J. P. Putaud, R. Van-dingenen, A. Alastuey, H. Bauer, W. Birmili et al., A European aerosol phenomenology -3: Physical and chemical characteristics of particulate matter from 60 rural, urban, and kerbside sites across Europe, Atmospheric Environment, vol.44, pp.1308-1320, 2010.

G. Myhre, C. E. Myhre, B. H. Samset, and T. Storelvmo, Aerosols and their Relation to Global Climate and Climate Sensitivity, Nature Education, pp.1-11, 2015.

T. C. Bond and R. W. Bergstrom, Light Absorption by Carbonaceous Particles: An Investigative Review, Aerosol Science and Technology, vol.40, pp.27-67, 2006.

M. O. Andreae, C. D. Jones, and P. M. Cox, Strong present-day aerosol cooling implies a hot future, Nature, vol.435, pp.1187-1190, 2005.

U. , Atmospheric aerosols: Composition, transformation, climate and health effects, Angewandte Chemie -International Edition, vol.44, pp.7520-7540, 2005.

M. O. Andreae and D. Rosenfeld, Aerosol-cloud-precipitation interactions. Part 1. The nature and sources of cloud-active aerosols, Earth-Science Reviews, vol.89, pp.13-41, 2008.

P. Chýlek, V. Ramaswamy, and V. Srivastava, Albedo of soot-contaminated snow, Journal of Geophysical Research, vol.88, p.10837, 1983.

S. G. Warren, Impurities in Snow: Effects on Albedo and Snowmelt (Review), Annals of Glaciology, vol.5, pp.177-179, 1984.

J. Hansen and L. Nazarenko, Soot climate forcing via snow and ice albedos, Proceedings of the National Academy of Sciences, vol.101, pp.423-428, 2004.

O. L. Hadley and T. W. Kirchstetter, Black-carbon reduction of snow albedo, Nature Climate Change, vol.2, pp.437-440, 2012.

C. Magono, T. Endoh, F. Ueno, S. Kubota, and M. Itasaka, Direct observations of aerosols attached to falling snow crystals, Tellus, vol.31, pp.102-114, 1979.

M. Kumai, Identification of Nuclei and Concentrations of Chemical Species in Snow Crystals Sampled at the South Pole, Journal of the Atmospheric Sciences, vol.33, pp.833-841, 1976.

C. Sergent, E. Pougatch, M. Sudul, and B. Bourdelles, Experimental investigation of optical snow properties, Annals of Glaciology, vol.17, pp.281-287, 1993.

J. Hansen, R. Ruedy, M. Sato, M. Imhoff, W. Lawrence et al., A closer look at United States and global surface temperature change, Journal of Geophysical Research: Atmospheres, vol.106, pp.23947-23963, 2001.

M. G. Flanner, C. S. Zender, J. T. Randerson, and P. J. Rasch, Present-day climate forcing and response from black carbon in snow, Journal of Geophysical Research, vol.112, p.11202, 2007.

M. A. Cole, R. J. Elliott, and K. Shimamoto, Industrial characteristics, environmental regulations and air pollution: An analysis of the UK manufacturing sector, Journal of Environmental Economics and Management, vol.50, pp.121-143, 2005.

D. D. Moore, G. D. Robson, and A. P. Trinci, 21st century guidebook to fungi, Choice Reviews Online, vol.49, pp.49-3854, 2012.

N. A. Janssen, M. E. Gerlofs-nijland, T. Lanki, R. O. Salonen, F. Cassee et al., Health effects of black carbon, 2012.

M. Krzyzanowski, B. Kuna-dibbert, and J. Schneider, Health effects of transport-related air pollution. World Health Organization Europe, 2005.

M. Shiraiwa, K. Selzle, and U. Pöschl, Hazardous components and health effects of atmospheric aerosol particles: Reactive oxygen species, soot, polycyclic aromatic compounds and allergenic proteins, Free Radical Research, vol.46, pp.927-939, 2012.

A. Y. Watson and P. A. Valberg, Carbon black and soot: Two different substances, American Industrial Hygiene Association Journal, vol.62, issue.2, pp.218-228, 2001.

C. M. Long, M. A. Nascarella, and P. A. Valberg, Carbon black vs. black carbon and other airborne materials containing elemental carbon: Physical and chemical distinctions, Environmental Pollution, vol.181, pp.271-286, 2013.

R. J. Mccunney, H. J. Muranko, C. M. Long, A. K. Hamade, P. A. Valberg et al., Carbon Black, pp.429-454, 2012.

J. Lahaye, Particulate carbon from the gas phase, Carbon, vol.30, issue.3, pp.309-314, 1992.

M. Kholghy, M. Saffaripour, C. Yip, and M. J. Thomson, The evolution of soot morphology in a laminar coflow diffusion flame of a surrogate for Jet A-1, Combustion and Flame, vol.160, issue.10, pp.2119-2130, 2013.

M. R. Kholghy, A. Veshkini, and M. J. Thomson, The core-shell internal nanostructure of soot -A criterion to model soot maturity, Carbon, vol.100, pp.508-536, 2016.

C. Saggese, S. Ferrario, J. Camacho, A. Cuoci, A. Frassoldati et al., Kinetic modeling of particle size distribution of soot in a premixed burner-stabilized stagnation ethylene flame, Combustion and Flame, vol.162, issue.9, pp.3356-3369, 2015.

A. D'alessio, A. Anna, G. Gambi, and P. Minutolo, The spectroscopic characterisation of UV absorbing nanoparticles in fuel rich soot forming flames, Journal of Aerosol Science, vol.29, issue.4, pp.397-409, 1998.

A. , Combustion-formed nanoparticles, Proceedings of the Combustion Institute, vol.32, pp.593-613, 2009.

A. Anna, M. Alfè, B. Apicella, A. Tregrossi, and A. Ciajolo, Effect of fuel/air ratio and aromaticity on sooting behavior of premixed heptane flames, Energy and Fuels, vol.21, issue.5, pp.2655-2662, 2007.

M. Commodo, L. A. Sgro, P. Minutolo, and A. D'anna, Characterization of combustion-generated carbonaceous nanoparticles by size-dependent ultraviolet laser photoionization, Journal of Physical Chemistry A, vol.117, issue.19, pp.3980-3989, 2013.

R. A. Dobbins and C. M. Megaridis, Morphology of Flame-Generated Soot As Determined by Thermophoretic Sampling, Langmuir, vol.3, pp.254-259, 1987.

C. M. Megaridis and R. A. Dobbins, Soot aerosol dynamics in a laminar ethylene diffusion flame, Symposium (International) on Combustion, vol.22, pp.353-362, 1989.

R. A. Dobbins, Hydrocarbon Nanoparticles Formed in Flames and Diesel Engines, Aerosol Science and Technology, vol.41, pp.485-496, 2007.

M. Schenk, S. Lieb, H. Vieker, A. Beyer, A. Gölzhäuser et al., Morphology of nascent soot in ethylene flames, Proceedings of the Combustion Institute, vol.35, pp.1879-1886, 2015.

H. Wang, Formation of nascent soot and other condensed-phase materials in flames, Proceedings of the Combustion Institute, vol.33, issue.1, pp.41-67, 2011.

J. P. Cain, P. L. Gassman, H. Wang, and A. Laskin, Micro-FTIR study of soot chemical composition -Evidence of aliphatic hydrocarbons on nascent soot surfaces, Physical Chemistry Chemical Physics, vol.12, pp.5206-5218, 2010.

A. D. Abid, E. D. Tolmachoff, D. J. Phares, H. Wang, Y. Liu et al., Size distribution and morphology of nascent soot in premixed ethylene flames with and without benzene doping, Proceedings of the Combustion Institute, vol.32, issue.1, pp.681-688, 2009.

P. Desgroux, A. Faccinetto, X. Mercier, T. Mouton, D. Karkar et al., Comparative study of the soot formation process in a "nucleation" and a "sooting" low pressure premixed methane flame, Combustion and Flame, vol.184, pp.153-166, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02315800

M. Wartel, J. F. Pauwels, P. Desgroux, and X. Mercier, Pyrene measurements in sooting low pressure methane flames by jet-cooled laser-induced fluorescence, Journal of Physical Chemistry A, vol.115, issue.49, pp.14153-14162, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01056604

S. Grimonprez, A. Faccinetto, S. Batut, J. Wu, P. Desgroux et al., Cloud condensation nuclei from the activation with ozone of soot particles sampled from a kerosene diffusion flame, Aerosol Science and Technology, vol.52, issue.8, pp.814-827, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02333381

C. S. Mcenally, L. D. Pfefferle, B. Atakan, and K. Kohse-höinghaus, Studies of aromatic hydrocarbon formation mechanisms in flames: Progress towards closing the fuel gap, Progress in Energy and Combustion Science, vol.32, pp.247-294, 2006.

H. F. Calcote, Mechanisms of soot nucleation in flames-A critical review, Combustion and Flame, vol.42, pp.215-242, 1981.

H. Richter and J. B. Howard, Formation of polycyclic aromatic hydrocarbons and their growth to soot-a review of chemical reaction pathways, Progress in Energy and Combustion Science, vol.26, pp.565-608, 2000.

M. Frenklach, Method of moments with interpolative closure, Chemical Engineering Science, vol.57, pp.2229-2239, 2002.

A. , Detailed kinetic modeling of particulate formation in rich premixed flames of ethylene, Energy and Fuels, vol.22, pp.1610-1619, 2008.

M. Sirignano, J. Kent, and A. D'anna, Modeling Formation and Oxidation of Soot in Nonpremixed Flames, Energy & Fuels, vol.27, issue.4, pp.2303-2315, 2013.

C. Russo, A. Tregrossi, and A. Ciajolo, Dehydrogenation and growth of soot in premixed flames, Proceedings of the Combustion Institute, vol.35, pp.1803-1809, 2015.

M. M. Maricq, An examination of soot composition in premixed hydrocarbon flames via laser ablation particle mass spectrometry, Journal of Aerosol Science, vol.40, pp.844-857, 2009.

T. C. Williams, C. R. Shaddix, K. A. Jensen, and J. M. Suo-anttila, Measurement of the dimensionless extinction coefficient of soot within laminar diffusion flames, International Journal of Heat and Mass Transfer, vol.50, issue.7-8, pp.1616-1630, 2007.

J. Cain, A. Laskin, M. R. Kholghy, M. J. Thomson, and H. Wang, Molecular characterization of organic content of soot along the centerline of a coflow diffusion flame, Physical Chemistry Chemical Physics, vol.16, pp.25862-25875, 2014.

J. Mckinnon, E. Meyer, and J. B. Howard, Infrared analysis of flame-generated PAH samples, Combustion and Flame, vol.105, pp.161-166, 1996.

C. Russo, M. Alfe, J. N. Rouzaud, F. Stanzione, A. Tregrossi et al., Probing structures of soot formed in premixed flames of methane, ethylene and benzene, Proceedings of the Combustion Institute, vol.34, pp.1885-1892, 2013.

C. Russo, F. Stanzione, A. Tregrossi, M. Alfè, and A. Ciajolo, The effect of temperature on the condensed phases formed in fuel-rich premixed benzene flames, Combustion and Flame, vol.159, pp.2233-2242, 2012.

M. Alfè, B. Apicella, R. Barbella, J. N. Rouzaud, A. Tregrossi et al., Structure-property relationship in nanostructures of young and mature soot in premixed flames, Proceedings of the Combustion Institute, vol.32, issue.1, pp.697-704, 2009.

S. A. Skeen, H. A. Michelsen, K. R. Wilson, D. M. Popolan, A. Violi et al., Near-threshold photoionization mass spectra of combustion-generated high-molecular-weight soot precursors, Journal of Aerosol Science, vol.58, pp.86-102, 2013.

R. Puri, T. F. Richardson, R. J. Santoro, and R. A. Dobbins, Aerosol dynamic processes of soot aggregates in a laminar ethene diffusion flame, Combustion and Flame, vol.92, pp.320-333, 1993.

R. L. Vander-wal, V. M. Bryg, and C. H. Huang, Aircraft engine particulate matter: Macro-microand nanostructure by HRTEM and chemistry by XPS, Combustion and Flame, vol.161, pp.602-611, 2014.

P. Mitchell and M. Frenklach, Particle aggregation with simultaneous surface growth, Physical Review E -Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, vol.67, p.11, 2003.

P. Mitchell and M. Frenklach, Monte Carlo simulation of soot aggregation with simultaneous surface growth -Why primary particles appear spherical, Symposium (International) on Combustion, vol.27, pp.1507-1514, 1998.

A. Kazakov and M. Frenklach, On the relative contribution of acetylene and aromatics to soot particle surface growth, Combustion and Flame, vol.112, pp.270-274, 1998.

J. A. Miller, S. J. Klippenstein, Y. Georgievskii, L. B. Harding, W. D. Allen et al., Reactions between Resonance-Stabilized Radicals: Propargyl + Allyl, vol.114, pp.4881-4890, 2010.

D. Wang, A. Violi, D. H. Kim, and J. A. Mullholland, Formation of Naphthalene, Indene, and Benzene from Cyclopentadiene Pyrolysis: A DFT Study, The Journal of Physical Chemistry A, vol.110, pp.4719-4725, 2006.

C. P. Fenimore, Oxidation of soot by hydroxyl radicals, Journal of Physical Chemistry, vol.71, issue.3, pp.593-597, 1967.

P. Roth, O. Brandt, and S. Von-gersum, High temperature oxidation of suspended soot particles verified by CO and CO2 measurements, Symposium (International) on Combustion, vol.23, pp.1485-1491, 1991.

C. A. Echavarria, I. C. Jaramillo, A. F. Sarofim, and J. S. Lighty, Studies of soot oxidation and fragmentation in a two-stage burner under fuel-lean and fuel-rich conditions, Proceedings of the Combustion Institute, vol.33, pp.659-666, 2011.

R. L. Vander-wal and A. J. Tomasek, Soot oxidation: Dependence upon initial nanostructure, Combustion and Flame, vol.134, pp.1-9, 2003.

B. R. Stanmore, J. F. Brilhac, and P. Gilot, The oxidation of soot: A review of experiments, mechanisms and models, Carbon, vol.39, pp.2247-2268, 2001.
URL : https://hal.archives-ouvertes.fr/hal-01844750

K. G. Neoh, J. B. Howard, and A. F. Sarofim, Effect of oxidation on the physical structure of soot, Symposium (International) on Combustion, vol.20, issue.1, pp.951-957, 1985.

A. Garo, J. Lahaye, and G. Prado, Mechanisms of formation and destruction of soot particles in a laminar methane-air diffusion flame, Symposium (International) on Combustion, vol.21, pp.1023-1031, 1988.
URL : https://hal.archives-ouvertes.fr/hal-00689200

C. M. Sorensen and G. D. Feke, The Morphology of Macroscopic Soot, Aerosol Science and Technology, vol.25, pp.328-337, 1996.

U. Koeylue, Y. Xing, and D. E. Rosner, Fractal Morphology Analysis of Combustion-Generated Aggregates Using Angular Light Scattering and Electron Microscope Images, Langmuir, vol.11, pp.4848-4854, 1995.

T. L. Barone, J. M. Storey, A. D. Youngquist, and J. P. Szybist, An analysis of direct-injection sparkignition (DISI) soot morphology, Atmospheric Environment, vol.49, pp.268-274, 2012.

A. D. Abid, N. Heinz, E. D. Tolmachoff, D. J. Phares, C. S. Campbell et al., On evolution of particle size distribution functions of incipient soot in premixed ethylene-oxygen-argon flames, Combustion and Flame, vol.154, issue.4, pp.775-788, 2008.

H. Lin, C. Gu, J. Camacho, B. Lin, C. Shao et al., Mobility size distributions of soot in premixed propene flames, Combustion and Flame, vol.172, pp.365-373, 2016.

Ü. Ö. Köylü, G. M. Faeth, T. L. Farias, and M. G. Carvalho, Fractal and projected structure properties of soot aggregates, Combustion and Flame, vol.100, pp.621-633, 1995.

N. J. Kempema and M. B. Long, Combined optical and TEM investigations for a detailed characterization of soot aggregate properties in a laminar coflow diffusion flame, Combustion and Flame, vol.164, pp.373-385, 2016.

S. Schraml, S. Will, and A. Leipertz, Simultaneous Measurement of Soot Mass Concentration and Primary Particle Size in the Exhaust of a DI Diesel Engine by Time-Resolved Laser-Induced Incandescence ( TIRE-LII ), SAE Technical Paper, 1999.

B. Hu and U. O. Koylu, Size and morphology of soot particulates sampled from a turbulent nonpremixed acetylene flame, Aerosol Science and Technology, vol.38, issue.10, pp.1009-1018, 2004.

E. Cenker, K. Kondo, G. Bruneaux, T. Dreier, T. Aizawa et al., Assessment of soot particlesize imaging with LII at Diesel engine conditions, Applied Physics B: Lasers and Optics, vol.119, pp.765-776, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01176511

M. Wentzel, H. Gorzawski, K. Naumann, H. Saathoff, and S. Weinbruch, Transmission electron microscopical and aerosol dynamical characterization of soot aerosols, Journal of Aerosol Science, vol.34, pp.1347-1370, 2003.

R. L. Vander-wal, T. M. Ticich, and A. B. Stephens, Can soot primary particle size be determined using laser-induced incandescence?, Combustion and Flame, vol.116, issue.1-2, pp.291-296, 1999.

Ü. Köylu, Y. Xing, and D. E. Rosner, Fractal Morphology Analysis of Combustion-Generated Aggregates Using Angular Light Scattering and Electron Microscope Images, Langmuir, vol.11, issue.12, pp.4848-4854, 1995.

B. Franzelli, M. Roussillo, P. Scouflaire, J. Bonnety, R. Jalain et al., Multi-diagnostic soot measurements in a laminar diffusion flame to assess the ISF database consistency, International Symposium on Combustion, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01856558

H. Bladh, J. Johnsson, and P. E. Bengtsson, Influence of spatial laser energy distribution on evaluated soot particle sizes using two-colour laser-induced incandescence in a flat premixed ethylene/air flame, Applied Physics B: Lasers and Optics, vol.96, issue.4, pp.645-656, 2009.

T. Lehre, B. Jungfleisch, R. Suntz, and H. Bockhorn, Size distributions of nanoscaled particles and gas temperatures from time-resolved laser-induced-incandescence measurements, Applied Optics, vol.42, issue.12, p.2021, 2003.

A. M. Vargas and Ö. L. Gülder, Pressure dependence of primary soot particle size determined using thermophoretic sampling in laminar methane-air diffusion flames, Proceedings of the Combustion Institute, vol.36, pp.975-984, 2017.

H. Bladh, J. Johnsson, N. E. Olofsson, A. Bohlin, and P. E. Bengtsson, Optical soot characterization using two-color laser-induced incandescence (2C-LII) in the soot growth region of a premixed flat flame, Proceedings of the Combustion Institute, vol.33, pp.641-648, 2011.

E. Cenker, G. Bruneaux, T. Dreier, and C. Schulz, Determination of small soot particles in the presence of large ones from time-resolved laser-induced incandescence, Applied Physics B: Lasers and Optics, vol.118, pp.169-183, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01121150

F. Liu, H. Guo, G. J. Smallwood, and Ö. L. Gülder, Effects of gas and soot radiation on soot formation in a coflow laminar ethylene diffusion flame, Journal of Quantitative Spectroscopy and Radiative Transfer, vol.73, issue.2-5, pp.409-421, 2002.

M. E. Mueller, G. Blanquart, and H. Pitsch, A joint volume-surface model of soot aggregation with the method of moments, Proceedings of the Combustion Institute, vol.32, pp.785-792, 2009.

H. Oltmann, J. Reimann, and S. Will, Wide-angle light scattering (WALS) for soot aggregate characterization, Combustion and Flame, vol.157, pp.516-522, 2010.

C. Caumont-prim, J. Ô. Yon, A. Coppalle, F. X. Ouf, and K. Fang-ren, Measurement of aggregates' size distribution by angular light scattering, Journal of Quantitative Spectroscopy and Radiative Transfer, vol.126, pp.140-149, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01613297

B. Ma and M. B. Long, Combined soot optical characterization using 2-D multi-angle light scattering and spectrally resolved line-of-sight attenuation and its implication on soot color-ratio pyrometry, Applied Physics B: Lasers and Optics, vol.117, pp.287-303, 2014.

H. Oltmann, J. Reimann, and S. Will, Single-shot measurement of soot aggregate sizes by wideangle light scattering (WALS), Applied Physics B: Lasers and Optics, vol.106, issue.1, pp.171-183, 2012.

E. Knutson and K. Whitby, Aerosol classification by electric mobility: apparatus, theory, and applications, Journal of Aerosol Science, vol.6, pp.443-451, 1975.

S. C. Wang and R. C. Flagan, Scanning Electrical Mobility Spectrometer, Aerosol Science and Technology, vol.13, pp.230-240, 1990.

B. Zhao, K. Uchikawa, and H. Wang, A comparative study of nanoparticles in premixed flames by scanning mobility particle sizer, small angle neutron scattering, and transmission electron microscopy, Proceedings of the Combustion Institute, vol.31, issue.1, pp.851-860, 2007.

J. Camacho, C. Liu, C. Gu, H. Lin, Z. Huang et al., Mobility size and mass of nascent soot particles in a benchmark premixed ethylene flame, Combustion and Flame, vol.162, pp.3810-3822, 2015.

C. M. Sorensen, The mobility of fractal aggregates: A review, Aerosol Science and Technology, vol.45, issue.7, pp.755-769, 2011.

M. J. Hounslow, A discretized population balance for continuous systems at steady state, AIChE Journal, vol.36, pp.106-116, 1990.

J. D. Landgrebe and S. E. Pratsinis, A discrete-sectional model for particulate production by gasphase chemical reaction and aerosol coagulation in the free-molecular regime, Journal of Colloid and Interface Science, vol.139, pp.63-86, 1990.

B. Zhao, Z. Yang, M. V. Johnston, H. Wang, A. S. Wexler et al., Measurement and numerical simulation of soot particle size distribution functions in a laminar premixed ethyleneoxygen-argon flame, Combustion and Flame, vol.133, pp.173-188, 2003.

H. Richter, S. Granata, W. H. Green, and J. B. Howard, Detailed modeling of PAH and soot formation in a laminar premixed benzene/oxygen/argon low-pressure flame, Proceedings of the Combustion Institute, vol.30, pp.1397-1405, 2005.

J. Z. Wen, M. J. Thomson, M. F. Lightstone, and S. N. Rogak, Detailed Kinetic Modeling of Carbonaceous Nanoparticle Inception and Surface Growth during the Pyrolysis of C 6 H 6 behind Shock Waves, Energy & Fuels, vol.20, pp.547-559, 2006.

M. Strumendo and H. Arastoopour, Solution of PBE by MOM in finite size domains, Chemical Engineering Science, vol.63, pp.2624-2640, 2008.

M. Balthasar and M. Frenklach, Monte-Carlo simulation of soot particle coagulation and aggregation: The effect of a realistic size distribution, Proceedings of the Combustion Institute, vol.30, pp.1467-1474, 2005.

N. Morgan, M. Kraft, M. Balthasar, D. Wong, M. Frenklach et al., Numerical simulations of soot aggregation in premixed laminar flames, Proceedings of the Combustion Institute, vol.31, pp.693-700, 2007.

J. Etheridge, S. Mosbach, M. Kraft, H. Wu, and N. Collings, Modelling soot formation in a DISI engine, Proceedings of the Combustion Institute, vol.33, pp.3159-3167, 2011.

M. Balthasar and M. Kraft, A stochastic approach to calculate the particle size distribution function of soot particles in laminar premixed flames, Combustion and Flame, vol.133, pp.289-298, 2003.

M. E. Mueller, G. Blanquart, and H. Pitsch, Hybrid Method of Moments for modeling soot formation and growth, Combustion and Flame, vol.156, pp.1143-1155, 2009.

C. Yuan and R. O. Fox, Conditional quadrature method of moments for kinetic equations, Journal of Computational Physics, vol.230, issue.22, pp.8216-8246, 2011.

C. Yuan, F. Laurent, and R. O. Fox, An extended quadrature method of moments for population balance equations, Journal of Aerosol Science, vol.51, pp.1-23, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00726736

G. Blanquart and H. Pitsch, Analyzing the effects of temperature on soot formation with a joint volume-surface-hydrogen model, Combustion and Flame, vol.156, pp.1614-1626, 2009.

G. Blanquart and H. Pitsch, A Joint Volume-Surface-Hydrogen Multi-variate Model for Soot Formation, pp.1-4, 2009.

S. Salenbauch, A. Cuoci, A. Frassoldati, C. Saggese, T. Faravelli et al., Modeling soot formation in premixed flames using an Extended Conditional Quadrature Method of Moments, Combustion and Flame, vol.162, pp.2529-2543, 2015.

S. Salenbauch, M. Sirignano, D. L. Marchisio, M. Pollack, A. et al., Detailed particle nucleation modeling in a sooting ethylene flame using a Conditional Quadrature Method of Moments (CQMOM), Proceedings of the Combustion Institute, vol.36, pp.771-779, 2017.

D. L. Marchisio and A. A. Barresi, Investigation of soot formation in turbulent flames with a pseudobivariate population balance model, Chemical Engineering Science, vol.64, issue.2, pp.294-303, 2009.

M. L. Botero, N. Eaves, J. A. Dreyer, Y. Sheng, J. Akroyd et al., Experimental and numerical study of the evolution of soot primary particles in a diffusion flame, Proceedings of the Combustion Institute, vol.37, pp.2047-2055, 2019.

M. Hofmann, B. F. Kock, and C. Schulz, A web-based interface for modeling laser-induced incandescence (LIISim), CEUR Workshop Proceedings, vol.211, p.26, 2006.

F. Liu, G. J. Smallwood, and D. R. Snelling, Effects of primary particle diameter and aggregate size distribution on the temperature of soot particles heated by pulsed lasers, Journal of Quantitative Spectroscopy and Radiative Transfer, vol.93, issue.1-3, pp.301-312, 2005.

F. Liu, M. Yang, F. A. Hill, G. J. Smallwood, and D. R. Snelling, Influence of polydisperse distributions of both primary particle and aggregate sizes on soot temperature in low-fluence laser-induced incandescence, Applied Physics B, vol.83, pp.383-395, 2006.

, International Sooting Flame (ISF) Workshop, 2016.

C. Saggese, N. E. Sánchez, A. Frassoldati, A. Cuoci, T. Faravelli et al., Kinetic Modeling Study of Polycyclic Aromatic Hydrocarbons and Soot Formation in Acetylene Pyrolysis, Energy & Fuels, vol.28, pp.1489-1501, 2014.

D. L. Marchisio and R. O. Fox, Solution of population balance equations using the direct quadrature method of moments, Journal of Aerosol Science, vol.36, pp.43-73, 2005.

D. L. Marchisio and R. O. Fox, Computational Models for Polydisperse Particulate and Multiphase Systems (Cambridge Series in Chemical Engineering), 2013.

M. Frenklach and S. J. Harris, Aerosol dynamics modeling using the method of moments, Journal of Colloid And Interface Science, vol.118, issue.1, pp.252-261, 1987.

M. Frenklach, On surface growth mechanism of soot particles, Symposium (International) on Combustion, vol.26, pp.2285-2293, 1996.

M. Frenklach and H. Wang, Detailed modeling of soot particle nucleation and growth, Symposium (International) on Combustion, vol.23, pp.1559-1566, 1991.

A. Kazakov and M. Frenklach, Dynamic modeling of soot particle coagulation and aggregation: Implementation with the method of moments and application to high-pressure laminar premixed flames, Combustion and Flame, vol.114, pp.484-501, 1998.

M. Balthasar and M. Frenklach, Detailed kinetic modeling of soot aggregate formation in laminar premixed flames, Combustion and Flame, vol.140, pp.130-145, 2005.

N. J. Brown, K. L. Revzan, and M. Frenklach, Detailed kinetic modeling of soot formation in ethylene/air mixtures reacting in a perfectly stirred reactor, Symposium (International) on Combustion, vol.27, pp.1573-1580, 1998.

D. L. Marchisio, J. T. Pikturna, R. O. Fox, R. D. Vigil, and A. A. Barresi, Quadrature method of moments for population-balance equations, AIChE Journal, vol.49, pp.1266-1276, 2003.

E. Madadi-kandjani and A. Passalacqua, An extended quadrature-based moment method with lognormal kernel density functions, Chemical Engineering Science, vol.131, pp.323-339, 2015.

S. P. Roy, P. G. Arias, V. R. Lecoustre, D. C. Haworth, H. G. Im et al., Development of High Fidelity Soot Aerosol Dynamics Models using Method of Moments with Interpolative Closure, Aerosol Science and Technology, vol.48, pp.379-391, 2014.

M. E. Mueller, G. Blanquart, and H. Pitsch, Modeling the oxidation-induced fragmentation of soot aggregates in laminar flames, Proceedings of the Combustion Institute, vol.33, pp.667-674, 2011.

S. Adhikari, A. Sayre, and A. J. Chandy, A Hybrid Newton/Time Integration Approach Coupled to Soot Moment Methods for Modeling Soot Formation and Growth in Perfectly-Stirred Reactors, Combustion Science and Technology, vol.188, issue.8, pp.1262-1282, 2016.

S. Deng, M. E. Mueller, Q. N. Chan, N. H. Qamar, B. B. Dally et al., Hydrodynamic and chemical effects of hydrogen addition on soot evolution in turbulent nonpremixed bluff body ethylene flames, Proceedings of the Combustion Institute, vol.36, pp.807-814, 2017.

S. T. Chong, V. Raman, M. E. Mueller, and H. G. Im, The Role of Recirculation Zones in Soot Formation in Aircraft Combustors, Volume 4B: Combustion, Fuels, and Emissions, pp.4-04, 2018.

A. Wick, F. Priesack, and H. Pitsch, Large-Eddy simulation and detailed modeling of soot evolution in a model aero engine combustor, Proceedings of the ASME Turbo Expo, pp.1-10, 2017.

S. J. Harris and I. M. Kennedy, The Coagulation of Soot Particles with van der Waals Forces, Combustion Science and Technology, vol.59, pp.443-454, 1988.

S. J. Harris and A. M. Weiner, A picture of soot particle inception, Symposium (International) on Combustion, vol.22, pp.333-342, 1989.

S. H. Park and S. N. Rogak, A novel fixed-sectional model for the formation and growth of aerosol agglomerates, Journal of Aerosol Science, vol.35, pp.1385-1404, 2004.

M. D. Smooke, M. B. Long, B. C. Connelly, M. B. Colket, and R. J. Hall, Soot formation in laminar diffusion flames, Combustion and Flame, vol.143, issue.4, pp.613-628, 2005.

S. B. Dworkin, J. A. Cooke, B. A. Bennett, B. C. Connelly, M. B. Long et al., Distributed-memory parallel computation of a forced, time-dependent, sooting, ethylene/air coflow diffusion flame, Combustion Theory and Modelling, vol.13, pp.795-822, 2009.

S. Kumar and D. Ramkrishna, On the solution of population balance equations by discretizationI. A fixed pivot technique, Chemical Engineering Science, vol.51, pp.1311-1332, 1996.

Y. P. Kim and J. H. Seinfeld, Simulation of multicomponent aerosol condensation by the moving sectional method, Journal of Colloid And Interface Science, vol.135, pp.185-199, 1990.

S. H. Park, S. N. Rogak, W. K. Bushe, J. Z. Wen, and M. J. Thomson, An aerosol model to predict size and structure of soot particles, Combustion Theory and Modelling, vol.9, issue.3, pp.499-513, 2005.

R. I. Patterson and M. Kraft, Models for the aggregate structure of soot particles, Combustion and Flame, vol.151, pp.160-172, 2007.

Q. Zhang, H. Guo, F. Liu, G. J. Smallwood, and M. J. Thomson, Implementation of an advanced fixed sectional aerosol dynamics model with soot aggregate formation in a laminar methane/air coflow diffusion flame, Combustion Theory and Modelling, vol.12, pp.621-641, 2008.

K. Nakaso, T. Fujimoto, T. Seto, M. Shimada, K. Okuyama et al., Size distribution change of titania nano-particle agglomerates generated by gas phase reaction, agglomeration, and sintering, Aerosol Science and Technology, vol.35, pp.929-947, 2001.

P. Rodrigues, B. Franzelli, R. Vicquelin, O. Gicquel, and N. Darabiha, Coupling an LES approach and a soot sectional model for the study of sooting turbulent non-premixed flames, Combustion and Flame, vol.190, pp.477-499, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01718624

C. J. Pope and J. B. Howard, Simultaneous Particle and Molecule Modeling (SPAMM): An Approach for Combining Sectional Aerosol Equations and Elementary Gas-Phase Reactions, Aerosol Science and Technology, vol.27, pp.73-94, 1997.

T. Blacha, M. D. Domenico, P. Gerlinger, and M. Aigner, Soot predictions in premixed and nonpremixed laminar flames using a sectional approach for PAHs and soot, Combustion and Flame, vol.159, issue.1, pp.181-193, 2012.

A. and M. Sirignano, An Advanced Multi-Sectional Method for Particulate Matter Modeling in Flames, Green Energy and Technology, pp.363-388, 2013.

M. Sirignano, J. Kent, and A. D'anna, Further experimental and modelling evidences of soot fragmentation in flames, Proceedings of the Combustion Institute, vol.35, pp.1779-1786, 2015.

C. S. Mcenally, A. M. Schaffer, M. B. Long, L. D. Pfefferle, M. D. Smooke et al., Computational and Experimental Study of Soot Formation in a Coflow, Laminar Diffusion Flame, Twenty-Seventh Symposium (International) on Combustion/The Combustion Institute, vol.117, pp.1459-1505, 1998.

M. D. Smooke, C. S. Mcenally, L. D. Pfefferle, R. J. Hall, and M. B. Colket, Computational and Experimental Study of Soot Formation in a Coflow, Laminar Diffusion Flame, Combustion and Flame, vol.117, pp.117-139, 1999.

M. D. Smooke, R. J. Hall, M. B. Colket, J. Fielding, M. B. Long et al., Investigation of the transition from lightly sooting towards heavily sooting co-flow ethylene diffusion flames, Combustion Theory and Modelling, vol.8, issue.3, pp.593-606, 2004.

S. B. Dworkin, M. D. Smooke, and V. Giovangigli, The impact of detailed multicomponent transport and thermal diffusion effects on soot formation in ethylene/air flames, Proceedings of the Combustion Institute, vol.32, pp.1165-1172, 2009.

B. C. Connelly, M. B. Long, M. D. Smooke, R. J. Hall, and M. B. Colket, Computational and experimental investigation of the interaction of soot and NO in coflow diffusion flames, Proceedings of the Combustion Institute, vol.32, issue.1, pp.777-784, 2009.

S. B. Dworkin, Q. Zhang, M. J. Thomson, N. A. Slavinskaya, and U. Riedel, Application of an enhanced PAH growth model to soot formation in a laminar coflow ethylene/air diffusion flame, Combustion and Flame, vol.158, issue.9, pp.1682-1695, 2011.

R. J. Santoro, T. T. Yeh, J. J. Horvath, and H. G. Semerjian, The Transport and Growth of Soot Particles in Laminar Diffusion Flames, Combustion Science and Technology, vol.53, pp.89-115, 1987.

Q. Zhang, M. J. Thomson, H. Guo, F. Liu, and G. J. Smallwood, A numerical study of soot aggregate formation in a laminar coflow diffusion flame, Combustion and Flame, vol.156, issue.3, pp.697-705, 2009.

Q. Zhang, H. Guo, F. Liu, G. J. Smallwood, and M. J. Thomson, Modeling of soot aggregate formation and size distribution in a laminar ethylene/air coflow diffusion flame with detailed PAH chemistry and an advanced sectional aerosol dynamics model, Proceedings of the Combustion Institute, vol.32, pp.761-768, 2009.

J. D. Herdman, B. C. Connelly, M. D. Smooke, M. B. Long, and J. H. Miller, A comparison of Raman signatures and laser-induced incandescence with direct numerical simulation of soot growth in non-premixed ethylene/air flames, Carbon, vol.49, issue.15, pp.5298-5311, 2011.

A. Khosousi and S. B. Dworkin, Detailed modelling of soot oxidation by O2 and OH in laminar diffusion flames, Proceedings of the Combustion Institute, vol.35, pp.1903-1910, 2015.

R. Santoro, H. Semerjian, and R. Dobbins, Soot particle measurements in diffusion flames, Combustion and Flame, vol.51, pp.203-218, 1983.

A. Veshkini, S. B. Dworkin, and M. J. Thomson, A soot particle surface reactivity model applied to a wide range of laminar ethylene/air flames, Combustion and Flame, vol.161, pp.3191-3200, 2015.

C. R. Shaddix and K. C. Smyth, Laser-induced incandescence measurements of soot production in steady and flickering methane, propane, and ethylene diffusion flames, Combustion and Flame, vol.107, pp.418-452, 1996.

A. Violi and A. Venkatnathan, Combustion-generated nanoparticles produced in a benzene flame: A multiscale approach, Journal of Chemical Physics, vol.125, issue.5, 2006.

M. Celnik, R. Patterson, M. Kraft, and W. Wagner, Coupling a stochastic soot population balance to gas-phase chemistry using operator splitting, Combustion and Flame, vol.148, issue.3, pp.158-176, 2007.

A. L. Bodor, B. Franzelli, T. Faravelli, and A. Cuoci, A post processing technique to predict primary particle size of sooting flames based on a chemical discrete sectional model : application to diluted coflow flames, pp.1-45, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02196708

A. Cuoci, A. Frassoldati, T. Faravelli, and E. Ranzi, Numerical modeling of laminar flames with detailed kinetics based on the operator-splitting method, Energy and Fuels, vol.27, issue.12, pp.7730-7753, 2013.

S. K. Friedlander and W. H. Marlow, Smoke, Dust and Haze: Fundamentals of Aerosol Behavior, Physics Today, vol.30, pp.58-59, 1977.

F. Bisetti, G. Blanquart, M. E. Mueller, and H. Pitsch, On the formation and early evolution of soot in turbulent nonpremixed flames, Combustion and Flame, vol.159, pp.317-335, 2012.

A. Cuoci, A. Frassoldati, T. Faravelli, and E. Ranzi, OpenSMOKE++: An object-oriented framework for the numerical modeling of reactive systems with detailed kinetic mechanisms, Computer Physics Communications, vol.192, pp.237-264, 2015.

S. De-iuliis, S. Maffi, F. Cignoli, and G. Zizak, Three-angle scattering/extinction versus TEM measurements on soot in premixed ethylene/air flame, Applied Physics B: Lasers and Optics, vol.102, pp.891-903, 2011.

S. De-iuliis, S. Maffi, F. Migliorini, F. Cignoli, and G. Zizak, Effect of hydrogen addition on soot formation in an ethylene/air premixed flame, Applied Physics B: Lasers and Optics, vol.106, pp.707-715, 2012.

B. W. Ward, J. A. Notte, and N. P. Economou, Helium ion microscope: A new tool for nanoscale microscopy and metrology, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.24, p.2871, 2006.

M. Schenk, S. Lieb, H. Vieker, A. Beyer, A. Gölzhäuser et al., Imaging Nanocarbon Materials: Soot Particles in Flames are Not Structurally Homogeneous, ChemPhysChem, vol.14, pp.3248-3254, 2013.

B. Kock, T. Eckhardt, and P. Roth, In-cylinder sizing of diesel particles by time-resolved laserinduced incandescence (TR-LII), Proceedings of the Combustion Institute, vol.29, pp.2775-2782, 2002.

B. Axelsson, R. Collin, and P. Bengtsson, Laser-induced incandescence for soot particle size measurements in premixed flat flames, Applied Optics, vol.39, p.3683, 2000.

H. A. Michelsen, Understanding and predicting the temporal response of laser-induced incandescence from carbonaceous particles, Journal of Chemical Physics, vol.118, issue.15, pp.7012-7045, 2003.

K. J. Daun, B. J. Stagg, F. Liu, G. J. Smallwood, and D. R. Snelling, Determining aerosol particle size distributions using time-resolved laser-induced incandescence, Applied Physics B: Lasers and Optics, vol.87, issue.2, pp.363-372, 2007.

C. Betrancourt, F. Liu, P. Desgroux, X. Mercier, A. Faccinetto et al., Investigation of the size of the incandescent incipient soot particles in premixed sooting and nucleation flames of n-butane using LII, HIM, and 1 nm-SMPS, Aerosol Science and Technology, vol.51, issue.8, pp.916-935, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02336601

S. Dankers and A. Leipertz, Determination of primary particle size distributions from time-resolved laser-induced incandescence measurements, Applied Optics, vol.43, issue.18, pp.3726-3731, 2004.

K. K. Foo, Z. Sun, P. R. Medwell, Z. T. Alwahabi, B. B. Dally et al., Experimental investigation of acoustic forcing on temperature, soot volume fraction and primary particle diameter in non-premixed laminar flames, Combustion and Flame, vol.181, pp.270-282, 2017.

H. Bockhorn, A. Anna, A. F. Sarofim, and H. Wang, Combustion generated fine carbonaceous particles, year =, Proceedings of an International Workshop held in VIlla Orlandi, p.538, 2007.

P. Desgroux, X. Mercier, and K. A. Thomson, Study of the formation of soot and its precursors in flames using optical diagnostics, Proceedings of the Combustion Institute, vol.34, pp.1713-1738, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02315790

M. Sirignano, D. Bartos, M. Conturso, M. Dunn, A. et al., Detection of nanostructures and soot in laminar premixed flames, Combustion and Flame, vol.176, pp.299-308, 2017.

H. Bladh, N. E. Olofsson, T. Mouton, J. Simonsson, X. Mercier et al., Probing the smallest soot particles in low-sooting premixed flames using laser-induced incandescence, Proceedings of the Combustion Institute, vol.35, pp.1843-1850, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02315797

G. Cléon, T. Amodeo, A. Faccinetto, and P. Desgroux, Laser induced incandescence determination of the ratio of the soot absorption functions at 532 nm and 1064 nm in the nucleation zone of a low pressure premixed sooting flame, Applied Physics B: Lasers and Optics, vol.104, issue.2, pp.297-305, 2011.

A. Anna, M. Commodo, M. Sirignano, P. Minutolo, and R. Pagliara, Particle formation in opposed-flow diffusion flames of ethylene: An experimental and numerical study, Proceedings of the Combustion Institute, vol.32, pp.793-801, 2009.

M. Sirignano, A. Collina, M. Commodo, P. Minutolo, and A. D'anna, Detection of aromatic hydrocarbons and incipient particles in an opposed-flow flame of ethylene by spectral and time-resolved laser induced emission spectroscopy, Combustion and Flame, vol.159, pp.1663-1669, 2012.

A. L. Bodor, A. Cuoci, and T. Faravelli, Towards a more consistent validation of numerical modeling of primary particle diameters in sooting flames

R. Boyce, J. W. Morton, A. F. Houwing, C. Mundt, and D. J. Bone, Computational fluid dynamics validation using multiple interferometric views of a hypersonic flowfield, Journal of Spacecraft and Rockets, vol.33, pp.319-325, 1996.

P. M. Danehy, P. C. Palma, R. R. Boyce, and A. F. Houwing, Numerical Simulation of Laser-Induced Fluorescence Imaging in Shock-Layer Flows, AIAA JOURNAL, vol.37, issue.6, 1999.

B. C. Connelly, B. A. Bennett, M. D. Smooke, and M. B. Long, A paradigm shift in the interaction of experiments and computations in combustion research, Proceedings of the Combustion Institute, vol.32, pp.879-886, 2009.

D. R. Snelling, F. Liu, G. J. Smallwood, and Ö. L. Gülder, Determination of the soot absorption function and thermal accommodation coefficient using low-fluence LII in a laminar coflow ethylene diffusion flame, Combustion and Flame, vol.136, pp.180-190, 2004.

R. W. Weeks and W. W. Duley, Aerosol-particle sizes from light emission during excitation by TEA CO2laser pulses, Journal of Applied Physics, vol.45, issue.10, pp.4661-4662, 1974.

H. Bladh, J. Johnsson, and P. E. Bengtsson, On the dependence of the laser-induced incandescence (LII) signal on soot volume fraction for variations in particle size, Applied Physics B: Lasers and Optics, vol.90, pp.109-125, 2008.

B. J. Mccoy and C. Y. Cha, Transport phenomena in the rarefied gas transition regime, Chemical Engineering Science, vol.29, issue.2, pp.381-388, 1974.

L. A. Melton, Soot diagnostics based on laser heating, Applied Optics, vol.23, p.2201, 1984.

H. Michelsen, C. Schulz, G. Smallwood, and S. Will, Laser-induced incandescence: Particulate diagnostics for combustion, atmospheric, and industrial applications, Progress in Energy and Combustion Science, vol.51, pp.2-48, 2015.

N. A. Fuchs, On the stationary charge distribution on aerosol particles in a bipolar ionic atmosphere, Geofisica Pura e Applicata, vol.56, pp.185-193, 1963.

M. Kerker, The Scattering of Light and Other Electromagnetic Radiation, 1969.

A. V. Filippov and D. E. Rosner, Energy transfer between an aerosol particle and gas at high temperature ratios in the Knudsen transition regime, International Journal of Heat and Mass Transfer, vol.43, pp.127-138, 2000.

P. G. Wright, On the discontinuity involved in diffusion across an interface (the delta of Fucks), Discussions of the Faraday Society, vol.30, pp.100-112, 1960.

M. I. Cotterell, B. J. Mason, A. E. Carruthers, J. S. Walker, A. J. Orr-ewing et al., Measurements of the evaporation and hygroscopic response of single fine-mode aerosol particles using a Bessel beam optical trap, vol.16, 2014.

R. J. Kee, F. M. Rupley, E. Meeks, and J. A. Miller, CHEMKIN-III: A Fortran Chemical Kinetics Package for the Analysis of Gas Phase Chemical and Plasma Kinetics, Sandia National Laboratories Report, 1996.

H. A. Michelsen, F. Liu, B. F. Kock, H. Bladh, A. Boiarciuc et al., Modeling laser-induced incandescence of soot: A summary and comparison of LII models, Applied Physics B: Lasers and Optics, vol.87, pp.503-521, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00618142

D. L. Hofeldt, Real-Time Soot Concentration Measurement Technique for Engine Exhaust Streams, SAE Technical Paper Series, pp.33-45, 1993.

H. R. Leider, O. H. Krikorian, and D. A. Young, Thermodynamic properties of carbon up to the critical point, Carbon, vol.11, pp.555-563, 1973.

G. J. Smallwood, D. R. Snelling, F. Liu, and O. L. Gulder, Clouds over soot evaporation: Errors in modeling laser-induced incandescence of soot, J Heat Trans-T Asme, vol.123, pp.814-818, 2001.

L. Chen, J. Wu, M. Yan, X. Wu, G. Gréhan et al., Determination of soot particle size using time-gated laser-induced incandescence images, Applied Physics B: Lasers and Optics, vol.123, p.96, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02331486

C. Schulz, B. Kock, M. Hofmann, H. Michelsen, S. Will et al., Laser-induced incandescence: recent trends and current questions, Applied Physics B, vol.83, pp.333-354, 2006.

S. Bejaoui, R. Lemaire, P. Desgroux, and E. Therssen, Experimental study of the E(m, ?)/E(m, 1064) ratio as a function of wavelength, fuel type, height above the burner and temperature, Applied Physics B: Lasers and Optics, vol.116, issue.2, pp.313-323, 2014.

F. Migliorini, K. A. Thomson, and G. J. Smallwood, Investigation of optical properties of aging soot, Applied Physics B: Lasers and Optics, vol.104, pp.273-283, 2011.

S. S. Krishnan, K. Lin, and G. M. Faeth, Extinction and Scattering Properties of Soot Emitted From Buoyant Turbulent Diffusion Flames, Journal of Heat Transfer, vol.123, issue.2, p.331, 2001.

D. R. Snelling, K. A. Thomson, G. J. Smallwood, .. L. Oslash, . G-uacute et al., Spectrally Resolved Measurement of Flame Radiation to Determine Soot Temperature and Concentration, AIAA Journal, vol.40, pp.1789-1795, 2002.

D. R. Snelling, K. A. Thomson, F. Liu, and G. J. Smallwood, Comparison of LII derived soot temperature measurements with LII model predictions for soot in a laminar diffusion flame, Applied Physics B: Lasers and Optics, vol.96, pp.657-669, 2009.

B. F. Kock, B. Tribalet, C. Schulz, and P. Roth, Two-color time-resolved LII applied to soot particle sizing in the cylinder of a Diesel engine, Combustion and Flame, vol.147, pp.79-92, 2006.

J. Reimann, S. A. Kuhlmann, and S. Will, 2D aggregate sizing by combining laser-induced incandescence (LII) and elastic light scattering (ELS), Applied Physics B: Lasers and Optics, vol.96, pp.583-592, 2009.

T. Charalampopoulos and J. Felske, Refractive indices of soot particles deduced from in-situ laser light scattering measurements, Combustion and Flame, vol.68, pp.283-294, 1987.

D. C. Henriksen and T. A. Ring, 5th U.S. Combustion Meeting, 2007.

T. T. Charalampopoulos, An automated light scattering system and a method for the i n s i t u measurement of the index of refraction of soot particles, Review of Scientific Instruments, vol.58, pp.1638-1646, 1987.

A. D'alessio, A. Anna, A. D'orsi, P. Minutolo, R. Barbella et al., Precursor formation and soot inception in premixed ethylene flames, Symposium (International) on Combustion, vol.24, pp.973-980, 1992.

A. Borghese and S. S. Merola, Detection of extremely fine carbonaceous particles in the exhausts of diesel and spark-ignited internal combustion engines, by means of broad-band extinction and scattering spectroscopy in the ultraviolet band 190-400 NM, Symposium (International) on Combustion, vol.27, pp.2101-2109, 1998.

P. Minutolo, G. Gambi, A. D'alessio, and S. Carlucci, Spectroscopic characterisation of carbonaceous nanoparticles in premixed flames, Atmospheric Environment, vol.33, pp.2725-2732, 1999.

G. W. Mulholland and R. D. Mountain, Coupled dipole calculation of extinction coefficient and polarization ratio for smoke agglomerates, Combustion and Flame, vol.119, pp.56-68, 1999.

D. Cecere, L. A. Sgro, G. Basile, A. D'alessio, A. et al., Evidence and characterization of nanoparticles produced in nonsooting premixed flames, Combustion Science and Technology, vol.174, pp.377-398, 2002.

H. Chang and T. T. Charalampopoulos, Determination of the Wavelength Dependence of Refractive Indices of Flame Soot, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.430, pp.577-591, 1990.

Z. W. Sun, D. H. Gu, G. J. Nathan, Z. T. Alwahabi, and B. B. Dally, Single-shot, Time-Resolved planar Laser-Induced Incandescence (TiRe-LII) for soot primary particle sizing in flames, Proceedings of the Combustion Institute, vol.35, pp.3673-3680, 2015.

S. Will, S. Schraml, K. Bader, and A. Leipertz, Performance characteristics of soot primary particle size measurements by time-resolved laser-induced incandescence, Applied Optics, vol.37, issue.24, p.5647, 1998.

F. Liu, K. A. Thomson, and G. J. Smallwood, Soot temperature and volume fraction retrieval from spectrally resolved flame emission measurement in laminar axisymmetric coflow diffusion flames: Effect of self-absorption, Combustion and Flame, vol.160, pp.1693-1705, 2013.

F. Cignoli, S. De-iuliis, V. Manta, and G. Zizak, Two-dimensional two-wavelength emission technique for soot diagnostics, Applied Optics, vol.40, p.5370, 2001.

B. Ma and M. B. Long, Absolute light calibration using S-type thermocouples, Proceedings of the Combustion Institute, vol.34, pp.3531-3539, 2013.

H. Guo, J. A. Castillo, and P. B. Sunderland, Digital camera measurements of soot temperature and soot volume fraction in axisymmetric flames, Applied Optics, vol.52, p.8040, 2013.

S. , D. Stasio, and P. Massoli, Influence of the soot property uncertainties in temperature and volumefraction measurements by two-colour pyrometry, Measurement Science and Technology, vol.5, pp.1453-1465, 1994.

P. B. Kuhn, B. Ma, B. C. Connelly, M. D. Smooke, and M. B. Long, Soot and thin-filament pyrometry using a color digital camera, Proceedings of the Combustion Institute, vol.33, issue.1, pp.743-750, 2011.

T. P. Jenkins and R. K. Hanson, Soot pyrometry using modulated absorption/emission, Combustion and Flame, vol.126, pp.1669-1679, 2001.

J. Wu, L. Chen, J. Zhou, X. Wu, X. Gao et al., Particle size distribution of soot from a laminar/diffusion flame, Aerosol and Air Quality Research, vol.17, issue.8, pp.2095-2109, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02332034

R. Stirn, T. G. Baquet, S. Kanjarkar, W. Meier, K. P. Geigle et al., Comparison of particle size measurements with laser-induced incandescence, mass spectroscopy, and scanning mobility particle sizing in a laminar premixed ethylene-air flame, Combustion Science and Technology, vol.181, issue.2, pp.329-349, 2009.

X. López-yglesias, P. E. Schrader, and H. A. Michelsen, Soot maturity and absorption cross sections, Journal of Aerosol Science, vol.75, pp.43-64, 2014.

X. Sha, B. Jackson, D. Lemoine, and B. Lepetit, Quantum studies of H atom trapping on a graphite surface, Journal of Chemical Physics, vol.122, issue.1, 2005.

C. T. Rettner, D. J. Auerbach, J. C. Tully, and A. W. Kleyn, Chemical dynamics at the gas-surface interface, Journal of Physical Chemistry, vol.100, issue.31, pp.13021-13033, 1996.

K. Daun, Thermal accommodation coefficients between polyatomic gas molecules and soot in laserinduced incandescence experiments, International Journal of Heat and Mass Transfer, vol.52, pp.5081-5089, 2009.

A. Güttler, T. Zecho, and J. Küppers, A LEED and STM study of H(D) adsorption on C(0001) surfaces, Chemical Physics Letters, vol.395, issue.1-3, pp.171-176, 2004.

T. Zecho, A. Güttler, X. Sha, B. Jackson, and J. Küppers, Adsorption of hydrogen and deuterium atoms on the (0001) graphite surface, Journal of Chemical Physics, vol.117, issue.18, pp.8486-8492, 2002.

B. Zhao, Z. Yang, Z. Li, M. V. Johnston, and H. Wang, Particle size distribution function of incipient soot in laminar premixed ethylene flames: Effect of flame temperature, Proceedings of the Combustion Institute, vol.30, issue.1, pp.1441-1448, 2005.

F. Migliorini, S. De-iuliis, F. Cignoli, and G. Zizak, How "flat" is the rich premixed flame produced by your McKenna burner?, Combustion and Flame, vol.153, pp.384-393, 2008.

Y. Xuan and G. Blanquart, Two-dimensional flow effects on soot formation in laminar premixed flames, Combustion and Flame, vol.166, pp.113-124, 2016.

A. Anna, M. Sirignano, and J. Kent, A model of particle nucleation in premixed ethylene flames, Combustion and Flame, vol.157, pp.2106-2115, 2010.

R. Hadef, K. P. Geigle, W. Meier, and M. Aigner, Soot characterization with laser-induced incandescence applied to a laminar premixed ethylene-air flame, International Journal of Thermal Sciences, vol.49, pp.1457-1467, 2010.

J. Zerbs, K. P. Geigle, O. Lammel, J. Hader, R. Stirn et al., The influence of wavelength in extinction measurements and beam steering in laser-induced incandescence measurements in sooting flames, Applied Physics B: Lasers and Optics, vol.96, pp.683-694, 2009.

S. Maffi, S. De-iuliis, F. Cignoli, and G. Zizak, Investigation on thermal accommodation coefficient and soot absorption function with two-color Tire-LII technique in rich premixed flames, Applied Physics B: Lasers and Optics, vol.104, issue.2, pp.357-366, 2011.

E. K. Yapp, R. I. Patterson, J. Akroyd, S. Mosbach, E. M. Adkins et al., Numerical simulation and parametric sensitivity study of optical band gap in a laminar co-flow ethylene diffusion flame, Combustion and Flame, vol.167, pp.320-334, 2016.

C. Saggese, A. Cuoci, A. Frassoldati, S. Ferrario, J. Camacho et al., Probe effects in soot sampling from a burner-stabilized stagnation flame, Combustion and Flame, vol.167, pp.184-197, 2016.

C. Saggese, A. Frassoldati, A. Cuoci, T. Faravelli, and E. Ranzi, A wide range kinetic modeling study of pyrolysis and oxidation of benzene, Combustion and Flame, vol.160, pp.1168-1190, 2013.

E. Ranzi, A. Frassoldati, R. Grana, A. Cuoci, T. Faravelli et al., Hierarchical and comparative kinetic modeling of laminar flame speeds of hydrocarbon and oxygenated fuels, Progress in Energy and Combustion Science, vol.38, pp.468-501, 2012.

, Sooting Yale Coflow Diffusion Flames, 2016.

R. Piazza, Thermophoresis: Moving particles with thermal gradients, Soft Matter, vol.4, issue.9, pp.1740-1744, 2008.

S. Chapman, T. G. Cowling, and D. Park, The Mathematical Theory of Non-Uniform Gases, American Journal of Physics, vol.30, issue.5, pp.389-389, 1962.

H. Guo, F. Liu, G. J. Smallwood, and Ö. L. Gülder, The flame preheating effect on numerical modelling of soot formation in a two-dimensional laminar ethylene-air diffusion flame, Combustion Theory and Modelling, vol.6, pp.173-187, 2002.

H. Jin, A. Cuoci, A. Frassoldati, T. Faravelli, Y. Wang et al., Experimental and kinetic modeling study of PAH formation in methane coflow diffusion flames doped with n-butanol, Combustion and Flame, vol.161, pp.657-670, 2014.

H. Jin, W. Yuan, Y. Wang, Y. Li, F. Qi et al., Experimental and kinetic modeling study of laminar coflow diffusion methane flames doped with 2-butanol, Proceedings of the Combustion Institute, vol.35, pp.863-871, 2015.

H. Jin, A. Frassoldati, Y. Wang, X. Zhang, M. Zeng et al., Kinetic modeling study of benzene and PAH formation in laminar methane flames, Combustion and Flame, vol.162, pp.1692-1711, 2015.

A. Cuoci, A. Frassoldati, T. Faravelli, H. Jin, Y. Wang et al., Experimental and detailed kinetic modeling study of PAH formation in laminar co-flow methane diffusion flames, Proceedings of the Combustion Institute, vol.34, pp.1811-1818, 2013.

I. S. Jayaweera and P. D. Pacey, The formation of hydrogen in ethylene pyrolysis at 900 K, International Journal of Chemical Kinetics, pp.719-729

R. J. Hall, The radiative source term for plane-parallel layers of reacting combustion gases, Journal of Quantitative Spectroscopy and Radiative Transfer, vol.49, pp.517-523, 1993.

T. Poinsot and D. Veynante, , 2005.

L. Talbot, R. K. Cheng, R. W. Schefer, and D. R. Willis, Thermophoresis of particles in a heated boundary layer, Journal of Fluid Mechanics, vol.101, p.737, 1980.

M. Roussillo, Thesis, Development of multiple optical diagnostics for soot and application to confined swirling premixed sooting flames under rich conditions, 2009.