t4
+ n η =

dρ

n ρΓ
+ i (dϕ + n �η) . (5.70)

The term |ε|2 := ε ⊗ ε̄ appears naturally in (5.62) through the contribution,

ε ⊗ ε̄ =
1

n2ρ2Γ2 dρ2 + (dϕ + n �η)2 − i
1

n ρΓ
dρ ∧ (dϕ + n �η) . (5.71)

The last term on the right-hand side above contributes to the Kähler form, while the rest
contributes to the metric. We can then rewrite the Riemannian metric g and Kähler form J
associated with (5.62) for n �= 0. The result reads,

g =
1

n2Γ
dρ2 + ρ2g

CP
2 + Γρ2 (dϕ + n�η)2 , (5.72)

and,
J = ρ2ĵ +

ρ

n
dρ ∧ (dϕ + n�η) , (5.73)

where we are using local coordinates on the patch U1,5. The CP
1 fiber is parametrized

by the (ρ, ϕ) coordinates: ϕ parametrizes a circle, fibered over the interval ρ ∈ [ρ1, ρ2] =
[
√

ξ1,
√

ξ1 + nξ], whose radius vanishes at the endpoints. Indeed Γ vanishes for u = 0 or
v = 0 which corresponds respectively to ρ = ρ1 and ρ = ρ2, following from the moment maps
equations (5.59). Moreover it can be checked that the metric is smooth there.
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Deformation of the metric

Setting ψ := ϕ/n and A := �η, we recover the terms appearing in (5.65), provided we set
n = 3. Moreover the relative coefficient between the dρ2 and the (dψ + A)2 term is fixed in
the expression of |ε|2, and this determines the change of variables ρ → ρ̃(ρ) by comparing
with (5.65). However, performing this change of variables in (5.62) does not directly bring
us to the metric of (5.65): there remain two coefficients that still need to be adjusted. This
can be achieved by introducing two warp factors F and G as we now show.

Let us go back to the expression of the metric in terms of Dzi. In local coordinates we
have,

Dz1

z1
= n Γε − η

Dz2

z2
=

dt2

t2
+ n Γε − η

Dz3

z3
=

dt3

t3
+ n Γε − η

Dz4

z4
= ρ2 ρ2

2 − ρ2

n det g
ε

Dz5

z5
= ρ2 ρ2

1 − ρ2

n det g
ε .

(5.74)

It follows that the term
∑3

i=1 Dzi ⊗ Dz̄i gives the hermitian metric of CP2 plus a |ε|2 term,
whereas Dz4, Dz5 only contribute to |ε|2. Let us define,

h = F (ρ)
3∑

i=1
Dzi ⊗ Dz̄i + G(ρ)

∑
i=4,5

Dzi ⊗ Dz̄i

= Fρ2 hcp2 +
(

F + (
1

n2Γ
− 1)G

)
n2ρ2Γ2|ε|2

= Fρ2 hcp2 +
(

F + (
1

n2Γ
− 1)G

)(
dρ2 + n4ρ2Γ2 (dψ + A)2 − in2ρΓ dρ ∧ (dψ + A)

)
.

(5.75)

We can then adjust F ,G, and ρ so that,

Fρ2 = ρ̃2(
F + (

1
n2Γ

− 1)G
)

dρ2 =
1
U

dρ̃2(
F + (

1
n2Γ

− 1)G
)

n4ρ2Γ2 = q .

(5.76)

These equations can easily be decoupled by first solving for ρ, then for F and finally for G.
For this solution the real and imaginary parts of (5.75) reduce to the metric in (5.65) and
the form J+ of [89] respectively, provided we set n = 3.

The condition n = 3 is also important for the existence of a globally-defined SU(3)
structure. We turn to the construction of this structure in section 5.3.3. Note however that
the canonical metric of the SCTV, eq. (5.20), is smooth by construction for all n ∈ N. This
can also be verified explicitly by examination of the local form of the metric in terms of the
coordinates (5.3) in each patch US .
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5.3.3 The SU(3) structure

In this section we will set F = G = 1 for simplicity of presentation: the two warp factors
F (ρ), G(ρ) discussed in section 5.3.2 can be easily reinstated without changing any of the
conclusions.

Specializing the formalism of section 5.1.4 to the present example we obtain a local SU(3)
structure (Ĵ , Ω̂), where Ĵ is obtained from (5.73) by setting n = 3. On the other hand we
have,

Ω̂ = − z2
5√

det g
dt2 ∧ dt3 ∧ dt4 , (5.77)

which is not gauge invariant, so this SU(3) structure is not globally defined. In fact neither
of the two local SU(3) structures (J±, Ω±) of [89] can be globally extended: in the following
we will see how to make contact with their results.

We can now apply the construction of 5.2.3. Let us first define a local SU(2) structure
(ĵ, ω̂) on CP

2 where5,
ω̂ =

1
(1 + t2)3/2 dt2 ∧ dt3 , (5.78)

and ĵ is the Kähler form of CP2, cf. eq. (5.24), so that,

ω̂ ∧ ĵ = 0
ω̂ ∧ ω̂∗ = 2ĵ ∧ ĵ .

(5.79)

This SU(2) structure is only locally defined since ω̂ has a singularity at z1 = 0, as can be
seen by using the transition functions to rewrite ω̂ in a patch where z1 is allowed to vanish.
The SU(3) structures of [89] are then obtained by appending the contribution of the fiber
coordinate,

J± := ρ2ĵ ± i

2
K ∧ K∗ ; Ω+ := ρ2 ω̂ ∧ K ; Ω− := ρ2 ω̂ ∧ K∗ , (5.80)

where,
K := ρ

√
Γ ε . (5.81)

We see that exchanging K ↔ K∗ is equivalent to (J+, Ω+) ↔ (J−, Ω−).
To better understand the global properties of the Ω±, let us start from their local expres-

sion on the patch U1,5,

Ω+ = e−iϕ |z5|2√
det g

dt2 ∧ dt3 ∧ dt4

Ω− = eiϕ |z5|2√
det g

dt2 ∧ dt3 ∧
(
dt̄4 + 3t̄4η̄

)
.

We can see that the singularity in ω̂ has been compensated by wedging with K, K∗. On the
other hand, we can rewrite Ω± in the patch U1,4 by using the transition function t5 = 1/t4,

Ω+ = eiϕ |z1|6|z4|2√
det g

dt2 ∧ dt3 ∧ (−dt5)

Ω− = e−iϕ |z1|6|z4|2√
det g

dt2 ∧ dt3 ∧
(
−dt̄5 + 3t̄5η̄

)
.

5Note that these definitions match (5.48) and (5.53)

124



CHAPTER 5. SU(3)-STRUCTURES ON TORIC CP
1 BUNDLES

We see that Ω± has singularities of the form eiϕ = t4/|t4| = |t5|/t5 at t4 = 0 and t5 = 0:
indeed the phase of a complex number z is ambiguous at z = 0. It is always possible to
soak up one of the two singularities by multiplying or dividing by eiϕ, but never both at the
same time. Hence e±iϕΩ± are well-defined at t4 = 0 but singular at t5 = 0, whereas e∓iϕΩ±
are well defined at t5 = 0 but singular at t4 = 0. This problem does not arise for J±, since
K ∧ K∗ does not suffer from any phase ambiguities.

The way out is then to construct an Ω which combines both e±iϕΩ± and e∓iϕΩ±. We
can take a hint from the supersymmetric SU(3) structure of [92] which we know is globally
well-defined. We use a new coordinate θ instead of ρ, defined by |u|2 = ξ sin2 θ

2 . Thus we
see that |v|2 = ξ cos2 θ

2 and ρ2 = ξ1 + n ξ sin2 θ
2 , which means that θ = 0 or π for ρ = ρ1

(corresponding to t4 = 0) or ρ = ρ2 (corresponding to t5 = 0), respectively. The idea is then
to modify ω̂ → ω by including the problematic phase eiϕ, then define another form ω̃ with
the property that ω̃ varies from ω to ω∗ as θ varies from 0 to π. More specifically we define,

ω := eiϕω̂

j̃ := sin θ �ω̂ + cos θ ĵ

ω̃ := cos θ �ω̂ − sin θ ĵ + i�ω̂ ,

(5.82)

so that the SU(3) is given by,

J := ρ2j̃ +
i

2
K ∧ K∗

Ω := ρ2 ω̃ ∧ K .
(5.83)

The relations (5.79) ensure that (1.24) is satisfied. Moreover at θ = 0 we have Ω = eiϕΩ+,
whereas at θ = π we have Ω = −

(
eiϕΩ−

)∗. The two singularities have thus been regularized
and Ω is globally defined. Thus the pair (J, Ω) is a globally-defined structure SU(3) on the
manifold.

Let us make one final comment: the prescription of [97] for constructing global SU(3)
structures, reviewed at the end of section 5.1.4, gives a form Ω which is of type (2,1) with
respect to the integrable complex structure of the toric variety. We see that the prescription
used here can never coincide with that of [97]: the form Ω defined in eq. (5.83) is of mixed
type, varying from (3,0) at θ = 0 to (1,2) at θ = π, with respect to the integrable complex
structure.

5.4 LT structures on S2(B4)

We will now show that the sphere bundles of the form S2(B4), where B4 is any four-
dimensional Kähler-Einstein space of positive curvature, admit regular globally-defined SU(3)
structures of LT type, i.e. such that all torsion classes vanish except for W1 and W2. This is
the generic type of SU(3) structure that appears in supersymmetric AdS4 compactifications
of massive IIA supergravity [24].

Let ĵ be the Kähler form of B4, normalized as in (B.7), (B.8) with λ = 6, and let (ĵ, ω̂)
be a local SU(2) structure on B4 so that,

ω̂ ∧ ω̂∗ = 2ĵ ∧ ĵ ; ĵ ∧ ω̂ = 0 ;
dP = 6 ĵ ; dĵ = 0 ; dω̂ = iP ∧ ω̂ ,

(5.84)
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where P is the canonical bundle of B4, cf. appendix B. We define the following SU(3)
structure,

J = |h|2j +
i

2
K ∧ K∗

Ω = h2ω ∧ K ,
(5.85)

where h is a complex function of θ and,

j := cos θ ĵ + sin θ �(eiψω̂)

ω := − sin θ ĵ + cos θ �(eiψω̂) + i �(eiψω̂)
K := fdθ + ig(dψ + P) ,

(5.86)

with ψ ∈ [0, 2π) and f , g real functions of θ. The associated metric reads,

g = |h|2g4 + f2dθ2 + g2(dψ + P)2 , (5.87)

with g4 the Kähler-Einstein metric of B4.
Using eq. (5.84), one can then compute the torsion classes of the SU(3) structure (5.85),

W1 = − i

3
h

h∗

( 1
f

+
sin θ

g
+ 6

g sin θ

|h|2
)

W2 =
i

3
h

h∗

( 1
f

+
sin θ

g
− 12

g sin θ

|h|2
)

J⊥

W3 =
1
2

( 1
f

− sin θ

g
+ 6

g sin θ

|h|2
)

�Ω⊥

W4 =
(

|h2|′
f |h2| − 6 cos θ

g

|h2|

)
dθ

W5 =
(

h′

fh
+

g′

2fg
− cos θ

2g

)
K ,

(5.88)

where we have introduced the primitive forms,

J⊥ = |h|2 j − iK ∧ K∗

Ω⊥ = |h|2 ω ∧ K∗ .
(5.89)

Moreover, as we show in appendix D, one can impose W3 = W4 = W5 = 0 provided,

f = α

(
1 − 6α2 sin2 θ

H

)−1

; g = α sin θ ; h =
√

H(θ) eiβ , (5.90)

with,

H(θ) :=
1
3

(
x̃ +

x̃2

B
+ B

)

B :=

⎛⎝27H3
0

2
+ x̃3 + 3

√
3

√
27H6

0
2

+ x̃3H3
0

⎞⎠1/3

x̃ := 9α2 sin2 θ ,

(5.91)
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where the real constants α, β and H0 ≥ 0 are the parameters of the solution.
For H0 > 0 the functions f , h are nowhere vanishing. Moreover the θ → 0, π limit

gives a regular metric, provided the period of ψ is 2π. Then by the same argument as in
[87, 92], the SU(3) structure (5.85) is globally-defined and the associated metric (5.87) is
regular and complete: the (ψ, xμ) space, where xμ are the coordinates of B4, parametrizes
a circle fibration in the canonical bundle L over B4; it extends to a complete, regular five-
dimensional Sasaki-Einstein manifold provided B4 is Kähler-Einstein of positive curvature
[102]. The (ψ, θ) space parameterizes a smooth S2, so that the total space has the same
topology as L ×U(1) CP

1, in the notation of [87]. The nonvanishing torsion classes read,

W1 = −2i

3
e2iβ

α

W2 =
2i

3
e2iβ

α

(
1 − 9α2 sin2 θ

H

)
J⊥ .

(5.92)

Therefore the S2(B4) bundles admit SU(3) structures of LT type, rendering them suitable
as compactification spaces for supersymmetric AdS4 solutions of massive IIA [24]. Note that
unlike the LT SU(3) structures on S2(CP2) discussed in [103] from the point of view of
twistor spaces (cf. appendix E) or in [104] from the point of view of cosets, the structure
(5.92) does not obey dW2 ∈ (3, 0) ⊕ (0, 3).6 Indeed a direct calculation gives,

dW2 = e2iβ

(
1 − 9α2 sin2 θ

H

)(
2i

3α2

(
1 − 9α2 sin2 θ

H

)
�(e−2iβΩ) − 6i sin2 θ

H
�Ω⊥

)
. (5.93)

As a consequence, if these manifolds are to be used as compactification spaces for massive
IIA, the Bianchi identity for the RR two-form will require the introduction of (smeared) six-
brane sources. Another difference from the LT structures of [103, 104] is that the discussion
of this section applies to any S2(B4) bundle with Kähler-Einstein base, not only to B4 = CP

2.
In the case H0 = 0, on the other hand, one obtains the solution,

f = 3α ; g = α sin θ ; h = 3α sin θ eiβ . (5.94)

This corresponds to the nearly Kähler limit, in which also W2 vanishes. Moreover the θ → 0, π
limit results in a conical metric of the form,

g ∼ dθ2 + θ2ds2
5 , (5.95)

where,
ds2

5 := g4 +
1
9

(dψ + P)2 , (5.96)

is the canonically normalized metric of a five-dimensional Sasaki-Einstein base written as
a circle fibration on the canonical bundle over B4; the normalization is such that the cone
metric (5.95) is Ricci-flat. Hence for H0 = 0 the metric presents conical singularities in
general, unless B4 is CP

2, in which case the associated Sasaki-Einstein metric (5.96) is that
of the round sphere, and the associated cone (5.95) is not only Ricci-flat but also flat. Going
back to the metric (5.87) we obtain,

g = 9α2
(
dθ2 + sin2θ ds2

5

)
. (5.97)

6It should be possible to make contact with the results of [103, 104] by suitably acting on the vielbein by
an orthogonal transformation. There does not seem to exist a simple ansatz for this transformation, which
may be rather involved as it could a priori depend on all coordinates.
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We thus see that in the smooth case, B4 = CP
2, we obtain a round S6 of radius 3α. We thus

recover the well-know result that the round S6 admits an associated nearly-Kähler structure.
Let us finally note that we may relax the condition on B4, so that B4 is any four-

dimensional Kähler manifold (not necessarily toric, or Einstein). In this case the torsion
classes can also be explicitly calculated, cf. appendix F, however we do not expect the
structure to admit a global extension to a complete space with a regular metric.
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Conclusion

In this thesis flux vacua have been studied through several approaches. The SU(3)-structure
was often at the core of the discussion.

Consistent truncations of type IIA supergravity to four dimensions were presented. The
truncation ansätze are guided by the SU(3)-structure of the internal manifold. Quadratic and
quartic fermionic terms where added in the Lagrangian to model the effects of fermionic con-
densation. At first the internal manifold is Kähler Einstein and the condensates are dilatini.
Subsequently a consistent truncation to the universal sector of Calabi-Yau compactification
is constructed then supplemented with gravitini condensates. In both cases the truncations
admitted, at least formally, solutions with positive cosmological constant and non vanishing
fluxes supported by the quartic condensates. By consistency of the ansatz these solutions
can be lifted to de Sitter vacua. At this time it is not clear whether such fermionic conden-
sates are realistic from a string theory point of view. In the gravitini case it is suggested
that the condensates originate from gravitational instantons. If this intuition is correct the
condensates are under control and can lead to realistic values for the cosmological constant.
Still the de Sitter solution relies on the quartic term being positive. The spin 3/2 zero modes
of the Dirac operator of the τ = 2 ALE instanton should be determined to elucidate on this
point. Moreover the stability of the vacua cannot be checked in the truncated theory as the
truncated modes may lead to instabilities. This issue needs to be further addressed.

The non abelian T-dual of several brane configurations were computed. The dual of the flat
background is a NS5 brane configuration given by a continuous distribution of charge along
a half-line. This distribution is bound to the singularity generated by the fixed point of the
SU(2)-isometry. In fact such a smeared NS5 brane is expected to appear whenever the orbits
of the SU(2)-isometry collapse in a similar way, which is then confirmed in the non trivial
cases considered later. Moreover D branes were studied by computing the Page charges in the
dual configuration. This leads to general relations between the charges and their behavior
under a large gauge transformation of the B field. The supersymmetry equations for the D2
solution were solved in the formalism of SU(3) × SU(3)-structure. It would be interesting
to do the same thing for its dual, thus furnishing a check for supersymmetry and hopefully
providing new insights into its global structure. The same tools were also used to investigate
on the existence of a massive deformation for the supersymmetric D2 solution, ruling out a
class of ansätze. Further work is needed to draw definitive conclusions.

The construction of SU(3)-structures on SCTV had up to now proceeded on a case-by-case
basis. The last chapter presented a systematic construction valid on the canonical CP

1-
bundle of any two-dimensional SCTV. It was also shown how to modify this construction
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by introducing certain functions, thus opening up more possibilities for the torsion classes.
Such general constructions are necessary steps for a systematic scan of flux vacua. The
admissibility of a manifold with SU(3)-structure as internal space for compactification re-
lies on its torsion. In the most general case the SU(3)-structure presented here has very
involved torsion classes, so that is it difficult to get conclusive results. Note also that the
construction has been extended to cases where the base manifold is not necessarily toric but
Kähler-Eintein. These S2(B4) bundles add to the pool of potential internal manifolds for flux
compactification.
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A Conventions for spinors

Before specializing to specific signatures and dimensions, let us say a few general words on
spinors. We will focus on the even dimensional case D = 2n. Consider a metric g with
signature (t, 2n − t) where t is the number ot timelike directions (here 0 or 1), corresponding
to the negative eigenvalues of g. The gamma matrices γμ satisfy the Clifford relation:

{γμ, γν} = 2gμ,ν (A.1)

The chirality matrix

γ2n+1 = in−tγ1 · · · γ2n (A.2)

satisfies γ2
2n+1 = 1 and decomposes spinors into positive and negative chiralities: S =

S+ ⊕ S−.

Fierzing

Moreover the Clifford algebra is isomorphic to L(S) and a unitary basis is given by the
set of γI where I is a multi-index whose cardinal will be note |I|. Since they are unitary,
tr γ†

IγJ = 2nδJ
I where δ is the generalized Kronecker delta. For two spinors η, ψ this gives a

decomposition:

ηψ† =
1
2n

∑
I

1
|I|! ψ†γ†

Iη γI (A.3)

From there several relations can be derived, depending on the chirality and reality prop-
erties of the spinors, which will all together be referred to as Fierz decompositions. They
enable to relate bispinors to gamma matrices, and also to differential forms by sending γμ1···μk

to dxμ1 ∧ · · · ∧ dxμk .

A.1 Spinors in D = 6, Euclidean

The charge conjugation operator is such that

tC = C = −C−1 , tγm = −C−1γmC (A.4)

The conjugates of a spinor η are then defined by

ηc = Cη∗ , η̃ = tηC−1 = (ηc)† (A.5)
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Moreover

Cγ7 = −γ7C , (A.6)

so that conjugation changes the chirality of the spinor. Thus spinors can be Majorana or
Weyl but not both.

We note the following useful properties of spinor bilinears in six dimensions,

(ψ̃±γ(2p)χ±) = (ψ̃±γ(2p+1)χ∓) = 0

(ψ̃γ(p)χ) = (−1)
1
2 p(p+1)(χ̃γ(p)ψ) ,

(A.7)

where ψ+, χ+ are arbitrary commuting Weyl spinors of positive chirality; ψ−, χ− are arbitrary
commuting Weyl spinors of negative chirality; ψ, χ are arbitrary commuting Dirac spinors.

A.2 Spinors in D = 4, Minkowski

The charge conjugation operator is such that

tC = −C = −C−1 , tγm = C−1γmC (A.8)

The conjugates of a spinor θ are then defined by

θc = Cγ0θ∗ , θ̃ = tθC−1 (A.9)

The definition is such that

θ̃c = θ̄ , (A.10)

for θ̄ = θ†γ0. If θ+ is a spinor a positive chirality, define

θ− = θc
+ (A.11)

of negative chirality.
Spinor bilinears in four dimensions obey,

(ψ̃±γ(2p+1)χ±) = (ψ̃±γ(2p)χ∓) = 0

(ψ̃γ(p)χ) = (−1)
1
2 p(p−1)(χ̃γ(p)ψ) ,

(A.12)

where ψ+, χ+ are now arbitrary anti-commuting Weyl spinors of positive chirality; ψ−,
χ− are arbitrary anti-commuting Weyl spinors of negative chirality; ψ, χ are arbitrary anti-
commuting Dirac spinors.

A.3 Spinors in D = 10 → 4 + 6, Minkowski

Decompose S10 = S4 ⊗ S6. Gamma matrices ΓM in ten dimension are then:

Γμ = γμ ⊗ 1
Γm = γ5 ⊗ γm

(A.13)
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The charge conjugation and chirality operator are:

C = C4γ5 ⊗ C6 , Γ11 = γ5 ⊗ γ7 (A.14)

Thus C satisfies:

tC = −C = C−1 , tΓM = −C−1ΓM C (A.15)

The conjugates of a spinor ε are defined by

εc = CΓ0ε∗ , ε̃ = tεC−1 , ε̄ = ε†Γ0 , (A.16)

such that ε̄ = ε̃c. A Majorana-Weyl spinor ε± satisfies:

εc
± = ε± = ±Γ11ε± (A.17)

A.4 Spinors in D = 4, Euclidean

The charge conjugation operator C is the same as in the Minkowski case. However the
definition of θc changes:

θc = Cθ∗ (A.18)

which does not change the chirality. Thus spinors of opposite chirality are not related
anymore. Moreover

(θc)c = −θ (A.19)

so that there are no Majorana spinors.

For this case we will also need to make the spinor indices explicit. Our conventions are
as follows. A positive-, negative-chirality 4d Weyl spinor is indicated with a lower, upper
spinor index respectively: θα, χα. We never raise or lower the spinor indices on spinors, so
that the position unambiguously indicates the chirality. The 4d gamma matrices, the charge
conjugation and chirality matrices are decomposed into chiral blocks,

γμ =
(

0 (γμ)αβ

(γμ)αβ 0

)
; C−1 =

(
Cαβ 0

0 Cαβ

)
; γ5 =

(
δα

β 0
0 −δα

β

)
. (A.20)

It is the “Pauli matrices” (C−1γμ1...μn) which act as Clebsch-Gordan coefficients between
spinor bilinears and n-forms. For example, the structure of indices of the charge conjugation
matrix reflects the fact that scalars can only be formed as spinor bilinears of Weyl spinors of
the same chirality,

v = θαCαβχβ ; u = θαCαβχβ . (A.21)

As another example, the structure of indices of C−1γμ reflects the fact that vectors can only
be formed as spinor bilinears of Weyl spinors of opposite chirality,

vμ = θα
(
C−1γμ

)
α

βχβ ; uμ = θα

(
C−1γμ

)α

βχβ . (A.22)
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We also make use of the Fierz relation for two positive-chirality 4d spinors,

θαχβ = −1
2

(θ̃χ)Cαβ − 1
8

(θ̃γμνχ) (γμνC)αβ , (A.23)

where θ̃ ≡ θTrC−1, and similarly for negative chirality.
The Hodge duality relations read,

1
(4−l)! εμ1...μl

ν1...ν4−lγν1...ν4−l
= −(−1)

1
2 l(l−1)γμ1...μl

γ5 , (A.24)

With explicit spinor indices in Euclidean signature we have,

1
2

εμνρσ (γρσ)α
β = (γμν)α

β ;
1
2

εμνρσ (γρσ)α
β = − (γμν)α

β . (A.25)

In particular if Tμν is a self-dual tensor, 1
2εμνρσT ρσ = Tμν , it follows that T · γ vanishes

when acting on negative-chirality spinors,

T μν (γμν)α
β = 0 . (A.26)
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B Kähler-Einstein manifolds

A Kähler manifold of real dimension 2d corresponds to the case of a local SU(d)-structure
where W5 is the only nonvanishing torsion class,

dJ = 0 ; dΩ = iP ∧ Ω , (B.1)

cf. (1.33). The local structure (J, Ω) can also be expressed in terms of bilinears of a locally-
defined spinor η on M . In terms of this spinor eq. (B.1) can be written equivalently,

∇mη =
i

2
Pmη , (B.2)

where P := 2�W5 is a real one-form. (Note that the existence of the complex structure
allows us to reconstruct the torsion W5 from its imaginary part alone.) Moreover (B.2) can
be inverted to obtain P from the covariant spinor derivative,

Pm = −2iη†∇mη . (B.3)

From (4.41),(B.2), using ∇[m∇n]η = 1
8Rmnpqγpqη we obtain,

dP = R , (B.4)

where R is the Ricci form. Hence P can be identified with the connection of the canonical
bundle of M . On the other hand, the Ricci tensor is obtained from the Riemann tensor via,

Rmn =
1
2

RmnpqJpq = RmpnqJpq . (B.5)

On a Kähler manifold the Ricci form, the Ricci tensor and the Ricci scalar obey,

Rmn = Jm
pRpn ; RmnJmn = R . (B.6)

Furthermore for a Kähler-Einstein manifold such that,

Rmn = λgmn , (B.7)

eqs. (B.7),(B.6) imply,
R = λJ , (B.8)

but in general the Ricci form need not be proportional to the Kähler form.
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The above relations are valid for arbitrary dimension. Specializing to four real dimensions
we adopt the notation (J, Ω) → (ĵ, ω̂), in accordance with the main text. We may decompose
any two-form Φ on the basis of a local SU(2)-structure (ĵ, ω̂) as follows:

Φ = ϕĵ + Φ̃ + χω̂ + ψω̂∗ , (B.9)

where ϕ := 1
4 ĵmnΦmn is the trace of Φ, and Φ̃ is (1,1)-traceless: ĵmnΦ̃mn = 0. Equivalently,

ĵ ∧ Φ̃ = 0 . (B.10)

It is also straightforward to show that (ĵ, ω̂) are selfdual forms while (1,1)-traceless forms are
anti-selfdual,

� (ĵ, ω̂) = (ĵ, ω̂) ; � Φ̃ = −Φ̃ . (B.11)

In particular for the Ricci form the expansion reads,

R =
1
4

Rĵ + R̃ . (B.12)

Moreover the above properties can be used to calculate,

R ∧ R =
(1

4
R2 − 1

2
RmnRmn

)
vol4 , (B.13)

where the volume is given by,
vol4 =

1
2

ĵ ∧ ĵ . (B.14)
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C Büscher rules for NATD

Let us recall here the rules for Non Abelian T Duality from which the backgrounds in
(4.1.2),(4.3.4),(4.4.1),(4.5.1) are computed. NATD can be applied along a generic isome-
try group but all the cases considered here have SU(2) isometry.

C.1 NS-NS sector

The metric g and B-field can be combined in a single tensor Q = g + B. As Q is invariant
under SU(2), it can be decomposed into:

Q = Qμν(x)dxμ ⊗ dxν + Qiν(x)σi ⊗ dxν + Qμj(x)dxμ ⊗ σj + Qij(x)σi ⊗ σj

Where xμ are the spectator coordinates (unaffected by the SU(2) action) and σi are the
Maurer Cartan forms given in (4.3). In this basis the isometry amounts to saying that the
components of Q depend only on xμ. From there NATD will dualize along the σi directions.
Introduce new coordinates vi (note that v actually lives in the Lie algebra of SU(2)) and
define the matrix

Mij = Qij + α′f k
ij vk ,

where f k
ij are the structure constants of SU(2). Then the dual Q̂ to Q is given by:

Q̂μν = Qμν − QμiM
−1 ijQjν

Q̂ j
μ = QμiM

−1 ij

Q̂i
ν = −M−1 ijQjν

Q̂ij = M−1 ij

The dual metric ĝ (resp. B̂-field) are recovered by taking the symmetric (resp. anti-
symmetric) part of Q̂. Note that Q̂ is given in the basis (dxμ, dvi).

The dual dilaton φ̂ is given by the formula:

log φ̂ = φ − 1
2

log
det M

α′3
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C.2 R-R sector

Identify the flux polyform F with a bispinor through Fierz isomorphism. For this a choice
for a vielbein is needed, take:

eA = eA
μ dxμ , ea = κa

i σi + λa
μdxμ

Then define

P = eφF .

The bispinor P will be transformed under NATD by the action of a specific Clifford
matrix. Define

Ω =
Γ123 + ζaΓa

√
α′3
√

1 + ζ2
Γ11 .

The gamma matrices involved here have flat indices and

ζa = κa
i (bi + vi) .

Where bi is the three-dimensional dual of B: bi = εijkBjk
1. The dual P̂ to P is then:

P̂ = PΩ−1

1Bij is the antisymmetric part of Qij , ie the components of B along σi ∧ σj
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D LT structures

In this section we fill out the details leading up to eq. (5.91). Plugging the following general
ansatz in the decomposition of dJ, dΩ,

dJ =
3α1

2
�Ω − 3α2

2
�Ω + α3�K + α4�K + α5�Ω⊥ + α6�Ω⊥

dΩ = a1J ∧ J + a2K∗ ∧ Ω + a3J⊥ ∧ J ,
(D.1)

for some real and complex parameters α1, . . . , α6 and a1, . . . , a3 respectively, and using
eqs. (5.84), (5.85), (5.86), we arrive at the torsion classes given in (5.88). Imposing W3 =
W4 = W5 = 0 leads to,

W3 : 1
f − sin θ

g + 6g sin θ
|h|2 = 0

W4 : |h2|′
f |h2| − 6 cos θ g

|h2| = 0
W5 : h′

fh + g′
2fg − cos θ

2g = 0 .

(D.2)

From W5 − W̄5 we see that the phase of h must be constant but is otherwise unconstrained
by the equations, i.e.,

h = |h|eiβ , (D.3)

for some real constant β ∈ [0, 2π). Moreover we set H := |h|2, for some nonnegative function
H. Since dψ is not defined at θ = 0, π, regularity requires that the coefficient of dψ + A
should vanish at the poles. It is therefore convenient to set g := G sin θ for some function G.
The equations now read,

1
f

− 1
G

+ 6
G sin2 θ

H
= 0

H ′ − 3 sin 2θ Gf = 0
H ′

H
+

G′

G
+ cot θ − f cot θ

G
= 0 ,

(D.4)

where we have assumed that f , h are nonvanishing. Plugging the first two into the third
then implies,

G = α , (D.5)

for some real constant α. The system is then solved as in eq. (5.91), where H satisfies,

H ′
(

1 − 6α2 sin2 θ

H

)
= 3α2 sin 2θ . (D.6)
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We immediately see that H(θ) = 9α2 sin2 θ is a special solution. Moreover the differential
equation imposes H(π − θ) = H(θ). It is thus convenient to introduce a new function ϕ(x),
where x := sin2 θ and H := 9α2xϕ(x), in terms of which the equation becomes,

ϕ − 2
3

ϕ − ϕ2 ϕ′ =
1
x

. (D.7)

Integrating over x between X0 and X we obtain,∫ X

X0

ϕ − 2
3

ϕ − ϕ2 ϕ′dx = log
X

X0
, (D.8)

where ϕ0 := ϕ(X0). On the other hand,

ϕ − 2
3

ϕ − ϕ2 = −2
3

1
ϕ

− 1
3

1
ϕ − 1

. (D.9)

Since ϕ ≥ 0 and ϕ − 1, ϕ0 − 1 have the same sign, we find,

− 2
3

log
ϕ

ϕ0
− 1

3
log

ϕ − 1
ϕ0 − 1

= log
X

X0
, (D.10)

which leads to,

ϕ2(ϕ − 1) =
X3

0
X3 ϕ2

0(ϕ0 − 1) . (D.11)

Rewriting the above in terms of H which, contrary to ϕ, is necessarily everywhere well-
defined, we obtain,

H2(H − 9α2X) = H2
0 (H0 − 9α2X0) = constant . (D.12)

We can henceforth assume X0 = 0 without loss of generality, which leads to,

H2(H − 9α2X) − H3
0 = 0 . (D.13)

It is easy to see that the above polynomial in H is increasing for negative H, until it atteins
the value −H3

0 ≤ 0 at H = 0. It then decreases until H = 6α2X, from which point on it
becomes increasing. Therefore if we impose H0 > 0 the polynomial only vanishes once, for
H > 6α2X ≥ 0. For H0 = 0, there are two solutions: H = 0 (which must be discarded) and
the special solution H = 9α2X. We conclude that for any H0 ≥ 0, there is a unique solution
to the differential equation with the boundary conditions H(0) = H0 = H(π); it is given in
eq. (5.91) of the main text.
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E Twistor spaces

There is an alternative description of the total space of the CP
1 fibration over CP

2 in terms
of twistor spaces. More generally, for the purposes of the present section we may replace the
CP

2 base by any four-dimensional Kähler space B4.
Consider B4 equipped with its canonical complex structure Î and a hermitian metric g.

Let us introduce a complex zweibein z1, z2, so that Îzk = i zk, for k = 1, 2. These forms are
of course only locally defined, since B4 is not parallelizable in general. We can thus express
the metric and the local SU(2) structure on B4 in terms of the complex zweibein,

g = z1z̄1 + z2z̄2
ĵ = i

2 (z1 ∧ z̄1 + z2 ∧ z̄2)
ω̂ = z1 ∧ z2 .

At any one point x ∈ B4, ĵx, ω̂x form an SU(2) structure on the tangent space TxB4. The lat-
ter is equipped with a complex structure and a scalar product given by Îx and gx respectively.
Moreover the relation,

Îk
m = gknĵmn ,

allows us to identify the complex structure with a real selfdual form. The latter are param-
eterized as follows, see appendix B,

jx = αĵx +
β

2
ω̂x +

β∗

2
ω̂∗

x ,

where α is real and α2 + |β|2 = 1. Hence the space of complex structures Ix compatible
with the metric gx forms a sphere whose coordinates θ ∈ [0, π], ψ ∈ [0, 2π) are defined by
α = cos θ, β = sin θeiψ, so that Ix is associated with the two-form,

jx = cos θ ĵx + sin θ �(eiψω̂x) .

Extending this procedure to each point on B4 then defines an almost complex structure I
over the whole manifold (unlike Î, I will not be integrable in general). Over each point on B4
an almost complex structure compatible with the metric of B4 can be thought of as a point
on the sphere S2 parameterized by (θ, ψ). Hence the space of almost complex structures on
B4 is a fiber bundle S2 over B4 denoted by Tw(B4), the twistor space of B4.

The zweibein z1, z2 is no longer compatible with the almost complex structure I associated
with the real two-form j given above. Rather we define,

f1 := cos
θ

2
ei ψ

2 z1 + i sin
θ

2
e−i ψ

2 z̄2

f2 := cos
θ

2
ei ψ

2 z2 − i sin
θ

2
e−i ψ

2 z̄1 ,

(E.1)
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so that Ifk = ifk. In terms of the new zweibein the local SU(2) structure and the metric
read,

g = f1f̄1 + f2f̄2

j = i
2

(
f1 ∧ f̄1 + f2 ∧ f̄2

)
ω = f1 ∧ f2 = cos θ �(eiψω̂) − sin θ ĵ + i �(eiψω̂) ,

which is precisely of the form of (5.82). Let us also note that the choice of zweibein compatible
with I is only determined up to a phase. The latter leaves j and the metric invariant but
acts nontrivially on ω, thus changing the SU(2) structure.

We have seen that Ix(θ, ψ) defines an almost complex structure on the base. Together
with the natural complex structure of the sphere (thought of as a CP

1) we can construct an
almost complex structure on the the total space,

I± =

⎛⎜⎝ Ix(θ, ψ) 04×2

02×4
0 ± 1

sin θ
∓ sin θ 0

⎞⎟⎠ ,

so that f1, f2 and K = dθ + i sin θ(dψ + A) are eigenforms of I± with eigenvalue ±i. We can
thus take (f1, f2, K) as the vielbein on Tw(B4). More generally we could modify (f1, f2, K)
by introducing “warp factors” as in (5.86) below.
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F Torsion classes for Kälher base

As mentioned in section 5.4 we may relax the condition on the base of S2(B4), so that B4 is a
generic four-dimensional Kähler manifold. The torsion classes can also be straightforwardly
calculated in this case. Note however that this is only a local calculation: without additional
constraints, we do not expect there to exist a global extension to a complete space.

Let us postulate a globally-defined SU(3) structure as in (5.86) on a CP
1 bundle with

metric,
g6 = |h|2g4 + KK∗ ; K = fdθ + ig(dψ + A) , (F.1)

where f, g, h are a priori complex functions; θ and ψ parameterize the S2 fiber; the one-form
A satisfies (B.1), (B.4) for (J, Ω) → (ĵ, ω̂). We will impose further restrictions on f, g, h;
these functions must be regular and non-vanishing, except for g which must vanish at θ = 0
and θ = π. The most general situation we will consider here is that df , dg, dh live on the
space spanned by K, K∗ (this restricts the dependance on the coordinates). Explicitly we
expand,

df = f1K + f2K∗ , (F.2)

and similarly for g, h. It is also possible restrict the dependance on θ alone.
The calculation of the torsion classes proceeds in the same fashion as in appendix D, with

the following result,

W1 = −2i
3

h
h∗
(

g+f sin θ
fg∗+f∗g + R

2 g sin θ
|h|2
)

W2 = 2i
3

h
h∗
(

g+f sin θ
fg∗+f∗g − Rg sin θ

|h|2
)

J⊥

W3 = −1
2(fg∗ + f∗g)dθ ∧ R̃ + �

(
g−f sin θ
fg∗+f∗g + R

2 g sin θ
|h|2
)

Ω⊥

W4 = d(log |h2|) − R
2|h2|(fg∗ + f∗g) cos θdθ

W ∗
5 = 1

fg∗+f∗g

(
f cos θ + f1g − fg1 − (f∗g2 + f2g∗) − 2(fg∗ + f∗g)h2

h

)
K∗ .

(F.3)

Our degrees of freedom in the above are a somewhat redundant: a phase change of K can be
absorbed in h so that f or g can be taken real. Let us also note that in general a cross term
(fg∗ − f∗g)dθ(dψ + A) appears in the metric. If we want this to vanish, we must impose f
and g to be colinear, so that they can both be taken real.

Furthermore if we want to impose W4 = 0, we must restrict h to depend only on θ, in
which case we get,

h1 =
g∗h′

fg∗ + f∗g
; h2 =

gh′

fg∗ + f∗g
. (F.4)

Therefore f and g must also be restricted so that R (f∗g + fg∗) is a function of θ alone.
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