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6 1 INTRODUCTION

1 Introduction

The 20th century has seen the development of two physical theories that are immensely suc-
cessful in describing the world we live in, namely general relativity and quantum field theory.
These theories describe the four fundamental forces of nature that we know. Quantum field
theory is a framework in which we can build theories that describe the electro-magnetic, weak
and strong nuclear force, that govern the world of subatomic particles. In contrast, general
relativity describes the force of gravity and how the latter governs the large structures in the
universe. Despite the numerous experimental tests passed by these theories, we know that they
do not provide us with a complete picture. One of the biggest challenges that we face today
is to describe gravity at the quantum level and develop a unified theory that describes all four
fundamental forces.

Among the best candidates we have for this endeavor is string theory (see [1-3] for introductory
textbooks). The latter is a theory of quantized strings, which can either be open or closed and
propagate in ten-dimensional spacetime [4, 5|. This exact number of spacetime dimensions is
required for consistency of the theory and is generally referred to as the critical dimension with
the propagating strings being called critical strings. As we currently observe only four space-
time dimensions, the others are generally considered to be compact with their characteristic
length scale being small. The potential experimental signatures due to the existence of extra
dimensions as predicted by string theory is currently a popular topic for phenomenological
studies. The particles that we observe arise by the vibrational modes of the quantized strings.
The strings define through their length a characteristic mass scale in the theory that we denote
by M. Together with the string coupling g, which governs the interactions between strings,
they are the only two free parameters in the theory. What got people interested in string theory
in the pursuit of a theory of quantum gravity was that is naturally contains the graviton as a
specific excitation mode of the closed string. The graviton is the force carrier particle for the
gravitational force and thus string theory is a quantum theory which naturally contains gravity.
In addition, the other known fundamental forces are also present, thus providing a potential
unified framework for all fundamental forces. String theory also contains additional extended
objects known as Dp-branes [6] which can be thought of as p-dimensional hyperplanes that
serve as endpoints for open strings and also as source/sink for closed strings.

Initially, five different consistent string theories were constructed which seemed unrelated at
first. At a later stage, it was realized that these different theories were connected through du-
alities and unified under an eleven-dimensional description known as M-theory [7]. The latter
is not a theory of critical strings but only contains branes, more specifically so called M2, M5
and M9 branes. Two of these five string theories will appear in this thesis and are called type
ITA and type IIB respectively and are related by T-duality [8, 9]. This means that when we
compactify one space direction in for example the type ITA theory on a circle of radius R, we
can equivalently describe the same physics by compactifying the type IIB theory on a circle
of radius (M?R)~!. Furthermore type ITA theory is obtained by compactifying one direction
in the eleven dimensional M-theory on a circle and shrinking the circle to zero size. Type IIB
string theory also enjoys a symmetry known as S-duality [10] which relates its weak coupling
to its strong coupling regime, exchanging perturbative and non-perturbative states. It was
discovered in [11], that compactifications of type IIB string theory can be described in a more
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geometric setting by embedding it in a twelve-dimensional spacetime. This approach is known
as F-theory and allows for the use of powerful geometrical tools. A topological version of string
theory has also been developed in [12]|. In the latter, the correlators of a certain class of op-
erators are independent of the metric tensor of the theory which explains why they are called
topological. Topological string theories are interesting for a number of reasons. They provide
toy models to understand more about properties of ordinary string theory. Furthermore, they
can be used to derive results in the ordinary string theories mentioned above [13, 14|. Finally,
they can lead to interesting mathematical results.

As of today, no complete model describing our reality has been constructed in the framework
of string theory. Nevertheless, along the way it was realized that string theory can give us valu-
able insights into a variety of subjects among which is a specific class of quantum field theories
by studying the low-energy (small compared to the string scale M) worldvolume dynamics of
branes, i.e. the spacetime along the directions of the brane. The quantum field theories that
arise this way naturally enjoy a property known as supersymmetry [15-17]. The latter is an
additional symmetry that relates bosons to fermions and vice versa. Bosons and fermions that
are related under this symmetry are called superpartners. Supersymmetry transformations are
generated by spinors which are referred to as supercharges. A given theory can be invariant
under symmetries generated by more than one supercharge, which is generally known as ex-
tended supersymmetry. In supersymmetric theories, there exists an interesting class of states,
called BPS (Bogomol'nyi-Prasad—Sommerfield) states [18]. Understanding the BPS spectrum
of a theory is an essential tool that can lead to exact non-perturbative results. These states are
protected by supersymmetry, i.e. invariant under deformations of parameters, and as long as
supersymmetry remains unbroken they can be safely followed into the strong coupling regime.
Even in the absence of experimental confirmation of supersymmetry, its presence in this class
of theories provides us with a playground where different methods can be tested in an efficient
way. Indeed, supersymmetry provides additional structure, rendering the underlying theory
more rigid and making it possible to devise non-perturbative techniques which provide us with
exact results. Such techniques are very hard to come by in current models that describe our
physical reality but do not enjoy supersymmetry. One could dare to say that when a certain
result cannot be calculated in the presence of supersymmetry, there is probably not much hope
of achieving it without supersymmetry. It is thus interesting to understand non-perturbative
methods in supersymmetric theories and study if they can be applied, or at least part of them,
when supersymmetry is broken. The embedding of quantum field theories into string theory
provides us with a different viewpoint that often allows us to use powerful geometric tools
in order to obtain new results that are inaccessible from conventional methods. This stringy
approach makes it possible to unravel hidden dualities or to understand already known ones
from a different perspective. In return, as these quantum field theories arise as the low-energy
theories in the worldvolume of the branes, we can also gain new insights into string theory itself.

A good illustrative example of the insight string theory can give into supersymmetric quantum
field theory is the electro-magnetic Montonen-Olive duality [19] in four-dimensional supersym-
metric N' = 4 (referring to the number of supercharges) Yang-Mills theory (sYM) [20] (classical
pure Yang mills theory completed with the respective superpartners such that it is invariant
under the extended supersymmetry), which states that the theory enjoys equivalent descrip-
tions where the role of electric and magnetic quantum number are exchanged and the gauge
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coupling constant is inverted. This dual description is very useful in the sense that it estab-
lished a relation between the weak coupling dynamics (perturbative regime) and the strong
coupling dynamics (non-perturbative regime). When one sees the N' = 4 sYM theory as the
worldvolume theory of D3 branes in type IIB string theory, then the Montonen-Olive duality
is a direct consequence of S-duality of type IIB string theory [21]|. If one further embeds type
IIB into M-theory by considering torus compactification of the latter then the D3 branes arise
from torus compactified M5 branes and the S-duality can be understood as the conventional
SL(2,7Z) action on the torus [22]. We thus see that by embedding the gauge theory into string
theory (including M-theory), we gain alternative points of view which can have a more geomet-
ric nature as in this example.

An interesting class of quantum theories that are embedded into string theory are the so called
little string theories, first discovered two decades ago [23]. Reviews can be found in [24, 25|.
These six-dimensional theories were first realized as the worldvolume theory of a stack of NS5
branes! in the context of Type II string theory through a particular decoupling limit that
sends the string coupling constant to zero (gs — 0) while keeping at the same time the string
scale M finite. In this limit, the resulting theory remains interacting but the bulk dynamics,
i.e. strings propagating in the directions orthogonal to the brane, is decoupled, in particular
gravity. As their name suggests, they contain strings which are however non-critical as they
propagate in a six-dimensional spacetime. The tension of these little strings is proportional to
the string scale M, which is the only intrinsic scale in the theory. Furthermore, the little string
theories enjoy T-duality similar to the critical string theory underlining thus their nature as
non-local quantum theories. So the complexity of little string theory thus lies between that of
local quantum field theories and full fledged critical string theory. This makes them interesting
candidates for studying stringy phenomena in an easier setup where gravity is absent and to
learn more about the worldvolume dynamics of the NS5 brane. At energies far below the string
scale My, they have a low-energy description in terms of quiver gauge theories, so their study
can also give us insights into these kinds of theories. These types of theories have different
gauge groups and a matter content which is coupled to a certain number of them, which is
conveniently encoded into a graph known as quiver, where each gauge factor is represented by
a node and an edge connecting different nodes represents matter charged under them. This
local description breaks down as we reach the scale M, and we must rely on the full little string
theories. They are also intimately related to the famous six dimensional superconformal field
theories (SCFTs) [22]. Conformal symmetry refers to the fact that a theory is scale invariant,
i.e. it cannot have an intrinsic scale, whereas superconformal means that it is in addition also
supersymmetric. These theories enjoy a special status as they are the SCFTs in the highest
possible dimension [26]. In contrast to the little string theories, which have strings of finite
tension, the SCFTs contain tensionless strings. For every little string theory, it is possible to
take a limit that gets rid of the string scale and obtain an associated SCFT [27, 28]. We can
thus also get new insights about the latter. These two kinds of theories mentioned above have
long resisted a systematic study. The reason for this is that they do not have a description
in terms of a Lagrangian. This can be understood from the fact that these theories contain
self-dual two-forms for which we cannot write down a non-trivial kinetic terms in six dimen-
sions [29]. So the usual field-theoretic methods based on a Lagrangian approach do not apply

!These are an additional type of branes present in type IIA and IIB string theory.
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when we want to study these theories and we have to rely on their embedding into string theory.

In recent years, there has been a lot of progress in the study of little string theories, for a
non-exhaustive list see [28, 30-48|. They have been completely classified by using systematic
construction through F-theory compactifications |28, 49]. In this approach, all the physical
data of the theories is encoded into the geometry of an elliptically fibered Calabi-Yau threefold,
thus allowing for the use of powerful geometric methods for their study. Heuristically, one can
think of these elliptically fibered spaces as a torus varying over a two complex dimensional base.
In the specific case of little string theories there is an additional torus in the base manifold.
The T-duality property of little string theories manifests itself in this F-theory setting by the
exchange of the fiber torus with the base torus. More specifically, the six-dimensional theories
that are the subject of this thesis are the so called little string theories of type A, where the
letter refers to the ADE classification in terms of affine Dynkin diagrams of ay2. This class
of theories is defined by F-theory compactification on an elliptic Calabi-Yau threefold that we
denote by Xy ar, where N and M are two positive integers that are part of the definition of the
associated theories. What exactly we mean by this statement will become clear in the main
text. In [33], the authors conjectured the existence of a third little string theory engineered by
Xn . in addition to two already existing ones. As this third theory is associated with the same
Calabi-Yau threefold, it is reasonable that it should be related to the other two resulting in a
more intricate duality structure than simply T-duality.

In this thesis we explore and extend the conjectured duality and study its consequences. We
also give a proof of the conjecture in a specific case. In order to attack this problem we have
different viewpoints at our disposal that each have their own benefits. The first viewpoint is
the F-theory construction gives us valuable insights into how the geometry of Xy j; translates
into the physical parameters of our theories, i.e. Coupling constants, Coulomb branch and
mass parameters. The Coulomb branch parameters are the vacuum expectation values of the
scalars that are related through supersymmetry to the vector field. They parametrize the mod-
uli space of vacua for a given theory. The second viewpoint is a specific M-theory construction
of our class of theories in terms of a configuration of M5 and M2 branes [50, 51, 31]|. The little
strings are BPS states in the worldvolume theory [53, 54| and one can capture their spectrum
by the BPS counting function, which is equivalent to the instanton partition function of the
low-energy description of circular quiver gauge theories. Through a remarkable relation, this
partition function is equivalent to the topological string partition function associated with the
Calabi-Yau geometry Xy s [13, 14, 55]. On the topological string side we have a technique at
our disposal that is known as the refined topological vertex formalism [56, 57|. Using the latter
we can systematically calculate the topological string partition function from the representation
of Xy as a toric variety. This is where the third viewpoint comes into play. By dualizing the
M-theory setup into type IIB string theory we end up with a brane configuration of D5 and
NS5 branes, commonly referred to as (p,q) brane web [58]. The essential information about
how the branes intersect in this setup is conveniently encoded into a planar graph of trivalent
vertices. Furthermore, this graph encodes the geometric information of Xy s viewed as a toric
variety, which is exactly what we need in order to set up the topological vertex calculation
in a systematic way for our class of theories. Our strategy for proving the conjecture is to

2We explain in the main text how this classification comes about.
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explicitly calculate the partition function of the third theory associated with Xy 5, and show
that indeed it corresponds to the BPS counting function of a little string theory or equivalently
the instanton partition function of its low-energy description. Due to the non-perturbative
nature of the partition function, this matching provides us with an exact result. It directly
follows from the topological vertex method that the partition functions of the three theories
engineered by Xy )s are different series expansions of the same function, which provides us with
relations among their physical parameters and allows us to establish a duality map between
them. This shows that the geometry Xy 5 engineers three different little string theories which
are dual to each other. We refer to this as Triality. To further support our result, we show
based on considerations on the (p, ¢)-brane web diagram that there exist three regions in the
Kéhler moduli space of Xy 5/ where the weak coupling regime of the respective gauge theory
description is realized. From the geometric relations of [33] and our Triality, we show that there
is an even larger web of dualities relating theories engineered by different geometries Xy s and
X . We formulate the condition for theories to be dual in terms of the positive integer pairs
N, M and N’, M’. Our analysis naturally leads us to consider a slightly more general class of
geometries that we call shifted web diagrams and denote by X]@M where ¢ is a positive integer
that refers to the shift. We conclude that these geometries engineer a least one little string
theory in general. In a second part of this thesis, we analyze the direct consequences of the
web of dualities that we established and we find two main result. First, we discover that for
the theories associated with the shifted geometries X](\i)M that we encountered in our previous
analysis, the question about dimensional reduction form six to five dimensions does not seem
so straightforward anymore. Upon searching for a good parametrization of the geometry, we
find that as we dimensionally reduce our theories, the gauge group and matter content changes.
This is in contrast with the usual case where we simply end up with a five dimensional theory
that has the same gauge group and matter content. We show the consistency of these newly
found limits by implementing them in the partition function and formulate a general pattern
for this reduction procedure. Secondly, we analyze the consequences of the duality web at the
level of the partition function. As a consequence of the plethora of different geometries that
lead to the same expansion form (from the perspective of a specific gauge theory expansion)
of the partition function, we find that the latter enjoys a dihedral symmetry. This symmetry
group acts on the Kéhler moduli space and relates different terms at different orders in the
instanton expansion in a highly non-trivial way.

The outline of this thesis is as follows. In section 2 we introduce some preliminary notions
that will be important in the remainder of this thesis. We start by quickly reviewing the notion
of Kéahler moduli space and Calabi-Yau manifold, as we encounter these concepts frequently.
We also introduce the Coulomb branch and pre-potential in the context of N' = 2 supersymmet-
ric Yang-Mills (sYM). After this we sketch Nekrasov’s calculation for the instanton partition
function and its describe its modular structure in terms of contributions of individual vector
and matter multiplets. In section 3 we review the different dual constructions of little string
theories of type A. We also introduce the partition function and describe its calculation by the
refined topological vertex method. In section 4, we prove the Triality and establish the ex-
tended web of dualities. In 5 we introduce the non-trivial five-dimensional limits for the shifted
geometries. In 6 we explicitly show the manifestation of the hidden dihedral symmetry of the
partition function. In section , we comment on the results and discuss research directions for
the future. In the appendices, we give some relevant background information that we refer to
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when needed.



12 2 PRELIMINARY NOTIONS

2 Preliminary notions

In this section, we review some preliminary notions that play a role in the remainder of this
thesis. We start with a lightning review of the notions of Kéhler moduli space and Calabi-
Yau manifold. We explain the notion of BPS states, specifically in six dimensions. Then we
introduce the concept of Coulomb branch in supersymmetric gauge theories and discuss the
calculation of the so called pre-potential in Seiberg and Witten’s work. At last, we review
Nekrasov’s method to calculate the pre-potential and thereby introduce the Nekrasov partition
function and comment on its structure in terms of individual contributions that arise from
different types of multiplets. In this context, we also explain the notion of quiver gauge theory.

2.1 Calabi-Yau threefolds and Kahler moduli space

As the notions of Calabi-Yau manifold and Kahler moduli will appear numerous times in the
course of this thesis, we briefly review them and refer the reader to physically motivated reviews

59, 60).

Let M be a complex manifold with dim(M)c = m and let g denote a Hermitian metric which
satisfies

gp(Jva ‘]PY) = gp(X, Y) (2.1)

at each point p € M and for any vectors in the tangent space X,Y € T,M. Here J, is the
almost complex structure at the point p. Choosing a basis for 7,M of the form (%, 8—‘;) it
can be shown that g,, = gz = 0. In components the metric takes the form

9= Gupdz" ® dz" + gp,dz" @ dz” (2.2)

A complex manifold together with a Hermitian metric is called a Hermitian manifold and
denoted by (M, g). For the latter, we can define a specific (1, 1)-form, called the Kéhler form
of the hermitian metric g, by its action on X,Y € T,M, as follows

wp(X,Y) = g,(J,X,Y) (2.3)
When expressed in components the Kéhler form can be written as
w = 1ig,pdz" @ dz¥ —igy,dz" @ dz" = ig,dz" N\ dZ” (2.4)

Furthermore the Kéhler form is a real form, 7.e. w = w. A Kéhler manifold is a Hermitian
manifold (M, g) whose Kéhler form is closed, i.e dw = 0. In this case the Hermitian metric
is called a Kéahler metric. This is a non-trivial statement as not all complex manifolds admit
Kahler metrics. As we are dealing with closed forms we can look at cohomology classes of
closed Kihler forms, i.e. [w] € HY'(M), where [w] is called the Kéhler class of w. The latter
can be expanded in terms of a basis of HY(M) as follows

hl,l

w] = Z AWl (2.5)
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where hl'! = dim(HY'(M)) and [w]® are the basis elements. The parameters \;, known as
Kihler parameters, are coordinates in the space H'!'(M) which is called the Kdhler moduli
space of M. We will have more to say about this space at a later point in this work. From the
fact that the Kéahler form is closed it can be established that

OGuw _ g OGuw _ I9rw
02X Ozm and ozr  Ozm

(2.6)

This suggests and it can indeed be shown [59] that locally on a chart U; any Kéhler metric can
be expressed as

Gur = Ou0:K; (2.7)

where the function IC; is called the Kéahler potential. Given two overlapping charts it can be
shown that on the intersection U; N U; the respective Kahler potentials are simply related by

Ki(z,2) = Kj(w, @) + ¢i;(w) + () (2.8)

They differ by a holomorphic, respectively an anti-holomorphic function. A special class of
Kéhler manifolds are so called Calabi-Yau manifolds. We say that a Kéhler manifold is Calabi-
Yau if it has vanishing first Chern class, or equivalently if the canonical bundle® is trivial, i.e.
AMOT*M = C x M.

2.2 Supersymmetric gauge theories and Nekrasov partition function

In the previous section we reviewed a few mathematical concepts that we will encounter at
different points in the remainder of this thesis. Now, we introduce physical concepts that
will also be of importance later on. Due to the lack of a Lagrangian description for the six-
dimensional theories that we are interested in, it is useful to review some aspects of four
dimensional N = 2 super Yang-Mills (sYM) in order to introduce concepts that are important
in this thesis. We look at the Lagrangian description of A’ = 2 sYM where we introduce the
concept of Coulomb branch parameters and briefly discuss the effective low energy solution
constructed by Seiberg and Witten [61|. Finally, we discuss the approach taken by Nekrasov
and the resulting instanton partition function [62].

2.2.1 N = 2 super Yang-Mills in four dimensions and the notion of Coulomb
branch

The goal of this section is to introduce the notion of Coulomb branch and pre-potential from the
Lagrangian viewpoint. We only brush over the broad lines of four dimensional Seiberg-Witten
theory and refer to the review [63] for further details. The four-dimensional on-shell N' = 2
vector multiplet contains a complex scalars ¢, two Majorana spinors A and 1, and a vector
field A,. With this field content, the N' = 2 pure sYM Lagrangian in four dimensions has the

3The m-th exterior product of the holomorphic cotangent bundle 7% M of the manifold M. Sections of the
canonical bundle are holomorphic m-forms.
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following form
- 1 ~ 2 2~1 2
C —47TJmTr[/d 06570 }

:%TrH / LOWW, + 2 / d29d2éc1ﬂe*2vq>)]

0 o 1 1
= T P + ?Tr< — B F™ + (Du0) D6 — [0t o
— NP DA — i D — iV2IN, 6T — ivV2IA, 1/7]¢) (2.9)

where the trace is normalized as follows in terms of the generators of the gauge group Tr(7T°7T7°) =
5% In the first line we wrote the Lagrangian in the ' = 2 superspace formalism with ¥ being
a chiral superfield. The complexified gauge coupling is given by 7 = 0/27 +4mi/g*. The second
line corresponds to the Lagrangian written out in terms of A = 1 superfields, with ® being a
chiral superfield and V' being the vector superfield whose superspace field strength is given by
W, In the third line, all superspace variables have been integrated over and the Lagrangian is
written out in terms of component fields. We give the three completely equivalent descriptions
as they all have their own benefits. From (2.9), we see that their is a potential term for the
complex scalar field ¢,

1

V= 2—92Tr ([o", 0]?) . (2.10)
The vacua are defined by the condition [¢',¢] = 0. This implies that ¢ takes values in the
Cartan subalgebra H of the gauge group, i.e. ¢ = ¢;H’, where the H® are the generators of the
Cartan subalgebra. Concretely for G = SU(2), we can take ¢ = %aa?’, with a being a complex
parameter and 0% being the third Pauli matrix. This mechanism breaks the gauge group G
to the subgroup which is generated by the Cartan elements. Physically equivalent vacua are
related by elements in G/H, which correspond to gauge transformations. However, there are
elements in G/H which do not take us out of the Cartan subalgebra. These elements belong
to the Weyl group. In the specific SU(2) example, they act as a — —a. In order to correctly
parametrize the physically distinct vacua, we need to consider Weyl invariant functions of ¢.
In general they can be obtained from the characteristic equation,

det(n —¢) =0, (2.11)

This expression is invariant as the Weyl group acts by conjugation. Upon expanding in a formal
series in 7, the coefficients are Weyl invariant functions. For the specific example of SU(2) a
Weyl invariant quantity is Tr(¢) = %az. This moduli space of vacua is known as the Coulomb
branch *. Tts dimension is equal to r = rk(G), which is the dimension of the Cartan subalgebra.
Away from the origin, the gauge group of the theory is completely broken down to U(1)". At
the origin of the Coulomb branch, i.e. where ¢ = 0, the full gauge group is restored. Until now,
the entire discussion has been classical. Quantum mechanically, we parametrize the Coulomb
by the vacuum expectation value of the classical Weyl invariant operators. For example, in the
case of a SU(2) gauge group the moduli space is parametrized by u = (Tr(¢?)), which reduces

4The name comes from the fact that the gauge group is completely broken down to U(1) factors.
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in the classical limit to %az. As the gauge group is broken, the associated vector fields (and

their superpartners) gain mass through the Higgs mechanism. Specifically for SU(2), we get
the two massive W-bosons.

Although we introduced the Coulomb branch here for four dimensional N' = 2 SYM, the
concept is valid for generic supersymmetric gauge theories in d dimensions that have a scalar
field in their vector multiplet. To recapitulate: The Coulomb branch corresponds to the moduli
space of vacua in a supersymmetric theory parametrized by the vacuum expectation value of
the scalar field in the vector multiplet. One should emphasize that not every supersymmetric
gauge theory has a Coulomb branch, e.g. the six dimensional A" = (1,0) vector multiplet does
not contain any scalar fields. We preferred to introduce the Coulomb branch in this way, be-
cause there is an explicit Lagrangian formulation which makes it easier to explain the concept.
Later in this thesis, we will encounter the Coulomb branch again, but in this case for theories
that do not have a Lagrangian description making the concept maybe less easy to visualize in
a first encounter. In this case, the non-zero vacuum expectation value will have a geometric
origin in string theory as separation between branes. A related concept that will also make an
appearance in this thesis is the Tensor branch [22]. As one might already infer from the name,
the latter corresponds to the moduli space of vacua parametrized by the vacuum expectation
value of the scalar in the supersymmetric tensor multiplet. For completeness, we mention an-
other similar concept, the Higgs branch |64], which is the moduli space of vacua parametrized
by the vacuum expectation value of the scalar in the supersymmetric hypermultiplet. However,
this notion will not be of direct importance to us. As a concluding remark to this very brief
overview of moduli spaces of vacua, we would like to mention that there can be simultaneously
more than one such branch in a given theory. In general they join each other at the origin. For
explicit computations, a choice has to be made. However, there are cases where we can have
mixed branches [65].

2.2.2 Low-energy effective action and pre-potential

The Lagrangian in (2.9) is renormalizable as can be seen from standard methods, e.g. power
counting [66, 67|. However, if we are interested in a Wilsonian effective field-theory®, renor-
malizability is not a criterion anymore. Integrating out the fields that gained mass by going on
the Coulomb branch produces additional contributions to the Lagrangian. So (2.9) is not the
most general Lagrangian we can write down for a N’ = 2 chiral superfield ¥, but rather

1 ~
L£=—JmTr / d*0d*0F (D)
4

_ 14 2g.2501 O (2) /2 12F(2) a
_4ﬁjm[/d0d9® o+ [ o Wal| (2.12)

The function F is known as the N = 2 prepotential and it follows from supersymmetry that
it depends on ¥ in a analytic way [67]. In the second line, we wrote the Lagrangian in terms
of N' = 1 superspace variables. The seminal work of Seiberg and Witten [61] consists in
the determination of F, starting from the microscopic theory (2.9) which is quadratic in W.

5We integrate out all the massive fields down to an energy scale A usually set to correspond to the mass of
the lightest massive state. We can then formulate the theory in terms of an effective Lagrangian with massless
fields only [61].



16 2 PRELIMINARY NOTIONS

At the classical level, the prepotential would simply correspond to Fijassical = %T\IJQ and the
Coulomb branch has a singularity at « = 0. This is the point where some fields that have been
integrated out, the massive gauge bosons in this case, become massless again, thus rendering
the effective description incorrect because we integrated something out that we should not have.
In addition to the classical piece there are quantum corrections, which are both perturbative
and non-perturbative in nature. These contributions to the pre-potential are denoted by Fpert
and F;,q respectively, so that complete pre-potential has the following form

F = Fclassical + Fpert + -/T_‘inst (213)

As a consequence of a supersymmetric non-renormalization theorem [68], it has been shown,
by using the fact that the U(1)z symmetry of the theory is broken by a chiral anomaly, that
Frert does not receive any corrections beyond 1-loop order and takes the form
1 H?
fpert (1)2 ln F (214)
In [68], it was argued that the non-perturbative part of the pre-potential coming from instanton
contributions is of the form

Finst = ka< ) o’ (2.15)

The first coefficient F; was initially calculated in [68] and shown to be non-zero. The achieve-
ment of Seiberg and Witten was to devise a method, which allows in principle to calculate all
the coefficients F,. However, while their method is well adapted for a conceptual study, it is
not well adapted for the explicit calculation of the actual coefficients F,. It was only a few
years later that another approach was developed that allowed for a more practical calculation
of the instanton contributions at each order. This method will be discussed below. What
became clear in the work of Seiberg and Witten is that the structure of the quantum moduli
space is quite different from the classical picture, having no longer a singularity at « = 0 but a
rather more intricate singularity structure, which gives rise to non-abelian monodromies on the
moduli space. They showed that the singularities arise from specific BPS states (monopoles
and Dyons) which become massless at these points. The monodromies together with a electro-
magnetic dual description of the N' = 2 Lagrangian were used to determine the structure of the
moduli space, which was given a description in terms of a Riemann surface of genus r together
with a specific differential on it. This Riemann surface is now commonly known as Seiberg-
Witten curve. The relevant data for the effective N' = 2 effective theory can then be extracted
as period integrals of the above mentioned differential along the cycles of the Riemann surface.
It was also explained in [69], how the Seiberg-Witten curve is related to brane constructions of
four dimensional gauge theories in ten dimensional string theory. Roughly speaking, when the
discussed brane setups are lifted to M-theory, it becomes a single M5 brane with non-trivial
topology, which is the relevant Seiberg-Witten curve. In the context of string compactifica-
tions on Calabi-Yau manifolds, the relation to the Seiberg Witten curves was discussed in |70].
Although our discussion was focussed on pure super Yang-Mills, a similar analysis was also
performed in [64] when matter multiplets are included. As one would expect, this renders the
structure more complicated but it can be done. The point of our discussion is not to give a com-
plete review of Seiberg-Witten theory (a review can be found in [63]), but rather to introduce
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the concept of pre-potential and to emphasize that its determination is a quite a non-trivial
task. The initial calculation by Seiberg and Witten is very important from a conceptual point
of view. In practice, however, for explicit computations of the pre-potential more efficient and
more direct methods have since been developed. We shall review one particular method known
as instanton counting in the following section.

2.2.3 The Nekrasov partition function

In [62], Nekrasov demonstrated a more direct way of calculating the pre-potential of N' = 2
sYM theory using localization techniques suggested in |71, 72]. In this approach, the problem
of computing the pre-potential was first converted into the framework of topological quantum
field theory [73]. In this formalism, the path integral could be reduced to a finite-dimensional
volume integral over the moduli space of instantons. This integral was still plagued by diver-
gences, but they were successfully regularized. The result of this calculation is the so called
Nekrasov or instanton partition function from which the pre-potential can be extracted. For a
modern review on Nekrasov’s work, see [74].

The starting point to the calculation is the partition function, which is nothing but the corre-
lator of the identity in the vacuum labeled by the Coulomb branch parameter that we denote
by a,

Z = (1), = o DX exp (ﬁ / d4xd29d2§f(\IJ[X])) (2.16)

Here F is the pre-potential that we already encountered in (2.12), DX denotes the path integral
measure over the collective fields in the theory and W[X] is the NV = 2 chiral superfield whose
field content consists of the collective fields X. The parameter A is the energy scale relevant
for the effective Wilsonian action and the remaining integral is over energies below this scale.
The first step is to translate this action into the language of topological field theory. This
is achieved by the procedure known as topological twisting [73]. The rough idea is that we
reinterpret the global symmetry group consisting of the Lorentz group in R* and the N = 2
R-symmetry group of the SUSY generators, i.e.

Gglobal = SU(?)L X SU(Z)R X SU(Q)R . (217)

We take a diagonal subgroup of the SU(2)r x SU(2)r factor and then redefine what we call
the Lorentz group for our theory. Let SU(2)4iag denote this diagonal subgroup, then we declare
the new Lorentz group to be

SU(Q)L X SU(Q)djag (218)

With this redefinition, the transformation properties of the fields in the theory change as well,
e.g. some fermionic fields are now scalars under the new Lorentz group but are still anti-
commuting. We do not provide any details, but only focus on the fact that in the new theory
there is a supercharge @) which transforms as a scalar and is nilpotent, i.e. Q* = 0. Now it
can be shown that the action of the topological theory can be written as the sum of a Q-closed
piece QSiopo = 0 and a Q-exact piece, i.e. Q) of something,

S = Siopo + QV (2.19)
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The correlators of observables in the topological theory are not sensitive to the addition of
Q-exact additions to the action. Thus the second term in (2.19) can be dropped without
consequences. This also means that we can in principle add any Q-exact contribution to the
action that makes the calculation easier. In particular, we can add a Q-exact term that depends
on an additional parameter ¢ such that the action takes the schematic form

S = Siopo + / dizTr (—tQ(FW — B (P — Py 4 ) (2.20)

where we do not write out terms of order less than ¢2. Here F w denotes the dual field-strength.
As the path integral is invariant under the addition of this term, it does also not depend on
the explicit value of the parameter . So we can take the limit ¢ — oo, for which the integral
localizes onto the configurations for which the Field strength is self-dual, i.e. F),, = F, w- These
configurations correspond exactly to instanton solutions |75]. Hence the path integral reduces to
an integral over the moduli spaces of instantons and the partition function takes the schematic
form

Z=> QF 1 (2.21)
e,

where the sum runs over configurations consisting of k-instantons. The parameter (), is the
exponentiated gauge coupling constant and serves as fugacity for the instanton number. The
integral calculates the volume of the k-instanton moduli space Mj. The expression (2.21)
is also known as an instanton sum. In order to successfully calculate the integrals, one has
to give a correct parametrization of the instanton moduli space. This has been achieved by
the so called Atiyah-Drinfeld-Hitchin-Manin (ADHM) construction [76]. The authors gave a
systematic construction of instantons by using methods of linear algebra. Even with a adequate
parametrization, the integrals in (2.21) are still plagued by divergences that have two different
origins. The first one, known as UV non-compactness, is related to the size of an instanton
which can go to zero. This problem was regularized by a procedure known as Uhlenbeck
compactification in [62]. This appropriately regularized space is denoted by M. The second
source of divergences, known as IR non-compactness, are due to the fact that an instanton can
wander off tho infinity, i.e. the collective coordinates describing their center of mass can go to
infinity. This was remedied by the introduction of the 2-background. We introduce the real
regularization parameters €; and e, that act by rotation on R* = C? as

Uy x U(l)g, : (21, 22) — (2™ 21, ¥ 2) (2.22)

This rotation action combined with the Atiyah-Bott-Duistermaat-Heckman formula for equiv-
ariant localization [77], makes it possible to evaluate the path integral over the instanton moduli
space M x- The main idea is that the result of the integral will be a sum of contributions coming
from the fixed points of the action (2.22), which is in this case the origin in R*. In physical
terms this means that only instantons at the origin will contribute. As €; and ey are regular-
ization parameters the result is divergent for €5 — 0. An illustrative example would be the
regularization of the following divergent integral over the volume of C?

1
/ledZQ > /dzleQe_(Elzl|2+€2|z22) =—. (2.23)

€1€2
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Once the divergences were all cured, Nekrasov was able to write down an expression for the
resulting partition function. The latter is now also commonly known as the Nekrasov partition
function Zyek(a, €1, €2,9), where a is the Coulomb branch parameter and ¢, = e 9 is the
fugacity for the instanton number in (2.21). The relation to the Seiberg-Witten instanton part
of the prepotential is given by

Finst = lim_ €162 2xek(a, €1, €2, 9) (2.24)
€1,e2—0

Upon modifying it a little, the same calculation can also be performed if matter is included
in the A/ = 2 theory [78]. It can also be generalized to quiver gauge theories [79]. The lat-
ter have multiple gauge groups factors and matter multiplets can be charged under several of
them simultaneously. Two types of matter are important for us in this thesis. The first one is
bi-fundamental matter which sits in the fundamental representation with respect to one gauge
group and in the anti-fundamental representation with respect to another gauge group. The
second one is adjoint matter which sits in the adjoint representation of one gauge group. We
can also think of adjoint matter as a bi-fundamental where both gauge groups are identified.
The content of quiver gauge theories can be conveniently encoded into a quiver graph. In the
latter, each node represents a gauge group and charged matter is indicated by edges connecting
the gauge groups under which they are charged. In Fig. 1, we show a quiver corresponding
to a theory with M SU(N) gauge groups factors with M bi-fundamental matter mutliplets.
We refer generally to this as a fAlM_l type quiver due to its resemblance to the affine Dynkin
diagram for the affine non-twisted Lie algebra a;_;.

SU(N),

SU(N ) SU(N)a

SU{N)3

Str [: Ny

Figure 1: Ay type quiver composed of SU(N) gauge nodes with M bi-fundamentals. Figure
taken from [52].

A powerful feature of the instanton counting technique as described above, is that the
individual contribution of vector or matter multiplets can be identified in the resulting partition
function. For example, the instanton partition function for a quiver gauge theory consisting of
M SU(N) gauge group factors with bi-fundamental matter as shown in Fig. 1 has the schematic
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form

M

(i &) (1) =(i (1) =(i) . =(i (5

ZNek({&()}7{mi}7{gi}7€1,2) = E ( Q.Lh ‘Zvec(a( )7&( ))Zbif(a()aa();a( +1),Oé( +1))>
a,...,av) \i=1

(2.25)

where {@¥}, {m;} and {g;}, with i = 1,..., M, denote the sets of Coulomb branch moduli,
mass parameters and coupling constants respectively. The vector @¥) = (agl), cee ag\],w_)l) carries
the Coulomb branch parameters of the i-th SU(N) factor. Similarly &; denotes a vector of
M integer partitions, see appendix D for their definition and related notions. The sum runs
over these integer partitions. The functions zy.. and zp; correspond to the contributions to the
partition function coming from the vector and bi-fundamental matter multiplets respectively
[80]. They are also referred to as Nekrasov subfunctions. The expression for the bi-fundamental

contribution has the following form

M
ait(@ @0, f,m) = [ T (Blai — bj . 85,7) = m) [ (e — E(bj — as, By, i, t) — m)

i,j=1 rea; SG,BJ'

(2.26)

where we defined the functions E that depend on the partition coordinates (7, j) of a given box
r in the Young diagram associated with the partition as

E(G,Q,B,T):(Z—El(af—i)+€2(5i—j) (227)
In terms of the bi-fundamental contribution the Nekrasov partition function for the vector
multiplet takes the form

1
vec _’7 Y) = S o S S 2.28
: <a a) zbif(aa a;a, o, 0) ( )

The contribution of matter in the adjoint representation is simply given by
Zadj (@, &, m) = 203¢(d, &; @, @, m) . (2.29)

The instanton counting method that we briefly sketched in this section can also be performed
for five-dimensional supersymmetric gauge theories as was already remarked in [62], where again
explicit contributions from the individual multiplets can be identified in the instanton partition
function. For five-dimensional theories, alternative methods to calculate the partition function
have also been explored. For these theories the partition function can be calculated directly by
the use of a technique known as topological vertex, which we will describe in section 3.5.4, that
makes it possible to calculate the so called topological string amplitudes for toric Calabi-Yau
threefolds, which are related to the respective five-dimensional theories through string theory
[81, 13, 14, 55]. Through a remarkable correspondence, the topological string result corresponds
to the five-dimensional Nekrasov partition function [82-84]. Unfortunately, the absence of a
Lagrangian formulation for the six-dimensional theories we are interested in, makes it impos-
sible to perform an instanton calculation & la Nekrasov. However, the alternative method via
topological string theory is still a viable option and indeed gives the correct instanton partition
functions [50, 51]. Well will have more to say on this in section 3.5.4. In the remainder of this
thesis, we will encounter the elliptic generalizations of the Nekrasov subfunction (2.28), (2.26)
and (2.29) when studying the partition function of the six dimensional little string theories (or

equivalently their low-energy description in terms of quiver gauge theories) on Rﬁhgz x T2,
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3 Little string theories and their partition function

Over the years, there have been various dual construction of little string theories. Each approach
has its own benefits and it is therefore useful to use them in a complimentary fashion. We should
emphasize that not every class of little string theories admits a description in all the dual
frames we are going to present in this section, 7.e. not all associated non-compact Calabi-Yau
geometries have a description as a toric variety. We start by giving a very general description
of little string theories as they were first discovered [85, 23, 86|. After this, we describe the
different alternative but equivalent viewpoints, among which the approach that we are going
to rely on the most in our search for dualities among these theories. For early reviews on the
subject see [24, 25].

3.1 Little string theories as worldvolume theories of NS5 branes

We can consider a stack of N coincident NS5 branes in either of the type II string theories
and try to understand their worldvolume theory. Their presence breaks the ten-dimensional
Lorentz group down to

S0(9,1) — SO(5,1) x SO(4) (3.1)

where the Lorentz group of the worldvolume theory is now given by SO(5,1). The SO(4)
factor corresponds to an internal R-symmetry from the brane point of view. Furthermore, the
presence of the branes breaks half of the supersymmetry, 7.e. from thirty two down to sixteen
unbroken supercharges. The six dimensional worldvolume theories will have either chiral (2, 0)
supersymmetry if we are in type IIA or (1,1) supersymmetry if we are in type IIB [87|. There
will be excitations in the worldvolume theories coming from various open strings attached to
the branes and interactions with closed strings propagating in the bulk. It is a natural question
to ask whether it is possible to decouple the bulk dynamics without taking the low energy
limit F << M,, with M, being the string scale. The processes in which modes living on the
fivebranes are emitted into the bulk as closed strings are proportional to the string coupling g;.
Hence decoupling the latter would require taking the string coupling to zero while keeping the
string scale fixed,

gs — 0 and M, = fixed. (3.2)

One needs to check the consequences of this limit for the couplings of the fields in the world-
volume theory of the NS5 branes. To this end we can analyze the low energy dynamics of the
brane configurations. If the gauge coupling also goes to zero then we just end up with a trivial
non-interacting theory. It turns out that this is not the case and there are indeed non-trivial
interacting theories in the worldvolume of NS5 branes that are decoupled from the bulk and
hence decoupled from gravity [23].

Let us first look at this in the type IIB case. We can use S-duality to relate the configu-
ration described above the a stack of N coincident D5 branes. For these we know that the
worldvolume theory would have U(N) gauge symmetry with a gauge coupling given by
1w

9hs s

(3.3)
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From the transformation properties of My and g, under S-duality we can deduce that the
coupling constant in the NS5 worldvolume has the form

Lo (3.4)

S

2
Inss

From this we see that the limit g; — 0 can safely be taken without resulting in trivial low-
energy dynamics. At energies of order £ = Mg the gauge theory description breaks down
and there are additional degrees of freedom that play a role. However, since the low energy
theory is not free and the full string theory is consistent, also the full six-dimensional theory
must be interacting [23]. This six dimensional worldvolume theory with (1, 1) supersymmetry
is commonly called type Ila little string theory. The moduli space of the latter is controlled
by the four real scalars from the six-dimensional (1,1) vector multiplet that parametrize the
transverse directions to the N NS5 branes

4\N

M, = B (35)

N
A similar analysis can be performed for the worldvolume theory of a stack of NS5 branes in type
ITA string theory. We get an interacting worldvolume theory with chiral (2,0) supersymmetry
that is called the type IIb little string theory. It’s moduli space of vacua is described by the
five real scalars from the six-dimensional (2,0) tensor multiplet

(R* x Sjo)™

M, = 5

(3.6)

where the extra compact factor of S}, has its origin in the circle which relates type ITA to
M-theory [7]. By comparing (3.6) and (3.5), we see that the two moduli space are qualitatively
different. This will however change once we consider circle compactifications of these little
string theories. To be more specific, we consider the worldvolumes of the NS5 branes to be
along the xg, x1, 12, 3, 24, x5 directions. We choose to compactify the x; direction and denote
the circle by S}. The compactification of the six dimensional (1,1) vector multiplet gives rise
to a scalar in the type Ila coming from the vector field in the multiplet. On the other hand,
the compactification of the (2,0) tensor multiplet does not give rise to an additional scalar field
[22]. With this in mind, the moduli spaces of the circle compactified little string theories look
like

(R* x SN

MIIa = T ) MIIb =

(R* x 5110)N

- (3.7)

Upon circle compactification, we see that the moduli spaces of the two little string theories
are related by exchange of the circles S} +» Sj,. This symmetry is the manifestation of T-
duality between the type Ila and type IIb little string theories. At the level of the critical
ten-dimensional string theory, T-duality corresponds to inverting the radius R; of the circle
Si. This sends the circle compactified type ITA NS5 brane to the circle compactified type
II B NS5 brane or vice versa and thus exchanges indeed the respective moduli spaces of the
underlying little string theories. The presence of T-duality provides evidence that the full little
string theories are not local quantum field theories.
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Having discussed the origins of little string theories that enjoy maximal supersymmetry in
six dimensions, i.e. sixteen supercharges, we briefly review the construction of little string the-
ories with minimal supersymmetry, ¢.e. eight supercharges, that can be obtained by introducing
orbifold singularities in the transverse space. These theories have been introduced in [88, 86].
Other such theories with eight supercharges in the setting of heterotic string theory were origi-
nally discussed in [23], but we will not talk about these. The (2,0) and (1, 1) little string theories
in the worldvolume of N NS5 branes discussed above admit an alternative description in terms
of type IIB, or respectively type ITA, on the orbifold C?/Zy. The idea then was to consider
both situations simultaneously and it was shown that N NS5 branes in type IIA or IIB with a
transverse orbifold singularity C?/Z,, lead to consistent anomaly free six dimensional theories
with eight supercharges. The latter are generally referred to as (1, 0) little string theories of type
ITa or ITb, depending on their origin before introducing the orbifold singularity. Furthermore, it
was argued that these theories also enjoy T-duality. The little string theories that we presented
here are said to be of class A. The latter makes reference to the orbifold singularity used in
the construction, which is commonly known as an A-type singularity due to a correspondence
between the smoothed out space and Dynkin diagrams for the A-series. Other little string
theories can be obtained by replacing the Zy factor in the orbifold quotient by I'ypg which
stands for one of the discrete SU(2) subgroups, which allow for an ADE classification in terms
of Dynkin diagrams. In this thesis, we are however solely concerned with the theories of class A.

Having now discussed the origins in terms of NS5 branes of the type Ila and IIb little string
theories, we now give dual constructions of the latter. Even if the main approach in this thesis
is via so called (p,q) brane webs (introduced in section 3.4.1), each point of view has its own
benefits and therefore it is worth to go over them in order to give a more complete picture.
The argument for T-duality of the little string theories presented above was a purely classical
statement about the moduli spaces of the worldvolume theories. It is thus desirable to have an
non-perturbative check for this. In [39, 32|, the authors confirmed the T-duality by comparing
the elliptic genera of the little strings. In section 3.5 we introduce a six dimensional analogue
of the Nekrasov partition function that we discussed earlier. We then review how T-duality
of the little string theories can be explicitly confirmed using this inherently non-perturbative
(being an instanton series) object. Before we come to this we review dual constructions of the
class of little string theories that we are interested in.

3.2 Little string theories from F-theory compactification on non-compact
Calabi-Yau threefolds Xy

Little string theories, and hence their low-energy description in terms of circular quiver gauge
theories can be geometrically constructed in a very efficient way using F-theory [11]. The
relevant spaces for F-theory compactification are called elliptic fibrations. The literature on
F-theory is immensely vast and a lot is known about how the geometry of elliptic fibrations
translates into consequences for the underlying physical theories, see [89, 90| for reviews on the
subject. This knowledge and a lot of effort led to a series of papers [91-93] that culminated
in a classification of six-dimensional SCFT’s [94]. Based upon the latter, the authors of [2§]
provided an almost complete classification of little string theories.®. The goal of this section is

5The classification has recently be completed in [49]
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not to give a complete review of F-theory neither to describe the classification of little string
theories. We would simply like to sketch the construction of little string theories of type A and
briefly explain the different objects that are involved. This will allow us to better understand
how the F-theory construction of A-type little string theories is related to other dual points of
view that are used in this thesis and will be discussed in the coming sections.

3.2.1 A very brief overview of F-theory

In physical terms, F-theory can be understood as non-perturbative reformulation of type IIB
compactifications including seven-branes that react back onto the geometry. As is widely
known, type IIB string theory enjoys a non-perturbative symmetry relating the weak and
strong coupling regime, commonly known as S-duality [10]. This symmetry is implemented by
the action of the S-duality group which is SL(2,Z) in IIB string theory”. The axion-dilaton
field 7 = Cy + ie~? transforms as follows under this symmetry

at +b (a b
for

—
7 ct +d d

) € SL(2,7) (3.8)

Furthermore, the NS-NS two-form B; and the R-R two-form Cj of type IIB string theory

transform as a doublet,
a b Bz . CLBQ + bCQ (3 9>
c d) \Cy)  \cBy+dCy .

The fundamental string, commonly denoted by F'1, is electrically charged under Bs, whereas
the string like D1 brane is electrically charged under Cs. For this reason these two objects are
also referred to as (1,0)7 and (0,1)7 strings respectively. In general, for p and ¢ coprime®, we
can have a (p, q) string which is a BPS bound state of p fundamental strings and ¢ D1-strings
[95]. The latter electrically couples to pBy 4+ qCy. By definition, a [p,q| seven-brane, is a
brane where a (p, )T string can end. The presence of seven-branes in type IIB string theory
induces monodromies for the axion-dilaton field 7 when going around a closed path in the space
normal to the brane. This can be seen from the seven brane solution in the low-energy type 11B
supergravity. The normal space to the brane is two dimensional, hence the harmonic function
that specifies the geometry in the presence of the seven-brane has a logarithmic branch-cut

[96]. A general [p, q] seven-brane can always be brought into a [1,0] brane by S-duality

wes(, ) 0-(5)-() e

The parameter r and s are not uniquely fixed but they drop out of all physical quantities [97].
However, if multiple seven branes are present with different values of [p, ], there is no SL(2,7Z)
transformation that transforms them simultaneously into [1,0] branes.

The realization that led to the discovery of F-theory [11] was that the axion-dilaton behav-
ior under SL(2,Z) transformations is identical to the transformation behavior of an elliptic

"In contrast, the S-duality group of the low energy type IIB supergravity is SL(2,R). Upon lifting to string
theory, the latter is broken down to SL(2,Z) by non-perturbative effects.
8If p and ¢ are not coprime the string can decay into n (p, ¢’) strings.
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curve’ E, under modular transformation. We can think type IIB string theory as being em-
bedded into a twelve dimensional space where over each point in the original ten dimensional
space-time, we have an elliptic curve with complex structure specified by the axion-dilaton
7. It must be stressed that the physical degrees of freedom still only propagate in the ten-
dimensional spacetime. The elliptic curve serves as a bookkeeping device for the non-trivial
variation of the axion-dilaton due to the presence of seven-branes. The volume of the elliptic
curve has no physical meaning in F-theory. This can be seen from the duality between type I1B
string theory and M-theory which we will review now. Given M-theory on 72 = S} x S§, with
Sl being the M-theory circle with radius R4, we reach type IIA by taking R4 — 0. Then by
T-duality we have type IIB on the dual circle g}g with radius Rp = 1 /Rp. In order to restore
the full R spacetime of type IIB we must take the radius of the dual circle to infinity, which
means in terms of the original circle in M-theory R — 0. To summarize the duality, we have

M-theory on R™® x (S} x Sp)|rarss0 = Type IIB theory on R

By a careful tracing of the effective action of M-theory and type IIB through this limit [98],
one can explicitly establish this duality, where the complex structure 7 of the M-theory torus
corresponds indeed to the axion-dilaton in type IIB. This duality also holds fiberwise if we now
consider M-theory on R'®~2" x Y, ., with Y, being an elliptic fibration over a n-complex
dimensional base By, i.e. dim¢(B,) = n [11|. In terms of the effective theories, we have a
theory living in R'72" from of M-theory compactified on Y;,,; which is dual to a theory living
in R“$~2" from type IIB on B, x Sk. This gives the following relation between the volume of
the elliptic curve and the radius of the physical compactification circle

- 1
Rp ~ Vol(E,) (3.11)
For a finite volume of the M-theory torus, we thus get a 10 —2n dimensional theory compactified
on the dual circle Sg. To recover the genuine six dimensional theory living on R%9~2" coming
from type IIB compactification on B,, we have to take the limit Vol(E,) — 0, also referred to
as F-theory limit. Hence only the complex structure 7 of the elliptic curve E, is a dynamical
modulus. The volume of the elliptic curve has no physical significance in the genuine 10 — 2n
dimensional theory because we recover full type IIB only in the limit where it vanishes.

We now describe in broad lines the geometry of an elliptic fibration. An elliptic curve can
be described by a so called Weierstrass model as the vanishing locus of the polynomial

P=qy?— (2*+ foz* + 2%, (3.12)

where [z : y : z] are homogeneous coordinates in the complex weighted projective space CPy3; .
As a consequence of the variation of 7 in the presence of seven-branes, the elliptic curve gives
generically a non-trivial fibration over the base space. We can make (3.12) fibered over the

9An elliptic curve is a torus 72 with a marked point. One can define an abelian group law for the points of
the elliptic curve. The marked point serves as origin for this group law. We can represent the elliptic curve as
the lattice C/L = E,; = {z € C|z ~ z +n + m7} where n,m are integers and Jm(7) > 0. The marked point
can then be identified with z = 0.

10The space obtained by removing the origin from C? and identifying points under the following equivalence
relation: (z,y, z) ~ (A2x, Ay, A\32) with X € C*.
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base by letting the functions f and g depend on the base in a suitable way. This model then
defines the elliptic fibration Y, ;. In simple words, the latter is defined as an elliptic curve
E, (basically a torus) varying over a base B,!'!, where n = dim¢(B,,). For reasons related to
supersymmetry, the base B,, cannot be Calabi-Yau [99] while the total space of the fibration
Y,+1 must be. The Weierstrass model also possesses a holomorphic zero-section, which is a
holomorphic function of the base coordinates which gives for every point of the base a point in
the fiber. This point in the fiber is defined by setting z = 0 in (3.12). Using the scaling from
CPy3;, we can set x = 1, resulting in the Weierstrass equation y?>=1, which has the solution
y = £1. There is still residual scaling freedom with A = —1 that does no affect the choice
x = 1. So we can set y = 1, which means that the point defined by setting z = 0 is given by
[1:1:0] in terms of homogeneous coordinates. The zero section defines a divisor'? in the total
space

So : {z =0} (3.13)

which intersects the elliptic fiber exactly in the point described above. It is this point which
serves as the marked point of the elliptic curve. We will not try to develop this subject here
in any detail and skip over a lot of subtleties. For the interested reader we refer to the vast
mathematical or physical literature on this subject [100]. What is most important to us in this
thesis, is the fact that as the elliptic curve varies over the base, it can develop singularities,
i.e. some cycle of the torus shrinks to zero size. Physically, these points indicate the presence
of seven-branes in the type IIB setting with different types of singularities corresponding to
different types of seven-branes [89]. In the Weierstrass model, singularities are characterized as
points where we simultaneously have

P=0 and dP =0, (3.14)

where the differential is taken with respect to the homogeneous coordinates of CPPy3;. The
singularity cannot be at z = 0 since in this case the Weierstrass equation reads y? = 23, which
would then imply x = y = 0, but the point + = y = 2z = 0 does not belong to CPqy3 ;.
This means that the singularity occurs away from the zero-section. Furthermore, when we are
interested in the singularities of the elliptic curve, we can restrict our attention to the coordinate
patch where z = 1. In this patch, the Weierstrass model takes a simpler form

P=y’— (2" + fe+g) =y* - F(x) (3.15)

The conditions defining the singularities of the elliptic curve are equivalent to the vanishing of
the discriminant A = 4f3 + 27¢*, of the cubic polynomial F(z) defined in (3.15). The points
in the base where A vanishes define the discriminant locus, which corresponds to a divisor in
the base defined by

Y {A=0}CB, (3.16)
In general, this divisor might not be irreducible, i.e.

2 =UrYy (3.17)

1 The construction of little string theories actually requires a non-compact base in order to decouple gravity.
12A codimension 1 subvariety.
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where the Y; individually correspond to degeneration loci for which A = 0. The singular points
of the elliptic curve as defined by (3.14) are not in general singular points of the whole space
Y, +1. For this to happen, in addition to the vanishing discriminant A also the gradient with
respect to the base coordinates must vanish, 7.e.

— =0 and — =0 (3.18)

The specific type of singularities that occur over these points depends on the vanishing orders
of f,g and A. Fortunately, codimension-one singularities on elliptically fibered surfaces were
classified some time ago by Kodaira [101] and Néron [102] and were shown to admit an ADE
classification. This classifications carries over to elliptic fibrations over a higher dimensional
base. A good overview of the different types of singularities can be found in [89]. Instead of
the singular space Y,, 1, we can consider its resolution }Afnﬂ, which is smooth. Mathematically
these two spaces are birationally equivalent. This means that they are isomorphic away from
the singular points of Y, ;. The singularities can be resolved by a so called crepant resolution,
which might not exist in general but for the examples we are interested in it does. The word
crepant refers to the fact that this resolution process does not change the canonical bundle, i.e.
it preserves the Calabi-Yau condition. Hence if we start with a Calabi-Yau space the resolved
space is still Calabi-Yau. An example of a resolution for the so called conifold geometry is
given in appendix A. The only relevant singularity type for this thesis will be the so called
Kodaira-type Iy, which is related to the affine Dynkin diagram of ay_;. As already mentioned,
the singular elliptic curve can be thought of as a pinched torus. Topologically the latter is
equivalent to a two-sphere with two points identified. To smooth out the Iy-type singularity, it
turns out that introducing only a single CP' space is not enough but the singular point has to
be replaced with a chain of N CP' [101, 102]. The resulting picture is that of a periodic chain of
two-spheres intersecting their two neighbors in one point respectively. So their is a correspon-
dence between the resolved elliptic curve and the affine Dynkin diagrams of ay_;. This picture
should give the reader a general idea of how the ADE classification comes about. In physical
terms these Iy-type singularities give rise to the gauge groups of the effective theories on R19=27,

In the case where the degeneration locus Y is not irreducible, it can happen that two loci
>y and X ;, which are codimension-one in the base, intersect in a codimension-two space in the
base. Physically, this corresponds to the intersection of two seven branes in the type IIB pic-
ture. Over these codimension-two loci, the singularities get enhanced which is indicated by an
increase in the vanishing orders of f, g and A. In [103], it was explained that the consequence
of these codimension-two singularities is the appearance of charged massless matter. In general
there can be intersection loci of even higher co-dimension, which gives rise to different phenom-
ena. However, for the theories we are interested in, the base is only two complex-dimensional
and the maximal co-dimension for the intersection loci is thus two.

3.2.2 Construction of little string theories of type A

In this part we will review the general construction of N' = (1,0) little string theories of type
A. This requires a description of the elliptic fibration structure of the Calabi-Yau three-fold
Xy v and an explanation on how the geometric ingredients are related to the little string or
respectively the effective quiver gauge theories. At the end of this section we will comment on



28 3 LITTLE STRING THEORIES AND THEIR PARTITION FUNCTION

how the N' = (2,0) and N = (1, 1) little string theories of type A are realized as particular cases
of this construction. As we are dealing with non-gravitational theories, we need to decouple
gravity in the F-theory framework. In [104-106], it was shown that the Planck scale of F-
theory compactifications is set by the volume of the base of the elliptic fibration. In order do
decouple gravity one must take a limit for which the base becomes non-compact. In [94], it was
argued that the decoupling limit only depends on the metric in a neighborhood of a connected
collection of curves on the original compact base, together with a rescaling which takes that
neighborhood to infinite volume in an appropriate way. We do not repeat the argument here
but simply take it for granted that such a non-compact basis exists in our case. The elliptic
Calabi-Yau threefold Xy »s has the following description in terms of an elliptic fibration over
a complex two-dimensional non-compact base B>. We consider M compact curves in the base,
namely the discriminant loci ¥;, which are CP', of geometric self-intersection number (—2)
which intersect in the form of the affine Dynkin diagram of a,;_; inside the base B,. As a
result their intersection matrix is the negative of the Cartan Matrix of the associated affine
Lie algebra and hence is negative semi-definite. The scalars of the six-dimensional A" = (1, 0)
tensor multiple of the theory, also called tensor branch moduli, are controlled by the volumes
of the curves in the base

£ = vol(3y) = / W], (3.19)
X

where [w] is the Kéhler form of Xy ;. The little strings that give their name to the little string
theories, arise by the D3 branes wrapping these curves in the base and as a consequence their
tension is proportional to the tensor branch moduli. There exists a mathematical theorem in
algebraic geometry, called the Grauert-Artin contractibility criterion [107, 108], stating that any
curve in a complex surface is contractible if and only if the intersection matrix of its irreducible
components is negative definite. As we mentioned above, in our case the intersection matrix
is minus the affine Cartan matrix of a,,_;, which is negative semi-definite with exactly one
null eigenvalue. The latter corresponds to one non-contractible curve in the base, defining an
intrinsic scale in the theory. Hence the little strings always retain a finite tension. This is
in contrast to the well known six dimensional superconformal field theories [109], which also
have string degrees of freedom. However, for these theories the intersection matrix for the
base curves is negative definite. As a consequence, the volume of all the base curves can be
simultaneously tuned to zero, resulting in tensionless strings. In terms of the construction of
little string theories, we can reach a superconformal field theory configuration by taking the
volume of one curves in the base to infinity ¥; — oo, while keeping everything else fixed. This
would result in a configuration where the compact curves intersect in the form of the Dynkin
diagram of a,;_;. This limit will have a quite natural interpretation in terms of brane web
diagrams, as we will see in 3.4. In terms of the effective low-energy six-dimensional, the tensor
moduli control the effective gauge coupling constants

iz ~ vol(Xr) (3.20)
91
Hence, each irreducible component ¥; of the degeneration locus corresponds to a gauge group
factor and the intersection structure of the base curves in the form of a Dynkin diagram corre-
sponds to the quiver structure of the effective theory in six dimensions, i.e. a circular quiver
in the form of the Dynkin diagram of a,;_;, as shown in Fig. 1.
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Over each curve Y; in the base, the elliptic curve degenerates into a Iy-type Kodaira sin-
gularity. The resolution of the latter gives a periodic chain of N CP' that intersect in the form
of the affine Dynkin diagram of ay_;. Let us denote the elliptic curve degenerating over a
given base curve X; by E; and its individual components by C;, where i = 0,...,N —1 and
I =0,...,M — 1. Over each discriminant locus, the component Cj, denotes the curve that
is intersected by the zero-section, i.e. the original component of the elliptic curve before the
resolution. Each E; is also a fibered over the given base curve ¥; and defines this way through
its individual components a total of NM divisors 5;, in the total space Xy . These are also
referred to as resolution divisors. The latter will be directly visible as toric divisors in the brane
web diagram of Xy ys, as we will see in section 3.4. The intersection numbers in Xy 5 between
the fiber components C;, and the resolution divisors .S;, encode the the Lie algebra structure
of EN_l

Cil o Sj[ = _(5[J62‘ (321)

13J
where C corresponds to the affine Cartan matrix of the affine Lie algebra ay_;. This structure
suggests that on the algebraic level we should identify the resolution divisors S;, with the
coroots and C;, with the negative of the simple roots of the algebra ay_; [110-112]. In this
interpretation, we can see Cj, as the affine root of the algebra, ¢.e. the root that extends the
finite root system. This correspondence will be picked up again in section 3.4. Similar to (3.19),
the volume of the fiber curves is given

4, = vol(Cy) = /C W] (3.22)

ir

The parameters a;, correspond to Coulomb branch parameters from the M-theory point of view.
As discussed before, as long as the F-theory limit is not taken, i.e. the volume of the elliptic
fiber going to zero, the engineered six-dimensional theory will live on R x S1. So the a;,
correspond to Coulomb branch parameters from the point of view of the theory on R**. From
the perspective of F-theory, the scalars a;; descend from the six-dimensional vector field com-
pactified on a circle. The six-dimensional theory does not have a Coulomb branch as the vector
multiplet in six dimensions does not have a scalar field. This fits well with the picture of the
F-theory limit, which, through the vanishing fiber volume, would naturally impose a;, — 0, Vi;.

As mentioned previously, the points in the base where two irreducible curves intersect Py =
Y1 N Xy, give rise to enhanced singularities in codimension-two. At the level of the resolution
of the elliptic fiber, each of the component curves C;, splits into two CP' parts, which we call

C’Z ,’ and c? 7’ respectively. As this splitting only occurs over single points, i.e. codimension-two
in the base, these new curves do not give rise to new divisors. In the effective six-dimensional
theory these codimension-two intersection points in the base will give rise to matter [103, 113].
The weight vector defining the representation of the matter multiplet under the J-th gauge
group factor is determined from the intersection numbers of the curves C with the resolution
divisors S;,, j=1,...,N — 1,

JJo

wi = A =0 e S, 0 o Sy )k =1,2 (3.23)

1y i1
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were )\Z(-J) are the Dynkin labels for the J-th gauge group factor. We will see in section 3.4 from
the toric diagram that the intersection numbers of the matter curves form indeed the expected
representation, which are in this case in the bifundamental representation.

We briefly described the constructions of little string theories in terms of F-theory compact-
ifications on elliptic Calabi-Yau threefold Xy ;. In terms of the low-energy description we
get circular quiver gauge theories, where the form of the quiver is given by the intersection
structure of the curves in the base, which in our case has the form of an affine Dynkin dia-
gram of dy;_;. Each node represents an U(N) gauge group arising from the In-type Kodaira
singularities over the corresponding base curve. An aspect of the Calabi-Yau geometry Xy as
that we have not addressed yet, is its double elliptic fibration structure. Until now, we have
described the geometry of Xy s as a elliptic fibration where the fiber degenerates into I sin-
gularity. However, the total discriminant locus over which this happens, has itself the structure
of a resolved I singularity. As it turns out, Xy »s allows for an equivalent description where
the elliptic fiber degenerates into a [, singularity over a discriminant locus in the base that
has the structure of an Iy singularity [28]. We can simply think of this as an exchange of
the fiber Iy curve with the base I, curve. For the physics, this means that the Calabi-Yau
Xn,m engineers two little string theories, i.e. one of type AN and one of type AM This ge-
ometric exchange property is known as fiber-base duality [94| and it is the manifestation of
the T-duality for little string theories that has been discussed in section 3.1. In terms of the
underlying gauge theory descriptions this means that a circular quiver theory with N U(M)
gauge nodes is dual to a circular quiver theory with M U(N) gauge nodes. From the discussion
above and more specifically from (3.19) and (3.22), it can easily be seen that at the level of the
parameters of the two dual theories, coupling constants get exchanged with Coulomb branch
parameters. In section 3.5, we will see how this duality is confirmed at the level of BPS counting
function of the little string or respectively the non-perturbative gauge theory partition function.

The construction outlined above engineers in general little string theories with eight super-
charges. In specific instances, where the construction becomes simpler, the resulting little
string theories will have the maximal sixteen supercharges. The N' = (2,0) theory is obtained
for a configuration of curves in the base, intersecting in the form of an affine Dynkin diagram
but with only a I;-type Kodaira singularity in the fiber, which corresponds to a nodal curve,
i.e. a curve with generic self-intersection. This type of degeneration does not correspond to a
singularity in the whole space Xy s, as it merely corresponds to the vanishing of the discrimi-
nant to first order with while the coefficients f an g from (3.15) are maximally generic. From
the gauge theory perspective, this corresponds to a circular quiver composed of U(1) nodes.
On the other hand, the N/ = (1, 1) arises from reversing the fiber and the base curves. So we
now have a discriminant locus in the base which has the form of a nodal nodal curve with a
In-type Kodaira singularity in the fiber. From the gauge theory perspective, this corresponds
to a single U(N) gauge node with adjoint matter emanating from the self-intersecting base
curve [114].

3.3 Little string theory from M-theory

Little string theories can also be engineered as the worldvolume theories of a stack of M5 branes
in a specific geometric background. The little strings in the worldvolume of the M5’s are in
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this picture given by the intersections with M2 branes that are suspended between the M5
branes [50-52]. The advantage of this approach is that can be used to efficiently study the BPS
degeneracies of the little strings. As follows from a relation between topological string theory!?
and M-theory [13, 14, 55, 117|, this BPS data is conveniently encoded into the topological
string partition function. The latter can be calculated by considering topological strings on a
Calabi-Yau threefold. In our case, this Calabi-Yau is exactly the elliptically fibered geometry
Xn v that we described in the last section. In the next section we will see how this Calabi-Yau
geometry can be efficiently described from the perspective of toric geometry by using dualities
relating M-theory to type 1IB string theory. However, in order to use the duality between topo-
logical strings and M-theory, some geometric modifications have to be made to initial M-theory
setup. This calculation has initially been done in [50, 51| for the context of the (2,0) and (1,0)
SCFT’s and then performed for the little string case in [31]. This BPS counting function is
equivalent to the Nekrasov partition function for the effective low-energy quiver gauge theories.
It is also possible to calculate the BPS counting function of the little strings by computing the
elliptic genus of the worldsheet theory of these strings [50, 51, 31]. We will not consider this
approach in this thesis. Our main goal in this section is to go through the necessary steps that
allow us to relate the M-theory setup to the topological string. Along the way, we need to
introduce parameters that will explicitly appear in the expansion of the partition function as
we will see in section 3.5.1.

We start with the setup of N NS5 branes in type ITA compactified on S and probing a trans-
verse orbifold singularity C?/Z,,. As discussed, this gives (1,0) type IIb little string theory.
In this setup, the little string theories with maximal supersymmetry would either correspond
to the special cases of having no NS5 branes (giving (1,1) type IIa) or having no transverse
orbifold singularity (giving (2,0) type IIb). The compactification on the circle St gives the T-
duality between type Ila and type IIb. The singular transverse space can be smoothed out into
a multi Taub-NUT space T'Ny; [119]. We can now lift this configuration to M-theory where
the NS5 become M5 branes, separated along the M-theory circle S| according to the values
a; of the scalar in each (2,0) tensor multiplet which give rise to the S* factor in the moduli
space description (3.6). The M5 branes are still wrapping the S+, so their worldvolume has
the form R‘/l FRe Sk. The fundamental strings stretching between the NS5 branes become M2
branes stretched between the M5’s. The intersection of the M2 branes with this M5 branes
inside the worldvolume of the latter gives rise to the little string, which are BPS strings in the
worldvolume theory [120]. The tension of these strings is proportional to the M2 brane tension.
Due to the compact transverse direction, the strings do not become tension-less upon bringing
the M5 branes on top of each other as there always is an M2 brane wound around the circle.

13We will not review topological string theory here, but the interested reader can consult [115, 116] for a
review.
14The multi Taub-NUT space is a solution to Einstein’s equations [118] with metric

—

ds* =V Hdt + A - dx)? + Vdz?
N
1
=t
=1
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This is in contrast to the SCFT’s which are obtained by taking the radius of the transverse
circle to infinity. We summarized the configuration in table 1.

Zo | T1 $2\$3\$4\I5 Tg $7\$8\1‘9\$10
R Sr_lp RY Si TNy

M5 | e | ¢ | | o | e | e |{a}

M2| o | o °

Table 1: M-theory configuration after lifting the NS5 brane setup with transverse orbifold
singularity in type IIB.

The Taub-Nut space being a circle fibration over R?® has a U(1); isometry group which
corresponds to the circle fiber. Introducing complex coordinates for the transverse Taub-NUT
space,

wy = T7 + il’g y Wy = X9 + il’lo s (324)

we can rotate the Taub-NUT space non-trivially as we go along the circle St in the M5 brane
worldvolume as follows

Ul g (wr,wy) = (2w, e 2 Mapy) (3.25)

From the point of view of the effective gauge theory in the M5 worldvolume, the parameter m
corresponds to a mass deformation'®[117]. In order to relate the M-theory setup to topological
string theory, we take signature of the spacetime to be euclidean and further compactify the xq
direction on a circle S}. We can then introduce the Q-background, briefly discussed in section
2, by fibering the other worldvolume directions ]R‘/l / over this circle. For this, we introduce
complex coordinates as follows

21 = T2+ i.%g s 2o = T3+ i$4 . (326)

In order to break no additional supersymmetries we also need to fiber the T'N); space over this
circle [50, 51]. This results in the following U(1) actions,

U(l)el X U(1)€2 : (Zla 22) N (627Ti6121, 627ri62z2)
: (wl, wz) N (e*iﬂ(€1+€2)w1’ 677:77(614'62),(1)2) (327)

From the point of view of the effective gauge theory on R, ,, x S} x Sr, the parameters €

and €, play the role of regularization parameters, as in the four dimensional case discussed in
section 2.2.3. We summarize the final brane configuration in table 2.

In addition to the position of the branes, we also indicated the directions the different U(1)
actions are acting on. Through the relation with topological string theory mentioned above,
we can access the BPS counting function for the little strings, by computing the topological
string partition function for the associated non-compact Calabi-Yau geometry Xy ;. More
specifically, we get the partition function for the six-dimensional theories on R;‘MQ x T? where
T? = S} x S}. In the next section we will see how to relate the M-theory configuration to a
type IIB brane setup which encodes the geometry of Xy s as a toric variety in an efficient way.

15The classical example of a mass deformation is four dimensional A" = 4 sYM. The latter can be seen as
N =2 sYM with an additional hypermultiplet that sits in the adjoint representation of the gauge group. By
introducing a mass term for the adjoint, half of the supersymmetry is broken resulting in the N/ = 2* theory.
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Table 2: M-theory configuration from table 1 after further compactification and introduction
of deformation parameters.

3.4 Type IIB String Theory, (p,q) brane webs and toric diagrams

In this part, we introduce the approach to the little string theories of type A in terms of so called
(p, q)-brane webs, shown in Fig. 2. The advantage is that these brane configurations directly
encode the geometry of the Calabi-Yau threefold Xy s as a toric variety. This interpretation is
crucial in order to be able to systematically calculate the topological string partition function of
Xn.m and thus from the relation with M-theory, the BPS counting function of the little strings
or equivalently the Nekrasov partition function of the underlying gauge theory descriptions.

3.4.1 Duality with (p,q) brane webs and and manifestation of T-duality

The M-theory configuration discussed in the previous section can be dualized into a five-brane
configuration in type IIB (without orbifold singularity in this case). For simplicity, we set at
first the mass deformation m introduced in (3.25) to zero. It will be reintroduced at a later
point. We then take the Sk to be the M-theory circle. Upon dimensional reduction, we end
up in type IIB where the M5 branes become D4 branes with fundamental strings stretched in
between, coming from the M2 branes. The transverse space remains T'N,,;. In order to reach
our desired type IIB setup, we can perform a T-duality along the Taub-NUT circle S}, [121],
which we take to be along the x7 direction. In the T-dual type IIB string theory, we obtain M
NS5 branes in the transverse directions to the initial T'N,; space. The latter space is replaced
by Shy X R?, where Sk, is now the dual circle after the T-duality. The D4 branes become
D5 branes with their newly gained worldvolume direction wrapping the dual Taub-NUT circle.
After this chain of dualities, we end up with a brane configuration in type IIB string theory as
described in table 3. The branes intersect in an orthogonal fashion in order to break not more

Lo $2\I3\$4\$5 Te | X7 Is\xg\xlo

D5 o | o | 0| 0| @ °
NS5 @« | ¢ | ¢ | @ | @ | @

Table 3: (p, q) five-brane web in type IIB obtained after dualities from the M-theory setup in
table 2.

supersymmetry. If we now turn on the mass deformation m from (3.25), bound states of D5
and NS5 branes at the intersection are formed [117]. In Fig. 2 we show the configuration in
the x4 — x7 plane. The x4 and the ;7 direction are compactified on a torus. The D5 branes
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Figure 2: The 5-brane web corresponding to Xn s with a generic parametrisation of all line
segments. Not all variablesh = (hy, ..., hyn), v = (v1,...,vyy) and m = (my, ..., myy) are
independent, but are subject to 2N M — 2 consistency conditions.

are depicted in green, the NS5 branes are depicted in red and the bound states correspond to
the diagonal blue lines. Such brane configurations of D5’s and NS5’s are known as (p, ¢) brane
webs [58]. This notation refers again to the charges that transform as a doublet under the
type IIB S-duality. This was already discussed in section 3.2.1 for the electric charges of the
fundamental string and the D1 brane. The objects that are magnetically charged!® under the
By and C, fields are the two types of five-branes. So in this notation, the D5 is a (1,0)%-brane
and the NS5 corresponds to a (0,1)7-brane. The bound states depicted as blue lines in Fig. 2
correspond to (1,1)T-branes. A general bound state can have charges (p,q)?, which explains
the name (p, ¢) brane web. The relation between the charges and the slopes of individual lines
in the web diagram is such that a (p, ¢)T-brane will be represented by a line that has slope ¢/p.
As for the strings, different types of (p, )T branes are mapped into each other by S-duality. A
general S-duality transformation acts as

a b\ (p\ [ap+bg . a b
(c d) <q) = (cp+dq with . d) € SL(2,7Z) (3.28)
As already mentioned, the depicted brane web can be thought of as being drawn on a torus
where p and 7 correspond to the length of the two cycles, i.e. the radii of the two circles

16Given a p-dimensional extended object in a d-dimensional spacetime, it can be electrically charged under a
(p + 1)-form and magnetically charged under a (d — p — 3)-form.
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Sk and S1 respectively. The labels on the external legs of the web diagram (1,...,N and
ai,...,ayr) indicate the periodic identification of the branes. Each line segment carries a label
that parametrizes its length. These 3N M length parameters are not completely arbitrary. They
are constrained by the fact that the D5’s, respectively the N.S5’s, must remain parallel to each
other in order to form a stable supersymmetric configuration [58]. Hence, for each hexagon we
get a pair of consistency conditions [50, 32|, e.g. for the hexagon in the lower left corner Fig. 2
we have for example

hi+mo = hnii +myia

UN+1 + MmNy1 = UNy2 -+ Mo (329)

We thus get a total of 2(N M — 1) constraints from all the hexagons!”, giving a total of N M + 2
independent parameters.

We know from the discussion in the beginning of this section that little string theories are
the word volume theories for the NS5 branes possibly probing a transverse orbifold singularity
and that these theories also enjoy T-duality. In the F-theory setting where our class of little
string theories is described by the double elliptically fibered Xy »s, this duality is simply un-
derstood as fiber-base duality, i.e. an exchange of the elliptic curve in the fiber with the elliptic
curve in the base. In the type IIB (p,q) web setting, T-duality follows from the exchange of
N S5-branes with D5-branes under type IIB S-duality action

(2 _01) € SL(2,7) (3.30)

which has the following action on the branes

-0 O-() O-() e

This transformation simply rotates the web diagram by 90 degrees while exchanging D5 with
NS5-branes. So we see that T-duality seems also rather natural in the type IIB setting.

3.4.2 Toric Diagrams and Kahler moduli space

What makes the type I1B setting so useful is that the (p, ¢) brane web in Fig. 2 can be interpreted
as the dual toric graph of the toric Calabi-Yau threefold Xy 5 [122]. The latter is exactly the
elliptically fibered geometry that appeared in the F-theory construction of the little string
theories in section 3.2.2 and is also the relevant geometry for the relation between M-theory
and topological string theory mentioned before. We briefly review the fan construction in toric
geometry in appendix A. A classical toric graph is not usually drawn on a torus. From the
physical point of view the construction is quite natural as it just corresponds to simple type IIB
compactification on a torus. For this reason, it has been around in the physics literature for
some time [117]. However, the rigorous mathematical construction of this class of toric varieties
is to the best of the authors knowledge quite recent and can be found in [123]. We review some
basic aspects of the construction at the level of the toric fan in appendix B. In the toric picture,

1"Two constraints coming from the hexagons are redundant because of the periodicity of the configuration.
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the S-duality of type IIB corresponds simply to a change of basis in the toric fan, i.e. the toric
geometry does not distinguish between D5 and NS5 branes. It is just a way of changing the
representation of the toric diagram without any effect on the underlying geometry. Each line
segment in Fig. 2 corresponds to an irreducible curve in the geometry and the labels are the
Kéhler parameters which control the area of this curve. As we have reviewed before, a given
Kaéahler parameter A is related to a curve X as

- /Z W, o] € B (Xnu) (3.32)

where [w] is the K&hler class of the Kéhler form of the Calabi-Yau threefold Xy 5s (see 2.1 for
the definition). These Kéhler moduli and their respective origins have already been discussed
in the F-theory construction, where they have been assigned the more specific roles of coupling
constants, Coulomb branch moduli and mass parameters. In the toric diagram, their specific
assignment depends on which of the two fiber-base dual theories we are interested in. We
already mentioned in 3.2.1 that the roles of coupling constants and Coulomb branch moduli get
inverted between the two theories engineered by Xy /. Being aware of the parameter counting
performed above, we can conclude that the dimension of the Kéhler moduli space of Xy as is
dim(H" (Xyr)) = NM + 2, which was also rigorously shown in [123]. This space takes the
form of a cone, defined by

/Z,MEO -/

3

W Aw] >0 /X W] A W] Afw] >0 (3.33)

where YJ; and S; are curves respectively divisors in Xy ;. They were already encountered in the
discussion about the F-theory construction. The space defined by (3.33) is generally referred
to as the Kahler cone. The points where the bounds are saturated define the walls, where some
curves in the geometry shrink to zero size, eventually resulting in a singular space. For example,
the diagonal edges are interpreted in the toric picture as curves that resolve otherwise singular
points in the geometry. This resolution procedure has a rather simple manifestation at the level
of the toric diagram where it just corresponds to finding a complete triangulation of the toric
fan. A little more details on this matter are given in appendix A. In general there exist different
possible triangulations and as a consequence inequivalent ways of resolving singularities. This
fact will be heavily used in later sections of this thesis. In the F-theory picture, the diagonal
lines correspond to the curves that resolve the codimension-two singularities that indicate the
presence of matter. The mass is controlled by the volume of the curves. The two parameters p
and 7 that control the cycles of the torus on which the web diagram is compactified correspond
to the complex structure structure moduli of the two elliptic curves, one in the fiber and one in
the base, that appear in the F-theory construction of our class of theories. Hence, their roles
get exchanged upon fiber-base duality. Each of the NM hexagons in Fig. 2 corresponds to a
toric divisor of Xy 5'®. More precisely, they correspond to the resolution divisors S;, already
discussed in the F-theory construction. These arose from the fibering of the resolved elliptic
curves over the discriminant locus in the base. From the group theoretic perspective they were
identified with the affine co-roots of the gauge group. A divisor that appeared in the F-theory
construction but is not represented in the toric diagram, is the divisor related to the zero section

18This follows from a standard correspondence in toric geometry between one-dimensional cones in the fan
and codimension-one subspaces of the associated variety [124].
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(3.13). The latter is non-compact, as it corresponds to an embedding of the base into the whole
space Xy and the reason for its absence is that it is probably not toric in nature, although
the author is not aware of any reference for this.

3.4.3 Intersection numbers and charges under the gauge group

In the type of toric fan we consider in this thesis, the intersection numbers between the curves
and the divisors in Xy s can be calculated in a practical way. The procedure is reviewed
in appendix B. As was explained in section 3.2.1 the geometric intersection numbers are
directly related to the charges of vector and matter representations in a given theory. Upon an
appropriate choice of divisors Si(] ) that are identified with the non-affine co-roots of the gauge
group [U(N)]M, the weight vector associated with a given curve C under the gauge group is
given by the following expression

we = =([~CoSM, ..., ~Co S\ ],....[-Cos™ ... —CoSUI])
= AR AR (3.34)

where the /\Ej ) correspond to the respective Dynkin labels under the j-th factor of the product
gauge algebra. To properly parametrize a given theory engineered by Xy i we need to identify
three different classes of curves:

e Roots @; : Their intersection numbers with the coroots as in (3.34) should give the
adjoint representation under the product gauge group. There are M (N — 1) such curves
that provide the respective positive simple roots of the gauge algebra and their volumes
parametrize the Coulomb branch moduli.

e Coupling constants g; : Their intersection number with the cooroots as in (3.34) should
be uncharged under the product gauge group. There are M such curves and their volumes
parametrize the gauge coupling constants.

e Matter curves : Their intersection numbers with the coroots as in (3.34) should give
either the bifundamental or the adjoint representation under the gauge group. There are
M such curves that provide the respective highest weight states. The other states in the
representation are obtained in the usual way by addition of the roots.

Upon fiber-base duality, the coupling constant of one theory can be interpreted as roots
(Coulomb branch moduli) for the other dual theory. The same is true for the roots, but only a
part of these would appear as coupling constants in the dual theory as there are in general more
roots (M (N — 1)) than coupling constants (). We also want to remark that upon choosing
the finite roots of the algebra, there are also curves that can be interpreted as the affine root
o of the algebra for a given gauge group factor. When we think in terms of the picture of the
periodic chain of spheres (the resolved elliptic curve presented in the F-theory discussion), the
affine root corresponds to the initial part of the singular torus before the resolution which is
intersected by the zero section divisor as stated before. If the zero section divisor were manifest
in the toric diagram the choice of roots would be more or less fixed by this. We can see this
freedom as the cyclic rotation symmetry of the affine Dynkin diagram when the affine root is
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not fixed. To complete this group theoretic picture, we point out that the elliptic parameters
p and 7 can be interpreted as imaginary roots of the affine algebra as they satisfy

N-1 ' M
p=>a’ . =g (3.35)
=0 =1

where the a; are the roots corresponding to a single gauge group factor and the g; are the
coupling constants, which can be interpreted as roots in the dual theory. That these relations
hold can be easily seen from the web diagram, but these are also the relations between the
roots and the imaginary root in the untwisted affine algebras ay_; and a,;_; respectively. As
(3.35) for p holds for each set of roots for each gauge group factor, i.e. for all values of j,
the associated affine algebras all share the same imaginary root p. Furthermore, p and 7 have
zero intersection with all the resolution divisors S; (co-roots) which also fits nicely with this
picture, as this is also a property of the imaginary roots in the affine extension of the a algebras.

The specific example of X,

In order to illustrate the concepts discussed above, we look at the specific example of Xj,
shown in Fig. 3. It is not the most general case because the fiber base dual theories engineered
by X, are actually the same, i.e. N' = (1,0) A; circular quiver theories with gauge group U(2)
or [U(2)]? for short. The consistency conditions are already imposed, so the 2-2+2 = 6 curves
labeled by hi, ho, vy, v9, m1, my form an independent basis. There are four compact divisors
labeled by S;, with 4 = 1,2, 3, 4, which can be regarded as the coroots of two affine a; algebras.
Among these we need to choose which ones correspond to the non-affine coroots. We recall
that this liberty of choice is due to the fact that the zero-section divisor is not visible in the
toric diagram. We will look at what we call the vertical theory, where the direction refers to
the orientation of the curves related to the coupling constants in the web diagram. For the
latter, we choose the non-affine coroots to be S; and S5. The weight of a given curve C under
the gauge algebra will thus be given by

we = ([=C 0 81],[-C o 8)) = ([Ad], [M]) (3.36)

with A; and \| being the Dynkin labels under the product gauge algebra. Using the procedure
outlined in appendix B, it can be verified that none of the individual curves give the right
intersection numbers to be interpreted as roots of the gauge algebra. However, the combinations

al =mi+hy , AP =my+ hy (3.37)
give
([21.[o])
([0}, [2]) (3.38)

which are indeed the right weights for roots under the given product algebra. With these
definitions the respective affine roots would be given by

wen = (81" 0 1], [-a1" o 51))

wae = ([-a” 0 $1], [-a1” 0 5))

&él) = msy + hl s &62) =my + hl (339)
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The latter have the following intersections numbers

wom = (=85 0 1], [=85” 0 Sal) = (1=2], [0])

waen = ([=ay" 0 S, [-ay” o Sa]) = ([0], [-2)) (3.40)
From the web diagram it can clearly be seen that p = 62(()1) +alt = 62(()2) +at?, which serves as

imaginary root for both gauge group factors and has zero intersection with the gauge divisors.
After defining the roots, which control the Coulomb branch moduli, we need to identify the
curves which control the coupling constants. These should be uncharged with respect to the
gauge algebra. The choice

gi=miy+vr , gGz2=my+ V2 (3.41)

indeed gives the right weights for being coupling constants

wg, = ([=g1 0 51, [=g1 0 53]) = ([0], [0])
wg, = ([=g2 0 51, [=g2 0 53]) = ([0], [0]) (3.42)

As can easily be seen from the web diagram 7 = g; + go. With the Coulomb branch moduli and
coupling constants identified, it remains to check that we indeed have two bifundamentals. The
two highest weight states, one for each fundamental representation correspond to the curves
my and mo

Winy = ([=m1 0 S1], [=1mq 0 Sa]) = ([—1], [1])
Wy = ([—Mmg 0 S1], [=ma 0 S]) = ([1],[-1]) (3.43)

—

The remaining states are obtained by adding combinations of simple roots. We thus have

Winyvay = ([—(ma + @1) o S, [=(ma + @1) 0 So)) = ([1], [-1])
Wnyya, = ([—(ma + Qg) 0 Si], [=(ma + @g) 0 So]) = ([-1],[1]) (3.44)

The weights in (3.43) together with the weight in (3.44) give indeed the right representation for
two bifundamentals charged under the product gauge algebra. To summarize, we graphically
represent the parametrization for the horizontal [U(2)]? theory in Fig. 3 (b). For the vertical
theory, the discussion would be similar. In that case we could choose the coroots to be Sy and
Sy. Then aff) and aﬁ” will play the role of coupling constants and g, would correspond to one
finite root. The finite group for the other group factor would be the sum of the curves m; and
V3.

3.4.4 F-theory limit and dimensional reduction at the level of the web diagram

The F-theory limit that we mentioned in section 3.2.1 has a simple manifestation at the level of
the web diagram. It corresponds to shrinking either the horizontal or vertical compact direction
by sending p respectively 7 in Fig. 2 to zero. Which of the two choices realizes the F-theory
limit depends on the description of the theory we are considering. For example, in the vertical
description for Fig. 2, the complex structure modulus of the F-theory fiber corresponds to p.
So from relation (3.11), which states that the radius of the compactification circle is inversely
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() (b)

Figure 3: Toric web diagram for the non-compact Calabi-Yau X, 5. (a) Consistency conditions
are imposed and each curve is labeled by its associated Kahler parameter. The divisors different
divisors are highlighted in red. (b) Choice of curves a; and g; parametrizing respectively the
Coulomb branch and coupling constants in the horizontal theory.

proportional to the volume of the elliptic curve, we see that the F-theory limit requires p — 0.
However, we do not consider this limit in this thesis. In contrast, the dimensional reduction to a
theory on Rﬁlﬂ xSt can be realized upon taking p — ioo and hence sending the compactification
radius to zero. This is achieved by sending the volume of some curves in the geometry to infinite
size. More concretely, in Fig. 3, an example of such a limit for the horizontal theory would be
hy — oo (or equivalently hy — 00). At the level of the web diagram this corresponds to cutting
the associated lines. An effective preliminary check for the consistency of this limit is that
there are no lines in the web suddenly crossing resulting in an inconsistent brane configuration.
These five-dimensional limits will play a role in section 5. From the horizontal perspective, the
parameter 7 is related to the form of the elliptic curve in the F-theory base or equivalently
to the structure of the gauge theory quiver. We can take again appropriate limits where the
volume of specific curves goes to infinity and therefore induces 7 — i0c0. Geometrically this
would result in a configuration of curves intersecting in the form of a linear quiver with the two
curves at the endpoints being non-compact [94]. This would take our little string theory to the
associated superconformal field theory which is related to the finite Dynkin diagram of the A
series. For the gauge theory description this would open up the circular quiver, resulting in a
linear quiver resembling exactly the Dynkin diagram mentioned before. For Fig. 2, this would
simply be achieved by v; — co or equivalently vy — o0o. This type of limits will also come into
play in section 5. The same discussion applies to the horizontal description with the roles of p
and 7 inverted.

3.5 The Partition Function

In order to study dualities between the class of little string theories that we have introduced so
far, the BPS counting function for little strings, which equals the Nekrasov partition function for
the effective gauge theory descriptions, is a powerful tool. For T-dual theories, the latter might
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have a different form but it is the same function just expanded in a different set of parameters.
As the partition function includes all non-perturbative contributions, its equivalence for two
theories gives an exact duality. However, it is not possible to calculate it by using localization
methods as in the four or five dimensional case. The reason for this is very simple; There
is no Lagrangian description of the theories that we are interested in. Fortunately, the story
does not stop here. Alternative methods to devise the instanton partition function have been
developed. It can be obtained by computing the elliptic genus of for the worldsheet theories of
the little strings [31]. This is however not the approach we are adopting in this thesis. In the
previous section we mentioned that the partition function in this case is equal to the topological
string partition function on Xy ps. The latter can be systematically calculated by the so called
refined topological vertex method, which we explain at a later point in this section. First we
describe the general structure of the partition function and how the different parameters that
characterize our theories appear in it.

3.5.1 The general form and Nekrasov subfactors

As we discussed before, the double elliptic Calabi-Yau geometry Xy s gives rise through F-
theory compactification to two little string theories of type A which are T-dual to another.
These allow for a low energy description in terms of two dual circular quiver gauge theories.
These theories admit a description in M-theory and we can use a relation between the latter and
topological string theory to compute the partition function. This however requires to consider
the six-dimensional space on which the theories are defined to be ]th62 x T? As there are
two dual theories associated with Xy s, the underlying partition function has two different
but equivalent expressions as an instanton expansion. At a later point, when we introduce the
topological vertex formalism to explicitly calculate the partition function, we will see that there
is a choice of orientation in the web diagram involved which determines in what expansion form
the final result will be. The general form of the partition function for Xy 5 was given in [31, 32]
and in terms of a instanton partition function for a [U(N)]* circular quiver gauge theory is
has the following schematic form

ZN’M({gi}’ {al('j)}7 {mz}v P, E1,2) = Z (H(ka)zyl Iagm)

{a&?)} k=1
M
« :l_‘[/z\vec<&»‘(i)7 62(1)“07 61’2)/2\bif(c—i(i)7 &(Z), C—L»(H-l)7 d*(i—i—l)’mi; P, 6172)
(3.45)

The three sets {g;}, {a,gj)} and {m;} denote respectively the collection of gauge couplings,
Coulomb branch moduli and mass parameters. We recall that the parameter p controls the
radius of the compactification circle, i.e. it plays the role of the modulus of the elliptic fiber. We
emphasize that 7 does only appear implicitly here. Equivalently, we could exchange one of the
g:i’s for 7 through the relation (3.35). The sum runs over the NM integer partitions o', The
definition and notation for the latter is defined in D. The vector notation for Coulomb branch

moduli and integer partitions defines N-component vectors, e.q. @ = (agz), .. .,agf,)). Also

the upper index for these parameters is defined in a periodic fashion, e.g. aEMH) = aﬁ”. We

also introduced the notation )y, = e~ for the exponentiated coupling constants. The factors
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zveetor and are the elliptic generalizations of the Nekrasov subfunctions that have been

introduced in section 2.2.3 for the four dimensional theories on R? _ . Here, the contribution
from the vector multiplet takes the following form

’Z\bifund

N
ze@ d;p) = [ ook, (e %2 p) (3.46)

(071871
3,j=1

with ey = €; + €, and the other parameters are defined as above. The ¥,3(z; p)-functions are
defined in D.11 and D.12 and they contain the Jacobi theta functions 0; defined in (C.5). The
other contribution that appears in the partition function (3.45) is coming from bifundamental
matter and takes the form

N
gbif(@" 0‘27 Z_)'7 ﬁj m; p) — H ﬁaiﬁj (eafbj*er%EJr; p> ) (3.47)

i,j=1

Here, a; and b; are the Coulomb branch parameters corresponding to the two gauge groups
the bi-fundamental matter is coupled to. The parameter m controls the mass of the matter
multiplet. Because adjoint matter can be seen as a bi-fundamental coupling to a single gauge
node, its expression in the partition function corresponds to a special case of (3.47)

N
,d,a,m;p) = H ﬁaiaj(e“i_“’j_er%e*; p) . (3.48)

3,j=1

el

o
o

a,d,m;p) =z

The arguments of the ¥-functions for the contributions of the different multiplets in the theory
contain a combination of Kahler parameters which are associated to curves in the web dia-
gram Xy ps. These curves provide through their intersection numbers (3.34), the appropriate
representations for the vector and matter contributions. We can recover the five-dimensional
Nekrasov subfunctions for the theory on R, , x S* from (3.46), (3.47) and (3.48) by dimensional
reduction. We recall that in terms of the modular parameter this means one has to take the
limit p — i00. These Nekrasov functions can be directly calculated in five dimensions through
a localization procedure |62, 78|, which provides a cross-check of their correctness. In order to
get down to the four-dimensional Nekrasov factors that we have introduced in section 2.2.3, one
would need to reinstate the radius of the other compactification circle which we left implicit in
our discussion. It was checked in [125, 44] that this gives indeed the expected results. At the
level of the partition function, T-duality for the little string theories or duality for the engi-
neered gauge theories, means that the partition function (3.45) can be expanded in two different
but equivalent ways. Each expansion than has the structure associated with the specific theory
as discussed above. We want to emphasize that this is a rather non-trivial statement from the
point of view of the complicated function (3.45). To show the equivalence of two different expan-
sions by brute force one would need to completely expand the J-functions and then re-sum the
expression in another set of parameters which serve as the coupling constants of the dual theory.

A specific example

In order to make the discussion more clear we look at the specific example of the partition
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function for X5, whose diagram is shown in Fig. 3. For the horizontal theory the partition
function has the following form

Z2p = Z (le)|a51>|+|a§1>l(Q92)|a§2)|+la§2>|
all alD ol 4@
y 19a§1>a§2) (Qm)ﬂagl)agz) (ch?\l)ﬁag”a@ (Q:nléll)ﬁagl>a§2> Qo)
19“9)“9)(1)19&9)&&1)<QI1)0agl>agl>(Q1)79a;1>a;1>(1)
y ﬁagz)agl) (ng)ﬂaf)ag) (Qm, ?2)19&&2)&9) (Q:@ @2—1)19&%2)a51) Qo)
19&52)0‘52) (1)19052)&%2) (le)ﬁa(;)a(f) (Q2)19a<22>a<22> (1)

: (3.49)

where the expansion parameters are the exponentiated coupling constants defined in (3.41),
Qg,, = 2 and @, = ¢~% are the exponentiated roots defined in (3.37). By looking at the
intersection numbers that have been calculated previously in (3.38), (3.43) and (3.44), we can
see that indeed the arguments of the ¥-functions in the numerator encode the matter repre-
sentations and the ¥-functions in the denominator encode the vector representation according
to general structure presented in (3.45). Even if fiber-base duality is rather trivial for the case
of X9, as both theories have the same structure, the statement at the level of the expression
(3.49) is still highly non-trivial. It is not a priori clear that one could completely expand (3.49)
and then re-sum it using the parameters a\" and &(()1) (as defined in (3.37) and (3.39) respec-
tively) such that the final expression has again the same structure with the roles of couplings
and roots roughly interchanged.

3.5.2 Modular properties

The topological string partition function Zy j; that we introduced in (3.45) enjoys modular
properties. This can directly be concluded from the presence of the ¥-functions in the contribu-
tions of the different multiplets (3.46), (3.47) and (3.48). The ¥-functions themselves contain
the Jacobi theta function 6y, which is defined in (C.5) in appendix C. This function is a so
called Jacobi form of weight and index % They are characterized by a specific transformation
behavior under SL(2,Z) action

0 ap+b z
cp+d ep+d

) = (cp+ d)ze™eraf) (p, 2) (‘; Z) € SL(2,7) (3.50)

So from this we see that p can be interpreted as a modular variable under SL(2,7Z),. The
subscript is meant to distinguish it from the SL(2,7Z) group that provides the S-duality in the
(p, q)-brane web setting. The transformation behavior (3.50) is not surprising as we know from
the F-theory description that p corresponds to the complex structure modulus of an elliptic
curve which admits an natural SL(2,Z) action. From the point of view of the partition function
the variable z in (3.50) should be viewed as combinations of whatever Kéhler parameters that
appear in the arguments of the ¥-functions including the deformation parameters ¢; and e;. In
[31] the authors analyzed the transformation behavior of Z; j; (note that here N = 1) under

m Gp+b €1 €9
cp+d ep+d cp+d cp+d

(ga77m7p7761762) = (g,T, ) (351)
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where g denotes the collective set of coupling constants as in the expansion (3.45) and 7 is
related to them as in (3.35). Why we explicitly include both 7 and all the g will become
clear as we go on. Here m stands for the only other Kéhler parameter that appears in the
arguments of the J-function (together with p and € 2) in the expansion (3.45) when N = 1.
The authors of [31] showed that the partition function has interesting modular properties under
the transformation (3.51) when the so called NS limit e — 0 is taken. A physical interpretation
of this limit in this context was given in [126], where the authors compared the BPS counting
functions of M- and monopole-string excitations (see also [127]). In this limit, the partition
function can be made invariant under the transformation (3.51). Upon specializing to the
transformation with a =d =0, b = 1 and ¢ = —1 the couplings must transform as follows

2
gi — gi — (m? — %) (3.52)
which through (3.35) directly implies

M 2
T=Zgi'—>T—M(m2—%) (3.53)
i=1

Now, as the partition function enjoys T-duality properties, it can also be expanded in p (as here
N =1 this is the only expansion parameter). From this perspective, 7 can also be interpreted
as a modular parameter since it appears now in the arguments of the ¥J-functions. So there is
another modular group action SL(2,Z), which also acts on the partition function as

g ar+b m €1 €9
c¢+d’c7‘+d’cp+d’p’ cp+d ep+d

(g77—7m7p7 7€1a€2) = ( ) (354)

The explicit transformation of the partition function Z; 5, under (3.54) is more involved as
there are now more different parameters in the arguments of the ¥-functions, .e. there are all
the g;, m, p and € 5. What is important is that the partition function transforms again in a
reasonably nice way when p behaves as

P = p— f(ma g, €1, 62) (355)

where f is a function that can in principle be determined by following the partition function
through the modular transformation (3.54).

The important point here is that the generic partition function Zy s is expected to have
reasonable well behaved properties under the action of SL(2,Z), x SL(2,Z),. The combined
transformations (3.51) and (3.53), or respectively (3.54) and (3.55), are very similar to the
transformation properties of so called genus-two modular objects (see [128] for a review). The
relation to genus-two modular object is especially clear through mirror symmetry of the under-
lying Calabi-Yau Xy s [117, 123, 48|, where these objects appear naturally. The latter are a
function of the period matrix 2 where the two elliptic variables p and 7 are packaged together

in the following way
_ (P =
Q= (z 7_) (3.56)
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with z € C and IJm(Q2) positive definite. There is a natural Sp(4,Z) action on the period
matrix () and hence on the associated genus-two modular objects. The full symmetry group of
the partition function G, i.e. SL(2,Z), x SL(2,Z), combined with other symmetries, should
be such that SL(2,Z), x SL(2,Z), C G C Sp(4,Z)". It has been shown in [117, 123] that
in the case of 2 there is indeed a Sp(4,Z) symmetry group. In section 6, when we study
additional symmetries of the partition function that are a direct consequence of the duality web
established in section 4, we also comment on how these additional symmetries together with
SL(2,Z), x SL(2,Z), sit inside Sp(4,Z).

3.5.3 The free energy

Another function that is related to Zx s and that we will encounter in this work is the so called
free energy Fy pr which is defined as the plethystic logarithm of the partition function [129]

FN,M({Q@'}; {ai}, {mz}7 61,2) = PLOgZN,M({gi}, {&i}, {mi}, 61,2)

S @ In Zyar({kgi}, {ka:}, {km:}, kei o) (3.57)

where (k) is the Mobius function. In our context the free energy computes the multiplicities
of single little string BPS bound states. As an expansion in the deformation parameters it has
the schematic form

1
Fnu = —.7:](\,1)]\/1 + (regular terms) (3.58)
€1€9 ’
This object is thus well behaved in the Nekrasov-Shatashvili (NS) limit (see [130]), which
corresponds to lim., ;o €2Fy . We will consider this limit when we study the newly found
dihedral symmetry [47] in section 6.

3.5.4 Topological vertex

A systematic way to calculate the topological string partition function Zy 5; as given in (3.45)
is provided by the topological vertex formalism that has first been introduced in [56]. A refined
version was developed by the authors of [57|. In the refined version both deformation parame-
ters €; and ey are present, whereas the initial unrefined version corresponds to the limit where
€1 = —€3 = €. In this thesis we are working in the refined setting, so even if we refer simply to
the topological vertex, it is the refined version that we have in mind, unless stated explicitly
otherwise. The underlying idea of the vertex formalism is that the topological string partition
function for a given non-compact toric Calabi-Yau threefold can be calculated by using certain
elementary building blocks, which have the form of trivalent vertices. The latter can be glued
together in order to construct the complete toric diagram corresponding to the Calabi-Yau
threefold, e.g. as in Fig. 2. Before looking at the explicit algebraic expression of the topological
vertex and the procedure on how to glue them together, we try to give a motivation of why one
would expect that such a algorithmic procedure would exist in order to calculate the topological
string partition function. The method is certainly not limited to the geometries we consider in

19Tt is reasonable to expect that the presence of additional parameters in the partition function breaks part
of the full Sp(4,Z) symmetry.
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this thesis, but applies to a wide range of toric diagrams, see for example [131-133|.

A non-compact toric Calabi-Yau threefold can be described by a non-trivial assembling of
C3 patches that preserves Ricci flatness and hence the Calabi-Yau condition. The simple space
C3 is actually the most basic example of a toric Calabi-Yau threefold. They can be described
as a T? x R fibration over a R?® base and this structure can be conveniently encoded into a
planar graph [56]. Given (z1, 29, 23) € C?, we define the three maps

ra(2) = lzs” = |af
rs(2) = lzs|” — |f’
ry(2) = Jm(z12923) (3.59)

These parametrize the R? base of the fibration. The fibers are generated by the action of (3.59)
on C? via the standard symplectic form w =1} ;dz; N dz; and the Poisson brackets

8vzi - {7"@, Z’L} s with v = «, 67 Y (360)
More precisely, the T? fiber is generated by the circle actions
expliary +ifrg) : (21, 22, 23) = (€21, Pz, e 1@HF) 23 (3.61)

while 7., generates the real line R. We denote the cycles generated by r, and rg by (0,1) and
(1,0) respectively. These cycles degenerate over certain subspaces of C* as can be seen from
their explicit form in (3.61). The (0,1) cycle degenerates for example over the C* subspace
given by z; = z3 = 0, which is described in the R? base by r, = 7, = 0 and 73 > 0. The
(1,0) cycle degenerates over 2o = z3 = 0 which, in the R? base, corresponds to rz = r, = 0
and r, > 0. Furthermore there is the one-cycle parametrized by a + 8 which degenerates over
21 = 2o = 0, or equivalently in the base ro, — 13 = r, = 0 with r, < 0. These degeneration
loci and hence the geometry of C? as a T2 x R fibration can be conveniently encoded into a
planar graph. For this we choose the r, — 75 plane at r, = 0 in R?. For a given degenerating
(—q,p) cycle of the T?, we draw a line given by the equation pr, + qrg = 0. Up to a an overall
sign ((p,q) — (—p, —q)), this unambiguously associates degeneration loci to lines in the planar
graph. The resulting planar graph for C3 is shown in Fig. 4. It should be emphasized that we
merely presented one of numerous possible choices for the generating cycles of T2. Different
choices are related to this one by a SL(2,7Z) transformation acting on 72. From the discus-
sion and the graph Fig. 4, it should become clear that this is just another point of view on
the dual toric diagrams, or equivalently the (p,q) brane webs introduced in subsection 3.4.1.
The relation will become more clear once we start gluing together the C3 patches. The choice
of basis for the torus cycles corresponds to S-duality for the (p, ¢) webs in type IIB string theory.

Now that we have presented a description of C3 as a T2 x R fibration over a base R3, we
want to understand how this picture generalizes when we start patching the C3’s together in
certain ways to form more general Calabi-Yau threefolds. Consider the complex space CV*3
described by coordinates z,...,zyy3. We must first find a decomposition of the set of coor-
dinates into triplet U, = (2i,, 2,, 2, ) that correspond to the decomposition of the Calabi-Yau
into C? patches. The patching data is provided by the so called moment maps.

> Qal =t (3.62)
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(_17 _1)

Figure 4: Degeneration loci of the T? fibration in R* drawn in the plane given by r, = 0

(1,0)

Figure 5: The degeneration loci graph associated to the resolved conifold O(—1)®&O(—1) — CP!
when seen as a T? x R fibration over R3.

where the ¢* correspond to Kahler parameters of the geometry and the Q)f are integer coefficients
that satisfy

> Q=0 (3.63)

This is actually the condition for the whole space to be Calabi-Yau. There is furthermore a
group action by Gy = U(1)" that acts as

25— e/Qa% (3.64)

In order to effectively glue together the patches, we start by associating to one patch the two
functions r, and rg as defined before. These are globally well defined coordinates in the base R3,
so they generate a globally well defined T fiber. The third base coordinate ., = Jm( 2\/;13 2k)
is manifestly invariant under the action (3.64) and serves as a good coordinate. The moment
maps specify how to relate the expressions of r, and rg in terms of homogeneous coordinates

in two different patches. This explicitly gives the action of r, and r3 in all the patches.

Specific example
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To illustrate all of this we look at the specific example of the resolved conifold?, i.e. local
O(—1) @ O(—1) — CP'. For this geometry, we have four homogeneous coordinates z; and a
single moment map that takes the form

21> = |2l = |zs|* + |za)* = ¢ (3.65)

with the single Kéhler parameter ¢.2! In the first patch U; = (21, 29, 23) where z4 # 0 we can
define the following Hamiltonians in terms of the homogeneous coordinates

To = |Z2|2 - |Zl|2

rg = |z3|* — |21 |? (3.66)
The latter generate the action

a+h) B23) (3.67)

exp(ar, + fBrg) : (21, 22, 23) — (e 0B 2y ez, €
which has a (0,1) cycle degenerating over the line r, = 0 and rg > 0. The (1,0) cycle
degenerates over g = 0 and r, > 0. Finally the (=1, —1) cycle degenerates over r, —rg = 0.
Thus this patch can be represented by the same graph as in Fig. 4. In the other patch U =
(22, 23, 24), defined by z; # 0, the latter is no longer a good coordinate. Solving for the modulus

of z; in (3.65), we can re-express the Hamiltonians (3.66) in the U, patch as

ro = |zl — |zl —t
rg = |z4|2 — |22\2 —t (3.68)

The latter generate the action
exp(arg 4 Brg) (29,23, 21) — (e P 2g, 725, €@ FH) ) (3.69)

which has a degenerating (0, —1) cycle over the line r, = —t and r5 < 0. A (—1,0) degenerates
over rg = —t and r, < 0. Finally a (1,1) cycle degenerates over r, —rz = 0. This line is
the same as the one the (—1,—1) cycle degenerates in the U; patch. Hence the two graphs are
joined along this edge in the overlapping region where z; # 0, z4 # 0 and 25 = 23 = 0. The
length of this edge corresponds to the Kéhler parameter ¢ appearing in (3.65). The associated
graph of this construction is shown in Fig. 5.

The fact that the geometry of toric Calabi-Yau threefolds can be encoded into a trivalent
graph makes it more plausible that the topological string partition function Zy s of for Xy as
can be computed by using an algorithmic procedure involving trivalent vertices as building
blocks, but it is still far from evident. A rigorous derivation of this fact would be beyond the
scope of this thesis. We will simply try to give the very broad lines of the argument here and
refer the interested reader to [116] for a review of the subject. The story started with a well
motivated conjecture made by Gopakumar and Vafa in [134], which states that Chern-Simons
theory on the three sphere S® is equivalent to closed topological string theory on the resolved

29The conifold and its resolution are also briefly discussed from the algebraic perspective in appendix A

2lFor z9 = 23 = 0, equation (3.65) describes a CP! with area proportional to t. Hence, z; and z4 can be
taken as homogeneous coordinates of this CP! which is the base of the fibration when viewing the geometry as
O(—1) ® O(—1) — CP* with fiber coordinates 2 and 2.
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conifold geometry, which is the one represented in Fig. 5. While we are not going to review this
conjecture here, we can illustrate how the underlying spaces are related at the geometrical level.
The resolved conifold can be taken to its singular point by shrinking the resolving CP*, which
corresponds to the interior edge. Once singular, the conifold singularity can be smoothed out in
an alternative way by so called complex structure deformation. This smoothing out procedure
makes a three sphere appear in the deformed geometry, which is exactly the one appearing
in the conjecture above. The process of passing between the resolved and deformed geometry
is known as geometric transition and more specifically in the case of the conifold geometry as
conifold transition [135]. The underlying idea of the conjecture is that we can follow the Chern-
Simons theory on S® in the deformed space through the geometric transition and we end up
with topological string theory on the resolved space. Starting with the work of Witten [136], it
was clear how to do systematic computations on the Chern-Simons side. So this correspondence
was already a step in the right direction. However, it was only a little later in [137] that such
a correspondence was established for more complicated geometries than the resolved conifold.
This made computations possible, although a little cumbersome as the building block was the
resolved conifold geometry, which is not practical in general. It was clear that the fundamental
building block should be the simpler C? space. A series of works, for example [137, 138, 84, 83|
to mention a few, culminated in a deep understanding on how to calculate topological string
amplitudes, and thus also gauge theory partition functions, in a systematic fashion with the
use of diagrammatic rules. This formalism was then finally made explicit in |56, 57].

After our attempt to motivate the existence of an algorithmic procedure to calculate closed
topological string amplitudes, we now simply state the final result. The algebraic expression
associated to the refined topological vertex takes the following form

2 )2 2 [nl+IM=]p]
sl Lt 1eli? 4 q t et
C,\,uy(t,q) :q 2 t 2 q 2 Zy(t7q)z (g) ? S)\t/n('[j ‘Sq )Sﬂ/n(q gt ) (370)
n
where ¢ = €™ and ¢t = e ?™®. The s, are skew Schur functions (defined in D.7) and
¢={-1,-3 -5 ...}, Furthermore, we introduced
Z(tq) = T[] =gy (3.71)

(i,9)€v

The refined topological vertex (3.70) does not depend in a symmetric way on the three integer
partitions A, p and v, i.e. it is not manifestly rotation invariant. When performing calculations
we must choose a so called preferred direction for each vertex involved. This choice must be
consistent and common to every vertex in the web diagram. When different choices are possible,
the partition functions associated to each choice will look different but they are equivalent
expansions of the same function [117|. The two different expansions of the partition function
that are related through fiber-base duality correspond to two different choices of preferred
directions, ¢.e. horizontal and vertical as in Fig. 2. Two topological vertices can be glued along
any of their external legs as follows

D (N Cuin(t: ) Craian (a:t) (3.72)

A
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Figure 6: Gluing of two topological vertices along the legs indexed by A and \'. The Kahler
parameter associated to the glued leg is highlighted in red

where the sum runs over the integer partitions associated to the external legs that are glued.
These partitions must be taken to be transpose of another,e.g. here A and \*. Furthermore,
the roles of the regularization parameters ¢ and ¢ in the individual vertex functions must be
inversed with respect to each other. The extra factor inserted into the expression (3.72) is the
exponentiated Kéhler parameter corresponding to the glued edge, i.e. it is the volume of the
associated compact curve as defined in (3.32). This procedure is summarized diagrammatically
in Fig. 6.

3.5.5 Building Block

In order to calculate the partition function associated to the web diagrams of Xy 5; in an efficient
way, it is useful to derive a general building block. By this, we mean the most general part of
the web diagram as shown in Fig. 2 with some of the external legs not glued (still depending on
generic integer partitions). This way we can more easily reproduce all web diagrams that are
of interest to us. The most generic building block we can devise for our purpose has the form
of a periodic strip as depicted in Fig. 7. We recall that the only the relative orientation of the
lines counts and different frames are related by SL(2,7Z) transformations, thus the fact that
in the figure the external legs are diagonal and some of the internal lines are vertical does not
play a role. Their respective orientations could simply be inverted by an SL(2,7Z) action. Such
a building block has for example been derived in [125| for a non-periodic strip geometry and in
[36] for a periodic by using the refined topological vertex formalism that we introduced in the
previous section. The strip is periodic in the horizontal direction and the diagonal external legs
still depend on the two sets of integer partitions {a;} and {3;} for i = 1,..., L. The partitions
{pi} and {v;} along the internal lines denote the partitions along which the topological vertices
have already been glued. We indicate them for clarity when we describe the calculation of the
associated algebraic expression. The Kéhler parameters corresponding to the horizontal and
vertical curves are denoted by {h;} and {v;} respectively. Due to the fact that the external
legs are not glued, there are no consistency conditions. Hence, there are no relations between
these Kéahler parameters at this stage. In order to derive the algebraic expression associated to
the building block Fig. 7, we apply the procedure outlined in the preceding section. The gluing
rule (3.72) gives us the following expression

L
WallﬁaLL (thv va €1, 62) =7 X Z H Q%zl‘QlZzlsm/m (wi)suﬁ/ﬁi—l (yi—l)svf/ﬁz‘ (wi)sw/m‘(zi)
{uH{r} =1
{nH#}
(3.73)
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Figure 7: Periodic strip of length L with a labeling of the Kahler parameters and integer
partitions.

where the sum runs over different sets of integer partitions and the prefactor is given by

L ol
Z = Ht 5 2 (@) 20 () (3.74)

and the arguments of skew Schur functions are defined as

zi=q e y =t g e
wi=q 7, 5=t (3.75)
where ¢ ={-1 -3 _5 . It is also important to note that the indices are defined cyclically,
272 b

e.g. Yo = yr. The sum over partitions in (3.73) can be performed explicitly by using the
identities on Schur functions (D.8) given in the appendix. The latter allow us to derive a
recurrence relation, similar to [50|, that makes it possible to write (3.73) as a product. To
illustrate the calculation we work with the expression

G(X y,w, Z Z HQ|M LV; S/—‘z/nz(xl) Mg/ﬁi—l(yi—l)sl/f/ﬁi(wi)SVi/ni(zi) (3'76)

{pHp} =1
{nH7}

which is just (3.73) without the prefactor. We can use the Schur function identities (D.8) to
rewrite this expression as follows

G(X’ Y7 W Z P X Z H Qluz LU,L Sﬂz 1/"77, (th Qvi—lxi)sﬂﬁ+1/ﬁi (szz—l)

{uHr} =1
{nHn}

x SVf_l/fh'—l (ini)SVi+1/ni+1 (th+1 Qw ZZ) (377)
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where we introduced the notation Q; = Qn,Qy, and

L

pP— H ﬁ 1 - Qh-xi rYi—1 s)(]- - Qviwwi,rzi,s)
i=1 ,,,7521 1 - Qh Qvl 11’2 rii—1 s)(l - Qiyi—lmwi,s)
y (1- thQi—lmi,ryi—Q,sxl — QviQi-i-lwi-i-l,rZi,s)
(1— thQi—lei_gxi,rZi—2,3>(1 - Qz’Qi+1yi—1,rwi+1,s)
Up to the prefactor the expression (3.77) is very similar to (3.76) except for the difference that
the partitions indexing the Schur functions have been shifted and the arguments modified. By

repeating this procedure L times, we obtain again the quantity (3.76), up to a prefactor that
we call P;?2 and a shift of all arguments. More precisely we get the relation

G(x,y,w,z) = P, x G(Q,x,Q,y,Q,W,Q,z) (3.79)

(3.78)

where we defined @, = HZ 1 Q;, which will play the role of modular parameter in the partition
function. By iterating the procedure that led to the relation (3.79) n times we get the following
recursion relation

G(x,y,w,z) = P, X G(Qpx,Qpy, Qpw, Q)z) (3.80)

where again the explicit form of P, is not important. Assuming that lim,, . ) = 023, we find
that

nh—>m G(anﬁ Qn}’: ana an>

nh_{glo Z HQ‘M |Vl ui/ni((Qi)nxi>slt§/ﬁi—1(yi—l)suf/ﬁi((Qi)nwi)sw/m('zi)

{uHr} =1
{n}{ﬁ}

- Z Hle lm ”f/ﬁz‘—1(yi—1)sﬁf/m(zi) (3'81)
{nH{n} =1

as the only non-vanishing terms in this limit correspond to terms where the partitions take the
values p1; = n; and v} = 17);, i.e. as s,,,(x) = sp(x) = 1. The skew Schur functions in (3.81) are
only non-zero when 7; C 7} and 7; C n},;. As inclusion of partitions remains valid when taking
the transpose we get the relations 7; C 1;.1 and 7; C 7;41. As the indices are cyclic this simply
reduces to the condition 7; = 7; = 1. As a result we have

lim G(Q)x, Qpy, Qpw, Q) z) ZQ'"‘ H - Q) (3.82)

k=1

which immediately gives

G(x,y,w,z) = Py, X H(l - QN (3.83)

22The precise form of this factor will not be important and is thus omitted.
23This is a reasonable assumption because it will be clear later on that p corresponds to the complex structure
modulus of the torus in the F-theory construction as described in 3.2.1, i.e. Jm(p) > 0.
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The factor P, is given by

_ H ﬁ PN i) (1= QF Q8 2 swig 1)

= : p— , (3.84)
ij=1kors=1 1 - QWQP xz’,rZi—j,s)(l - Qz’,jQp yi,swi-l-j,r)
where we introduced some notation to make the equations less heavy. We define
i1 i
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We have thus expressed the sum over integer partitions in (3.76) as a product. This simplifica-
tion together with the identities (D.17) from the appendix allows us to write the building block
(3.73) in a compact form
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where we introduced the J,, functions (defined in the appendix in (D.9) and (D.10)) as well
as the so called perturbative part
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The latter is nothing else than the contribution of the building block with all the external legs
carrying the empty partition. In terms of five-branes this corresponds to the external branes
extending all the way to infinity. The building block (3.86) is now in a convenient form for
performing calculations. Upon gluing, we can use the identities (D.13) and (D.14) for the J,,
functions to convert them into the ¥, functions that we have already seen in the schematic
expansion of the partition function (3.45). In principle, the J,, functions in the numerator
of (3.86) can readily be combined into ¥, functions without any gluing of the external legs.
However, we prefer to keep the expression (3.86) the way it is until the denominator can also
be transformed. It is nevertheless interesting to think about why it does not require gluing to
bring the numerator into the 'usual’ form. We have seen in section 3.5.1 that the J-functions in
the numerator of the partition function are contributions coming from the matter multiplets in
our theory (in our case mainly bifundamental or adjoint), whereas the denominator represents
contribution from the vector multiplets. This means that the building block (3.86) can be seen
as a bifundamental matter contribution which has not yet been associated to definite gauge
factors.
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4 Duality Web between little string theories of type A

Previously we have reviewed the fact that little string theories enjoy T-duality [39, 31]. As
explained, the geometric origin of this duality is the double elliptic fibration structure of the
Calabi-Yau threefold Xy ps which engineers the respective theories. The instanton partition
function is a powerful tool to check this duality explicitly. Due to its non-perturbative nature,
it’s agreement for two a priori different theories provides us with an exact result. In this section,
we argue for an even more intricate web of exact dualities between little string theories of type
A and and thus also between their low-energy gauge theory descriptions.

The topological string partition function Zy s for a given geometry Xy s can be obtained
from a topological vertex calculation as explained in section 3.5.1. The way the partition func-
tion is expanded depends on the choice of preferred direction, which has to be the same for
every vertex making up the web diagram. The class of toric diagrams we are dealing with (see
Fig. 2) thus allows in general for three different choices. The horizontal and vertical choices are
known to give instanton partition functions corresponding to T-dual little string theories. One
is described by a Ax_; quiver composed of U(M) gauge nodes (or [U(M)]V for short), while
the other is described by a Ay;_1 quiver composed of U(N) gauge nodes ([U(M)"]). The choice
of the diagonal preferred direction has initially not been studied. One possible explanation is
that from the point of view of the five-brane web in type II String Theory, it is a priori not clear
what worldvolume theory one should expect on the (1, 1) bound state branes. Even upon using
S-duality to go to a dual frame where the initially diagonal branes become horizontal or vertical,
it is not evident what to expect. In [33], the authors studied this question from the point of
view of the toric diagram and conjectured the existence of a third theory which is dual to the
other two theories, i.e. horizontal and vertical, already known to be engineered by the geome-
try Xy . Their starting point was the geometric transformation known as flop, which allowed
them to relate different web diagrams Xy and Xnv pp with ged(N, M) = k = ged(N', M')
and NM = N'M’. This made it possible to establish a connection between the diagonal world
volume theory in Xy ps on one side and a "conventional" (in the sense that it is known what
to expect) world volume theory in Xy 5. More precisely, the conjecture was that a given
Calabi-Yau threefold Xy 5s, as shown in Fig. 2, engineers three different quiver gauge theories
corresponding to the three possible expansions of the topological string partition function. The
diagonal theory would be described by an Ay _; quiver composed of U (%) gauge nodes. A
proposal for the duality map relating these theories was also made in [33]. Consequently, in
a series of papers [36-38| this conjecture has been verified explicitly at the level of the parti-
tion function for the case gcd(N, M) = 1 and further arguments were given for supporting the
case when ged(N, M) > 1 2%, The presence of three gauge theories engineered by Xy 5y was
dubbed Triality. The explicit duality maps relating these theories were given. In contrast to
the fiber base duality map, which roughly exchanges Coulomb branch parameters and coupling
constants, the duality map of the third theory to either of the other two is highly non-trivial,
t.e. mixing coupling constants, Coulomb branch and mass parameters. It was also shown that
a direct implication of these results was an even larger web of dual theories (more than three)
in general.

24The duality has recently been proven in [48] for general N and M but only in a specific limit of the Omega
background where ¢; = —es — 0. The authors used the relation of the partition function to genus 2 Riemann
theta functions via mirror symmetry [117] to achieve this.



95 4 DUALITY WEB BETWEEN LITTLE STRING THEORIES OF TYPE A

In this section, we first review the arguments given by the authors of [33] and then we give a
proof of their conjecture in the case gcd(N, M) = 1. Furthermore, we give arguments for the va-
lidity of the conjecture when ged(N,, M) > 1 and how the conjecture implies an even larger web
of dual theories [U(N)]™ and [U(N")]M" where NM = N'M’ and ged(N, M) = ged(N', M').

4.1 Shifted web diagrams and Flop Transitions

In order to check the conjectured duality put forward in [33|, we first need to introduce the
notion of shifted web diagram and its relation to conventional web diagrams. For clarity, we
focus on the specific example of X35 as shown in Fig. 8 (a). This easily illustrates how and
why one comes to consider such shifted diagrams. From section 3.5, we know that the vertical
and horizontal theories associated with this toric diagram are a A; quiver gauge theory with
gauge group U(3) and a Ay quiver gauge theory with gauge group U(2) respectively. It is
a priori not known if the diagonal choice of preferred direction gives a meaningful expansion
of the topological string partition function, i.e. it is not clear if it can be interpreted as the
instanton partition function of a third gauge theory or if it is just an inconvenient expansion
without a particular meaning. As already mentioned above, when taking the point of view of
five-branes in the type IIB setting, it is not clear what theory lives in the world volume of the
diagonal bound state branes of X3,. In order to study this question, it is more convenient
to look at a different but equivalent representation of the web diagram of X3, as shown in
Fig. 8 (b). Heuristically, this representation is obtained by cutting along the diagonal lines,
while keeping them identified and then regluing along the vertical lines. From the point of view
of the toric diagrams, this representation is just a different choice of the fundamental domain
of the underlying infinite toric fan, as described in appendix B. In this form, we refer to it
as shifted web diagram and denote it by Xéi: 3), where 0 refers to the units the external legs
on opposite sides are cyclically rotated with respect to another. In the most general case a
shifted web diagram would look like in Fig. 9. One should note that there are in general shifted
web diagrams which do not have an equivalent representations in terms of unshifted webs, i.e.
there is no frame where the external lines have no relative offset. We will be naturally led to
consider such configurations when analyzing the extended web of dualities for the engineered
theories. An example will be provided at that point. It is important to emphasize that even
tough the external legs in Fig. 9 are offset with respect to another, the branes do not cross
each other. The diagram can be thought of as being on a torus, so one set of external legs (e.g.
vertical) being shifted can be allowed without having intersections among branes. However,
it is not possible to have at the same time a shift in the other set of external legs as this
would necessarily imply intersections. Throughout this work, there will be supporting figures
to make clear in what set of external legs the shift ¢ is. From the example in Fig. 8, it is
clear that the notation we introduced has some redundancy from the geometric point of view,
i.e. X309 and Xéi) refer to the same Calabi-Yau threefold. It is nevertheless useful to indicate
which presentation of the web diagram we are referring to. Another point worth mentioning
is that in Fig. 8 (b) the fact that the external legs are diagonal (1,1) branes has no special
meaning. As explained in appendix A there several possible frames of the toric fan related
by SL(2,7) transformations. Acting with the right group element would simply exchange the
diagonal lines with the vertical ones, resulting in a form of the toric diagram that we are more
familiar with. Equivalently, the SL(2,7Z)-action is simply the S-duality in the type IIB con-
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Figure 8: (a) Web diagram of X3, where the red line is given as a reference when comparing
to Fig. 8 (b). (b) An equivalent representation of the web diagram for X3, which is more
convenient for studying the diagonal preferred direction. In this form we call it shifted web

diagram and denote it by Xéizg).

text. We prefer to leave the web in Fig. 8 (b) in this frame to emphasize its relation to Fig. 8 (a).

Now that we have introduced the notion of shifted web diagrams, we describe a kind of
geometric transformation, known as flop?®, allowing us to relate different geometries, which in
turn will result in relations among the engineered theories. In [33], the authors introduced a
useful sequence of flop and SL(2,Z) transformations that cyclically rotates the external legs
of a web diagram X](\‘,S,)M by k = ged(N, M) units. This makes it possible to relate geometries
with different shifts . A particularly interesting case is when the shift § is a multiple of the
ged(N, M) mod N. Then the shifted web X](\i)]\,,[ can be related to its unshifted counterpart
Xn,a, which makes it plausible that the theories associated with the two geometries are related
and thus also the topological string partition functions. The latter will be the main point of
investigation in the next section. For now, we first describe the notion of flop in a heuristic
way and then explain the aforementioned sequence of flop and SL(2,Z) transformations.

As explained in appendix A, a flop relates different possible resolutions of a singularity. In
our case, we have seen in section 3.2.1 that the elliptically fibered Calabi-Yau threefolds Xy i
we are considering, are resolutions of singular spaces. In general there are different possibilities
of resolving these singularities which result in different smooth spaces. At the level of the toric
diagram, different resolutions just correspond to different triangulations of the toric fan (see
appendix A). The flop transition can be seen as a continuous process in which the curve that
resolves the singularity is shrunk to zero size and then resolved in a different way. As the vol-
umes of the curves are controlled by the Kéhler parameters, as described in (3.32), this process
describes a path in the Kéhler moduli space where we pass through a wall of the Kéhler cone

25In appendix A, we give an explanation of flops at the level of the toric diagram
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Figure 9: Shifted toric web diagram of X](\(;,)M

into an adjacent cone. The wall corresponds exactly to the singular point, where the curve
has zero volume, see (3.33). This process is illustrated in Fig. 10. The collection of the dif-
ferent Kéhler cones that can be reached through flop transformation is known as the extended
moduli space of the Calabi-Yau threefold [139-144|. As flops change in general the geometry
of the underlying space, it is natural that the Kahler parameters transform accordingly. This
phenomenon is local in the sense that only the Kéhler parameters of the adjacent curves that
have non-zero intersection with the flopped curve are affected. More concretely, for a local
patch of our web diagram, which looks like the space of local O(—1) ® O(—1) — CP', we have
illustrated in Fig. 11 the behavior of the Kéhler parameters under flop transformation of the
curve labeled by m. This curve corresponds to the base CP' in the geometry, as explained in
section 3.5.1. The curves adjacent to the flopped curve all pick up the same contribution which
is just a positive shift by the Kéhler parameter of the flopped curve. In terms of the old Kéhler
parameters, i.e. viewed from the initial cone, the flopped curve now seems to have negative area.

In order to keep things simple, we explain the series of flops and SL(2,Z) transformations
that will allow us to shift the external legs, only for the specific case of a periodic strip X](\i)l
with some shift §. This should illustrate the general behavior well enough. An example for
ged(N, M) > 1, can be found in [33]. The SL(2,Z) transformations would strictly speaking not
be necessary, but they largely simplify the representation in terms of the web diagrams. Indeed,
at the level of the toric diagram, flopping a diagonal (1, 1) (respectively (—1,1)) curve results in

replacing it with its orthogonal counterpart (—1,1) (respectively (1, 1)), thus not introducing
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Kihler cone of Xy ar

Kéhler cone associated with
the Calabi-Yau manifold after
flop transition of the curve ¥

Figure 10: Kaéhler cones of two Calabi-Yau manifolds connected through a flop transition of
the curve X. The corresponding wall, along which the cones are glued together, is characterized
by [ w =0 and is shown in green.

Figure 11: Effect of flop transformation on a patch of the toric diagram which is local O(—1) &
O(—1) — CP*.

lines which have more general slopes, i.e. (p,q) # (£1,1). However, flopping a horizontal or
vertical curve in a given frame would result in introducing such lines of different slopes?®, which
would make the web diagrams distorted and less clear. But the underlying geometry and hence
the theories would still be the same. The SL(2,Z) freedom is thus used to go to a frame where
the curves we want to flop are represented by diagonal lines.

We show the web diagram for X](\‘Z)l in Fig. 12 with some shift § and for which we have
clearly ged(N, 1) = 1. The goal is to relate this to the geometry shown in Fig. 14. For this we
first use a SL(2,Z) transformation to bring the web diagram into a frame where it is easier to

26This can be seen from the toric diagram as shown in Fig. 46 in appendix B by replacing for example a
horizontal line with its counterpart such that the diagram is maximally triangulated.
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L—-0+2

Figure 12: Shifted strip geometry X](é)l

L—-6-2

Figure 13: Web diagram X](\i)l from Fig. 12 after appropriate SL(2,7Z) transformation as well
as a cutting along my, and regluing along h;.
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L-6+1

L—-0—-1

Figure 14: The web diagram of X](\(,sjl) obtained from X](\‘,i)l in Fig. 12 by performing flop
transformations

visualize the flop transformation. The S-duality transformation associated to the element

G i’) € SL(2.7), (4.1)

has the following effect on the (p, ¢)-branes in Fig. 12

W)= ()6 ()G as

After cutting along the line my and regluing along h; this gives the web diagram in Fig. 13.
We then perform flop transformations on all the diagonal lines with Kéhler parameters denoted
by h;. The resulting diagram X](\iﬂ) is then indeed Fig. 14, which is parametrized by a new set
of Kéahler parameters. We can see that it now has shift 6 + 1. The explicit expression of the
latter in terms of the Kéhler parameters of the initial setup X](\(;)M can be obtained from the
local rule explained in Fig. 11. This gives the following map of parameters for ¢ =1,..., L

h; = hz + hifl +mi_q
i =i+ hi + hiys
L= —h; (4.3)

(%

m

where the indices are defined periodically, e.g. hg = hr. This procedure can be iterated which

o . ; (5) o o
means that it is possible to relate the web diagram Xy, to Xx; by repeating it L — ¢ times.
The resulting map between the Kéhler parameters can then be used to study relation between
the instanton partition functions associated to both geometries. In this case, the shift in the
external legs increased by one unit at a time according to ged(N,1) = 1. For an example of
this flop sequence when ged(N, M) > 1, we refer the reader to [33].
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Figure 15: Periodic strip of length L and shift § with parametrisation suitable for the topological
vertex computation.

4.2 Invariance of the partition function

Equipped with the sequence of flop and SL(2,Z) actions introduced in the previous section, we
are now ready study how the instanton partition function Zy »s behaves under these transforma-
tions. This calculation was initially performed in [36]. For the sake of simplicity the calculation
has been done in the case when the web diagram has the form of a periodic strip of length L as
in Fig. 15. For a generic web diagram Xy 5s the calculation would be similar but more involved.

The partition function for the periodic strip geometry with some shift in the external legs
Xg% is calculated from the generic building block (3.86) upon suitable gluing of the external
legs. Once glued, the 3L Kahler parameters associated with the individual curves denoted
by {h;,v;,m;} are not all independent anymore. They have to satisfy the following 2L — 2
consistency conditions

Vi + My = Vit1 + Miyst1,

hivi +m; = hipsi1 + Migsi, (4.4)

leaving a total of L 4+ 2 independent parameters. We want to choose a basis in such a way that
it can be unambiguously defined for any shift 6 and the highest possible number of parameters
should be invariant under the flop sequence that we want to study. The remaining parameters
should be chosen such that they are easily traceable through flops. From the second line in
(4.4), we define

Q= m; + hig1 = Miyser + Nigsgr - (4.5)
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These L parameters will be the roots of the gauge group and are depicted in red in Fig. 15.
They are a natural choice of parameters as they are invariant under the flop transformations
that we are interested in, as can be seen by applying the map (4.3),

)

From the a;’s we also define p = Zle a;, which parametrizes the total strip length and will
play the role of a modular parameter. Furthermore, we introduce the parameter S, shown as
the blue curve in Fig. 15, which measures the distance between identified external legs. There
are two ways to measure this distance due to the periodicity of the strip, so this involves making
a choice. The two possibilities are simply related at the level of the partition function through
¥-function identities. Unless stated otherwise we stick to the convention that we go from an
upper external leg, indexed by the partition «;, to the left until we reach its lower counterpart,
indexed by af. As can easily be verified from (4.4), S is the same for any pair of identified legs.
In addition, it is well defined for a generic shift which makes it a natural choice for a Kahler
parameter. It takes the following form

L—6-1
§=hi--s-n+ Y Gy, i=1...L (4.7)
r=1
It is also well behaved under flop transformation as can be seen by applying the map (4.3)
L—6—1 L—5—1
S — S/ :h’;—(L—(S—I) + Z az’—r - hi—(L—(S) + ai—(L—(S) + Z ai—r
r=1 r=1

L6

=h;_(1.—s) + Z =5 (4.8)
r=1

where the last equality holds because this is exactly the definition (4.7) of S in the strip obtained
after flop with shift 6 + 1. By rewriting (4.4), using the parameters &; and S introduced until
now, we get the following recursive relation for v;

L—6—-1

L—1
Vit1 = U + Z Qjy — Z Qi (4.9)
r=1

r=0+1

From this we immediately see that only one of these L parameters can be chosen independent.
This residual freedom denoted by R, shown as the green curve in Fig. 15, measures the
vertical distance between two identified external legs. Similar to the parameter S, it is the
same for every pair of identified legs and can be defined for a generic shift §. It is expressed as

L-6-1
RO =v,— Y mi,, i=1...L (4.10)
r=1

With this definition we now have a maximal set of independent Kahler parameters for X7, 1,
given by (@;, 5, R®). In terms of these parameters we can rewrite the first expression in (3.85)
as

(4.11)

~ _ fexp(=5+ S s i) HjHOSL
o lexp(=S = G, if j+0>1L

r=1
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For our analysis there is no need to rewrite the other expressions defined in (3.85). Schematically
the partition function associated to Fig. 15 has the following form

L
(6 ; ai..« ~
é’i = Z <H QLl |) WaL176+L1~~-C¥L76 (Oéi, S, €1, 62) (412)
{a} =1

We denote the partition function here with a tilde to emphasize that is also contains the
perturbative part (see 3.86), whereas we defined in (3.45) only the instanton/non-perturbative
part. In order to simplify things, we chose not to introduce the parameter R® defined in
(4.10) but instead to work with the parameters v;, which are thus not independent of another.
We could write (4.12) as a expansion in R but this would then leave us with factors of m;
lingering outside of W12t =~ . The definition of R® will nevertheless be useful in a later

section. The building block (3.86) with the external legs identified as in Fig. 15 has the explicit
form

N T QL qlealttar] L Voo (@i,i—j—é; p)
Wea-ar (CLZ',S,E € ) =W (@) . _ 2 J ,
v ’ [( > Q% ’ 1} igl ﬁociocj (Qi,iﬁj V Q/ta p)

QAL §541--OL—§ q
(4.13)

where W (0) is the perturbative contribution and Qg = e=° and Q, = €*™. We used the
identities (D.13) and (D.14) to combine the J-functions into ¥-functions. Our strategy for
proving the invariance of the string partition function under the specific flop transformations in
the case ged(N, M) = 1 is to show that the following equality between the instanton partition
functions associated with two periodic strips holds

Zéf% (w7 €1, 62) = ngii_l) (w,v €1, 62) 9 (414)

where w and w’ denote the two collective sets of Kahler parameters associated to the respective
geometries. These two sets are related by the duality map (4.3). We want to emphasize that
the perturbative part in 4.12 is trivially equal for the two different strips. The perturbative
contribution corresponds to a strip where the legs labeled by the v; (as shown in 15) are not
glued and depend only on the trivial partition (). They are thus insensitive to any shift . In
order to show that (4.14) holds, we first rewrite the building block (4.13) in a way that makes
the 0 dependence more explicit

¢ L

o1...ag, . t % ;:\ |y [++|ag| 1
WaL—6+1...aL_5 - WL(Q)) X |:<(_]> Qé Q; K :| . <llj_:[1 790@04]' (@i,i—j\/q_/t; p))

=A

X H ﬁaiaj (Q;;QS) H ﬁaiaj (Q;;QSQp)

e ™~

XTI iy (QiiQs) | | ] P (Q5:Q5Q5") | - (4.15)
S e



64 4 DUALITY WEB BETWEEN LITTLE STRING THEORIES OF TYPE A

where K = L — ¢ and the @); ; are defined as follows

j—i—1
Qij = H exp(—Qi+k) (4.16)

k=0
The difference between W' ~2% = for the original diagram and Wil-*%, = for the diagram

obtained by flop and symmetry transformations rests in the three terms A, B and C'. Their
respective counterparts in the shifted diagram, denoted by A’, B" and C’, are given by

A’ — Hﬂaiaj (gf]) Hﬁaiaj (—QQsii—p) ’
i<j S
J—i<K! j—i>K’
B = | Tew @009 | | T, (%2) ]
i>j i>J
i—j<s! i—j5>8'
=y, e

where K’ = K — 1 and ¢’ = § + 1. Indeed the ¥-functions in the denominator of (4.15) are
insensitive to the shift §. This is easily understood from the fact that their arguments consist
of curves that relate upper (lower) external legs to upper (lower) external legs whose relative
distances do not depend on §. The difference between A and A’ (respectively, B and B’) lies
in the arguments of those ¥-functions for which j —¢ = K’ (resp. i — j = § + 1): they differ
by a factor of @),. The difference between C' and C" is also just a factor of @),. Finally, we also
need to take account of the factors of @, that appear in the full partition function (4.12). In
the flopped diagram, these are given by

Q4,02 it = I
Qv’- = {

2

Qu; Q% clse (4.18)

L L—6—1
HT:5+2 Qai—'r r=1 Qai—r

where we defined Q,, = exp(—a;). In order to show that the equality (4.14) holds, we now show
that the difference between Zé? (w, €1, €) and ngl)(w’ , €1, €2) can be canceled by applying the
shift identity (C.6) to the ¥-functions mentioned above in (4.17). First, we consider the case
when the shift in the external legs is ' = L. Shifting the required ¥-functions to regain the

¥-structure of the 6 = L — 1 strip gives

L L

[T 90:0:(Qs@,) = [[(@5°Q, ) Wi (@) (4.19)

i=1 i=1

The prefactors in (4.19) resulting from the shift identity combine with (4.17) and (4.18) to
reproduce the expression for Z}ﬁ (w, €1, €2), thus proving that (4.14) holds for § = L — 1. The
computations when ¢ # L are more involved, so we will simply sketch them. Below we present
the J-functions from Wi, that need to be shifted in order to regain Wg!-2r . We
need to distinguish different cases depending on the partition a; in question. For the sake of
clarity, we focus only on terms resulting from shifts that come to the power |a;| in each separate

case.
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1. For ¢ < min(K’, "), we shift the following ¥-functions
Qs
79042-+5+1ai(Qi,i+6+1QS)19aiai+K/ (A
Qiitk’

PN o Qiito1Q Q
~ (QszQz’,il—i-5+1Qi,i+K/)| Zlﬁai+6+10¢i ( +Q+1 d 19041'041-”« Q 'fK’ (4'20>
p 8

2. For ¢ > max(K’,d"), we shift the following ¥J-functions

19042'0424571 <Qi*5*17iQS)ﬁai_K,ai (M)
Qi—K’,z’

~ (ngQz’_—lé—l,z’QifK’,i)'ail 1904«;01%571 (621—5@;;#625) 19Ozi—K/O‘i <Q@C2[S{/1) (421)

3. For min(K’,d") <i < max(K’,d'), we need to distinguish between two cases:
(a) When K’ > ¢’ we shift
19%-0—54—1@1:(Qi71+5+1QS)19%'%—5—1 (QSQi—&—l,i)
_ _ _ o Qiivo+1Qs QsQi—s-1,
~ (Q5°QpQi 51, z‘,z‘1+6+1)| MWarysiian <Q— Vasoi—s-1 T,
P P
(4.22)

(b) For K" < ¢', we shift

QSQ,O ) ( QSQp >
1904-(% / 190« e
K <Qi7i+K’ K Qi—r,i

o . Q Q
~ (Q52Q01Qi_K'aiQi»i+K')| Z‘ﬁaiaiJrK/ (Qz ifK' ﬁai*K,ai Qi—f{/i (4'23)

In each case, the factors resulting from shifting the J-functions combine with (4.17) and (4.18)

to reproduce the expression for the partition function Zg)r This shows that (4.14) holds. As
this procedure can be iterated we have the general relation

Zﬂ (W' e, 62) = Zr1(w, @1, €) (4.24)

where the two sets of Kédhler parameters w and ' are related by successive application of the
map (4.3), i.e. they are just related by linear transformations. For an explicit example of
a calculation relating Zéi) and Zg; see [36]. Whereas the calculation above has only been
performed explicitly for the case ged(N, M) = 1, we conjecture that the results holds true in

general
200 61 0) = Zva(w, e, e). (4.25)

when 0 is a multiple of ged(N, M) mod N. We recall that the latter condition is to ensure that
the underlying web diagrams can indeed be related by flop. Apart from the computational
complexity there is no apparent obstruction to reproducing the calculation outlined above. In
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the next section we will see further arguments that underline the plausibility of the conjecture.
Furthermore, as already mentioned at the beginning of this section, the authors in [48] prove
the case for general N and M in a specific limit of the omega background.

An important aspect of flop transformations from the point of view of gauge theory is that,
when we perform a flop on a curve that is related to the gauge coupling constant in a specific
expansion of the partition function, the underlying theory gets sent through a strong coupling
regime, recall relation (3.20). This means that in the adjacent K&hler cone, it should not be
expected that a gauge theory associated with that specific expansion should exist, or if it does
it will in general not have the same gauge group, matter content, etc. The latter should rather
be seen as a strong coupling dual [145]. In the strong coupling region the full little string theory
description is required. When performing the sequence of flops a number of times, the flops
act alternately on two of the three sets (horizontal, vertical and diagonal) of lines in the web
diagram. For example, in order to relate X](\(Z)1 as in Fig. 15 to Xn a, the vertical external
lines never undergo flop transformation. Hence there is always an expansion whose "coupling
curves" do not undergo flops. The associated theory can be safely followed through the Kéahler
moduli space.

We also want to emphasize that while the two topological string partition functions associ-
ated to web diagrams related by flop transitions can take the same form when written in an
appropriate basis of parameters, the relation between the latter and the 3N M Kéhler param-
eters describing the individual curves in the geometry is generically different. For example,
the parameter Qg defined in (4.7), which runs between pairs of identified external legs of a
given X](\‘,i)M, is clearly independent of § as can be seen by applying the duality map to the
explicit expression. However, the way it depends on the Kéahler parameters of individual curves
is different, e.g. for 6 = 0 it depends on a single curve, for § = 1 it depends on three individual
curves etc. Nevertheless, when viewed as an instanton partition function of a gauge theory
these differences are not directly visible. This will be investigated further in section 5. For
now, we want to provide more evidence that the diagonal expansion can really be interpreted

as having a third gauge theory description associated with it.

4.3 Triality

The topological string partition function (3.45) associated to Xx s can be expanded in three
different ways, one for each direction which is common to every vertex in the web diagram
shown in Fig. 2. Schematically we thus have

Z(NfM) — Z(N7M) i Z(NvM)

hor - “vert - “diag (426)
where h,v and m, denote the collective sets of individual K&hler parameters h;,v; and m;
respectively. The horizontal and vertical expansions are known to correspond to instanton par-
tition function of two supersymmetric gauge theories that are related by duality. The diagonal
expansion Zggf for a given Xy ps can be associated to a web diagram which has a non-trivial
shift 6. This was illustrated for example in Fig. 23, where the diagonal expansion of X3 can be
reinterpreted as the vertical expansion in the equivalent representation Xé?’l) 27 In the previous

ZN,M<h7 Vv, m, €y, 62) =

2TBy convention, we should strictly speaking first perform a SL(2,7Z) transformation to turn diagonal legs
into vertical ones and vice versa
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Figure 16: Different regions in the Kahler cone of Xy .

section we reviewed the result from [36], that the topological string partition function is in-
variant under flop transformation. A direct consequence of this result is the expression for the
diagonal expansion Z, é\i[;f is equal to the instanton partition function corresponding to a theory
with gauge group U [%]k However, as pointed out, the relation between the gauge theory
parameters, ¢.e. coupling constants, Coulomb branch and mass parameters, and the Kéahler
parameters of the individual curves in the geometry is different. Thus, even if the functional
expressions match, it should be verified that there exists indeed a region in the Kéhler cone of
Xn v where the weak coupling limit of the diagonal theory is realized, i.e. that there exists a
parameter limit where the curves in the web diagram related to the coupling constants of the
diagonal theory get send to infinity in a consistent way. By this we mean that there are no
lines that start crossing or other inconsistencies. The existence of such a limit would provide
a non-trivial check that the diagonal expansion can indeed be interpreted as a third instanton
partition function associated to Xy . In [37], three maximal sets of NM + 2 independent
parameters were given for a generic Xy 57, one for each expansion in (4.26). With these, it was
explicitly checked that the Kahler cone of Xy »s admits three regions associated with the weak
coupling regime of the horizontal, vertical and diagonal expansions of the topological string
partition function respectively, providing strong evidence that there are indeed three different
theories engineered by Xy . These theories are dual to one another as their instanton parti-
tion functions are different expansion of the same function. The presence of these three theories
in a single Xy s was dubbed Triality in [37].

As remarked above, one of the key aspects of interpreting Zl(li\i’M), Z‘(,é\rf’tM) or Zggé;M) in (4.26)
as instanton gauge theory partition functions, is to find a region in the Kéahler moduli space
of Xy in which either all h or all v or all m become infinitely large, while the remaining
parameters remain finite. In order to find such a region in the moduli space, we require a
particular basis for the Kahler parameters, which provides a solution for the consistency con-
ditions discussed in section 3.4.1. While such a basis is very involved for generic Xy ps, we first
consider as a simple example the configuration Xy, (with k& = ged(NV, M) = 2), to illustrate
the point. Thereafter we describe the general case.
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4.3.1 The specific example of X,

In this case, three different parametrisations (suitable for the horizontal, vertical and diagonal
gauge theory) along with a graphical interpretation of the weak coupling limit are shown in
Table 4. The three different expansions (and in particular the weak coupling limit) can be
interpreted as follows:

e horizontal expansion in the basis (p, by; ¢y, o, 7; F)

Upon taking the limit
p — b —> o0, and b — 00, (4.27)

all horizontal lines of the toric diagram are effectively cut, since hy 4 — 0o, while vy 4
and m;__, remain finite.?® The remaining diagram takes the form of two vertical strips,
thus implying that the gauge group associated with the horizontal expansion is

Ghor = U(2) x U(2). (4.28)

Indeed, p — 31 and 31 are related to the gauge couplings associated with each of the two
U(2) factors, while the parameters ¢; » can be interpreted as the (simple, positive) roots
of each of the two a; algebras related to the two U(2) factors. Furthermore, 7 can be
interpreted as an additional root, that extends each of these algebras to affine a;, while
E' is a parameter associated with the compactification of the toric web on a torus.

e vertical expansion in the basis (T, 51;31,62; p, D)

In the limit
T —0¢ — 00, and ¢ — 00, (4.29)

all vertical lines of the toric diagram are cut, since v;, 4 — 00, while h; 4 and m; 4
remain finite (and positive for certain values of (p,gl,@, D)). In this way, the diagram
decomposes into two horizontal strips, which implies that the gauge group associated with
the vertical expansion is in fact

Grer = U(2) x U(2). (4.30)

Indeed, 7—7¢; and ¢, can be related to the gauge couplings associated with each of the two
U(2) factors, and the parameters b o can be interpreted as the (simple, positive) roots
of each of the two a; algebras related to the two U(2) factors. The parameter, 7 can be
interpreted as an additional root, that extends each of these algebras to affine @;, while
D is a parameter associated with the compactification of the toric web on a torus.

e diagonal expansion in the basis (V1, Va;ay,as; F, L)

ZNotice in particular that there exists a region in the parameter space of (7,¢1,¢2, E) in which
(v1, v2, v3, V4, M1, Mo, M3, My) are positive, which is important for their interpretation from the point of view of
gauge theory as Coulomb branch parameters and hypermultiplet masses respectively.
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horizontal

vertical

diagonal

my

ms

hy ho

hlzhgzbl_#7

hQ = h4 = p —/51 + Ac—l_z;2_E,

VI =Uy =T — 61+€2+E‘ 7
U3 = Uy = AC—IJFE;_E ;

my = my = —81_622“3 ;
my =my = —2=2=E

my

ho

— h4 p 1 22 9
Vo = T [ 1 2

P} )
=my bl—b22+D 7
_ /b\l—/b\Q—D
=m3 = — 2 )

my

hy = hs = a1+as—F

2 )
ho = hy = M — Qt0tl
v = vy = — =2l
vy = vy = D=t

m1:m4:V1+F—M,
m2:m3:‘/Q+F—M,

‘/172—>OO

. v’

v

ha

Table 4: Three different choices of maximal sets of independent Kahler parameters for the
configuration Xs 5. In each case, the 12 lines (hy__4,v1,. 4,M1,. 4) are parametrised by 6 inde-
pendent variables. The last row shows the weak coupling limit, which is obtained by sending
two of the parameters (related to the coupling constants of the respective gauge theories) to

infinity.
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In the limit V}» — oo, all diagonal lines (along direction (1,1)) of the toric diagram
are cut, since my 4 —> oo, while hy 4 and vy 4 remain finite (and positive for certain
values ). In this way, the diagram decomposes into two diagonal strips (which were called
'staircase strips’ in [36]), which implies that the gauge group associated with the vertical
expansion is as well

Guing = U(2) x U(2). (4.31)

Indeed, Vi 5 can be related to the gauge couplings associated with each of the two U(2)
factors, and the parameters a;o can be interpreted as the (simple, positive) roots of
each of the two a; algebras related to the two U(2) factors. The parameter, L can be
interpreted as an additional root, that extends each of these algebras to affine a;, while
F' is a parameter associated with the compactification of the toric web on a torus.

Calculating the geometric intersection numbers between the curves and the compact divisors for
the X5 geometry and checking that the charges indeed furnish the right representations under
the diagonal gauge group (as discussed below 3.34) would provide further evidence. However, in
this case this is not necessary as the diagonal strips are geometrically identical to the horizontal
and vertical ones. Thus we know in advance that the calculation works out the right way. It is
important to notice that in all three cases, the connection to a certain gauge theory relies on
the fact that in the weak coupling limit the web diagram decomposes into a number of parallel
strips (either horizontally, vertically or diagonally): physically, the latter can be interpreted
as parallel NS5 branes with semi-infinite D5-branes ending on either side in equal numbers
[69]. When the strips are glued together the world-volume theory on these D5-branes is the
corresponding gauge theory. This can be seen by tracing the original setup of NS5 branes
probing a transverse orbifold singularity through the duality chain. In the current case, since
the orientation of the strips can be changed through an SL(2,7Z) transformation, the diagrams
in the last line of table 4 are identical up to a relabeling of the parameters. This indicates that
the gauge theories engineered from the three expansions in (4.26) have the same gauge group,
i.€.

Ghor = G'vert = Gdiag = U(z) X U(2) . (432)

This is a peculiarity of the configuration (N, M) = (2,2) (more precisely of all configurations
of the form (N, N)) as in general the three gauge groups are different (albeit that their rank is
the same as argued above), as we shall see from the next example (N, M) = (3, 2).

4.3.2 The specific example of X3,

The next non-trivial configuration corresponds to (N, M) = (3,2) with £ = gcd(3,2) = 1.
The corresponding web diagram contains 18 line segments which are the Kéhler parameters of
various rational curves in the Calabi-Yau threefold X3 o:

h=(hy, -, hg), v = (v, - ,0), m = (my,---,Mg). (4.33)

As discussed before, these parameters are not linearly independent but they can be parametrised
by choosing 8 independent variables. Three different such parametrisations are shown in Ta-
ble 5, leading to the following expansions:
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| ; ‘
| 3
1 he
| 1 ;
3 hs 77Z6\
! R hy ms | by hﬁ
: ’71 1 ~ ”I
| N vs €
! as ms
i m4 ha
T u T
SO & 3 N/
AR v 3 as - ] vs E= ,
K 4 X 3 mi1 + mao + ms
’ h mo
F=v+uvy 1 .
\ //,Ez N
N mi & 2 “2//
’ b
. U1 4+ -
V =m1+ (3 —=1)(hy +hz) + (3 = 2)(v2 + h5 + v + hs)
(/—)
M /I)= my + my
horizontal vertical diagonal
(p,bl,bg;Cl,C%Cg;T,E) (T7cl;blab27b37b4;p7 D) (V;CL17CI,2,CL3,CL4,CL5;M, F)
p— b1 — bQ — OO ~
PN T—C —» 0
by — o —~ V —
~ Cl —» O
bg — OO
3 v
ot g
0 v
hy
- . v
ha o
0 ’SJ
. v3 R
1 ho S,
; 1
i N .
hy ,‘7‘;
a IV." . i
hs v‘\“
v " hy
1 Vi’

Table 5: Three different parametrisations of the web diagram (N, M) = (3,2). The last line
shows the decomposition of the diagram in the weak coupling limit in the horizontal, vertical
and diagonal description respectively. A choice of gauge divisors for the diagonal description is
highlighted in red.
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e horizontal expansion in the basis (p, by, bg; ¢1,C2, C3; 7, E)

In the limit
p—gl—/b\2—>oo, and 31—>oo, /52—>OO, (4.34)

we find hy ¢ — oo, while v; ¢ and m; __¢ remain finite. Therefore, as indicated in
Table 5, in the limit (4.34) the toric web diagram decomposes into 3 vertical strips,
implying that the horizontal expansion gives rise to a gauge theory with gauge group

Ghor = U(2) x U(2) x U(2), (4.35)

More specifically, the parameters (p — 31 — 32,61,/52) are related to the gauge coupling
constants, while ¢, ¢; and ¢3 can be interpreted as the (simple positive) roots of a;
algebras associated with each of the U(2) factors. Each of these algebras is further
extended to affine @; through the parameter 7.

vertical expansion in the basis (7,¢; by, by, b3, by; p, D)

In the limit
T—0¢ — 00, Cy — 00, (4.36)

we find vy__¢ — o0, while hy__¢ and m, ¢ remain finite. Therefore, the (3,2) web
diagram decomposes into two horizontal strips, indicating that the vertical expansion is
associated with a gauge theory with gauge group

Gvert = U(3> X U(3> ) (437)

In this manner, (7 — ¢;,¢;) are related to the coupling constants and (by, by) and (b3, bs)
correspond to the (simple positive) roots of two copies of as, associated with the to the
U(3) factors in (4.37). These algebras are extended to affine @, by the parameter p.

A~ N N AN A~

In the limit V' — oo we find m,;__¢ — oo, while h;__¢ and v;__¢ remain finite, such
that the web diagram decomposes into a single diagonal strip. This indicates that the
diagonal expansion is associated with a gauge theory with gauge group

Gaiag = U(6) . (4.38)

Here V' is related to the coupling constant, while (ay, ..., as) play the role of the (simple
positive) roots of a5 associated with Ggiag.

The fact that such a gauge theory exists also outside of the weak coupling limit V' — oo
can be inferred from the duality of the web diagram shown in table 5 with the toric web of
X, through a series of flop- and symmetry transformations. More concretely the result
(4.25) implies

5, M, F), (4.39)

.....

28V hygom) = ZE2 (V.

vert diag
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The vertical expansion of the partition function Zg; is a power series in Qy = eV,

which can be interpreted as the instanton partition function Z‘(,S;? of a gauge theory
with gauge group U(6). In the gauge theory interpretation it is important that the flop
transformations do not act on curves directly related to the coupling constants of a given
gauge theory. This would send the volume associated to these curves to 0 and hence the
gauge theory through a strong coupling regime making it less clear what to expect on
the other side once the given curves are resolved again. Fortunately, when establishing
the correspondence (4.39) no curves directly related to the gauge coupling undergo flops.

This shows that Z((i?fg) (as a power series expansion in ()y) can be read as the instanton
partition function of a gauge theory with gauge group U(6) also outside of the region

V — .

Verifying that the geometric intersection numbers between the curves and compact divisors for
the geometry X3 o can be assigned in a consistent way for the diagonal expansion (as discussed
below 3.34) provides us with an additional non-trivial check. In contrast to the previous example
of Xy, the diagonal strip geometry in the case at hand is different from the horizontal and
vertical ones. In appendix B, we describe a way to calculate the intersection numbers for a
general shifted strip geometry. We indicate our choice of gauge divisors in the diagonal strip
of table 5. First we can check that the diagonal roots @; have indeed the right weights an thus
form the adjoint representation of as. We find the following weight assignment

ar = [2,-1,0,0,0] ay = [-1,2,-1,0,0] as = [0,-1,2,-1,0]
ay = [0,0,-1,2,—1] as =[0,0,0,-1,2] (4.40)

which is thus the correct one for all the simple roots of as. The other weights of the adjoint
representation are simply obtained by taking suitable linear combinations of the simple roots.
Furthermore we verify that the curves associated with the coupling constant are uncharged
under the gauge group. The suggested combination?® of curves for the coupling constant given
in table 5 is

V= my + 2(]11 + hg) + 6?3 + @0 . (441)

where we introduced the affine root &y = hs + vg to make things more compact. By calculating
the intersection of these curve with the divisors chosen for the diagonal theory we get

mi=[-1,-1,0,1,1] , h =[0,1,-1,—-1,1] , hs=[1,0,0,1,—1]
do = [—1,0,0,0,—1] (4.42)

We thus see that the combination (4.41) indeed has vanishing intersection with all the gauge
divisors and is uncharged under the gauge group. Finally, it can also be checked that the hori-
zontal and vertical curves together with their combinations give all the weights required for the
adjoint representation plus a singlet.

In the case of (N, M) = (3,2), the gauge groups Ghor, Gvert and G are different, how-
ever, as discussed in the previous section, their rank is identical. Furthermore, we stress that

29This combination is obtained by following the coupling for the U(6) theory in Xg 1 through the flop tran-
sitions. The formula for this was originally written down in [33] and is reviewed at at later point in this
section.
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in all three cases the specific form of the parametrisation is not unique: Different choices of pa-
rameters leading to the same decomposition of the toric web diagram as in table 5 are possible.
Indeed, in section 4.2, which is based on [36], a slightly different choice of parametrization was
made as it was more suitable for the explicit computations of the general building block of the
partition function.

4.3.3 The general configuration Xy y

The discussion of the previous examples (2,2) and (3,2) can be generalized to a web diagram
with generic (N, M). Indeed, in the following we make a proposal for three different parametri-
sations of the Kahler moduli space of Xy 5, facilitating the three expansions of Zy »s that were
schematically written in (4.26). In the following, we present sets — in general not unique — of
NM + 2 independent parameters (which we shall refer to as a basis in the following) suitable
for the description of the horizontal, vertical and diagonal theory.3°

The geometric interpretation of (some of) the parameters in the bases is shown in Fig. 17.
The orange box in Fig. 17 highlights a generic hexagon in the (N, M) web-diagram, which can
be labeled by two integers

ref{0,1...,M —1} mod M, and se{l,...,N} mod N. (4.43)
With the parameters shown in Fig. 17, we propose the following three (inequivalent) bases

e horizontal basis

We propose as a basis suitable for the description of the horizontal expansion Z}(lf)\i’M)

in (4.26) the following

%hor = {/b\M—l,szl,...,N—l e {/C\}uzl,...,N y Ty E} 5 (444)
with
{ct. ={Cur €{0,1,..., M —2}}, Vu=1,...,N. (4.45)

This basis indeed suggests that Zl(li\i’M) is the instanton partition function of gauge theory
with gauge group Gpo, = [U(M)]V: indeed {c},—1.. n furnish N sets of (simple positive)
roots for the N factors of U(M), while the N decoupling parameters,

N-1
{bM—Ll; by—12,- - by—1N—1,p— Z bM—li} (4.46)
i—1

are related with the gauge coupling constants (one associated with every factor of U(M)
in Gpor), in the sense that in the limit

N-1
p— ZEM*M — 00, and EM,M — 00 Vi=1,...,N—1, (4.47)
i=1

30This choice of bases is motivated by studying numerous examples with small values of N or M. A proof of
the linear independence of the parameters for generic Xy as is currently still missing.
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Figure 17: Three different maximally independent sets of Kéahler parameters for a generic toric
web (N, M). For concreteness we assume N > M. Furthermore, for the sets a, b and ¢ (which
will constitute the roots in the three different gauge theory descriptions), we have only shown
the first few explicitly in the diagram, along with an assignment for a generic hexagon in the
web. The latter is labeled by two integers (r, s) whose range is specified in eq. (4.43).
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.....

finite. Graphically, the diagram therefore composes into N vertical strips of length M,
each of which associated with the theory corresponding to a single U(M). The expansion

of the partition function Zﬁ{jM) (schematically written in (4.26)) can therefore be more
concisely be written as an instanton expansion in (4.46).

Finally, the parameter 7 extends each of the algebras ap;—; (whose roots are given in
(4.45)) to affine @y ;.

vertical basis

A basis suitable for describing the vertical expansion Z‘EQ;M) in (4.26) can be found through
a judicious exchange of vertical and horizontal parameters of the horizontal basis. Indeed,

we propose the vertical basis to be

%vert = {/C\T‘:O,...,M—Q,N T {/B}UZO,...,M—I y Py D} ) (448>
with
{B}u:{6u73|se{1,...,N—1}}, Yu=0,... M—1, (4.49)

which suggests that Z‘(,é\r];M) can be interpreted as the instanton partition function of a

gauge theory with gauge group Gye = [U(N)|M. Specifically {b},—o a1 furnish M
sets of (simple positive) roots for the M different factors of U(N). Moreover, the M
parameters

M—2
{/C\O,Na . a/C\M—27N y T — Z a;N} (4-50)
i=0

are associated with the gauge coupling constants (one associated with each of the M
factors U(NV)) in the sense that in the limit

M-2
T G — 0, and Gy — 00 Vi=0,...,M—2, (4.51)
=0

we have vy yn while {h1 yar, ™, na} remain finite. Thus, the diagram in Fig. 17
therefore decomposes into M horizontal strips of length /N each of which begin associated
with the theory corresponding to a single U(N). The series expansion Z M) (which is
schematically given in (4.26)) can therefore be more concisely be written as an instanton

expansion in (4.50).

Finally, the parameter p extends each of algebras ay_; (whose roots are given in (4.49))
to affine ay_;.

e diagonal basis
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The diagonal expansion is somewhat more involved to describe. Indeed, we propose the
following N M + 2 parameters as a basis (with k& = ged(N, M)) for the diagonal expansion

Baiag = {V1,. -, Vi, {@ uo,. k-1, L, F}, (4.52)

with
{a}, = {Gu—1—a—un+ala € {0,... . ME -2} (4.53)
which suggest that Zéfj’gM) in (4.26) is the instanton partition function of a gauge theory

with gauge group Gging = [U(NM/k)]k In (4.52), the parameters V; _j are difficult to
directly identify in the web-diagram in Fig. 17. They can, however, be written as a linear
combination of (h,v,m). To this end we introduce a similar notation as in [33]: for any

diagonal line of area m, (with a = 1,..., NM) stretched between two vertices A and B
B
4 (4.54)
A

we define P (m,) as the path starting at A and following N distinct horizontal and N —1
distinct vertical lines (going to the left), as well as Pr(m,) the path starting at B and
following N distinct horizontal and N — 1 distinct vertical lines (going to the right).
Furthermore, we denote (pr(m4))i=1.. 2nv—1 and (pr(myg))i=1,. 2n—1 as the components of
Pr(m,) and Pgr(m,) respectively.?! With this notation, we define®? the coupling constants
(a=0,...,k)

Vs =+ (= 1) (Bulmrsan))i + (prlmesan)))

N_9

T Z (% —1- Z) [(pL(ml—HLN))Q@' + (pR(ml—i-aN))zi]
+ Zl (g -1- z) [(pr(Mitan))2ics + (PR(M1an))2ita] - (4.55)

Indeed, for Vi — oo we have m;  nyy —> oo, while (hy  mn,v1,. amn) remain fi-
nite. In this way, the (N, M) web-diagram decomposes into k diagonal strips of length

%, which can be interpreted as the weak coupling limit of a quiver gauge theory whose
gauge group is Gaing = [U(XMX)]F.33 The existence of this theory outside of the weak

31'We refer the reader to section 5 of [33], pointing out, however, that in the latter work N < M had been
assumed such that the roles of the horizontal and vertical lines have been exchanged.

32While the definition (4.55) is very abstract, it is inspired by the definition of the gauge coupling constants
of the vertical expansion associated with the dual Calabi-Yau X~u ; as explained in [33].

33Fach strip can be associated with an individual U (%) C Gdjag-
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coupling limit can be argued by the fact that Xy 5 is dual to Xy ks through a combi-
nation of flop- and symmetry transformations proposed in [33|. Throughout this series of
transformations, the diagonal lines (labeled by m; _nas) do not undergo flop transitions,
such that the V; _j are related to the coupling constants of the [U (%)]k quiver gauge
theory furnished by the vertical expansion of Znps/k k. Moreover, due to the fact that
the partition function is expected to be invariant under the duality proposed in [33| (this
was explicitly proven for £k = 1 in [36] and also discussed above), we propose that the
expansion of Zy s in powers of Qy, = e " (for a = 1,...,k) can also be interpreted
as the instanton partition function of a quiver gauge theory with gauge group [U( %)]k
From this perspective, the {@},—o k-1 in (4.53) furnish k sets of (simple positive) roots,
each associated with a factor U (%) C Gliag-

Finally, the parameter L extends each of algebras ay; -1 (whose roots are given in
(4.53)) to affine anns/p_1.

To summarize, based on the proposed bases Bior, Byert and Biag (as well as the examples
discussed above) we conjecture that for given (N, M) we can engineer three different gauge
theories

e horizontal gauge theory with gauge group Gyo, = [U(M)]Y

e vertical gauge theory with gauge group Gyer = [U(N)|M
e diagonal gauge theory with gauge group Gaing = [U(NM/k)]F with k = ged(N, M)

whose gauge groups have the same rank. Moreover, since the partition functions of these three

theories are identical (indeed, by construction they are simply different expansions of Zy s,

namely Z}(li\i’M), Z\(,é\rf’tM) and Za(lgéM)

to the triality

respectively) they are mutually dual to each other leading

Groe = UMY 4= Guen =[UWN)]" <= Gawg = [U(MN/k)]".  (4.56)

Notice that this duality is not limited to the weak coupling limit: This follows from the relation
4.25 and extends the duality to the full non-perturbative regime. At this point we also want
to emphasize the highly non-trivial nature of the duality map that the horizontal and vertical
theory have with the diagonal one. Whereas the well known fiber base duality between the
horizontal and vertical theories mainly exchanges their coupling constants and their Coulomb
branch parameters, the duality map to the third theory completely mixes coupling constants,
Coulomb branch and mass parameters. In the next section we describe how the triality together
with the result about the invariance of the partition function under flop (4.25), implies an even
larger web of dualities.

4.4 Beyond Triality

The authors in [33] argued that a whole family of brane webs is related by geometric transfor-
mations

ged(N, M) =k = ged(N', M")

4.57
NM = N'M' (4.57)

Xnoar ~ Xy if {
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where the equivalence relation means that the geometries can be related by sequence of flop
and SL(2,Z) transformations. The second condition is simply the fact that the number of
compact divisors (hexagons) in the web does not change under flops. As was argued in [38|,
the equivalence (4.57) together with the triality structure described in the previous section
immediately implies a vast web of dual gauge theories. Having a triplet of theories associated
to Xn v with gauge groups

Ghor = [UM)]N ) Gren = [UMN)M | Gaing = [UMN/E))* (4.58)

and another triplet associated to Xy p» with gauge groups

hor = [UMO]Y - Gl = [UNM - Gliag = [UM'N'/R)), (4.59)

hor vert —

such that the two web diagrams are related by (4.57), we can find a duality map relating their
parameters by applying (4.3) a given number of times. The two sets of theories will have at
least one theory in common, i.e. same gauge group, matter content. We can easily see from
(4.58) and (4.59) that this will be theory associated to the diagonal expansion which can be
safely followed through the extended Kéhler moduli space (collection of adjacent Kéhler cones)
as the flop transformations do not act on the curves related to its coupling constants. Hence
this theory is not send through a strong coupling regime where we might not trust the low-
energy gauge theory description. The other theories are generically different which can also
be understood from the strong coupling argument, as their coupling related curves undergo
flops in general. The suggested duality structure for the Kahler cones associated to Xy 3 and
Xnv.ar respectively is schematically shown in Fig. 18. From the latter figure, it is also clear
that as we have to perform in general more than one flop transition, we pass through a number
of different cones before reaching the final configuration. We call these the intermediate Kéhler
cones and they correspond to web diagrams that do not have an equivalent representation in
terms of an unshifted web, i.e. X](\(,Sj; = Xn,m. It is a natural question to ask whether we
can learn anything new from these webs. As explained above, we know that there is at least
one gauge theory description associated with them, i.e. the gauge theory that we are following
through the extended Kahler moduli space. In section 5 we will see that we can indeed get
new information out of the these. As there are in general more than two web diagrams related
under (4.57), the above reasoning immediately implies a vast web of dualities between circular
quiver gauge theories with gauge groups such that

ged(N, M) =k = ged(N', M")

4.60
NM = N'M' (4.60)

UMM [U(N’)]Ml , with {
We now give specific examples to illustrate and motivate the points outline above.

4.4.1 Example: The duality web associated to X ;

To provide evidence for the fact that the combination of equation (4.57) with the triality as
implied by equation (4.56) implies an even larger web of dual theories, we look at a specific
example in more detail, namely the X4 ; geometry for which £ = ged(6,5) = 1. The corre-
sponding web diagram is depicted in Fig. 19. According to (4.57) the following web diagrams
are related through flop transformations

X5~ X103 ~ X152 ~ X301 (4.61)
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Jyw— o0

Figure 18: Weak coupling regions in the extended moduli space of Xy ar.

However, we will only provide explicit parametrisations and duality maps for the first two webs,
i.e. Xg5 and Xqo3. This should be sufficient to illustrate the proposal. Nothing fundamentally
new could be learned by including the other examples. The horizontal and vertical expansions
can be associated with gauge theories of gauge group [U(5)]® and [U(6)]°, respectively, while
according to our previous discussion, the diagonal expansion gives rise to a gauge theory with
gauge group U(30). To obtain the latter theory, in particular, to make the structure of U(30)
manifest, we need to expand Zg5 in terms of a specific set of variables, a procedure which was
proposed in full generality in the last section. Concretely, in the present case, these variables
are depicted in red in Fig. 19 and consist of (M, V @y, 30), where M and V are given explicitly
as

.....

M = he + v1 + has + vag + hag + va1 + has + vie + hig + v + hs
V =mag + (6 — 1)(hag + h3o) + (6 — 2)(v5 + hy + Va5 + hyo)
+ (6 — 3)(vio + hg + v20 + h1a) + (6 — 4)(v15 + h1a + v15 + ho)
+ (6 — 5)(vg0 + h1g + vig + hy) . (4.62)
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Figure 19: Parametrisation of the (6,5) web diagram: out of the 90 curves (h;,v;, m;) (for
i=1,...,30) only 32 parameters are independent. The red curves constitute a maximal set of

independent parameters which makes a U(30) symmetry visible.
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Here, the last relation follows from the general duality map relating Xg5 ~ X301 that was
initially conjectured in [33] and reviewed in the previous section. In this basis, we have*

=V +pi(M, a1, 30) . Vi=1,...,30, (4.63)

where p; are multi-linear functions in the 31 variables (M, @ 30), while hy__30 and vy 30 are
independent of V. Thus, formulated in a different manner, the diagonal expansion written
schematically in (4.26), can be understood as a power series expansion in Qy = e~V. Fur-
thermore, the @; play the role of the roots of @y, i.e. the affine extension of the Lie algebra
associated with the gauge group U(30) that is associated with the diagonal expansion: indeed,
in the weak coupling limit V' — oo, the diagonal lines in Fig. 19 are cut (as the area of the
corresponding curves in the toric Calabi-Yau threefold becomes infinite) and the remaining di-
agram can be presented as a single strip of length 30. According to (4.61), X¢5 can be brought
into X9 3 by flop transformations. The web diagram of the latter is shown in Fig. 20. This was
shown explicitly in [33], where also an explicit form of the duality map relating the two sets of
Kihler parameters, (h,v,m) and (h’, v/, m’) was provided. This map allows us to recover the
same set of parameters (M, V,a;  30) (drawn in red) also in Fig. 20. In terms of (h',v/,m’),
we have explicit relations

M = hig + vy + hgy + vy + By + vig + hiy + ) + hiyy + V5 + his + v + g + 07
+ hy; + vgg + hig + vig + Ay,
V =mjy+ (10 — 1) (hiy + hby) + (10 — 2) (vg + hg + vhy + hYy)
(10 = 3)(vis + M7 + Vip + hy) + (10 — 4)(vy; + hog + v5 + hag)
+ (10 = 5)(vg + hg + vgy + hiy) + (10 = 6)(vy5 + Ry + vi5 + hy)
+ (10 — 7)(vhy + his + v + hog) + (10 — 8)(v5 + hy + var + hi7)
+ (10 = 9)(viy + hiy + Vi + hg) . (4.64)

Note that, analogous to (4.63), we also have in the dual web diagram

for some multi-linear functions p;, while 2 55 and v] 3, are independent of V. Therefore, the
diagonal expansions (in the sense of (4.26)) of Zs5 and Zlo 3 both give rise to gauge theories with
gauge group U(30), as implied by [33] and as explained above. In Fig. 20, however, we have also
shown (in blue) a different set of maximally independent Kéhler parameters (D, p, ¢; 233, bl ..... 97).
In terms of these variables, we have

C1 —l—p(l)(D p,/b\l 27) if 1 S 7 S 10

vi=4q € +pz (D P bl a7) if 11 < <20 (4.66)
€3 "’pz(' )(D>P> by o7) if 21 <:¢<30

1 : (1,2,3) : ’ / :
for some multi-linear functions p; ™", while k| 3, and v} 3, are independent of ¢; 3. Thus,

in the limit ¢; — oo for ¢ = 1,...,3, the vertical lines in Fig. 20 are cut and the diagram

34We stress that all 90 parameters (h;,v;,m;) can be expressed as linear combinations of the 32 elements
(M,V,an,... 30). However, we refrain to write down these relations explicitly, since they will not be needed for
the following discussions.
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Figure 20: Two different maximal sets of independent Kéahler parameters in the (10,3) web
diagram. After a series of suitable flop- and symmetry transformations, the red parametrisation
agrees with the maximal set of independent parameters (M,V,a; _30) used in the (6,5) web

diagram in Fig. 19.
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decomposes into three strips of length 10 (similarly to the examples in the previous section).
We can interpret this as the weak coupling limit of a gauge theory with gauge group [U(10)]3.
This indicates that, upon expanding Zg; as a power series in e, e~ and e~ ® (which is
equivalent to the expansion in terms of e~% for i = 1,..., 10) the latter can be interpreted
as an instanton expansion of a gauge theory with gauge group [U(10)]* (which via SL(2,Z)
transforms is in turn dual to a theory with gauge group [U(3)]'°). Tt is worth noticing that,
in this manner, the 317,,,727 play the role of roots of Lie algebras associated with this group.
Exploiting further the equivalence relation (4.61) for X5 we can in the same fashion engineer
a large set of dual quiver gauge theories whose gauge groups include

U@30), [UAs)F, [UQA0)P, [UE©), UG, WUE)E TP, U, (4.67)

all of which are compatible with the condition in eq. (4.57). Although not provided, the explicit
duality maps between these theories could be extracted in the same way as explained above.

4.4.2 Intermediate Kahler cones

In the following we will be interested in the intermediate Kahler cones that can be reached from
a given geometry Xy ;. These intermediate cones were defined as web diagrams that do not
have an equivalent representation as an unshifted web. We have argued before that the latter
engineer at least one gauge theory. For two geometries Xy ps and Xy jp related according to
(4.57) we have seen that the theories associated to their diagonal expansions have the same
gauge theory data, i.e. Coupling constants, Coulomb branch moduli and mass parameters.
When transitioning from on web to the other, this diagonal theory is not send through a strong
coupling regime (the curves related to the coupling constants do not shrink to zero size as they
do not undergo flop transformations in the process). Hence this diagonal theory will also be
engineered in all the intermediate cones. It is natural to ask whether there will be more than
one region in a given intermediate cone that engineers a (weak coupling) description of some
gauge theory. In the remainder of this section we will argue that this is the case. We give a first
example that shows, along the lines of reasoning of section 4.3 that there are in general indeed
more regions in the intermediate Kéahler cones who can be interpreted as the weak coupling
description of gauge theories. Furthermore we will see in a second example that one has to be
careful when it comes to intuitions at the level of the web diagram. From a naive viewpoint, one
could think that there would exist dual theories in the intermediate cones which violate the ged
condition as given in (4.60). After a more careful analysis we conclude that these descriptions
which seem to violate the ged condition can in fact not be interpreted from a gauge theory
point of view.

X1 and its extended moduli space

In order to motivate an answer to the questions raised about intermediate Kéhler cones it
is useful to study the specific example of X4;. The latter is schematically drawn in Fig. 21,
along with a parametrisation of the Kéhler parameters that is compatible with all consistency
conditions. We can arrange the latter in the following form:

~

ai:hi+1+1j, bl:hz—l—m, Vi€{1,2,3,4,5},
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Figure 21: Toric web diagram of X, (with shift parameter 6 = 0) with a consistent labeling
of the areas of all curves.

5 5
Lzza¢+h1+v, p:ZE—i—hﬁ—Fm, T=m++uv, D:E/sz. (468)
i=1 1=1

which is well adapted to the description of three different gauge theories engineered by Xy /.
Indeed, as can be deduced from the discussion in the previous section this web engineers the
following theories

e horizontal theory of Xéi: 0

The horizontal expansion of Zs; can be interpreted as the instanton partition function
of a gauge theory with gauge group [U(1)]®. This theory is parametrised in the following
fashion:

— coupling constants: the parameters 31,2,374,5 and p—Z?:l E are related to the coupling
constants

— roots: there is no finite Lie algebra associated with U(1), however, the parameter 7
can be interpreted as the affine root for 6 copies of the Heisenberg algebra a

— mass parameter: the hypermultiplet mass scale of the theory is set by the parameter
E

e vertical theory of Xéi: 0

The vertical expansion of Zs; can be interpreted as the instanton partition function
of a gauge theory with gauge group U(6), which is parametrised in the following fashion:
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Figure 22: 'Toric web diagram of Xéﬁ: %) with a consistent labeling of the areas of all curves.

— coupling constant: the parameter v is related to the coupling constant

— roots: the parameters 3172,374,5 play the role of the simple positive roots of as, which
is extended to a5 by p

— mass parameter: the hypermultiplet mass scale of the theory is set by the parameter
D

e diagonal theory of Xéi: 0

The diagonal expansion of Zs; can be interpreted as the instanton partition function
of a gauge theory with gauge group U(6), which is parametrised in the following fashion:

— coupling constant: the parameter m is related to the coupling constant

— roots: the parameters @ 2345 play the role of the simple positive roots of a5, which
is extended to a5 by L

— mass parameter: the hypermultiplet mass scale of the theory is set by the parameter
v

After a series of flop and SL(2,7Z) transformations, the web diagram of Xé?l) can be brought into
the form shown in Fig. 22, which is denoted by X, éi: » It has an equivalent representation in the
form of X 3552: Y as shown in Fig. 23. To arrive at this presentation only S L(2,Z) transformations
were used, but in particular no flop transformations. It is important that this web diagram does

not have an equivalent representation in terms of an unshifted web. It thus corresponds to an
intermediate K&hler cone as defined above. With help of the map (4.3), the Kéhler parameters
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Figure 23: Toric web diagram of X?Elg) with shift 6 = 1, and a labeling of the Kahler parameters.

of the new web diagram in Fig. 22 (and equivalently Fig. 23) can be expressed in terms of the
original Kéhler parameters {hy g, v, m}. Explicitly, we have for the areas of all curves

Uiz_hﬁ,
'U:l:—h5,
h'lzm+h1+h6,
hy = m+ hs + hg,

my = v+ hs + hg,
my =v+hy+ hs,

Ué:—h4,
Ug:_h37
hy =m+ hy+ hs,
hg:m+h3+h4,

my = v+ hg + hy,
ms = v+ hy + hg,

With these parameters we can furthermore define

V=, 0 =b,

7 / / n
b4:h5+v5:b4,
-~/ / / -~
ay = Mg + Vg = ayq,
-~/ / / -~
ay =My + Yy = Qyq,

-~ / /
01:h1+m1,

L' =mi + h] +my+ hly +ms + hy,

! / / /
E :m4+m5+m6,

by = hl+ v = by,

V.= hly+ vl = bs,

~ / r o~
a2:m5+1}3—a2,

~ / / ~
as =my + v, = as,
-~ / /
62:h2+m2,
6
! E:/
i=1
6
/ 2: /
D: ml,
=1

h’3:m+h2+h3,
hg =m+hy + hy,
my =v+hy+ h,
mg =v+ hy + he.

bé—hé+v3=b3,

(4.69)
a5 = my + vy = az,

(4.70)
= hy+my, cy = hg +mg,
v =] 4 vg + myg, (4.71)

6
7= (V) +mp) (4.72)
i=1
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which is more appropriate for their interpretation in terms of gauge theories: Indeed, in the
same way as above, there are three regions in the Kéahler cone of X?S?Q: Y which suggest an
interpretation as weak coupling regions of three gauge theories:

e horizontal theory of Xéi: 2

5

In the limit L' — oo, the diagram Xéiz ) decomposes into a single strip of length six,
which suggests an interpretation as the weak coupling limit of a gauge theory with gauge
group U(6). In analogy to the theories with 6 = 0 we call this theory the horizontal
theory, which is parametrised as follows

— coupling constant: the parameter L’ is related to the coupling constant

— roots: the parameters @)
extended to as by 7/

5 play the role of the simple positive roots of a5, which is

11111

— mass parameter: the hypermultiplet mass scale of the theory is set by the parameter
D'.

e vertical theory of Xéi: 2

In the limit @ — oo and 37" — @] — oo, the diagram X?Eg: Y decomposes into two

strips, each of length 3, which suggests an interpretation as the weak coupling limit of a
gauge theory with gauge group U(3) x U(3). In analogy to the theories with § = 0 we
call this theory the vertical theory, which is parametrised as follows

— coupling constants: the parameters @} and 37" — @} are related to the coupling
constants

— roots: the parameters ¢; _, play the role of the simple positive roots of two copies
of ay, which are extended to ay by L/

— mass parameter: the hypermultiplet mass scale of the theory is set by the parameter
E/

e diagonal theory of Xﬁ(i: 2

In the limit v — oo, the diagram Xéf;: 2 decomposes into a single strip of length 6,

which suggests an interpretation as the weak coupling limit of a gauge theory with gauge
group U(6). In analogy to the theories with § = 0 we call this theory the diagonal theory,
which is parametrised as follows

— coupling constant: the parameter v’ is related to the coupling constant

— roots: the parameters 317,“,5 play the role of the simple positive roots of a5, which is
extended to a5 by p

— mass parameter: the hypermultiplet mass scale of the theory is set by the parameter
M/

Thus, there are three regions in this intermediate Kahler cone, where the designated coupling
constants vanish and the web diagram decomposes into several strips that engineer the pertur-
bative limit of the corresponding gauge theory. This is the same argument that was already
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given in section (4.3) to argue for the triality of gauge theories. We already remarked before
that acting with a flop transformation on the curves that are related with the coupling constants
of a given gauge theory description sends the latter through a strong coupling regime and it is a
priori no clear what to expect after crossing the wall in moduli space. In the example at hand,
it is the horizontal theory associated to Xéi: 9 which gets send through the strong coupling
regime, ¢.e., the flop transformations act on the parameters h;__s. As a consequence, Xéi: 5)
does not engineer a horizontal theory with gauge group U(1)% but we conjecture that it engi-
neers a theory with gauge group U(3) x U(3) in the low energy description. The latter can be
seen in a sense as the ‘strong coupling dual’. We want to emphasize that this description should
also hold outside the low-energy regime as Xéf; Y can again be related to X3 o through flops, so
the partition function are related as well according to 4.25. An analysis at the strong coupling
point would require a full description in terms of little string theory. From the perspective of
the remaining two gauge theories, the duality transformation acts purely in the weak coupling
regime and therefore Xéi: %) also still engineers two theories with gauge groups U(6) (which we
termed the horizontal and diagonal one).

Performing further flop transformation we can pass through other Kéhler cones until we are
back in the original cone we started in, i.e. associated with Xéi: 9 We can thus analyze
each cone that lies in this orbit in the extended moduli space of our Calabi-Yau threefold. It
can again be shown that these other cones also allow for three separate regions where a weak
coupling description of a gauge theory can be expected. The gauge groups of the latter are

summarized in the following table

Calabi-Yau ‘ Ghor ‘ Glyert \Gdiag
Xg ue| ue) | U®)
XD =FxX&) | ue) [ [UE)P]ue)
X V=X [ UE)P | [UEP | Ue)
X =P ) [P | [ue)? | ues)
XD =FUXG) [ B ue) | Us)
X V=X | ue) [ [w@)e | us)

Notice that all gauge groups obtained in this fashion are of the form

) N'M' =6 and
NM ith 4.
U] wit sod(N', M) = 1. (4.73)

Thus all have the same rank and are compatible with (4.60). Moreover, all theories obtained
in this way have gauge groups that can also be engineered from unshifted web diagrams that
are related to Xg;. The details of these theories might still differ and a full understanding
certainly requires a more in depth analysis. A first hint will come in the next main section from
analyzing the dimensional reductions of theories engineered from intermediate Kéahler cones.
In the following we shall discuss another example, which potentially leads to theories with new
gauge groups that are not engineered by flop-related unshifted web diagrams.

X, and its extended moduli space
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Figure 24: Toric web diagram for the configuration (N, M) = (4,1) with shift ¢.

As another example we consider the case X,; whose web diagram is shown in Fig. 24 (a).
The latter can be related through flop transformations to X flz 2), whose web diagram is shown
in Fig. 24 (b). Similarly to the previous example, there is a whole orbit of Kéhler cones under
flop transformations. Analyzing again possible parametrisations of the corresponding Kéhler
moduli space, along with suitable decoupling limits to search for areas that engineer weak cou-
pling regions of potential gauge theories, we are lead to the following list of candidate gauge
groups

Calabi-Yau | Ghor | Giat | Gaiag
X" U UM@) | UM)
XP =Fxi) | v @R | e
X=X [P ve | U@
X=X | v@ [t u@)

The appearance of the group [U(2)]? in this table is rather surprising since it is not of the
form U(N")M" with N'M’ = 4 and ged(N’, M') = ged(4,1) = 1. Thus, if really a quiver gauge
theory with this gauge group is engineered from in the extended moduli space of X, ;, this
indicates that the web of possible dual theories is yet even further enhanced. In particular, it
would indicate that the condition ged(N, M) = ged(N’, M’) could be relaxed in (4.60) for the
construction of dual gauge theories. However, in the following we will find preliminary indica-
tions that X flz 2 does not engineer a gauge theory that realizes the gauge group [U(2)]? in a
weak coupling regime. Rather the appearance of this group seems to be linked to a strong cou-
pling effect in the 6-dimensional description, which may be linked to the full little string theory.
To discuss this aspect in more detail, in the following we consider X flz 2), whose web dia-
gram is shown in Fig. 24 (b). Upon cutting the diagram along the dashed red line and re-gluing
it along the lines labeled 3 and 4, respectively, the web diagram can be brought into the form
of XQ(?; 1), whose web diagram is shown in Fig. 25 along with a labeling of the Kéahler parame-
ters. In the following we will apply a geometrical analysis in terms of intersection numbers, by
identifying the divisors (hexagons) Sj 234 in the web diagram Fig. 25 with the co-roots of the
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gauge algebra of the supposed gauge algebra. With this, we shall be able to see if we can make
a consistent assignment of charges such that a gauge theory description can be associated to
it. The web diagram is shown in Fig. 25 where we have also mtroduced the Kéhler parameters
of the individual curves. As always, the parameters {mgj ;) } are not independent, but
there are consistency conditions associated with each of the four hexagons Si234:

Si Y + m§ J=m@ +h$, o)+ 8 = ol 4+ n

Sy m 4 n? = b 4 (1)+h _h(2+ (2),

Sy : m{Y + " =B 4 m o+ Y = ol 4 nl

S : mi" + ) = b +m{V, (2) + 1P =n + oM (4.74)

If we want to interpret the horizontal expansion in Fig. 25 as corresponding to a theory with
gauge group [U(2)]%, we need to introduce a independent basis of 6 parameters, i.e. 2 coupling
constants, 2 Coulomb branch parameters and 2 mass parameters. The curves associated to
these parameters should then have the appropriate intersection numbers to give a consistent
picture. By this we mean that the following three conditions should be satisfied:

1. The curves associated to the coupling constant should be uncharged under the gauge
group, i.e. it should be possible to make a choice of divisors S, and S}, (corresponding to
the co-roots of the a; x a; gauge algebra) such that the "coupling curves" have vanishing
intersection numbers with the latter.

2. The curves associated to the Coulomb branch parameters should be charged in such a
way that they fall into the adjoint representations of the respective gauge group

3. The curves associated to the mass parameters should be charged in such a way that they
fall into bifundamental representations under the gauge group.

Furthermore, it is useful to have the explicit expression of the partition function for the expan-
sion of X 5 1) We know that for a gauge theory it is a series expansion in the exponentiated
coupling conbtants. It will thus give us a hint which combination of curves should be considered
as candidates for the coupling constants. Different combinations are possible as the shift iden-
tity for the ¥-functions allow us to modify the expansion parameters. The partition function
associated with this web diagram can be calculated by using the general building block (3.86)
and gluing it in an appropriate way. The resulting expression for the partition function takes
the following form

i=1 -~ (1) ~ (1)
22(72 ) = E (Qm(ll)Qh(ll)thQ)Ql,l)ml |(Qmél)Qh(lmthl)QQ,l)'% |
NOBNCINCOMNC)
1 =2 =1 02

_lafVI4la “>\+\a<2)|+|a@>\

(2)|

~ 2) ~
X (Qm(lmthl)thz)Ql,z)lal |(ngz)Qhéz)thl)QQ,z)l%
y V0,0 (@0 Qu2)d 0 @ (Qm)V @ (Qm)d o (2)(@@1)@2,2)
CRONOIEDING <1)(Q2 1)U <1>a<1>(Q1 )7, (1)
1 1 Qg
0@ ,0(Q@)0 @0 (@ h<2>Q2 1)0,2,0(Q h<2>Q1 1)U,0,0(Q,@)
U, (17 <2)(Q2 2)V <2>a(2>(Q12)19 @@ (1)
1 1 Qg

X

9
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where we introduced the notation
Qui=Q0w@,w, @n=0QwRw, Q2=QeQw, Qn=0Qwl,w. (‘475

We can analyze the weights of the coupling constants of this expression with respect to the
divisors S1, 55, S3 and Sy by computing their intersection numbers. Specifically, we have

coup. curve C C-5,|1C-5/|C-5|C-5
g I B B o D 1 =1 | 0 2
951) mgl) + h?) + hél) i vél) n hgn 1 _1 9 0
g2 | m? +h + P o+ RP | 2 o | -1 | -1
P [ SRy ) O ) Ry L I 2 1 | -1

From the table we see that, as the partition function stands in (4.75), there is not one combina-
tion of the curves that is uncharged under both gauge group factors U(2) x U(2). One can try
to use the shift identity of the ¥-functions to move things around. However, we did not find any
combinations which satisfies the requirements specified above. Thus, we conclude that in the
present case, it is not possible to realise the full group U(2) x U(2) at the perturbative level.
If at all possible, the latter can therefore only be realized non-perturbatively, thus possibly
pertaining to a little string theory. This aspect requires further investigation.

4.5 Summary

In this section we studied exact dualities between little string
theories of class A and thus also dualities between their low-
energy descriptions as circular quiver gauge theories. The
starting point for unraveling the dualities was the fact that
Calabi-Yau threefolds Xy p and Xnvpp with NM = N'M’
and gcd(N, M) = ged(N'M'), can be related through flop
transitions. This suggested relations among the theories en-
gineered by these geometries. A crucial step for establishing
these relations was to show that the associated topological
string partition functions were also related. More concretely,
they are invariant under the flopping procedure that connects
1 these different geometries. This was shown explicitly in the
case when ged(N, M) = 1 and we presented reasonable ev-
idence that it holds in general. We commented on the fact
that, even if the topological string partition function is invari-
ant under flops, its relation to the individual curves in the ge-
ometries is different. In order to make sure that the partition function can really be interpreted
as an instanton expansions for the low-energy gauge theories, we studied if for a given geometry
Xn m there exist regions in the Kéhler cone where the weak coupling regimes of these gauge

Figure 25: Toric web diagram
. (1)
and parametrisation of Xy 5.
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theories are realized. We found that in total three such regions in the Ké&hler cone of Xy s,
two of which corresponded to theories that were already known to be engineered by this geom-
etry and also a third new theory with gauge group [U(NM/k)]* where k = ged(N, M). The
presence of these three theories in the Kéhler cones was dubbed triality. A direct consequence
of the invariance of the partition function together with the vast web of related geometries was
the existence of an even larger web of dual theories residing in the Kéahler cones of the different
geometries. Thus theories with gauge groups [U(N)M and [U(N")]M" with NM = N'M’ and
ged(N, M) = ged(N', M") were conjectured to be dual and a non-trivial example was provided
to motivate the statement. Along the way, we also encountered geometries X3, in the ex-
tended moduli space that do not have an equivalent representation in terms of unshifted web
diagrams. We referred to these as intermediate Kéhler cones. Upon studying specific examples
we conclude that these contain as well weak coupling regions and that they should at least
engineer one theory in general. The surprising fact was that just based on the web diagram,
these intermediate cones also engineer theories that violate the ged condition. However, a more
careful analysis revealed that the associated expansion of the partition function could not be
interpreted as an instanton series of gauge theories. It might be required to interpret this ex-
pansion from the point of view of full fledged little string theories. This point would require
further study.
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5 Non-trivial five-dimensional limits

In the previous section, we discussed the notion of intermediate Kéahler cones and argued that
the associated geometries engineer at least one little string theory whose low-energy description
is in terms of a certain six dimensional supersymmetric gauge theory on R;‘l@ x T?. The latter
corresponds to a theory that can be safely followed through the Kéahler moduli space when
performing the sequences of flops as described in this thesis. The reason for this is that when
chosen correctly, the flops do not act on the curves that control the coupling constants of this
theory. The latter is thus not send through a strong coupling regime. At the end of section 4.2 it
was also pointed that whereas the expression of the instanton partition function stays invariant
under flops, the relation between the gauge theory parameters and the Kéhler parameters asso-
ciated with the individual curves changes. This fact will turn out to be crucial to the analysis
performed in this section. As we are actually dealing with six dimensional theories compact-
ified on T2, it is natural to look at the dimensional reduction of the theories associated with
intermediate Kéhler cones. For the conventional theories engineered by Xy »s, the dimensional
reduction was discussed in section 3.5 and shown to be rather simple from the point of view
of the web diagram and also the partition function. For theories associated with an interme-
diate Kahler cone of X](\‘,S’)M it turns out that the dimensional reduction is not so trivial anymore.

A particularly interesting structure can already be observed in the case of the periodic strip
geometry. In the case where the strip is unshifted Xy ; and the engineered theory has U(N)
gauge group with adjoint matter, dimensional reduction consists in finding a simple one param-
eter limit which basically cuts a single line in the web diagram. The result is a five dimensional
U(N) theory with the same matter content compactified on S'. It was realized in [46], that

when trying the same simple argument for a periodic strip with a non-trivial shift X](\(,Sj)M, it is
not so simple anymore. The one parameter limit one needs to take in order to shrink the circle
to zero size is more involved, meaning that there is in general more than one line in the web
diagram cut. At the level of the gauge theory this translates into the fact that the rank of the
gauge group gets reduced and the matter content changes. Based on [46], we will first review a
specific example in detail and then conjecture the general pattern for web diagrams associated

to X](\?’)M.

5.1 The specific example of X?Efsl)

We first consider the simplest non-trivial example, namely the geometry X:)Ei: Y. The associated
web diagram is shown in Fig. 26 with the respective Kéhler parameters (the meaning of the blue
and red lines will be explained below). In the unshifted case, § = 0, a five dimensional limit
would simply correspond to H; — oo. In the case when § # 0 the same limit cannot be taken
without the curves intersecting, thus resulting in a non acceptable configuration. It turns out
that there exists a different one parameter limit which produces a perfectly acceptable toric web
diagram. In order to give some additional motivation for this limit, we consider the geometry
of local F; UF; compactified on a torus, shown in Fig. 27 (a) (see [58] for the non-compact
case). Here F; denotes the the first Hirzebruch surface®®. This geometry can be related to

35The Hirzebruch surface F,, can be thought of as a "twisted" CP' bundle over CP!, where the "twisting"
depends on a positive integer n. The surface Fy simply corresponds to the trivial bundle CP' x CP!.



95 5 NON-TRIVIAL FIVE-DIMENSIONAL LIMITS

Figure 26: Web diagram of Xéll) .

the web diagram of X?(,(sl: Y shown in Fig. 26by flopping the curves labeled by —FE; and —FEs.
This can be seen by looking at the equivalent representation of the web diagram for F; UF; as
shown in Fig. 27 (b). Flopping now —FE; gives the web shown in 28 (a). Upon performing

a

D
X
—E, !
s 1
a b EN_B_,
. F
—E +DB . A1 ! 3
& —E Pl
R L S e
: 1 )
B
F : b F
B Fi+ B ONCE P
3
b a ) —B,
©

Figure 27: (a) Gluing two copies of Fy. (b) Same geometry after cutting along the red line and
re-gluing along the line labeled — F;.

the appropriate SL(2,7Z) transformation, we get the web shown in Fig. 28 (b), which is related

to the web diagram of X?Ei: Y shown in Fig. 26, by a flop on the curve labeled by —F,. This
relation gives the following identification of the Kéahler parameters

HIIFQ_E27 H2:E17 H3:F1_E27
Vi=B, Vo=F+B—-FE — Es, Vs=F+B—FE — Es,
M =F — B, My =F,— By, My = B, . (5.1)

A more or less natural limit to consider for the local F; U, geometry would be the so called
large fiber limit. The latter can be achieved by taking for example the size of the fiber of one
of the Hirzebruch surfaces to infinity, i.e. F, — oco. This limit can be translated into the web
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Figure 28: (a) Geometry of Fig. 27 after a flop transformation of the line —E,. (b) Same
geometry after an SL(2,7) transformation.

diagram of X:,Eisl: Y without giving any inconsistencies, e.g. crossing lines. From (5.1), we can
see that this would give Hy, V3, My — 0o. These are the lines drawn in red in Fig. 26. From the
perspective of the horizontal or vertical U(3) theory with adjoint matter which is engineered by
X 3551: 1), this would indeed be the dimensional reduction, as the volume of the elliptic fiber gets
send to infinity, at least at the graphical level of the web diagram. So we see that although a
natural limit in 'y UFy, it translates into a more intricate one in the web diagram of Fig. 26.
In order to study this five dimensional limit in more detail and check if it is also consistent at
the level of the instanton partition function, we need to introduce a suitable basis of Kéahler
parameters, which as always must satisfy the consistency conditions imposed by the geometry.
In hindsight, we make the following choice in terms of the parameters in Fig. 26.

H =2a+d—g, Hy=a—m,, Hs=a—my
M, =a+mq, My =2a+d—g+m;+ms, M3 =a+ mo
%:g_ml_a7 ‘/ng—a—mg, %:d (52)

In terms of this basis, the five dimensional limit of the diagram Fig. 26 is implemented by
taking d — oo. In terms of the old basis of Kéhler parameters this means

Hi —» 00, V3—o00, M;— . (5.3)

Hence, the curves depicted in red will go off to infinity and the resulting diagram is shown in
Fig. 29. The latter is still toric and corresponds to the well known local dPs. It engineers [58] a
five dimensional gauge theory with gauge group SU(2) and a matter content which transforms
as Ny = 2 copies of the fundamental representation. We will denote this theory (SU(2),2F).
Now we look at the partition function Zéfsl: Y in order to ensure that the limit d — oo makes

sense at the algebraic level. Writing the partition function Zg(,fsl: Y using the new basis (5.2) of
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Hy

M

(&%
Vi Ms

Hj

0 0

Figure 29: Decompactified web diagram of Xéll)

Kaéhler parameters we get

207 = Z (QuQa QNN N QuQ3Q)2 QY ) Q1 Quny Qs Qg) !
00 (900) Vs Q) gy () Do (Q Q% ) Do (Q Q2 )
Vasas (15 0) Vasas (Q1QaQmys P) Varas (L7 1Q7 1 Qs £) Vazan (LR QL5 p)
Vanas (QaQmsi P)Varas(QumaQu s P)Vazas (@i Qs £)Vas0r (Qmy Qus p)
Vazar (QQa@rb: £) Varan (13 0) Vasas (15 0) Varan (Qa?; p) Vanen (@2 )

where the modular parameter is p = 8a + 2d — 2g + m; + my and we used the notation

_ —d - - g
Qa =e a7 Qd =e 7, Qg =€ g’ C27711,2 =e M2 ’ Q = QinleszQg ' ’

and the summations «y , s and ag are over integer partitions of ||, |as| and |as| respectively.
In order to see how the partition function reduces upon taking d — oo it is helpful to look
at the behavior of the individual ¥, (z; p) functions. We must distinguish between the case
where only p — 100 and the case where the elliptic argument goes to zero x +— 0 in addition to
p — i00. We find the following

D (35p) —— 25 UL P = (lal Pl )NW<$\/§>’

pP—100

(5.4)

w3 p) ——— o~ URP=1P) = AlP= 1) (5.5)
P—>100 ,T+—

where the Nekrasov factor N, is defined as
N (z) = H (1 — gt q“’i_jH) H (1 — T q_”i+j> . (5.6)
(i.j)en (i.j)ev
Applying 5.5 to the expression 5.4 when d — oo we get
D o[+ |ac| Joer |4z
238 = (=0 (072 Q, 0l Q1))

01,2

Nam(szQ;l\/§>N@al<leQa\/§>Na2@<ngQaﬁ)N@@(leQ;lﬁ)
Nasar (/5 Nazas (\f 5) Nasaa (Q? /1) N (Q2/4) |

X

(5.7)
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which is indeed the partition function of the five-dimensional N’ =1 SU(2) gauge theory with
Ny =262, 146-148|. This shows that the dimensional reduction of the shifted web Fig. 26 is
well behaved at the level of the partition function.

A notable feature of the dimensional reduction of the shifted web is that the rank of the
gauge group gets reduced and also the matter representation changes. In contrast, for the un-
shifted geometry Xj;, the resulting five dimensional theory would have the same gauge group
and matter representation. By associating weights to the individual ¥,, functions in the par-
tition function, as explained in section 3.5.1, we can analyze how the matter and the vector
representation get reduced upon taking d — oo.

Starting with the vector multiplet contribution (which gives rise to the ¥-functions in the

denominator of the partition function in eq. (5.4)) we have the following weight assignments in
terms of Dynkin labels ([A1], [A\2]) of su(3):

19041041 — [an]a 19042042 — [07 ]7 7*9013!13 — [070]
19oqoz2 — [27 _1]7 19(12113 — [_172]7 19011&3 - [17 1]
19042041 — [_27 1] ) 19043042 - [_172]7 19013&1 — [_17 _1] (‘58)

As expected for a vector multiplet, we find the su(3) adjoint representation plus a singlet. We
can perform a similar analysis for the adjoint hypermultiplet contribution (which gives rise to
the J-functions in the numerator of the partition function in eq. (5.4)):

19051041 — [07 O] ) 190&2062 — [07 0] ) 1903013 — [07 0]
19oqoz2 — [27 _1]7 19(12113 — [_172]7 19011&3 — [17 1]
79042041 — [_27 1] ) 196!36!2 - [_172]7 79&3&1 — [_17 _1] (‘59)

Again, as expected this gives the adjoint representation for the hypermultiplet plus a singlet.
We can represent the vector and hypermultiplet representation in the weight lattices, as shown
in Fig. 30. The weights that are colored in red, are related to the ¥-functions whose argument
goes to zero upon taking the 5d limit. These weights get projected out and we are left with an
adjoint su(2) representation plus a singlet for the vector multiplet and two fundamental su(2)
representations for the hypermultiplet. This agrees, as it should, with what one expects at the
level of the web-diagram.

5.2 A two parameter series of five dimensional gauge theories

Based upon the previous example, we now describe the general structure of the non-trivial
decompactification limit of twisted web diagrams corresponding to Xﬁffgiﬁgi_l) geometries,
shown in Fig. 31, with A, B € N. Web diagrams of this type are parametrised by A+ B+ AB+2
independent parameters. As a generalization of the pattern observed in the previous examples

we conjecture that there exists a one-parameter limit for which

k=0,...,B—1

r=1,...,A (5.10)

Hiikas) — 00,  Veiapyr =+ 00,  Mpyap — 00 V{

with the area of the other curves kept fixed. The A vertical, B horizontal and the single di-
agonal curve that are decompactified in the limit (5.10) are highlighted in red in Fig. 31. The



99 5 NON-TRIVIAL FIVE-DIMENSIONAL LIMITS

[_L_l] [0,—1] [_17_1] [O,-l]

Vector representation Matter representation

Figure 30: The vector and matter representation of the (3,1) web with shift 6 = 1. The weights
in red get "projected" out upon taking the 5d limit. The circles around the weight [0, 0] indicate
that the latter is threefold degenerate.

resulting web diagram is non-compact and has the form as shown in Fig. 32. It is composed
of AB compact divisors S,p (with a = 1,...,A and b = 1,...,B). It is well known that
web diagrams of this type [58] engineer linear quiver gauge theories in five dimensions with
B gauge nodes of gauge group U(A + 1), whose matter content consists of B — 1 bifunda-
mentals representations and Ny = 2A fundamental representations. We denote these theories
by ([U(A + 1)]B,24F, (B — 1)BF). Hence we see that the latter can be obtained as the five-
dimensional limit of the six-dimensional theory with gauge group U(A + B + AB) and matter

in the adjoint representation that is engineered from Xﬁxﬁﬂiﬁiil)

It must however be remarked that the five-dimensional theory is not at the most generic

A+1

A+B+AB

2(A+1)+1

A+2

Figure 31: Web Diagram of ngfBBJ(rig&_l). The curves drawn in red are being decompactified

in the limit eq.(5.10). The blue labels S, indicate the same hexagons as in Fig. 32.

point in moduli space. This can be seen by counting the independent parameters. As already
mentioned above, the web diagram in Fig. 31 has a total of A+ B + AB + 2. Upon taking the
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five-dimensional limit we get rid of one so the diagram in Fig. 32 has A+ B+ AB + 1. How-
ever, the most generic web of this type allows for AB + 2(A + B) — 1 independent parameters.
Hence, the theories we obtain in the reduction process from six dimensions live in a codimen-
sion A + B — 2 subspace of the full moduli space. For small values of N = A+ B+ AB + 2,
we list some of the non-trivial theories that can be obtained in the limit described above. A
noteworthy point is that web diagrams of the same length ‘N’ (but with a different shift ¢)
can give rise to five-dimensional gauge theories of different rank. From the point of view of six
dimensions it seems more natural to give a description of the reduction process in terms of the
parameter N. In this description the possible five-dimensional theories include [U (%)]D -1
with D — 2 bifudamentals and 2(% — 1) fundamentals, where D is any positive non-trivial
divisor of N + 1. This presentation naturally explains various gaps in table 6. Indeed when
N + 1 is a prime number there do not exist non-trivial divisors and hence no five-dimensional
limit of the type discussed above.

Figure 32: Web diagram consisting of AB hexagons obtained in the decompactification limit
(5.10) from Fig. 31.

5.3 Summary

The analysis in this section was a natural consequence of the fact shown in section 4.3, namely
the existence of gauge theory engineered by shifted web diagrams in the extended Kéahler cone.
Although our analysis was limited to geometries of the type X](\?,)l, there should be similar limits

for general web diagrams X ](\(,S)M We provided evidence that also these geometries engineer circle
compactified theories, the radius of which is controlled by the elliptic parameter according to
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parameters of Xffgfi}ifl) 5-dim. gauge theory
N|A|B| §d=B(A+1)—1 | gauge group | F | BF
311 1 SU(2) 210
51211 2 U(3) 410
1]2 3 [U(2)]? 201
T3]1 3 U(4) 6| 0
113 5 U(2)? 2| 2
822 5 U3))? 411
9 (141 4 U(5) 81 0
11]4 7 U@2))* 213
1151 5 U(6) 10| 0O
3|2 7 [U(4))? 6| 1
213 8 [U(3)? 4 | 2
115 9 U©2)p 2| 4
13161 6 U(7) 121 0
116 11 [U(2)]° 2|15
14 || 4 | 2 9 [U(5)]? 8| 1
2 | 4 11 U(3)* 41 3
5|71 7 U(8) 141 0
313 11 U4))? 6| 2
1|7 13 [U(2)]" 2| 6

Table 6: Non-trivial five-dimensional limits for N < 15

(3.11). It would be interesting to investigate this in order to see if one can come up with a
similarly clear pattern in the more general case. We also want to emphasize that the limits
studied in this section do not provide an exhaustive list. There are certainly the "conventional"
limits for the unshifted diagrams, i7.e. ¢ = 0. Furthermore, other one-parameter limits can
be found that completely break the gauge group from [U(N)] to [U(1)]Y upon dimensional
reduction. We did not discuss them as they give rather trivial theories.
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6 Dihedral symmetry from dual CY3 folds

In the previous sections we have used the conjecture (proven for the case when the ged is one)
that the partition function Zy s is invariant under specific flop transformations in order to

establish a web of dualities between the different gauge theories engineered by X](\?,)A/[. Based on
[47], we will take a different point of view in this section and focus on a single expansion form
of the partition function which corresponds to the instanton partition function of a specific
theory. For simplicity we work only with periodic strip geometries X](\‘,i)l and we also examine
the free energy Fy 1, defined in (3.57), rather than the partition function. For the purpose of

this discussion we expand the free energy as follows

FN,l(aL,..,N, S, R; e, 62) = Z Z Z fi1,...,iN,k,n(€17 62)@? - @%VQZQ% (6-1)

n=0 i1,...,ixy=0 k€Z

We can combine the invariance under flop with the fact that there a numerous configurations
of webs in the extended moduli space of Xy ; such that we can associate to them a partition
function that has the same gauge theory data, i.e. the same number of coupling constants,
Coulomb branch and mass parameters respectively and thus give the same expansion form.
From the specific relation between the gauge theory parameters and the individual Kéahler
parameters of the underlying geometry, we can write down a linear transformation relating the
different choices of gauge theory parameters that give equivalent expansions

@,...,an, S, R =G - (@,,...,ay, S, R’ (6.2)

where G is an invertible (N +2) x (N +2) matrix with integer entries. As the partition function
and hence the free energy are invariant under flops transformations, the matrix G is a symmetry
transformation. At the level of the expansion coefficients in (6.1) this means

fil,...,iN7k,n(€17 62) = lel ..... Z‘;\Pk/’n/(q, 62) fOI" (’l/l, P ,ilN, kﬁl, TL,)T = GT . (’il, N ,iN, k‘, n)T (63)

The transposition of G is due to the fact, that the transformation (6.2) is a passive one from
the perspective of the coefficients f;, ;. kn. Establishing relations of the type (6.2) for a
given instanton expansion associated with Xy 1, thus allows us to extract highly non-trivial
symmetries of the free energy and thus also at the level of the engineered theory. These are
non-perturbative in nature as they act in a highly non-trivial way on the spectrum of the
theory, mixing terms at different orders of the instanton expansion. From the point of view
of the BPS counting function of little strings, they completely mix terms in different winding
sectors. We also want to emphasize that they are valid for generic values of the deformation
parameters €; and €5 of the omega background. As the combination of any of two symmetries
has to be itself another symmetry of the partition function, they have the structure of a group
which we denote by G(N). The latter has a natural action on the vector space spanned by
the independent Kéhler parameters of Xy ;. In [47], the explicit examples for N = 1,2,3,4
have been studied in detail. A pattern emerged from these examples, which made it possible
to prove for generic N that G(N) has at least a subgroup of the form

G(N) 2 G(N) x Zy (6.4)

where the cyclic group Zy comes from the fact that due to periodicity of the strip, there are
different choices of roots possible, which only differ by cyclic rotation. More specifically, this



103 6 DIHEDRAL SYMMETRY FROM DUAL CY3 FOLDS

reflects the rotational symmetry of the affine Dynkin diagram of ay_; as we are free to choose
which curves we want to associate with the affine root/node®®. The factor G(N) was shown to
be isomorphic to the following dihedral groups depending on the value of N

Dihy if N =1,
Dih, if N =2,
Dihy if N =3,
Dih, if N >4,

G(N) = (6.5)

We also give an intuitive explanation at the level of the web diagram for the sudden appearance
of the infinite dihedral group for N > 4. Explicit computational checks of this symmetry
structure were performed in [47] for the free energy Fy 1 and were all in agreement with the
suggested structure. Another point of interest that will be discussed is how the the symmetries
mentioned above sit inside the group Sp(4,7Z). The latter is the natural group under which
genus-two modular objects transform, i.e. roughly speaking two modular structures that are
compatible with another in a specific way (section 3.5.2 ). As there are at least two modular
structures present in the partition function, which are basically exchanged under fiber base
duality, the symmetry group of the partition function is expected to be at least a subgroup of
Sp(4,Z). This was also argued for in [48|. Indeed we find for the case X 1, that the symmetries
discussed above together with the already present modular structure generate a group which is
isomorphic to Sp(4,Z). In the cases Xy with N # 1 we conclude that at a special point in
moduli space, all the combined symmetries generate at least a subgroup of Sp(4,7Z). In order
to make this thesis not unnecessarily long, we simply give the specific examples of N =1 and
N = 4. From there we directly write down the general structure. We refer the reader to [47],
for the worked out examples of N = 2 and N = 3. For simplicity, we denote the sequence of
flops and SL(2,Z) transformations introduced in section 4.1 that shifts the external legs by one
unit (in the case ged(N, M) = 1) by F.

6.1 Specific example of X, ;
6.1.1 Dualities and Dih; Group Action

The first specific example that we provide to illustrate the ideas explained above is the config-
uration (N, M) = (1,1). The corresponding web diagram is shown in Fig. 33(a). The later can
be represented in different equivalent frames through simple SL(2,Z) transformations and by
choosing a different fundamental domain for the toric diagram. We show two such frames in
Fig. 33(b) and Fig. 33(c).

Each diagram can be parametrised in terms of the parameters (h, v, m) or respectively (a, S, R),
(@,S",R') or (a",S”, R"). The latter can be expressed in terms of (h,v, m) as

a=h+tuv, S—h, R—S=m,
a=h+m, S =m, R -5 =vw,
' =h+m, S"=h, R'—58"=w. (6.6)

36In section 3.4.1 we remarked that the zero-section divisor does not appear explicitly in the toric diagram.
As a consequence the affine root is not singled out and we are free to choose it.
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18 1N 1R o
a a a

h

- a

Figure 33: Three different presentations of the web diagram of X, ; with a parametrisation of
the areas of all curves. The parameters (h,v,m) are independent of each other and the blue
parameters represent an alternative parametrisation.

Inverting these relations, (h, v, m) can be expressed as linear combinations of (a, S, R), (@', S’, R')
or (a”,S", R") respectively

h=S=a-8=8", v=a—S=R -8 =R'-8", m=R-S=8=a"—-5". (6.7

These equations also furnish linear transformations between (a, S, R), (a’, 5", R') or (a”,S”, R")
a a a” 1 -2 1 0 01
S = G1 . Sl = G2 . S// y with G1 = 1 -1 0 y 01 0
R R R 1 0 O 1 00
(6.8)

The matrix Gy is of order 3 (i.e. G1-G1-G1 = l343) while Gy is of order 2 (i.e. Go-Go = 1343).
Thus, introducing also the matrices?”

E =153, Gs =G1 -Gy, Gy =Gr -Gy, Gs; =Gy -Gy, (6.9)
the ensemble G(1) = {E, G1, G2, G3, G4, G5} forms a finite group, whose multiplication table is

E Gy Gy Gz Gy Gj
E|E Gy Gy Gy Gy G
Gl G1 G3 G4 E G5 GQ
Gy |Gy Gy E Gy Gy Gy (6.10)
Gs|Gs E Gs Gy Gy Gy
Gy |Gy Gy Gy Gs E Gs
Gs|Gs Gy Gs Gy Gy E

from which we can read off G(1) = {F, Gy, Gs,G3,G4, G5} = Dihg = S3. The latter can be
formulated more elegantly as the free group generated by the elements

1 -2 1 1 0 0
CLZG4:G1'G2: 0 -1 1 s and b:G5:G2'G1: 1 -1 0 s (611)
0 0 1 1 -2 1

37In the same manner as G and Go, these matrices can also be read off from web diagrams as in Fig. 33 with
a suitable exchange of (h, v, m), which, however, we do not show explicitly.
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furnishing the following presentation

G(1) = Dihs = ({a, bla® = b* = L33, (ab)® = Lzx3}) . (6.12)

6.1.2 Invariance of the Non-perturbative Free Energy

As a check of the fact that G; and G2 as defined in (6.8) are indeed symmetry transformations
of Z;;, we can consider the coefficients in the expansion of the associated free energy Fj ;.
Indeed, for N = 1, the expansion (6.1) takes the specific form

oo

Fia(@ S Rieve) = 3 ) firnler 2) Q' Q5 Q. (6.13)

n,1=0 k€Z

with @ = e~ As explained in the beginning of this section, in order for the matrices defined
in (6.8) to be a symmetry, the coefficients f; ;. (€1, €2) must satisfy

fi,k,n(€17 62) = fi’,k/,n’(ela 62) fOI' (i/, ]{I,, TLI)T = G%‘ . (Z, k, TL)T g = 17 2. (614)

Below we tabulate examples of coefficients f; ., withi <8forn=1,7<4forn=2and¢ <2
for n = 3 that are related by G;2: Table 7 shows the relations for GG; and Table 8 for Gb.

6.1.3 Modularity and Sp(4,Z) Symmetry

The action of G(1) as presented in (6.12) combines with the two modular factors SL(2,7Z) x
SL(2,7Z) into Sp(4,7Z), which is (a subgroup of) the automorphism group of X ;. To see this,
instead of considering the action of G(1) on the vector space spanned by (a, S, R), we consider
the vector space spanned by (7 = h 4+ v,p = m + v,v). Arranging the latter in the period

matrix
T W
0= ( v p > , (6.15)

there is a natural action of Sp(4,7Z), as reviewed in appendix E. The action of G5 on Q is

_ —20+p+T T—W _ T T—0
Gl- Q—>( —w . ), GQ. Q—>(’T—’U —2U+p+7’> (616)

Based on this action, we can equivalently represent the action of G(1) by G , € Sp(4,Z)

1 =10 0 1 0 0 0
, . 1 0 0 0 , 1 =10 o0

Gi=HK=| o o ;| and G=x=_ "0, | |, (617
0 0 1 1 0 0 0 —1

where K and H are defined as in appendix E. This implies that G(1) C Sp(4,Z). Moreover,
combining G(1) with the SL(2,Z), symmetry® acting on the modular parameter® p as

2 1
SP: (T,,O,U) (T_U?’_/_NIE)) ’ TP: (T,p,’l)) (T,p—i—l,’l)), (618)
38Notice that the symmetry group is isomorphic to SL(2,Z) rather than PSL(2,Z), since S’g # 1, as can be
seen from the action of Sﬁ on the period matrix ) — _TU —pv

39We could equally choose the modular group SL(2,Z), acting in a similar fashion on the modular parameter
7. More precisely, SL(2,Z). is generated by S, = HS,H and T, = HT,H.
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(i, k,n) | (7' K, n') fikm(€12) = firpw(€12)
Lo | @2 S
(1,1,1) | (3,-3,1) R v
(1,2,1) | (4,-4,1) T

2,-2,1) | (1,-2,2) q3t2+q2t(t2-(|;12_t—1|-)?(:]1()2tt2+2t+1>+t
2,1,1) | (4,-5,2) q4(—t2)(t+1)—q3t(t3+3t2+4t+12{1—_(;12)(qt:/42r21:j41r;2/42r4t+1)—q(t3+4t2+3t+1)—t(t+1)

(3,—3,1) | (1,-3,3) —%

(1,-1,2) | (2,1, 1) q4(—t2)(t+1)—q3t(t3+3t2+4t+12;]5)(;&3/—221;?—1—)22—%4-1)—q(t3+4t2+3t+1)—t(t+1)
(1,1,2) | (4,-3.1) q4(—t2)(t+1)—q3t(t3+3t2+4t+1gq—_qf)(;;/—g?:i—:;jjélt-i-l)—q(t3+4t2+3t+1)—t(t+1)
(1,3,2) | (6,—-5,1) — =

2,-3,2) | (1,-1,2) q4(—t2)(t+1)—q3t(t3+3t2+4t+12;jf)(;f;/4gz1;i41r)7;;r4t+1)—q(t3+4t2+3t+1)—t(t+1)

(1,-2,3) | (2,0,1) q5t3+q4t2(2t2+3t+2)+q3t(t4+3t3+8t?;—_6i;22)(:-_qf)gt4+6t3+8t2+3t+1)+qt(2t2+3t+2)+t2
(1,1,3) | (5,=3,1) | — (q+1)(t+1)(q5t3+q4t2(t+1)2+q3t(t44(rq2i314)r;55t/2;2;1i)1t)5;q2(t4+4t3+6t2+2t+1)+qt(t+1)2+t2)
(1,2,3) | (6,-4,1) q5t3+q4t2(2t2+3t+2)+q3t(t4+3t3+8t?;—fii—)ﬁ;22)(:112)(;t4+6t3+8t2+3t+1)+qt(2t2+3t+2)+t2
(1’ 3, 3) (7’ —5, 1) _ (g1 (¢+1)(gt+1)

(¢—Dvat-1)vi

Table 7: Action of Gy: the indices are related by (i,i%, k', n')T = GT - (i1, 49, k,n)T.
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(i7 k? n) (i,a kl: n/) fi,k,n(elﬂ) = fi’,k’,n’(€1,2)
(27 _37 1) (17 _37 2) - (qfﬁfl)
342 2 2 2
(2,-2,1) | (1,-2,2) e
@ (—12) (t+1) =3t (34362 +4t+1) —g? (t* 43+ T2 4t +1) —q (3 +4t2 43t +1) —t (¢ +1)
(27 _17 1) (17 _]-7 2) ( ) ! ( 2(1:11)((13/2@71”3/2 ) q( )
2,0.1) (1,0.2) R +q4t2(2t2+3t+2)+q3t(t4+3t3+8t?+6;|—22)(:-q12)(;t4+6t3+8t2+3t+1)+qt(2t2+3t+2)+t2
5 s Yy q—1)g=(i—
gt (—12) (1) =Pt (34382 +4t+1) —q? (£1+ 443 4 T2+ 48+1) —q (£3 4424 3t4+1) —#(t+1)
(27 L 1) (17 1, 2) (g—1)g3/2(t—1)t3/2
P12+t (242t42) +q( 22 42t+1) 4t
(27 27 1) (17 27 2) (g—1)q(t—1)t
(2:3,1) | (1,3,2) ~ @ heD
_ _ _ (g D)+ (gt+D)
(37 37 1) (17 37 3) (¢—1)\/qt—1)Vt
543 412 2 3 4 243 2 2 4 3 2 2 2
(3.-2.1) | (1,-2.3) @13 +q42 (242 4+3t+2) +¢°¢ (143t +8t(;—fi;22)(i11)(tzt +6t3+8243t+1) +qt (262+3t+2) +
(g+ 1) (t+1) (Pt +q* 2 (44+1) 2+t (t2 4+ 2634612 +4t+1 )+ (t2+483 +612 2t +1 ) +qt (t4+1)2+t2
(3,-1,1) | (1,-1,3) | == s x (qfl)q5/2(t71)t)5/2q ( e :
(q+1)(t+1) (P13 +q "2 (t+1)2 +¢°¢ (£ 4263 4612+ 4t+1) +¢2 (#4463 +6t2 4241 ) +qt(t+1)2+¢2)
(Sa 17 1) (17 17 3) - (g—1)g®/2(t—1)t5/2
(3,2,1) (1,2,3) P3+q41% (262 4+3142) +¢2t (1143154812 +6142) +¢2 (201 4613+ 81243141 ) +qt ( 242+ 31+2) +1°
$ 1 (¢—1)q(t—1)t*
_ (g+1)(t+1)(gt+1)
(3a 37 ]-) (17 37 3) (q—l)\/(}(t—l)\/i
. _ ___Vat
(1,-3,2) | (2,-3,1) CESCY)
(qt+1)(gPt+q(t+1)2+1
(1-2.2)| 221 R
2 2
(1.2.2) | (2.21) e
NG
(17372) (2737 1) _(Q*l)ztfl)
_ _ _ (gD (+1)(gt+1)
(L 3, 3) (3, 3, 1) (g—1)/q(t—1)/t
(1,3,3) | (3,3,1) _ (@) (E+1)(gt+1)

(¢—Dvat-1)vt

Table 8: Action of Go: the indices are related by (i, i, k', n' )T = GL - (i1, 19, k,n)7.
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generates the complete action of Sp(4,Z): the generators (S,,T,) can be expressed as S, = L?
and T, = LHL'"H = X,. Furthermore, we have G5G} = L KL" such that we can write

X, =GyGS7 X,=T,, X3 = S,G'G)S,,
Xy = G’lG'szG'1 5 X5 = G'lG’zSg, Xg = SﬁG’lG/QS,gG'l . (6.19)
with X 23456 defined in (E.2). This indicates that
< /1, ;,Sp,Tp)D(Xl,Xg,Xg,X4,X5,X6>§Sp(4,Z), (620)

where the last relation was shown in [149]. From (6.17), using the presentation of Sp(4,Z)
given in [150], it follows that

< ,la /27Sﬂ7Tﬂ> C <K7L> gsp(47Z)7 (621)
which implies (G} ,GS,S,,T,) = Sp(4,7Z).

6.2 Specific example of X,
6.2.1 Dualities and Dih,, Group Action

As a second example to illustrate the ideas that have been introduced in the beginning of this
section, we discuss the case X4 ;. The web diagram of the latter is shown in Fig. 34 together
with an appropriate parametrization. While the examples of X5; and X3; we not explicitly
discussed in this thesis, we indicated that the group @(N ) in their cases was isomorphic to Dihy
and Dihj respectively. One might thus expect that the order of the group that we find for X,
is larger, for example Dihy. It is indeed true that the order grows, however it grows infinitely
large and we find Dih,,. At some later point we give an explanation for this at the level of the
web diagram, but first we show that indeed G(4) is isomorphic to the infinite dihedral group.
The consistency conditions stemming from the web diagram are

S%O): h2+m2=m1—|—h2, V1 +myp = Mg + Vg S;O)i h3+m3=m2+h3, Vg + Mo = M3 + V3]

SéO): h4—i—m4:m3—|—h4, Vg + Mg = My + Vg ; Sio): h1+m1:m4+h1, my + v = My + Uy
(6.22)

while a solution is provided by the parameters
~(0
(ag,%,:},zl’ S(O)7 R(O))

Zigo):vl%—hg, /a\go):UQ—th,

Zigo) =U3+h4, 6510) :U4+h1,
S(O):h2+02+h3+U3+h4+U4+h1,

R(O) - 45(0) = MMy — Vg — Vg — Vg . (623)

The dihedral group found in the previous ex-
ample was generated by two transformations,
so we try to do the same here. The latter can
in fact be obtained in a simple fashion by con-
sidering two diagrams that are obtained from
Fig. 34 through a rearrangement and a flop
transformation respectively:

Figure 34: Web diagram of X, ;. An indepen-
dent set of Kahler parameters is shown in blue.
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1) rearrangement:
A simple rearrangement of Fig. 34 is shown in
Fig. 35(a). The parametrisation in terms of (3527374, SM . RMWY as indicated in the Fig. 35(b) is

distinct to the one in Fig. 34 by (65?%73747 SO R©) Indeed, the two bases are related through
a linear transformation given by

(a) (b)

Figure 35: (a) mirrored web diagram Fig. 34 after an SL(2,7) transformation. (b) Same
diagram after cutting the lines vy 3 4 and re-gluing the lines my 5 3 4 (and performing an SL(2,7)
transformation).

~(0) .
a; a

i 3 2 2 2 —6 1
al a 2 3 2 2 —6 1
al a 2 2 3 2 —6 1
as _ _ as _
a0 [T G | e 9T e o 2 3 6 (6:24)
5(0) S 6 6 6 6 —17 3
RO RO 16 16 16 16 —48 9

The matrix G satisfies det G; = —1 and G? = lgx.

2) transformation F:

Another symmetry transformation can be obtained after performing suitable flop transforma-
tions on Fig. 34 that rotate the external legs. The resulting diagrams is shown in Fig. 36.
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Here we have introduced the variables

vy =v1+hy+hy, mi=my+h+hy,
vy =vy+ hy + hs, my=my+hy+hs,
vy =v3+ hy +hy, my=mg+hg+ hy,
vy =vg+hs+h, my=my+hyg+h.
(6.25)

The parameters (a§?§,3,4,5<0>,3<0>), shown in
blue in Fig. 36 are the same as those appearing
in Fig. 36, such that the flop transformation
alone does not lead to a non-trivial symmetry
transformation. However, starting from the
web diagram Fig. 36, we can present it in the

Figure 36: Web diagram after suitable flop form of Fig. 37. The parametrisation in terms
transformations of Fig. 34. The blue param-

eters are the same as defined in 6%93).

!
M
c— 3
Vs
—hy
d
W
/ E
!
MM
b— 2
1

Figure 37: (a) web diagram Fig. 36 after cutting the lines m/ , 5, and re-gluing along the lines
V1934~ (D) presentation of the web diagram after cutting along the line —hy and gluing m.

of the variables (af%,374,5(2)7R(2)) used in

Fig. 37(b) can be related to (65?3,374, SO RO
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in Fig. 34 through the transformation

al” at” 1000 -2 1

1 1 -

al) ad? 0100 -2 1

v a? 0010 -2 1

aio) =Gy a?f) , where Gy = 0001 -2 1 (6.26)
§(0) g2 1111 -7 3

R©) R(2) 4 4 4 4 —-24 9

The matrix G5 has det G5 = 1 but does not have finite order.*® This implies that the matrices
G, and G, freely generate the group Dih

G(4) = ({G1,Gy - G1}) = Dih,, . (6.28)

4OTndeed, by complete induction one can show that

n—1 n—-1 n—-1 n-1 2—4n
n—1 n—-1 n-1 n-1 2—4n
n—1 n—-1 n—-1 n-1 2—4n
n—1 n—-1 n—-1 n-1 2—4n
2n—1 2n—-1 2n—1 2n-—1 —8n 2n+1
4n 4n dn dn —8(2n+1) 4(n+1)

3 333

Gy =lgxs +n , for meN. (6.27)

which only resembles the identity matrix for n = 0.
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6.2.2 A Remark on Infinite Order

We have seen in the previous section that the

(3) 1 S symmetry transformation G5 is of infinite or-
% Y der, which is markedly different than what we

I im > .y have seen in the previous example. While we
m) 51 el will present explicit checks that (G5 is indeed a

- S —In U4/ symmetry of the free energy in the next sub-
2}1 s /0 ) S8 /3 'K@ section, we first want to provide an intuitive
D e R S explanation of what makes the case (N,1) =
% X ,5'[1“)/?%;; S 4 'YT (4,1) different than the cases N = 1,2,3. In-
47 2 L i vh deed, we will provide some indication that the

5(0) 5@ extended moduli space of X, contains many

! 1 vy 5t e more regions that are represented by (a priori)

3 I very different looking web diagrams. While

) 452 this will not prove that Gy is of infinite or-

der (as we have already done in the previous
Figure 38: Web diagram after two transforma- Section by purely algebraic means), it will in-
tions F of Fig. 34. The blue parameters are dicate the novel aspect of Xy (in comparison

the same as defined in eq. (6.23). to the previous examples).
Returning to Fig. 37(b), the latter is a web
)

diagram of the form X ﬁ: ). Another way of obtaining such a diagram is to perform two
transformations of the form F on Fig. 34, as is shown in Fig. 38, with the new parameters

hll:—h1+’Ug+Uzl:h1+h2+h4+U1+U4, hIQZ—hQ—FUg—l—Ué:h1+h2+h3+’l}1—|—’02,
hg:—h3+Ué+Ué:h2+h3+h4+02+1}3, hﬁl:—h4+Ué+U2:h1+h3+h4+1}3+1}4,

as well as

my = m} + v + vy =2~y + 2hg + hz + hy + my + vo + vy,
my = mjy + vj + vy = hy + 2hg + 2hg + hy + may + v1 + v3,
my = my + vy + vy = hy + hg + 2hs + 2hy +m3 + vg + vy,
ml = ml + vj +v] = 2hy + ho + hs + 2hy + My + vy + v3.

Notice that even upon imposing the consistency conditions (6.22), the parametrisation of the
web diagram Fig. 38 is different than the one of the web diagram Fig. 37(b).*' Thus, there is
a duality transformation that transforms the web X fl) — X fl), however, with a non-trivial
duality map D acting on the areas of all curves involved. The duality D can be repeatedly
applied to X fl) in Fig. 37(b), thus producing an infinite number of diagrams of the type X fl) :
each one with an a priori different parametrisation of individual curves.

Moreover, since the blue parameters (55(_27374, SO RO)) in Fig. 38 are the same as in Fig. 34,
the duality map D from the perspective of the independent Kéhler parameters precisely corre-
sponds to the symmetry transformation G5. Therefore, the transition from Fig. 38 to Fig. 37(b)
gives (a new) geometric representation of Gy at the level of web diagrams, which readily allows
to also compute arbitrary powers of G'5. The above discussion does not generalise to the cases

“This can be seen by choosing the solution v1 = vo = v3 = v4 = v and m; = me = Mg = my = m.



113 6 DIHEDRAL SYMMETRY FROM DUAL CY3 FOLDS

N = 2,3 (but can be extended to N > 4). Indeed, web diagrams with shifts § > 2 for N = 2,3
can readily be related (possibly through simple cutting and re-gluing operations) to web dia-
grams with 0 € {0, 1}, which only gave rise to symmetry transformations of finite order. In
other words, in the cases N = 2,3, the equivalents of the diagrams Fig. 37 and Fig. 38 are of
the type 6 < 1, which we have seen to provide only transformations of finite order.

6.2.3 Invariance of the Non-perturbative Free Energy

As non-trivial check for the fact that G; and Gy are indeed symmetries of Z4 1, we consider the
non-perturbative free energy associated with the latter. For simplicity, we restrict ourselves to
the leading term in €; 5. To this end, we define

lim €1 EQ.F4 1(@1234,5 R 61,62 Z Z 11712713714’]9” le 12 QSQR? (629)

€1,2—0
Nn,iqa=0 kE€Z

where fNS . kn € Z and @, = e % (for i = 1,2,3,4), Qs = e¢¥ and Qr = e ®. The

11,2,3,%4,
symmetry transformations Gy and G act in the following manner on the coefficients f}5 . . .

NS __ ¢NS Y Y A r NT _ AT S T _
inisissiakn = Ji i 0T (1,40, 8, 0, K )T = Gy - (i, 02, 13,00, k,n)" VE=1,2.
(6.30)

We can explicitly check the relations (6.30) by computing the relevant expansions of the free
energies. However, since the matrix G in (6.24) contains very large numbers, the relations are
easier to check for the matrices GGy - Go and G5 with

1000 0 O
0100 0 O
0010 0 O
Gi-Gy = 0001 0 0 (6.31)
1111 -10
4 4 4 4 =81
In Table 9 and Table 10 we tabulate examples of coefficients ESZQZSM,M with 41 +ig+i3+is < 6

for n =1 and n = 2 that are related by G; - G5 and G5 respectively.

6.2.4 Modularity at a Particular Point of the Moduli Space

Similarly to the case N = 1, we can analyse how the group G(4) is related to Sp(4,Z) at the
particular region in the moduli space, which is characterized by agﬂ) = ago) ago) A(O) = a,
which implies hy = hy = hg = hy = h (while the consistency conditions (??) impose v; = vy =

vg = vy = v and my; = mg = m3 = my = m). We can introduce the period matrix

[T . T=m+v,
Q_(v p)’ with p=h+m. (6.32)
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Table 10: Action of Go: (i

(i17i27i37i47k7n) (illviévi,37i£17k,7n/ ilisiz7i37i47k7n
(0,0,1,0, 21) (2,2,2,3,—6,1 2
(0,0,1,0,—1,1) | (3,3,4,3,-7,1 -8
(0,0,1,1,-3,1) | (1,1,2,2,—5,1 —1
| (0,0,1,2, 21) (2,2,3,4, 61 18
| (0,0,1,2,-1,1) | (3,3,4,5,— —45
| (0,0,1,3, 31) (1,1,2,4, 51 -5
| (0,0,1,3,-2,1) | (2,2,3,5,—6,1 30
| (0,0,1,4,-3,1) | (1,1,2,5,-5,1 —7
| (0,0,1,4,-2,1) | (2,2,3,6, 61 42
| (0,0,1,5, 31) (1,1,2,6, — —9
\(00,1,5 1) | (2,2,3,7, 61 54
| (0,0,0,6,-2,1) | (2,2,2,8,-6,1 12
Table 9: Action of Gy - Go: (1}, 1Y, 1,14, k' ,n' )T = (G - Go)T

: (ila Z.27 Z.37 i4a kv n)T'

| (0,0,1,1,-3,1) | (1,1,2,2,-7,2) —1
| (0,1,2,2,-4,1) | (0,1,1,2,-6,2) 2
| (1,1,1,2,-4,1) | (1,1,1,2,-6,2) 4
| (1,1,2,3,-5,1) | (0,0,1,2,-3,1) 3
| (1,1,2,4,-5,1) | (0,0,1,3,-5,2) 5
| (1,1,3,3,-5,1) | (0,0,2,2,-5,2) 4

-/ 1 1 " 1 NT
i, 1, Uy, iy, k )

T (ila Z.27 Z-37 2.47 kv n)T'
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Using the parametrisation (6.28) of G(4), it is sufficient to analyse the relation of the
generators Gy and G = G- G to Sp(4,7Z). The restriction of these generators to the subspace
(@, S, R) can be written in the form

1 -2 1 1 0 0
ared— (o 11|, and G’é(red): 4 -1 0 |, (6.33)
0 0 1 16 -8 1

Rewriting them furthermore to act as elements of Sp(4,7Z) in the form of (E.3) on the period
matrix €2 in (6.32), they take the form

GV — HKISKISHKHLPKLPKH, and G3"%P = HKISKLSKLSKH, (6.34)

where K, L and H are defined in appendix E. As in the cases of N = 2,3, this implies that the
restriction of G(3) to the particular region of the Kéahler moduli space (a, S, R) is a subgroup of
Sp(4,7). However, unlike the case N = 1, we cannot conclude that the freely generated group

<G§md’s"), é;(red’Sp), S,,T,,5;,T;) is isomorphic to Sp(4,Z).

6.3 General pattern

We show a general web diagram for X](\i)l with a suitable prametrization in 39. The 2N consis-

tency conditions are given by
hl’ +m; = hz + miy1 5, U +m; = Vits + M1, (635)
where m;, y = m; and vy = v;.

6.3.1 Symmetry Transformations of Generic Webs

We can summarise all previous examples by introducing the following matrices

0 0
]leN
Go(N) = 0o 0| (6.36)
1 1 -1 0
N N —2N 1
as well as
—2 1
Tnxn : :
Goo(N) = —2 1 : (6.37)
1 1 —2N +1 N -1
N -~ N —2N(N-1) (N-1)?

The matrices Go(IN) and G (V) for the examples corresponding to N = 1,2,3,4 are given
explicitly as
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150 -
Sy <
a h1 Al
S 2 2
U1 <
SN-s ho ma
Mmy—s+1 .
SN_5+1 )
N-0+1 S5 0 2
| hs ms N
my SN vs S o+1
N hs ms+1
Q
N | Go(N) | Go(N) defined in
1 b Gy eq. (6.11) and eq. (6.8)
2 Gs Gs eq. (4.6) and eq. (4.12) in [47]
3 Gs Gs -Gy | eq. (5.10) and eq. (5.14) in [47]
4 G1 : GQ GQ €q. (624) and €q. (626)

where the equation numbers refer to the definitions of the matrices in the individual cases. The
matrices Go and G (N) furnish two symmetry relations for a web diagram of the type (N, 1).
To see this, in the following we shall check explicitly the combinations of G..(N) - Go(N) and
Goo(N), which at the level of the web diagrams are generated by the same transformations we
already discussed in the example of (IV,1) = (4, 1) and which can be generalized for generic N:

1) rearrangement:

We first verify that G (N) - Go(N) is a symmetry. To this end, we start from the configuration
shown in Fig. 39 for § = 0, which (after mirroring and performing an SL(2,7Z) transformation)
can be presented as in Fig. 40(a). The latter in turn can alternatively be presented in the form.
Fig. 40(b). The matrix Goo(NV) - Go(N) (defined in (6.36) and (6.37) respectively) relates the
parameters in the web diagram Fig. 39 to those in Fig. 40(b) in the following way

@,...,an,S, R =Go(N)-Goo(N) - (@,,... a0y, R, (6.38)
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R — NS’

Figure 40: Two alternative presentations of the web diagram of X](\‘;’TO) from 39.

where
—2N +2 1
Anxn : :
Goo(N) - Go(N) = —2N +2 1 :
N?—-3N+2 -~ N?-3N+2 —2N? +4N —1 N -1
N(N =22 ...  N(N—2?% —2N(2-3N+N?) (N—1)?
(6.39)
1 - 1
with Ayyy = (N —2) | : + lIlyxn. Upon using the following solution of the
1 - 1
consistency conditions in (6.35)
V=Vy=...=UN=0, and mi=me=...=my=1m, (6.40)
which implies from Fig. 39 and Fig. 40(b) (for i =1,..., N)
a; = hip1+v, a; = hip1 +m
N N N
S=> M+ (N -1, S=p—m=> =Y h+(N-1m,
k=1 k=1 k=1
R—NS=m—(N-1)v, R —NS"=v—(N-1)m, (6.41)

we have indeed (with o' = ST @, = S0, hi + Nm)

a=a,+(N—-2)p—2N—-2)S+R =hi11 +v,
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N
S=(N*=3N+2)p = (2N* 4N+ 1)S' + (N = )R =) hp+ (N - 1),
k=1

N
R=N(N =20 —2N@2-3N+N*)S'+(N=1°R = N> h+m+ (N —1)*,

k=1

which proves (6.38).

2) transformation F:

In a similar fashion we can show that G..(N) is a symmetry transformation. To this end, we
first consider a transformation of the type F acting on the web dlagram Fig. 39 for 6 = 0
which results in the web diagram shown in Fig. 41, representing X0 N1 Y. The blue parameters

in Fig. 41
are the same as in Fig. 39, while we also have

introduced

vy =v1+hi+hy, mp=my+h+hy,
vy = vy + hg + h3, my = my + hy + hg,

U§V:UN‘|‘hN+h1, m’]V:mN+hN+h1.

2 Cutting the diagram Fig. 41 along the lines
v;  ny_; and re-gluing it along the lines

.....

m’1 ..... N We obtain the web diagram shown in
Fig. 42(a). Cutting the latter diagram fur-
thermore along the line —hy it can also be
represented in the form Fig. 42(b), which cor-
responds to a staircase diagram with shift

0 = N — 2. The set of independent Kéhler

: . : (1)
Figure 41: Web diagram of X . parameters (@}, S"”, R") can be related to
(a1,..n,S, R) in the following manner
(@,....an,S,R)" =Goo(N)-(@,... a%, 8" R")" (6.42)
To show this, we use (6.37) and (6.40) along with
a; =miq — hipo =m+ hiyq, S" =m, R'—258" =v—m (6.43)

to compute (with p” = Zg_l(m;f —hg) = Nm + Z{f:l hy)
a;=a; — 25"+ R" :m+hi+1+v—m:hi+1+v

S:p//_( )S” _1R// th+
R=Np' —2N(N -1)S"+ (N -1)?R" =N Z he +m+ (N —1)%0, (6.44)
k=1

which matches (6.41) and therefore shows that G (V) is a symmetry transformation.
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my_
N— N-1
UNn—2 h

—hn-1
- 1

UN-1

m/
N-—-1 - N-=2
UNn-3

2
UN _hl
3
/ !
1— my
N-1
_hN
2
Un
my_
a

Figure 42: (a) Alternative presentations of the web diagram in Fig. 41. (b) Further presentation
in the form of a shifted web diagram with § = N — 2.

6.3.2 Generators of the Dihedral Group

After having shown that the transformations G..(N) - Go2(N) and G (V) (and thus also Go(V))
are symmetry transformations of the partition function Zy;, we shall now discuss the group
structure they are generating. The matrix G, (V) has order 2 (i.e. Go(N).Go(N) = L (n42)x(N+2)),
while G (N) has the following order

3 if N=1,
9 if N=2,

ordG.(N) = 3 i N—3 (6.45)
oo if N>4.

Here infinite order means im € N such that (G (N))™ = I (N42)x(N+2)- While we have shown
all cases N < 4 explicitly in previous sections, for N > 4 it is sufficient to realise that

Ty = (1,...,1,N+ V]\Q[(N_4),g(N—2+\/N(N—4))) , (6.46)

N times
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is an eigenvector of G, (V) for the eigenvalue®?

/\N:%<(N—2)2—2+\/N(N—4)(N—2)> cR. (6.47)

Since Ay > 1 for N > 5 (and G (N) is diagonalizable for N > 5) it follows that G..(N) is not
of finite order in these cases. Thus, upon introducing the matrix

-2 1

, Inxn Do
Go(N) = Ga(N) - Goo(N) = -2 1|, (6.48)

o .- 0 -1 1

o .- 0O 0 1

which is of order 2 (i.e. G4(N).G5(N) = Lniaxni2), we find that Go(N) and G5(N) freely
generate a dihedral group

Dihy; if N=1,
Dih, if N =2,
Dihy; if N =3,
Dihy, if N >4.

G(N) = ({G(N), Go(N)}) = (6.49)

For N > 4, eq. (6.45) shows that #n € N with (Go(N) - G5(N))" = L(ni2x(n+2) (which
also implies # n € N with (G5(N) - Go(N))™ = L(nyo)x(n+2)). Furthermore, since (Go(N))? =
L (vi2)x(v12) = (G4(N))?, this also implies # n € N with G5(N)-(G2(N)-G4(N))" = L(n12)x(N+2)
or (Go(N)-G5(N))" - Go(N) = Lin42)x(n+2)-*> This means that there are no non-trivial (braid)
relations between Go(N) and G)(N), which indeed shows that the group G(N) = Dih,, for
N > 4.

Notice that Go(V) is a lower diagonal matrix, while G5(N) is an upper diagonal (N + 2) x
(N + 2) matrix. Furthermore, the partition function is invariant under the action of the group
Zy, which is generated by matrices of the form

00
M :

R(M) = 00 | (6.50)
00 010
00 00 1

where M is an N x N matrix that acts by permuting the @ n. One can check that matrices
of the form R(M) commute with both Go(N) and G5(NN), such that we have the following

[

symmetry group of the partition function G(N) =2 G(N) X Zy.

42The remaining eigenvalues are +1 (with degeneracy N) and )\El.

43For example, the former relation is equivalent to (Ga(N) - G45(N))™ = G4(N). Squaring this relation (due to
the fact that G5(N) is of order 2) would be equivalent to (G2(N) - G5(N))** = I (n42)x(n+2), Which does not
agree with (6.45).
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6.3.3 Modularity at a Particular Point of the Moduli Space

Using the general parametrisation of the group G(V) in (6.49), we once again ask the question
how the latter is related to Sp(4,7Z) at the particular region in the moduli space, which is
characterized by 650) ¥

already impose v,

..... N = Gy = a, which implies hy

3ty )

o T v . T=m-++uv,
Q_(v p>’ with p=h+m. (6.51)

Using the parametrisation (6.49) of G(4), it is sufficient to analyse the relation of the generators
G2(N) and G5(N) to Sp(4,7Z). The restriction of these generators to the subspace (a, S, R) can
be written in the form

1 -2 1 1 0 0
GY(Ny=10 -1 1], and G"W)= N -1 0|, (652
0 0 1 N? 2N 1
or on the space (7, p,v)
_ (N —1)? (N —2)2N? —2N (N? — 3N +2)
géred)<N) _ DK]l . géred)(N> . DN — 1 (N _ 1)2 2(1 — N) 5
N—-1 N(N?*-3N+2) —2N?+4N -1
- 1 4 —4 0O 1 0
;,(red)(N> _ D]TII . gg(red) (N) Dy = 01 0 , with Dy = 0 N -1
02 —1 1 N2 —-2N

Rewriting these generators furthermore to act as elements of Sp(4,7Z) in the form of (E.3) on
the period matrix  in (6.51), they take the form

N—1 1—(N—1) 0 0
Gy (V) = (HKL'H)Y *K(HLI'KH)Y 2 = | b oo ;
0 0 - (N=1? 1-N
1 N 0 0
Gy () = R =g o ] (6.5
0 0 N 1

where K, L and H are defined in appendix E. For N € N, the restriction of G(N) to the partic-
ular region of the Kédhler moduli space (@, S, R) is a subgroup of Sp(4,7Z). However, for N > 1,
we cannot conclude that the freely generated group (Gy """ (N),G5"Y(N), S, T,, S,,T) is

isomorphic to Sp(4,Z).
6.4 Summary

In this section, we analyzed the consequences of the vast duality web from the point of view
of a specific expansion of the topological string partition function. We find that the different
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expansions of the same form, i.e. same number of coupling constants, Coulomb branch and
mass parameters respectively, are related by linear transformations acting on the Kéhler moduli
space. By representing these transformation as matrices, we find that they generate a dihedral
groups whose order depends on the specific geometry X](\‘,S,)l. We show that these groups have
finite order for N < 3 and that for N > 4 they are isomorphic to the infinite dihedral group.
We give an argument for the appearance of the infinite dihedral group based on the web
diagram. Furthermore, we analyzed how these new symmetries combines with the already
present modular structure and how they sit inside Sp(4,7Z).
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7 Conclusions

The main goal of this thesis was to establish and study exact dualities among little string
theories of type A, which naturally implies dualities between their low-energy descriptions as
circular quiver gauge theories. Important for a good understanding of these theories and gaining
hints about what duality relations one might expect, was the plethora of alternative viewpoints
on little string theories of type A. The F-theory construction gives valuable insights into how
the geometry of the Calabi-Yau threefold Xy js is related to the different physical parameters
such as coupling constants, Coulomb branch and mass parameters, that we encounter in the
engineered theories. The brane configuration in M-theory is important to be able to calculate
the BPS counting function of the little strings. Through the relation to closed topological string
theory, the BPS counting function for the little strings in R? _ x T? is related to the closed
topological string amplitude associated with the Calabi-Yau threefold Xy 5/, for which we have
the powerful topological vertex method at our disposal. The duality between the M-theory
configuration with he (p,q) brane web representation in type IIB string theory provided an
important framework to systematically apply the vertex method. The equivalence between the
toric diagram of Xy s and the (p, q) brane web made it possible to use the graphical simplic-
ity and the powerful methods of toric geometry to look for dualities in a systematic way by
applying flop transitions and thus relating different geometries. The interpretation of certain
web diagrams that were encountered in this process was rather tricky but the correspondence
between the geometric elements in the F-theory construction and their counterparts in the toric
graph of Xn s helped to shed light on this issue.

The fact that different web diagrams of the type Xx s can be related through flop transi-
tions was important to get first hints of what kind of duality relations can be expected. From
these purely geometric considerations one would expect relations between theories with gauge
groups [U(N)]M and [U(N")M" with NM = N'M' and gcd(N, M) = ged(N’, M)'. In order to
verify these expectations, the associated topological string partition functions were compared.
In a first step, the behavior of the partition function under a specific sequence of flops was
studied and explicitly shown to be invariant in the when ged(N, M) = 1. A well motivated
conjecture was made for the case gcd(N, M) > 1. From this result it follows that the partition
functions associated with geometries related through flop transitions have the same form as
a series expansion in a suitable basis of independent Kéhler parameters. The way this basis
depends on the individual curves in the underlying geometry can however be different, a fact
that led to new insights at a later point in the thesis that we will discuss below.

In a given geometry Xy it was known that the topological vertex allowed for three dif-
ferent choices of preferred direction, horizontal, vertical and diagonal. The first two choices
were already well studied but this was not the case for the diagonal one. Through the geo-
metric relation under flops between Xy and X (with k& = ged(N, M)) and the result
of invariance of the partitions functions, it was concluded that the diagonal expansion has
an interpretation as an instanton partition function associated with a theory that has gauge
group [U(NM/k)]*. As the relation between the gauge theory parameters to the individual
curves in the two geometries was different, it was also checked that there is a region in the
Kahler moduli space of Xy s where the weak coupling regime is realized. This was done by
providing three suitable gauge theory parametrizations of the web diagram and the presence
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of these three theories in the single Kéahler cone was dubbed triality. From the combination
of these results we also concluded that there was an extended web of dualities among theories
engineered by geometries X](\i)M that can be related through flops. The study of the extended
Kahler moduli space led naturally to what we called intermediate Kahler cones. These were
defined to correspond to web diagrams X](\(;)M that do not admit an equivalent representation in
terms of an unshifted diagram (i.e. § = 0). We argued that even these geometries engineer at
least one theory, which is the one that does not get send through a strong coupling regime as
the associated curves do not undergo flops on this path through Kéhler moduli space. We also
encountered configurations which seem at a first glance to engineer theories which violate the
gcd-condition described above. A more in depth analysis showed that the associated partition
function expansion can not be interpreted in terms of an instanton series of a gauge theory. It
would be interesting to see if one can make sense out of this expansion in the framework of
full fledged little string theory. Another interesting direction based on the results mentioned
so far, would be to see if a similar analysis can be performed for little string theories of some
other ADE type. This would require that the underlying geometry admits a description as a
toric variety and furthermore that we know the explicit construction in terms of a toric fan. In
general, these will be more elaborate as one needs for example to include O5 planes if one even-
tually wants to build a configuration corresponding to other little string theories [40]. However,
advances in vertex technology in the presence of O5 planes [151] make this a possible direction
for further investigation.

Another new insight gained in this thesis that followed from the fact that even when the par-
titions functions of geometries X](\‘,S’)M with different shift that related through flops agree, the
relation between the expansion parameters and the individual curves in the geometry is differ-
ent. If a given shifted geometry engineers a honest to good theory compactified on Rflm x T2,
there should exist a limit which induces the dimensional reduction to R? _ x S'. In terms

€1,€
F-theory, this means that we have to find a limit in which we take the Volulmé of a given curve
to infinity, which in turn takes the volume of the elliptic fiber to infinity resulting thus in
dimensional reduction. In the unshifted case, this limit has a very simple realization for the
theories we are interested in. We end up with five-dimensional theories that have the same
gauge group and matter content. However, once a non-trivial shift is present the story, turns
out to be more complicated. In the periodic strip case Xj(\i)l, we managed to find such limits
first at the level of the web diagram by analyzing the associated consistency conditions. We
were able to write down the general pattern of these kinds of limit for a periodic strip geom-
etry. Further studying the behavior of the partition function under this limit, we were able
to confirm its consistency. We were able to write down the general pattern of these kinds of
limit for a periodic strip geometry. The resulting five-dimensional theories have in general a
gauge group of reduced rank and a different matter content than their six-dimensional parent
theory. In a first step, one could try to extend this result to more general geometries X](\‘,i)M in
order to see if one could establish a pattern in this more general case. Furthermore, it would
be interesting to capture these non-trivial limits in the F-theory construction of the little string
theories. The above mentioned results indicate that there a clearly differences in the geometry
X](\(,S?M with respect to Xy »s that makes the F-theory interpretation less clear. It seems that
now the volume of the elliptic fiber cannot be taken to infinity without taking also the volume
of the elliptic base curve to infinity. One might be led to consider more general spaces, such as
for example genus-one fibrations [152| in order to fully capture the F-theory compactification
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on X](\?,)M. We leave this direction for further studies.

Another result of this thesis is the presence of a dihedral symmetry in the topological string
partition function associated to the periodic strip geometry X](\f,)l. This follows from the obser-
vation that a such a web diagram all the webs diagrams that can be reached by flops allows for
numerous different but equivalent expansions of the topological string partition function that
have the same structure, i.e. same number of coupling constant, Coulomb branch and mass pa-
rameters respectively. This is a direct consequence of the invariance under flop transformations.
Each basis of these equivalent expansions is related to another one by linear transformation,
which can be conveniently encode into a matrix. As this transformation constitutes a symme-
try of the partition function and as the combination of two such symmetries has to be another
symmetry, they form a group. We explicitly showed that this matrices provide a representation
of the dihedral groups acting on the Kéahler moduli space. We described explicitly how the
order of the dihedral group depends on the value of N and proved that for N > 3 the symme-
try group is isomorphic to the infinite dihedral group. It was also analyzed how these newly
discovered symmetries combine with the modular structure of the partition function and how
this combination is embedded into Sp(4,7Z) at a specific point in moduli space. There are a
few interesting directions one can take from here. First, there is the rather natural question of
what happens for more general geometries than the periodic strip. Upon a preliminary analysis
of a few simple examples it seems that one obtains again dihedral symmetry groups in that
case. It is however not clear if or for what geometries the symmetry will be the infinite dihedral
group. It would also be interesting to understand the dihedral symmetry at the level of the
BPS counting function of the little string. Some terms in in a given winding sector are mapped
to terms in a different winding sector, while other terms do not get mapped outside of their
winding sector under the dihedral symmetry. So it is natural to ask whether this distinction is
arbitrary or if it has some deeper physical meaning to it.

The results in this thesis illustrate the power of string theoretic constructions in the study of
supersymmetric gauge theories. The geometrical tools at our disposal allowed for the discovery
of a web of dualities whose existence is rather difficult to infer from a purely gauge-theoretic
viewpoint. Furthermore the non-perturbative techniques allowed us to devise exact results.
One could hope that the advancement and the study of non-perturbative methods will allow
us to apply them to scenarios that are more realistic from a phenomenological point of view.
Furthermore, as the little string theories arise as worldvolume theories in string and M-theory,
the duality web that we established makes it clear that brane configurations which seem a priori
very different have the same information encoded in their BPS spectrum of little strings.
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A A few elements of toric geometry

We introduce some basic concepts from toric geometry that are used to define the so called fan.
The latter is used in the main part of this work. This exposition is not meant to be exhaustive
and we will certainly ignore a lot of subtleties. We follow mostly [153]. For a more complete
introduction, see [124].

A toric variety Xa of complex dimension m can be defined as a holomorphic quotient of C”

x, = (C/2%s) (A1)
G

where G = (C*)"™ x T is direct product of an algebraic torus (C*)"~™ and a discrete abelian
group I'. The set of fixed points Zx is removed from C" so that G can act freely. For non-trivial
I', the variety has so called orbifold singularities. This will be explained at a later point in this
section. The construction of a toric variety is in a sense a generalization of the construction of
weighted projective space, which is actually a simple example of a toric variety. The C* action
on X is defined as

(21,.. ., 20) = (Nz o Mrz), with e Cr, keZ (A.2)

The toric fan

The data associated with a toric variety can conveniently be packaged in an object called
a fan. We consciously try to avoid describing explicitly the algebraic geometry viewpoint on
toric varieties as these concepts are not used in this thesis and will just make things unneces-
sarily complicated. We first start by explaining the construction of a fan an then describe the
relation to the toric variety.

The fundamental building blocks of a fan are called cones. Consider a lattice N = Z" and
the associated vector space Nrg = N ® R, obtained by allowing for real coefficients. For a finite
set of vectors S in the lattice N, a strongly convex polyhedral cone o is defined by

o = Cone(5) = {Z At | Ay € Rso} (A.3)

u€esS

and the condition o N (—0) = {0}, which assures strong convexity, i.e. a cone does not contain
any line tough the origin. Given a cone o € N, we can define the dual cone ¢V living in the
dual space My as

o/ ={m € Mg|{u,m) >0, Yué€o} (A.4)

Using the dual lattice M, we can define the faces of a cone ¢. For a dual lattice point m € M
we have the half-space

H ={u e Ng|{v,m) >0} (A.5)

A half-space H is said to support a cone o if it fully contains that cone. A face of a cone
is then defined to be the intersection of the cone with a supporting half-space H;. When 7
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is a face of 0 we write 7 < 0. A cone is thus a face of itself, it’s intersection with H,. We
give special names to two categories of faces. Firstly, faces of dimension 1 are called edges.
They are generated by the set of vectors u € S that generate the cone itself. Secondly, faces
of codimension 1 are called facets. We consider a simple example shown in Fig. 43 in order to
illustrate the concepts introduced so far.

(a) (b)

Figure 43: (a) A cone o spanned by the lattice vectors u; = (0,1) and uy = (1,1). (b) The
dual cone 0" spanned by v; = (1,0) and vy = (=1, 1).

A fan A in Ny is given by a collection of cones in Ny such that two conditions are satisfied:
1. A face of a cone in A is again a cone in A.
2. The intersection of two cones in A is a face of each.

The associated toric variety is denoted by Xa. This explains in hindsight the choice of notation
in (A.1). It should be emphasized that each cone o is a fan by itself. In the language of algebraic
geometry, a cone defines a so called affine variety. These are in some sense the open subsets of
our toric variety. The fan tells us how these affine varieties must be patched together, i.e. it
encodes the transition functions. However, we will not describe how to extract the transition
functions as this is not needed and avoids an unnecessary detour into algebraic geometry. A
good illustrative example of the machinery described above is that of CP?. The fan of the
latter is depicted in Fig. 44. It is spanned by the three vectors u; = (1,0), us = (0,1) and
uz = (—1,—1). Each of the cones o1, 05 and o3 defines an affine patch U,, = C2. Using the fan
it is then possible to extract the usual transition function of CP?. The action of the algebraic
torus (C*)"™™ can be easily read of from the fan of a toric variety. To each vector u; € A
corresponds a homogeneous coordinate z; € C". There are n — m relations among the vectors
in the fan of the form

ZQ?U,-:(), where Q¢ €Z, a=1,...,n—m (A.6)

Every such relation gives rise to a C*-action
(21,5 2n) = (A9T2p, 0 A@nz) (A7)

which has been introduced in A.2. For the example of CP? in Fig. 44 there is a single relation
which immediately gives rise to the known C* action (21, 29, 23) — (A21, Az2, A23).
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Figure 44: Toric fan associated to CP?

All the toric varieties that we consider in this work are non-compact. At the level of the
fan this has a simple manifestation. A toric variety X is compact if and only if its fan A spans
the whole Ng. It is thus easy to see from the fan in Fig. 44 that the associated toric variety, .e.
CP? is compact. In addition to being non-compact, the varieties in this thesis are Calabi-Yau,
which imposes further constraints on the form of the toric fan. We will not provide any details
here but the Calabi-Yau condition, as described in section 2.1, can be neatly translated into the
language of toric geometry. A toric variety Xa is Calabi-Yau if and only if for every relation
(A.6) satisfied by the vectors in the fan A we have

ZQ?:0, a=1,...,n—m (A.8)

This condition can be translated into the equivalent statement that all vectors in the fan must
end on the same hyperplane. We immediately deduce that a toric Calabi-Yau variety cannot be
compact. As we are dealing with Calabi-Yau threefolds in this thesis whose toric fan lives in R?,
it is sufficient to for us to only represent the hyperplane on which all the vectors end. Hence the
toric fan of a Calabi-Yau threefold can be conveniently encoded into a two dimensional graph
with the vertices representing a vector ending at that point. We show the example of the so
called conifold in Fig. 45 (a). The four vertices shown in the z = 1 plane correspond to the
vectors v; = (0,0,1), vo = (1,0,1), v3 = (0,1,1) and vy = (1,1, 1).

Singularities and Flop transition

Algebraically the conifold is defined by the following equation
P=a2y—w=0, (v,yuv)ecC (A.9)

The conifold is a singular variety. From the algebraic perspective this means that there are
points for which

P=0 and dP=0 (A.10)

For the conifold, we have that (0,0,0,0) € C* is a singular point. There is more than one
way for obtaining a non-singular variety by smoothing out the singularity. The method that
will be of interest to us, is a so called resolution**. In order to do so, we introduce projective

4 More specifically, a crepant resolution, meaning that it preserves the Calabi-Yau condition [124].



129 B TORIC VARIETIES OF INFINITE TYPE

(a) (b) (c)

Figure 45: (a) Toric diagram of the conifold. Due to the Calabi-Yau condition it is sufficient
to show only the plane at z = 1. (b) and (c) Two different resolution of the conifold. They are
related by flop transition. The respective dual toric diagrams are drawn in red.

coordinates [a : b] € CP' and describe the space in the following way
ar =bu and by = av (A.11)

For points (z,y,u,v) # (0,0,0,0), the coordinates [a : b] are uniquely determined and we just
get the usual conifold. However, when (x,y, u,v) = (0,0, 0,0) the coordinates [a : b] parametrize
the full CP'. Instead of the singular point, we now have a sphere and the total space is smooth.
We could also have made a different choice and introduced the coordinates [a : b] as

ar =bv and by = au (A.12)

This other choice of resolution gives a different total space in general. However, due to the
simplicity of the example, the two spaces are isomorphic. The passage from one choice to the
other is known as flop transition. We now describe how these concepts translate into the lan-
guage of toric fans.

In a general toric fan, given a cone o its associated affine variety X, is singular if o is not
generated by an integral basis of the lattice V. For our purposes, it suffices to say that variety
will be non-singular if and only if the toric diagram is triangulated. Thus, resolving the singu-
larity boils down to triangulation. In general, different triangulations correspond to different
different resolutions of the singularities. For example, in Fig. 45 (b) and (c) we show the two
possible triangulations of the conifold (these correspond to the two possible choice for the res-
olution described in the algebraic description). As mentioned above, the process that relates
different resolutions is called flop transition. At the level of the toric diagram this procedure
amounts simply to replacing a given triangulation with a different one. Further implications for
the geometry are discussed in the main text. There is a dual representation of toric diagrams
which makes contact with the so called (p,¢)-brane webs discussed in section 3.4.1. In order
to get the dual toric diagram we simply draw the perpendiculars to each edge in the diagram.
These are drawn in red in Fig. 45.

B Toric Varieties of infinite type

In the following we give a very rough calculation of the intersection numbers in the elliptic
Calabi-Yau threefold X](\(,S?M, relying mostly on known results in the literature.
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Infinite toric fan

As in [123|, we start by considering an infinite toric fan, which can be decomposed into the
following set of maximal cones in R3:

O-il,j - Rzo(i7j7 1) +R20<i + 17j7 1) + Rzo(i,j + 17 1) ’
0l =Rxo(i4+1,5,1) + Roo(i,j + L, 1) + Rog(i + 1,5 +1,1), 4,j€Z (B.1)

where the triples (i, j, k) € Z? are called ray generators in the following. Since all ray generators
in (B.1) end on the same plane defined by 2z = 1in R (i.e. £ = 1 in all cases), the resulting
geometry is Calabi-Yau and non-compact. A local region of the toric fan looks as shown in
Fig. 46, where it is sufficient to show only the x — y plane at z = 1 due to the Calabi-Yau
condition. Each wall, that is the intersection of two maximal cones, defines an irreducible toric

(a)

Figure 46: (a) A local view of the x — y plane at z = 1 of an infinite toric fan with some
maximal cones o and walls T labeled. (b) A local view of the dual diagram to our infinite fan
with some curves and divisors labeled.

curve. There are three families of curves, diagonal (blue), horizontal (green), and vertical (red)
(the orientations are defined with respect to the dual toric graph Fig. 46 (b)). The walls have
the following form:

Tij=0,;N07; =Rso(i+1,7,1) + Rso(i,j + 1,1),
Ti+1,j = O'zj N O'z-lJrl,j = Rzo(i -+ 1,j, ].) + Rzg(i —+ 1] + 1, ].) y
Tigi1 =07 00001 =Rso(i, 5+ 1,1) + Rso(i + 1,5+ 1,1). (B.2)
Due to SL(2,7Z) symmetry, the three families of curves are equivalent to each other, i.e. they
are mapped into another in different SL(2,7Z) frames. It is thus sufficient to focus on one class
of curves. We choose the diagonal (blue) one. In the following, we shall follow [124] for a general
result (reduced to a three-dimensional fan) and apply it directly to the specific construction

above: Let u;—g 1,23 be four ray generators in a smooth three-dimensional toric fan. If 7 = o No’
is a wall in the latter, which is defined through

’
T = Rzoul + Rzoug s o = Rzouo + Rzo’ul + Rzoug s g = Rzoul + RZOUQ + RZ()Ug s



131 B TORIC VARIETIES OF INFINITE TYPE

there exist integers by o such that the wall relation
Ug + b1u1 + b2u2 + us = 0 (BS)

is satisfied. The intersection number of the irreducible curve C, associated to 7 with the divisor
D, associated to any ray generator u of the fan is then given by:

1 if u = ug,us,
D,-C. =<0 ifu=wu; fori =1,2, (B.4)
0 else.

Specifically, for the toric fan (B.1), we have the wall relation for 7; ; defined in (B.2):
(,5,1) = 1(i+1,5,1) = 1(i,j + 1, 1)+ (i+1,j+1,1) =0, with b =by=—1. (B.5)

Thus (B.4) directly yields the following intersection numbers for the curves associated to 7; ; in
(B.2), with all divisors (associated with the ray generators u)

1 if u = ug,us
D,-C,, =4 -1 if u=mwuy for k=1,2 (B.6)
0 else

By SL(2,Z) symmetry, we thus have the following non-zero intersection numbers for the dual
toric diagram in Fig. 46 (b):

o J1 if D= D, Dij1,j+1 R if D= Diji1,Diyay,
D-Cij = {—1 if D= Dit1j,Dijy1, DGy = —1 if D= D1, Div1j41,

1 if D=D;1;,D;;
D-Ci1= . Ly hi+2 B.7
I {—1 if D= Diji1, Digrjs1 - (B7)
Summarizing these results in words, we can say: The intersection of a curve C with a divisor
D is 1 if C sticks out D and it is —1 if C lies inside D.

5 . .
X](V)M and intersection numbers

In [123], the authors gave a toric construction of Xy . Roughly speaking, they consider an
infinite toric fan quotiented by NZ x M7 to impose periodic identifications in the web diagram.
In the following we assume®’ that there exists a similar quotient, which gives rise to the periodic
identifications required in the web diagram XZ(\?,)M' It should be noted that different choices of
the fundamental domain give different but equivalent representations of a given geometry. For
most curves and divisors, this quotient does no change the intersection numbers as devised in
the previous section. Nevertheless, in the webs X](\(,S_)M with N =1 or M = 1 some curves will see

45 Although we have not checked explicitly the existence of a quotient that satisfies all consistency conditions
given in [123], we have checked our results for the intersection numbers (B.8) and (B.9) in various cases through
other methods. In particular, for the cases Xz(fsl), Xz(f;) (for 6 =0,1) and Xz(fsz)v (for 6 =0,1,...,N — 1) we have
calculated them independently by representing the geometry locally as (combinations of) P! x P! and found
complete agreement. This leads us to believe that a quotient procedure as detailed below can be employed to
compute the intersection numbers.
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their intersections numbers modified due to the fact that a given curve C can now intersect two
irreducible divisors D and D’ that are identified under the quotient procedure. We will discuss
in the following the two special situations that may arise for N or M equal to 1, thus changing
the effective rule given at the end of the previous section. It is sufficient to focus on configura-
tions of type Xy 1 as the X s configuration will follow the same pattern by SL(2,Z) symmetry.

e Case 1: The curve C lies inside two divisors which

get identified under the quotient action. In the infinite

fan we can consider the intersection of the toric curve

C with the divisor D = D; + D, in Fig. B:

Dy

C-D=C-Di+C-Dy=1+1=2 (B.8)

Q

Under the quotient action, the two irreducible divi-
sors get identified D; ~ D, leading to the result
above.

e Case 2: The curve C lies in one divisor and sticks Figure 47: A curve C and divisors Dy,
out of another one and both get identified under the D, and Ds.

quotient. In terms of the infinite fan we are interested

in the intersection of C with the divisor D’ = D; + D

(see Fig. B)

C-D'=C-D+C-Dy=1-1=0. (B.9)

C Jacobi forms

This section is meant to introduce the definition and some basic properties of Jacobi forms.
We also define the well known Jacobi theta function #; which appears in numerous instances
in the main part of this work. For a good reference on the subject of Jacobi forms we refer the
reader to [154].

Jacobi forms

A Jacobi form of weight k& and index m is a holomorphic function
p:HxC—C,

where H denotes the complex upper half-plane, i.e. H = {p € C|Im(p) > 0}. Furthermore,
the function ¢(p, z) satisfies the following two transformation properties

) = (cp+d)Fe*™™marap(p, z), where <Cé Z) € SL(2,Z) (C.1)

(ap-l—b z
cp+d cp+d

and

B(p, 2+ Ap+ p) = e TIN5 ) where (A, p) € Z° (C.2)
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By specializing the transformation properties (C.1) and (C.2) we can see that ¢(p + 1,z) =
d(p,z+ 1) = ¢(p, z), which implies that the function ¢(p, z) has a Fourier expansion. We say
that ¢(p, z) is a holomorphic Jacobi form if this Fourier expansion is of the form

Z Z a(n,r)Q, Q" (C.3)

n=0 reZ
r2<4nm

where Q, = €™ and @, = €*™#. In the case we have the stronger condition 72 — 4nm < 0 it
is called a Jacobi cusp form. If there is no condition at all on the second sum in the Fourier
expansion it is called a weak Jacobi form. It follows from the second transformation law (C.2)
that two Fourier coefficients a(n,r) and a(n’,r") are equal when

r? —dnm = (') —4n'm and 1’ =r (mod 2m) (C.4)
Jacobi theta function 6,

In this work we are exclusively interested in a very specific Jacobi form known as Jacobi theta
function #,. The subscript is conventional and it meant to distinguish it from similar Jacobi
forms that bear the same name. It is defined as follows

01(p, 2) = 2iQ, L/8 gin(rz H (1-Q)(1-Q,Q-)(1— Q;Qz_l) (C.5)
r=1

In addition to the transformation properties (C.1) and (C.2), 0; satisfies a variety of other
relations. Among these the most useful for us is what we call the shift identity, given by

n2

b1 (p,2+1p) = Q7T (e )" 01(p,2) nmeEL. (C.6)

This identity is of great importance to us in section 4.2. It allows us to show that certain
topological string partitions functions are actually the same expression written in different
ways and related through equation C.6.

D Integer partitions and related objects

In this appendix, we define our notation concerning integer partitions. Furthermore, we intro-
duce we introduce different functions that depend on these partitions and which are used in
the main body of this work.

Integer partition

A partition of a positive integer n is defined to be an ordered set of positive integers A =
{A1, A2, ..., Ay} such that

M>X> 2 M >0 and A=) N=n. (D.1)
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We furthermore define

o)
AP =DA% (D.2)
i=1

Integer partitions are represented graphically by using Young diagrams, e.g. the following
partition partition n = {3,3,1} would be represented by

With the help of the Young diagrams we can naturally define the transpose of a partition A\’
by the Young diagram that is a reflection along the diagonal of the original diagram. In terms
of the previous example A = {3, 3,1}, the transposed diagram would be

(D.3)
The transpose in this case is \' = {3,2,2}. Analogously to D.2, we define

(A1)

[IX]1P = () (D.4)

=1

Given two partitions g of m and v of n such that £(p) > (v), p; > v; fori =1,... 4(v), we can
define the skew partition /v, which is obtained by formally subtracting the Young diagrams
from another, e.g.

= , v= , Wv= (D.5)
— |

A pair of coordinates (i,7) can be associated to a box in a given Young diagram, where the
first entry denotes the row and the second the column. The box in the most upper left corner
has the coordinates (1, 1) for example.

Schur Functions

Schur functions are symmetric polynomials in n variables x = (1, ..., z,), that are indexed by
integer partitions A\. They are defined as

sx(x) = ZXT = Z:E'il cooatn (D.6)

where the summation is over all semistandard Young tableaux T that can be associated with
the partition A. Each ¢; counts the occurrences of the number ¢ in 1. Skew Schur functions
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depend on skew partitions A\/n and they can be defined in terms of the conventional Schur
functions as follows

Sx/m(X Z (D.7)

where Nrﬁu are the Littlewood-Richardson coefficients. Two very useful identities when per-
forming sums of skew Schur functions [155] are

> S pu(X)sy(y) = H (L4 i) Y sur/e(X) 87 (y)
z Sn/u(x)sn/u(y) = H (1 - Iiyj)_l Z Sut/T(X)Su/T(Y) (D8)

Special functions and useful identities

A set of special functions depending on partitions are the J-functions. In the main text
of this work they appear in section 3.5.5 when calculating a universal building block for the in-
stanton partition function associated to the geometries Xy 5;. They are indexed by two integer
partitions p and v and have the following explicit form

T = (w3t,q) = | [ (@5 "2 t,9), (D.9)

k=1
where
Jw(zit,q) = H (1 — xt”ﬁ_”%q“i’j*%) H (1 — xt_“§'+i_%q’”i+j’%) (D.10)
(4,5)En (i.4)ev

In this expression the product runs over the coordinates of the Young diagrams associated to
the respective partitions. Another set of special functions are the ¥J-functions. They naturally
appear in the expression of the instanton partition function Z](\(,S?M and are defined as

Yu(zip) = [] 19(93 q i‘%t‘“ﬁj‘%;p) 11 19<93_1Q”3“"+5t”‘j+%;p> (D.11)
(4.5)Ep (i,j)ev
where
1
L™ (), %0
Wz p) = v — " 2) H (1-— ka 1- x_le) M (D.12)

e o (1-@p)

Here 6, is the Jacobi theta function defined in (C.5). Pairs of J-functions can be combined
into 1-functions in by utilizing the following identities

lal vl 2 =letl? el =1v)?

T (@4, ) Tu(Qee™ g, t) =22 ¢ 7t 1 Dulzp), (D.13)
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as well as

(—1)‘“'15'%61@5 (@2t 1 1
Tun(Qp ¢, ) Tu(Qor/ 730, 1) LEVED) ﬂuu(\/%p)

(D.14)

These identities are used when explicitly gluing the M universal building blocks W;{::'[?NN to-

gether to form a specific web diagram X](\?’)M. From (C.6) and (D.12) it is clear that the
¥-functions also satisfy a so called shift identity

ﬁaﬁ(Qfo7p) ( Q:FQ )|a\+|ﬁ| :F\CXHH&HQ 18] J|ﬂ|\2 H q H q:Fz y QI’ )

(i.j)€a (i,5)€B
= (—-QFQ, )Ia\+|ﬁ| +EB)—n() Das(Qu p) (D.15)
Upon changing the order of the indexing partitions in ¢, we simply have
Dap(Qus p) = (=1) 171050, (Q1 1 p) (D.16)

Another set of identities that are used in the main text to convert infinite products into products
over integer partition coordinates are the following

o _ —piti—ly—vitj A . . .
H 1—Qq " | tA B H Qq_u§+z—1t—ui+]) H (1_Qqu§.—ztu¢—3+1>

— i—147
i,j=1 1 Qq ¢ (4,9)€V (4,9)Ep
0o 1 _Qq—,u;i+i—1tf,u¢+J il g
11 — Q7w [T 1 =Qq ety (1 — Qg et (D.17)
ij=1 1 (ii)en

E Presentation of Sp(4,7Z) and Modularity

In [150] a presentation of Sp(4,7Z) in terms of 2 generators (satisfying 8 defining relations) has
been given. The latter are of order 2 and 12 respectively

1 0 0 0 00 -1 0
1 -1 0 0 00 0 -1

E=tyo o1 1 | and L=110 1 o |- (E.1)
00 0 —1 01 0 0

which satisfy

K*=1L"% =14, (KL'KL°K)L=LKL°KL'K), (L*KL“H=H(L*KL"),
(LPKL*H = H(L*KL?), (L*H)*>=(HL*?*, L(L°H) = (L°H)’L, (KL°°=(L°H)*,

where H = KLSKL'K. We also mention that another presentation [149] (in terms of 6
generators and 18 defining relations) is given by Xj 23456, which can be expressed in terms of
L and K as follows

X, =L°KL, X, =L°HLH, X;=L8KL'"Y,
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X, =HIL°HL"Y, X;=HL®, X¢=L°HLSH . (E.2)

Furthermore, the group Sp(4, Z) acts in a very natural form on the period matrix = ( ; Z )
of a genus 2 Riemann surface

( 4 ) . Qe (AQ+ B)(CQ+ D). (E.3)

Here A, B,C, D are 2 x 2 matrices that satisfy
ATD — CTB = 14,9 = DAT — CB", ATC =C"A, B'D=D"B. (E.4)

For convenience, we provide the action of some of the generators on the period matrix €2

_ T T—0 3 T—% %
K Q—>(T—U —21}—|—p—|—7’)’ L Q—>< % —%)’
'U2 v
AR Q—>( T _U>, L’: Q— T _§ ,
vr I
H Q—)(pv), LQKL4:Q—>( 7 ”_1),
voT v—1 P
L°HLYH : Q—>(T v ) HIHL" Q—>(T+1 “). (E.5)
v p+1 v p

F Résumé en francais

Depuis sa découverte la théorie des cordes est considérée comme un des meilleurs candidats pour
une théorie quantique de la gravitation. Aprés de nombreuses années d’efforts cet entreprise
n’a malheureusement pas encore mené a un modele réaliste de notre réalité. Malgré tout, on a
appris beaucoup de nouvelles choses sur la quéte de comprendre cette théorie mystérieuse. Il
se trouve que la théorie des cordes fait intervenir un bon nombre de structures mathématiques
trés sophistiquées et peut fournir des point de vue alternatif ainsi que de nouveaux résultats de
ce cOté. Parc contre, ce qui va étre 'utilité majeure pour nous dans cette thése et le fait qu’elle
donne aussi nouvelle approche aux théories de jauges. Ces derniéres sont une classe de théories
quantique, dont le célébre modele standard des particules en fait partie. C’est ce modeéle qui
reste a nos jours et cela avec beaucoup de succes, notre meilleur description de la physique
des particules telle qu’on la observe dans les collisionneurs. Pourtant on sait que le modéle
standard ne donne pas I'image compléte de notre réalité physique. Parmi d’autres défauts, la
gravité n’y figure pas par example. Cela était donc clairement une parmi plusieurs sources de
motivation pour chercher ailleurs. Revenons a la théorie des cordes et aux théories de jauges
en général. A travers des modéle de cordes quantique on peut modéliser une classe particuliére
de théories de jauges, a savoir les théories de jauges supersymétriques. La supersymétrie est
un concept qui relie bosons et fermions les un avec les autres. Sous elle, un boson va avoir un
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fermion associé a lui, son superparténaire, et vice versa. Méme si & ce jour, il n'y a pas de
vérification expérimentale de la supersymétrie, cette derniére reste néanmoins un outil de calcul
puissant. Comme elle impose des relations entre bosons et fermions, elle rend la théorie plus
rigide (contenu en champs réduit, moins de paramétres libres, etc.) et nous fournit avec des
outils de calcul puissants. Le résultat est donc que dans ces théories, beaucoup de quantités
sont plus facile a calculer. Le point important de cette histoire est que si on n’arrive pas a
résoudre un modéle ou a calculer une certaine quantité en présence de supersymétrie, on n’y
arrivera probablement pas sans. D’oll une bonne raison de s’intéresser a cette classe de théories
méme si la supersymétrie ne sera jamais observée expérimentalement.

Le sujet principal de cette thése porte sur les "Little string theories" (LST). Ce sont des
théories en six dimensions qui ont des degrés de libertés non locaux données par des cordes
mais ne contiennent pas de gravité. Leur existence était établie pour une premiére fois lors de
la réalisation que la théorie dans le volume d’univers de la brane NS5 pouvait étre découplé de
la gravité sans pour autant devenir trivial. Cela est di au fait que la tension des branes NS5
dépend d’une telle maniére de la constante de couplage de la corde g; que la limite g, — 0
avec M, = fixe, supprime les interactions entre cordes propageant sur la brane et cordes qui
se propagent dans l’espace-temps hors brane. Parmi les derniéres il y a notamment les cordes
fermées dont les modes vibratoires correspondent aux gravitons. En plus les LST sont liés aux
fameuses théories de champ superconformes (SCFT) en six dimensions. Superconforme veut
dire que ces théories sont supersymétriques et qu’en plus il n’y a pas de paramétre dimensionnée
qui pourra donner une échelle physique. La raison pour le statut de célébrité de ces théories est
que six est la dimension la plus élevée pour laquelle on peut avoir une symétrie superconforme.
Dans ce sens, ces SCFT en six dimensions sont donc en quelque sorte les théories méres des
SCF'T en dimensions inférieurs. Ces derniéres peuvent étre obtenues par compactification. Les
SCFT en six dimensions contiennent également des degrés de liberté cordes, mais ces cordes
peuvent étre de tension nulle. La relation avec les LST est que dans les LST il y a exactement
une échelle qui est donnée par la tension finie et non-nul du "little string". Il existe alors une
limite pour se débarrasser cet échelle et d’atteindre ainsi une SCFT associé. Les LST admettent
une description effective en terme de théories de jauges supersymétrique de type quiver. Cela
veut dire qu’il y a plusieurs groupe de jauges différents et qu’il y a de la matiére qui est couplé
a un ou a plusieurs de ces facteurs de jauge. Cette structure peut étre facilement représen-
tée sous forme d’un graphe qu’on appelle quiver, par example 1. Chaque groupe de jauge est
représentée par un noeud et la matieére par différents segments qui connectent les facteurs de
jauge (noeuds) auxquels ils sont couplés.

Tout comme les théorie des cordes de type IIA et IIB en dix dimensions d’espace-temps, les
LST ont la propriété de T-dualité. Par T-duality entre ITA et IIB, on entend le fait que si
on compactifie par example une dimension spatiale de la théorie ITA sur un cercle & un rayon
fixé, la théorie physique qu’on obtient est la méme que si on prenait la type IIB avec la méme
dimension spatiale compactifié sur un cercle de rayon inversé. Comme les quantités calculable
dans ces deux théories sont reliées, on dit que les théories sont duales, plus spécifiquement
T-dual dans ce cas. Cette méme notion de T-dualité est vraie pour les LST en six dimensions,
encore une qualité qui soulignent le caractére non-local des ces théories. Pour vérifier la dual-
ité par le calcul, il existe différentes méthodes. Une méthode particuliérement intéressant est
par comparaison des fonctions de partitions de Nekrasov. Ces fonctions sont des objects non-
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perturbative. Cela veut dire que toutes les corrections quantiques, notamment celles dues aux
instantons sont comprises dedans. Donc, établir une relation entre des fonctions de partitions
pour deux théories a priori distinctes, fournit une preuve de dualité exacte & tout ordre. Ces
fonctions de partitions ont été initialement introduites pour des théories supersymétriques en
quatre dimensions. Le calcul repose sur une technique appelée localisation supersymétrique,
laquelle est basé sur la description lagrangienne de la théorie en question. Malheureusement,
les théories auxquelles nous nous intéressons dans cette thése, ne disposent pas de description
lagrangienne. Il faut donc avoir recours & une autre méthode pour calculer ces fonctions de
partitions. Par une chaine de dualités en théories des cordes on peut relier les configurations de
branes qui donnent les LST a une configurations de branes en ce qu’on appelle théorie M. Cette
derniére est une théorie dans un espace-temps en onze dimensions et les théories des cordes
peuvent obtenues & partir de la théorie M par compactification et dualités. Sa description de
basse énergie est donnée par la supergravité en onze dimensions. Dans cette configuration de
branes en théories M, il existe une technique systématique, appelée le vertex topologique, pour
calculer les fonctions de partitions pour les LST qui sont le sujet de cette thése.

Le but de cette thése est d’analyser si la classe de LST a laquelle on s’intéresse, admet encore des
dualités autre que la T-dualité décrite plus haut. Pour cela nous disposons d’outils géométrique
issus de la géométrie torique. La puissance de cette approche est qu’elle est trés graphique.
Des éléments importants de la structure des LST peuvent ainsi étre représenté par des simple
graphique en deux dimensions. Cette représentation graphique nous fournit des premiéres in-
dications de présence d’un réseau the théories duales beaucoup plus important que seulement
la T-dualité. En calculant, les fonctions de partitions associées, nous sommes capables que ces
dualité sont effectivement réalisées. En terme de théorie de jauges supersymétrique, le résultat
est également intéressant dans le sens ou ces nouvelles dualités mélangent les paramétres des
théories d’'une maniére hautement non-trivial. Donc si on ne dispose pas de ’approche de con-
struction par la théorie des cordes, ce serait quasi impossible de deviner ces relations entre ces
différents théories.

Nous étudions également différentes conséquences de ce réseau de dualités. Nous en tirons
des nouvelles limites de réduction dimensionnelle de six a cing dimensions pour ces théories.
Les limites conventionnelles pour ces théories donnent en général des théories en cinq dimen-
sions ayant le méme groupe de jauge et le méme contenu en matiére. Les nouvelles limites que
nous décrivons, réduisent également la dimensionalité mais aussi en méme temps le rang du
groupe de jauge et changent le contenu en matiére. Tout cela est vérifié sur le plan calcula-
toire & l'aide de la fonction de partition de Nekrasov. Un autre résultat que nous tirons du
réseau de dualités est la présence d’une symétrie dihédrale pour la fonction de partition méme
et par conséquence aussi pour les théories de jauges associées. Cette symétrie agit d’une fagon
hautement non-perturbative au niveau des théories de jauge. Elle relie des termes a different
ordre dans l'expansion instantonique (non-perturbative). Encore une fois, sans 'approche de
la théorie des cordes, cette symétrie serait trés difficile, voire impossible, & trouver.

S’il y a donc une legon importante a tirer de cette thése, c’est que la construction de théories de
jauges supersymétriques en théories des cordes peut nous fournir des informations qui sont quasi
impossible d’obtenir du seul point de vue de la théorie da jauge. La puissance des méthodes
géometriques disponible en théories des cordes ainsi que les différents points de vue alterna-
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tive nous permettent d’analyser des questions pertinentes, comme par example la dualité entre
différentes théories, par des angles multiples et d’obtenir des résultats étonnants.
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